
NORMALIZATION IN RElATIONAL DATABASES :
AUTOMATIO-N-: UP TO FOURTH NORMAL

FORM USING PROLOG

THESIS SUBMITTED BY

SANDEEP GOEL

IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOH THE DEGREE OF

MASTER OF TECHNO~-QGY

IN

COM.PUTER SCIENQE

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

..JAWAHARLAL NEHRU UNIVERSITY

NEW DELH!

.JUNE 1990

/ .,
/ ;'1 !

L '"'. I; v -

CERTIFICATE

This is to certify that the thesis entitled 'Normalization

in Relational Databases : Automation up to Fourth Normal Form

using Prolog 1 , being submitted by me to Jawaharlal Nehru

University in the partial fulfilment of the requirements for the

award of the degree of M~ster of Technology, is a record of

original work done by me uhder the supervision of Dr. P. C.
•

Saxena, Associate Professor, School ot Computer and Systems

Sciences, Jawaharlal Nehru University, during the year 1989 -

90.

The results reported in this thesis have not been

submitted in pclrt or full to any oth~r University or Institute

for the award of any degree or diploma etc.

~.r. ~~· ·~
~ Prof. N. P. Muklierjee

·Dean,
School of Computer and
Systems Sciences,
J.N.U.
New Delhi.

SANDEEP GOEL

~iJ~~
Dr. P. c. Saxena
Associate Professor,
School of Computer and
Systems Sciences,
J.N.U.,
New Delhi.

ACKNOWLEi>GEM!:NTS

I express my sincere thanks to Dr. P. c. Saxena, Associate

Professor, School of Computer and Systems Sciences, Jawaharlal

Nehru University, New Delhi· for suggesting such brilliant

problem. I am indebted to him for his personal involvement

with my project and his immense and eloquent guidance which

has been indispensable in bringing about a successful fulfilment

of the project.

I am also grateful to Dr. Sqxena for providing me with

his invaluable notes and papers related with the topic and also

guiding me in my lookout for proper ref~rences.

I also want to express my thanks to my father

Dr. G. c. Gael, Reader, Department of Mathematics, University of

Delhi, for his constant encouragement and ~seful exchange of

ideas with me throughout my project work. I would like to take

the opportunity to thank my mother Smt. Sneh Lata also, for

providing the moral support that I needed during my research and

for taking good care of me in the hectic days of compilation of

this dissertation.

sandeep Gael

CONTENTS

Certificate

Acknowledgements

1

2

3

Introduction

1.1 Introduction

1.2 Normalization and Prolog

1.3 Organization of work

Relational Data bases and Normalization

2.1

2.2

2.3

2.4

inroduction

Data base models

Relational Data bases and
inconsistency problems

Normalization·

2. 4. 1 Functional Dependencies

2.4.2 J,NF

2.4.3 2NF

2. 4. 4 3~F

2. 4. 5 l3CNF

Further Nor~ali~atiqn

3.1 Introduction

3.2 Multivalued Dependencies

3.3 Fourth Normal Form (4NF)

1

1

1

2

4

6

6

7

9

13

13

16

17

19

21

25

25

30

4

5

Normalization Algorithms

4.1

4.2

4.3

4.4

Introduction

Synthesis and Decomposition
approaches

Bernsteinrs Algorithm for 3NF

Decomposition Algqrithms for
BCNF and 4NF .

The Prolog Program for automatic
Normalization up to 4NF

5.1 Introduction

5.2 The Program

5.2.1 Declarations

5.2.2 Utility clauses

5.2.3 Qlosure

5.2.4 Extraneous attributes

5.2.5 Redundant FDs

5.2.6 Bernstein's Algorithm

Tsou & Fischer 's Algorithm

5.2.8 Minimizing a decomposition

5.2.9 Tanaka •s Algorithm for 4NF

Appendix - I

Appendix - II

References

36

36

36

38

41

49

49

49

49

52

54

55

57

58

65

67

68

75 - 97

98 - 110

111 - 112

CHAPTER - .!

INTRODUCTION

1.1 INTRODUCTION

The database management systems (DBMSs) that emerged in

the early 1970s, have become an integral part of most business

corporations. The DBMS technology has grown enormously in the

two decades but despite its wide use arid its indispensable place

in big organizations, the art of database design

obscure to most of the users.

has remained

In fact, a lot of software is available in the ma~ket on

database manipulation ahd use but all of these packages require

human intelligence only for the initial ¢reation of the database.

It is the database designer who is supposed to go through the

requirements of the problem and then design the database

accordingly. The use of the software packages only starts after

that viz. in data entry, data retrieval; query processing etc.

Of all th~ database structures the relational database model is

by far most widely used and is most widely accepted as the

standard databa~e model. A lot of software packages on. the

relational database .are available in the market that are

invaluable to the DBMSs. But all of these packages have one

problem in com~on viz. they provide no assistance to the designer

in the initial stages of design of the database.

1

Thus despite tremendous developments in .the DBMS

technology, one very fundamental problem remains without a proper

and sure solution viz. given a body of data to be represented in

a database, how to decide on a suitable logical structure for

that data or in other words, how to decide what relations are .
needed and what their attributes should be ? This is the

database design problem which one faces as the firs~ hurdle in

installing a data base management system.

Attempt is made in this work to help the database designer

get rid of this basic database,...design problem by developing a

Prolog program that suggests to the designer a trouble free

(Normalized) logical structure to . th,e database. The only

information required by the program is the list of various

dependencies (functional as well as ~ulti-valued) tha~ exist in

the problem and which are not hard to be made out by the

designer who has gone though the database problem properly.

1.2 NORMALIZATION ANO PROLOG

Due to dependencies among various attributes of a

relation, any database structure suffers from certain problems if

not properly,designect. The problems that are most likely to occur

are update-anomalies and data inconsistencies. The first step

towards solving the design problem was the introduction to the

concept of Normal Forms. E. F. Codd was the pioneer in this

field as he originally defined the first, second and third

normal forms in 1971. Since then numerous normal forms have been

defined and it'has been proved that the fifth normal form is tqe

ultimate normal form as it removes all the inconsistency problems

with the relational structure.

Normalization procedure is one in which we start with some

given relation· together with the information about its various

constraints i.e. the dependencies among i~s attributes

(functional dependencies, multi-valued_dependencies and the join

dependencies), and then we systematically reduce that relation to

a collection of smaller relations that are together equivalent to

the original relation yet in some way preferable to it. In fact,

the new smaller relations are in a higher Normal Form than the

original relation and thus more preferable.

The various normal forms ~re first, second and third

normal- forms (lNF,

fourth normal form

2NF and 3NF), Boyce-Codd normal form (BCNF),

(4NF) and fifth normal form (5NF) , in that

order. The higher the normal form of a relation the more

The BCNF is the ultimate·normal form in the preferable it is.

case of functional dependencies only. But this form is not free

from problems in case the multi -valued dependencies are a·lso

present among the attributes. It is the 4NF which the desirable

form in the case of presence of multi-valued 4ependencies. The

5NF is a step further which solves the problems caused by join

dependencies also. In this paper we don't consider the case of

join dependencies qnd present a program that does normalization

up to 4NF.

Pro log was the language chosen for writing the program

3

for this automatic normalization of a given relation database

schema and the reaion was that Prolog. is the only language that

provides one with tools to write an 'intelligent' program most

essential in a difficult problem like this. The prolog approach

is to describe known facts about a problem and then let the

computer solve it by itself through backtracking, rather than to

prescribe the sequence of steps to be taken by the computer to

solve the preble~. It is this feature of Prolog that gives its

programs the feature of 'intelligence'. Moreover the Prolog is

especially suited to the way the relations can be represented and

manipulated in it and these are the reasons that made Prolog an

obvious choice for this.project.

The machine used was IBM compatible PC/XT,640K, 8.58 MHz

and the software used was Borland's Turbo Prolog, version 2.0.

1.3 ORGANIZATION OF WORK

Chapter-2 gives first ·the brief introduction to various

database models viz. relational, hierarchical and network models.

It then discusses the relational structure of databases in

detaii. Problems caused by functional dependencies in relational

databases are then discussed followed by an account of lNF, 2NF,

3NF and BCNF.

Chapter-3 discusses further normalization in relational

databases as it introduces the concept of multivalued

dependencies and the problems caused by ·these. It then

discusses the fourth normal form (4NF) and shows how it solves

these problems.

4

Chapter-4 introduces the two approaches towards solving

design-problems viz. the Synthesis approach and the Decomposition . . .

approach. First, it takes up the Synthesis approach . for

normalization up to BCNF in case of functional dependencies only

and gives the algorithms for the same. Then it discusses also

the Dec;::omposition approach for normalization in case of multi

valued dependencies and discusses an algorithm for obtaining

4NF.

Chapter-5 discusses the actual program written in Prolog

for automatic normalization upto 4NF.

In the end, the appendices list the Prcilog program, a few

examples showing its use and lastly the references.

5

CHAPTER - .2_

RELATIONAL DATABASES AND NORMALIZATION

2.1 INTRODUCTION

A data base as suggested by James Martin can be defined as

,g collection gf interrelated data s.tored together with controllE~d

redundancy to serve one or more applications in an optimal

fashion; the data. are stored so that they ~ independent gf

programs which use the data; ,g common and controlled approach js

used .in adding new data and modifying . and retrieving existing

data within the data base. A data base system is different from

the orthodox files~of-records system in that it allows the same

colleQtiop of data to serve as I'!lany appli9ations as required.

Thus a data bc;tse may be conceived of as a repository of

information that permits not only retrieval and continuous

modification of data but also answers to various , queries put

forward by the management from time tq time.

The logical design of a database ~ay be based on any of

several known models. The three best known data base models are

the relational, the hierarchical and the network approach models.

Section 2.2 discusses each of these briefly. As we are concerned

with only the relational data bases in this thesis, section 2.3

6

uiscusses reiat10nal data bases in more details and also explains

the inconsistency problems caused in these data bases due to the

presence of various functional. dependencies. Section 2. 4

formally defines the functional qependencies and the normal forms

: first, second, t~ird and Boyce-Codd.

2.2 DArA BASE MODELS

Data bases are most conveniently categorized into

relational, · hierarchical and network types depending upon the

type of data structure used by the data base. In a relational

database the data is organized into tables. A table is a two

dimensional rectangUlar array with each column representing a

particular field of the record. The rows contain the actual data

entries. The columns in a table are homogeneous i.e. in any

colqmn ail items ~re of the same kind. A data base may consist

of more than one ta~les. In fact a data base represented by only

one table may give rise to r~dundancy, inconsistency and updating

problems. To get rid of these problems a relational data base is

converted into a number of smaller tables instead of a single

·big table. This is called normalization. Proper normalization

essentially removes inconsistency and updating problems but i~

incapable of fully eliminating redundancy of records. In fact,

normalization itself gives rise to some redundancy which can be

termed as the controlled redundancy intentionally introduced in

the data base.

In c;t hierarchical data base the data is represented by a

7

simple tree structure. Each tree consists of a record at the top

which is known as the 'root'. This root record may have a number

of dependent record types. Every record , type of the dependent

records may have a number of records, each of which may again

have a number of dependent record types in turn. Thus we can say

that in hierarchical structure, every record may have any number
.

of cQ.ildren but any child record can have only one parent. The

hierarchical structure also . contains 'links' which connect a

parent nocle to a child node. . These links have restriction on

their directions as they can only point from a higher level to a

smaller +evel. Quite similar to a hierarchical database, a

network data base also consists of records connected with links.

However the data structure in the network approach is a more

general one as it need not follow a simple tree structure.

Rather it contains a mesh structure in which there are no

restrictions on the fixation of links. A link may be connected

between any two records in any levels and in any direction. Thus

any given recor~ oc;:currence may have any number of immediate

parents unlike t~e case in the hierarchic;:al system. Thus the

network approach allows one to model a many-to-many

correspondence more directly than do the other two approaches.

The network structure requires +east of redundancy but it gives

rise to many other complex problems.

Design problem or normalization problem exists in

hierarchical and .network database systems also, but in this

thesis we concentrate only on normalization in relational data

8

base systems. The same is treated in the following text.

2. 3 MLATIONAL DATABAS.ES AND INCONSISTENCY PROBL!:MS

~s mentioned earlier the data in a relational database is

arranged in the form of tables called relations. The columns of

the table correspond each to a unique field and are referred to

as attributes. The rows in the table contain the actual data and

are referred to as tuples. The numper of rows is a variable

qu~ntity and changes with time in a dynamic database. Keys are

subsets of the attributes of a relation whose values are unique

within the relation and thus which can be used to uniquely

identify the tuples of the relation. A primary key is minimal

i.e. no proper subset of a primary key is by itself a key. There

are certain restrictions on ·these relations which are as

follows

1. All rows $hould be distinct i.e. no two tuples in a table

should contain identical information.

2. Each column in a particular relation should be assigned a

distinct name.

3. Relations must be column homogeneous i.e. in any column all

the items must be of the same kind.

4. The sequence of both rows and columns in any relation should

be immaterial i.e. both the rows and the columns could be viewed

in any sequence at any time without . affecting either the

information content or the sem~ntics of any function using the

table.

9

s. No component of a primary key may be null. This is called

the rule of entity integrity.

In its· most crude fopn, a relational data base may

contain a single relation containing all the fields as it's

columns and the dqta stored in tuples. It is what is called an

un-normalized form of a· relational database. Though being the

simplest and thus . being the most suitable form for information

· extraction and query processing, the unnormalized form suffers

from many disadvantages. To be precise, these problems are

redundancy, inserting, deleting and updating problems. To

explain these we best consider a practical example.

Let us consider a data base containing information about a

child's name, his roll numbe~ in the school, marks obtained by

him in different subjects in a school test and his parents'

names. Let us call it "Child-Marks-Parents" database. Thus the
------~------------

different fields required in this data base are Child's name (N),

Roll No. (R#), Subject (S), Marks (M), Mother's name (MN) and

Father's name (F~). One semantic constraint is that no two

persons can have the same name. In the unnormalized form, all the

fields are put together in a single relation named R. In fig.

2.1 a sa~ple record of this relation R at a particular instance

is shown. As we shall explain now it suffers from several

problems notably redundancy, inconsistency problems etc.

Inconsistency may arise in such a table by any of the fundamental

operations like insertion, deletion and. updating.

10

Now w¢ discuss these problems associated with an

unnormalized relation like R shown in fig. 2.1, one by one :

REDUNDANCY PROBLEM. An unnormalized problem.suffers from a lot

of u~controlled redund~ncy. For example the fact that Montu is

t:Q.e name of the boy who has roll no. 5 is repeated every time

the~e is an entry for R# 5. Also it is unnecessarily repeated in

every entry that his parents' names are Manju & S.Gupta. Such

redunda~cy not only causes loss of useful memory space but may

also give ~ise to serious . inconsistency problems in the dat.a

base.

Roll
R No.

R#

1

1

2

3
3
4

4

5

5
5

Child's sub- Harks Mother's
name ject name

N s H HN

Pinku Phys 61 Sneh Lata
Pinku Chern 48 Sneh Lata
Sonu Hath 95 lloopa
Guggi Phys 92 Roopa
Guggi Chern 90 Roopa
~uriya Hath 99 Hanju
Guriya Phys 90 Hanju
Hontu Phy!l 85 Hanju
Hontu Chern 85 Hanju
Jo!ont1,1 Hath 92 Hanju

no two persons have the same name

Relation ~ showin~ its record at ~
particular instance

11

Father's
name

FN

G.C.Goel
G.C.Goel
Shivendra
Shivendra
Shivendra

S.Gupta
s·.Gupta .
S.Gupta
S.Gupta
S.Gupta

INSERTING PROBLEM~ · Suppose we want to enter the fact that Bobby

got 65 marks in Chemistry, we cannot enter this until we knew his

roll numbers, since by restriction 5 (rule of entity integrity)

no component of a primary key may be null and in this case [R#,S]

is one· of the primary keys. Also say we make another entry for

Sonu but with his moth~r's name printed wrongly, it is going to

cause incohsistency,in the data base.

DELE~ING PROBLEM. If we d~lete a particular item from a table

like ~, we cannot be sur~ of the safety of all other information

that is contained in the table R. For example, there is only one

~ntry fo+ Sonu in fig. 2.1. If we want to delete the entry for

Sonu's marks in Mathematics we have no choice but to delete the

whole of that. entry. This will not only make us lose the

knowledge about ~is roll number b~t also his parents' names.

UPDATING PROBLEM. This is a .direct outcome of the redundancy

cohtained in an unnormalized relation like R. For example, the

information that Guriya's roll ntlml;>er is 4 is contained in every

tuple that contains information abQut Guriya's. Now if her roll

number changes we are faced with either the problem of searching

the whole of table R (an any instant, R may contain any number of

tuples and also all the entries about Guriya may not be grouped

together) to find every tuple containing information about Guriya

or the possibility of producing an inconsistent result by say

le~ving out some of the tuples unmodified.

12

How these problems connected with an unnormalized relation

are solved using normalization, is the subject of discussion in
. ,.

the following section.

2.4 NO~LIZATION

Normalization in a relational data base refers to breaking

of bigger relatianfl; into a number of smaller relations (having

less number of fields) according to some rule so that the new

relations are preferable to the original ones in that they solve

some of the difficulties faced by the original relations. The

smaller relations so obtained are necessar~ly of a higher normal

form than the original relation. However, this one step of

normalization may not solve all the problems in a :r;:-elation and

sptne of the smaller relations may have to be further normalized

in order t:.o get higher and more ·desirable normal forms. We

introduce here the concept of fUnctiopal dependencies among the

attribute~ of a relation; the concept of multi-va~ued

dependencies being deferred to the next chapter. We also discuss

various normal forms viz. first, second, third and Boyce-Codd and

show with the h~lp· of ~n example how normalization solves the

problem in a relational data base containing functional

· dependencies only.

2.4.1 Functional Dependencies (FDs)

The concept of functional dependencies among the

attributes of q relation is of prime importance in normalization

13

theory. In fact the very basis of breaking a given relation in a

number of smaller relation is functional dependencies (and later

multivalued and join dependencies also} among its various

attributes only. Functional dependence is defined as follows :

An attribute ~ of ~ relation R is said to be functionally

d~pendent on another attribute A 21 E if and pnly if each value

of A is associated with precisely one value of ~ i.e. if each

yalue of the attribute A uniquely determines it's correspondiQg

yalue o~ the attribute ~

This is denoted as

R.A --> R.B

or more simply as

A --> B

The same de~inition of functional dependence applies to

groups of attributes also. Thus a group of attributes may

functionally determine another group of attributes.

Let us now take an example. Reconsider the "Child-Marks

Parents" data base discussed in the previous· article. It is

clearly mentioned that no two persons have the same name. This

means · the names of both the pavents are uniquely determined by ·

· their child's nqme because each child has only one set of

parents. In other words Mother's name (MN} and Father's name

(FN) are both dependent on the Child's name (N} • Incidentally

the reverse is not true because a parent may have more than one

child. These functional dependencies may be shown as :

R.M --> R.MN

14

& R.M -:--> R.FN

~lso since no two persons have the same names, a mother'~

name uniquely determines fathert s name a,nd vice-versa. Thus we

have MN ano FN functionally determining each other. Thus,

R.MN --> R.FN

& R.FN --> R.MN

Also marks obtained by a child in a particular subject are

unique. So Child name {N) and Subject {S), together, uniquely

determine the Marks (M). Thus,

R.[N,S] --> R.M

Also a c;:hild' s name and roll number uniquely deter:rnine

each other. So :N and R# are functionally dependent on each

Other. Or,

and R.N --> R.R#

This last pair of functional depende'ncies also gives rise

to tpe fact that any attribute that is functionally dependent on

N is also functionally depen¢lent on R#. Thus we have the

following set of additional functional dependencies

R.R# --> R.MN

R.R# --> R.FN

R.(R#,S] --> R.M

We can make a functional depen~ency diagram for .the

relation R as follows (remember a functional dependency diagram

may not show all existing dependencies; it needs show only a

minimal set of functional de~end~ncie~) ,

15

c:1= .
[]

Functional Dependency diagram f2L relation ~

A key is a set of attributes of a relation that

functionally determines all of the attributes of the relation.

