
DEVELOPMENT OF ~UTOMI TED LIB MJN!GEIIENT SYSTEM
. ON ORACLE .

O.ssertation submitted to Jawaharlal Nehru University

in partial fulfilment of the requirements

for the award of the Degree of

MASTER OF TECHNOLOGY

I'

H ·. t\! aa-. .) c. P. c.

i'J~s

\. ~(.rl-'T-e~) :-

MARTHALAVASAVI j~Ul ~
lvwv~ J l4 i'),

2.., 'T'j~.S~~

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-11 0067

1989

INDEX

ACKNOWLEDGEMENTS

PREFACE

ABSTRACT

1. INTRODUCTION.

2. COMPARATIVE STUDY OF ORACLE AND INGRES.

3. ORACLE RDBMS.

l" ORACLE TECHNOLOGY

ll. PRODUCTIVITY TOOLS

iii. ERROR HANDLING

4. LAB HANAGEMENT SYSTEf\1.

5.

l. INTRODUCTION TO LMS

l~. OVERVIEW OF THE EXISTING LMS

iii. NEED FOR THE AUTOMATION OF THE LMS
'\

AUTOMATED LAB MANAGEMENT SYSTEM (ALt1S)
f

i. DESCRIPTION AND :MPLEMENTATION CF ALMS

ii. TABLES DESIGNEO AND NOR!~LIZATIQN DONE

iii. HOW USER FRIENDLY THE PACKAGE IS ?

iV. FUTURE ENHANCEMENTS

6. SHORTCOMINGS OF qRACLE.

7. BIBLIOGRAPHY.

APPENDIX

A TABLES USED.

B SCREEN PRINTOUTS OF VARIOUS SQL*FORMS USED.

C COMPARATIVE STUDY BETWEEN ORACLE AND INGRES.

CERTIFICATE

This project titled" AUTOMATED LAB MANAGEMENT

SYSTEM "has been carried out by me under the supervision of

Mrs.Anjali Raina ,Research Engineer ,C-DOT and

/JIJ. C. P. C. Nath, Associate Professor sc & ss Jawaharlal

Nehru University, New Delhi .

This work submitted in partial fulfillment of the

requirement of the MASTER OF TECHNOLOGY degree of Jawaharlal

Nehru University , New Delhi is original and has not been

submitted in.part or full for any degree or diploma in any

other institution .

. G>
Li~~
Mrs.Anjali Raina ,
External Supervisor ,
Research Engineer ,

C-DOT , New Delhi

. '·

11'~,'.
M.VASAVI

Candidate

~~
JJM.c.P.C.Nath ,

Assck.~ Professor
School of Computer &

System Sciences ,
Jawaharlal Nehru Uni v.,

New Delhi .

I ~
I
{.;

ProfiJ.P. Mu~jee , Dean ,
School of Computer & system Sciences ,
Jawaharlal Nehru University ~
New Delhi.

ACKNOWLEDGMENTS

It is pleasure to acknowledge·Mrs. Anjali Raina,

Research ·Engine:er, SQA group, C-OOT, for giving me full

fn3edcm, necessary guidance· and encou.ragement to work on my

project at C-OOT.

I am also thankful to Mrs. Kanvinde, Group L.eader. , .

SQA, Mr.Shukla ,Research Engineer ,C-DOT and Mr.Srivatsava

Research Engineer C-DOT for giving constant as~istance,

co6peration and for the interest shown on ~y project.

I gratefull~ acknowledge the valuable advises,

suggestions, inspiration and mot.i vat ion ·rendered

Prof.C.P.C.Nath during the work on my project.

Finally I am delighted td acknowledge my debt to

all those who, are directly or indirectly involved in giving

this final stage to my work and report.

[M. VASAVI]

PREFACE

The title of the thesis is DEVELOPMENT OF AUTOMATED

LAB MANAGEMENT SYSTEM ON ORACLE. The aim. is to develop an

applic;:ation program viz AUTOMATION OF THE LAB MANAGEMEl-.JT

SYSTEM at .C-DOT, Center for· Development Of Telematics,· in an

RDBMS environment.

This thesis is organized at"three distinct levels.

It does. not ·suffice just· to· develop· ·the·

appiication program on any RDBMS, ·it was f~lt that a compara

tive study has ta done among a selected few RDBMS~ before t~e

development of the application program on an optimal RD.BMS is.

carried on.At the time of doing this project ORACLE and INGRES

are two of the few RDBMSs having optim(.ll pedigrees of the

·business.

Chapter 2 · is dedicated ·for this purpose. It

~ompares various technical features of ORACLE and INGRES and

the justification is given for choosing ORACLE as the working

environment.

Merely choosing the right RDBMS one cannot start

developing the.application program unless he/she is familiar

with that RDBMS. So the .second part, chapter 3 discusses in a

brief yet clear way about ORACLE. ·It describes the ORACLE

technol?gy, the productivity tools· provided by ·it and ·the·

error 'handling techniques in brief.

The last part of this report desc'ribes the

development of the application program, viz AUTOMATED LAB

MANAGEMENT SYSTEH. It discusses how the program is first

developed using data flow diagrams (DFDs) and then how each

DFD is implemented on ORACLE.

Appendix A contains a list of relations designed

for the implementation of ALMS.

Appendix B has the screen printouts of various

SQL*Forms that are designed.

Appendix C gives a list of comparative study

between ORACLE and INGRES

ABSTRACT

Labs are provided in many software organizations

to aid the eng i.neers to test the software that was developed

by hiz:n/her. So automation of lab management is essential for

the efficient utilization of labs. Automation of lab

management is done on ORACLE RDBMS using various tools

provided by the system.

