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CHAPTER - 1

INTRODUCTION

1.1 INTRODUCTION

The database management sys£ems (DBMSs) that emerged in
the early 1970s, have become an integral part of most business
corporations. The DBMS technology has grown enormously in the
two decades but despite its wide use and its indispensable place
in big organizations, the art of database design has remained
obscure to most of the users. |

In faét, a lot of software is available in the market on
" database manipulation and use but all of these packages require
human'intelligence only for the initial creation of the database.
It is the database designer who is supposed to go through the
requirements of the probiem and then design the database
accordingly. The use of the softwaré packagés only starts after
that wviz. in data entry, data retrieval, quéry processing etc.
Of all the database structures ﬁhe relational database modei is
by far most widely used and is most widely accepted as the
standard database model. A lot of software. packages on. the
.relational databaée are avdilable in the market that are
invaluable to the DBMSs. But all of these packages haVve one
problem in common viz. they provide no assistance to the designer

in the initial stages of design of the database.



Thus 'despife tremendous developments in ,the DBMS
technology, one very fundamental probiemAremains without a proper
and sure solution viz. given a body of data to be represented in
a database, how to decide on a suitable logical structure for
that data 'or in other words, how to decide what relations are
needed and what their attributes should be ?  This is the
database design problem which one faces as the first hurdle in

installing a data base management system.

Attempt is made in this work fo help the dafabase designer
get rid‘of this basic database-~design problem by developing a
Prolog prograﬁ that suggests to the designer a trouble free
(Normalized) 1logical structure to the database. The only
information required by the program is the list of various
dependencies (functional as well as @ulti-valued) that exist in
the problem and .which are not hard to be made out by the

designer who has gone though the database problem properly.

1.‘2 NORMALIZATION AND PROLOG

Due to - dependencies among Qarious attributes of a
relation, any database structure suffers from certain problems if
not properldeesigned. The problems that are most likely to occur
are update-anomalies and deta inconsistencies. The first step
towards solving the design problem was the introduction to the
concept of Normal Forms. E..F.'Codd was the pioneer in this
field as he.originally defined the first, second and third

normal forms in 1971. Since then numerous normal forms have been



defined and it has been proved that the fifth normal form is the
ultimate normal form as it removes all the inconsistency problems -

with the relational strueture.

Normalization procedure is one‘in which we start with some
given relation<tqgether with the information about its various
constraints i.e. the dependencies among its attributes
(functional dependencies, multi-valued dependencies and tne join-
dependencies), and then we systematically reduce that relation to
a collection of smaller relations thaﬁ are together equivalent to
the original relation yet in some way preferable to it. In fact,
the new smaller relations are in a higher Normal Form than the

original relation and thus more preferable.

The various normal forms dre first, second and third
normal. forms (iNF, 2NF and 3NF), Boyce-Codd normal form (BCNF),
fourth normal form (4NF) and fifth normal form (5NF), in that
order. Thev higher the normal form of a relation the more
preferable it is. The BCNF is the ultimate normal form in the
case of functional dependencies only. But this form is not free
from problems in case the multi-valued dependencies are also
present among the attributes. It is the 4NF which the desirable
form in the case of presence of multi-valued dependencies. The
5NF is a Step further which solves the problems caused by join
dependencies also. In;this paper we don‘’t consider the case of
join dependencies and present a program that does normalization

up to 4NF.

Prolog was the 1an§uage-chosen for writing the program



for fhis automatic normalization of a given relation database
schema and the reason was that Prolog. is the only language that
provides one with tools to write an ‘intelligent’ program most
essential in a difficult problem like this. The prolog approach
is to describe known facts about a problem and then 1let the
computer solve it by itself through backtracking, rather than to
prescribe the sequence of steps to be takeén by the computer to
solve the problem. It is this feature of.Prolog that gives its
programs the féature of ‘intelligence’. Moreover the Prolog is
especially suited to the way the relations cah be repfesented and
manipulated in it and these are the réasons that made Prolog an

obvious choice for this .project.

The machine used was IBM compatible PC/XT, 640K, 8;58 MHz

and the software used was Borland’s Turbo Prolog, version 2.0.

1.3 ORGANIZATION OF WORK

Chapter-2 gives first the brief introduction to various
~database models viz. relational, hierarchical and network models.
It then discusses the relationél structure of databases in
detail. Problems caused by functional dependencies in relatiﬁnal
databases are then discussed followed by an accbunt of 1NF, 2NF,

3NF and BCNF.

Chapter-3 discusses further normalization in relational
databases .as it introduces the <concept of multivalued
dependencies and the prbblems caused by -these. It then
discuéses the fourth normal form (4NF) and shows how it solves

these problems.



Chapter-4 introduces ‘the two approaches tqwards solving
design-problems viz. the Synthesis approach and the Decomposition
approach. First, it takes up the Synthesis approach for
normalization up to BCNF in case of functional dependencies only
~and gives the algorithms for the same. Then it discusses also
the Decomposition approach for normalization in case of multi-
valued dependenciési and discusses an algorithm for obtaining

4NF.

Chapter-5 discusses the actual program written in Prolog

for automatic normalization upto 4NF.

In the end, the appendices list the Prolog program, a few

examples showing its use and lastly the references.



CHAPTER - 2

RELATIONAL DATABASES AND NORMALIZATION

2.1 INTRODUCTION

A data base as suggested by James Martin can be defined as

a collection of interrelated data stored together with controlled

redundancy to serve one or more applications in an optimal

fashion; the data are stored so that they are independent of

programs which use the data; a common and controlled approach is

used in adding nhew data>and modifying .and retrieving existing

data within the data base. A data base system is different from

“the orthodox files~of-records system in that it allows the same
collection of data to serve as many applications as required.
Thus a data base may be conceived of as a repository of
information that permits not only retrievalvand continuoﬁs
modification of data but also answers to various. queries put

forward by the management from time to time.

The logical design of a database may be based on any of
several known models.n The three best known data base models are
'the relational, the hierarchical and the network approach models.
Section 2.2 discusses each,of these briefly. As we are concerned

with only the relational data bases in this thesis, section 2.3



uiscusses reiational data bases in more details and also explains
the inconsistency problems cadsed in ﬁhese'déta bases due to the
‘presence of wvarious functional.dependencies. Secﬁion 2.4
formally defines the functional dependencies and the normal forms

: firét, second, third and Boyce-Codd.

2.2 DATA BASE MODELS

Data bases are most conveniently categorized into

relational,  hierarchical and network types depending upon the

type of data structure used by the data base. 1In a relational
database the data is organized into tables. A table is a two
dimensional rectangular array with each column representing a
particular field o6f the récord. The rows contain the actual data
entries. The columns in a table are homogeneoﬁs i.e. in any
coluﬁn all items are of the same kind. A data base may consist
of more than one tables. In fact a data base represented by only
one table may give rise to redundancy, inconsistency and updating
probléms. To get rid of these problems a relational data base is
converted into a number of smaller tables instead of a single
~big table. This is called normalization. Proper normalization
essentially removes inconsistency and updating problems but.is
incapable of fully eliminatiﬁg‘redundancy of records. In fact,
normalization itself éives rise to some redunéancy which can be
termed as the controlled redundancy intentionally iﬁtroduced in

‘the data base.

In a hierarchical data base the data is represented by a



simple tree structure. Eéch ttree consists of a record at the top

‘which is known as the ‘root’. This root record may have a number
of dependent record types. Every recordﬂtYpe of the dependent
records may have a number of records, each of which may again
have_a number of dependent record types in turn. Thus we can say
that in hierarchical structure, every record may have any number
of children but.any Child'fecord can have only one parent. The
hierarchical .structure also - contains ‘links’ which éonnect a
parent ndde to a child node.. These links have restriction on
their directions as they can only:point from.a higher level to a
smaller 1level. Quite similar to é hierarchical database, a
network gé;g base also consists of records connected with links.
However the daté structure in the network approach is a more
general one as it neéd not follow a simple tree structure.
Rather it contains a mesh structure in which there are no
restrictions on the fixation of links. A link may be connected
between any two records in any levels and in any direction. Thus
any given record occurrence may have any number of immediate
parents unlike the case in the hierarchical system. Thus the
network approach allows one to model a many-to-many
corréspondence more directly than do the other two approaches.
The network structure requires least of redundancy but it gives

rise to many other complex problems.

Design problenllor normalization problem exists 1in
hierarchical and network database systems also, but in this

" thesis we concentrate only on normalization in relational data

8"



base systems. The same is treated in the following text.

2.3 RELATIONAL DATABASES AND INCONSISTENCY PROBLEMS
As mentioned earlier the data in a relational database is '
arranged in the form of tables called relations. The columns of

the table correspond each to a unique field and are referred to

-as attributes. The rows in the table contain the actual data and
are referred to as tuples. The number of  rows is a variable
quantity and changes with time in a dynamic database. Keys are
subsets of the attributes of a relation whose values are unique

within the relation and thus which can be used to uniquely

identify the tuples of the relation. A primary key is minimal
i.e. no proper subéet of a primary key is by itself a key. There
are certain restrictions on'thesé relations which are as
follows : |

1. All rows should be distinct i.e. no two tuples in a table
should contain identical information.

2. Each column in a particular relation should be assigned a
distinct name.

3. Relations must be column homogeneous i.e. in any column all
the items must be of the same kind.

4. The sequence of both rows and columns in any relation should
be imhaterial i.e. both the‘rows and the colﬁmns could be viewed
in any sequence at Any time without affecting either the
information contént or the semantics of any function uéing the

tab@e.



5. No component of a érimary key may be null. This is called
thé rule of entity integrity.

| In its most crude form, a relational data base may
contain a single ‘relation coritaining all the fields as it’s
columns'and the data stored in tuples. It is what is called an

un-normalized form of a' relational database. Though being the

simplest and thus A being the most suitable form for information
" extraction and query processing, the unnormalized form suffers
from ﬁany disadvantages. To be precisé, these problems are
redundancy, inserting, deleting and updating problems. To

explain these we best consider a practical example.

Let us consider a data base containing information about a
child’s name, his roll number in the school, marks obtained by
him in different subjects in a school fest and his parents’
names. Let us call it "Child-Marks-Parents" database. Thus the
different fields required-I;fEEE; EQE;_EQQQ_are Child’s name (N),
Roll No; (R#), Subject (S), Marks (M), Mother’s name (MN) and
Father’s name (FN). Oné semantic constraint is that no two
persoﬁs can have the same namé.AIn the unnormalized form, all the
fields are put together in a single relation named R. - In fig.
2.1 a sample record of this relaﬁion R at a particular instance
is shown;_ As we sﬁall explain now it suffers ffom several
problems notably redundancy, inconsistency problems etc.

Inconsistency may arise in such a table by any of the fundamental

operations like insertion, deletion and updating.

10



Now we discuss these problems associated with an

unnormalized relation like R shown in fig. 2.1, one by one :

REDUNDANCY PROBLEM.  An unnormalized problem .suffers from a lot
of uncontrolled redundancy. For example the fact that Montu is
‘the name of the boy who has roll no. 5 is repeated every time
there is an entry for R# 5. Also it is unnecessarily repeated in
every éentry that his‘pérents' names are Manju & S.Gupta. Such
redundancy not only causes loss of useful memory space but may
also give rise to serious .inconsistency problems in the data

base.

Rotl Child’s sub- Marks Mother’s Father’s
R No. name ject name name
R# N S M MN FN
1 Pinku Phys 61 Sneh Lata G.C.Goel
1 Pinku Chem 48 Sneh Lata G.C.Goel
2 Sonu Math 95 Roopa Shivendra
3 Guggi Phys 92 Roopa Shivendra
3 Guggi Chem 90 Roopa Shivendra
4 Guriya Math 99 Manju S.Gupta
4 Guriya | Phys 90 Manju S.Gupta .
5 Montu Phys 85 Manju S.Gupta
5 Montu Chem 85 Manju S.Gupta
5 Montu Math 92 Manju $.Gupta

no two persons have the same name

fig. 2.1

Relation R showing its record at a
particular instance

11



IﬁSERTING PROBLEM,_ 'Suppose we want to enter the fact that Bobby
got 65 marks in Chemistry,,wé cannot enter this until we knew his
roll numbers, since by restriction 5 (rule of entity integrity)
-no component of a érimary key may be null and in this case [R#,S]
is one of the primary keys. Also say we make another entry for
Sonu but with his mother’s ﬁamé printed wfongly, it is going.to

cause incohsistency -in the data base.

DELETING PROBLEM. If we delete a particular item from a table -
‘1like R, we cannot be sure of the safety of all other information
that is contained in the table R. For exampie, there is only one
gntry for Sonu in fig. 2.1. If we want to delete the entry for
Sonu’s marks in Mathematics we have no choice but to delete the
whole of that entry. - This will not only make us 1lose the

knowledge about his roll number but also his parents’ names.

UPDATING PROBLﬁM. .This is.aAdireét oﬁtcéme of the redundancy
contained in an unnormalized feiation like R. For example, the
information that Guriya’s roll'number is 4 is contained in every
tuple‘thaﬁ contains information about Guriya’s. Now if her roll
number chaﬂges we are faced with either the problem of searching
the whole of table R (an any instant,'R may contain any number of
tuplés and also all the entries about Guriya may not be grouped
together) to find every tuple containing information about Guriya
or the possibility of producing an inconsistent result by say

leaving out some of the tuples unmodified.

12



How these problems connected with an unnormalized relation
are solved using normalization, is the subject of discussion in

the following éeciion.

2.4 NORMALIZATION

Normalization in a relational data base refers to breaking
of bigger relations into a number of smaller relations (having
less number of fieids) according to some rule so that the new
relations are preferable to the original ones in that they solve
 some of the difficuities faced by the original relations. The
smaller relations so obtained are necessariiy of a higher normal-
form than the original relation. Howéver,athis one step of
normalization may nét solve all the problems in a relation and
some of the smaller relations may have to be further nhormalized
in order to get higher and more desirable normal forms. We
introduce here the concept of functional aeéendencies among the
attributes of a relation; the concept of multi-valued
dependencies being deferred to the next chapter. We also discuss
various normal forms viz. first, second, third and Boyce-Codd and
show with the help of anlexample how normalizatioﬂ solves the

problém in a relational data base containing functional

- dependencies only.

2.4.1 Functional Dependencies (FDs) -

The concept of functional dependencies among the

attributes of a relation is of prime importance in normalization

13



theory. ‘In fact the very basis of breaking a given relation in a
number of sméllér relation is functional dependencies (and later
multivalued and join dependencies also) among its various

attributes only. Functional dependence is defined as follows :

dependent on another attribute A of R if and only if each value

of A is associated with precisely one value of B i.e. if each

£ the attribute B.
This is denoted as

of the attribute A uniquely determines it’s corresponding

]

R.A --> R.B
or more simply as
A -=-> B
The same definifion of functional dependence applies to
groups of attributes also. Thus a group of attributes may
’fungtionally determine another group of attributes.
“ Let us now take an example. Redonsider the "Child-Marks-

Parents" data base discussed in the previous article. It is

clearly mehtioned that no two persons have the same name. This
means the names of both the parents are uniquély determined by -

"their child’s name because each c¢hild has only one set of
parents. In other words Mother’s name (MN) and Father’s name
(FN) are both dependent on the Child’s name (N). Incidentally
the reverse is not true because a parent may have more than one
child. These functional dependencies may be shown as :

R.M  --> R.MN

14



& - " R.M --> R.FN
Also sincé.ﬁo two persons have the same names, a mother’s’
name uniquely‘determines fatﬁer/s naﬁe and vice-versa. Thus we
have MN and FN functionally détermining each other. Thus,
_ R.MN --> R.FN |
& | ’ R.FN ~-> R.MN
Also marks obtained by a child in a particular subject are
unique. So Child name (N) and Subject (S), fogether, uniquely
detefmine the Marks (M). Thus,
R.[N,S] =--> R.M
Also a child’s name and roll number uniquely determine
each 'other. So N and R# are functionally dependent on each
bther- Or,
R.R# =-=> R.N and R.N --> R.R§
” This last pair of functional dependencies also gives rise
to the fact that any attribute that is functionally dependent on
N is also functionally dependent on R#. Thus we have the

following set of additional functional dependencies

R.R# -2 RCMN
R.R§ =--> R.FN
R.[(R#,8] =--> R.M

We can make & functional dependéncy diagram for the
relation R as follows (remember a functional dependency diagram
may not show all éxisting dependencies; it needs show only a

minimal set of functional dependeéncies),

15
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fig. 2.2

Functional Dependency diagram for retation R

A key 1s a set of attributes of a relation that
functionally determines all of the atﬁributes of the relation.
If a key is minimal i.e. no proper subset of it possesses the
same property it is said to be a primary key of the relation. A
relation may have more than one primary keys. Any,reiation must
have at least one key, as ﬁhe set of all the attributes of a
relation is definitely a key. The relation R contains two keys

viz. [N,S] and [R#,S].

2.4.2 PFirst Normal Form (1NF)

A relation is said to be in First Normal Form if all of

its tuples contain only atomic wvalues for each of their

attributes, In other words, all the occurrences of a record must

contain the same number of fields in 1NF.

Thus a relation of the'type

16



Child Subject Marks
Sonu Physics 95
Chemistry P64
. Maths 99
Guggi Physics 94
" Chemistry 95

a relation not in INF

is not in first normal form. It is to be modified as

follows to be in 1NF,

child Subject Marks
Sonu Physics 95
Sonu Chemistry 94
Sonu Maths 99
Guggi Physics 94
© Guggi. Chemistry 95
a relation in INF

We see that the relation R in fig. 2.1 is in 1NF. First
normal form is the first requiremént‘of any relation beéause as
is clear from the above example.it is very simple to convert any
given relation into one in 1INF and, also because it simplifies
the further database operations and manipulations to a great

extent.

2.4.3 8econd Normal Form (2NF)

I A S A A A ] L

A relation R is said to be in Second Normal Form if no

non-key attribute of it is functionally dependent on a proper

subset of any primary ke? of the relation. A non-key attribute



is one which is not part of any of the primary keys of the
'relétion. Thus, in other words, only a primary key and not any
of its prOper.subsets should functionally determine any non-key
attribute.

For examplé; thé-relation R of.the "Child-Marks-Parents"
data base shown in fig. 2.1 is not in 2NF. The reason is that
'[N(S] is a primary key of the relation (the other primary key
being“ [R#,S]) whosev_properv subset . i.e. the attribute N

functionally determines two attributes viz. MN and FN.