If a key is minimal i.e. no proper subset of it possesses the

same property it is said to be a primary key of the relation. A

relation may have more than one primary keys. Any.relation must

have at least on~ key, as the set of all the attributes of a

relation is definitely a key. The relation R contains two keys

viz. [N,S] and [B.#,S].

2.4.2 First Normal Form (lNF)

A relation is said to be in First Normal Form if all of

its tuples contain only atomic values for each of their

attributes. In other words, all the occurrences of a record must

contain the same number of fields in lNF.

Thus a relation of the type

16

Child Subject Marks

Sont,J Physics 95

Chemistry 94

Maths 99

---------- --------
Guggi Physics 94

Chemistry 95

~ relation not in ~

is not in first normal form. It is to be modified as

fo'llows to be in lNF,

Child Subject Marks

Sonu Physics 95
Sonu Chemistry 94
Sonu Maths 99
Guggi Physics 94
Guggi. Chemistry 95

~ relation in~

We see that the relation R .in fig. 2.1 is in lNF. First

normal form is the first requirement of any relation because as

is clear from the above example it is very simple to convert any

given relation into one ih lNF and, also because it simplifies

the further database operations and manipulations to a great

extent.

2.4.3 second Normal Form (2NF)

· A, relation B is said to b~ in Second ·Normal Form

non-key attribute of it is functionally dependent on ,g proper

subset of ~ primary key of the relation. A non-key attribute

17

is one which is not part of any of the · primary keys of the

relation. Thus~ in other words, only a primary key and not any

of its proper subsets should functionally determine any non-key

attribu,te.

For example, the relation R of the "Child-Marks-Parents"

data base shown in fig. 2.1 is not in 2NF. The reason is that

[N, s) is a primary key of the relation (the other primary key

being (R#,S)) whose proper subset i~e. the attribute N

functionally d~termines two qttributes viz. MN'and FN.

The relatiop R may be converted into 2NF by ·splitting it

into two relations namely, R.1(N,MN,FN) and R.2(R#,N,S,M). The

functional dependency diagrams of the relations R.1 and R.2 are

as shown in fig. 2.3.

Relation R.1(R#,N,S,M)

2NF

Relation R.2(N,MN,FNl

2NF .

Functional Dependency diagrams f2L relations ~and ~

18

The relations R. 1 and R. 2 both at·e in 2NF. The

explanation go~s as follows Relation R. 2 has N ·as its only

primary key and since N doesn't hav~ any proper subsets, the

relation R.2 is in 2NF. Al~o the relation R.2 has two primary

keys namely [N,SJ and (R#,S]. M is the only non-key attribute

and it is not functionally determined by any of the proper

subsets of the primary keys. Hence R.2 also is in 2NF.

Conversion of R into R.l and R. 2 reduces the problems to

the extent that now there is less rectundancy as the names of the

parents now are not to be repeated in every tuple concerning a

particular child. Also we can add the information about the

names of the patents of a child even if we do not know his roll

number. Also the possible inconsistency concerning the names of

the parents of a particular child is. eliminated to some extent

(it is still not fully eliminated as we will discuss in the next

section) .

2.4.4 Third Normal Form (3NF)

Here we must introduce the concept of transitive

dependencies. A , dependency A --> B

transitive iff A is ·neither a subset

in R

nor a

is said. to be

superset of any

primary key and B is a non-key attribute. The word 'transitive'

comes from the fact that wheneve+ such situation exists we must

have the chain of dependencies K --> A ~-> B where K is any of

the relation's primary keys.

19

A relation ~ is said to be in Third Normal Form (3NF) if

and only if it is in 2NF and is free from any transitive

tlependencies.

We see that the relation R.l in fig. 2.3 is in 3NF. The

reason is that the only non-key attribute M depends on the

_primary ~eys only. Thus the conditions of 3NF are not violated

and hence R.l is in 3NF. But, at the same time, the other

relation, R. 2, is not in · 3NF. The reason is that MN and FN

functionally depend on each other while both are neither the

subsets no~ the supersets of the only primary key N. In other

words, the following two transitive chains exist in_ R.2 that

violate the conditions of 3NF 1

N --> MN --> FN

& N --> FN --> MN

To convert the relation R.2 in 3NF 1 it must be bifurcated

into two relations viz. (N 1 MN) and (MN 1 FN) or (N 1 FN) and

(FN,MN). The transitiv~ dependencies are thus removed and the

resulting two relations are in 3NF. This is ·-shown in fig. 2. 4 ..

The relation R.2 which was not in ~NF suffered from some

problems. For example 1 the fadt that Shi vendra and Roopa are

hu~band and wife was repeated every time a tuple concerning any

of their children came and hence caused redundancy. This could

lead to inconsistency problems too. But in the relations R.2.1

and R.2.2 (:tig~ · 2.4), the first relates & child's name to his

20

mother's name and the second then in turn relates a mother's name

to the. father's name, Thus any scope of inconsistency is

removed.

Relation R.2.1(N,MN)

3NF

Relation R.1(R#,N,S,M) Relation R.2.2CMN,FN)

3NF 3NF

.Functional Dependency diagrams for relations ~ and ~ ~ R.2.2

2.4.5 Boyce-Codd Normal Form CBCNF)

The o,riginal definition of the 3NF as given in the

previous article suffers from certain problems in that'it doesn't

successfully eliminates inconsistency problems in all the

situations. For example the relation R.l in fig. 2.4 is in 3NF

yet it suffers from certain problems as we shall discuss later

in tnis article. Another normai

21

:>yce and Codd is stronger than 3NF and. eliminates all the

roblems arising due to functional dependencies.

A relation B is said to be in Boyce-Codd Normal Form

3CNF) iff every ·determinant in this relation is _g key of that

~lation. A determinant is any attribute or a set of attributes

that fundtionallY determines any other attribute or set of
,.

attrib~tes.

Conceptually, the definition of BCNF looks simpler than

that of 3NF as it· makes no explicit reference to the second

normal form but in fact its d~finition is stronger than that of

3NF in that every BCNF relation will be in 3NF but the converse

need not be true.

L~t us come back to the "Child-Marks-Parents" data base.

The relation R.2.1 and R.2.2 in fig. 2. 4 are in BCNF as the

only determinants in them viz. N and MN respectively are their

primary keys. The relation R.l, however, though in 3NF is not in

BCNF. This is so because · N and "R# are determinants (they

functionally determine each·other) but are not keys to the

relation R.l. Thus for conversion of R.l to BCNF it, too, is to

be di~ided into two relations (R#,N) and (N,S,M) or (R#,N) and

(R#,S,M). This is shown in fig. 2.5.

22

[3={]
Relation R.1.2(R#,N) Relation R.2.1(N,MN)

BGNF BCNF

Relation Rr1.2(N,S,M) Relation R.2.2CMN.FN)

BCNF BCNF

Functional Dependency diagrams

for relations B.......L..1! .!L..1...l. and R.2.1! R.2.2

The relation R.l.l and R.l. :2 are in BCNF. R.l.l is in

BCNF because R# and N are the two determinants in this relation

while both are also the relation's primary keys. R.1.2 is in

BCNF because the primary key [N,S] is the only determinant in the

relation. The relation R.l could suffer from inconsistency

problems as there was redundancy because of the repetition of the

fact that a particular child had a particular roll number in

every· tuple concerning that student.. The BCNF relations R. 1.1

and R.1.2 remove this problem also.

23

Thus we saw how each step of normalization ridded the data

base of some problems that existed earlier and how the BCNF stage

removed all tne problems that existed in the data base. In fact

it h('ls been proved·that the BCNF is the ultimate normal form in

the case the presence of only the functional dependencies in a

data base. Further no'rm('llization is required in case multivalued

dependencie$ are also present in· some data base. This if;; the

topic· of discussion in the next chapter.

24

CHAPTER - ~

FURTHER NORMALIZATION

3.1 INTRODUCTION

tn the previous chapter we discussed about the need of

normalization in a relational database having functional

dependencies (FDs). It was shown that the$e dependencies cause a

great· deal of problems in maintaining the unnormalized records

and to get rid of these difficulties the normalization process

becomes inevitable. It was also mentioned than in such cases i.e.

when a data base includes just the functional dependencies, the

ultimate normal form is the BCNF as it eliminates all the

inconsistency prqblems from the data base. A practical data

base, nowever, does not contain just the functional dependencies

but would, very often, include several of what we call multi

valued dependencies CMVDs) also. The multivalued dependencies

cause incom:;istency problems similar to those encountered in the

case of functional d~pendencies. Moreover, when these

depend~nc!es are included in a data base, the BCNF is no longer

the ul tirnate normal form. In other words, normalization up to

BCNF doesn't solve the problems caused by the presence of

multivalued dependencies. In such cases the normalization

process has to go a step further and this is the topic of

discussion of this chapter.

25

j.2 MULTIVALUED DEPENDENCIES (MVDs)

The functional dependencies defined in the previous

chapter were concerned with only one-to-one relationships. For

instance, i11 the "Child-Marks-Parents" data base discussed in

that chapter, the attribute roll number (R#) functionally

determined the child name attribute (N). This was a one-to-one

relationship because each roll number is associa-ted with exactly

one student's name.· Similarly, a child's name (N) functionally

determined father's name (FN). This was so because every child

has ~xactly one person as his father. But, in many situations we

encounter relatipnships which are not one-to-one. For instance

we might have a one-to-many or many-to-one or, for that matter, a

many~to.,..many relationship also. Such relationships cannot be

represented bY just the functional dependencies. For the proper

representation of such relationships we have to introduce the

concept of rnultivalued facts and multivalued dependencies.

A 'multivalued fact' corresponds to a one-to-many

relationship. For example, a father may have a number of

children. So the relationship between father's name (FN) and

child's name (N) is a multivalued fact about a father.

the same time, it is a single-valued fact about a child.

But, at

A relation may contain a number of multi valued facts.

They may be about the same attribute of about different

attributes. If in a relation, there . are more than one

26

multivalued facts about the same attribute, they may either be

independent of or dependent (non-independent) on one another.

For example, consider the two rE!lations shown in fig. 5. 1. The

first relation MSD is a record containing three fields viz.

mother's name, son's name and daughter's name. Since a mother

may have more than one sons as well as more than one daughters,

this relation contains two multivalued facts about the same
• : t ' '

attribute i.e. :rqother's name. Similarly the other relation P'l'A

too contains three fields viz. person, time and activity. Again

we have two multivalued facts about the same attribute, here

'person'. But tQ.ere is a basic difference between the two

tables. While the multivalued facts in the table MSD are

independent of each other, they are dependent in the table PTA.

The independence of the multivalued facts in rel~tion MSD arises

from the fact that there is no direct connection between a son

and a daughter except for the fact that both have the same

mother. Thus al~ they boys who are sons of the same mother are

brothers to all her daughters. Similarly all her daughters are

sisters to all her sons. There is no special relationship between

a particular daughter and a particular son.

see that Indira has Girish, Titu & Pawan

That is why, when we

as her sons and

Anupama & Preety. as her daughters~ all the six possible

combinations of the sons and. daughte!s are present in the table

due to the fact that all the 'Sons' are brothers of all the

'daughters' and all the 'daughters' are sisters of all the

'sons'.

27

r
Mother's Son's daughter's Person's time activity

name name name name

Indira Girish Anupama Ashok morning games
Indira Girish Preety Ashok morning meditate
lndi ra Titu Anupama Ashok morning study
Indira Titu Preety Ashok Evening games
Indira Pawan Anupama Ashok Evening study
Indira Pawan Preety Ashok Night sleep

Relation MSD (Mother,Son,Daughter) Relation PTA (Person,Time,Activity

independentmulti.valued facts non-independentmultivalued facts ··--

In the relation PTA, on the other hand, the person : time

and the person : activity relationships are not independent. It

is due to the fact that a person may carry out only certain

activities at a particular time while he may indulge in totally

different activities at some other time. That is why we see in

fig. 5:1 that while Ashok indulges in activities like games,

meditation, study and sleep at different times viz. morning,

evening and night, all the possible combinations of the different

activities and different times are not present in the table.

Thus he indulges in meditation qnly in the morning, sleeps only

at night and play$ games in the morning as well as the evening.

Thus 'time' and 'activity', though multivalued facts about

28

'person' are not independent of each other.

It may be noted that it is the presence of all the

possible c::ombinations of values. of mul tidependent facts among

each other in the case of independent-multivalued-facts-relations

that give these facts this property. Obviously, since every

possible pairing of the values is present, there can be no

info:tmatiQn contained in these pairings, and hence the

independence. In the case of non-independent facts, ab~ence of a

number of possible pairings makes the facts dependent on each

other as ~as the case with the relation PTA (fig. 5.1).

The concept of multivalued dependencies is the same as

that of independent multivalued facts. In fact, 'multivalued

dependencies' is just the other name for 'independent

multivalued facts'. The word independent is extremely important

in this definition. Also since for independence we must have at

least two multivalued facts about the same entity in a relation,

multivalued dependencies also always go in pairs at least, and

never in singles. The formal definition of mul tivalued

dependency goes ~s follows

In _g relation .B with attributes A.B and ~ the multivalued

de~endence A ..--> --> ~ holds in B iff the set of B-values

matching g_ given A-value k c~value ·pair, depends only on the

A-,value and is ,i.ndependent of the c-value. And in this case A is

said to mul tidetermine B while B is said to be mul tidependent

on A·

29

This formal definition, in fact, ·is not different from our

earlier definition of th~ multivalued dependencies as being the

same as independent mliltivalued facts. And with the same

reasoning, it is e&sy to see that when in a relation R(A,B,C),

the MVO A --> --> B hoids, another MVD A -->. --> c must also

hold. In fact, as .we have mentioned earlier,· MVDs always go at

least in pairs in this way. For this reason, it is ·customary to

express both the dependencies in a single statement, e.g.

A --> --> B C

An attribute in a relaticm may mul tidetermine more than

two attributes (attributes may, of course, be composite). For

example in a relation say R(A,B,C,D) we may have

A --> --> B I c I D

3.3 THE FOURTH NORMAL FORM (4NF)

Multivalued dependencies give rise to the similar type of

difficulties in tne maintenance of a database as caused by the

functional dependencies. These are inconsistency problems arising

due to redundancy, inserting, deleting and updating etc.

Let us discuss these problems one by one by taking a practical

example of fig. 5.1.

REDUNDANCY PROBLEM. As is clear from fig. 5.1, in the table

MSD, a lot of redundancy exists as there have to be all possible

pair combinations of all the sons and daughters of a particular
,.

mother. This giv~s rise to two types of problems, first that by

30

-

mistake some inconsistency in the data may be caused and second

that missing out even one of the possible combinations may lead

to wrong interpreta~ion of the data.

,.

INSERTING PROBLEM. Suppes~ a lady employee of our firm is

blessed with another child say a son, and we want to make entry

fqr the new born in MSD, then since we have to scan the whole of

existing table to. find out all the existing entries concerning

the lady and then suita~ly introducing the appropriate entries

making all the required combinations of the boy with all his

sisters, this not orily makes a complicated procedure but also

opens up possibilities of creating unwanted inconsistencies.

DELETING PROBLEM. Suppose in the relation MSD, we want to keep

the records of only those children who are below 21. And now a

child of a partipUlar employee turns 21. To delete his entry

from the table now again requires the complicated and risky

procedure of scanning the whole table for all the entries

concerned with the boy . Leaving out even a single entry will

lead to problems. There is also possibility of losing the

information about his sisters altogether if he was the only son

of his parents because removing all the entries having

information about him will automatically wipe out the information

about his sisters also. Also, in case, he was the only child of

his parents; removing all his entries will amount to removing the

name of his mother altogether from the record MSD.

UPDATING PROBLEMS. Updating causes the similar d,ifficul ties

31

arising due to the fact that this would also require the proper

updating in all the entries connected with the particular entity.

Since a simple updating in just one position doesn't suffice it

leads to possible risks of causing inconsistency in case we leave

out some entry uncorrected.

Tnus we h&ve shown how the presence of mul tivalued

dependencies lea~s to problems in a data ba~e. It must also be

mentioned that only the multivalued dependencies i.e.

indepepdent multivalued facts lead to such problems. Presence of

mul~ivalued facts in a relation that are not independent doesn't

le&d to such inconsistency problems. For example in the relation

PTA irt fig. 5.1 I the multivalued facts person : time and

persq~ : activity are dependent on each other, so that all the
---~~--~----------
data entries in the table PTA are required to keep the whole of

information. This ·is not redundancy because we cannot reduce the

number of entries (by normalization process etc.) without losing

some the information contained therein.

It was snown in the previous chapter that in the case of

fDs only, the ultimate normal form is the BCNF. But since in the

t~ble MSD (fig. 5.1) there are no functional dependencies (FDs},

thera is :n.o basi~ by which we can convert MSD into smaller

tables. In fact, since there is no functional dependency in MSD,

it is an all-key rela~ion i.e. the set of all attributes is the

primacy key. And as such it is in BCNF. Thus we see that the

presence of the MVDs has caused the same problems in even a BCNF

32

relation. Thus to tackle the MVDs we need a normal form which is

stronger than the BCNF. This is the 'Fourth Normal Form (4NF)'

that we are going to discuss now.

Under the Fourth Normal Form (4NF), a relation should not

contain two or more independent multivalued facts about.the same

entity. In other words, the 4NF does not allow the presence of

mo+e than one multi-determined facts about the same entity. In

addition to that, the relation must be in BCNF. When these two

conditions are satisfied, the relation is said to be in 4NF.

Thus the relation · MSD in fig. 5.1 is not in 4NF because it

contains two multi-determined facts about the same attribute M.

~he relation PTA is in 4NF however, because it does not contain

multivalued dependencies at all (it contains non-independent

mu1tivalued tacts). The relation MSD must be di~ided into two

relations MS and'MD to convert in into 4NF. This is shown in

fig. 5.2.

MS Mother-'s Son's MD Mother's d<;~ughter•s

name name name name

Indira Girish Indira Anu'pama

lndi ra Titu Indira Preety

Indira Pawan

Relation MS (Mother,Son) Relation MD (Mother,Daughter)

33

Thus we see that the relation MSD is broken into two

relations each including one of the multidetermined facts. The

first relation contains information about the sons while the

second relation contains information about the daughters. The

relations MS and :f1D are in 4~F as they do not contain any

mu.l ti valued depenqencies (for a multi valued dependency, a

relation, must contain at least two multivalued facts). We can

see how normalization Up to 4NF solved the difficulties that

existed with the relation MSD. As is clear from the fig. 5. 2,

since there are two·separate tables for sons and daughters of an

employee there is not any unnecessary redundancy arising due to

such requirements like mandatory keeping of all possible pair

combinations. Moreover inserting, deleting and updating problems

are solved because now these changes are to be made at only one

place instead of searching the whole of table for updating all

the concerned entries as was the case in the table MSD.

The ·formal definition of the fourth normal form (4NF),

however, does not require the relation to be in BCNF. It goes as

follows :

A relation B is in Fourth Normal Form (4NF) if and only

if, whenever there exists an MVD in !L_ say A --> --> ~ then

tll attributes of B are also functionally dependent on l1

(i.e~. A---> X for all attributes X of RL_

The above definition and the earlier one are equivalent

and in simple terms they mean that the problems arising due to

34

multivalued d~penqen~ies will be removed if we don't allow more

tnan one independent multivalued facts about the same entity to

remain in the same relation.

In the next Chapter we discuss the actual algorithms for

conversion of unnoirnalized relations to higher normal forms up

to 4NF~

35

CHAP.TER - .!

NORMALIZATION ALGORITHMS

4.1 INTRODUCTION

Since its emergence, some twenty years back, Data base

technology has co~e a long way. As an inseparable part of it,

Normalization theory has also developed but not to the exterlt as

it should have. Two basic approaches that have developed in the

field of normalization theory are the synthesis approach and the

decomposition approach. The decomposition approach was the first

to come up but suffered from certain limitations in certain

situations and this prompted the synthesis approach to come up

some time later. Both the approaches have their 'plus' and

'minus' points and both are inevitable for the Normalization

theory. We touch upon these approaches, to make out the

difference between the two; and present certain specific

algorithms involving both the approaches.