ORACLE is prefered to INGRES because of its

special features which include a larger record and fields in

ORACLE, no page level locks, better usage of indexes and a

better OnLine Transaction Processing.

l. INTRODUCTION

C-DOT is a S/W or9anization 'for the development of

telematics. In all such S/W organiza.tions testing of the

software developed by the engineer is important· before it

could be . released ·for the . application. For this purpose of

testing, labs are provided to give a real time environment to

test the packages. However, there is always a rush of

engineers wanting to test their models in the labs.In order to

manage such requests from the engineers to us~ the labs, the

LAB MANAGEMENT has come up.

Earlier, the lab management wai done manually. Lab

managers allot shifts to engineers on a time slot ·basis and

the scheduling was done on the basis of the priority of the
' '

job. ~h~re was always a overhead on the lab manager to keep

track of all the data regarding labs ~uch as requests, allo-

cation of the shifts, log out data, existing·patch links and

etc.

In order to avoid the short comings faced by the

manually operated lab management, it was decided to automate

the lab management system. The data regarding the lab

management is stored in the tables, and can be accessed

through the various tools provided by the ORACLE such as

SQL*Plus, SQL*Forms, SQL*Reports and etc. In this part of the

book we shall consider in detail the need for the automation

and how it is achieved.

But before this, a comparative study was done

between 1NGRES and ORACLE tc choose the appropriate RDBMS to

develop the package. Conclusion was drawn that due to many

distinct features that ORACLE has and which INGRES does not,

ORACLE is preferred.

2. COMPARATIVE STUDY OF ORACLE AND INGRES

Before the development of any application package,

a right RDBMS which could match the needs of the application

has to be chosen.

Two of the efficient RDBMS at present are ORACLE

and INGRES. Performance level of these two RDBMSs are almost

at the same level except for minor differences. In some

aspects ORACLE outperforms INGRES and in some cases INGRES

gives a better performance. Here we shall consider in brief,

the performance characteristics of ORACLE and INGRES.

Firstly, ORACLE has the rolling forward facility

which the INGRES RDBMS does not have. That is, when, for

example, system failure has occurred, ORACLE's system monitor

after rolliny forward all the committed and uncommitted

transactions, rolls backward the uncommitted transactions, the

information about which is stored in the rollback segments.

ORACLE makes use of indexes (if one is created)

very efficiently, while performing the queries. It outperforms

the AI search techniques, which is used in INGRES to perform a

query, provided index is created on the fields 1n the WHERE

clause of the query. But the more the number of indexes per

table, the more is the problem to maintain the table.

A record in INGRES RDBMS can accommodate fewer

fields than that in ORACLE. The same applies even to the field

lengths. In INGRES each record have a maximum of 127 fields

per record and 2000 character per record where as in ORACLE

there ,can be 255 fields per. record and 128K ·.characters per

record·.

. · In INGRES page level locks are the lowest level

that the sYstem can provide. If a user wants. to acc~ss a data

from ~·page, fiistly the.system lock~ the page thus- disabling

, any other 'user to access. different rows in . the. ·same pag~=;. This

is riot. the case in case of ORACLE, as.: the system locks. only

the rows that the user is acc~ssing, and not the whole page.

ORACLE provides shared update· -locks. It does not·.

obstruct users from reading the same row in the same page.

INGRES places locks even if the user wants· to read the record.

So the user has to wait till the first user finishes reading

the record. This is not the case in ORACLE.

Occurrence of deadlocks is more frequent in

INGRES than in ORACLE as INGRES provides even read locks. That

is, in INGRES · a read lock is placed on every page that the

user wants to read. Consider the following situation:

Suppose user A locks the page 1 to read certain

record of that page at time tl and user B locks page 2 to read

few records of that page at time t2 (t1<t2) .. Now at time .t3,
. . . '

(t3. > t2), user A wants to· c;tccess records _of pa9e 2 ·and user B

that cif page 1, a deadlock would result. THis ~s d~tected by~

INGRES, .and it kills the transactions. of one user. Such ..

situation will not arise in ORACLE as there are no read locks

which enables many users to read the same rows at the .same

time.

CONCLUSION From the comparative study between

ORACLE ·and INGRES, the conciusion was drawn that ORACLE is

better·suited to develop the package. In appendix C, a table
I

·of comparative st';ldY between INGRES and ORACLE i'S given.

In the next section a overview on ORACLE RDBMS is

considered.

3 ,. ORACLE RDBMS

In th.j.s section, a brief overview of the ORACLE RDBMS

is given. It discusses features of ORACLE technology, various

productivity tools offered by the system and the like.

3.i. ORACLE TECHNOLOGY

·The two major aims of relational database (rdb) are :

1. Need f9r the OnLine transaction processing

'providing a high performance and fault

tolerable with relational· productivity.

2. Enterprise wide computing - .instant access to

information on mainframes, minicomputers,

microcomputers.

ORACLE delivers the distributed . OLTP, efficient

.d~cisi6n support and all the benetits tha~ are .inherent t~ a

SQL relational ·database. We shall see how ORACLE works to

achieve ·the two major aims, mentioned above, of the rdb

environment in the subsequent pages.

HOW OLTP IS ACHIEVED BY THE ORACLE DATABASE SYSTEM ?

Re'lational

· bene'fi ts:

database environment has the following

0

user

1. Non-p~6cedural access -Making the system

friendly as the user need not bother about how

results are retrieved.

more

the

·2. Standard acces? - SQL , a simple, comprehensive

language that is useful for all database activity.

3. Reduced maintenance cost - Reprogramming not

required incase bf any physic~! cban~es to the data'storage.