The relation R may be converted into 2NF by 'splitting it
into two relations namely, R.1(N,MN,FN) and R.2(R#,N,S,M). The
functional.dependency diagrams of the relations R.1 and R.2 are

as shown in fig. 2.3.

R#

"

MN

o B

FN

Relation R, 1(R#¥ ,N,S . M) Relation R.2(N ,MN,FN)

2NF . 2NF

fig. 2.3

functional Dependency diagrams for relations R.1 and R.2

18



The relations R.1 and R.2 both are in 2NF. The
ekplanatien goes as follows : Relation R.2 has N as its only
'pfimary key and since N doesnft have any proper subsets, the
relation R.2 is in 2NF. Also the relation R.2 has two primary
_keys namely [N,S] andv[R#,S]. M is the only non-key attribute
and it is not functionally determined by any of the proper

subsets of the primary keys. Hence R.2 also is in 2NF.

Conversion of R into R.1 and R.2 reduces the problems to
the extent that now there is less redundancy as the naﬁes of the
- parents now are not to be repeeted in every tuple concerning a
particular child. Also we can edd the information about the
names of the parents of a child even‘if we do not know his roll
number. Also the possible inconsistency concerning the names of
the parents of a particular child is eliminated to some extent
(it is still not fully eliminated as we will discuss in the next

section).

2.4.4 Third Normal Form (3NF)

Here we nmnust introduce the concept Qf~ transitive
dependencies. A dependency A --> B in R is said to be
transitive iff A 1is ‘neither a subset nor a superset of any
’primary key and B is a non-key attribute. The word ‘transitive’
comes from the fact that whenever such situation exists we must
have the chain of dependencies K =--> A =-~> B where K is any of

the relation’s primary keys.

19



and only if it is in 2NF and is free from any transitive

degendencies.‘
| We see that the relation R.1 in fig. 2.3 is in 3NF. The
reason is that the only non-key attribute M depends on the
_primary keys only. Thﬁs the conditions of 3NF are not violated
and hence R.1 is 1in 3NF. But, at the same time, the other
relation, R.2, 1is not in:BNF. The reason is that MN and FN
functionally depend on éach other while both are neither the
subséts nor the supersets of the only primary key N. In other
words, the following two tranéitive chains exist in R.2 that

violate the conditions of 3NF,

N --> MN --> FN

& N --> FN --> MN

To convert the relation R.2 in 3NF, it must be bifurcated
into two relations viz. (N,MN) and (MN, FN) or (N,FN) and

(FN,MN). The transitive dependencies are thus removed and the

The relation R.2,which was not in 3NF suffered'from some
problenms. For ;xample, the fadt that Shivendra and Réopa are
husband and wife was repeated every time a tuple concerning any
of their children came and hence caused redundancy. This could
lead to inconsistency problems too. But in the relations R.2.1

and R.2.2 (fig, -2.4), the first relates a child’s name to his

20



mother’s name and the second then in turn relates a mother’s name

to the father’s name, Thus any scope of inconsistency

removed.

R# N

/> MN

Relation R.2.1(N,MN)

E@

3NF

FN

l S : MN

Relation R;1(R#lN,S.M) Relation R.2.2(MN, FN)

3NF

fig. 2.4

TH-3736 9

2.4.5 Boyce-Codd Normal Form (BCNF)

3NF

is

The original definition of the 3NF as given in the

previous article suffers from certain problems in that it doesn’t

successfully eliminates inconsistency problems in all the

situations. For example the relation R.1

in fig. 2.4 is in 3NF

yet it suffers from certain problems as we shall discuss later
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oyce and Codd is stronger than 3NF and eliminates all the

roﬁlems arising due to functional dependencies.

in Boyce-Codd Normal Form

o’

A relation R is said to

3CNF) iff gveBV'déterminant in this relation is a key of that
2lation. A determinant is any attribute or a set of attributes
that functionally determines any other attribute or set of

13

attributes.

Conceptually, the definition of BéNF looks simpler than
that of 3NF as it “makes no explicit referehce to the second
normal form but in fact its definition is stronger ﬁhan that of
-3NF in that every BCNF relation will be in 3NF but the converse

need not be true.

Let us come back to the "Child-Marks-Parents" daté base.
The relation R.2.1 and R.2.2 in fig. 2.4 are in BCNF as the
only determinants in them Viz. N and MN respectively are their
primary keys. The-relatioﬁ R.1, however, though in 3NF is not in
BCNF. This is so because N and "R# are determinants (they
functionally determine each other) but are not keys to the
relation R.l.’ Thus for conversioh of R.1 to BCNF it, too, is to

be divided into two relations (R#,N) and (N,S,M) or ‘(R#,N) and

22



R# K—= N ' TN =] MN

Relation R.1.2(R#,N) Relation R.2.1(N,MN)
BCNF BCNF
N
M K=

| s MN I —="o FN

Reiation R,1.2(N,S,M) Relation R.2.2(MN, FN)

BCNF '  BCNF

fig. 2.5

Functional Dependency diagrams

for relations R.1.1 & R.1.2 and R.2.1 & R.2.2

The relation R.1.1 and R.1.2 are in BCNF. R.1.1 is in
BCNF because R# and N are the two determinants in this relation
while both are also the relation’s primary keys. R.1.2 1is in
BCNF'because the primary key [N,S] is the only determinapt'in the
~relation. The relation R.1l could suffer from inconsistency
problems as there was feduhdancy becausé of the repetition of the
fact tﬁat a particular child had a particular roll number in
every ' tuple concerning that student.. The BCNF relatiéns R.1.1

and R.1.2 remove this problem also.
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Thus we saw how each step of normalization ridded the data
baserof some problems that existed earlier and how the BCNF stage
removed all the problems that existed in the data base. In fact
it has been proved that the BCNF is the ultimate normal form in
the case the presence of only the functional dependencies in a
- data base. Further normalization is required in case multivalued
dependencies are also present in;some data base. This is the

topic- of discussion in the next chapter.
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CHAPTER - 3

FURTHER NORMALIZATION

3.1 INTRODUCTION

In the pfevioﬁs chapter we discussed about the need of
normalization in‘-a relational database having functional
dependencies (FDs). It was shown that these dependencies cause a
great deal of problems in maintaining the unnormalized records
and to get rid of these difficulties thé normalization process
becomes inevitable. It was also mentioned than in such cases i.e.
when a data base includes just the functional depeﬁdencies, the
. ultimate normal form is the BCNF as it eliminates all the
inconsistency problems from the data base. A practical data
base, however, does ﬁot contain just the functional dependencies
but would, very often, include several of what we call multi-

valued dependencies (MVDs) also. The multivalued dependencies

cause inconsistency préblems similar to those encountered in the
case of functidnal dependencies. Moreover, when these
dependencies are included in a data base, the BCNF is no longer
the ultimate normal form. In other words, normalization up to
BCNF doesn’t solve the problems caused by the presence of
multivalued dependencies. In such cases the normalization
process has to go a step further and this is the topic of

discussion of this chapter.
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3.2 MULTIVALUED DEPENDENCIES (MVDs)

The functional dependencies defined in the previous
chapter were concerned with only one-to-one relationships. For
instance, in the "Child-Marks-Parents" data base discussed in
"that chapter, the attribute roll number (R#) functionally
determined the child name attribute (N). This was a one-to-one
felationship because each roll number is éssociated with exactly
one student’s name.  Similarly, a child’s name (N) functionally
determined father’s name (FN). This was so because‘every child
-has exactly one person as his father. But, in many situations we
encounter relationships which are not one-to-one. For instance
we might have a one-to-many or many-to-one or, for that matter, a
many-to-many relationship also. Such relationships cannot be
represented by just the functional dependencies. For the proper

representation of such relationships we have to introduce the

concept of multivalued facts and multivalued dependencies.

A ‘multivalued fact’ chresponds .to a one-to-many
relationship. For example, a father may have a number of
children. So the relationship between father’s name (FN) and
child’s name (N) is a multivalued fact about a father. But, at

the same time, it is a single-valued fact about a child.

A relation may contain a number of multivalued facts.
They may be about the same attribute of about different

attributes. If in a relation, there are more than one
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multivalued facts about the same attribute, they may either be

independent of or dependent (non-independent) on one another.

For example, consider the two relations shown in fig. 5.1. The
first relation MSD is a record containing three fields viz.
mother’s name, son’s name and daughter’s name. Since a mother
may have more than one sons as well as more than one daughters,
thie relation contains two multivalued facts about the same
attribute i.e. mother’s name. Similarly the other relation PTA
too contains three fields viz. person, time and activity. Again
we have two multivalued facts about the same attribute, here
‘person’. ﬁut there is a basic difference between the two
‘tables. While the multivalued facts in the table MSD are
indepeﬁdent of each other, they are dependent in the table PTA.
The independence of the multivalued facts in relation MSD arises
from the fact that there is no direct connecfion between a son
and a daughter except for the fact that both have the same

‘mother. Thus all they boys who are sons of the same mother are
brothers to all her daughters. Similarly all her daughters are
sisters to all her sons. There is no special relationship between
a particular daughter and a particular son. That is why, when we
see that Indira has Girish, Titu & Pawan as her sons and
Anupama & Preety as her daughters, all the six possible
combinations of the sons and daughters are present in the table
due to the fact that all the ‘sons’ are brothers of all the
‘daughters’ and all the ‘daughters’ are sisters of all the

‘sons’.
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Mother'’s Son’s daughter’s | Person’s time activity
name name name name
Indira Girish Anupama Ashok morning games
Indira Girish Preety Ashok morning meditate
Indira Titu Anupama Ashok morning study
Indira Titu Preety Ashok Evening games
Indira Pawan Anupama Ashok Evening study
tlndira Pawan Preety LﬁAShOk Night sleep
‘Relation MSD (Mother,Son,Daughter) Relation PTA (Person,Time, Activity
independentmul tivalued facts non-independentmu(tivalueq facts
]
fig. 5.1

and the person : activity relationships are not independent. It
is due t;—:S;;—EQEE_Q;;;: a person may carry out only certain
activities at a particular time while he may indulge in totally
different activities at some other time. That is why we see in
fig. 5.1 that while Ashok indulges in. activities like games,
méditation, study and sleep at different times viz. morning,
evening and night, all the possible combinations of the different
activities and different times are not present in the table.
Thus he indulges in meditation only in the morning, sleeps only

at night and plays games in the morning as well as the evening.

Thﬁs ‘time’ and ‘activity', though multivalued facts about
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‘person’ are not independent of each other.

It may be noted that it 1is the presence of all the
possible combinations of values of multidependent facts among
each other in the case of independent-multivalued-facts-relations
that give these facts this property. Obviously, since every
possible pairing of the values is present, there can be no
information contained in these pairings, and hence the
independence. In the case of non-independent facts, absence of a
number of possible pairings makes éhe facts dependent on éach

other as was the case with the relation PTA (fig. 5.1).‘

The concept of multivalued dependencies is the same as

that of indepéndent multivalued facts. In fact, ‘multivalued
dependericies’ 1is just the other name for ‘independent
multivalued facts’. The word independent is extremely important

in this definition. Also since for independence we must have at
least two multivalued facts about the same entity in a relation,
multivalued dependencies also always go in pairs at least, and
never in singles. The formal definition of multivalued

dependency goes as follows :

In a relation R with attributes A,B and C, the multivalued

dependence A -=> ==> B . holds in R iff the set of B-values

matching a given A-value & C-value pair, depends only on the

A-value and is jndependent of the C-value. And in this case A is
said to multidetermine B while B is said to be multidependent

on Ao
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This formal definition, in fact, is not different from our
earlier definition of the muitivalued dependencies as being the
. same as independént multivalued facts. And with the same
reasoning, it is easy to see that when in a relation’R(A,B,C),
the MVD A --> =-=> B holds, another MVD A --> --> C must also
hold. 1In fact, as .we have mentioned earlier, MVDs always go at
least in pairs in this way. For this reason, it is customary to
~express both the dependencies in a single statement, e.q.

A -->-=> B | C |

An attribute in a relation may multidetermine more than
two attributes (attributes may, of course, be composite). For
example in a relation say R(A,B,C,D) we may have

A -->--> B| C| D

3.3 THE FOURTH NORMAL FORM (4NF)

Multivalued dependencies give rise to the similar type of
diffiéulties in the maintenance of a database as caused by the
functional dependencies. These are inconsistency problems arising
due to redundancy, inserting, deleting and updating etc.
Let ﬁs discuss these problems one by one by taking a practical

example of fig. 5.1.

REDUNDANCY PROBLEM. As is clear from  fig. 5.1, in the table
MSD, a lot of redundancy exists as there have to be all possible
pair combinations of all the sons and daughters of a particular

mother. This gives rise to two types of problems, first that by
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mistake some inconsistency in the data may be caused and second
that missing out even one of the possible combinations may lead

to wrong interprétation of the data.

INS‘.ERTING PROBLEM. Suppose a lady employee of our firm is
- blessed with another child say a son, and we want to make entry
for the new born in MSD, then since we have to scan the whole of
existing table to. find out all the existing entries concerning
the lady and then suitably introducing the appropriate entries
- making all the réquired combinations of the boy with all his
sisters, this not only makes a complicated procedure but also

opens up possibilities of creating unwanted inconsistencies.

DELETING PROBLEM. ' Suppose in the relation MSD, we want to keep
the records of only those children who are below 21. And now a’
' child of a particular employee turns 21. To delete his entry
from the table now again requires the cémplicated and risky
proéedure of scanning the whole table for all the entries
concerned with the boy. Leaving out even a single entry will
lead to problems. There is also possibility of 1losing the
information about his sisters altogether if he was the only son
of his parents because removing. all the entries having
information about him will automatically wipe out the information
about his sisters als6. Also, in case, he was the only child of
his parents, removihg all his entries will amount to removing the

name of his mother altogether from the record MSD.
UPDATING PROBLEMS. Updating causes the similar difficulties
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arising due to the fact that this would also require the proper
updating in all the entries connected with the particular entity.
Since a simple updating in just one position doesn’t suffice it
leads to possible risks of causing inconsistency in case we leave

out some entry uncorrected.

Thus we have shown how the presence of multivalued
dependencies leads to problems in a data base. It must also be
mentioned that only the multivalued. dependencies i.e.
independent multi;glued facts leadvto such problens. Preéence of

multivalued facts in a relation that are not independent doesn’t

lead to such inconsistency problems. For example in the relation
PTA in fig. 5.1, the multivalued facts person : time and

—— — —————— ——— —— - ——

person : activity are dependent on each other, so that all the
EQE;_;;E;I;;--I;_Ehé table PTA are required to keep the whole of
information. This 'is not redundancy because we cannot reduce the
”number“of entries (by normalization process etc.) without losing

some the information contained therein.

It was shown—invthe previous chapter that in the case of
FDs only, the ultimate normal form is the BCNF. But since in the
table MSD (fig. 5.1) there are no functional dependencies (FDs),
there _isi no basis by which we can convert MSD into smaller
tables. 1In fact, sinée there is no functional dependency in MSD,
it is an all-key relation i.e. the set of all attributes is the
primary key. And as such it is in BCNF. Thus we see that the

presence of the MVDs has caused the same problems in even a BCNF
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relation. Thus to tackle the MVDs we need a normal form which is
stronger than the BCNF.. This is the ‘Fourth Normal Form (4NF)~’

that we are going to discuss now.

Under the Fourth Normal Form (4NF), a relation should not

contain two or more independent multivalued facts about the same

entity. In other words, the 4NF does not allow the presence of
more fhan one multi-determined facts about the same entity. In
addition to that, the relation must be in BCNF. When these two
conditions are satisfied, the relation is said to be in 4NF.
Thus the relation MSD in fig. 5.1 is not in 4NF because it
contains two multi-determined facts about the same attribute M.
The relation PTA is in 4NF however, because it does not contain

multivalued dependencies at all (it contains non-independent

multivalued facts). The relation MSD must be divided into two
relations MS and 'MD to convert in into 4NF. This is shown in
fig. 5.2.
- .
MS Mother’s Son’s MD Mother’s daughter’s

name name name name

Indira » Girish Indira _ Anupama

Indira Titu Indira Preety

Indjra Pawan

Relation MS (Mother, Son) : Relation MD (Mother, Daughter)
4NE 4NE
fig. 5.2
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Thus we see that the relation MSDv is broken into two
relations each including one of the multidetermiﬁed facts. The
first relation contains information about the sons while the
second relation contains information about the daughteérs. The
felationS' MS and MD are in 4NF as they do not contain any
multivalued dependencies (for a multivalued dependency, a
relation, mﬁst contain at least two multivalued facts). We can
see how normalization up to 4NF solved the difficulties that
existed with the relation MSD. As is clear from the fig. 5.2,
since there are two‘sepératé tables for sons and daughters of an
employee there is not any unnecessary redundancy arising due to
"such requirements 1like mandatory keeping of all possible pair
combinations. Moreover inserting, deleting and updating problems
. are solved because now these changes are to be made at only one
place instead of searching the whole of table for updating all

the concerned entries as was the case in the table MSD.

The formal definition of the fourth normal form (4NF),
however, does not require the relation to be in BCNF. It goes as

follows

3

A relatién R is in Fourth Normal Form (4NF) if and only
B, the

if, whenever there exists an MVD in R, say A =-> ==>

all attributes of R are also functionally dependent on

>

(i.e., A =-> X for all attributes X of R).

The above definition and the earlier one are equivalent

and 1in simple terms they mean that the problems arising due to
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multivalued dependencies will be removed if we don’t allow more

than one independent multivalued facts about the same entity to

remain in the same relation.

In the next chapter we discuss the actual algorithms for
conversion of unnormalized relations to higher normal forms up

to 4NF.
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CHAPTER - 4

NORMALIZATION ALGORITHMS

4.1 INTRODUCTION

Since 1its emergence, some twenty years back, Data base
techndlogy has come a long way. As an inseparable part of it,
Normalization theory has also developed but not to the exterit as
it should have. Two basic approaches that have developed in the

field of normalization theory are the synthesis approach and the

decomposition approach. The decomposition approach was the first

to come up but suffered from certain 1limitations 1in certain
situations and this prompted‘the synthesis approach to come up
some time later. Both the apbroaches have their ‘pius’ and
‘minus’ points and both are inevitable for the Normalization
theory. We touch upon these approaches, to make out the
difference between the two, and present certain specific

algorithms involving both the approaches.