4.2 SYNTHESIS AND OECOMPOSITION APPROACHES

The two major approaches to have come up in the logical

schema design or the 'normalization theory' in the relational

data bases are tne synthesis and decomposition approaches. The

4ifference lies in the directions that the two approaches follow

to reaCh the same goal. What the decomposition approach does is

36

that it takes the relation in the unnormalized form and then

step by step decomposes it into smaller relations by removing

anomalies in it. On the other hand, the synthesis approach

follows just the opposite way. In this approach, the set of FDs

is chosen as the basis and the final relations are constructed

from them. The core of the problem lies in determining the

proper ?et of FDs that should be used for that purpose. Some of

the salient plus and minus points of the two approaches are

ii~ted as follows

* 1. The decomposition process often yields more relations than

are actually needed.

The decomposition process may

not enforce some of the FDs.

never allow such a design.

produce a design that does

A synthesis approach would

• 3. Synthesis approach works well for FDs, but is not suitable

for processing MVDs. Decomposition approach, however, is

straightforwardly extendible to MVDs.

• 4. The highest normal form that . the synthesis approach can

qchieve is 3NF. The decomposition approach, on the other

hand, is not limited in this way. Thus for obtaining

normal forms higher than 3NF, the only approach that can

be followed is the decomposition approach.

In the next two articles we give algorithms for

conversion of unnorrnalized relations into the third normal form

(3NF), the Boyce....,Codd normal form (BCNF) and the fourth normal

37

form (4NF). The procedure to achieve the 3NF is the 'Bernstein's

algorithm' based on the synthesis approach. The procedures for

the BCNF and the 4NF are respectively the 'Tsou & Fischer's

algorithm' and the 'Tanaka's algorithm' both based on the

decomposition approach.

4.3 BERNSTEIN'S ALGORIT~ FOR NdRMALIZATION TO 3NF

Bernstein's algorithm for normalization up to the third

normal form uses the synthesis approach. A proper set of FDs is

chos~n and then ~NF relations are built from them. The actual

algorithm is as follows :

Input : An unnorm~lized relation and a set

of FDs (F)

output : JNF relations

Step 1. Eliminate Extraneous atrributes. Eliminate the

extraneous attributes from the left side of each FD in the set F,

producing the set G. An attribute is extraneous if its

elimination does not alter the closure of the set of FDs. By

the closure of a set of FDs we mean the set of all the FDs that

can be derived from that set. An equivalent check for an

attribUte to be extraneous is that an attribute A is extraneous

in the FD : LHS --> RHS if it can be eliminated from the LHS so

that the new dependency (LHS - {A}) --> B holds.

Step 2. Find a ~on-redundant cover. Find a non-redundant

cover H of G ,by eliminating redundant FDs from G. An FD is

redundant in G if its elimination does not alter the closure of

38

the FDs present in G.

3. Partition into groups. Partition the set of

dependencies H into groups Hi such that all dependencies in each

group have identical left sides.

step 4. Merge Equivalent keys. Merge two groups Hi and Hj

with left sides X and Y respectively if the keys X and Y are

equivalent. Two keys X and Y are said to be equivalent when the

dependencies X -~> Y and Y --> X both hold. For merging the

following process is to be adopted :

Set J := 0. For each pair of groups Hi, Hj with

left sides Xi and Xj respectively do the following : if Xi and

Xj are equivalent, merge Hi and Hj, add the FDs Xi --> Xj and

Xj -->Xi to J, and remove them from H.

Step s. Eliminate Transitive dependencies. Find a minimal

cover H' c H such that (H' + J) + = (H + J) + where the

superscript '+~ denotes the closure of the set of FDs. Delete

each FD in (H- H'), from the group in which it appears. Also

for each FD in J, add it to the corresponding group. Thus we

have obtained such a partitioning of groups which include all

the equivalent keys and in which all other dependencies are non

redundant. Such groups are free from transitive dependencies.

step 6. construct relations. For each group, construct a

relation consisting of all the attributes appearing in that

group. The· LHS common to al·l the FDs in that group will be a

key of the constructed relation. The set of all relations so

39

constructed will constitute the required schema of JNF

relations.

Let us q.pply the Bernstein's alg_ori thm to an example.

Take the relation R of the "Child-Marks-Parents" data base

discussed in the chapter 2 (fig. 2.1). The schema is :

Schema R = (R#,N,S,M,MN;FN)

F : R# -- > N
N --> R#
N --> FN
~ --> MN

MN --> FN
FN --> MN

[N,S] --> M

Various steps of the Bernstein's algorithm as applied to

the above e~ample will be as follows

Step 1 The FDs of the set F do not contain any extraneous

attribute.

Step 2 : The FD N --> MN is found to be redundant and hence

removed.

Step 3 : Group formed are with LHSs :

[R#]~ [N] 1 [N 1 S] 1 [FN] 1 [MN]

Step 4 : Equivalent keys are

N <--> R# and FN <--.-> MN

Step 5 : No t+ansitive dependencie9 exist. So finally the

merged groups are with LHSs :

[Ji # I N] I [N I s] I [FN I MN]

St~p 6 : Relations are formed from the definitive groups. The

final relations are

40

R a (R#,N,FN) in 3NF

R b = (N,S,M) in 3NF

R c (FN,MN) in 3NF

Same result is obtained using the Prolog Program. This is

included in the examples of Appendix - II.

4.4 DECOMPOSITION ALGORITHMS FOR NORMALIZATION TO

As w~ have mentioned earlier, the Synthesis ~pproach can

attain normalization up to only 3NF. For obtaining normal forms

higher than that and for handling MVbs we have to resort to

the Decompostion approach. But the de'composi tion approach

contains a lot· of inherent problems like creating more tables

than are needed and producing a design that does not enforce so~e

of the initial Fbs. A decomposition algorithm for creating BCNF

+elation? directly from an unnormalized relation (lNF) was put

forward }:)y Tsou and Fischer~ This algor,i thm takes care of the

lossless join property of the decomposition and is presented, in

a simple language as fo~lowa ;

Input.: lNF relation with a set:of FDs

Output : A set of BCNF relations

step 1. Let s be the set of all attributes in the schema of the

given relation R. Let us introduce an active set AS := S.

Step 2. Find a subset B of the set AS which has the following

property The set B doesn't contain any element which can be

generated without the help of some other element of B. Also at

41

le~st Ohe ~lement. E of B must be capable of being generated by

the rest of the elements of B. Construct a relation for the

set i3. We say that an element can be generated by a set of

attributes if it ·belongs to the Closure of that set of

attribut~s. Modify AS as follows

AS ::;: AS - {E}

step 3. Repeat the step 2 until AS reduces to just tvJO

elements. Constr~ct a relqtion for this AS also.

Step 4. output th~ relations constructed. They are in BCNF.

In the step 2 of t~e above algorithm, we have ;to find the

set B from the set AS. The procedure to be followed for that is :

a. Take B := AS.

b~ Check for an element A E B such that

A e. clo(B - {A,C}) where c E B and c ~ A

'clo' stands for the closure of the
attributes of the set

.= If A 'exists then B := B - {C}
repeat the step b.

else ·output B.

The ':fsou and Fischer's algorithm is implemented in the

Prolog Program and the actual implementation is discussed in

the next chapter. This algorith~ when directly applied to the

relation R (fig. 2. 1), yi~lds the followin,g set of BCNF

relations

R 1 = (R#,N) in BCNF

R 2 = (N,S,M) in BCNF contd ..

42

R 3 = (FN;MN) in BCNF

R 4 = (N,FN) in BCNf

R 5 = (N, S) in BCNF

We see that R 5 is an unwanted, relation that is generated

by the decomposition algoFithm Of Tsou & Fischer. ThUs we have

illustrated one of the disadvantages of decomposition algorithms

viz. creation of more relations than are needed.

case of Multivalued Dependencies. Normalization problem becomes

more complicated when the data base includes Multivalued

Dependencies as well as the Functional dependencies. The biggest

problem th~t arises in using the decqmpo~ition approach i~ such

cases is the priority problem L e. whether to give pribri ty to

FDs· over MVDs or vice-versa. It has been seen that none can be

given priority over the other in all cases. For exa,mple, in

certain cases, giving priority to FDs over MVDs causes redundancy

in the result and in c~rtain others, the reverse is observed. In

fact, in these cases where FDs and MVDs are both present, the

following very important result holds :

Redundancy in. the decomposed result may occur if the

decomposition £y an MVD h precedes that £y another MVD g such

that the MVD-determinant of 9. is fuhctionally dependent ot'l. that

of ~ It i~ to be remembered here th~t an FD is a ~pecia+ case

of an MVD.

A comprehensive algorithm for decomposition up to the

fourth normal form 4NF, was suggested by Y. TANAKA. His

43.

decomposition algorithm produces 4NF relations without redundancy

(though he himself mentions that redundancy is not removed in a

strict senseby his ~lgorithm, quoting an example to illustrate

the same; see ref).

Before presenting the Tanaka's algorithm for normalization

to 4NF, we must· get familiar'with some of the terminology used in

the same and with some axioms connected with the fDs and the

MVDs.

z will denote context of a relation i.e. the set of
all attributes in the relation

F will denote the given set of all FD$

M will denote the given set of all MVDs

T' wil+ denote the set of all given dependez:tcies
i.e. r is union, of F and M

T'+ will denote the closure of T'
:

T:A will'denote the closure ofT' with respect to
' the set of dependencies A

FD(T':A) W·ill denote the FD part of i' :A

MD(\:A) will denote the MVD part of T': A

For the design theory of the 4NF schema, we need a

complete set of axioms for FDs as well as MVDs to act as

inference rules to calculate all dependencies. The following is

the list of axioms

FDl (Reflexivity) If Y £X then X --> Y

FD2 (Augmentation) I.f Z £:; W and X --> Y then XW ·--> YZ

FD3 (Transitivity) If X --> Y and Y --> Z then X --> z

44

MVDO (Complementation)

MVDl (Reflexivity)

MVD2 (Augmentation)

MVD3 (Transitivity)

MVD4 ,(Embedding)

MVDS (Extertsion)

MVD6 (Reconnection)

FD-MVDl

FD-MVD2

If X --> --> Y in Z then
x ~-> --> z Y in z
If Y s: x s z then x > --> · Y in z

If v ~ w £ z and X -.,...> --> Y in z
then xw --> --> YV in z
If X --> --> Y and
then X --> .--> W - Y

Y ---> --> W in z
in z

!f xsw~z and x -...,> --> Y in z
then X --> --> Y n W in W

'I

If X --> --> Y in Z & (Z-Y) --> --> Y
in W, where w 2 Z then X --> --> Y in w

If X --> --> Y in z, V --> --> Y in W
and (Z n W) --> --> X in XV(Z ~ W)
then XV --> --> Y in XV(Z n W)

If X --> y and X, y ~ z
then X --> --> y in z

If X --> --> y in z and (Z-Y) ... -> y
then X --> y

The set of axioms Fbl-3, MvD0-3, FD ... MVDl-2 is known as

the complete set of axioms for the FDs and MVDs. In the design

process, it is required to know the closure of FDs and MVDs i.e.

all the dependencies inferable from sets F and M. For the

convenience of computation, the axioms MVD3-5 and FD-MVD2 are

replaced respectively by MVD7 and FD-MVD3, which are introduced

as under

MVD7 (MVD interaction) If X --> --> Y in z, U --> --> V in W
where X W and U z
then X(Y ~ U) --> --> Y n V in Z-(Y-W)
and Q(V n X) --> --> Y n V in Z-(Y-W)

FD-MVD3 (FD-MVD interaction)
If
and

X --> Y, U --> ~-> V
XC w then U(V n X)

in
-,->

w
y(lV

45

'
Also there are two very important results re~arding these

depend~ncy rules. The~ are as f6llows :

Lemma .!
A set A of axioms FDl-3, MVD0-6 and FD-MVDl-2 is

equivalent to a set B of axioms FDl-3, MVD0-2, MVD6-7 and

FD-MVD1,3.

Lemma ~
Let o be the set of dependencies {FD1~3; MVD0 1 FD-MVD3},

i.e. , D has no rules about MVD interactio~. Then the following

relation holds true :

FD(r:D) = FD(r:C)

Both of these results are by Y.Tanaka.

For the convenienc~ of computation of dependency closure,

it is useful to introduce a standard combined representation for

an FD or an MVD or both. The standard representation of a

dependency f with a context (i.e. the set of all attributes) z

has a form : ·

X . . [YO] Yl I Y2 I Y3 I . .. I Yn

where {X,YO,Yl,Y2, ... ,Yn} is a partition of Z,

X -~> YO qnd X --> ~-> Yi in z for any i .

Also three functions are defined for this standard

representation :

context(f) = Z,

left(f) = X,

right(i,f) = Yi if i < n else 0.

46

Now, the axiom MVD6 is reasonably neglectable in mo?t of

the practical applications. We therefore adopt a decomposition

algorithm for constructing 4NF relations neglecting MVD6.

.algorithm is due to Tanaka. The algorithm is as t~llows :

This

!nput : Un normalized relation R with context z,
set of functional dependencies F and
set of multivalued dependencies M

output : Set of 4~F relations

Let C be the dependency set equal to B - {MVD6} i.e.

the set { FDl-3, MVD0-2,7 , FD-MVD1,3 }. We want to calculate

T:C. For this~ let F' and M" be the FD and MVD parts of r:c. To

get F 1
, calculate FD(r:D) as by Lemma 2 1 F I = . FD (,....:c) =

FD(r:D), where D = {FDl-3, MVD0 1 FD-MVD3}.

Step ~. -Obtain an intermediate set M' as follows :

For each f in~' if there exists a functional dependency (in F')

from a Subset X· of left (f) to all the attributes in left (f) ,

replace left (f) by X and move left(f)-'X from left(f) to

right(0 1 f). Move also all attributes in right (i 1 f) 1 for c:ill

i > o, that are functionally dependent on left(f) to right(O,f).

Then, for each functional dependency f : X --> Y satisfying that

Y is a maximum set dependent on X and X is a minimal set that

determines (X U Y) 1 we add an MVD g to M' that is defined as

follows :

context(g) = zl

left(g) = X,

right(O,g) = Y,

right(l,g) = z - X - yl

47

right(i,g) = 0 for i > 1.

Calculate Mri =closure of M~ ~.r.t. E i.e. M':E

where E = {MVD0~2, MVD7}.

step .f.

minimal i.e.

Get a dependency g in M" such that right (0, g) is

right (o, f) c right (o, g) for no f s M" and also

Z ~ context(g) and left(g) c: Z, where Z is the context of the

relation R to be decomposed. Then form relations Ri with

contexts

context(Ri) = z ~ (left(g) U right(i,g))

for all' i.

The relation R0 so obtained is in 4NF and also (z.n left(g)) is

its key. Rest of the relations decomposed need not be in 4NF and

hence apply step 4 to each of these decomposed relations except

R
0

• If, while applying step 4 to any· relation, we cannot find

the dependency g satisfying all the tequired conditions, this

means that the relation eoncerned is in 4NF.

Go on doing step 4 unless all the decomposed relations are

obtained in 4NF.

'The actual implementation of Tanakais algorithm in Prolog

is discussed in the next chapter. Also the algorithm ~s applied

to a few examples whi'ch are given in appendix - II.

48

ClU\PTER - ~

THE PROLOG PROGRAM FOR NORMALlZATION
tJp TO 4NF

5.1 INTRODUCTION

This chapter discusses the actual Prolog program that

can automatically normalize a given relation up to the Fourth

Normal Form (4NF). The input required-to the program is the list

of the attributes i.e. the context of the· relation artq tne set of

all the dependencies associated with it. We cari get the relation

·normalized up to the 3NF or the BCNF depending on our w:i,.sh. The

relations containing MVDs too, are to b~ normalized. up to 4NF.

The software used for the program is TUrbo Proloq 2.0.

5.2 THE PROGRAM

We now take up the actual program code. First of all, the

various declarations are discussed. After that the rules are

touched upon, with elaborate explanation wherever needed.

5.2.1 Declarations

Various declarations in a Prolog program, before the

clauses begin, are· the domains, database and the predicates

declarations. The domains defined in this program are

sym, list, listoflists and int

49

The 'symi and 'int' domains are just the other names for

the standard symbol and integer domains. 'list' is defined as :

list = sym* i.e. ·list' has been defined as list of symbols.

'listoflists' is defined as listoflists = list* i.e.

'listoflists' is list of lists of symbols.

After the domains section, databases are defined in tne

database section. A database declaration contains the name

followed by the specification of the domains of its arguments.

For example the functional dependencies will be ~tqred in the

da~abase fd(sym,l~st,list). This declaration mea~s tpat we can

store fac.ts , named · fd' in this database and each fact will

contain three arguments, the first a symbol followed by two

other lists of symbols. For example, suppose we want to assert

the fact that the attribute B is functionally dependent on the

set of attributes {A,C} in a relation R, we will represent this

fact in our program as follows :

fd (r, (a, c) , [b))

Note that we had to change the attribute na:ptes etc. to

lower case as in Prolog any upper case letter is taken to be a

variable.

As another example, there is a database defined as

schema(sym,list). This means that if we wish to give the system,

information about a relation R containing the set of attributes

{R#,N,S,M,MN,FN} we will either put the fact directly by writing .
the following fact-statement in the clauses section

schema(r,[r#,n,s,m,mn,fn]).

or by using assert statement in the right-hand~side of any

50

rule like

goall :- assert(schema(r,[r#,n,s,m,mn,fn]).

Note that every statement in the clauses section must

terminate in a period(.).

The database section is followed by the pred,icates

section. This section is used to declare ~ach predicate that

will be used in the program to describe various facts. Thus the

program knows in advance the structure of each predicate. The

declarations in this section are similar to those ih the database

section i.e. the predicate name followed by the domains-

specification of its arguments.

The final section of a Pro log program is the clauses

section. The actual code of the program is contained in this

section only and we shall discuss the .various clauses in the rest

of this chapter.

The two statements in the very beginning of the program

viz. nowarninqs and code=2000 are compiler directiyes. Tne

' statement · nowarnings' tells the compiler not to give warnings

like variable used only once and the statement ·code=2000'

spec.ifies the internal code array in terms of the number of

paragraphs: The default code-array size of 1000 paragraphs i.e.

16 Kilo ·Bytes was found to be insufficient.

One very important feature of this program must be

mentioned here viz. all the variables of the ~ 'list' are

treated as if they are not simply lists but are ·ordered sets•.

51.

This means that we will never allow any attribute to appear more

than one in any list and also the ordering of the attributes will

not be immaterial, the original ordering of the attributes of any

relation being defined Qy the schema declaration of that relation

or the schema declaration of some relation from which it has been

derived.

5~2.2 Utility clauses

There are various clauses in our program that are used so

often that we shall call them utility clauses. The list of the

various utility clauses is as follows :

equal(Ll,L2) succeeds when list Ll equals list L2. If either of

Ll and L2 is unpound, it binds it equal to the other.

equal2(LLl,LL2) succeeds when listoflists Ll equals listoflists

L2. If any of them is unbound, it binds it equal to the other.

elem(E,L) succeeds when E is an element of the ordered set L.

listelem(L,LL). succeeds when list L is an element of the

listoflists LL.

subset(A,B) succeeds when list A is an ordered subset of list. B.

attr(A,REL) succeeds when list A is an ordered subset Of the

attributes of the schema of REL. Domain-type of REL is ·sym'.

union(U,A,B,REL) succeeds by building the union U of two ordered

sets A and B of attributes of the relation REL. It is important

that u, A and B all are ordered in consistence with the ordering

52

-

in the set of attribute~ of the schema of the relation REL.

minusl(D,A,N) succeeds by building the difference D between the

set A and a single element N. This means that this clause

succeeds by achieving ·D =A- {N} •

listminusl(LD,LA,LN) succeeds by building the difference LD

between the listoflists LA and a single list LN. This means that

this clause succeeds by achieving LD = LA - { LN} .

minus (D,A,B) succeeds by building the difference D between the

ordered sets A and · B .. Thus it succeeds after achieving

D = A - B.

append(Ll,L2,A) succeeds by appending 1 ist L2 to 1 ist Ll and

then storing it ih list A if A is not already bound. The result

A will not be an ordered set as it will be a si•ple concatenation

of Ll and L2 and thus may have repeated attributes also.

append2(Ll,L2,A) succeeds by appending listoflists L~ to

listoflists Ll and then storing it in listoflists A if A is not

already bound.