4. Highly flexible The'database system adjusts

immediately to

5.

changes in ihe bu~iness.

Reduced application backlog application

development is faster and less time is. spent m~intaining c;:ode.

6. High transaction volumes - often hundreds of.

transactions .per ~econd.

7. Fast· response rates - Usually a stibiecond.

8. Fault tolerance -virtually no down time .

9. Large, online user communities often many

hrndreds of users.

10. Very large databases - sometimes hundreds of

gigabytes in size.

Most of the DBMSs provide what the low-end decision

support needs viz the first five benefits. ORACLE is suitable

to satisfy the high-end systems as it is capable of handlina

all the ~en benefits that the relational environment can

provide to the users.

ORACLE enjoys the ,joint advantages of both the

· rel~tional as ·well as traditional DBMSs ... ORACLE provides high

performance ~hat. a traditional DBMS provides along with the

high productivity that is inherent to the relational

environment.

In the next section· we shall see how the ORACLE

achiev~d the demands of high productivity as well as high

performance.

OLTP. PERFORMANCE
;

ARCHITECTUEE: . .

ORACLE delivers high performance through a combination

of optimal client I multiserver architecture and concurrency

control mechanism that uniquely supports simultaneous online

transaction processing and decision support.

Client/server architecture provides the following

advantages
. I

1. Cost effectiveness

2. Expandability

3. Remote access

4. Flexibility

ORACLE was the first commercial rdb to offer a full

client/server architecture. This architecture of ORACLE

precisely divides user code (client) and database code

(server) Client handles all. user interface whereas server

manages all the database actions~ With·. this architecture one

can run an application on one machine while simultaneously ' \

.·runn~ng t:he database on the other.
~

Tncase of multiserver architecture, the system gives a

very good response rates and the transaction volumes are high

as the.hardware of such systems uses several loosely coupled

or tightly coupled CPUs thus avoiding th'e performance

constraint by a single CPU.

ORACLE uses multiserver architecture to deliver a high

performance. Logically a server is dedicated to each user

th~ugh 'physicall~ all the. clients share· the same ~erver code.

This technique of sharing the multi-threaded re-entrant code

saves memory.

Now users can do work simultaneously on symmetric

multiprocessor computers. Performance is directly ·relat·ed to

the number of CPUs per computer and the horsepower of each

In a single server architecture the system cannot tap

m6re·than one CPU's powerat a time. Though the single server

perfor~s all the database work one can ~xecute on only one CPU

at a time. Thus with one server the performance is limited to

the speed of one CPU though the computer has multiple CPUs.

Moreover ORACLE's multiserver architecture delivers

complete scalability. This architecture provides incremental

throughput as one adds CPUs.

I/0 OPTIMIZATION:

The requirements of OLTP performance donot create any

bottlenecks during I/0 transactions.These I/0 bottlenecks are

taken. ·care of by ORACLE's efficient I/0 algorithms. Here we

shall~ discuss how . these bottle necks are avoided oy tracing

the actions of a transaction.

ORACLE processing of READS:

It is the user who actually performs al.l the database

operat~ons including read because it is he/she who· executE:s

both the server code and client code. While retrieving the

blocks that. contains the required rows the first point to be

considerred is how fast it can be done. For this purpose ORACLE

along with the standard access paths uses the following access

methods :

1. Multiple indexes.

2. Data stored in index.

3. Clustered table.

ORACLE query optimizer decides as to which access

method is best to retrieve the required bloCks.

10nce the required blocks are identified, these blocks

are stored in the shared memory cache after the user reads the

neCessary blocks from the database. Subsequent· request. for the

same blocks by the same user or other user need no more I/0

operations and the retrieval this time is done from the

memory. To boost the performance ORAC:L.E can be configured to

use an~ size me~ory ~ache that one's application asks for.

DLSS
b~~-~-o c~

In ORACLE multiple block reads can be done in one I/0

request. Thus a query that requires 1000 blocks could perform

• 10 I/Os of 100 blocks each rather than performing 1000 I/Os of

one bl~ck each. This characteristic of mu~tiple block access.·

in a single. I /0 operation boosts the performance of the system
..

as low number of I/0 requests are issued.

ORACLE processing Writes :

The transactions are committed only after the required

blocks are brought into the memory.

. >. ORACLE . uses Redo log files to guarantee that the

com:nitted transactions remain permanent. A process, redo log

writer (LGWR), protects the changes made to the blocks in the

memory by recording these changes in the redolog files.

Incase of system failure~ ORACLE automatically recovers

the da~abase upon startup using the online redolog files. The

. entire media failure protection can be achieved by a process

called Archiver process which copies all the redo log files to

the tap!e. Thus the archiver logs has a complete his:tory of all

the changes that has · been made · to the db . since the last

backup.

The LGWR process is very efficient because it

sequentially writes only a minimal information in the redolog

file about each transaction. Moreover sequential write to the

redolog file is much faster than the random write to the

database file. This sequential write of a transaction's data

is done in a single I /0 operation. Hence the performance is

much greater than most other DBMSs which requires more than 1

I/0 per ~ransaction.

Transactions are piggybacked when multiple transaction

request to commit together. This makes on average less than·
. .

one I/b per trarisaction boosting .the performance of the

system. Rather ·than serving each . transaction one at a time

LGWR writes all .the ~rarisactions wi~hing to commit

simultaneously.

A process viz DBWR, ,database writer, writes the

.modified blocks from memory to the database. Each time a block
'ii •

is modified in memory, DBWR does 'not write the modified block

from the memory to the database immediately. This writing is

deferred until the memory cache cannot hold any more requested

blocks. The 'osWR writes the modified blocks from memory into

the database on the least recently used basis thus boosting

the performance by ensuring that the recently modified blocks

remain in the memory.