4.2 SYNTHESIS AND DECOMPOSITION APPROACHES

The two major approaches to have come up in the logical
schema design or the ‘normalization theory’ in the relational
data bases are the synthesis and ‘decomposition approaches. The
difference lies 1in the directions that the two approaches follow

to reach the same goal. What the decomposition approach does is
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that it takes the relation in the unnormalized form and then
step by step deéomposes it into smaller relations by femoving
anomalies in it. On the other hand, the synthesis approach
follows just the opposite way. In this approach, the set of FDs

is chosen as the basis and the final relations are constructed

from then. The core of the problem lies in determining the
proper set of FDs that should be used for that purpose. Some of
the salient plus and minus points of the two approaches are

listed as follows :

* 1. The decomposition process often yieids more relations than

are actually needed.

* 2. The decomposition process may produce a design that does
not enforce some of the FDs. A synthesis approach would

never allow such a design.

* 3, Synthesis approach works well for FDs, but is not suitable
for processing MVDs. Decomposition approach, however, is

straightforwardly extendible to MVDs.

* 4, The highest normal form that . the synthesis approach can
achieve is 3NF. The decomposition approach, on the other
hand, is not 1limited in fhis way. .Thus for obtaining
noirmal forms ﬁigher than 3NF; the only approach that can

be followed is the decomposition approach.

In the next two articles we give algorithms for
conversion of unnormalized relations into the third normal form

(3NF), the Boyce-Codd normal form (BCNF) and the fourth normal
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form k4NF). The procedure to achieve the 3NF is the ‘Bernstein’s
algorithm’ based on the synthesis approach. The procedures for
the BCNF and the 4NF are respectively the ;Tsou & Fischer’s
algorithm’ and the ‘Tanaka’s algorithm’ both based on the

decomposition approach.

4.3 BERNSTEIN’S ALGORITHM FOR NORMALIZATION TO 3NF

Bernstein’s algorithm for normalization up to the third
normal form uses ﬁhe synthesis approach. A proper set of FDs is
chosen and then 3NF relations are built from them. The actual

algorithm is as follows :

Input : An unnormalized relation and a set

of FDs (F)
output : 3NF relations

Step 1. Eliminate Extraneous atrributes. Eliminate the
extraneous attributes from the left side of each FD in the set F,
producing the set G. An attribute is extraneous 1if its
elimination does not alter the closure of the set of FDs. By
‘the closure of a set of FDs we meanh the set of all the FDs that
can be derived from that set. An equivalent check for an
attribute to be extraneous is that an attribute A is extraneous
in the FD : LHS --> RHS if it can be eliminated from the LHS so

that the new dependency (LHS - {(A}) --> B holds.

S8tep 2. Find a_non-reduhdant cover. Find a non-redundant
cover H of G by eliminating redundant FDs from G. An FD is

redundant in G if its eliminatidn does not alter the ciosure of
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tlie FDs present in G.

Step 3. Partition into groups. Partition the set of
dependencies H into groups H; such that all dependencies in each

group have identical left sides.

'Steg 4. Merge Equivalent keys. Merge two groups H; and Hj
with left sides X and Y respectively if the keys X and Y are
equivalent. Two keys X and Y are said to be equivalent when the

- dependencies X --> Y and Y --> X both hold. For merging the

following process is to be adopted

Set J := @. For each pair of groups Hi,-Hj with
left sides X; and Xj respectively do the following : if X; and
Xj are equivalent, merge H; and Hj, addAthe FDs X; --> xj and
Xj --> X3 to J, and remove them from H.

Step 5. Eliminate Transitive dependencies. Find a minimal
cover H’S H such that (H’ + Ht = @H+ T where the
superscript ‘+/ denotes the closure of the set of FDs. Delete

each FD in (H - H’), from the group in which it appears. Also
for each FD in J, add it to the corresponding group. Thus we
have obtained such a partitioning of groups which include all
the equivalent keys and in which all other dependencies are non-

redundant. Such groups are free from transitive dependencies.

Step 6. construct relations. For each group, construct a
relation consisting of all the attributes appearing in that
group. The  LHS common to all the FDs in that group will be a

key of the constructed relation. The set of all relations so
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constructed will constitute the reQuired schema of 3NF

relations.

Let us apply the Bernstein’s algorithm to an example.
Take the relation R of the "Child-Marks-Parents" data base
discussed in the chapter 2 (fig. 2.1). The schema is

Schema R = (R¥,N,S,M,MN,FN)

F : R#E --> N
N --> R#
N --> FN
N --> MN
MN --> FN
FN --> MN
[N,S] --> M

Various stebs of the Bernstein’s algorithm as applied to
the above example will be as follows‘:
Step 1 : The FDs of the set F do not contain any extraneous
attribute.
Steplz :. The FD : N --> MN is found to be redundant and hence
removed.
Step 3 : Group formed are with LHSs

[R#], [N], [N,S], [FN], [MN]
Step 4 : Equivalent keys are
N <--> R# | and FN <--> MN
Step 5 : No transitive dependencies exist. So finally the
merged groups are with LHSs':
[R#,N], [N,S], [FN,MN]

Step 6 : Relations are formed from the definitive groups. The

final relations are
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R a = (R#,N,FN) in 3NF
R b = (N,S,M) - in 3NF
R ¢ = (FN,MN) in 3NF

Same result is obtained using the Prolog Program. This is

included in the examples of Appendix - II.

4.4 DECOMPOSITION ALGORITHMS FOR NORMALIZATION TO

BCNF and 4NF

As we have mentioned earlier, the anthesis approach can
attain normalization up_to only 3NF. For obtaining normal forns
higher than that and for handling MVDs we have to resort to
the Decompostion approach. But the debompositidn approach
contains a lot of inherent problems like creating more tables
than are needed and producing a design that does not enforce some
of the initial Fbs. A decomposition algorithm for creating BCNF
relations directly from an unnormalized relation (1NF) was put

forward by Tsou and Fischer. This algorithm takes care of the

lossleéess join property of the decomposition and is presented, in

a simple language as follows ;-

Input : 1NF relation with a set:of FDs

Ooutput : A set of BCNF relations

~ Step 1. Let S be the set of all attributes in the schema of the

given relation R. Let us introduce an active set AS := S.

Step 2. Find a subset B of the set AS which has the following
property : The set B doesn’t contain any element which can be

generated without the help of some other element of B. Also at
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4

least ohe element, E of B must be_capable'of being generated by
the rest of the elements of B. Construct - a relation for the
set B. We say that an element can be generated by a set of
attributes if it -belongs to the c¢losure of that set of
attributes. Modify AS as follows :

AS := AS - (E)

Step 3. Repeat the step 2 until AS reduces to Jjust two

elements. Construct a relation for this AS also.

Step 4. output the relations constructed. They are in BCNF.'

In the step 2 of the above algorithm, we haVe‘tb find the
set B from the setlAS. The procedure to be followed for that is
a. Take B := AS.
b. Check for an element A € B such ;hat
A € clo(B - {(A,C}) where C € Band C X &

[ ‘clo’ stands for the closure of the
attributes of the set ]

. If A exists then B := B - {(C)
---- repeat the step b.

else “Output B.

‘The Tsou and Fischer’s aléorithm is implemented in the
~Prolog Program and 'fhe actual implémentation is discussed in
the next chapter. This algorithm when directly applied to the
relation R (fig. 2.1), yields the following set of BCNF

relations

o}
=
I

(R#,N) in BCNF

o)
N
|

(N,S,M) in BCNF contd. .
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R 3 = (FN,MN) in BCNF
R 4 = (N,FN) in BCNF
R 5 =

(N,S) in BCNF

We see that R _5 is an unwanted, relation that is generated
by the decomposition algorithn ef Teou & Fischer: Thus we have
illustrated one of the disadvantages of decomposition algorithme
viz. creation of more relations than are needed.
case of Multivalued Dependencies. Normaliéation problem becomes
more complicated when. the data base includes Multivalued
Dependencies as well as the Functional dependencies. The biggest
problem that arises inh using fhe deeqmpOSition approach in such
cases ie the priority problem i.e. whether to give priority to
FDs: over MVszor.vice-versa. It has been seén that none can be
given priority over the other in all cases. For example, in
certain cases, giving priority to FDs over MVDs causes redUndancy
in the result and in certain others, the reverse is ebserved. In
fact, in these cases where FDs and MVDs are both présent, the

following very important result holds :

Redundancy in.the decomposed result may occur if the

. decomposition by an MVD h precedes that by another MVD g such

that the MvD-determinant of g is functionally dependent of that
gi; h. It is to be remembered here that an FD is a special case

of an MVD.

A comprehensive algorithm for decomposition up to the

fourth normal form 4NF, was suggested by Y. TANAKA. His
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decomposition algorithm produces 4NF relations without redundancy

(though he himself mentions that fedundancy'is not removed in a

strict senseby his algorithm, quoting an exampie to illustrate

the same;

see ref).

Before presenting the Tanaka’s algorithm for normalization

to 4NF, we must get familiar with some of the terminology used in

the same and with some axioms connected with the FDs and the

MVDs.

T

T+

T:A

FD(T:A)

MD (T':A)

For the design

will

will
will

will

will

will"’

will

will

denote

denote
denote

denote

denote

denote

denote

denote

context of a relation i.e. the set of

all
the
the

the

i.e.

the

the
the

the

the

attributes in the relation
given set of all FDs

given set of all MVDs

set of all given dependencies
T is union. of F and M

closure of T

closure of T with respect to
set of dependencies A

FD part of T:A

MVD part of T:A

theory of the 4NF schema, we need a

complete set of axioms for FDs as well as MVDs to act as

inference rules to calculate all dependencies. The following is

the list of axioms

FD1 (Reflexivity)

FD2 (Augmentation)

FD3 (Transitivity)

If Y&cX then X --> Y

'If ZeW and X --> Y then XW --> YZ

If X --> Y and Y --> 2 then X --> 2
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MVDO (Complementation) If X --> -->Y in 2 then
X ==> ==> 2 - Y in Z

MVD1 (Reflexivity) If YESX€Z then X ==> -->'Y in 2
MVD2 (Augmentation) If VeweZ and X -=> -=-> Y in 2

then XW ==> -=-> YV ih 2

MVD3 (Transifivity) If X -->--=>Y and Y -=> --> W in 2
then X =--> --=> W -Y in 2

MVD4 (Embedding) If XeWe?Z and X --> -=> Y in 2
' then X ==> -=> YN W in W

MVD5 (Extension) If X ==> ==> Y in Z & (2=Y) =-> ==> Y
o in W, where W22 then X =-> --> Y in W

MVD6 (Reconnection) If X --> ==>Y in 2, V ==> --=> Y in W
and (2 N0 W) --=> -=> X in XV(Z N W)
then XV --> ==> Y 1in XV(Z N W)

FD-MVD1 If X --> Y and X, Y& Z
' ' then X --> =--> Y 1in Z

FD-MVD2 If X -=> -=> Y in 2 and (2-=Y) =--> Y
then X --> Y :

The set of axioms FD1-3, MVDo-s, FD-MVD1-2 is known as
the complete set of axioms for the FDs and MVDs. In th¢ design
process, if is required té know the closure of FDs and MVDs i.e.
all the dependencies inferable froﬁ sets F and M. For the
convenience of computation, the axioms MVD3-5 and FD-MVD2 are
replaced respectively by MVD7 and FD-MVD3, which are introduced

as under

MvVD7 (MVD interaction) If X --> ==> Y in Z2, U ==> -=> V in W
where X W and U 2 ‘
then X(Y N U) ==> ==> YN V in Z-(Y-W)
and U(VN X) =--> —==> YN V in Z-(Y-W)

FD-MVD3 (FD-MVD interaction) '
If X -->Y¥Y, U ~-->=->V in W ,
and XCcW then U(VN X) --> YNV
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Also thére are two very important results regarding these

dependéncy rules. They are as follows t

i

Lemma 1 ;
A set A of axioms FD1-3, MVD0-6 and FD-MVD1l-2 is

equivalent to a set B of axioms FD1-3,.MVDO—2, MVD6-7 and
FD-MVD1,3. |
Lemma 2 _

Let D be the set of dependencies (FD1-3, MVDO, FD-MVD3},
i.e., D has no rules about MVD interaction. Then the foiiowing
relation holds true‘

| FD(T:D) = FD(T:C)

Both 6f these resulté are by YfTanaka.

For the convenience of*cbmputation of dependency closure,
it is useful to introduce a,sfandard combined representation for
an FD or an MVD or both. The standard representation of a
dependency f with a context (i.e. the set of all attributes) 2
has a form I

X : [Yo] YL | Y2 | Y3 ]| ... | ¥n,

where (X,Y0,Y1,Y2, ... ,¥Yn} is a partition of Z,

X -=> Y0 and X --> -=> Yi in 2Z for any i .

Also three functions are defined for this standard

representation

context(f) = Z,
left(f) = X,

right(i,f) = Yi if i< n else @.
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Now, the axiom MVD6 is reasonably neglectable in most of
the practical applications. We therefore adopt a decomposition
algorithm for constructing 4NF rélations neglecting MVD6. This

algorithm is due to Tanaka. The algorithm is as follows

Un normalized relation R with context Z,

Input :
' " set of functional dependencies F and
set of multivalued dependencies M
output : Set of 4NF relations
Step 1. Let C be the dependency set equal to B - (MVD6)} i.e.

the set {‘FD1—3, MVDO-2,7 , FD-MVD1,3 }. We want to calculate
T:C. For this; let F’ and M" be the FD and MVD parts of T:C. To
get F’, calculate FD(T:D) as by Lemma 2, . F’ = - FD(T:C) =

FD(T":D), where D = {FD1-3, MVDO, FD-MVD3).

i

Step 2. .Obtain an intermediate set M’ as follows :
For each f in M, if there exists a functional dependency (in F7)
from a subset X of left(f) to all the attributes in left(f),
replace left(f) by X and move left(f)-X from left(f) to
right (0, £f). Move also all attributes in right(i,f), for a4dll
i > 0, that are'functionally dependent on left(f) to right(o,f).
Then, for each furnictional dependency f : X --> Y satisfying that
Y is a maximum set.dependentlon X and X is a minimal set that
determines (X U Y), we add an MVD g to M’ that is defined as
follows l

context(g) = Z,

left(g) = X,
right(0,g9) =Y,

right(l,q) = 2 - X - Y,
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right(i,g) = @ for i > 1.

Step 3. Calculate M" = closure of M/ w.r.t. E i.e. M’:E

where E = {MVDO<2, MVD7).

Step 4. Get a dependency g in M" such that right(0,q9) is
minimal i.e. right(0,f) ¢ right(0,g) for no f € M" and also
zZ c context(gf and left(g) € Z, where Z is the context of the
relation R to be decomposed. Then form relations R; with
contexts | 4
context(Ry) = Z N\ (left(g) U right(i,q))

for all 1i. .

The relation Rg so obtainéd is in 4NF and also (2.0 left(g)) is
its key. Rest of the relations decomposed need not be ih‘4NF and
hence apply step 4 to each of these aecomposed relations except

R -

1f, while applying step 4 to any relation, we cannot find
the dependency g satisfying all the fequired conditions, this
means that the relation concerned is in 4NF.

Go on doing step 4 unless all the decomposed relations are.

obtained in 4NF.
' The actual implementation of Tanaka’s algorithm ianrolog

is discussed in the next chapter. Also the algorithm is applied

to a few examples which are given in appendix - II.
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CHAPTER - 5

THE PROLOG PROGRAM FOR NORMALIZATIO
o UP TO 4NF

5.1 INTRODUCTION

This chapter discusses the actual Prolog program 'that
can automatically normalize a given felation up to the Fourth
Normal Form (4NF). The input required-to the program is the list
of the attributes i.e. the context of the relation and the set of
all the dependencies associated with it. We can get the relation
‘normalized up to the 3NF or the BCNF depending on our wish. The

relations coritaining MVDs too, are to be normalized up to 4NF.

The software used for the program is Turbo Prolog 2.0.

5.2 THE PROGRAM

We now take up the actual program code. First of all, the

various declarations are discussed. After that the rules are

touched upon, with elaborate explanation wherever needed.

5.2.1 Declarationsg

Various declarations in a Prolog program, before the

clauses begin, are- the domains, database and the predicates

declarations. The domains defined in this program are :

sym, list, listoflists and int

49



The “sym'. and “int' domains are just the other names for

the standard symbol and integer domains. ~“list' is defined as
list = sym* i.e. “list' has been defined as 1list of symbols.

"listoflists' 1is defined as : listoflists = 1list* Ci.e.

“listoflists' is list of lists of symbols,

After the domains section, détabasés are defined in the
database section. A database declaration contains the name
followed by fhe specification of the domaihs of its arguments.
4 For‘examplé the fUnctional dependenciés wiil be stored in the
datab;se fda(sym,list,list). 'Thié declaration means that we can
store facts .named °~fd' in this database and eéch fact will
contain three arguments, the first a symbql followed by two
other lists of symbols. For example, suppose we want to assert
the fact that the attribute B is functionally dependent on the
set of attributes {A,C} in a relation R, we will represent this
fact in our program as follows :

fd(r, (a,c], [b])

Note that we had to change the attribute names etc. to

lower case as in Prolog any upper case letter is taken to be a

variable.

As another example, fherevis a database defined as
schema (sym,list). This means that if we wish to give the system,'
information about a relation R containing the set of attributes
(R#,N,S,M,MN,FQ} we will either put. the fact directly by writing
the following fact-statement in the clauses éection :

schema(r, (r#,n,s,m,mn, fn]).

or by using assert statement in the right-hand-side of any
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rule like
goall :- assert(schema(r,[r#,n,s,m,mn,£fn)).
Note that every statement in the clauses section must

terminate in a period (.).

The database section is followed by the predicates

section. This section is used to declare each predicate that
will be used in the program to describe various facts. Thus the
program knows in advance the structure of each pfedicate. The
declaratiéns in thié section are similar to those in the database
section i.e. the predicate name followed by the domains-

specification of its arguments.

The Vfinal section of a Prolog program is the clauses
section. The actual code of the program is contained in this
section only and we shall discuss the various clauses in the rest

of this chapter.

The two statements in the very beginning of the program
~viz. nowarnings and code=2000 are compiler directives. The
statement “nowarnings' tells the compiler not to give warnings

like variable used only once and the statement "code=2000"'

specifies the internal code array in terms of the nunber of
paragraphs., The default code-array size of 1000 paragraphs i.e.