Let us·explain one of these clauses, say the union

clause' as it is lengthiest of the lot. The rule goes as follows

u~ion(U,A,B,REL) :- schema(REL,S), subset(A,S), subset(B,S),
unionl(U,A,B,S).

unionl(A,A,[J,) :- !.
unionl(B, (] ,B,-) :- ! .
un~onl([H TU] ,[H!TA], [HjTB], (HjTS]~ :- ~, unionl(TtJ,TA,TB,TS).
un1onl([H TU],(H TA],B,(HITS]) :- ., unlonl(TU,TA,B,TS).
unionl([H TU] ,A, [HjTB], (H TS]) :- ! , unionl(TU,A,TB,TS).
unionl(U,A,B, (_jTS]) :- unionl(U,A,B,TS).

53

The first thing the union clause does is that it Qalls for

the list of attributes S from the schema dpta base. Then it

checks whether the lists A artd B are ordered subsets of s. If

it is so, it calls the rule unionl{U,A,B.S). There are six

clauses for the predicate unionl. Prolog tries them one-by-one

unless one is satisfied. The first clause says that if B is a

null set then the union will be equal to A. The second does the

same for the case when A is a null set. The thi~d clause says

that if the first element of A,B and s is same then the union of

A and B also will have the same element as its first element and

to find the tail of the union, the same rule unionl is to be

applied to the tails of A, B and S. The fourth and the fifth

clauses say th~t if the tirst element of S matches with any of

the lists A and B, then the first element of U will also be the

same element and to find the tail of U we will have to apply

again the rule unionl to the tail of the'list whose first element

matched, the full of the other list and the tail of s. The sixth

and the last rule says that if the first elemen~ of S does not

match with that of any of A and B, then u is to be found by

applying the rule unionl to A, B and the tail of s.

The symbol · ! ' used at many places in the clauses denotes

cut. The ;cut' is a very special facility of Prolog and is used

to prevent backtracking to go beyond a particular point. In the

clauses for ·unionl' the cuts are used to ~void multiple answers

i.e. not to allow the program to look for another answer once it

has found the value of U.

54

5.2.3 Closure of ~ set of attributes

The closure of a set of attributes X with respect to a set

of functiohal dependencies is the set. of all attributes A such

that X --> A can be deducted by the FD axioms. This set is

obtained in our Prolog program by a recursive rule. At each

level, an FO is searched such that the left hand side LHS of it

is a subset of X and the right hand side RHS is not a subset or

X. When such a dependency is found, the RHS contribu'tes its new

attributes to the closure and the algorithm is recursively called

on the new set built as the union of X and RHS. Tpe clauses

are

closure(REL,X,RESULT) :- fd(REL,LHS,RHS), sub$et(LHS,X),
not(subset(RHS,X)),
union(U,X,RHS,REL), !,
closure(REL,U,RESULT).

closure(REL,X,RESULT) :- RESULT = X.

It is the first rule that goes ih the recursive process.

The second rule becomes active only when the modified set X has

become so b~g that no FD satisfies the conditions of the first

rule. The second rule then assigns the value of X to RESULT.

Hence in RESULT the closure of the initial set X comes.

5.2.4 Elimination of Extraneous Attributes

An attribute is extraneous in an FD if it can be

eliminated from the LHS so that the n~w dependency

LHS - {A} --> RHS holds. The algorithm reducelhs does this job

of eliminating extraneous attributes from the LHS of an FD. It

55

looks for an attribute A of the IJIS., builds tne difference Z

between IJIS and A, evaluates the closure of z artd tests whether

RHS is a subset of this closu:re. If so, the attribute A is

extraneous ai)d the reducelhs rule is recursive evaluated on z.
When no further :reduction is possi}?le the second rule of

reducelhs sets the value of the NEWIJIS equal to z. The rules are

as follows

reducelhs(REL,IJIS,RHS,NEWIJIS) :- elem(A,IJIS), mintisl(Z,LHS,A),
not (equal (Z, [])) ,
closure(REL,Z,ZCLO),
subset(RHS,ZCLO), !,
reducelhs(REL,Z,RHS,NEWIJIS).

reducelhs(REL,LHS,RHS,NEWLHS) :- NEWLHS = LHS.

Another rule elimattr does the job Of calling each FD one

by one, applying reducelhs on it, checking whether the LBS of the

FD has been changed.· afther applying reducelhs and if so

retracting the earlier FD from the database and asserting the new

FD i.e. the FD with NEWIJIS. The rule is as follows :

elimattr (REL)

elimattr(REL)..

:- fd(REL,LHS,RHS),
reducelhs(REL,IJIS,RHS,NEWIJIS),
not (equal(IJIS,NEWLHS)),
retr~ct(fd(REL,LHS,RHS)),
asserta(fd(REL,NEWLHS,RHS)), fail.

Note that while asserting the new FD, the predicate used

is asserta instead of simply assert or assertz. This ensures

that the n~wly asserted FD goes to the beginning of database so

that it· is not called again when the rule follows forced

recursion due to the predicate fail.

56

5.2.5 Elimination of Redundant FDs

The rule elimreduhdfds does the job of eliminating all the

redunant FDs i.e. the FDs whose elimination from the set of FDs

'F' does not alter the closure of F. The first rule calls each

FD one by one and retracts it from the data base temporarily.

Now it calculates the closure of it's LHS with respect to the new

set of FDs. If it•s RHS belongs to the closure of it's LHS with

respect to this new set of FDs, this ~eans that this particular

FD is redundant. In this case, it does not put the FD baok to

the data base and calls for another FD. But if RHS does not

belong to the closure of LHS, this means that this particular

FD's removal has changed the FD-closure, and hence the rule first

puts back the FD to the data base and then calls for another FD.

When all the FDs ate checked, the second rule makes it tr~e and

the process ehds.

elimredundfds(REL) :- fd(REL,LHS,RHS),
retract(fd(REL,LHS,RHS)),
closure(REL,LHS,Z),
choice(REL,LHS,RHS,Z),
fail.

elimredundfds(REL).

choice(REL,LHS,RHS,Z) :-not (subset(RHS,Z)),
asserta(fd(REL,LHS,RHS)).

choice(REl,LHS,RHS,Z) :- subset(RHS,Z).

Note that the rule elimredundfds calls for another rule

choice because the Turbo Prolog doesn't allow the use of the ·ori

operator·;' in the clauses. The first clause of choiee becomes

operative when RHS is not a subset of z and causes the FD to be

57

assert.ed back to the dat~base. While the second C:::lause of

choice becomes operative only if RHS is found to be a subset of z
and this clause does nothing, just goes true.

5.2.6 Bernstein's Algorithm

As we have discussed in the previous chapter . the

Bernstein's Algorithm for converting 'an unnorrnalized relation to

a set of 3NF relations, consists of six steps. In line with

that, our Prolog implementation of the Bernstein's Algorithm also

consists of six steps. They are as follows :

Step ~. The first steps consists of eliminating the extraneous

attributes from the FDs in the functional dependencies set F.

This simply means that all we have tq do in the stepl is to call

the predicate elimattr. Thus the stepl will be :

stepl(REL) :- elimattr(REL).

Step ~. This step consists of finding a non-redundant cover of

the FDs. This job will be done by the rule elimredundfds. Thus

the step2 will be :

step2(REL) :- elimredundfds(REL).

This step consists of partitioning of the set of

dependencies into groups with identical ·lett hand sides. Two data

bases viz. group(sym,listoflists) and clo(syrn,list,list) are used

here. The fact group stores the 1 ist of LHSs of . a particular

group formed for a relation REL and the fact clo stores the

58

closure of a particular list of attributes. The cldsure of each

LHS is stored as this is going to be used in step4. The qlauses

fdr step3 are as follows :

step3(REL) :- fd(REL,LHS~_), not (group(REL,[LHS])),
asserta(group(REL,[LHS])),

step3(REL).

closure(REL,LHS,CLO), asserta(clo(REL,LH~,CLO)),
fail.

The first rtile of step3 looks at each FD and if no group

already exists with same LHS it asserts a group for that. Also

it finds the closur~ of this LHS and stores in the data base clo.

When all the fDs are exhausted the second rule makes it true.

Step _!. This step consists of merging the groups with equivalent

keys. Two keys X and Y are equivalent if each is functionally

dependent on the other. As we have already expl~ined, the

merging is done by first assigning a dependenc:::ie::; set J : = b.

The we look for equivalent keys. As soon as two equivalent keys

X and Y are discovered, we merge the groups based on these keys

and also add the FDs X --> Y and ~ --> X to the set J while

removing the . same from the original dependencies set H. The

Prolog code goes as follows :

step4(REL) :- clo(REL,Ll,LlCLO), clo(REL,L2,L2CLO),
not (Ll=L2), subset(Ll,L2CLO), subset(L2,L1CLO),
not (alreadyexistsgroup(REl,Ll,L2)),
merge(REL,Ll,L2), .
asserta(fdj(RELjLl,L2·)), asserta(fdj(REL,L2,Ll)),
fail. ·

step4(REL) :- clo(REL,L,LCLO), retract(clo(REL,L;LCLO)), fail.

step4(REL) :- fdj(REL,L,R), fd(REL,L,A), subset(A,R),
retract(fd(REL,L,R)), fail.

59

merge(REL,Ll,L2) :- group(REL,Gl), listelem(Ll,Gl),
group(REL,G2), listelem(L2,G2),
retract(group(REL,Gl)),
retract(group(REL,G2)),
append2(Gl,G2,NEWGROUP),
asserta(group(REL,NEWGROUP)), !.

alreadyexistsgroup(REL,Ll,L2) :-
group (REL, G),
listelem(Ll,G),listelem(L2,G)

A new database fdjCsvm.list,listl has been introduced here

and corresponds to the set of. d.ependehcies J (iiscussed in the

algorithm. Whenever the equivalent keys are discovered, groups

are merged using the merge predicate which merges two groups with

given lliSs. ·The rule ·merge(REL,Ll,L2) ', looks for groups Gl

and G2 such that Gl is based on a set of ~eys of which Ll is one

and similarly · G2 on a set of keys containing 1.2, ('ind retracts

both the groups while asserting the group containing tpe union of

the sets of keys of the groups Gl and G2. The alreadyexistsgroup

predicate checks whether such a group alrE7ady exists so that

there is no need·for merging the groups.

Step ~. This step eliminates the transitive dependencies,

unwantedly introduced in the combined set of dependencies due to

the step4 of merging groups. For this, we introduce temporarily

the dependencies in the set J to the original set F. Then we

take up, one by one, the original dependencies in the set F i.e.

not introduced just now and check whether its removal has caused

any difference in the closure of the dependencies. The closure

is found with restpect to all the dependencies now present in the

set F except the one just now retracted. If the closure of

60

dependencies is found to be unaffected, this means that the FD

was transitive and hence is not put back. At the same time the

LHS of the FD is eliminated from the group irt which it exists.

The clauses are as follows :

step5(REL) :- fdj(REL,L,R), not (fd(REL,L,R)),
assertz(fd(REL,L,R)), fail.

step5(REL) :- fd(REL,L,R), not (fdj(REL,L,R)),
retr(REL,L,R),
closure(REL,L,Z),
choice2(REL,L,R,Z), fail.

step5(REL) :- fdj(REL,L,R), retract(fd(REL,~,R)), fail.

step5{REL). l
I

retr(REL,L,R) :- retract(fd(REL,L,R)), !.

f . ~ b k The 1rst clause of the rule stepS stores ac the FDs

present in J to the set F. The second clause takes one FD from

the set F at a time and checks that it is not present in the set

J. Then it retracts the FD from F, finds the closure Z of its

LHS and then Call choice2. The third clause retracts the FDs

temporarily put in the set F. It is to be noted that we have not

applied simply the predicate lretract. but instead have defined

another rule retrCREL.L.R} which performs a retract(fd(REL,L,R))

followed by a cut i.e. · ! 1 • This ens~res that the program does
f

not retract the same • FD which it has just now reasserted and

hence ruling dut any pos~ibility of the program into entering an

infinite loop. The choice2 predicate has the following clauses :

choice2(REL,L;R,Z) :-not (subset(R,Z)), asserta(fd(REL,L,R)),
I •

choice2(R~L,L,R.Z) :-

I . .
subset(R,Z), elimin(REL,L),
! :

61

elimin(REL,L) :-not (fd(REL,L,_)), group(REL,G),
listelem(L,G), retract(group(REL,G)),
listminusl(A,G,L), not(equal2(A,[])),
asserta(group(REL,A)), !.

elimin(_,_).

The first clause of choice2 becomes active if the RHS of

the retracted .FD is hot found to be the subse~ of the closure Z

of its LHS and it asserts back the FD to the set F. The second

clause becomes active if the RHS is found to be the subset of z

and ·calls the predicate elimin which in turn eliminates the LHS

from the group which contains it.

I
step §.. The sixth and the final step consists of the

construction of relations from each of the groups that we have

after the elimination of transitive dependencies. The various

steps involved in forming the relations are as follows : First we

select a group, then make name for the required relation, then

find the set of attributes i.e. the context for tnis relation and

then assert some of the keys for this relation. The various

rules to carry out these functions are . makename, make schema and

assertsomekeys.· The actual clauses are as follows :
. I

step6(REL} :- step6b(REL,O).

step6b(REL,N) :- group(REL,G), NEWN = N + 1,.
makename(REL,NEWN,NEWREL),
makeschema(REL,NEWREL,G),
assertsomekeys(NEWREL,G),
assertz(decomp(REL,NEWREL)),
assertz(in3nf(NEWREL)),
!, step6b(REL,NEWN).

step6b(REL,_) :- killmod~fiedfds(REL),
reassertrememberedfds(REL) .

. 62

The only work the predicte step6 CREL) does is that it

calls another rule step6b CREL. 0). The predicate step6bCREL,N)

first of all chooses a Group and then creates a name for the

relation to be formed corresponding to this Group. The name of

the relation is formed by the predicate makename and depends on

the integer N· The predicate makeschema creates the context for

the new relation and asserts the same in the database schema.

Some keys are asserted by the predicate assertsomekeys. Finally

the current Group is retracted and the rule step6b is recursively

called again with an incremented 'N 1 • The rules makename 1

makeschema and assertsomekeys are as follows

makename(REL 1N1NEWREL) :- appendchar (REL1 1 1
1 NREL) 1

Suffix= N + 96 1 -

char_int(A1Suffix)1
appendchar(NREL1A1NEWREL).

makeschema(REL1NEWREL,G) :- collect(REL,G,NEWSCHEMA),
assertz(schema(NEWREL,NEWSCHEMA)).

assertsomekeys(NEWREL1G) :- listelem(K1G) 1
assertz(key(NEWREL 1K)) 1

fail.
assertsomekeys(_,_).

Tne rule makename makes use of another predicate

appendchar and a built in predicate char int. The pr~dicate

·char int' is a type conversion predicate.

appendchar(sym,char.newsym) performs the function of appending

the character ·char'
1
to · sym' and assigning it to · newsym' if

newsym is not already bound. ·suffix' is an integer equivalent

of the suffix required for the NEWREL and is obtained by adding

96 to N because the ASCII code for . a' is 97.

char int(A,Stiffix) assigns the character equivalent of Suffix to

63

the variable A which is finally appended to REL to give NEWREL by

using appendchar.

Since the LHS coinmoh to all (o:z:- some) of the FDs in a

group is a key to the relation formed for that group~ the

predicate assertsomekeysCNEWREL.G) looks for the LHSs associated

with the group G and then asserts these as keys of NEWREL.

The predicate makeschema makes use of another predicate

collect to find the context of the relation which is to be

constructed for the group G and tpen qsserts the same ih the

schema database. The clquses for the predicate collect are as

follows

collect (REL, G, RESULT).· :- schema(REL,S),
collect2(REL,G,S,[],RESULT).

collect2(REL,G,TOTEST,ACCEPT,RES) :-
elem(A,TOTEf3T),
minusl(NEWTOTEST,TOTEST,A),
choice3(REL,G,A,~CCEPT,NEWACCEPT),
collect2(REL,G,NEWTOTEST,NEWACCEPT,RES).

collect2(_,_,_,ACCEPT,RES) :-RES= ACCEPT.

The predicate collect calls another predicate

collect2CREL.G.TOTEST.ACCEPT.RES) whose function is to store in

RES the context of the relation correstponding to the Group G.

TOTEST is the set of attributes from the context is to be found

out and ACCEPT is a set of attributes which all form a part of

the context. The set ACCEPT·is assigned initially the null value

i.e. 6 while the set TOTEST is assigned the value equal to the

context of the relation REL. The set ACCEPT gradually builds up

64

as the rule collect recursively calls itself. Finally, when the

set ACCEPT is fully built, the second clause of collect assigns

its value to RES.

The third clause of the rule step6b calls the predicates

killmodifiedfds and reassertrememberedfds which do the job of

retracting all the FDs from the sets F and J and then storing

back the original FDs to the set F.

5.2.7 Tsou ~Fischer~ Algorithm

The Tsou & Fische~'s algorithm for converting an

unnormalized relation directly in a set of BCNF relations was

explained in the previous chapter. The predica,te bcnf(REL) does

this job of converting the ·relation : REL into BCNF relations.

This predicate bcnf first of all makes a choice with the help of

choice7a predicate. The choice is that if the schema of REL

contains only two elements then no decomposition is needed since

a relation with two elements is alsways in BCNF. But if the

schema of REL cotains more than two elements, choice7a calls for

another rule bcnf2. l:n the rule bcnf2 (REL. X I Y I OECOMPl , REt is

the relation to be decomposed, X is the active set AS of the

algorithm, Y is a listoflists which contains the list of

contexts of relations so far decomposed and DECOMP is a

·listoflists which will finally contain lists of contexts of

all the relations {inally obtained after decomposition. Thus the

values of X and Y initially supplied to bcnf2 are S where S is

the context of the original relation REL and the null set (]

respectively. The clauses are as follows :

65

""''-"-'- \ r>..J.:.o.U/ o - i:>'-"ll'C!LIQ \ nL.LJ I u J 1 \.,;UU.L\.,;~ f·C1 ~ ~L.LJ 1 L:> I l J I ULLUJ.Vl.t') I

createnewrels(REL,DECOMP,O).

choice7a :- equal(S,[_,_]), !, equal2(DECOMP,[S]~.

choice7a :-not (e~al(S.[_,_])), !, bcnf2(REL,S,[],DECOMP).

bcnf2(REL,X,Y,DECOMP)

bcnf2(REL,X,Y,DECOMP)

bcnf2(REL,X,Y,DECOMP)

:- equal (X,[_,_]), ! ,
append2(Y,[X],DECOMP).

:-not (check(REL,X)),
append2(Y,[X],DECOMP).

:- reducel(REL,X,FINAL Y,FINAL A),
~inusl(NEWX,X,FINAL=A), -
append2 ([FINAL_Y], Y, NEWY), ! ,
bcnf2(REL,NEWX,NEWY,DECOMP).

There are three clauses for the bcnf2CREL,X.Y.DECOMP)

rule. The first clause checks whether the active set X has been

reduced to two elements. If so it adds the active set the

listoflists Y to give the final DECOMP. The second clause calls

for the predicate.check which checks whether any element of X can

be generated with the help of the other elem~nts. If none can be

so generated it adds X to the listoflists Y to give DECOMP. The

third clause is called if such an element exists in X. First of

all it calls the. predicate reducel(REL.X.FINAL Y.FINAL A).