1To summarize, ORACLE's I/0 algorithm guarantees

1. Minimal dat~ ·is written very quickly·.

2 . Maximum of one sequential write is .required per

transaction.

3. ·Frequently, less than one sequential write is required ·

per transaction.

4. .Commits d.onot require that changes be written to the

.. database.

DATABASE I/0 OPTIMIZATION : It can be achieved at the global

database .level by assigning the database objects like tables,

indexes 1 temporary segments (db space used for· sorting and

ordering), rollback segments (db space used. for transaction
. . '

recove~y) arid redolog files to separaie devices to.further

increase I/0 co_ncurrency-.; Moreover all the object:s can span

multiple devices.

NETWORK OPTIMIZATION:

In the distributed environment, communication channel

bandwidth imposes restriction on the t.ransaction. processing
' 'I>

between the client and tne database server. This overload is

removed in ORACLE by its unique array interface and PL/SQL

pro~edural transaction processing language.

While other DBMSs move data between application·

programs and database one row at a time, ORACLE array

interface allows this transaction of multiple rows by

transferring data in batches instead of row by row.

PL/SQL also reduce the demards on narrow communication

channel by gro'uping multiple DBMS re_ques'ts into a single

request. Before ::::-eturning the control to the user, . ORACLE

executes the PL/SQL procedure hiding all the intermediate

results from the user.

ROW LEVEL CONCURRENCY CONTROL:

ORACLE delivers high performance by maximizing data

access by multiple and concurrent users without jeopardizing

data integrity .. This is achieved through the following 3

mechani·sms :

• 1. Row level multiversion read corisistency.

2. ~ow level locking.

3. Sequence number genera_tor.

Row level multiversion read consistency

ORACLE's multiversion snap~hot· model allow~ queries to
~

read without locks and consequeritly queries donot block both

queries and update and also updates donot block queries.

When ORACLE updates a row, it also records enough

information· to generate . a p:re-update snapshot of the row in

memory or ~n rollback segment areas of the database: Rollback

segments are used for read consistency to ensure that ~ qu~ry

uses a con~istent image of th~ db as ~he start of the query.

By executing que~ies without locks, one can update a

row.while other can read t~e sa~e row at· the Same ~ime from

the snapshot i.e~ queries donot block. ~updctes .thus ac:hie;.ring

high concurrency which means no waiting which inturn means

high performance.

Unlike in many other DBMSs, in ORACLE there is no

tradeo.ff betweE;n consistency and· concurrency. In many other

RDBMs pne is achieved at the cost of the other.

For example, to process a join same rows of one table

may be read more than once. Thus the row's value should be

protected rom update during the process of join. To achieve

this, in many DBMSs, locks are imposed on all the blocks read

by the . query during the duration of the transaction. Though .

this ensures read consistency concurrency is reduced as no one
' : . . .

-
can update those rows u~til the join is resolved~

Conversely, to achieve high concurrency, other DBMSs

turnsoff the readlocks but this would result in the wrong rows

being returned during a join operation.

These 'problems are removed in ORACLE by its

multlversion snapshot model of read consistency that gives·

high concurrency and high data integrity.

Stable query response time is yet another advantage of

ORACLE's · read consistency algorithm. Since qt:ries never wait

for update transactions or other queries, there ·is little
I

var.i,ation in response times ·as the number. of current updates

increase.

1 Inmost DBMSs deadlocks can occur if two or more

tran~actions update two different rows and th~n each atte~pts·

to read the row that the other has l(:)cke'd. This is not ·the

case in ORACLE as it doesnot place any read locks.

' level locking

Locking in ORACLE is done at row level with t.he

following unique advantages

1. Users can update r6Ws in the same page .

2. Users can place unlimited number of locks .

3. Users avoid lock escalation deadlock :

4. Performance is sustained even with the data. and index

· level hotspots :

(Hotspots, the c6ncentrated portions of the table,

occurs when multiple users update rows of the same table or if

data distribution happens ~o place the rows to be updated in

the .. same physical space.)
0 .

5. Inserts. are multi-threaded.

NO - WAIT SEQUENCE NUMBER GENERATORS :

ORACLE generates unique numbers for all forms of

primary keys without waiting or programming and it does so

without locking.

With programming, the typical method of generating a

sequen,ce number, say order_no, i'S)ock order no table,

incre~ent the current order numbei and release the table~ Each

user has to wait his turn to lock the table which is a single

threaded operation.

HOW ORACLE AVOIDS ROW LOCK OVERHEAD :

ORACLE elevates the concept of row lock waits to the .

tran~action level. For e~ample, user A has locked ten rows of

a tab~e and user B wants to update five of these ten rows.

ORACLE does not keep .track· of t1,1e five locks ·that has to be·

released in order to proceed with .B' s request, instead ORACLE

just remembers that user B is waiting.for user A's transaction

to finish. Consequently ORACLE manages one transaction instead

of five separate row locks. Th'i s provides the usage of

unlimited number of row locks and also no. row lock escalation

which makes ORACLE to. deliver a highest possible concurrency

even uhder heavy loads.

FAULT TOLERANCE:

OLTP applications besides processing f~st must .also be

available at any time. With ORACLE need not be shutdown and

H/W failures that shutdown the syst8m can be prevented.