16 Kilo Bytes was found to be insufficient.

One very impoftant feature of this‘prégram must be

mentioned here viz. all the variables of the type ‘list' are

treated as if they are not simply lists but are _ordered sets'.
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This means that we will never allow any attribute to appear more

than one in any list and also the ordering of the attributes will

not be immaterial, the original ordering of the attributes of any

relation being defined by the SChéma declaration of that.relation

or the schema declaration of some relation from which it has been

derived.

5.2.2 Utility clauses

There are various clauses in our program that are used so

often that we shall call them utility clauses. The list of the

various utility clauses is as follows :

equal (L1,L2) succeéds when list L1 equals list L2. If either of

Ll and L2 is unbound, it binds it equalAto the other.

equal2 (LL1,LL2) succeeds when listoflists L1 equals listoflists

L2. If any of them is unbound, it binds it equal to the other.
elem(E,L) slUucceeds when E is an element of the ordered_set L.

listelem(L,LL). succeeds when list L is an element of the

listoflists LL.
subset (A,B) succeeds when list A is an ordered subset of list B.

attr(A,REL) succeeds when list A is ‘an ordered subset of the

attributes of the schema of REL. Domain-type of REL is “sym'.

union(U,A,B,REL) succeeds by building the union U of two ordered
sets A and B of attributes of the relation REL. It is important

that U, A and B all are ordered in consistence with the ordering
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in the set of attributes of the schema of the relation REL.

minus1(D,A,N) succeeds by building the difference D between the
set A and a single element N. This means that this clause

succeeds by achieving . D = A - (N} .

listminusi (LD, LA, LN) succeeds'by building the difference LD
between the listoflists LA and a single list LN. This means that

this clause succeeds by achieving VLD,= LA - {LN} .

minus(D,A,B) succeeds by building the difference D between the
ordered sets A and B.  Thus it succeeds after achieving

D=2A - B.

append(Li,L2,3) succeeds by appending list L2 to 1list L1 and
then storing it in list A if A is not already bound. The result
A will not be an ordered set as it will be a simple concatenation

of L1 and L2 and thus may have repeated attributes also.

append2(L1,L2,3) succeeds by appending 1listoflists L2 to
listoflists L1 and then storing it in listoflists A if A is not

already bound.

Let us explain one of these clauses, sSay the “union

clause' as it is lengthiest of the lot. fThe rule goes as follows

union(U,A,B,REL) :~- schema(REL,S), subset(A,S), subset(B,S),
unionl (U,A,B,S). ’

unionl(A;A,t],_) N I
unionl(B,[],B,_) := 1!.

unionl ([H|TU], [H|TA], [H|TB], [H|TS]) :- !, unionl(TU,TA,TB,TS).
unionl ([H|TU], [H TA],B,[HITS]) :-= !, unionl(TU,TA,B,TS).
unionl([H|TU],A, [H|TB],[H|TS]) :- !, unionl(TU,A,TB,TS).
unionl(U,A,B,[_|TS]) :- unioni(U,A,B,TS).
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The first thing the union clause does is that it calls for

" the list of attributes S from the schema data base. Then it
checks whether the lists A and B are ordered subsets of S. If
it is so, it calls the rule unioni(U,A,B,S). There are six

clauses for the predicaté unionl. Prdlog tries them one-by-one
unleés one is satisfied. The first clause says that if B is a
null set. then the union will be equal to A. The second does the
same for the Gése when A'is.a nﬁli set. The third clause says
that if the first element of A,B and S is same then the union of
A and B also will have the same elemeﬂt as its first element and
to find the tail of the union, the same rule unionl is to be
applied to the tails of A, B and S. The fourth and the fifth
clauses say that if the first element of S matches with any of

the lists A and B, then the first element of U will:also be the»
same element and to find the tail of U we will have to apply
-again the rule unionl to the tail of the:list whose first element
matched, the fuil of the other list and the tail of S. The sixth
and the last rule says that if the first element of 8 does not
match withbtﬁat of any of A and B, then U is to be found by

applying the rule unionl to A, B and the tail of S.

The symbol "!' used at many places in the clauses denotes
cut. The ‘cut' is a very special facility of Prolog and is used
to prevent backtracking to go beyond a particular point. In the

clauses for ‘unionl'lthe cuts are used to aVOid'multiple answers

i.e. not to allow the program to look for another answer once it

has found the value of U.
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5.2.3 Closure of a set of attributes

The cloéufé of a set of attributes X with respect to a set
of functional dependencies is the set. of all attributes A such
that X --> A can be deducted by the FD axioms. This set is
obtained in our Prolog program by a‘;ecursive rulé; . At each
level, an FD is searched such that the left hand side LHS of it
is a subset of X and the right hand side RHS is not a subset of
X. When such a dependency is found, the-RHS contributes its new
attributes to‘the closure and fhe algorithm is recursively called
on the new set built as the union of ; and RHS. The clauses
are : |

closure (REL,X,RESULT) :~- fd(REL,LHS,RHS), subset(LHS,X),
not (subset (RHS, X)),
union(U,X,RHS,REL), !,
closure(REL,U,RESULT) .

closure(REL, X,RESULT) :- RESULT = X.

It is the first rule that goes in the recursive process.
The second rule becomes active only when the modified set X has
become so big that no FD satisfies the conditions of the first
rule. The second rule then assigns the value of X to RESULT.

Hence in RESULT the c;osuré.of the initial set X comes.

5.2.4 Elimination of Extraneous Attributes

An attribute is extraneous in an FD if it can be
eliminated from the LHS so that. the new dependency
LHS - (A} —-=> RHS holds. The algorithm reducelhs does this job

of eliminating extraneous attributes from the IHS of an FD. It
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looks for an attribute A of the Lﬁs;‘builds the difference 2
between LHS and A, evaluates the closure of Z arid tests whether
RHS is a subset of this closure. if so, the attribute A is’
extraneous and the reducelhs rule is recursive evaiuated on Z.
When no further reduction is possi?ie the second rule of
.reduce;hs sets the value of the NEWLHS equal to Z. The rules are
as follows |

reducelhs (REL,LHS,RHS,NEWLHS) :~- elem(A,LHS), minusl(Z,LHS,A),

not (equal(Zz,[])),
closure(REL, Z,ZCLO),

subset (RHS,ZCLO), !,
reducelhs (REL, Z,RHS,NEWLHS) .

reducelhs (REL, LHS, RHS,NEWLHS) :- NEWLHS = LHS.

Another rule elimattr does the job of calling each FD one
by one, applying reducelhs on it, checking whether the 1LHS of the
FD has been changed . afther applying reducelhs and if so
retracting the earlier FD from the database and asserting the new
FD i.e. the FD with NEWLHS. The rule is as follows :

elimattr(REL) :- fd(REL,LHS,RHS),
reducelhs (REL, LHS, RHS ,NEWLHS) ,
not (equal (LHS,NEWLHS)),
retract (fd(REL,LHS,RHS)),
asserta (fd (REL,NEWLHS,RHS)), fail.

elimattr(REL).

Note that while asserting the new FD, the predicate used
is asserta instead of simply assert 6r assertz. This ensures
that the newly asserted FD goes to the beginning of database so
that it is not called again when the rule follows forced

recursion due to the predicate fail.
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'5.2.5 Elimination of Redundant FDs

The rule elimreduhdfds does the job of eliminating all the
redunant FDs i.e. the FDs whose elimination from the set of FDs
"F' does not alter the closure of F. The first rule calls eaéh
FD one by one and retracts it from the data base temporarily.
Now it calculates the closure of it's LHS with respect to the new
set of FDs. If it's RHS belongs to the closure of it's LHS with
respect to this new set of FDs, this means that this particular
FD is redundant. In this case, it does not pﬁt the FD back to
the data base and calIs for another FD. But if RHS does not
belong to the closure of LHS, this means that this particular
FD's removal ﬁas changed the FD-closure, and hence the rule first
puts back the FD to the data base and then calls for another FD.
When all the FDs are checked, the second rule makes it true and
the process ends.

elimredundfds (REL) :- fd(REL,LHs;RHS), ,
retract (£4d (REL,LHS,RHS) ),

closure(REL,LHS,Z),
choice(REL,LHS,RHS,Z),

fail.
elimredundfds (REL).
choice (REL,LHS,RHS,Z) :- not (subset(RHS,Z)),
! asserta (fd(REL,LHS,RHS)).
" choice(RE1l,LHS,RHS,Z) :- subset(RHS,Z).

i
Note that the rule elimredundfds calls for another rule

choice because the Turbo Prolog doesn't allow the use of the ‘or!
operator “;' in the clauses. The first clause of choice becomes

operative when RHS is not a subset of Z and causes the FD to be
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asserted back to the database. While the second clause of
choice becomes operative only if RHS is found to be a subset of Z

and this clause does nothing, just goes true.

'5.2.6 Bernstein's Algorithm

As we have discussed in the previous chapter . the

Bernstein's Algorithm for converting an unnormalized relation to

a set of 3NF relations, consists of six steps. In line with
that, our Prolog implementation of the Bernstein's Algorithm also

consists of six steps. They are as follows :

Step 1. The first steps consists of eliminating the extraneous
attributes from the FDs in the functional dependencies set F.
This simply means that all we have to do in the stepl is to call

the predicate elimattr. Thus the stepl will be :
stepl (REL) :- elimattr(REL).

Step 2. This step consists of finding a non-redundant cover of

the FDs. This job will be done by the rule elimredundfds. ' Thus

the step2 will be :
step2 (REL) :- elimredundfds(REL).

step 3. This step consists of partitioning of thé set of
dependencies into groups with identical left hand sides. Two data

bases viz. group(sym,listoflists) and clo(sym,list,list) are used

here. The fact group stores the 1list of LHSs of.a particular

group formed for a relation REL and the fact clo stores the
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closure of a particular list of attributes. The closure of each
LHS is stored as this is going to be used in step4.'The clauses
for step3 are as follows
step3 (REL) :- £d(REL,LHS,_ ), not (group(REL,[LHS])),
asserta(group (REL, [LHS])), .
closure (REL,1LHS,CLO), asserta(clo(REL,LHS,CLO)),
fail.

step3 (REL) .

The first rule of §;ggg-looks at each FD and if no group
already exists with same LHS it asserts a group for that. Also
it finds the'closurg of this LHS and stores in the data base clo.

When all the FDs are exhausted the second rule makes it true.

Step 4. This step consists of merging the groups with equivalent

keys. Two keys X and Y are equivalent if each is functionally
dependent on the other. As we have already explained, the
merging is done by first assigning a dependencies set J := O.

The we look for edquivalent keys. As soon as two equivalent keys
X and Y are discovered, we merge the groups based on these keys
and also add the FDs X --> Y and Y --> X to the set J while
removiné the .same from the original dependencies set H. The
Prolog code gbes'as follows :
step4 (REL) :- clo(REL,L1,L1CLO), clo(REL,L2,L2CLO),
not (L1=L2), subset(L1l,L2CLO), subset(L2,L1CLO),
- not (alreadyexistsgroup(REl,L1,L2)), ,

merge (REL,L1,L2), _
asserta(fdj (REL,L1,L2)), asserta(fdj(REL,L2,L1)),

fail.
step4 (REL) ¢- clo(REL,L,LCLO), retract(clo(REL,L,;LCLO)), fail.
step4 (REL) :- fdj(REL,L,R), fd(REL,L,A), subset(A,R),

retract (fd(REL,L,R)), fail.
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merge (REL,L1,L2) :- group(REL,Gl), listelem(L1l,Gl),
group (REL,G2), listelem(L2,G2),
retract(group(REL,Gl)),
retract (group (REL,G2)),
append2 (G1,G2,NEWGROUP) ,
asserta(group (REL, NEWGROUP) ), L
alreadyexistsgroup(REL,Ll,L2) :-
group (REL,G) ,
listelem(L1l,G),listelem(L2,G)

A new database fdj(sym,list,list) has been introduced here
and corresponds to the set of dependencies J discussed in the
algorithm. Whenever the equivalent keys are discovered, groups
are merged using the merge predicate which merges two groups with
given LHSs. ' The rule “merge(REL,L1,L2)°', looks for groups ‘Gl
and G2 such that Gl is based on a set of keys of which L1 is one
and similarly ‘G2 on a set of keys containing 12, and retracts
both the groups while asserting the group containing the union of
the setS‘of'keys of the groups Gl and G2. The alreadyexistsgroup

predicate checks whether such a group already exists so that

there is no need:for merging the groups.

Step §.. This stép eliminates the transitive dependencies,
unwantedly introduced in the combined set of dependencies due to
the step4 of merging groups. For this, we introduce temporarily
~ the dependencies in the set J to the original set F. Then we
take up, one by one, the original dependencies in the set F i.e.
not introduced jusé now and check whether its removal haé caused
any difference in the closure of thé‘dependencies. The closure
is found with restpect to all thé dependencies now present in the

set F except the one just now retracted. If the closure of
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dependencies is found to be unaffected, this means that the FD
was transitive and -hence is not put back. At the same time the
LHS of the FD is eliminated from the group in which it exists.
The clauses arée as follows :
step5(REL) :- fdj(REL,L,R), not (fd(REL,L,R)),
assertz (fd(REL,L,R)), fail.
step5(REL) :- fd(REL,L,R), not (fdj(REL,L,R)),
retr(REL,L,R),

closure(REL,L,2), .
choice2 (REL,L,R,2Z), fail.

step5(REL) :- fdj(REL,L,R), retract(fd(REL,L,R)), fail.
stepS5(REL) . ;

: {
retr(REL,L,R) :~ retract(fd(REL,L,R)), !.

The first cladse of the rule step5 stores back the FDs
present in J to the set F. The second clause takes one FD from
the set F at a time and checks that it is not present in the set
J. Then it retracts the FD from F, finds the.closure Z of its
LHS and.then call choice2.  The third clause retracts the FDs
temporarily puf ih the set F. It is to be_noted th;t wé'have not

applied simply the predicate iretract. but instead have defined

another rule retr(REL,L,R) which performs a retract(fd(REL,L,R))
followed by a cut i.e. "!'. This ensures that the program does
not retract the same - FD which it has just now reasserted and

hence ruling ocut any possibility of the program into entering an

infinite loop. The choice2 predicate has the following clauses :’

t

i_ not (subset(R,Z)), asserta(fd(REL,L,R)),
H 1

choice2 (REL, L,R, Z)

choiceZ(REL,L,R.Z) :- subset(R,2), elimin(REL,L), -
. . !

61



elimin(REL,L) :- not (fd(REL,L,_ )), group(REL,G),
listelem(L,G), retract(group(REL,G)

listminusl(A,G,L), not(equal2(A,(])

asserta(group(REL,A)), !.

),
),
elimin(_,_).
The first clause of choice2 becomes active if the RHS of
the retracted FD is nhot found to. be ﬁhe subset of the closure 2
of its LHS and it asserts back the FD to the set F. 'The second
clause becomes active if the RHS is found to be the subset of 2
and calls the predicate elimin which in turn eliminates the LHS
from thg gfoup which contaihs it.
S i .
step S6. The sixth and the final step consists of the
construction of relations from each of the Qroups that we have
after the elimination of transitive dependencies. The various
steps involved in forming the relations are as follows : First we
select a group, then make name for the required relation, then
find the set of attributes i.e. the context for this relation and
then assert some of the keys for this relation. :The various

rules to carry out these functions are makename, makeschema and

ssertsomekeys. The gctual clauses are as follows :

step6 (REL). :- step6b(REL,0). .

step6b (REL,N) :~- group(REL,G), NEWN = N + 1,.
makename (REL, NEWN,NEWREL) ,
- makeschema (REL,NEWREL,G) ,
assertsomekeys (NEWREL,G) ,
assertz (decomp (REL,NEWREL) ),
assertz (in3nf (NEWREL) ),
!, step6b(REL,NEWN).

step6b (REL, )

killmodifiedfds(REL),
reassertrememberedfds (REL) .
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The énly' work the predicte step6(REL) does is that it
calls another rule step6b(REL,0). = The predicate stepéb(REL,N)
first of ;11 chooses a Group and then creates a name for the
relation to be formed corresponding to this Group. The name of
the relation is formed.by the predicate makename And depends on
the integer N. The predicate makeschema creates the context for
the new relation and asserts the same in the database schema.
Some keys are asserted by the predicate'assertsomekeys; Finally
the current Group is retracted and the rule stepéb is recursively

called again with an incremented "N'. The rules makenanme,

makeschema and assertsomekeys are as follows :

makename (REL,N,NEWREL) :- appendchar(ﬁEL,'_',NREL),
' Suffix = N + 96, :
char_int(A,Suffix),
appendchar (NREL,A,NEWREL) .

makeschema (REL, NEWREL,G) :- collect(REL,G,NEWSCHEMA),

assertz (schema (NEWREL,NEWSCHEMA) ) .
assertsomekeys (NEWREL,G) :- listelem(K,G),
’ assertz (key (NEWREL,K) ),
fail. .
assertsomekeys(_,_ ).

{

i ‘
The rule makename makes use of another predicate
appendchar and a built-~in predicate char_int. -The predicate

‘char_int' is a type conversion predicate.

appendchar(svm.char.nehsvm) performs the function of appending
the character ‘char':to "sym' and assigning it-to ‘newsym' if
newsym is not already bound. “Suffix' is an integer equivalent
of the suffix required for the NEWREL and is obtained by adding
96 to N Dbecause the ASCII <code for “a! is 97.

~char_int(A,Suffix) assigns the character equivalent of Suffix to
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the variable A which is finally appended to REL to give NEWREL by

using appendchar.

Since the LHS commoh to all (or some) of the FDs in a

| group is a key to the relation formed for that group, the

predicate assertsomekeys(NEWREL,G) looks for the LHSs associated

with the gr6Up G and then asserts these as keys of NEWREL.

The predicate makeschema makes use of another predicate
collect to find the context of the relation which is to be

constructed for the group G and then asserts the same in the

schema database. The clauses for the predicate collect are as
follows
- collect(REL,G,RESULT) :-~ schema(REL,S),

collect2 (REL,G,S, [],RESULT).

collect2 (REL,G,TOTEST,ACCEPT,RES) :-
elem(A, TOTEST),
minusl (NEWTOTEST, TOTEST,A),
choice3 (REL,G,A,ACCEPT, NEWACCEPT),
collect2 (REL,G,NEWTOTEST, NEWACCEPT, RES) .

collect2(_,_, ,ACCEPT,RES) :- RES = ACCEPT.