FINAL Y of reducel corresponds to the set B of the algorithm and

FINAL A corresponds to. the element E of the algorithm (see

section 4. 4) . Thus for the active set X, the rule reducel

calculates the set B and the element E which are here called

FINAL_Y and FINAL_A respectively. The predicate reducel in turn

calls another reduce2 which is recursive in nature and goes on

reducing the active set temporarily and checks whether it can be

reduced further. Ultimately it stores the final values in the,

66

variables FINAL Y and FINAL A.

The rule createnewrels called by the predicate bcnf does

the job of extracting· the lists of attributes from the

listoflists DECOMP one by one and creating a relation for each.

While creating the relations the predicates makebcnfname r

addknownkeys and assertdecomp are used respectively to create the

names for these relations, adding any keys to that relation using

the result that in a BCNF relation every determinant is a key,

and in the end asserting the knowlegde decomposition by asserting

facts to the database decomp. A fact decomp(REL,NEWREL) means

that the relation NEWREL has been creating after applying some

normalization process to the relation REL.

s.2.a Minimizing ~ decomposition

As we have seen the decomposition algorithms ·many times

create more relations than are needed. For example, in section

4. 4 we showed that the Tsou & Fischer's algorithm produced an

extra unwanted relation R 5. In fact in this example, the

relation R 5 was a subset of the relation R 2. In such cases

when the decomposition produces a relation that is contained in

another relation similarly produced, this unwanted relation can

be easily removed using the minimize predicate. The minimize rule

first takes up two of the decomposed relations and checks whether

the context of one is contained in that of the other. If it is

so it eliminates the former relation from the schema of the

decomposition. The clauses for it are as follows

67

li

minimize(REL) :- decomp(REL,RELl), decomp(REL,REL2),
not (RELl = REL2),

minimize(REL).

schema(RELl,Sl), schema(REL2,S2),
subset(Sl,S2),
purge(RELl), retract(decomp(REL,RE~l)),
fail.

purg~(REL) :- retract(schema(REL,_)), fail.
purge(REL) :- retract(key(REL,_)), fail.
purge(REL) :- retract(fd(REL,_,_)), fail.
purge(REL) :- retract(in3nf(REL))~ fail.
purge(REL) :- retract(inbcnf(REL)), fail.
purge (REL).

The job of eliminating a particular relation is done by

the rule purge. purgeCREL) retracts all the inform~tion about

the relation REL frpm various data bases viz. schema, key, fd,

in3nf and inbcnf. After all the initial .o_urge rules have

retracted all the facts related with REL from the various

databases, the last clause of purge becomes active and makes it

true.

5.2.9 Tanaka•s Algorithm for 4NF

The Tanaka's algorithm for converting an unnormalized

relation containing both FDs and MVDs to a set of 4NF relations

using the decomposition approach was explained in the previous

chapter. As was mentioned there, this algorithm c0nsists of four

steps viz. calculating the set F', then the sets M' and M" and

finally decomposing the relation with the help of the

dependencies set M". The various steps are implemented as

follows :

This step calculates the FD set F' = FD (:D) where

D = {FDl-3, MVDO, FD-MVD3}. The rule fm3(REL) applies the axiom

FD-MVD3 repeatedly to the dependencies of the relation REL to

generate more FDs and continues until no more FDs can be

generated. The axion FD-MVD3 is an FD-MVD interaction axiom and

says that " if X --> Y, U --> --> V in W and X w, then the

following FD holds
U (V n X) --> Y n V ". The rule .fnQ. first

chooses an FD and an MVD.
Then the predicate getw gets the

context of the MVD chosen. If the LHS of the FD belongs to the

context of the MVD, the rule proceeds; further.
The predicate

common finds the intersection of two sets. Before ~sserting the

FD u (V n X) --> Y n V, the rule makes three checks using the

predicates checkl, check2 and check3.
These check-predicates

check whether the FD we want to assert is trivial or is contained

in some other already existing FD. In the end the fm3 clause

terminates in the predicate fail. This forces the rule to go on

repeating itself until no more FDs cart be asserted.
Then the

second clause of fm3 sets it true. The clauses for frn3 are given

as follows :

fm3 (REL) :- fd (REL, Ll, Rl), mvd (REL, L2, R2),
getw(R~L,L2,R2,W), subset(Ll,W),
cornmon(Al,R2,L1), common(Bl,R2,Rl),

fm3(REL).

not (equal(Bl,[J)), union(U,L2,Al,REL),
not(fd(REL,U,Bl)),
not (checkl(REL,U,Bl)),
not (check2(REL,U,Bl)),
not (check3(REL,U,Bl)),
assertz(fd(REL,U,Bl)),
fail.

The application of the rule fm3 to the set of the given

69

dependencies introduces some unwanted FDs in the dependencies

set. The rules remextral and remextra do the job of removing such

unwanted FDs. The rule remextral consists of three clauses. The

first clause removes all the trivial FDs i.e. th~ FDs in which

the RHS is a subset of the LHS. The next two clauses remove the

FDs which are contained in some other FD. The ru~e remextra does

two functions. !t merges the FDs with identical LHSs and

modifies the FDs whose LHS is a superset of that of some other FD

while whose RHS is not. In the remextra calls remextral to

remove any unwanted FD it might have introduced in the system.

The predicate f3a enforces the axiom FD3 in a modified

form. It generates new FDs using the transitivity property of

the FDs and goes on doing it until no more FDs can be enforced.

The clauses for f3a are as follows :

f3a(REL) :- fd(REL,A,B), fd(REL,C,D), subset(C,B),
union(U,B,D,REL), not (fd(REL,A,U)),
assertz(fd(REL,A,U)), fail.

f3a(REL).

After applying the rule f3a to the set of dependencies it

becomes once again necessary to call remextra to remove the

unwanted FDs generated.

The second step of the Tanaka's algorithm consists of

finding the intermediate set M'. In this set, the dependencies

are reperesented in the standard form, as discussed in the

previous chapter, represented as follows :

X . . [YO] Yl I Y2 I . . . I Yn ,

70

where X --> YO and X --> --> Yi for any i > 0.

We introduce two databases mdf{sym,list,list) and

mdmCsvm,list,list) here. Corresponding to a sampl.e dependency in

the standard form as shown above, with relation say • I r , the

following facts will have to be asserted to these new databases :

md.f (r, [x] , [yo)) ,

mdm(r,[x),[yi]), for each i > o.

It should be noted that as usual, the attribute names

had to be converted to lower case.

The process for obtaining M1 is discussed in the section

4.4 of the last chapter. The rule mdash is used in the program

to. carry out this job. When the rule mdash is executed, the

intermedia'te set M 1 is obtained with dependencies in it

represented in the standard form i.e. represented with the help

of facts in the data bases mdf and mdm.

The step 3 of the Tanaka 1 s algorithm consists of

calculating the dependencies set M" = M 1 : E i.e. the closure

of the intermediate set M1 with respect to E where E is the

.axioms set {MVD0-5}. The MVD6 axiom has been neglected in this

algorithm as it is usually neglectable in most of the pratical

applications. Also we have mentioned that the axiom MVD7 is

equivalent to the axioms MVD3~5 and so the set E can be taken

as {MVD0-2, MVD7} also. It was found, however, while writing the

prolog code for step 3 that it becomes easier to find the set M"

if we use both MVD3 and MVD7, although theori tically MVD7

includes MVD3 . ·

71

The rule m7 is used to apply. the axiom MVD7 to the

intermediat.e set M'. This rule undergoes forced recursion

because its first clause terminates in,a fail. In each iteration

it asserts new facts to the databases mdf and mdm. It also

asserts facts to the database mvd2 every time it asserts to mdm.

In fact mvd2 keeps the knowledge of which new mdm facts are

introduced by the rule m7. Only when no more dependencies are

assertable, does· this clause terminate and the second clause now

makes the rule true. In the process of enforcing axiom MVDT, we

introduce many unwanted dependencies. To clean the new set of

dependencies, rules cleanl and clean are used.

The rule cleanl simply removes the duplicate mdm 1 s and

mvd2's introduced by the rule m7. Tne clauses for cleanl are as

follows :

cleanl(REL) :- mdm(REL,L,R), retr2(REL,L,R),
not (mdm(REL,L,R)), asserta(mdm(REL,L,R)), fail.

cleanl(REL) :- mvd2(REL,L,R), retr3(REL,L,R),
not (mvd2(REL,L,R)), asserta(mvd2(REL,L,R)), fail.

cleanl(REL).

retr2(REL,L,R) :- retract(mdm(REL,L,R)), !.
retr3(REL,L,R) :- retract(mvd2(REL,L,R)),!.

It can be seen that in the cleanl clauses, we have used

predicates retr2 and retr3 instead of directly using the retract

predicate. In the retr2 and retr3 rules, the retract command is

followed by a cut i.e. • ! I • This is done to ensure that the

program doesn't retract a fact just asserted by it and thus

ensuring an impossibility of it's entering into an infinite loop.

72

The first clause of the rule clean calls the rule cleanl.

The second clause of it retracts those mdm Is whose LHSs are

supersets of some other mdm. It's third clause partitions the

RHS of those mdm's who have another mdm having the same LHS and

an RHS which is a subset of their's.

After clean~ng the dependencies generated by the rule mz,
the rule m3 is used to enforce a particular case of axiom MVD3 on

the dependencies set. This axiom is the Transitivity axiom for

MVDs and states that : 11 if X --> --> Y in Z and Y --> --> W in

z then the following MVD also holds viz. X --> --> W - Y in Z

II The clauses for the rule m3 are as follows :

m3(REL) :- mdm(REL,L,R), context(REL,L,R,C),
mvd2 (REL,X, Y),

m3 (REL) .

subset(X,R), subset(Y,R),
minus(M,R,Y), not (equal(M,[])),
assertz(mdm(REL,L,Y)),
assertz(mdm(REL,L,M)),
fail.

It is to be noted that while applying the axiom MVD3 to

the set of dependencies, m3 considers only the newly asserted

rndrn' s i.e. the mvd2 's for generating new mdm' s. context is a

database which contains information about the contexts of various

rndrn's.

The rule m3 also introduces unwanted dependencies which

are to be removed by using the rule clean again. In the end the

rule cleanup retracts all the. facts from the temporarily used

databases viz. rememb, context and mvd2. cleanup also retracts

those rndrn's who do not have an rndf with the same LHS.

73

The rule putspecialmdfs puts in the set M", the mdf's and

mdm's corresponding to those MVDs whose context is equal to the

schema of the original relation REL, and also which satisfy these

two conditions : (i) No FD should have an LHS which is superset

of the LHS of this MVD. (ii) No MVD should have an LHS which is

superset of the LHS of this MVD.

step .!· .The final step in the Tanaka's algorithm consists of

decomposing the initial relation REL into 4NF relations with the

help of the dependencies set M".

this job here. make4nfrels

The predicate make4nfrels does

calls a similar predicate

make4nfrelsl which in turn completes the process with the help of

two predicates getlowestl and use. The rule getlowestl selects

the minimal dependency satisfying all the conditions discussed in

the algorithm in the last chapter. The rule use; after that,

creates new relations with the help of that minimal dependency,

retracts that dependency and recursively calls make4nfrelsl for

each of the newly created relation. when all the newly created

relations are converted to 4NF, the process ends.

After obtaining the decomposition, the rule minimize is

used to eliminate any relation which is contained totally in

some other decomposed relation. And finally, printdecomp prints

the decomposition i.e. the details of all the newly created ·4NF

relations.

74

APPENDIX - 1.

1* RESEARCH PROJECT. ••••••••••••• • ••• *I

I*
I*

I*

I*

Program for Automatic Normaliz~tion
up to 4NF

by

SANDEEP GOEL

I* 1990 *I

*I
*I

*I

*I

1* Turbo Pro log 2.0 version •••. · .•.•..•.•..•.•. , • . *1

nowarnings
code=3000

domains

file = resfi le
sym = symbol
list = sym*
listoflists = list*
int = integer

database

schema(sym 1 list)
group(sym 1 listoflists)
rememberfd(sym 1 list 1 list)

decomp(sym 1 sym)
key(sym 1 list)

m v d (s y m 1 l i s t 1 l ·i s t)

mdm(sym 1 list 1 list)
context(sym 1 list 1 list 1 list)
mdmtemp(sym 1 list 1 list)
allkey(sym)
mvdtemp(sym 1 list 1 list)

75

-

fd(sym 1 list 1 list)
clo(sym 1 list 1 list)
fdj(sym 1 list 1 list)

in3nf(sym)
inbcnf(sym)

mdf(sym 1 list 1 list)
rememb(sym 1 list)
mvd2(sym 1 list 1 list~
in4nf(sym)
remembmdf(sym 1 list 1 list)
store(list)

predicates

9,
g3
gS
go a l 1 a

goal1
goal3
goal~

goal2a

equal (list, list)
elem(sym, list)

subset(l ist,l ist)
union 1 C list, list, list, list)
minus1Clist,list,sym)
appendClist,list,list)

g2
g4
g6

goal2
goal4
goal6

equal2Clistoflis~s,listofl.ists)

list e l em C list, lis. to f lists)

attr(list, sym)
union(list,list,list,sym)
minus(list,list,list)
appendchar(sym,char,sym)

listminus1Clistoflists,listoflists,list)
append2Clistoflists,listoflists, listoflists)

closure(sym,l ist,l ist)
elimattr(sym)
choice 1 (s ym, l 1st, l is t, l is t)
make3nfCsym)

remembercovering(sym)
step2(sym)
step4(sym)
step6(sym)
printdecomp(sym)
alreadyexistsgroup(sym,list,list)
retr(sym, list, list)

writegivenrelation(sym)
writeallmvds(sym)

makename(sym,int,sym)
makeschema(sym,sym, listoflists)

reducelhs(sym,list, list, list)
elimredundfds(sym)
choice2(sym,list,list,list)

step1(sym)
step3(sym)
stepS(sym)
step6bCsym,int)
merge(sym,list,list)
elimi~Csym 1 list)

writeallfds(sym)
writeallrhs(sym,list)

reassertrememberedfds(sym)
killmodifiedfds(sym)

assertsomekeys(sym,listoflists) c~llect(sym,listoflists,list)

collect2(sym,listoflists,list,list,list)
isvalidattribute(sym,listoflists,sym)
choice3(sym,listoflists,sym,list,list)
choice4(sym,list,list)
choice4a(sym,sym, list)

minimize(sym)
makebcnf(sym)
reduce1(sym,list,list,sym)
check(sym,l ist)

purge(sym)
bcnf(sym)
reduce2(sym, list,sym,list,sym)
choice5(sym, list, listoflists)

b c n f 2 C s y m, l i s t , l i s ·to f l i s t s , l i s to f l i s t s)
createnewrelsCsym, listoflists, integer)

makebcnfname(sym,integer,sym)
addknownkeys(sym,sym)
printallkeys(sym)
choice8(sym)
choice10(sym)

76

assertdecomp(sym,sym)
printrelationC•ym)
printallfds(sym)
choice9Csym)

make4nf(sym)
fm3(sym)
common (list, list, list)
remextrm1(sym)
f3a(sym)
check2(sym,l~st,list)

mdash(sym)
check4(sym,list,list)
checkS(sym,list,list)
writemdash2(sym,list)
getallcontexts(sym)

m7(sylli)
check6(sym,list,list,list)
clean1(sym)
retr2(sym,list, lisl)
cleanup1(sym)

getw(sym,list,li~t,list)

remextra(sym)
getasubset(list,list)
check1(sym,list,list)
check3(sym,list,list)

r t s i de < s y m , l i s t , l i ·S t >
choi ce12C list, list, list, list)
writemdash(sym)
wr Hefdash (sym)
writemdoubledash(sym)

get~2(sym,list,list,list)

clean(sym)
m3(sym)
retr3(sym,list,list)
cleanup(sym)

choice15(sy~,list, list,list,list,list,list,list)

make4nfrels(sym)
use(sym,sym,list,integer)
getlowest(sym,sym, list)
getlowest2(sy~,sym, list)
reioadmdfs(sym)
choice17(sym,sym,list,list,list)

getcontext(sym,list,list)
check8(sym,list)
putspecialmdfs(sym)

c l ause·s

make4nfr~ls1(sym,sym)

use 1 <, s ym, s ym, l i s t , 1 n t e g e r)
getlowest1(sym,sym,list)
check7Csym,listllist)
choice16(sym,sym,list,list,list)
enQugh(sym)

getcontext2(sym,list,listflist)
check9(sym,list)
assertmdms(sym, list)

I* equal(L1,L2) equals two lists L1 and L2 *I

equal(£AIBl,£CIDl) :- A=C,equal(B,D).
equal([Al;[B]) A=li.
equal([],[]).

I* equal(LL1,LL2) equals two listoflists LL1 and LL2 *I

equal2(£A!Bl, [CIDJ) :- equal(A,C),equal2CB,D).
equal2([AJ,[B]) equal(A,B).
equal2([], [] >.

elem(E, £EI_l).
elem(E, £_!Tl) :- elem(E,T).

l istelem(E, [E l_l).
listelem(E, [_ITl) :- listelem(E,T).

77

•

subset([],_):- 1-

subset([HjTAl, [HjTBl) I ,subse~(TA,TB).

subset(A,[_jTBl) :- subset(A,TB).

attr(E,R) schema(R,S), subset(E,S).

union(U,A,B,REL) sch~ma(REL,S), subset(AiS), subset(B,S),

union1(U,A,B,S~.

union1(A,A, [l,_) :- 1.

union1(B, 0 ,B,_) :- I.

union1([HjTUl, [HjTAl 1 [HjTBl, [HjTSl) I ,union1(TU,TA,TB,TS).

union1([HjTUl, [HjTAl ,B, [HjTSl) :- I ,union1(TU,TA,B,TS).

union1([HjTUl ,A, [HjTBl, [HjTSl) :- I ,union1(TU,A,TB,TS).

union1(U,A,B, [_jTSl) union1(U,A,B,TS).

I* minus1(R,A,B) means R

minus1([l,[l,_) :- !.

minus1(TA,[BjTAl,B) :- !.

A - [B l *I

minus1([HAjTX], [HAjTA] ,B) minus1(TX,TA,B).

listminus1([],[],_) :- !.

listminus1(TA,[BjTA],B) :-I.

listminus1([HAjTXl, [HAjTA] ,B) listminus1(TX,TA,B).

I* minus(R,A,B) means R = A - B *I

minus(R,R, []) :- I.

minus(Z,A,[HBjTBl) :- minus1(R,A,HB), minus(Z,R,TB).

I* append (X,Y,Z) means Y+X --> Z *I

append([] ,L,l).

append([XjL1] ,L2, [XjL3]) • append(L1,L2,L3).

append2([] ,l,L).

a p p e n d 2 ([X JL 1 ·l , l 2 , [X jL 3 l) a p p e n d 2 (l 1 , l 2 , l 3) •

I* appendchar(Str,Chr,Newstr) appends character Chr

to string Str and stores in string Newstr

appendchar(SYM,CHR,NE~SYM) str_char(B,CHR),

concat(SYM,B,NE~SYM).