Online database administration minimizes the down time:

'With ORACLE one can perform online database

configuration, diagnosis, backup and recovery without·

interrupting the work of the dat~base users running any

application pro~r~ms.

a Oriline database c6nfiguration

One can tune performance iq many ways including

addition of tables and columns of tables, alteration of

existi~g column~, indexes, clusters.: The feature of ORACLE to . . .

to .

manage' the database space online permits one to move files·

from disk to disk or move infrequently used portion of

database to tape or even expand the database by adding the

files online. All these changes are transparent to users and

applications.

o Online diagnosis :

. ORACLE's online performance monitor determines the

status.of the d&tabase at any point·in time. The·data can be

used to improve ·the transact fon processing for maximum

performance. The data that the online m9nitqr d~splays

1 .. I/Os by user an by files.

2. Locks at the user and the database level.

3. Rollback segments information.

·4. System statics such as logons, cursor opens, database

calls, and buffer usage.

5. U~er session information.

o Online backup:

Comple~e or partial online backup to the database is

allowed without impeding the work of any Oracle user, even

those updating the database.

Without degrading the system performance, the logging

of all changes to the redo log files provides space efficient

protection against all forms of system failures.

·Online backup is fast as it is done by the 0/S.

ORACLE,. s online backup can take consistent backup and does net -

impact concurren~ OLTP opetations~

. If the database needs to be recovered, a consistent

snapshot of the d~tabase can be ereated -from the tape copy of

the database plus the redo logs that are archived during the

back up.

·o . Online recovery :

Whil·e portions of the data are online and accessible,

one caf,l recover . the failed section ·of. the same .da.tabase by

taking the failed section offline~ recoveiing ~hat section and

bringing back 'the. section online preveniing the database

shutdown.

After CPU or media failure, database recovery is the .

process of rolling back the unc6mmitted transactions and

rolling forward the committed transactions. As a first step of

recovery a separate database process, the system monitor

(SMON) ,1 uses redolog information to rollforward all committed

and uncommitted changes. As a second step, the SMON identifies

th~ uncommitted change~ using information in the rollback

segments.

Recovery time is controllable~ Recovery time depends on

the amount of redolog iriformation that must be applied to the

database~ Data in the redolog files is no more needed once the

modified blocks have been written from the memory to the

database. A check point is the act ·of flushing all modified

blocks ' from memory ·to the database. As one can control how

much redolog information is generated petween check points,

the tiqte · for. recovery of ·the database ·after CPU failure is

controllable.

For disk failures, recovery time is directly depend~nt

on the amount of redo log information generated since the last

backup. as the frequency of the backup is controllable ar,d

also since the database backup has no impact on performance,

the time it·takes to recover the database after disk failure

is also controllable .

. H/W Fault-toleiance maximize~ uptime

The faul.t tolerant ·capabilities of ORACLE maximizes the

availability of the database information despite H/W failures~

Protection against user and program failures: With

ORACLE the user failures such as intentional user aborts and

the program failures such as stalled or hung processes

occurrences automatically. recovers the database without

shutting down or corrupting the database.

Protection against disk failures : If a database disk

should fail the failed disk can be recovered online, restoring

it to its previous consistent state without interrupting

applications accessing other disks.

Protection against

configuration allows any

client/multi-server DBMS.

CPU

number

If one

failures The shared-disk

of computers to run ORACLE

of the computers fail, ~ith

ORACLE one of the ·remaining computers au~omatically recovers

aLl trapsactions of .the failed computer. At· the same time one

can move the users from the failed computer on to ariy cif the

functioning computers.

Protection against network and node failure : As each

node operates independently, the network failures such as node

failures, line crashes or transmission errors donot . force to

shut down other nodes of the distributed database (ddb) and

als6 th~y dohot corrupt the database of the failed node ..

·central node distributed have a sihgle. point of

failure- - the global dictionary located at the central node

that·cuts off access to all data on'the network if the central

node fails. With ORACLE the dictionary is distributed among

nodes in the network so that the· failure of any one node

doesnot affect the accessibility of data located on other

nodes.

Fault Tolerant H/W

'In addition to.ORACLE's complete set of online and

fault tolerant features, ORACLe runs on a number of fully

fault tolerant computers and disk monitoring systems to

provide as much fault tolerant as one requires.

VERY LAP,GE DATABASE SUPPORT

ORACLE supports very large database common to OLTP

environments through a combination· of no limits and useful

database management utilities.

o· Virtually no limits

The size of the database is only limited by available

storage... An ORACLE database or a tabre· can span as many

physical disk devices as one make available. There are no

·artificial limits on the number of valid or active users of a

databa~e and also row locks at the user~ table or database

level may extend to any limit. Moreover there is no

restrictions as to the number of simultaneous transactions

per database.

With ORACLE, database can exceed the amount of

available storage - virtual storage capability. One can take a

portion bf database ohline when required and take it offline

when not required. When the sections are offline these

sections can stored on magnetic tape;

o Database management ulilities

The foll~wing thr~e major features are provided by the

ORACLE to control users and space :

1. One can control access or types of access to tables

down to field levels by a combination of views· and GRANT

·comm~nds.One can also audit access .to the 'dat.abas~. and to the
0

tables. One can also determine when the given user has logged

on-and off, what operations are performed against what tables

and whether the operation succeeded.

2. One has direct contro·l over who uses what databases

and how much database space. Space allocations are dynamic and

many .defaults can be set.

One can also control the space within a table - whether

the ta~le grows in small .or large increments, how. ~uch space

is reserved in each block of row expansion and what· empty

space within a block is reused.

3. The dynamic ORACLE data dictionary, where all the

usage information is available, is tightly integrated with the
'

operation· of the database. Any change to the database is

immediately reflected in the data dictionary. From the active

data dictionary, a range of information is available including

what users have access to the database, what tables or other

database objects have been created, how much space has been

·consumed and what privileges have been granted.