The predicate collect calls another predicate

collectz(REL;G,TOTESTLACCEPT.RES) whose function is to store in
RES the context of the relation correstponding to the Group G.
TOTEST is the set of attributes from the context is to be found
out and ACCEPT is a set of attributes which all form a part of
the contéxt. The set ACCEPT ‘is assigned initially the null value
i.e. © while the set TOTEST is assigned the value equal to the

context of the relation REL. The set ACCEPT gradually builds up
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as the rule collect recursively calls itself. Finally, when the
set ACCEPT is fully built, the second clause of collect assigns

its value to RES.

Thé third clause of the rule stepsb-éalls the predicates
killmoaifiedfds‘ and reassertrememberedfds which do the job of
retracting all the FDs from the sets F and J and then storing
back the original FDs to the set F.

4
13

5.2.7 Tsou & Fischer 's Algorithm

The Tsou & Fischer's algorithm for converting an
unnormalized relation directly in a set of BCNF relations was
explained in the previous chapﬁer. The predicate benf (REL) dées
this job of converting the relation :REL into BCNF relations.

This predicate bcnf first of all makes a choice with the help of

choice7a predicate. The choice is that if the schema of REL
contains oniy two elements then no decomposition is needed since
a relation with two elements is alsways in BCNF. But if the
schema of REL cofains more than two elements, choice7a calls for
another rule bcnf2. In the rule bcnf2(REL,.X,Y,DECOMP), REL is
the relation to be decomposed, X is the active set AS of the
algorithm, Y is a listoflists which contains the 1list of
contexts of relations so far decomposed and DECOMP is a
‘listoflists which wili finally contain lists of contexts of

all the relations finally obtained after decomposition. Thus the

values of X and Y initially supplied to bcnf2 are S where S is
the context of the original‘relation REL and the null set []

respectively. The clauses are as follows :
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v\ . T Duusa oy, D), cunvicera(rkoL, L, | |, uscouny),

createnewrels (REL, DECOMP, 0) .

choice7a :-.equal(S,[_,;]), !, equal2(DECOMP, [S]).

choice7a :- not (equal(s.[_,_])), !, benf2(REL,S,[],DECOMP).

bcnf2 (REL,X,Y,DECOMP) :- equal(X,(_,_1), !,
. o append2 (Y, [X],DECOMP) .

not (check(REL,X)),
append2 (Y, [X],DECOMP) .

bcnf2 (REL, X, Y, DECOMP)

!
benf2 (REL, X, Y, DECOMP)

- reducel (REL,X,FINAL Y,FINAL A),
minusl (NEWX, X, FINAL_A),
append2 ((FINAL_Y],Y,NEWY), !,
benf2 (REL, NEWX, NEWY , DECOMP) .

i

There are three clauses for tﬁe benf2 (REL, X, Y, DECOMP)
rule.- The first clause checks whether the active set X has been
reduced to two elements. If so it adds the aétive set the
listoflists Y to give the final DECOMP. The second clause calls
for the predicate. check which checks whether any element of X can
be generated with the help of the other elements. If none can be
so generated it adds X to the listoflists Y to give DECOMP. The
third clause is called if such an element exists in X. First of
all it calls the predicate reducel(REL,X, FINAL Y,FIﬁAL'A).
'FINAL_Y of reducel corresponds to the set B of the algorithm and
fINAL_A corresponds to. the element E of the algorithm (see
section 4.4). Thus for the active set X, the rule reducel
calculates the set B and the element E which are here called
FINAL_Y and FINAL_A respectively. The predicate reducel in turn
calls another reduce2 which is recursive in nature and goes on
reducing the active set temporarily and checks whether it can be

reduced further. Ultimately it stores the final values in the,
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variables FINAL Y and FINAL_A.

The rule createnewrels called by the predicate bcnf does

the job of extracting the 1lists of attributes from the

listoflists DECOMP one by one and creating a relation for each.

While creating the relations the predicates hakebcnfname,

addknownkeys and assertdecomp are used. respectively to create the

names for these relations, adding any keys to that relation using
the result that in a BCNF relation e?ery determinant is a Kkey,
and in the end asserting the knowlegde decomposition by asserting
facts to the database decomp. A fact decomp(REL,NEWREL) means
that the relation NEWREL has been creating after applying some

normalization process to the relation REL.

5.2.8 Minimizing a decomposition

As we‘have seen the decomposition algorithms ‘many times
create more relations than are needed. For example, in section
4.4 we showed that the Tsou & Fischer's algorithm produced an
extra unwanted relation R 5. 'In fact in this example, the
relation R 5 was a subset of the relation R_2. In such cases
when the decomposition produces a relation that is contained in
another relation similarly produced, this unwanted relation can
be easily removed using:the.minimize predicate. The minimize rule
first takes up two of the decomposed relations and checks whether
the context of one is contained in that of the othér. If it is
so it eliminates the former .relation from the schema of the

decomposition. The clauses for it are as follows :
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minimize(REL) :- decomp(REL,REL1l), decomp(REL,REL2),
not (REL1 = REL2),
schema (REL1,S1), schema(REL2,S2),
subset (S1,82),
purge (RELl1), retract(decomp(REL,RELl)),
fail.

minimize (REL).

purge (REL) :- retract(schema(REL, )), fail.

purge(REL) :- retract(key(REL,_)), fail.
purge (REL) :- retract(fd(REL,_,_)), fail.
purge(REL) :- retract(in3nf(REL)), fail.
purge (REL) :- retract(inbcnf (REL)), fail.
purge (REL) .

The job of eliminating a particular relation is done by

the rule purge. purge (REL) retracts all the information about

the relation REL frpm various data bases viz. schema, key, fd,

in3nf a&and inbcnf. After all the initial purge rules have
retracted all the facts related with REL from the various
databases, the last clause of purge becomes active and makes it

true.

5.2.9 Tanaka's Algorithm for 4NF

The Tanaka's algorithm for converting an unnormalized
relation containing both FDs and MVDs to a set of 4NF relations
using the decomposition approach was explained in the previous
chapter. As was mentioned there, this algorithm consists of four
steps viz. calculating the set F', then the sets M!' and M" and
finaily dgcomposing the relation with the help of the
dependencies set M". The various steps are implemented as

follows :



context of the MVD, the rule proceeds: further.

Step 1. This step calculates the FD set F' = FD( :D)

where
D = (FD1-3, MVDO, FD-MVD3}. The rule fm3{REL) applies the axiom
FD-MVD3 repeatedly to the dependencies of the relation REL to
generate more FDs and continues uhtil no more FDs can be

generated. The axion FD-MVD3 is an FD-MVD interaction axiom and

says that " if X -=> ¥, U -=> -—s V in W and X W, then the
following FD holds : U(VnX) -==>Ynv?" fthe rule fm3 first

chooses an FD and an MVD. Then the predicate getw gets the

context of the MVD chosen. If the LHS of the FD belongs to the

The predicate

common finds thé intersection of two sets. Before asserting the

FD U(V n X) =--> v n V, the rule makes three checks using the

predicates checkl, check? and check3. These check-predicates

check whether the FD we want to assert is trivial or is contained

in some other already existing FD. In the end the fm3 clause

terminates in the pPredicate fail. This forces the rule to go on

repeating itself until no more FDs can be asserted. Then the

second clause of fm3 sets it true. The clauses for fm3 are given

as follows :

fm3 (REL) :- fd(REL,L1,R1), mvd (REL, L2,R2) ,
getw(REL,LZ,R2,W), subset (L1,W),
‘common (Al,R2,L1), common (B1,R2,R1),
not (equal (B1,(])), union(U,LZ,Al,REL),
not(fd(REL,U,Bl)),
not (checkl(REL,U,Bl)),
not (checkZ(REL,U,Bl)),
not (check3(REL;U,Bl)),
assertz(fd(REL,U,Bl)),
fail.

£m3 (REL) .

The application of the rule fm3 to the set of the given




dependencies introduces soﬁe unwanted FDs in the dependencies
set. The rules remextral and remextrg do the job of removing such
unwanted FDs. The rule remextral consists of three clauses. The
first clause removes all the trivial FDs i.e. the FDs in which
the RHS is a subset of the LHS. The next two clauses remove the
FDs which are contained in some other FD. The rule remextra does
two functions. It merges the FDs with identical LHSs and
modifies the FDs whose LHS is a superset of that of some other FD
while whose RHS is not. In the remextra calls remextral to

remove any unwanted FD it might have introduced in the system.

The predicate f3a enforces the axiom FD3 in a modified
form. It generates new FDs using the transitivity property of
the FDs and goes on doing it until no more FDs can be enforced.
The clauses for f3a are as follows :

f3a(REL) :- fd(REL,A,B), fd(REL,C,D), subset(C,B),
union(U,B,D,REL), not (f4(REL,A,U)),
assertz (fd(REL,A,U)), fail.

f3a(REL) .

After applying the rule f3a to the set of dependencies it
becomes once again necessary to call remextra to remove the

unwanted FDé generated.

Step 2. Thé second step of the Tanaka's algorithm consists of
finding the intermediate set M'. 1In this set, thebdependencies
are reperésented in the standard form, as discussed in the
previous chapter, represented as follows :

X : [Yo] Y1 | Y2 | ... | ¥n,
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where X -=> YO and X --> --> Yi for any i > 0.

We introduce two databases mdf(sym,list,list) and

mdm(sym,listliistl here. Cérreéponding to a sample dependency in
the standard form as shown above, with relation say "r', the
following facts will have to be asserted to these new databases :

mdf (r, [x],[y0]),

mdm(r, (x],[yi]), for each i > o.

It should be noted that as usual, the attribute names

had to be converted to lower case.

The pfocess for obtaining M' is discussed in the section
4.4 of the last chaptér. The rule mgégg is used in the program
to carry out this job. When the rule mdash is executed, the
intermediate set M' is obtained with dependéncies in it
represented in the standard form i.e. represented with the help

of facts in the data bases mdf and mdm.

Step 3. The step 3 of the Tanaka's algofithm consists of
calculating the dependencies set M" = M':E i.e. the closure
of the intermediate set. M' with respect to E where Elis-the
.axioms set {(MVDO-5}. ‘The MVDé6 axiom has been neglected in this
élgorithm as it is usually neglectable in most of the pratical
applications. Also we have mentioned that the axiom MVD7 is
equivalent to the axioms MVD3-5 and so the set E can be taken
as {MVDO-2, MVD7)} also. It was found, however, while writing the
pfolog che for step 3 that.it becomes easier to find the set M"
if we use both MVD3 and MVD7, although theoriticaily MVD?7

includes MVD3.
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The rule m7 is used to apply the axiom MVD7 to the
intermediate set M!'. This rule undergoes forced recursion

because its first clause terminates in.a fail. In each iteration

it asserts new facts to the databases mdf and mdn. It also
asserts facts to the databaée nvd2 every time it asserts to mdm.
In fact mygg_ keeps the knowledge of which new mdm facts are
introduced by the rule m7. Only when no more dependencies are
assertable, does this clause terminate and the second clause now
makes thg rule true. In the proéess of enfbrcing axiom MVD7, we
introduce many unwanted dependencies. To clean the new set of

dependencies, rules cleanl and clean are used.

The rule cleanl simply removes the duplicate mdm's and

mvd2's introduced by the rule m7. The clauses for cleanl are as
follows
cleanl(REL) :- mdm(REL,L,R), retr2(REL,L,R),

not (mdm(REL,L,R)), asserta(mdm(REL,L,R)), fail.

cleanl(REL) :- mvd2(REL,L,R), retr3(REL,L,R),
not (mvd2(REL,L,R)), asserta(mvd2(REL,L,R)), fail.

cleanl (REL).

retr2 (REL,L,R) :- retract(mdm(REL,L,R)), !
retr3 (REL,L,R) :- retract(mvd2(REL,L,R)),!.
It can be seen that in the cleanl clauses, we have used
predicates retr2 and retr3 instead of directly using the retract

predicate. 1In the retr2 and retr3 rules, the retract command is

followed by a cut i.e. “!'. This is done to ensure that the
program doesn't retract a fact just asserted by it and thus

ensuring an impossibility of it's entering into an infinite loop.
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The first clause of the rule clean calls the rule cleanl.
The second clause of it retracts those mdm's whose LHSs are
supersets of some other mdm. It's third clause partitions the
RHS of those mdm's who have another mdm having the same.LHS and

an RHS which is a subset of their's.

After cleaning the dependencies generated by the rule m7,
the rule m3 is used to enforce a particular case of axiom MVD3 on
the dependencies set. This axiom is the Transitivity axiom for
MVDs and states that : " if X -=-> =-=> Y in 2 and Y --> --> W in
Z then the following MVD also holds viz. X --> =-> W - Y in Z
" The clauses for the rule m3 are as follows :

m3 (REL) :- mdm(REL,L,R), context(REL,L,R,C),
mvd2 (REL,X,Y),
subset (X,R), subset(Y,R),
minus(M,R,Y), not (equal(M,[])),
assertz(mdm(REL,L,Y)),
assertz (mdm(REL,L,M)),

, fail.

m3 (REL) .

It is to be noted that while applying the axiom MVD3 to
the set of dependencies, m3 considers only the newly asserted
mdm's i.e. the mvd2's for generating new mdm's. context is a

database which contains information about the contexts of various

mdm's.

The rule m3 also introduces unwanted dependencies which
are to be rémoved by using the rule clean again. In the end the
rule cleanup retracts all the facts ffom the temporarily used

databases viz. rememb, context and mvd2. cleanup also retracts

those mdm's who do not have an mdf with the same LHS.
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The rule putspecialmdfs puts in the set M", the mdf's and

mdm's corresponding to thosevMVDs whose context is equal to the
schema of the original relation REL, and also which satisfy these
two conditions : (i) No FD should have an LHS which is superset
of the LHS of this MVD. (ii) No MVD should have an LHS which is

superset of the LHS of this MVD.

Step 4. .The final step in the Tanaka's algorithm consists of
decomposing the initial relation REL into 4NF relations with the

help of the dependencies set M". The predicate maked4nfrels does

this job here. maked4nfrels calls a similar predicate

make4nfrelsl which in turn completes the process with the help of

two predicates getlowestl and use. The rule getlowestl selects

the minimal dependency satisfying all the conditions discussed in
the algorithm in the last chapter. The‘rule use, after that,
creates new relations with the help of that minimal dependency,

retracts that dependency and recursively calls maked4nfrelsl for

- each of the newly created relation. When all the newly created

relations are converted to 4NF, the process ends.

After obtaining the decomposition, the rule minimize is
used to eliminate any relation which is contained totally in

some other decomposed relation. And finally, printdecomp prints

the decomposition i.e. the details of all the newly created 4NF

relations.
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nowarnings

code=3000

domains
file = resfile
sym = symbol
list = sym*
listoflists = list*
int = integer

database

schema(sym, list)
group(sym,listoflists)
rememberfd(sym,list, list)

decomp(sym,sym)
key(sym,list)

mvd(sym,list,list)
mdm(sym,list,list)
context(sym,list,list,list)
mdmtemp(sym, list,list)
allkey(sym)
mvdtemp(sym,list,list)
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fd(sym,list, list)
clo(sym,list,list)
fdj(sym,list,list)

in3nf(sym)
inbcnf(sym)

"mdf({sym,list,list)

rememb(sym, list)
mvd2(sym,list,list)
indnf(sym)
remembmdf(sym,list,list)
store(list)



predicates

g1 goall
g3 goal3l
g5 goals$
goalla goal2a

equal(list,list)
elem(sym,list)

subset(list,list)
unioni(list,list,list;list)
minust(list,list,sym)
append(list,list,list)

g2 goal?2
g4 goalsé
gbé goaléb

equal2(listoflists,listofl.ists)
listelem(list,listoflists)

attr(list,sym)
union(list,list,list,sym)
minus(list,list,list)

appendchar(sym,char,sym)

listminusi(listoflists,listoflists,list)
append2(listoflists,listoflists,listoflists)

closure(sym,list,list)
elimattr{sym)
choicel(sym,list,list,list)
make3nf(sym) -

remembercovering(sym) -
step2(sym)

step4é(sym)

sfepé(sym)

printdecomp(sym),
alreadyexistsgroup(sym,list,list)
retr(sym,list,list)

writegivenrelation(sym)
writeallmvds(sym)

makename(sym,int,sym)
makeschema(sym,sym, listoflists)
assertsomekeys(sym,listoflists)

reducelhs(sym,list,list,list)
elimredundfds(sym)
choice2(sym,list,list,list)

N

stepl(sym)
step3(sym)
step5(sym)
stepbb(sym,int)
merge(sym,list,list)
elimin(sym,list)

Wwriteallfds(sym)
writeallrhs(sym,list)

reassertrememberedfds(éym)
killmodifiedfds(sym)
collect(sym,listoflists,list)

collect2(sym,listoflists,list,list,list)

isvalidattribute(sym,listoflists,sym)
choice3(sym,listoflists,sym,list,list)

choice4(sym,list,list)
choiceba(sym,sym, list)

minimize(sym)
makebecnf{sym)
reducel(sym,list,list,sym)
check(sym,list)

purge(sym)

benf(sym)
reduce2(sym,list,sym,list,sym)
choice5(sym,list,listoflists)

benf2(sym,list,listoflists,listoflists)
createnewrels(sym, listoflists, integer)

makebcnfname(sym,integer,sym)
addknownkeys{(sym,sym)
printallkeys(sym)
choice8(sym)

'choice10(sym)
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make4dnf(sym)

fm3¢sym)
common(list,tist,list)
remextral(sym)
f3a(sym)
checEZ(sym,ljst,list)

mdash(sym)
check4(sym,list,list)
checkS5(sym,list,list)
writemdash2(sym,list)
getallcontexts(sym)

m7(sym)
checké6(sym,list,list,list)
clean1(sym)
retr2(sym,list,list)
cleanupti(sym)

choicelS5(sym,list,list,list,list,list,

make4énfrels(sym)
use(sym,sym,list,integer)
getlowest(sym,sym, list)
getlowest2(sym,sym, list)
reloadmdfs(sym) .
choicel7(sym,sym,list,list,list)

getcontext(sym,list,list)
check8(sym,list)
putspecialmdfs(sym)

getw(sym, list,list,list)
remextra(sym)
getasubset(list,list)
checki(sym,list,list)
check3(sym,list,list)

rtside(sym,list,list)
choicel2(list,list,list,list)
writemdash(sym)
writefdash(sym)
writemdoubledash(sym)

getw2(sym,list,list,list)

clean(sym)

m3(sym)
retr3(sym,list,list)
cleanup(sym)

list,list)

make4nfrels1(sym,sym)
usel(sym,sym,list,integer)
getl&uest1(sym,sym,list)
check7(sym,list,list)
choicelé6(sym,sym,list,list,lList)
enough(sym) »

getcontext2(sym,list,list,list)
check9(sym,list)
assertmdms(sym,list)

clauses

/* ... equal(L1,L2) wequals two lists L1 and L2 ... */
equal([A]|B),[C|D]) :- A=C,equal(B,D).
equal ([A], [B)) :-.A=B. '
equal([1,I[)).
/* . equal(LL1,LL2) equals two listoflists LL1 and LL2 ... */
equal2([A}B],(C|DT) :- equal(A,C),equal2(8,D).
equal2([A}, [B)) :- equal(A,B).
equal2(r),(1).

elem(E, (E|_1).
elem(E, [_|T]) :- elem(E,T).

listelem(E, [E|_1).
listelem(E,[(_|T]) :- listelem(E,T).
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subset(([],_) :- 1.
subset([H|TA),IH|TB]1) :- ! ,subset(TA,TB).
subset(A,[_|TB1) :- subset(A,TB).

attr(E,R) :- schema(R,S), subset(E,S).

union(U,A,B,REL) :- schema(REL,S), subset(A;S), subset(B,S),
- union1(U,A,B,S). :

.uniont(A,A, [}, ) - .

union1¢(B8,[]1,B,_) :- 1.
uniont (IH|TUY, [H|TAY,[H|TBI,[H|TS]) :- 1,union1(TU,TA,TB,TS).
unionl1(LH|TUl,[(H|TAI,B,I[H|TS]) - 1,unioni(TU,TA,B,TS).
union1C(IH|TUI A, [H|TB],(H|TS]) :- 1,unioni(TU,A,TB,TS).
union1(U,A,B,(_|TS)) - wunioni(U,A,B,TS).