78

*I

closure(REL,X,RESULT) fd(REL,LHS,RHS), subset(LHS,X),
not (subs•t<RHS,X)),

·union(U,X,RHS,REL), I,
closure(REL,U,RESULT).

closure(_,X,RESULT) RESULT = X.

el imattr(REL)
~rite("Elimination of extraneus atributes from the cover of "),
write(REL), write(~ : "), nl,nl, fd(REL,LHS,~HS),
reducelhs(REL,LHS,RHS,NEWLHS);
n 6 t < L H s = N.E W L H s > , retract <f d < R E L , L H s, R H S)) ,
asserta(fd(REL,NEWLHS,RHS)),
write(" Extraneous attribute~ fdund in the dependency "),
write(" "),write(LHS), write(" --> ~), write(RHS),
nl,nl,write(" •• The new left hand side = "), write(NEWLHS),
n l, fa i l .

el imattr(REL) nl,write("* all extraneous attributes eliminated"),nl,nl.

reducelhs(RE~,LHS,RHS,NEWLHS)

elem(A;LHS),minus1(Z,LHS,A),
flot (equal(Z,(J)),
closure(REL,Z,ZCLO), subset(RHS,ZCLO),
! , reducelhs(REL,Z,RHS,NEWLHS).

reducelhs(_,LHS,_,NEWLHS) NEWLHS=LHS.

redundant FOs from the cover of ">,
"), nl, fd(REL,LHS,RHS),

elimredundfds(REL)
write("Elimination of
write(REL), write("
retr(REL,LHS,RHS),
closure(REL,LHS,Z),
choice1(REL,LHS,RHS,Z),
fa i l.

eli mredundfds (·- nl,write("* all reduhd~nt fds eliminated"),nl,nl.

choice1(REL,LHS,RHS,Z)

choice1(_,LHS,RHS,Z)

not (subset(RHS,Z)),
asserta(fd(REL,LHS,RHS)).

subset(RHS,Z), nl, writet"redundant fd "),
write(LHS), write(~ --> "),

write(RHS.), write(~ eliminated "),rtl.

79

I* *I

I* Decomposition into 3NF *I
I* *I

1*•.....•. BERNSTEIN'S ALGORITHM ••..............•....• */
I* *I

make3nf(REL) nl,nl,

I*
I*

write(" Applying BERNSTEIN'S ALGORITHM for conversion"),
write(" of ",REL," into 3Nf"),nl,
write(" -------- ==~====~~============ -·--------"),
write(" ---">,nL,nl,nl 1

step1(REL), step2(REL), step3(REL),
step4(REL), step5CREL), step6(REL), printdecomp(REL).

step 1 Eliminating extraneous attributes ---- *I
*I

s t e p 1 (R E L) :, - w r i t e (" S t e p 1 ") , n l , w r i t e (" _ _ _ _ ") , n l , n l ,
nl, elimattr(REL).

I*
I*

step2(REL)

step 2 Eliminating redund~nt FDs *I
*I

nl,nl,write(" Step 2"),nl, write(" ____ ">, nl,nl,
nl, elimredundfds(REL), remembercovering(REL).

remembercovering(REL> fd(REL,LHS,RHS),
aJsertz(rememberfd(REL,LHS,RHS)), fail.

remembercovering().

I*
I*

step3(REL)

I~

step3(_) ·

step 3 Partitioning jnto groups with
identical LHSs

*I
*I

~l,nl,write(" Step 3"),nl, write(" ____ ">, nl,nl,
nl, write(" Partitiohing of the cover of ",REL),
write(" intb groups with identical LHSs"), nl,nl,
nl, fd(REL,LHS,_),

equal(A,LHS), not (group(REL, [A])), *I
not(group(REL; [LHS])) 1

asserta(group(REL, [LHSl)),
\

wrlte("Grbup formed~ based on lhs : ",LHS), nl,
closure(REL,LHS,CLO), asserta(clo(REL,L~S,CLO)),

fail.

nl, write("* partition into groups-~ompleted "),nl,nl.

80

!*

!*

step4(REL)

step4(REL)

step4(REL)

step4(REL)

step4(_).

step 4 Merging groups with identical keys ---- *!

*I

nl,nl,write(" Step 4"),nl, write(" ____ ~), nl,nl,
nl, write(" Merging groups with equivalent keys :"),
nl, nl, clo(REL,L1,L1CLO),clo(REL,L2,L2CLO),
not (L1=L2),
subset(L2,L1CLO),subset(L1,L2CLO),
not (alreadyexistsgroup(REL,L1,L2)),
write("Equivalent keys discovered : ",L1," <--> ",L2),
nl, merge(REL,L1,L2),
asserta(fdj(REL,L1,L2)i,asserta(fdj(REL,L2,L1)),
fa i l.

clo(REL,L,LCLO), retract(clo(REL,L,LCLO)),
fa i l.

fdj(REL,L,R), fd(REL,L,A), subset(A,R),
retract(fd(REL,L,A)), fail.

nl,write(" * all equivalent keys are discovered "),nl,
write(" and the groups are merged"), nl,nl;
write(~ The groups after merging are ~), nl,
group(REL,G), write(" Group : ",G), nl, fail.

merge(REL,, L1, L2) group(REL,G1),
group(REL,G2),

l istelem(l1 ,G1),
listelem(l2,G2),

retract(group(REL,G1)),retract(group(REL,G2)),
append2(G1,G2,NE~GROUP),

asserta(group(REL,NE~GROUP)) 1 '1.

alreadyexistsgroup(REL,L1,L2) group(REL,G), listelem(L1,G),
l istelem(L2,G).

!*

I*

step5(REL)

step5(REL)

step 5 Eliminating Transitive Dependencies ---- *I
*I

nl,nl,write(" Step 5"),nl, write(~ ____ "), nl,nl,
nl, write(" Elimination of transitive dependencies :"),
nl, fdj(REL,L,R),not (fd(REL,L,R)),
asse~tz(fd(REL,L,R)),

fail.

fd(REL,L,R), not {fdj(REL,L,R)),
retr(REL,L,R),
closure(REL,L,Z);

81

step5(REL)

step5(REL)

stepS(_)

retr(REL 1 L1 R)

chofce2(REL 1 L1 R1 Z) 1

fa i l.

fdjCREL 1 L1 R) 1 retract(fd(REL 1 L1 R)), fail.

write(" * transitive dependencies eliminated .") 1

nl 1 nl 1 write(" Now finally the groups are :") 1

n l 1 group< R E L 1 G) 1 w r i t e <" group : "I G) 1 n'l I fa i l •

n l.

retract(fd(REL 1 l 1 R)) 1 I •

c hoi c e 2.< R.E ~· 1 l 1 R 1 Z) not (subset(R 1 Z)); asserta(fd(REL 1 l 1 R)) 1 I.

choice2(REL 1 L1 R1 Z) subset(R 1 Z) 1 eliminCREL 1 l) 1

elimin(REL 1 l)

elimin(_ 1 _).

I*
I*

step 6

write(" II I L I • > .. , R I II eliminated") 1 nl 1

not (fd(REL 1 L1 _)) 1 group(REL 1 G);

listelem(l 1 G) 1 retract(group(REL 1 G))I
listminus1(Z 1 G1 l) 1

not (equal2(Z 1 [])) 1

asserta(group(REL 1 Z)) 1 1

Constructing Relations from the Groups ---- *J
*I

step6CREL) nl 1 nl 1 write(~ Step 6") 1 nl 1 write(" ---- "), nl 1 nl 1

nl 1 write(" Construction of relations") 1 nl 1 nl,
s t e p6 b < R El, 0) •

step6b(REL 1 N) group(REL,G),NEWN = N + 1 1

step6b(REL,_)

m•kename(REL 1 NEWN,NEWREL),
makeschema(REL,NEWREL 1 G), •ssertsomekeys(NEWREL 1 G) 1

assertz(decomp<REL 1 NEWREL)) 1 assertz(in3nf(NEWREL)),
retract(group(REL 1 G)) 1

I, step~b(REL 1 NEWN).

killmodifiedfds(REL) 1 reassertrememberedfds(REL).

makename(REL,NR 1 NEWREL) appendchar(REL,'_ 1
1 NREL) 1

SUFFIX = NR + 96 1

char_int(A 1 SUFFIX) 1

appendchar(NREL 1 A,NEWREL).~

82

makeschema(REL 1 NE~REL 1 G) • collect(REL 1 G 1 NE~SCHEMA) 1
assertz(schema(NE~REL 1 NE~SCHEMA)).

I* Collecting into RESULT the schema of the synthesized
relation associated to group G. An attribute A
belongs to the schema if it belongs to the LHS or
RHS of some fd whose LHS is in G *I

collect(REL 1 G1 RESULT) schema(REL 1 S) 1

collect2(REL 1 G1 S 1 [] 1 RESULT).

collect2(REL 1 G1 TOTEST 1 ACCEPT 1 RES) :·
elem(A 1 TOTEST) 1

minus1(NE~TOTEST 1 TOTEST 1 A) 1
choice3(REL 1 G 1 A 1 ACCEPT 1 NE~ACCEPT),

· co l.l e c t 2 (R E L 1 G 1 N E ~ T 0 TEST 1 N E ~ACCEPT 1 RES) .

collect2(_. 1 _ 1 _ 1 ACC~PT 1 RES) ·:· RES= ACCEPT.

choice3(REL 1 G 1 A 1 ACCEPT 1 NE~ACCEPT) :·
isv~lidattribute(REL 1 G 1 A) 1 ! 1

union(NE~ACCEPT 1 ACCEPT 1 [A] 1 REL).
choice3(_ 1 _ 1 _ 1 ACC~PT 1 NE~ACCEPT) :·

! 1 NE~ACCEPT = ACCEPT.

isvalidattribute{REL 1 G1 A) l istelem(L 1 G),
choice4a(REL 1 A1 L).

I******** I

choice4a(REL 1 A1 L)
choice4a(REL 1 A1 l)

fd(REL 1 l 1 R) 1 choice4(A 1 l 1 R).
fdj(REL 1 l 1 R) 1 choice4(A 1 L1 R).

choice4(A 1 L1 _)

choice4(A 1 _ 1 R)
elem(A 1 l).
elem(A 1 R).

assertsomekeys(NE~REL,G) • listelem(K 1 G) 1

assertz(key(NE~REL 1 K)) 1 fail.
assertsomekeys(_ 1 _).

killmodifiedfds(REL) fd(REL 1 l 1 R) 1 retract(fd(REL 1 l 1 R)) 1 fail.
killmodifiedfds(REL) • fdj(REL 1 L,R) 1 retract(fdj(REL 1 l 1 R)) 1 fail.
killmodifiedfds(_).

reassertrememberedfds(REL)

reassertrememberedfds(_).

rememberfd(REL 1 L1 R),
assertz(fd(REL,l 1 R)) 1

retract(rememberfd(REL,l 1 R)) 1

fail.

83

I* •-------~- step1 to step6 of
algorithm over

Bernstein's

I* minimization of a decomposition :
relations whose schema is a subset of another relation
are eliminated from the decomposition

minimize(REL) decomp(REL,REL1), decomp(REL,R~L2),

not (REL1 ; REL2), schema(REL1,S1),
schema(REL2,S2), subset(S1 ,S2),
purge(REL1), retract(decomp(REL,REL1)),

*I

*I

nl,nl, write("The decomposed relation"), write(REL1),
write(" is eliminated">, nl,nl,nl, fail.

minimize().

purge(REL)
purge(REL>
purge(REL)
purge(REL)
purge(REL>.

retract(schema(REL,_)), retract(key(REL,_)), fail.
retract(fd(REL,_,_)) fail.
retract(in3nf(REL))
retract(inbcnf(REL))

I*

fa i l •
fa i .l.

*I

I* Decomposition into BCNF *I

I* *I

1*•••..••••• TSOU & FISCHER 'S ALGORITHM ••••••••••••••••••••• • *1

I*
---------------------~-----

*I

makebcnf(REL) :- nl,nl,
write(" Applying TSOU & FISCHER 1 S ALGORITHM for conversion"),
write(" of ",REL," into BtNF 11),nl,
write(" -------- ;=;;;;;;;;;;;;=~===========

write("
bcnf(REL),

---"),hl,nl,!'ll,
printdecomp(REL).

bcnf(REL) schema(REL-,S),
choice5(REL,S,DECOMP)~

- - - - - __ - - - io)
1

nl, nl, write(11 *decomposition completed"), nl,nl,nl,hl,
createnewrels(REL, DECOMP, 0).

choice5(REL,S,DECOMP)

choice5(REL,S,DECOMP)

equal(S, [_,_]), ! , equal2(0ECOMP, [S]),
write(" Relation 11 ,REL," already in BCNF 11),

nl,nl,write("relation decomposed "),
write(S),nl.

not(equal(S, [_,_l)), I,
bcnf2(REL,S, [] ,DECOMP).

84

bcnf2(REL,X,Y,DECOMP)

bcnf2(REL,X,Y,DECOMP)

bcnf2(REL,X,Y,DECOMP)

equal(X, [_,_]),
writ!!("relation
write(X),nl.

I, append2(Y,[Xl,OEOOMP),
decomposed : "),

not (check(REL,X)),
append2([X], 'y, DECOMP),
write("relation decomposed 11),

write(X), nl.

reduce1(REL,X,FINAL_Y,FINAL_A),
minus1(NEWXjX,FINAL_A),
append2([FINAL_Yl ,Y,NEWY),!,
write(11 relation decomposed : "),
write(FINAL_Y), nl,
bcnf2(REL,NEWX,NEWY,DECOMP).

check(REL,X) e l em·(A , X) , e l em (8 , X) , no t < A = 8 > ,
minus(TESTSET ,X, tA,8l),
closur~(REL,TESTSET,CLO), elemlA,CLO).

reduce1(REL,X,FINAL_Y,FINAL_A)
elem(A,X), elem(8,X), not (A=8),
minus(TESTSET, X, [A, 8]),
closure(REL,TESTSEl,CLO), elem(A,CLO),
minus1(N~W_X,X,8), I,
reduce2CREL,NEW_X,A,FINAL_Y,FINAL_A).

reduce2(REL,X,PREVIOUS_A,FINAL_Y,FINAL_A)
elem(A,X), elem(8,X), not (A=8),
minus(TESTSET,X, [A,8]),
closure(REL,TESTSET,CLO), elem(A,CLO),
minus1(NEW_X,X,8), I,
reduce2(REL,NEW_X,A,FINAL_Y,FINAL_A).

reduce2(REL,X,PREVIOUS_A,FINAL_Y,FINAL_A) •
FINAL Y = X, FINAL A

createnewrels(REL,DECOMP,NR)

PREVIOUS A.

NEWNR = NR + 1, listelem(SCHEMA,DECOMP),
makebcnfname(REL., NEWNR, NEWREL),
assertdecomp(REL,NEWREL),
assertz(schema(NEWREL,SCHEMA)),
assertz(inbcnf(NEWREL)),
addknownkeys(REL,NEWREL),
listminus1(NEWDEC,&ECOMP,SCHEMA),
I,

createnewrels(REL,NEWDEC,NEWNR).

createnewrels(REL,DECOMP,NR)
decomp(FREL,REL),
retract(decomp(FREL,REL)).

createnewrels(REL,DECOMP,NR).

85

makebcnfname(REL,NR,N~WREL) appendchar(REL, '-' ,NREL),
SUFFIX = NR + 48,
char_int(A,SUFFIX),
appendchar(NREL,A,NEWREL).

addknownkeys(REL,NEW~El) • fd(REL,LHS,RHS), schema(NEWREL,S),
subset(LHS,S), subset(RHS,S),
assertz(key(NEWREL,LHS)), fail.

addknownkeys(REL,NEWREL).

assertdecomp(REL,NEWREL) :- decomp(OLDREL,REL),
assertz(decomp(OLDREL,NEWREL)),
assertz(decomp(REL,NEWREL)).

assertdecomp(REL,NEWREL) assertz(decomp<REL,NEWREL)).

!* --- *!
!* printing a decomposition */

printdecomp(REL) decomp(REL,REL1), printrelation(REL1), fail.
printdecomp(REL) • not (decomp(REL,_)), printrelation(REL).
printdecomp(REL).

printrelation(REL) :- schema(REL,S),

choice8(REL)
choice8(REL) .
choice8(REL)
choice8(R'EL).

write("Relation : "), write(REL," "), write(S),
choice8(REL), nl,nl,
choice9(REL),
printallkeys(REL), nl, nl,
choice10(REL), nl.

in4nf(REL), I I write(" in 4NF ").

inbcnf(REL), I, write(" in BCNF ") .
in3nf(REL) I I I write(" in 3NF ") .

choice9(REL) • in4nf(REL), write(" KEY~

") .
")I I .

choice9(REL) write(" Some KEYS

choice10(REL>

choice10(REL).

printallkeys(REL)

f d (R E L I- I_·> I

write("Functional dep~ndencies :"),
nl, printallfds(REL),i.

allkey(REL), write(~ an all-key relation"),!.
printallkeys(REL) • key(REL,K), write(" ">, write(K), fail.
printallkeys(REL).

86

print~llfds(REL)

printallfds(REL).

fd(REL,LHS,RHS), write(" "),
write(LHS), write(" --> ">,
write(RHS), nl, fail.

I*----------------------------------- *I
I* Writing a given relation *I

writegivenrelation(REL) :- nl,nl,nl, schema(REL,S),
write(" The given relation is : ">,nl,nl,nl,
write(" ",REL," ",S),nl,nl,nl,
w~ite(" F :"),nl,nl, writeallfds(REL),
n l, n l, n l,
mvd(REL,_,_), write(" M :~j, nl,nl,
writeallmvds(REL),nl,nl,nl.

writegivenrelation(REL).

writeallfds(REL)
writeallfds(REL).

fd(REL,L,R), write(" il I l I II ",R), nl, fail.

writeallmvds(REL> ·- mvd(REL,L,R), assert(mvdtemp<REL,L,R)),
not (store(L)), assert(store(L)),fail.

writeallmvd!i(REL)

writeallmvds(REL)
writeallmvds(REL).

wrlteallrhs(REL,L)

store(L), write("
writeallrhs(REL,L),

II I L I II II) I

retract(store(L)),nl,
fail.
retract(mvdtemp(REL,_!_)), fail.

mvdtemp(REL,L,R1), mvdtemp(REL,L,R2),
not(equal(R1,R2)),write(R1," I "),
retract(mvdtemp(REL,L,R1)),fail.

writeallrhs(REL,L) :- mvdtemp(REL,L,R), write(R),
retract(mvdtemp(REL,L,R)).

I* *I

I* Decomposition into 4NF *I

I* ------------~--------- *I

1* ...•................ TANAKA 'S ALGORITHM ...•.•.•...... · *1

I*

n l, n l, make4nf(REL)
write("
wr.ite("
write("
write("
fm3(REL),

Applying TANAKA 'S ALGORITHM for
of· ",REL," into 4NF"),nl,
-------- ===================

---"),nl,nl,nl,
remextra(REL),

f3a(REL), remextra(REL), writefdash(REL),

87

*I

conversion"),.

- - -- - -- ---") ·'

mdash(REL), writemdash(REL),
m7(REL), clean(REL),
m3(REL), clean(REL),
cleanup~REL), putspecialmdfs(REL),
writemdoubledash<REL),
make4nfrels(REL), minimize(REL),
printdecomp(REL).

common(I,L1,L2) :- minus(A,L1,L2), minus(I,L1,A).

fm3(REL) . fd(REL,L1,~1), mvd(REL,L2,R2),
getw(REL,L2,R2,W), subset(L1,W),
common(A1,R2,L1), common(B1,R2,R1),
not (e qua l (B 1 , [l)) , u n i on (U '· L 2 , A 1 , R E L) ,
not(fd(RE~,U,B1)),

not(check1<REL,U,B1)),

fm3().

· not(check2(REL,U,B1i>,
not(check3(REL,U,B1)),
assertz(fd(REL,U,B1)),
fa i l.

getw(REL,L,R,W) mvd(REL,L,R1), not (equal(R,R1)),
union(U,R,R1,REL), union(W,l,U,REL).

check1(REL,U,B1) .• subset(B1,U).

check2CREL,U,B1) . fd(REL,U,R), subset(B1,R).

check3(REL,U,B1) fdCREL,L,R), not(equal(L,U)),subset(L,U),
subsetCB1,R).

remextra1(REL> . fd(REL,L,R), subset(R,L), retract(fd(REL,l,R)), fail.

remextra1(REL) fdCREL,L1,R1), fd(REL,L1,R2),not(equal(R1,R2)),
subset(R1,R2), retract(fd(REL,L1,R1)),fail.

remextra1(REL) ·- fd(REL;L1,R1), fd(REL,L2,R2), not(equal(L1,L2)),
subset(L1,L2), s~bset(R2,R1), retract(fd(REL,L2,R2)),
fail.

remextra(REL) •

remextraCREL) ••

remextra1(REL).

fd(REl,L1,R1), fd(REL,L1,R2),not(equal(R1,R2)),
union(U,R1,R2,REL),
retract(fd(REL,L1,R1)),retract(fd(REL,L1,R2)),
assertz(fdCREL,l1,U)),
fail.