OLTP . SUMMARY ORACLE extends the relational

productivity benefits of greater flexibility, ease of use and

non-procedularity in accessing database data, to the online

transact ion processing ·arena with a combination of high

performance, $eamless fault tolerance and very large database

support.

THREE TIER, HETEROGENEOUS, ENTERPRISE-WIDE COMPUTING

Despite the different ti~rs of computing platforms (at

corporate level on mainframes~ at ·department level on
. . l: .

minicomputers · and at workshop level on microcomputers/work

stations) an despite· the heterogeneity in the computer

platforms (main£rames, minicomputers, microcomputers, work

stations), all areas of organization need to access and to

share information throughout the enterprise inorder to take

full advantage of their informatfon resources.

1. Portable solution

ORACLE RDBMS is one stop solution to three tier,

heterogeneous, enterprise-wide computing. Oracle runs ori all

major computer platforms.

Advantages gained with a portable RDBMS

1. Increased flexibility .

. 2 .. Reduced development cost.

1.; 3. Reduced training costs.

4. Increased H/W independence.

2.Distributed database solution

ORACLE's heterogeneous ., · ddb solution provides the last

ingredi~ht for enterprise wide computing - data sharing .

. Coupled with ORACLE's SQL*Net and SQL*Connect, all ORACLE

databas:~ and many non-ORACLE database can share information

throug~!the organization ..

The benefits of the distributed database include :

1. Flexible departmental computing : Ddb systems store

data. where it is most 'likely to be needed - reducing network

traffic and maximizing data availabili,ty in case of network

failure - while permitting authorized users throughout the

organ.i,_z.ation access to the same data.

2. Simplified application programming Application can

access data stored on multiple computers with same ease as if

the information was stored on the same computer.

3. Simplified data sharing Ddb capabilit.ies unify
;

dissimilar applications on separate computers by enabling thrim

to operate on a common logical database.· ·

Since ORACLE runs on and connects between -a large

variety o~·platforms, application can a~cess infoimation from

different environments as easily as f~om

: env:l~r-onment.
~

3. Distributed architecture

homogenous

The three characteristics of the ORACLE's distributed

architecture are :

o Location transparency : All data seems to reside
; .

on the. local database. User need not specify the physical

·location of .the· data. ORACLE's. data d.ictionary performs this

task anh retrieves the data the query refers to from the table
i

name sp~cified by the usei. The re~rieved data may be a remote

data or local data or a combination of both. One can move the

data among the nodes without receding the query.

o Site autonomy : A network is said to have site

autonomy if there is no central process or node responsible

for control over system-wide functions such as routing,

scheduling, query optimization or deadlock detection.

Advantages of site autonomy include

1 .. Better, local control over data definition and

security.

2. Fewer interdepartmental dependencies .

. 3 .. No cen·traJ_ points' of failure.

4. Easier failure recovery since· each ~ite can be

recovered independently.
. .

5. Easier system growth.

a· Network independence : ORACLE's ddb supports a

num.!:de~ of.LAN~ and. ~ANs. It can even operate over several be

replaced without receding the applications.

ORACLE makes. enterprise-wide computing a reality by

providing ORACLE on all types and sizes of computers and

connecting these heterogenous systems with a sound ddb

architecture.

SUMMARY OLTP and enterprise~wide computing. are the

power targets in the relational database industry. ORACLE

RDBMS with transaction processing option is one DBMS that

addresses both. ORACLE has .the performance, fault tolerance

and large database support required to deli~er high

transact'ion volume and fast response rates for hundreds of

users. Its ·portability, distributed database architecture and

breadth of network of network protocol offerings· make it .the

ideal solution for three tier heterogeneous enterprise-wide

computing.

ii. PRODUCTIVITY TOOLS FOR APPLICATION

DESIGNERS AND DEVELOPMENT

Oracle provides developers with a complete

environment for designing and implementing ~obust production

applicaiions. Using Ora~le' application development tools, one

can create sophisticated transaction processing, reporting,

menuing systems, all without programming.

SQL*Forms

~omplete application without programming : Forms

based transaction processing ~pplications can be dqne quickly

and ~ffi~iently, all without.~rogramming.

Effective prototyping ~ SQL*Froms' unique rton

procedural approach promotes effective application. protyping

'
thus letting one to refine his/her application as one builds.

Open Architecture: Application can be buil·t as

per:- the individuals' inter.est .without ~ny restrictions.

can be accessed by simple SQL

statements .Emb'edded procedural macros or routines written· in

COBOL, C, FORTRAN, PASCAL etc are allowed to customize any.

aspect of.application functional~ty.

Development flexibi 1 i ty: Development backlog can·

be eliminated and applications. can be kept ~s current .as the

.information n·eeds sin·ce it takes· very less time to adjust the

SQL~Plus

It delivers a full implementation of SQL as well

as powerful report-writing and data transfer capabilities. SQL

statements and formatting commands can be executed
' .

interacti~ely or from stored command files.

SQL*Report

It is yery useful to create everything from basic

text to sophisticated multi-query reports.

SQL *Design Dictionary

It is a Computer .-Aided System En~ineering (CASE)

system built on the ORACLE RDBMS in order to manage the

application development process. It, besides documenting every

. component of the application developed, also performs

consis~ency and quality ·checks throughout the analysis and

design pr?cess.

Programmatic Interfaces

OR~CLE supports two types of programmatic

interfaces- precompilers and procedural interfaces.

Precompilers lets one to access and man.ipulate data 1:1sing

familiar· programming 'languages in the form of embedded SQL

statements. Precompilers convert such embedded SQL statements

into the ~ppropriate programming lan~uage source code.