/* minus1(R,A,B) means R = A - [B] */
minus1(L1,(},_) - 1.
minus1(TA, (B|TAI,B) :- I.

minus1(IHA]TX], [KA|TA),B) :- minusi1(TX,TA,B).

listminus1((],[]._)_:- [
Listminus1(TA,[B|TA],B) :- I.

Listminus1([HA|TX], [HA|TA],B) :- Llistminus1(TX,TA,B).
/* minus(R,A,B) means R = A - B */
minus(R,R,[j) HET

minus(Z,A, (HB|TB)) :- minus1(R,A,HB), minus(Z,R,TB).

/* append (X,Y,Z) means Y+X --> 2 */

append(I[],L,L).
append([X|[L1],L2,[X|L31) :- append(tt,L2,L3).

append2(f},L,L). .
append2(IX|L11,L2,[Xx|t31) :- append2(L1,L2,L3).

/* appendchar(Str,Chr Newstr) appends character Chr
to string Str and stores in string Newstr */

appendchar(SYM,CHR , NEWSYM) :- str_char(B,CHR),
. -concat(SYM,B,NEWSYN) .,
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closure(REL,X,RESULT) :- fd(REL,LHS,RHS),'subset(LHS,X),
not (subset(RHS,X)),
‘union(U,X,RHS,REL), !,
closure(REL,U,RESULT).

closure(_,X,RESULT) :- RESULT = X.

elimattr(REL) :- .
write("Elimination of extraneus atributes from the cover of %),
write(REL), write(m : “), nl,nl, fd(REL,LHS,RHS), '
reducelhs(REL,LHS,RHS,NEWLHS),
nét (LHS=NEWLHS), retract(fd(REL,LHS,RHS)),
asserta(fd(REL,NEWLHS,RHS)),
write(" Extraneous attributes found in the dependency "),

write(" “),mrite(LHs), write(" --> "), write(RHS),
nl,nt,write(" .. The new left hand side = "), wWwrite(NEWLHS),
nt,fail.

elimattr(REL) :- nl,write("* all extraneous attributes eliminated"),nl,nl.

reducelhs(REL,LHS,RHS,NEWLHS) :- .
‘ elem(A,LHS), minus1(Z,LHS,A),
Aot (equal(z, 1)),
closure(REL,Z,2CL0), subset(RHS,z2CLO),
!, reducelhs(REL,Z,RHS NEWLHS).

reducelhs(_,LHS,_,NEWLHS) :- NEWLHS=LHS.

elimredundf&s(REL) HE
write("Elimination of redundant fDs from the cover of "),
write(REL), write(" : "), nl, fd(REL,LHS,RHS),
retr(REL,LRS,RHS),
closure(REL,LHS,Z2),
choicel(REL,LHS,RHS,2),
fail.

elimredundfds(_) - nl,write("* all redundant fds eliminated"),nl,nl.

choicel(REL,LHS,RHS,Z) :- not (subset(RHS,Z)),
asserta(fd(REL,LHS,RHS)).

choicel(_,LHS,RHS,2) :- subset(RHS,Z), nl, write("redundant fd "),

write(LHS), write(® --> %),
write(RHS), write(" eliminated "), nl.
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/* */

/* Decomposition into 3NF */
/* */

make3nf(REL) :- nl,nl,

write(" Applying BERNSTEIN'S ALGORITHM for conversion"),

write(" of "“,REL," into 3NF"),nl, _
Wwrite(" -------- zZ-iszzctiSSES=S=SSS=Z= c-- ssecocesoo-- "),
write(" -- «--- «--m)y ni,nl,nt,

step1(REL), step2(REL), step3(REL),
step4(REL), step5(REL), step6(REL), printdecomp(REL).

/* ---- step 1 : Eliminating extraneous attributes ---- %/

stepl1(REL) - write(" Step 1"),nl,.ufite("

______ */

vy, ni,nl,

nl, elimattr(REL).

/* ---- step 2 : Eliminating redundant FDs ---- %y

step2(REL) :- nl,nl,write(" Step 2"),nl, write("®

*/

- "™, nt,nlL,
nt, elimredundfds(REL), remembercovering(REL).

remembercovering(REL) :- fd(REL,LHS,RHS),

assertz(rememberfd(REL,LHS,RHS)), fail.

remembercovering(_).

/* ---- step 3 : Partitioning into groups with sem- oy
/* e identical LHSs ’ Y
step3(REL) :- nl,nl,write(" Step 3"),nl, write(" ____ "), ni,nlL,
nl, write(" Partitioning of the cover of ",REL),
write(" into groups with identical LHESs"), nl,nl,
nl, fd(REL,LHS,_ ),
/* equal(A,LHS), not (group(REL,[A))), */
not(group(REL, {LHS])),
asserta(group(REL, [LKS]))),
write("Group formed, based on Lhs : ",LHS), nt,
closure(REL,LHS,CLO),vasserta(clo(REL,LHS,CLO)),
fail.
step3(_) :- nl, wWwrite(" * partition into groupstéompléfed.“);nl,nl.
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/* ---- step & : Merging groups with identical keys ---- */
/* */

‘step4(REL) :- nl,ntl,write(" Step 4"),nl, write(® ____ "), nl,nt,
nl, write(" Merging groups with equivalent keys :"),
nl, nl, clo(REL,L1,L1CLO0),clo(REL,L2,L2CLO),
not (L1=L2),
subset(lL2,L1CLO),subset(L1,L2CLO),
not (alreadyexistsgroup(REL,L1,L2)), .
write("Equivalent keys discovered : ",L1," <--> # _12),
nl, merge(REL,L1,L2),
asserta(fdj(REL,L1,L2)),assertal(fdj(REL,L2,L1)),
fail.

step4(REL) :- c!o(REL,L,LCLO), retract(clo(REL,L,LCLO)),
fail.

step4(REL) :- fdj(REL,L,R), fd(REL,L,A), subset(A,R),
retract(fd(REL,L,A)), fail.

step4(REL) :- nl,write(" * all equivalent keys are discovered "),nl,
write(" and the groups are merged*), ni,nl,
write(" The groups after merging are "), nl,
group(REL,G), write(" Group : “,G6), nl, fail.

stepéd(_).

merge(REL,LT,L2) :- group(REL,G1), listelem(L1,G1),

. group(REL,G2), listelem(L2,G2),
retract(group(REL,G1)),retract(group(REL,G2)),
append2(G1,G2,NEWGROUP),
asserta(group(REL,NEWGROUP)), 1.

alreadyexistsgroup(REL,L1,L2) :- group(REL,G), listelem(L1,G),
listelem(L2,G).

/* ---- step 5 : Eliminating Transitive Dependencies ---- */
/* : ] */

step5(REL) :- nl,nl,write(" Step 5"),nl, write(" ____ "), nl,nl,
nl, write(" Elimination of transitive dependencies :"),
nl, fdj(REL,L,R),not (fd(REL,L,R)), '
assertz(fd(REL,L,R)),
fail.

stepS(REL) :- fd(REL,L,R), not (fdj(REL,L,R)),

retr(REL,L,R),
closure(REL,L,2),
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choice2(REL,L,R,2),
fail.

stepS(REL) :- fdj(REL,L,R), retract(fd(REL,L,R)), fail.

stepS5(REL) :- write(" * transitive dependencies eliminated ."),
nl,nl,write(" Now finally the groups are :%),
nl,group(REL,G), write(" group : ", G),nl,fail.

step5(_) t- nl.
retr(REL,L,R) :- retract(fd(REL,L,R)), I,

choice2(REL,L,R,Z) :- not (subset(R,2)), asserta(fd(REL,L,R)), !.

choice2(REL,L,R,2) :- subset(R,2), elimin(REL,L),
write(" w,L,"--> % R,* eliminated"),nl, 1.

elimin(REL,L) :- not (fd(REL,L,_)), group(REL,G),
listelem(L,G), retract(group(REL,G)),
listminus1¢Z,6,L), '
not (equald2(z,[1)),
asserta(group(REL,2)),1!.

elimin(_,_).

/* ---- step 6 : Constructing Relations from the Groups ---- ¥*/
/* ' */

step6(REL) :- nl,nl,write(" Step 6"),nl, write(" e ", nl,nt,
nl, write(" Construction of relations”),nl,nl,
step6b(REL,0).

step6b(REL,N) :- group(REL,G),NEWN = N + 1,
makename(REL,NEWN, NEWREL), )
makeschema(REL,NEWREL,G), assertsomekeys(NEWREL,G),
assertz(decomp(REL,NEWREL)), assertz(in3nf(NEWREL)),
retract(group(REL,G)), :
!, step6b(REL,NEWN).

step6b(REL, ) :- killmodifiedfds(REL), reassertrememberedfds(REL).

makename(REL,NR,NEWREL) :- appendchar(REL,'_*,NREL),
SUFFIX = NR + 96,
char_int(A,SUFFIX),
appendchar(NREL,A , NEWREL).
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makeschema(REL ,NEWREL,6) :- collect(REL,G,NEWSCHEMA),
‘ ) assertz(schema(NEWREL,NEWSCHEMA)).

/* Collecting into RESULT the schema of the synthesized
relation associated to group G. An attribute A
belongs to the schema if it belongs to the LHS or
RHS of some fd whose LHS is in G */

collect(REL,G,RESULT) :- schema(REL,S),
collect2(REL,G,S, [},RESULT).

collect2(REL,G,TOTEST ,ACCEPT ,RES) :-
' : " elem(A,TOTEST),
minus1(NEWTOTEST,TOTEST,A),
choice3(REL,G,A,ACCEPT,NEWACCEPT),

‘collect2(REL,G,NEWTOTEST ,NEWACCEPT,RES).

collect2(_,_,_,ACCEPT,RES) -:- RES = ACCEPT.

choice3(REL,G,A,ACCEPT,NEWACCEPT) :-
isvalidattribute(REL,G,A),!,
, union(NEWACCEPT,ACCEPT, [A],REL).
choice3(_,_ ,_,ACCEPT,NEWACCEPT) :-
| ,NEWACCEPT = ACCEPT.

isvalidattribute(REL,G,A) :- ! , listelem(L,G), VAAAE AL LAY
choice4a(REL,A,L).

choice4a(REL,A,L) :- fd(REL,L,R) , choice4(A,L,R).
choice4a(REL,A,L) :- fdj(REL,L,R), choice4(A,L,R).

choice4(A,L,_) :- elem(A,L).
‘choice4(A,_,R) :- elem(A,R).

assertsomekeys(NEWREL,G) :- listelem(K,G),
‘ assertz(key(NEWREL,K)),fail.
assertsomekeys(_,_).

killmodifiedfds(REL) :- fd(REL,L,R), retract(fd(REL,L,R)), fail.
kitilmodifiedfds(REL) :- fdj(REL,L,R), retract(fdj(REL,L,R)), fail.
killmodifiedfds(_).

reassertrememberedfds(REL) :- rememberfd(REL,L,R),
assertz(fd(REL,L,R)),
retract(rememberfd(REL,L,R)),
fail. = L.
reassertrememberedfds(_).
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AR -- stepl to stepé6 of Bernstein's
algorithm over R R *y

/* minimization of a decomposition :
relations whose schema is a subset of another relation .
are eliminated from the decomposition */

minimize(REL) :- decomp(REL,REL1), decomp(REL,REL2),
not ( REL1 = REL2 ), schema(REL1,S1),
schema(REL2,582), subset(S1,82),
purge(REL1), retract(decomp(REL,REL1)),
nl,nl, write("The decomposed relation "), write(REL1),
write(" is eliminated"), nt,nt,nl, fail.

minimize(_).

purge(REL) :- retract(schema(REL,_)), retract(key(REL,_)), fail.
purge(REL) :- retract(fd(REL,_,_)) , fail.

purge(REL) :- retract(in3nf(REL)) , fail.

purge(REL) :- retract(inbcnf(REL)) , fail.

purge(REL).

/* Decomposition into BCNF */

/* */
2 TSOU & FISCHER 'S ALGORITHM. . ...t teevesnesccssec¥®/
’ e */

makebcnf(REL) :- nl,nl,
write(" Applying TSOU & FISCHER 'S ALGORITHM for conversion"),
write(" of " ,REL," into BENF"),nl,
Wwrite(" «-<----- T EESEZEEZSSSZISCTSSSEZSTTITISSI=TE eee ececaem-eea "y,
write(" -- ce-s s==¥y,nl,nl,nt,
bcnf(REL), printdecomp(REL).

bcnf(REL) :- schema(REL,S),
choice5(REL,S,DECOMP),
nt, nl, write(® * decomposition completed"), nl,nl,nl, AL,
createnewrels(REL, DECOMP, 0).

choice5(REL,S,DECOMP) :- equal(s,[_,_1), ], equal2(DECOMP, (S]),
write(" Relation ", REL," already in'BCNF"),
nl,nl,write("retation decomposed : "),
Wwrite(s),nt.

choice5(REL,S,DECOMP) :- not(equal(s,[_,_1)),!,
becnf2(REL,S,[],DECOMP).
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bcan(REL,X,Y,bECOMP) :- equal(X,(_,_1), t, append2(Y, [X],DECOMP),
writé("relation decomposed : "),
write(X),nl.

bcnf2(REL,X,Y,DECOMP) :- not (check(REL,X)),
append2([X1,Y,DECOMP),
write("relation decomposed : "),
write(X), nt.

becnf2(REL,X,Y,DECOMP) :- reducel(REL,X,FINAL_Y,FINAL_A),
minus1(NEWX,X,FINAL_A),
append2( (FINAL_Y],Y NEWY), !,
write("relation decomposed ¢ "),
write(FINAL_Y), nlL,
benf2(REL,NEWX ,NEWY,DECOMP).

check(REL,X) :- elem{(A,X), elem(B,X), rot (A=B),
minus(TESTSET,X, [A,B]),
clbsure(REL,TESTSET,CLO), elem(A,CLO).

reducel (REL,X,FINAL_Y,FINAL_A) :-
. elem(A,X), elem(B,X), not (A=B),
minus(TESTSET,X, [A,B]),
closure(REL,TESTSET,CLO), elem(A,CLO),
minus1(NEW_X,X,B), !,
reduce2(REL,NEW_X,A,FINAL_Y,FINAL_A).

reduce2(REL,X,PREVIOUS_A,FINAL_Y,FINAL_A) :-
elem(A,X), elem(B,X), not (A=8B),
minus(TESTSET,X, {A,B]1),
closure(REL,TESTSET,CLO), elem(A,CLO),
minusT(NEW_X,X,B), 1,
reduce2(REL,NEW_X,A,FINAL_Y, FINAL_A).

reduce2(REL,X,PREVIOUS_A,FINAL_Y,FINAL_A) :-
: FINAL_Y = X, FINAL_A = PREVIOUS_A.

createnewrels(REL,DECOMP,NR) :-
NEWNR = NR + 1, listelem(SCHEMA,DECOMP),
makebcnfname(REL,NEWNR,NEWREL),
assertdecomp(REL,NEWREL),
assertz(schema(NEWREL,SCHEMA)),
assertz(inbcnf(NEWREL)),
addknownkeys(REL ,NEWREL),
Listminus1(NEWDEC ,GECOMP,SCHEMA),
L,
createnewrels(REL,NEWDEC,NEWNR).

createnewrels(REL,DECOMP,NR) :- :
decomp(FREL ,REL),
retract(decomp(FREL,REL)).

createnewrels(REL,DECOMP,NR).
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makebcnfname(REL,NR,NEWREL) :- appendchar(REL,'_',NREL),
SUFFIX = NR + 48,
char_int(A,SUFFIX),
appendchar(NREL,A,NEWREL).

addknownkeys(REL,NEWREL) :- fd(REL,LHS,RHS), schema(NEWREL,S),
' subset(LHS,S), subset(RHS,S),
‘assertz{(key(NEWREL,LHS)), fail.
addknownkeys(REL,NEWREL).

assertdecomp(REL,NEWREL) :- decomp(OLDREL,REL),
assertz(decomp(OLDREL,NEWREL)),
assertz(decomp(REL,NEWREL)).

assertdecomp(REL,NEWREL) :- assertz(decomp(REL,NEWREL)).