88

remextra(RE·L) •

remextra(REL) :-

remextra(REL).

fd(REL,L1,R1), fd(REL,L2,R2), not(equal(L1,L2)),
subset(l1,L2), uniOn(U,R1,R2,REL),
not(fd(REL,L2,U)), assertz(fd(REL,L2,U)),
fail.

remextra1(REL).

getasubset(A,r_ITBl) :- getasubset(A,TB).
getasubset([HITAl,[HilBl). I, getasubset(TA,TB).
getasubset([],_) :-I.

f3a(REL) fd(REL,A,B>, fd(REL,C,D), subset(C,B),
union(U,B,D,REL), not(fd(REL,A,U)),
assertz(fd(REL,A,U)), fail.

f3a() .

putspecialmdfs(REL)

putspecialmdfs(REL).

schema(REL,S), mvd(REL,L,_),
not(fd(REL,L,_)) 1
not (check8(REL,L)),
not (check9{REL,L)),
getcontext(REL,L,CONT),
equal(CONT,S),
not(mdf(REL,L,L)),
assertz(mdf(REL,L,L)),
assertmdms(REL,L),
fa i l.

check8(REL,L) fd(REL,L1,_), subset(L,L1).

check9(REL,L) mvd(REL,L1,R), not(equal(L,L1)),
subset(l1,L).

assertmdms(REL,L) :- mvd(REL,L,R), not(mdm(REL,L,R)),
assert(mdm(REL,L,R)), fail.

assertmdms(REL,L).

getcontext(REL,L,CONT) mvd(REL,L,R), assert(mvdtemp(REL,L,R)), fail.
get context (R E L , L , C 0 NT) • get context 2 (R E. L , L , L , C 0 NT) •

getcontext2(REL,L,P,CONT) . mvdtemp(REL,L,R), union(U,P,R,REL),
retract(mvdtemp(REL,L,R)),
I, getcontext2(REL,L,U,CONT).

getcontext2(REL,L,P,CONT) CONT = P.

89

/* Calculating M ' from F •••••••••.•. *I

mdash(REL)

mdash(REL)

mdash(REL)

mdash(REL)

mdash(REL)

mdash(REL)

mdash().

mvd(REL,L,R), getasubset(L1,L),fd(REL,L1,R1),
subset(L,R1),minus(M,L,L1),not(equal(M, [])),
assertz(mdf(REL,L1,M)), rtside(REL,L,L1>,
fa i l.

fd(REL,L,R), mvd(REL,L,R1), union(U,L,R;REL),
minus(M,R1,U), not(checkS(REL,L;M)),
assertz(mdm(REL,L,M)),
fa i' l .

rememb(REL,L), retract(mdm(REL,L,_)), fail.

fd~REL,L,R), schema(REL,S),
not(check4(R~L,L,R)),

assertz(mdf(REL,L,R)),
union(U,L,R,REL), minus(M,S,U),
assertz(mdm<REL,L,M>>,
fa i l .

mdm(REL,L,R1), mdm(REL,L,R2), mdm(REL,L,R3),
·not(equal(R1,R2)), not(equal(R2,R3)),
not(equal(R1,R3)), union(U,R2,R3,REL),
equal(U,R1), retract(mdm~REL,L,R1)),

fa i l.

mdf(REL,L,R), minus(M,R,L), not(equal(M,R)),
retract(mdf(REL,L,R)), assertz(mdf(REL,L,M)),
fa i l.

c h e c k 4 (R E L ·' L , R) fd(REL,X,Y), choice12(L,R,X,Y),
union(U,L,R,REL), union(UX,X,Y,REL),
subset(U,UX), subset(X,L).

choice12(L,R,X,Y)

choice12<L,R,X,Y)

checkS(REL,L,M)

rtside(REL,L,L1)

rtside(Rtl,L,L1).

not(equal(L,X)).

not(equal(R,Y)).

equal(M, []), assert(rememb(REL,L)).

mvd(REL,L,R), fd(R~L,L1,R1), common(C,R,R1),
mdf(REL,L1,M), union(M1,M,C,REL),
minus(N,R,C), assertz(mdm(REL,L1,N)), fail.

90

writefdash(REL) . n l 1 n l 1 w r i t e C" The set F I is found to be : II) I

n l 1 n l 1 fail.
writefdash(REL) fd(REL 1 l 1 R) 1 write(" II

I l I
II II

I R) I n l I fa i l.
writefdash(REL).

writemdash(REL) nl 1 nl 1 write("
nl 1 nl,fail.

The set M I is found to be :"),

writemdash(REL) mdf(REL,L,R),
write(" 11 ,L," I*I 11 ~R;"I* 11)1
writemdash2(REL,L),nl,fail.

writemdash(REL).

writemdash2(REL,l)
writemdash2(REL,L).

writemdoubledash(REL)

writemdoubledash(REL)

writemdoubledash(REL)

mdm(REL 1 L,R1), write<"l

nl,nl,write("
nl,nl,fail.

·- ~df(REL,l,R),

The set

II I R 1 , II ") , fa i l •

M\" is found to be :"),

w r i t e (" " , L , " I * I" , R , " I * ") '·
writemdash2<REL,L),nl 1 fail.
n l, n l, n l •

/* ...•.••• Calculating M" from M 1 •••• • •••••••• */

getw2(REL 1 L,R,W) ·- check6(REL 1 l,R,R1),

getw2(REL,L,R 1 W)

check6(REL,L,R,R1)

getallcontexts(REL)

getallcontexts(.REL)

getallcontexts(REL).

Uhion(U,R,R1,REL), union(WILIU,REL),I.

union(W,L,R,REL),I.

•• mdmCREL,l,R1),
common(C,R,R1), equal(C, []).

mdm(REL,L,R), getw2(REL,L,R,W) 1

not(context(REL,L 1 R,W)),
assertz(context(REL,L,R 1 W)) 1

fa i l.

context(REL,L,R 1 W), mdf(REL,L,R1) 1

union(U,W,R1,REL) 1 retract(context(REL 1 L,R,W)) 1

asserta(context(REL,L,R,U)),fail.

m7(REL) getallcontexts(REL) 1 fail.

m7(REL) mdm(REL,X,Y),assertz(mdmtemp(REL,X,Y)), fail.

91

m7(REL)

m7(REL).

mdm(REL,X,Y),
mdmtemp(REL,X,Y),
retract(mdmtemp(REL,X,Y)),
mdmtem~(REL,U,V)~

not(equal(X,U)),
common(D,Y,V), not(equal(D,[])),
context(REL,X,Y,Z),context(REL,U,V,W),
subset(X,W), subset(U,Z),
minus(A,Y,W), minus(B,Z,A),
common(C1,Y,U),union(U1,X,C1,REL),
common(C2,V,X),union(U2,U,C2,REL),
nottmdm(REL,U1,D)),no~(mvd2(REL,U1,D)),

assertz(mvd2(REL,U1,D)),assertz(mdm(REL,U1,0)),
not(mdm(REL,U2,D)),not(mvd2(REL,U2,D)),
assertz(mvd2CREL,Ui,D)),assertz(mdm(REL,U2,D)),
not(mdmtemp(REL,U1,D)),not(mdmtemp(REL,U2,D>>,
assertz(mdmtemp(REL,U1,D)),assertz(mdmtemp(REL,U2,D)),
choice15(REL,U1,U2,X,U,D,Z,W),
f 8 i l .

choice15(REL,U1,U2,X,U,D,Z,W)
equal(X,U1),not(context(REL,U1;D,Z)),
assertz(context(REL,U1,D,Z)),fai l.

choice15(REL,U1,U2,X,U,D,Z,W)
equal(U,U2),not(context(REL,U2,D,W)1,
assertz(context(REL,U2,D,W)),fail.

choice15(REL,U1,U2,X,U,O,Z,W).

clean(REL)

clean(REL)

clean(REL)

clean().

clean1(REL),fail.

mdm(REL,L,R), mdm(REL,l1,R), not(equal(l,L1)),
subset(L,L1), retract(mdm(REL,L1,R)),
ret~act(mvd2(REL,L1,R)),fail.

mdm(REL,L,R), mdm(REL,L,R1),
not(equal(R,R1)),
subset(R,R1>; minus(M,R1,R),
retract(mdm(REL,L;R1>>,
not(mdm(REL,l,M)),assertz(mdm(REL,L,M)),
fa i l.

clean1(REL) ·- mdm(REL,L,R), retr2(REL,L,R),
not(mdm(REL,L,R)),asserta(mdm(REL,L,R)),fail.

92

clean1CREL) mvd2CREL,l,R), retr3(REL,L,R),
not(mvd2CREL,L,R)),asserta(mvd2CREL,L,R)),fail.

clean1(_).

retr2CREL,l,R) retract(md~CREL,L,R)), :1.

:-etr3CREL,l,R) retract(mvd2CREL,L,R)),I.

m3CREL) • mdm(REL,L,R), context(REL,L,R,C),
mvd2(REL,X,Y),
subsetCX,R),subset(Y,R), minus(H,R,Y), not(equalCY, [])),
assertz(mdmCREL,L,Y)),
as~ertz(mdmCREL,L,H)),

fa i l •

cleanup1(REL) :· mdmCREL,l,R), not(mdfCREL,L,_)),
retract(mdm(REL,L,R)), fail.

cleanup1(REL).

cleanup(REL) cleanup1CREL), fail.
cleanupCREL) ·• ~etract(remembC_,_)), fail.
cleanup(REL)
cleanup(REL)
cleanupCREL).

retract(context(_,_,_,_)), fail.
retract(mvd2C_,_,_>>, fail.

I* .•.......... making decomposed relations from H" .•..........• */

make4nfrels(REL) • appendchar(REL, '_',NEWREL),
schema(REL,S), assert(schema(NEWREL,S)),
make4nfrels1(REL,NEWREL),fail.

make4nfrels(REL)

make4nfrels(REL).

decomp(REL,REL1), not(in4nfCREL1)),
assertCin4nfCREL1)), assert(allkey(REL1)),
fa i l .

make4nfrels1CREL,REL1) getlowest1(REL,REL1,L), I,
not(equal(l,[])),useCREL,REl1,L,1).

make4nfrels1CREL,REL1).

93

use(REL,REL1,L,N)
mdf(R~l,L,R), schema(~El1,S), co~mon(C,R,S),

not(equal(C, [])),union(U,C,L,RE~),
makena~e(REL1,N,REL2),assertz(schema(REL2,U)),

assertz(decomp(REL,REL2)),
M=N+1,retract(mdf(REL,l,R)),
assert(in4nf(REL2)),assert(key(REL2,L)),
use1CREL,REL1,L,M).

use1(REL,REL1,l,N) :-
mdm(REL,L,R), schema(REL1,S), common(C,R,S),
not(equal(C, [])),union(U,C,L,REL),
makename(REL1,N,REL2),assertz(schema(REL2,U)),
assertz(decomp(REL,REL2>>,
assertz(decomp(REl1,REL2)),
M=N+1,retract(mdm(REL,L,R)),
use1(REL,REL1,L,M),fafl.

use1(REL,REL1,L,N) :- decomp(REL1,REL2),
not(in4nf(REL2)),
make4nfrels1(REL,REL2),
retract(decomp(REL,REL2)),
retract(decomp(REL1,REL2)),
fail.

use1(REL,REL1,L,N).

getlowest1(REL,REL1,L1) • getl0west(REL,R~L1,L1), ~eloadmdfs(REL).

getlowest1(REL,REL1,L1) equal(L1, []),~eloadmdfs(REL).

getlowest(REL,REL1,L1) enough(REL),
getlowest2(REL;REL1,L1),
reloadmdfs(REL), I.

getlowest(REL,REL1,L1> • reloadmdfs(REL),
enough(REL),
equal(L1,[]),

getlowest(REL,REL1,L1)

getlowest(REL,REL1,L1)

assert(in4nf(REL1)), assert(allkey(REL1)).

reloadmdfs(REL),
not(enough(REL)),
~df(REL,L,R), schema(REL1,S1),
subset(L,S1), L1=L,!.

equal(L1,[]),
assert(in4nf(REL1)), assert(allkey(REL1)).

enough(REL) mdf(REL,l,R), mdf(REL,X,Y), not(equal(l,X)), ! .

getlowest2(REL,REL1,L1) mdf(REL,L,R),
not(check7(REL,l,R)),
schema(REL1 ,-S1),
choice16(REL,REL1,L,S1,L1).

94

c hoi c e 1 6 (R E L 1 R E L 1 1 L 1 S 1 1 L 1) ·: - subset(l 1 S1) 1 L1=L.

choice16CREL 1 REL1 1 L 1 S1 1 L1) not(subset(l 1 S1)) 1

retr8ct(mdfCREL 1 L 1 R)) 1

choice1J(REL 1 REL1 1 L 1 R 1 L1).

choice17(REL 1 REL1 1 L 1 R 1 L1) not(remembmdfCREL 1 L 1 R)) 1

8Ssert(remembmdf(REL 1 L 1 R)) 1

getlowest2(REL 1 REL1 1 L1).

choice17(REL 1 REL1 1 L 1 R 1 L1) getlowest2CREL 1 REL1 1 L1).

check7CREL 1 L 1 R) mdfCREL 1 X 1 Y) 1 not(eqU8lll 1 X)) 1 subset(Y 1 R).

relo8dmdfs(REL) remembmdf(REL 1 L 1 R) 1 retr8ct(remembmdfCREL 1 L 1 R)) 1

8 sse r t (m d f (R E L 1 L 1 R)) 1 'f 8 i l •

relo8dmdfsCREL).

g1 : . ' 8ssert(schem8(r1 1 [r 1 n 1 S 1 m1 mn 1 fnJ)) 1

assert(fd(r1 1 [r] 1 [n])) 1

assert (fd(r1 I [n] I [r]))l

assert(fd(r1 1 [n] 1 [mnl)) 1

assert(fd(r1 1 [n] I [fnl)) 1

assert(fd(r1 1 [n 1 S] 1 [ml)) 1

assert(fd(r1 1 [fnl 1 [mn])) I

assert(fd(r1 1 [mnl 1 tfn])).

g2 assert< schema< r 2 I [a 1 b 1 c 1 dIe If 1) > 1

assert(fd(r2 1
[a

1
b]

1
[C])) 1

assert(fd(r2 1
[C]

1
[a]))

1

assert(fd(r2 1
[d]

1
[e]))

1

assert(fd(r2 1
[d

1
e]

1
[f]))

1

assert(fd(r2 1 [e·J 1 [d])) 1

assert(fd(r2 1 [e]l[f])).

g3 assert(schema(r3 1 [a 1 b 1 C 1 d 1 e])) 1

assert(fd(r3 1 [B 1 b] 1 [c])) 1

assert(fd(r3 1 [d] 1 [b 1 e])) 1

assert(mvd(r3 1 [b] 1 [a 1 c])) 1

ass e r t (m v d (r 3
1

[b]
1

[d 1 e] ·)) •

g4 assert(schem8(r4 1 [8 1 b 1 c 1 d 1 e])) 1

assert (fd(r4 1 [bl 1 [c])) 1

assert(nivd(r4 1 [a 1 b]; [C 1 d])) 1

8SSert(mVd(r4 1 [a 1 b) I (e))).

95

g5 assert(sc:hema(r5 1 [a 1 b 1 C 1 d])) 1

assert(mvd(r5
1

[a 1 b] 1 [c])),

assert(mvd(r5
1

[a 1 b] 1 [d])) 1

as.sert(mvd(r5 1 [a] 1 [bl)) 1

assert(mvd(r5 1 [a] 1 [c] »~
assert(mvd(r5 1 [a] 1 [d])).

's 6 aSSert (S C he ffl a (r 6 I [a I b·l C I d 1 e 1 f 1 9 1 h 1 i 1 j 1 k I l 1 ffl I n 1 0 1 P 1 q])) 1

assert< fd< r6 1 [g] 1 [d 1 k 1 l 1 ml >) 1

go a l 1

assert(fd(l"6 1 [a 1 C] 1 [o 1 p 1 ql)) 1

as.sert(fd(r6
1

[hl 1 (a
1

b 1 n])) 1

assert(mvd(r6 1 [a 1 b] 1 [C 1 d 1 e 1 f 1 k 1 l 1 m])) 1

assert(mvd(r6 1 [a 1 b] 1 [g 1 h 1 i 1 j 1 n 1 o 1 p 1 q])) 1

assert(mvd(r6 1 [c] 1 [8 1 e 1 l 1 m]))' 1

assert(nivd(r6 1 [cl 1 [b 1 f 1 0 1 p])) 1

assert(mvd(r6 1 [dl 1 [a 1 h 1 ll)) 1

assert(mvd(r6
1

[d] 1 [b 1 i 1 j 1 m1 n 1 0 1 p))) 1

assert(mvd(r6 1 [f] 1 [a 1 b 1 g])) 1

assert (nivd(r6 1 [f] 1 [h 1 i 1 j 1 l 1 m])) 1

assert(mvd(r6 1 [c 1 h] 1 [a 1 d])) 1

assert(mvd(r6
1

[c 1 hl 1 [b
1

e 1 f])) 1

assert(mvd(r6 1 (kl 1 [l 1 m])) 1

assert(mvd(r6 1 [kl 1 [a 1 b 1 p 1 ql)) 1

assert(mvd(r6 1 [l] I [plql »1
assert(mvd(r6 1 [ll 1 [c])) 1

assert(mvd(r6 1 [ml 1 rn 1 ol)) 1

a s s e r t (m v d (r 6 1 [m l ·; [c l > > •

g 1 1

openwrite(resfile 1 "result.datu) 1

wri tedevice(resfi le);

w r i t e g i v e n r e l a t i o n (r. 1) 1

make3nf(r1) 1

flush(resfi le).

goal1a g1 1

openappend(resfile 1 "result.dat") 1

writedevice(resfile) 1

makebcnf(r1) 1

flush(resfi le).

goal2 g2 1

openappend(resfile 1 "result.dat") 1

writedevice(resfile) 1

writegivenrelation(r2) 1

make3nf(r2) 1

flush C resf i l e).

goal2a g2 1

openappend(resfile 1 "result.dat") 1

writedevice(resfile) 1

makebcnf(r2) 1

flush(resfile).

96

goal3 g3,

goal4

openappend(resfile,"result.dat"),
writedevice(resfile),
writegivenrelation(r3>,
make4nf(r3),
flush(resfile).

g4,
openappe~d(resfile,"result.dat"),
writedevice(resfile),
writegivenrelation(r4),
make4nf(r4),
flush(resfi le).

goalS g5,
openappend(r•sfile,"result.dat"),
writedevice(resfile),
writegivenrelation(r5),
make4nf(rS),
flush(resfi le).

goal6 g6,
openappend(resfile,"result.dat"),
writedevice(resfile),
writegivenrelatioh(r6),
make4nf<r6>,
flush(resfile).