Alternatively, SQL stataments can be executed by

the ORACLE call interface to pass SQL procedure calls to

BMS.

Besides these tools there. are many .other tools

ORACLE provides. Few. ·of them are :

SQL*Calc, to · make porta~le and consistent

facei across machines;

SQL*QMX, which combines dynamic query facilities

a~ ~asy yet powetful report writer;

Spreadsheet Interface which delivers the

tages of ORACLE RDBMS coupled with the capabilities of an

to learn spreadsheet

SQL*GRAPH that provides graphics facility

iii. ERROR HANDLING TECHNIQUES IN ORACLE RDBMS

Errors that might be encountered while using

ORACLE corporation programs . are broadly· divided into three

categories :

1. ORACLE errors : These errors ·are detected by ·oRACLE

RDBMS and might occur while running any ORACLE program. Each

Oracle error message has a prefix ORA.

2. Product-specific errors : These errors are specific

to on product.

3. System-specific· errors . These errors are specific

to one operating system.

Error messages are very descriptive that in most

of the cases the errors can be debugged without going through

the manuals.

ORACLE's extensive self-checking helps to detect

RDBMS internal errors when a process meets an unexpected

condition) .. It issues a catchall error message for OR1.CLE

program exceptions· in the following format

ORA-600 internal erro,r code, ar·guments (num], (?], . [.?),

[?], [?).

where the message text is followed upto six argum·ents which

indicates the origin and the attributes of the errors. The

first argument is the internal error code number and the

other arguments are various numbers, names and· character
.; (. .

striFJgs. (Empty brackets may be -ignored) .

1

Such bugs ca~ be debugged by reporting as a S/W

)Ug to CUSTOMER SUPPORT with all the six arguments.

When an error occurs whi.le in r'ecursive routine,

instead of issu~ng the same error message for each recursive

step, ORACLE displays what is happening by-adding 10000 to the

2rror number of the last recursive error _message.

Trace files can also ~e used to debug errors. Each

time an ORACLE instance is started or an unexpe.cted ·event

opcurs in a u~ei process or in a b~ckground process, a .trace

file is .Created with. the file extension as TRC ·and the file

name includes the process name, instance name and the ORACLE

~rocess number. The contents of the file may include the dumps

)f the system global area, process global area, supervisor

stack and registers.

·The location for trace files created by the ORACLE

oackground process PMON I DBWR, LGWR, SMON ·and user

~rocesses (SQL*PL.US, PRO*C can be .known by the. INIT.ORA

)arameters viz BACKGROUND DUMP DES.T and USER DUMP DEST.

These t race f i 1 e s has to 'be form a. t ted (us in g

)UMPFMT utilili ty· before reporting .to CUSTOMER SUPPORT to

1elp solve the problem.

~· LAB MANAGEMENT SYSTEM

~·h INTROI)UCTION

In any _s;w organization, a1·1 the .S/W developed has to

undergo a complete cycle of the following proce~~~s:

o Layirig out speci£ications

o Designing

o Impl·ementat'ion

· o ~lf test'ing

o Regression testing

o Release

The testing phase is generally best carried out in an

enviro,nment which· is almost same to the actual· Teal time

environment in which the softwa·re has to. actually .run. The

real time .. environment with the· associated H/W .and other

accesspries is generally kept in labs as it i~ not ~ossible to

provide each individual with an individual· real time work·

station vis-a-vis one terminal per persGn. ·

In C-DOT, the entire S/W is developed. for ttie

electronic switching system, t-DOT bss, and for te~tin~ model~

of the switch which are kept in labs. However there is forever

a rush of designers wanting to use these models for their

testing. So some sort of methodology has to be worked out fbr

optimum utilization of the work stations by different

~esigners on a time-sharing basis.

J,-ii. OVERVIEW OF THE EXISTING LMS _;_

To ensure a proper utilization of work stations the

designe.rs .are allotted time slots on different Work stations

in 2/3 hr. shifts. The shift-incharge gets requests .from

different designers for a shift and according to the

priorities, he makes a shift plan for all work stations. The

shift 'p+an is circulated to. all the 'concerned engineers. This

is how'th~ present tMS is functioning inC-DOT.

'4. iii. NEED FOR THE AUTOtv'.tATION OF THE LMS

However. this approach although appears to be good,

seems to have many flaws. To mention a few :

o ' Invariably designers find the system down during their

shift tirr.e such that most of their time is 'spent in bringing

it·to a workable condit~on.

o Shifts may be allotted on work stations which are not

according to the required configu::::"ation. So there will be

wastage of time in ·terms of accommodating all desired

resources and getting them fixed

o Non availability of information regarding the state in

which work stations have been left by previous users.

0 , Non avai labi 1 i ty o'f th~ information regarding the

patches installed or remcived in a particular work.staiion.

0 No one directly held responsible for all the chaos

generally encounter~d and hence it cont~nues.

o Non availability status of the resources along with the

work stations ~nknown till th~ t·ime of the allotme~t of
. ~

sh~fts.

o Cancellation and reallocation of the shifts can be done

only by the shift incharge. It is a risksome on the part of

the engineer to approach shift incharge for even a simple task

like shifts ~ancellation and reallocation.

Th~ only way all these·~iscrepancies·could be r~moved

was by automating the entire system to the maximum extent

possible.

5 . AUTOMATEP LAB MANAGEMENT SYSTEM

The drawbacks of the unautomated lab manage~ent system

can be overcome by automating the system.

By automating the LMS, ws mean the following should b

provided:

1. Users should be allowed to give inputs, lik

~equ~sting for shifts and etc, online without the interventio.

of the LAB MANAGER.