/* printing a decomposition */

printdecomp(REL) :- decohp(REL,REL1), printrelation(REL1), fail.
printdecomp(REL) :- not (decomp(REL,_)), printrelation(REL).
printdecomp(REL).

printrelation(REL) :- schema(REL,S),
write("Relation : "), write(REL," "), write(S),
choice8(REL), nl,nt,
choice9(REL),
printallkeys(REL), nl, nl,
choicelO(REL), nl.

choiceB(REL) :- indnf(REL), !, write("™ in 4NF "),
choice8(REL) - inbcnf(REL), ', write(" in BCNF "),
choice8(REL) :- in3nf(REL) , I, write(" in 3NF u),
choice8(REL).

ae

choice9(REL) - indnf(REL), write(¥® KEYL: w), .
choice9(REL) :- write(" Some KEYS : "),

choicel0CRELY :- fd(REL,_,_),
write{("Functional depéendencies :"),
. nl, printallfds(REL),!.
choicelO(REL).

printallkeys(REL) :- allkey(REL), write(" an all-key relation%), 1.

printallkeys(REL) :- key(REL,K), write(" "), write(K), fail.
printallkeys(REL).
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printal lfds(REL) :- fd(REL,LHS,RHS), write(" "),
. write(LHS), write(" --> #),
write(RHS), nl, fail.
printallfds(REL).

/* Writing a given relation */

writegivenrelation(REL) :- nl,nl,nl, schema(REL,S),

' write(" The given relation is : "),nl,nl,nl,
Write(" “,REL," : ",s8),nl,nl,nt,
write(" F :"),nl,nl, writeallfds(REL),
nt,nt,nl,
mvd(REL,_,_), write(" M :%), nl,nl,
writealimvds(REL),nl,nl,nl.

writegivenrelation(REL).

writeallfds(REL) :- fd(REL,L,R), write(" LU L ", RY, nl, fail.
writeall fds(REL).

writeallmvds(REL) :- mvd(REL,L,R), assert(mvdtemp(REL,L,R)),
not (store(l)), assert(store(L)), fail.

writeallmvds(REL) :- store(L), write(" w,L," : "y, .
writeallrhs(REL,L), retract(store(L)),nl,
fail.

)), fail.

writeallmvds(REL) :- retract(mvdtemp(REL,_,
writealimvds(REL). ) ’

writeallrhs(REL,L)

mvdtemp(REL,L,R1), mvdtemp(REL,L,R2),
not(equal(R1,R2)),write(R1,* | w),
retract(mvdtemp(REL,L,R1)),fail.

- mvdtemp(REL,L,R), write(R),
retract(mvdtemp(REL,L,R)).

writeallrhs(REL,L)

/* Decomposition into 4NF */

make4nf(REL) :- nl,nl,
write(" Applying TANAKA 'S ALGORITHM for conversion"),
write(" of- ¥ REL," . into &4NFY"),nl,
write(¥ -------- TE=ZT=ZISTTETTIXSSSTTS=Z - - - --~----;--'l)"
write(" -- s--- --=-"y nl,ntl,nl,
fm3(REL), remextra(REL),
f3a(REL), remextras(REL), writefdash(REL),
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mdash(REL), writemdash(REL),
m7(REL), clean(REL),

m3(REL), clean(REL),

cleanup(GREL), putspecialmdfs(REL),
writemdoubledash(REL),
make4nfrels(REL), minimize(REL),
printdecomp(REL). '

common(I,L1,L2) :- minus(A,L1,L2), minuS(I,L1,A).

fm3(REL) :- fd(REL,L1,R1), mvd(REL,L2,R2),
getw(REL,L2,R2,W), subset(L1,W),
common(A1,R2,L1), common(B1,R2,R1),
not(equalt(B1,[1)),union(U,L2,A1,REL),
not(fd(REL,U,B1)),
not(check1(REL,U,B1)), :
“not(check2(REL,U,B1)),
not(check3(REL,U,B81)),
assertz(fd(REL,U,B1)),
fail,

fm3(_).

getw(REL,L,R,W) :- mvd(REL,L,R1), not (equal(R,R1)),
union(U,R,R1,REL), union(W,L,U,REL).

check1(REL,U,B1). :- subset(B1,U).
check2(REL,U,B1) :- fd(REL,U,R), subset(B1,R).

check3(REL,U,B1) :- fd(REL,L,R), not(equal(L,U)),subset}L,U),
i subset(B1,R).

remextral(REL) :- fd(REL,L,R), subset(R,L), retract(fd(REL,L,Ri), fail.
remextral(REL) :- fd(REL,L1,R1), fd(REL,L1,R2),not(equal(R1,R2)),
subset(R1,R2), retract(fd(REL,L1,R1)),fail.

remextral(REL) :- fd(REL,L1,R1), fd(REL,L2,R2), not(equal(L1,L2)),
subset(L1,L2), subset(R2,R1), retract(fd(REL,L2,R2)),
fail.

remextra(REL) :- remextral(REL).

remextra(REL) :+ fd(REL,L1,R1), fd(REL,L1,R2),not(equal(R1,R2)),
union(U,R1,R2,REL), C
retract(fd(REL,LT,R1)),retract(fd(REL,L1,R2)),
assertz(fd(REL,LT,U)),
fail.
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remextra(REL) :- fd(REL,L1,R1); fd(REL,L2,R2), not(equal(L1,L2)),
: subset(L1,L2), union(U,R1,R2,REL),

not(fd(REL,L2,U)), assertz(fd(REL,L2,U)),
fail. :

remextra(REL) :- remextral(REL).

remextra(REL).

getasubset(A,[_|TBl) :- getasubset(A,TB).
getasubset([H|TA],[H|TB1) :- !, getasubset(TA,TB).
getasubset(([1,_) :- |. '

f3a(REL) :- fd(REL,A,B), fd(REL,C,D), subset(C,B),
union(U,B,D,REL), not(fd(REL,A,U)),
assertz(fd(REL,A,U)), fail.

f3a(_). '

putspeciaimdfs(REL) H schéma(REL,S), mvd(REL,L,_),
not(fd(REL,L,_)),
not (check8(REL,L)),
not (check9(REL,L)),
getcontext(REL,L,CONT),
equal (CONT,S),
not(mdf(REL,L,L)),
assertz(mdf(REL,L,L)),
assertmdms (REL,L),
fail. '

putspecialmdfs(REL).

check8(REL,L) :- fd(REL,L1,_ ), subset(L,L1).

check9(REL,L) :- mvd(REL,L1,R), not(equal(L,L1)),
subset(L1,L).

assertmdms(REL,L) :- mvd(REL,L,R), not(mdm(REL,L,R)),
. assgrt(mdm(REL,L,R)), fail.
assertmdms (REL,L).

getcontext(REL,L,CONT) :- mvd(REL,L,R), assert(mvdtemp(REL,L,R)), fail.
getcontext(REL,L,CONT) :- getcontext2(REL,L,L,CONT).

getcontext2(REL,L,P,CONT) :- mvdtemp(REL,L,R), union(U,P,R,REL),
retract(mvdtemp(REL,L,R)),
!, getcontext2(REL,L,U,CONT).
getcontext2(REL,L,P,CONT) :- CONT = P.
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¥ i e Calculating M ' from F ' ............ */

mdash(REL) :- mvd(REL,L,R), getasubset(L1,L),fd(REL,L1,R1),
subset(L,R1),minus(M,L,L1),not(equal(M, (1)),
assertz(mdf(REL,L1,M)), rtside(REL,L,L1),
fail.

mdash(REL) :- fd(REL,L,R), mvd(REL,L,R1), union(U,L,R,REL),
minus(M,R1,U), not(checkS(REL,L,M)),
assertz(mdm(REL,L,M)), ‘
fail.

mdash(REL) :- rememb(REL,F), retract(mdm(REL,L,_)), fail.

mdash(REL) :- fd(REL,L,R), schema(REL,S),

S not(check4(REL,L,R)),
assertz(mdf(REL,L,R)), _
union(U,L,R,REL), minus(M,S,U),
assertz(mdm(REL,L,M)),
fail.

mdash(REL) :- mdm(REL,L,R1), mdm(REL,L,R2), mdm(REL,L,R3),
‘not(equal(R1,R2)), not(equal(R2,R3)),
not(equal(R1,R3)), union(U,R2,R3,REL),
equal(U,R1), retract(mdm(REL,L,R1)),
fail.

mdash(REL) :- mdf(REL,L,R), minus(M,R,L), not(equal(M,R)),
rétract(mdf(REL,L,R)), assertz(mdf(REL,L,M)),
fail.

mdash(_).

"

check4(REL,L,R) :- fd(REL,X,Y),.choice12(L,R,X,Y),
: union(U,L,R,REL), union(UX,X,Y,REL),
subset(U,UX), subset(X,L).
choicel12(L,R,X,Y) :- not(equal(L,X)).

choicel2(L,R,X,Y) :- not(equal(R,Y)).
check5(REL,L,M) :- equal(M,[}), assert{rememb(REL,L)).

rtside(REL,L,L1) :- mvd(REL,L,R), fd(REL,L1,R1), common(C,R,R1),
mdf(REL,L1,M), union(M1,M,C,REL),
minus(N,R,C), assertz(mdm(REL,LT1,N)), fail.
rtside(REL,L,LT1).
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writefdash(REL) :- nl,nl,write(" The set F' is found to be :"),
nt,nt,fail.

writefdash(REL) :- fd(REL,L,R), write(" “w,L," : ",R), nl, fail.

writefdash(REL).

writemdash(REL) :- nl,nl,write(" The set M!® is found to be :"),
nl,nl,fail.
writemdash(REL) :- mdf(REL,L,R),
) write(" ",L," ': |*|",R,_"I*"),
writemdash2(REL,L),nl, fail.
writemdash(REL).

writemdash2(REL,L) :- mdm(REL,L,R1), write("}] " RT,» w), fail.
‘writemdash2(REL,L). : ’

writemdoubledash(REL) :- nt,nl,write(" The set M\" is found to be :"),
nt,nl,fail.

writemdoubledash(REL) :- mdf(REL,L,R),
write(" woL,m o I*lu,g'ultu)'“
writemdash2(REL,L),nl, fail.

writemdoubledash(REL) :- nl,nl,nl.

/* i e e Calculating M" from M' ............. */

getw2(REL,L,R,W) :- check6(REL,L,R,R1),
union(U,R,R1,REL), union(W,L,U,REL),!.

getw2(REL,L,R,W) :- union(W,L,R,REL),!.

check6(REL,L,R,RT) :- mdm(REL,L,R1),
: common(C,R,R1), equal(C,(1).

getallcontexts(REL) :- mdm(REL,L,R), getw2(REL,L,R,¥W),
not(context(REL,L,R,W)),
assertz(context(REL,L,R,¥W)),
. fail.
getallcontexts(REL) :- context(REL,L,R,W), mdf(REL,L,R1),
union(U,W,R1,REL), retract(context(REL,L,R,W)),
assertal(context(REL,L,R,U)),fail.

getallcontexts(REL).

m7(REL) :~- getallqontexts(REL), fail. -

m7(REL) :- mdm(REL,X,Y),assertz(mdmtemp(REL,X,Y)), fail.
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m7(REL) :-

m7(REL).

mdm(REL,X,Y),
mdmtemp(REL,X,Y),
retract(mdmtemp(REL,X,Y)),

Amdmtemp(REL,U,V);
~not(equal(Xx,U)),

common(D,Y,V), not(equal(D, (1)),
context(REL,X,Y,2),context(REL,U,V, W),
subset(X,W), subset(U,2),

minus(A,Y,W¥W), minus(B,2Z,A),
common(C1,Y,U),union(U1,X,C1,REL),
common(C2,V,X),union(U2,U,C2,REL),
not(mdm(REL,U1,D)),not(mvd2(REL,U1,D)),
assertz(mvd2(REL,U1,D)),assertz(mdm(REL,U1,D)),
not(mdm(REL,U2,D)),not{mvd2(REL,U2,D)),
assertz(mvdZ(REL,UZ,D)),assertz(mdm(REL,UZ,D)),
not(mdmtemp(REL,U1,D)),not(mdmtemp(REL,U2,D)),
assertz(mdmtemp(REL,U1,D)),assertz{mdmtemp(REL,U2,D)),
choicel5(REL,U1,U2,X,U,D,Z,W), ‘
fail.

choicet5¢(REL,UT,U2,X,U,D,2,W) :-

equal (X,U1),not(context(REL,U1,D,2)),
assertz(context(REL,U1,D0,2)),fail.

choice15(REL,UT,U2,X,U,D,Z,¥W) :-

equal(U,U2),not(context(REL,u2,D0,%¥)),
a;sertz(context(REL,UZ,D,H)),fail.

choicel15(REL,UT,U2,X,U,D,2,W).

clean(REL)

clean(REL)

clean(REL)

clean(_).

cleani(REL)

:- cleani(REL), fail.

:- mdm(REL,L,R), mdm(REL,L1,R), not(equél(L,L])),
subset(L,L1), retract(mdm(REL,L1,R)),
retract(mvd2(REL,LT1,R)),fail.

:- mdm(REL,L,R), mdm(REL,L,R1),
not(equal(8,§1)),
subset(R,R1), minus(M,R1,R),
retract(mdm(REL,L,R1)),
not(mdm(REL,L ,M)),assertz(mdm(REL,L,M)),
fail.

:- mdm(REL,L,R), retr2(REL,L,R),
not(mdm(REL,L,R)),asserta(mdm(REL,L,R)),fail.
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clean1(REL) :- mvd2(REL,L,R), retr3(REL,L,R),
not(mvd2(REL,L,R)),asserta(mvd2(REL,L,R)), fail.

clean1(_).

retr2(REL,L,R) :- retract(mdm(REL,L,R)), !,

retr3(REL,L,R) :- retract(mvd2(REL,L,R)),!.

m3(REL) :- mdm(REL,L,R), context(REL,L,R,C),
mvd2(REL,X,Y),
subset(X,R),subset(Y,R), minus(M,R,Y), not(equal(Y, (1)),
assertz(mdm(REL,L,Y)), ’
assertz(mdm(REL,L,M)),
fail.

m3(_).

cleanup1(REL) :- mdm(REL,L,R), not(mdf(REL,L,_)),
. retract(mdm(REL,L,R)), fail.
cleanup1(REL).

cleanup(REL) :- cleanup1(REL), fail.
cleanup(REL) :- retract(rememb(_,_)), fail.
cleanup(REL) :- retract(cohtext(_,_,_,_)), fail.

cleanup(REL) :- retract(mvd2(_,_,_)), fail.
cleanup(REL). .
I* e making decomposed relations from M" . ............ */

make4nfrels(REL) :- appendchar(REL,'_', NEWREL),
’ schema(REL,S), assert(schema(NEWREL,S)),

makednfrels1(REL,NEWREL), fail.

make4nfrels(REL) :- decomp(REL,REL1), not(inénf(REL1)),
assert(in4dnf(REL1)), assert(allkey(REL1)),
fail.

make4nfrels(REL).

make4nfrels1(REL,REL1) :- getlowest1(REL,RELT,L), !,

not(equal(L,[))),use(REL,REL1,L,1).

make4énfrels1(REL,REL1).

93



use(REL,REL1,L, N) -
mdf(REL,L,R), schema(REL1,S), common(C,R,S),
not(equél(c,[])),union(U,C,L,REL),
makename(REL1,N,REL2),assertz(schema(REL2,U)),
assertz(decomp(REL,REL2)),
M=N+1,retract(mdf(REL,L,R)),
assert(in4nf(REL2)),assert(key(REL2,L)),
usel(REL,RELT1,L,M).

usel(REL,RELT1,L,N) :-
mdm(REL,L,R), schema(REL1,S), common(C,R,S),
not(equal(C, {))),union(u,C,L,REL),
makename(REL1,N,REL2),assertz(schema(RELZ2, U)),
assertz(decomp(REL,REL2)),
assertz(decomp(REL1,REL2)),
M=N+1,retract(mdm(REL,L,R)),
use1(REL,REL1,L,M),fail.

usel(REL,REL1,L,N) :- decomp(REL1,REL2),
not{in4énf(REL2)),
makeé4énfrels1(REL,REL2),
retract(decomp(REL,REL2)),
retract(decomp(REL1,REL2)),
fail.

usel(REL,REL1,L,N).

getlowest1(REL,RELT,L1) :- getlowest(REL,REL1,L1), reloadmdfs(REL).
getlowest1(REL,RELT,L1) :- equal(L1,[]),Qeloadmdfs(REL).

getlowest(REL,REL1,L1) t- enough(REL),
' getlowest2(REL,REL1,L1),
reloadmdfs(REL), !.

getlowest(REL,REL1,L1) :- reloadmdfs(REL),
enough(REL),
equal(L1,(]),
assert(in4nf(REL1)), assert(allkey(REL1)).

getlowest(REL,REL1,L1) :- reloadmdfs(REL),
not(enough(REL)),
mdf(REL,L,R), schema(REL1,S1),
subset(L,S1), L1=L,

getlowest(REL,REL1,L1) :- equal(L1,I[]), )
assert(in4nf(REL1)), assert(allkey(REL1)).

enough(REL) :- mdf(REL,L,R), mdf (REL,X,Y), not(equal(L,X)), !.

getlowest2(REL,RELT,L1) :- mdf(REL,L,R),
not(check7(REL,L,R)),
schema(REL1,S$1),
choicel6(REL,RELT,L,S1,L1).
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choice16(REL,RELT,L,S1,L1) - subset(L,S1), Li=L.

choicet6(REL,RELT,L,S1,L1) :- not(subset(L,S1)),

retract(mdf(REL,L,R)),
choicel17(REL,REL1,L,R,L1).

choicel7(REL,RELY,L,R,L1) :- not(remembmdf(REL,L,R)),

assert(remembmdf(REL,L,R)),
ge;louestZ(REL,REL1,L1).

choi¢e17(REL,REL1,L,R,L1) :- getlowest2(REL,RELT,L1).

check7(REL,L,R) :- mdf(REL,X,Y), not(equal(L,X)), subset(Y,R).

reloadmdfs(REL) :- remembmdf(REL,L,R), retract(remembmdf(REL,L,R)),

reloadmdfs(REL).

g1

gl

g3

gé

assert(mdf(REL,L,R)), fail.