97

APPENDIX - II

EXAMPLE
==============================

goal goal1

============

The given relation is

r1 [llrn,nnu,nsn,nmn,nmnu,ufnll]

F

rll] (II n II)
n II l (II f II)

nil] [II mn II]
n II l :· [11 fn 11]

n II I II S II) [II mil]
f n 11] [11 .mn 11 J

[11 mn 11 J [11 fn 11 l

Applying BERNSTEIN'S ALGORITHM for conversion of r 1 into 3NF

-------- =====================

Step

Elimination of extraneus atributes from the cover of r1

*all extraneous attributes eliminated

Step 2

Elimination of reduhdant FDs from the cover of r1

redundant fd [11 n"l --> [11 mn 11] eliminated

*all redundant fds eliminated

98

Step 3

Partitioning of the cover of r1 into groups with identical LHSs

Group formed, based on l h s [II mn II l
Group formed, based on lhs [II f n II]

Group formed, based on l h s [II n II, II S II]

Group formed, based on lhs [II n II]

Group formed, based on l h s [II r II]

* partition into groups completed

Step 4

Merging groups with equivalent keys

Equivalent keys discovered
Equivalent keys discovered

[11 r 11] <··> [11 n 11 l
[11 fn 11] <--> [11 mn 11]

* all equivalent keys are discovered
and the groups are merged

The groups after merging are

Step 5

Group [[11 fn 11 l, [11 mn 11 l l
Group
Group

[[11 r 11], [11 n 11 ll
[[11 n 11 , 11 S 11]]

Elimination of transitive dependencies
* transitive dependencies eliminated

Now finally the groups are

Step 6

group
group
group

[[11 fn 11 l, [11 mn 11 l l
[[

11 r"l, [11 n"l l
[.[II n II ' II S II]]

Construction of relations

99

Relation r1 a ("mn 11
1

11 fn"l i~ 3NF

Some KEYS (11 fn"l ("mn"l

Re"tation r1 b ("r 11
1

11 n 11
1

11 fn 11 l in 3NF

Some KEYS ("r"l ("n"J

Relation r1 c (11 n 11
1

11 S 11
1

11 m11] in 3NF

Some KEYS ("n" 1
11 S 11

]

go a l goal1a

=============

Applying TSOU & FISCHER 'S ALGORITHM for conversion of r 1 into BCNF

-------- =========================== . ~ -

relation decomposed ("r 11
1 "h''l

relation decompose8 (11 n11
I

11 s", "m 11 l
re!ati&n gecomposed (11 mn","fn 11]

relation decomposed ("n 11
1

11 fn"l
relation decomposed (11 n 11. 1 "s"l

* decomposition completed

Relation : r 1 ("n 11
1

11 fn 11 l in BCNF

Some KEYS (II n II]

Relation r 1 2 (11 mn 11
1 "fn"l in BCNF

Some KEYS ("fn 11] (II mn II l

Relation r 1 3 (11 n 11
1

11 S 11
1 "m 11] in BCNF

Some KEYS (11 n 11
1

11 S 11]

Relation r 1 4 ("r" 1
11 n 11] in BCNF

Some KEYS ("rll] [II nil]

Relation r 1 5 ("n" 1
11 s"l in BCNF

Some KEYS

100

EXAMPLE 2

====================•=========

goal goal2
============

The given relation is

r2 ["a","b","c","d","e","f"l

F

[a ,"b"l '["c"]
[c [II a II]

d [II e II]

d I II e II] [II f II]
[e ["dll]

e [11 f"l

Applying BERNSTEIN'S ALGORITHM for conversion of r2 into 3NF

-------- =====================

Step

Elimination of extraneus atributes from the cover of r2

·Extraneous attributes found in.the dependency [11 d 11 , 11 e 11] --> [11 f 11 l

The new left hand side [" e" l

* all extraneous attributes eliminated

Step 2

Elimination of redundant FDs from the cover of r2

redundant fd [11 e"l --> ["f"l eliminated

* all redundant fds eliminated

101

Step 3

Partitioning of the cover of r2 into groups with ic

Group formed, based on l h s (II ell]

Group formed, based on l h s [II d II)

Group formed, based on l h s (llcll]

Group formed, based on l h s (II a II' II b II]

* partition into groups completed

Step 4

Merging groups with equivalent keys :

Equivalent keys discovered (II d II] < •• > (II e il]

* all equivalent keys are discovered
and the groups are merged

The groups after mer~ing are

Step 5

G r ou.p
Group
Group

[[11 d"l, [11 e 11] l
([11 a 11 , 11 b"Jl
[("c"Jl

Elimination of transitive dependencies
* transitive. dependencies eliminated .

Now finally the groups are

Step 6

group
group
group

[["d"l, ["e"l l
[("a","b"ll
(["c"ll

Construction of relations

Relation : r2 a ["d","e","f"J in 3NF

Some KEYS [11 d"] ["e 11]

102

Relation ~2 b ["a" 1 "b" 1 "c"l in 3NF

Some KEYS ["a"~"b"l

Relation r2 c ["a 11
1

11 c"] in 3NF

Some K E·Y S ["c "]

go a l goal2a

=============

Applying TSOU & FIStHER 'S ALGORITHM for conversion of r2 into BCNF

-------- ===========================

relation decomposed ["a" 1
11 C 11]

relation decomposed ["d 11
1

11 e 11 l
relation decomposed [II e II 1 ~I f II]

relation decomposed [11 b 11
1

11 C 11
1

11 e 11]

* decompositi~n completed

Relation r2 1 [11 b 11
1

11 C 11
1

11 e 11] in BCNF

Some KEYS

Relation r2 2 (II e II I II f II] in BCNF

Some KEYS ·["e"l

~elation r2 3 [
11 d 11

I "e"l in BCNF

Some KEYS ["d"] ["ell]

Relation r2 4 ["a" 1
11 C 11] in BCNF

Some KEYS C"c"l

103

•

EXAMPLE 3

==============================

goal goal3

============

The given relation is

r3 [11 a 11
1

11 b 11
1

11 C 11
1

11 d 11
1

11 e 11]

F

[11 a 11
1

11 b 11 l ["c"l

[11 d 11 l [11 b 11
1

11 e 11]

M

["b 11] [II a II I II C II] [II d II I II e II]

Applying TANAKA 'S ALGORITHM for conversion of
-------- ===================

The set F I is found to be

[11 a 11
1

11 b 11 l [11 C 11]

[11 d 11] [11 b 11
1

11 e 11]

The set M' is found to be

[
11 a 11

1
11 b 11 l I*I[11 C 11 ll*l

[
11 d 11 l 1*1[11 b 11

1
11 e 11 ll*l

[
11 d" 1

11 e 11)

[li a II
1

II C II]

The set Mil is found to be

[II a II
1

II b II]

[II d II] I* I

Relation ·r 3

1*1[11 c 11 ll*l
[II b io I II e II] I * I

[II d II I II e II]
[II a II I II C II]

a [11 a 11
1

11 b 11
1

11 C"] in 4NF

KEY [11 a 11
1

11 b 11]

104

r3 into 4NF

Relation r3 b a [11 b 11
1

11 d 11
1

11 e"l in 4NF

KEY ["d"l

Relation r3 b b ["a" 1 "d"l in 4NF

KEY an all-key relation

EXAMPLE 4

==============================

goal goa l4.

============

The given relation is

r4 ["a" 1 "b" 1 "C" 1 "d" 1 "e"l

F

(II b II) ["c"l

M

["a" 1 "b"l ["c" 1 "d"l [II e II]

Applyi~g TANAKA 'S ALGORitHM for conversion of r4 into 4NF

=========~=~=======

The set F I is found to be

(II b II] (II C II]

The set M' is found to be

(II b II] l*l["c"ll*l ["a" 1
11 d 11

1
11 e 11 l

The set M" is found to be

["b"l I* I [11
C

11
] 1*1 [11 a" 1 "d 11

1
11 e 11

]

["a" 1 "b 111 1 * 1 [11 a 11 1 11 b 111 ·I* 1 [11 c 11 1 _ 11 d 111 [II e II]

l05

T~e decomposed relation r4 b a is eliminated

Relation r4 a ("b" 1 "c"l in 4NF

KEY ("b "-]

Relation r4 b b ("a" 1 "b" 1 "d"l in 4NF

KEY an all-key relation

Relation r4 b c ("a" 1
11 b" 1 "e"l in 4NF

KEY an all-key relation

EXAMPLE 5

=====================~========

goal .. goalS

============

The given relation is

F

M

r 5 (II a II I II b I~ I II C II I II d II]

("a" 1 "b '1 l
("a" l

("(;"] ("d"l
("b"l ("b"l ("c"l ("d"l

Applying TANAKA 'S ALGORITHM for conversion of
-------- ===================

The set F I is found to be

The set M' is found to be

106

r5 into 4NF

The set Mil is found to be

(II a II) 1*1[11 a 11 JI*I [II b II] [II C II) (II d II)

The decomposed relation rS a is eliminated

Relation rS b [II a II, II b II) in 4NF

KEY an all-key relation

Relation rS c [11 a 11 , 11 C 11] in 4NF

KEY an all-key relation

Relation rS d [II a II, II d II) in 4NF

KEY an all-key relation

EXAMPLE 6

==============================

go a l goal6

============

The given relation is

r6 (II B II
1

II b II
1

II C .II
1

II d II
1

II e li
1

II f II
1

II g II
1

II h II
1

II j II
1

II j II
1

II k II
1

II l II
1

II m II
1

II n II
1

II Q II
1

II p II
1

II q II)

M

[II g II J [II d II ' II k II ' II l II ''11m II)

[11 a 11 , 11 c 11] [11 0 11 , 11 P 11 , 11 q 11 J·

[11 h 11] [11 a 11 , 11 b 11 , 11 n 11]

[11 a 11 , 11 b 11]

(II C II)

[II d II]

rncn,ndn,nen,nf
(II g II

1
II h

1
II j II I II j

[11 a 11 , 11 e 11 , 11 l , 11 m11]

[11 a 11 , 11 h 11 , 11 l
[nan,nbu,ug

1
II k II·' U lll 1 llfflll]

,"n 11 , 11 0 11 , 11 p 11 , 11 q"l

[11 b 11 , 11 f 11 , 11 0 11 , 11 P 11 l

b", 11 i 11 , 11 j 11 , 11 m11 , 11 n 11 , 11 0 11 , 11 p 11]

h II
1

IIi II I II j II
1

II lll
1

II mil]

b II' II e II' II f II]

[II f II]

[11 c 11 , 11 h 11]

[II k II]

[II a II' II d

[11 l 11 , 11 m11] [11~11. bll,llpll,llqll]

[II l II) (II p II' II q II]
[II m II) [II n II' II O II)

[lie II]

[II C II)

107

Applying TANAKA 1 S ALGORITHM for conversion o into 4NF

The set F I is found to be

[II l [II p II)
["m [II Q II]

["d ["b", n","p"l
c ["a", tn

1
II mil

1
II 0 p"l

a 1
II d II) bn, "l", n p"l

b 1
II d II) bu,nmn, n o", "P" l

a 1
II C II] a", "l m 0 ·u, "P", nqll l

h ["a", b","d k l II I flmll I Unll I II 011

f ["a", b", 11 d k lll I Umll I II nil I IIQII

k ("[II I mil I IIQ p
a 1

II b II] b","d k","l","m","n","o"
g

The set

(II l II)

(II m II)

(II d II]

[II C II]

["b", d","k l","m","n","o","p".

M I is found to be

l*lt"p"ll*l (II q II] [II C II]

(II S II
1

II b II I ll·t II
1

II d II
1

II e II
1

II f II
1

II g II
1

II h II
1

II •

1*1[110 "11*1 [II nil] t II C II]

[II S II I II b II I II C II i ll.d II I II e II
1

II f II
1

II g II 1 II h II I II j

I* I ["b","n 11 ,"p"ll*l ["a","h","l"l
["a","c"~"e","f","g","h","i

1 *· 1 [n a n , n l ·n , n m n , n 0 n ; n p n l 1 * 1 [11 e n l [II b II
1

II f II)

(II a II
1

II d II]

[II b II
1

II d II
1

II e II I II f II I II g II I II h II
1

II j II
1

li j II
1

II k II I II n II I II q U]

I* I ["bll,lll",lln","piiJ I* I

["h"]

(II f II]

(II K II)

["g")

(II C II
1

II e II
1

II. f II
1

II g II
1

II h II I II j II
1

II j II
1

II k It
1

II m II
1

II 0 II
1

II q II)

I* I rnau,nbu,ndu,nku,ut.n,umn,unu,non,upll,uqnl I* I
["c","e", 11 f","g 11 , 11 i","j"l

I * I ["a II , "b" , "d" , "k II ' " l " ' "m" , "n" ' "o" , " p" , il q" l I * I [" 9" l
["h","i","l"l I ["c","e","g","h","i","J"l

I * J [•i l u , u m u ' u o u , u p u l I * J

[11 a 11 , 11 b","c","d","e","f","g","h","i", 11 j","n","q"l
)*J rnbn,ndu,u~u,ntn,nmu,unu,u 0 u,upn])*J

["a","c","e","f","h","i","l","q"l
(II b II

1
II d II) (*J rumu,unu,u 0 u 1 upu] J*J

["a","c"J

(II a II I II b II]

(II a II I II C II
1

II e II
1

II f II
1

II g II
1

II h II
1

II j II
1

II j II I II k II I II lll I II qn]

I* I rntn,umn,uou,npu,uqu] 1*1
[llblf I lid II I II ell I 11f11 I Ugll I 11h11 1 11 j II I II j If 1 111c11 1 Unll]

I* I ["d .. ,"kll I ntn I nmu I II nil I non I llpll I nqll]

["c","e", 11 f"l

108

I* I
I ["g", 11 h", 11 i","j"]

The set

[II l II]

["m"l
[II d II]

["c"l

"'" is found to be

I., I ["p"l I* I ["a","b","d 11 , 11 e 11 , 11 f","g 11 , 11 h
I* I [11 0 11] I* I [·11 a 11 , 11 b", 11 d","e 11 , 11 f 11 , 11 g 11 ,"h
I* I ["b'.', 11 n 11 , 11 P"l I* I C"c", 11 e", 11 f 11 , 11 9", 11 k

1
IIi II

1
II j

I II f II I II j

, "q"]

,"k","m 11 , 11 n 11 , 11 o 11 l

,"k","l 11 , 11 P","q"l
["m","o"l

a 11 ,"h", 111] [11 1 11 , 11]"]

I* I [11 a","l 11 , 11 m11 , 11 o 11 , 11 p 11 l 1*1 [11 d","g 11 , 11 h ,"i","i ,"k","n 11 l
["q e 11] [11 b 11 , 11 f"l

(II a II
1

II d II] I* I ["bll,lll","n","p"l I* I [11 c 11 ,"e","f , 11 g","i , 11) 11 ,"k 11 , 11 q 11]

[" h "]
[II h II] 1*1 [11 a","b","d 11 , 11 k 11

1
11 1 11 ,"m","n" 1

11 0","p","q"l I* I C 11 ,"e","f"l
[11 9 ["i","i"l

["f"] I* I ["a" I "b" , "d" I "k", " l", "m", "n II, "o", "p II , II q" l I* I

r"h"l 1 r"i"~"J
(II k II] I* I ["l"~"m",llo","piiJI*I ["h "] (il j II

1
II j II]

["g"l ["e"l [II q II] 1 r" c 11 l
[II 9 II] J * J [n b n , u d u , n k n ' u tn , u m n , u n n ' •• on ' n p n] I * I [11 h 11 l

[II b II
1

II d II]

rnau,nc"l
[II a II

1
II b II]

(II C II
1

II e II]

I* 1 cumn,nnu,d 0 u,upn] I*
I.* I C"l","m","o" 1 "p","q"l I*
I* I ["d" 1 "k","l","m 11 ,"n" 1 "o" 1 "p","q 11 l I* I (II f II]

9 "l
[II C II I II e"]

f"l
a 11 ; 11 b 11 , 11 d 11 ,"n"l
[" i " , " j "]

["a", 11 f", "q"l

(II C II
1

II e II] ! II g II] [" h" l (II j II
1

II j II]

Relation r6 a ["l 11 ,"p 11] in 4NF

KEY [II l II J

Relation r6 c ["lll,llqll] in 4NF

KEY an all-key relation

Relation r6 b a [11 m11
1

11 0 11] f n 4NF

KEY [II m II]

Relation r6 b c (II m fl
1

II n II] in 4NF

KEY an all-key relation

Relation r6 b b a ["b 11 , 11 d"l in 4NF

KEY [11 d 11]

Relation r6 b b b ["d 11 , 11 e 11
1

11 f 11 , 11 g","k 11 l in 4NF

KEY an all-key relation

109

["

["

Relation r6 -- b - b - c (II d II I II mil] in 4NF

KEY an all-key relation

Relation r6 -- b - b - e [11 d 11 , 11 i 11 , 11 j 11] in 4NF

KEY an all-key relation

Relation r6 -- b - b -d a (II a II
1

II d II
1

II lll] in 4NF

KEY (II a II
1

II d II]

Relation r6 __ b_b_d_b [11 a 11 , 11 d 11 , 11 h 11 J in 4~F

KEY an all-key relation

Relation r6 d a [11 C 11 , 11 l 11] in 4NF

KEY· [II c II]

110

1,,

I J,

REFERENCES

(1]. Kent, William. "A simple guide to five normal forms in

Relational Data Base theory" .. Communtcations of the ACM, Feb.

1983, vol.26, No.2, pp 120-125.

(2]. Ram,· Sudha and Curran, S.M. "An automated tool for

relational data base design". Information systems Vol.14, No. 3,

pp 247-259, 1989~

[3] • Bernstein, Philip A. "Synthesizing Third Normal Form

relations from Functional Dependencies". ACM Transactions on

Database Systems, Vol.l, No.4, December 1976, pp 277-298.

[4] • Ceri, s. and Gottlob, G. "Normalization of relations and

Prolog". Communications of the ACM, June 1986, Vol.29, No.6, pp

524-544.

[5]. Beeri, Catriel; Bernstein, Philip A. and Goodman, Nathan.

"A sophisticate's introduction to database normalization theory".

Proceedings of the 4th International Conference on Very Large

Databases (West Berlin). 1978, pp 113-124.

[6] • Tanaka, Yuzuru. "Logical design of a relational schema

and integrity of a Data base". Data base architecture, edited by

Bracchi/Nijssen, North-Holland Publishing Company, 1979.

[7] • Martin, James. "Principles of Data-Base Management".

Prentice Hall of India, 1982.

111

(8]. Date, C.J. iiAn introduction to Database systems". Third

ed. 1985, Addison-wesley;Narosa.

[9] . Townsend, Carl.

Publication, 1988.

"Introduction to Turbo Prolog". BPB

[10]. Nath, Sanjeeva. "Turbo Prolog, features for programmers".

Galgotia Publications, 1988.

[11]. WordStar Professional , release 4.

[12]. Borland's "Turbo Prolog 2.0 User's guide".

[13]. Borland's "Turbo Prolog 2.0 Reference guide".

112

	TH33690001
	TH33690002
	TH33690003
	TH33690004
	TH33690005
	TH33690006
	TH33690007
	TH33690008
	TH33690009
	TH33690010
	TH33690011
	TH33690012
	TH33690013
	TH33690014
	TH33690015
	TH33690016
	TH33690017
	TH33690018
	TH33690019
	TH33690020
	TH33690021
	TH33690022
	TH33690023
	TH33690024
	TH33690025
	TH33690026
	TH33690027
	TH33690028
	TH33690029
	TH33690030
	TH33690031
	TH33690032
	TH33690033
	TH33690034
	TH33690035
	TH33690036
	TH33690037
	TH33690038
	TH33690039
	TH33690040
	TH33690041
	TH33690042
	TH33690043
	TH33690044
	TH33690045
	TH33690046
	TH33690047
	TH33690048
	TH33690049
	TH33690050
	TH33690051
	TH33690052
	TH33690053
	TH33690054
	TH33690055
	TH33690056
	TH33690057
	TH33690058
	TH33690059
	TH33690060
	TH33690061
	TH33690062
	TH33690063
	TH33690064
	TH33690065
	TH33690066
	TH33690067
	TH33690068
	TH33690069
	TH33690070
	TH33690071
	TH33690072
	TH33690073
	TH33690074
	TH33690075
	TH33690076
	TH33690077
	TH33690078
	TH33690079
	TH33690080
	TH33690081
	TH33690082
	TH33690083
	TH33690084
	TH33690085
	TH33690086
	TH33690087
	TH33690088
	TH33690089
	TH33690090
	TH33690091
	TH33690092
	TH33690093
	TH33690094
	TH33690095
	TH33690096
	TH33690097
	TH33690098
	TH33690099
	TH33690100
	TH33690101
	TH33690102
	TH33690103
	TH33690104
	TH33690105
	TH33690106
	TH33690107
	TH33690108
	TH33690109
	TH33690110
	TH33690111
	TH33690112
	TH33690113
	TH33690114
	TH33690115
	TH33690116
	TH33690117