- assert(schema(ri,[r,n,s,m,mn,fnl)),

assert(fd(rt,[r],I[Nn])),
assert(fd(r1,[nl,(rl)),
assert(fd(r1,({n]l,(mnl)),
assert(fd(r1,I[n},[fn)),
assert(fd(rt,[n,sl,[ml)),
assert(fd(r1,[fn]l,[(mn))),

assert(fd(r1,{mnl,(fnl)).

assert(schema(r2,[a,b,c,d,e, fl1)),
assert(fd(r2,ta,bl,tcl)),
assert(fd(r2,{cl,[al)),
assert(fd(r2, (d]l, [el)),
assert(fd(EZ,[d,e],[f])),
assert(fd(r2, [e], [d])),
assert(fd(r2,lel,[f1)).

assert(schema(r3,{a,b,c,d,el)),
assert(fd(r3,[a,bl, [cl)),
assert(fd(r3, [d]l,(b,el)),
assert(mvd(r3,(bl, [a,cl)),
assert(mvd(r3,[bl,(d,el)).

assert(schema(ré4,({a,b,c,d,el)),
assert(fd(ré4,(bl,[c])),
assert(mvd(ré4,[a,b), [c,d])),
assert(mvd(ré,[a,bl, [el)).
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g5 :- assert(schema(r5,[a,b,c,dl)),
assert(mvd(r5,la,bl,{cl)),
assert(mvd(rS5, ta,bl, [d])),
assert(mvd(r5,[al,[bl)),
assert(mvd(r5,tal,{cl)),
assert(mvd(r5,(al),[d])). N

‘g6 :- assert(schema(ré6,(a,b,c,d,e,f,g,h,i,j,k,t,m,n,0,p,ql)),
assert(fd(ré,[gl,[d, k,l,m])),
assert(fd(ré6,la,cl,lo,p,ql)),
assert(fd(ré,(h),ta,b,nl)),
assert({mvd(ré, ta,bl,lc,d,e, f, k,l,m))),
assert(mvd(ré6,[a,b),lg,h,i,j,n,o0,p,q1)),
assert(mvd(ré6,[cl,la,e,l,m))), .
assert(mvd(ré, [c],[b,f,0,pl)),
assert(mvd(ré, [(d]l,la,h,l])),
assert(mvd(ré,[dl,[b,i,j,m,n,0,pl)),
assert(mvd(ré6,[(f},la,b,gl)),
assert(mvd(ré6,Lf),h,i,j,lL,m]l)),
assert(mvd(ré,[c,hl,(a,d]l)),
assert(mvd(ré,[c,h],[b,e,f])),
assert(mvd(ré, [k}, I(l,m]))), '
assert(mvd(ré, (kl,la,b,p,q1)),
assert(mvd(ré,Ll],[p,q])),
assert(mvd(ré,I[l], {cl)),
assert{mvd(ré6,[m),[n,01)),
assert(mvd(ré,Iml}lcl)).

goall :- g1,
openwrite(resfile,"result.dat®),
writedevice(resfile),
writegivenrelation(rl),.
make3nf(rt),
flush(resfile).

goalla :- g1,
openappend(resfile,"result.dat"),
writedevice(resfile), '
makebenf(rt),
flush(resfile).

goal2 :- g2,
openappend(resfile,"result.dat"),
writedevice(resfile),
writegivenrelation(r2),
make3nf(r2),
flush(resfile).

goalda :- g2,
openappend(resfile,"result.dat"),
writedevice(resfile),
makebcnf(r2),
flush(resfile).
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goall :

goals

goal5

goalé

" 93,

openappend(resfile,"result.dat"),
writedevice(resfite),
writegivenrelation(r3),
make4nf(r3),

flush(resfile).

94,
openappend(resfile,"result.dat"),
writedevice(resfile),
Wwritegivenrelation(ré),
make4nf(ré),

flush(resfile).

g5, .
openappend(resfile,"result.dat"),
writedevice(resfile),
writegivenrelation(r5),
makeLnf(rS),

flush(resfile).

96,
openappend(resfile,result.dat"),
writedevice(resfile),
writegivenrelation(ré),
make4dnf(ré),

flush(resfile).
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APPENDIX - II

EXAMPLE - 1

The given relation is :

r1 .: tllrll’llnll’IIsII'llmll‘llmnu'"fnll]

("rv3 :  [("n¥)
["n*1 = ["r"}
[llnlI] H [Ilmnll]
{("n"1 = ["fn*)
[llnll,"sll] : ["mll]
[Ilfnllj H [llmnll]
[Ilmnll] : [ll.fnll]

Applying BERNSTEIN'S ALGORITHM for conversion of r1 into 3NF

Elimination of extraneus atributes from the cover of r1 :
* all extraneous attributes eliminated

Step 2

Elimination of redundant FDs from the cover of r1 :
redundant fd [ﬁn"] --> ["mn") eliminated

* all redundant fds eliminated
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Step 3

Partitioning of the cover

Group formed, based
Group formed, based
Group formed, based
Group formed, based
Group formed, based

on
on
on
on
on

Lhs
ths
Lhs
Lhs
Lhs

of r1 into groups with identical LHSs

H [llmnll]

: [Ilfnll].

- [“n","s"]

¢ ["n")
[llrlI]

* partition into groups completed

Step 4

Merging groups with equivalent keys

Equivalent keys discovered

Equivalent keys discovered

["r"] <-=> ["n"]
[Ilfnll] <=-=> [Ilmnll]

* all equivalent keys are discovered
and the groups are merged

The groups after merging are
Group : [(["fn"],("mn"])
Group : [["r"],["n"])]
Group : [[“n","s"]]

Step 5

Elimination of transitive dependencies
* transitive dependencies eliminated

Now finally the groups are
group : [["fn"], ["mn"]]
group : [["r"],([("n"]]

group : [[("n",

Step 6

Construction of relations

"S"]J
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Relation

Some KEYS

Relation

Some KEYS‘:

Relation

Some KEYS :

Applying TSOU & FISCHER

relation
relation
relatisn
relation
relation

r1_a

["mn","fn"] in 3NF
[Ilfnll] [llmnll]

r1_b ["r",%n%, "fnu] in 3NF
[llrll] [Ilnll]

ri_c [wnu, ngw npu) in 3NF

[lln"'

decomposed
decompgsed
decomposed
decomposed
decomposed

Hgn)

'S ALGORITHM for conversion of

[ilrll'nn“]
[llnll’llsn' nmll]
["mn"'"fn"]

s ["n",vfpY)
[unn"usu]

* decomposition completed

Relation r1_1 ["n","fn"} in BCNF
Some KEYS ["n"]

Relation r1_2 [(“mn","fn"] in BCNF
Some KEYS : ("fn"l ("mn"]

Relation

Some KEYS

r1.-3 [Ilnll’"s"'llm"] in BCNF

[llnll’ Ilsll]>

Relation r1_4 ["r",%"n"] in BCNF
Some KEYS ("r®*] ("n")
Relation r1_5 ["n","s"] in BCNF

Some KEYS
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EXAMPLE - 2

The given relation is

r2 H [llalllllbll'"clllIldlllllell'llfll]

[llall’llbll] . H ‘[llc"]
("e"l : ["a")
[lld‘l] H [IIeII]
[lld"'lle"] ] [llfll]
[IIeII] H [l!dll]
[llell] : [IIfII]

Applying BERNSTEIN'S ALGORITHM for conversion of r2 into 3NF

Step 1

Elimination of extraneus atributes from the cover of r2

"Extraneous attributes found in.the dependency [vdn, men] --> ["fr]
The new left hand side = [Ye"]

* all extraneous attributes eliminated

Step 2

Elimination of redundant FDs from the cover of r2 :
redundant fd ["e"] --> ["f"] eliminated

* all redundant fds eliminated
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Step 3

Partitioning of the cover of r2 into groups with

Group formed,‘based on lhs : ("e"]
Gréup formed, based on lhs : ["d"]
Group formed, based on lhs [“c"]
Group formed, based on Lhs : ["a¥%,"b"]

.

* partition into groups completed

Step 4

Merging groups with equivalént keys
Equivalent keys discovered : ["d"] <--> [Y“el]

* all equivalent keys are discovered
and the groups are mérged
The groups after merging are
Group : [["d"]l, ["e%]] -
Group : [[lla“’llbll]]
Group : [["c"]]

Step 5

Elimination of transitive dependencies :
* transitive dependencies eliminated

Now finally the groups are :
group H [[Ildll]'[lle"]]

group : [[Ilalllltbllll
group : [["e"]]

Step 6

Construction of relations
Relation : r2_a ["d",%e","f"] in 3NF

Some KEYS : (nd"] (ve"}
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Relation r2_b ["a","b","c"] in 3NF
Some KEYS [Ya", "b"]
Relation r2_c ["a","c"] in 3NF

Some KEYS : [ I

Applying TSOU & FISCHER 'S ALGORITHM for conversion of

relation

decomposed

["al!,llc“]

relation decomposed ["d", ve"]
relation decomposed [Me" Wfnr]
relation decomposed [("b","c","e"]

* decomposition completed

Relation : r2_1 ["b","c","e"] in BCNF

Some KEYS

Relation r2_2 ([“e","f"] in BCNF

Some KEYS (e}
Relation r2_3 (»d","e") in BCNF
Some KEYS [*d") ["e"]’
Relation r2_4 ([("a","c"] in BCNF
Some KEYS ["c¥]
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EXAMPLE - 3

The given relation is

r3 H [llall,Ilb"'llc"'lldll'lleil]

["8","b"] H {nen]
[vd+) : [llbll'lleII]

-

[llbll] : [Olall'llcll] , [lldl',llell]

Applying TANAKA 'S ALGORITHM for conversion of r3 into 4NF

c et e s ees EEEETSEEZISESTSTSSSSDSE ece ac e e amee e - - - s e *ne

The set F! is found to be :
[van,ubn] : [ven)

[udn] : [ubu'ueu]

The set M! is found to be
tllall’llbll] . ltl[llcuilltl [l!dlllllell]
[vdny l*l["b","e"]]*] [u’au'uCu]

The set MY is found to be

["a",vb"] : '*I[uclljltl [Ildn,nen]_
(ndn] I*I[ub‘u'neullv:I [("a","c")

Relation : r3__a ["a","b",%c"] in 4NF

KEY H [Ilalllllbll]
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Relation : r3__b_a ["b", nd", "e"] in 4NF

KEY : [vd"]

Relation : r3__b_b ["a","d"] in 4NF

KEY : an all-key relation

EXAMPLE - 4

The given relation is :

r4 : [llall,llbll'llclllIldll,!lell]

[IlblI] H _[llc"]

[Ila“'llbll] : [IIcII’IIdII] I [llell]

Applyihg TANAKA 'S ALGORITHM for conversion of r& into &4NF

e e e e e EEESEECEENSISSZTSNSSESZ O ~me- e e emeoae= = - - e e e eea-

‘The set F! is found to be

[llb"] : (Ilc"]

The set M! is found to be

["bvwy Itl[uculltl [Hanw, nudw, en)
The set M" is found to be :

{("b"] I*'[“C"]I"' ["8","d","e"]

[#a",wpn] I*I[uau’ubul_ltl [#cw , ndny I [("e")
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The decomposed relation r4__b_a is eliminated

Relation : ré4__a ["b","c"] in 4NF

KEY : ["b"]

Relation : ré4__b_b ["a","b","d"] in 4NF

KEY : ~an all-key relation

Relation : ré4__b_c (["a","b","e"] in 4NF

KEY : an all-key relation
EXAMPLE - 5
goal goal5s
The given relation is :
rs H [llall,llbl'l'llcllllldll]
F
M
[Ilall,llbll] ] [llc’ll] I [Ildll]

[wan) . [*b") I ["b"] I [wen} | (ndvj

Applying TANAKA 'S ALGORITHM for conversion of rsS into 4NF

The set F? is found to be

The set M! is found to be
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The set

[llall]

The decomposed relation r5__a

Relation

KEY :

Relation

KEY

Relation r5__d ["a","d"] in 4NF
KEY an all-key relation
EXAMPLE - 6

goal goalé

The given relation is :

r6 ["a“,"b","C","d","e'i,"f","g","h","i","j",“k","l","m","n","o","p",

F
[*g") [udu'||k||'||l||"‘||m||]
[Ila""lcll] [lloll'llp"'llqll].
["hv) [nau'ubu'unu]

M
[llall,llbll] ["cll,lldlllllell'llfl|'llkllllllll'llmll] ,

[IIgII,IIhIl'II"II’Ilj“,llnll‘l llo""lpll'llq"]

[llcll] [Ilall’llellll’lll'llm"] I ["b"'Ilfllllloll'llpll]
[lldll] [llall,"h"'"l“] ' [llbll’"i"'lljll’llm"lllnllllloﬂlllp"]
[llf"] [l'a'llllblllllg|l] I [llhll’llilll"jll'lllll'llmll]
["cll'llhll] . [IIall'lld"] I [Ilbll,llell,llf'l]
[Ilkll] [Illlllllmll] I [ll'all,llbll,'lpll'liqll]
[n(m) [wp%,nq") I {neny .
[llmlI] [llnllllloII] I [llcll]

Mu is found to be

I*l[]'aull*l fupnj |

r5__b ["a","b"] in 4NF

an all-key relation

rS__c ["a","c"] in 4NF

an all-key relation
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Applying TANAKA 'S ALGORITHM for conversion o ré into 4NF
“se-ceer mSISESSSRSSEIISSTSIREHE e semecneone - - a st -r e
The set is found to be
[wim) t"p"]
tvmn] ("o")
{vdv) [vbn, vpn npnj
[wen] . [Han uwln npn now spnj
[ma", "d") [u'bn'uln'jlnn'upu]
[rbn, nduy . ["bu, umn pu ugH upuj
[vnan, uch) [ran, wlu wpu nge wpn ugnj
{%h") . [nan, nbn, ndu, uke v, npu wpu ngn
[Hfn] [Mal,wbn, udu tku w|w ngu wpn wgn
[wk"} [nlw,omn vwou nupej
[("a","b"] ['ib","d","k“,"l","m","n","o"
trg"] {nbv, udn, ngn, w0 upe Hpn wgn dpae
The set is found to be
[niny ,t,'[upnlltl [lqu.I] l [ehy I
[uau'nbu'u-cn'udu’ueu'nfulugu,uhn'u.
["m") |*I[u°u]|*| [.nnu] I IE-A | I
[Ha%, nbn nen ngn nen Hfu ugn Hhu uj
[ndwy |*|["b","n"',"p"]l"] [uau'uhll’ulu]
[uau'ncu"uen'ufulngu'nhu‘ni e e s e m o 4
[ELD] |*~|["a","l"',"m","o"',“p"ll"I [ren] | [upn, ufuy] |
[ubu'ndu’ueu'ufu'ugu‘uhn'uiu'njﬁ'uknlunu’uqul
["a%, "d"] I"II"b","l","n","p"]|*|
[ucu'||e'u'n.fn'ugu'uhu,'u"u"uju’nku'umu'uou'uqu]
,["h"] |"|[“a","b","d","k","l.","m"',"n","o","p","q"]|*|
[wch, ven, nfu ugn uin njuy
[wfu] [*|["a","b","d","k",“l","m","n","o","p“,"q“]|*| trg")
[Whu,njn, nju) I [Mch, mel ngn Whu uwiw ujuj
["k") Iil[liln’nmuluoulupn]Itl
[wan, nbn ncw ndu uen wfu ugh Hhw WK wju wpn Hgu]
[ng"] |"|["b“,"d","k",“l“,"m“,"n“,“o“,“p"]I'I

[Ilbll,lldll]

[llalll

. [Ilall‘

Ilcll]

llbll]

[llall Ilell

,"e",
I*I [“m","n","o",“p"] Itl
[llalll 'llell'llfll’llg"'

. I*l ["l","m","o",“p","q"] Itl

llcll

llhll,

llill'

llj"

,"k“,

Ill‘ll

,Ilfll,llhll,llill,lljll’llqle]

,llqll]

["b",“d","e",“f",“g",“h“,"i","j","k","n"]

Iﬁ' ["d",“k","l","m","n“,"o“,"p",“q"] I*I
[ucu'neu,nfu] l
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The set
[Illll]
[Ilm“]

["dll]

(llcll]

["all’ Ildll]

[Ilh"]

[IIfll]

[“kll]

[llg"]

[Ilb"’lld"]
["a","C"]
[tlall’!lb"]

Relation

KEY

Relation

KEY

Relation

KEY

Relation

CKEY

Relation

KEY

Relation

KEY

MH is found to be :

Ie‘l [upn] Itl [nan’ubu'udu'ueu’ufu'lugu'uhu’uiu'ujulukn'umn’unuluonl

'*I [vo"] ltl

It I [nanr, uln, wmn, "o","p"] l*l
[vq"]
!t' ["b","l","n",“p"] Itl

* 11 " " n ” [} " " 1] n " " (1] H 1] n " 113 [1] 1] *
[*] tvan, wpn, ndu, mkn, nn, omn npn o wpn gy |*|

* gl Uhi N N N{H Wm0 opd » u‘ wpt Wk *
[*["a","b", nd", nku, i, vmo, "nt o, npn, ugh] ||
["h"} l [nin,

I*I[ulu'um||’u°||'upu]It‘ ["h"] l ["i","j"]
["g"] I ["e"] l ("q"l I [ueh)
I*l ["b“,"d“,"k","l","m","n","o","p"] It'
|*|["m“,"n","o","p"] It
ltl ["l","m","o","p","q"] lt
ltl [ndn,mkn, nn ngn wpe non wpi nge) 'ﬁ'
[Men, nen] ' {ugn]

ré__a ["L","p"] in 4NF
[Illll]

ré__c ["L","gq"] in 4NF

an all-key relation

ré__b_a ["m","o"] in 4NF

[!Imll]

ré6__b_c ["m","n"] in 4NF

an all-key relation

ré__b_b_a ["b","d"]l in 4NF

[lldll]

r6 b b b [lldll,“ell’Ilfll’llglllllkll] in 4"F

an all-key relation
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[vg"] '

[llhll]
["C“, Ilell]

[Ha® Upnu udu nen nfw ngw whH WiH WiN BERO U0 Npe igu)
I*I ["b", "nn, npH] I*I [ucu'neu'nfln'ugn'uku’nun
["a","h","l"] '
[udu'ngu'nhu'uin’ujn"uku'nnu] I
[me"] I
niu'ujn'nkn'llqu] l

' ["m"», 6 "o") I
[ilill,llju]

["b","f"]

[®hv)
[ren, ven ufu) l
[llillllljll]
[wg") l

wijuj l [nen ,vevn)

[nfn] l
["a","b","d","n"]
' [uiu'uju] l
I [llall'llfll’llqll]

[nwfn) I
[Hh) l

[uiu‘ujll]

[II
[II



Relation

KEY

Relation

KEY

Relation

KEY =

Relation

KEY

Relation

KEY

ré__b_b_c ["d","m"] in 4NF

an all-key relation

: ré—_b_b_e ["d“,"i“,"j"] in 4NF

an all-key relation

: r6__b_b_d_a ["a",ud","L%] in 4NF

[lla"llld“]

: r6__b_b_d_b ["a","d","h"] in 4NF

an all-key relation

ré__d_a ["c","{"])] in 4NF

["C"]
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