2. Lab m~nager·need not bother about the scheduling o

the shifts unless in some extreme conditions, like· when th1

scheduling done by the system needs some alterations and etc.

3. User should be allowed to select the shift:

according to his convenience and shifts availability.

4. Users. should be known of the current softwarE

status of the labs. For future reference we shall call ther

'Patch/Prom links.

5; The estimation of the uti1ization of the lab::

should be done without much difficult.

6. Data security should be provided _so that any user

other than lab. managers, can access;· only ·his records . and nc
$

one. else's.

In this section, the· outline of the AUTOMATED LAB

MANAGEMENT system is described.

The approach and the notation ·employed for the

discussion of the development of the application program,.ALMS

is considered here.

The whole ALMS process is represented by one data flo~v

diagram (DFD). Thereafter each process and sub process of

every DFD is described either algorithmically in a few· steps

·or through a DFD again; which ever method is more convenient.

F,or each. DFD the contents of the data items that pass along

the arcs of the DFDs are described. Finally .the implementation

of each process on ORACLE is discussed.

Notation used while drawing the DFDs are same as the

standa~d notation of the database DFDs. Each bubble represents

a process. Data base tables are represented by a rectangle

with only three sides shown. The source and the sink are shown

by a closed rectangle. The data flows between processes,

sources and sinks. The data. flow is shown along the arcs.

A
B

c
D

•

AliTHORI
ZATIOH,_

IHPliT

ALMS

USE:R

F
A
I
L
ll
R
E -

E M F L 0 Y E E -;.____(PASS-

L--------------------- . ~ORD

-+
-+
~
~

TO II!:

SFT P.EQLIESTlE
SFT REALLOC*

SFT PAT<~H~

SHIFT REQUEST
SHIFT CAHC / REALLOC
PATCH LIHJ<S
SHIFT LOG

!H?UTT:!:D :::s: ,, TH!: US!:R,

ALLOC"

E -+ HS COHFlGURATJOH
F -+ SHIFT STATUS CHAHGE
G -+ LAB QUERY

i....._ . DESCRIPTION AND IMPLEMENTATION OF ALMS

DESCRIPTION ·.

The. DFD for the whole ALMS shown in. the

previous page
i

is implemented in several forms as

described below.

Each (sub) process . in· the .ALMS DFD, · more or

less, is implemented as a separate form. .There are

-~round ten representative forms designed, each of ~hich

serves a distinct purpose.

In this section a brief description of how .

each process is transformed into a form and what

.purpose does each such form serv~s is given.

When the user logs in, he has to enter his

correct user name along with his. password (arc

AUTHORIZATION INPUT) . The process PASSWORD checks
'

whether the user name and the password entered are

valid.

If the user authorization succeeds,· the

PASSWORD issues an AUTHORIZATION SUCCESS status and the

.control goes to the next process, AsK· OPTION.

However, if the user enters ·a wrong password the

PASSWORD .gives an.-AUTHORIZATION FAILURE sigria·l and the

control goes back to the user enabling the user to try

fot a successful login this time.

This process PASSSWORD is implemented using one form.

The process ASK OPTION which is run when the user makes

a successful login, is implemented as a ·form called

ASK OPTION.

This process reads the purpose of the user who is

running the LMS and branches to the sub-process as

·required by the user. The process. ASK ·oPTION may call·

any of the following seven sub-processes depending, upon

.the re~uest of the user

A. SHIFT REQUEST

This process is ca~led when the user wants to

make a requ.est for the·· shifts. The function of this

·P:!f;OC:ess is to read the request· of the employee and to

store the sufficient.data regarding this request in the

database table. Two forms are designed to implement

this process.

B. SHIFT REALLOCATION I CANCELLATION:

This process is invoked when requests for the

·cancellation and reallocation task. There are broadly·

·two distinct type of shifts that may be request;ed by

the employees for the· c~ncellation or·reallocation.

First one i s when . t h·e s h .i f t s are just

requested i.e. these shifts may or may· not be all6ted

to that employee; and secondly when the shifts· are

gu~ranteed to be al~otted. These two cases are handled

adeptly by this process and ensures that a consistent

data transaction takes place always.

The task of this process is done by two

different forms.

C. SHIFT PATCHES:

This is another sub-process of the ALMS

process and is run ·when ever. some data has to be

retrieved or inserted into the database tables

regarding the PATCH/PROM links, defined· in the glossary ..

Only one form is built to serve the purpose

of thi~ process.

D. SHIFT LOG:

After the employee uses the shifts that are

allot.ted to him, he has to run this process which reads

" the. details of the shifts that have been used.

Rigorous checks has to be done to ensure that the data

always remains consistent. This process takes .care of

such chebks while manipul~ting the data in the database.

This process is implemented using one Form.

E. WS CONFIGURATION:

This process maintains a list· of ws

configuration components which can be displayed for the

reviewing purposes. It also keeps trac~ of ·all newly.

installed patches and also of all new components. It

allows for the insert.ion· and/or deletion of. the

required compdnents that. the employees may want to

insert or delete.

This.process again is ·carried out. by one form.

F. REQUESTED TO ALLOCATED

E~ery once in a week, al~ the shifts ih~t are

requested for the next week should be given a status

'WILL BE ALLOTTED. Once the status of the shift is

changed to the value mentioned above, that shift will

be definitely allotted unless and otherwise it is

changed by the Lab manager in some extreme conditions.

The form REQ ALL takes care of this task.

;. LAB INCHARGE QUERY:

This process is of a great help to the lab

incharge who has to arrange the WS with the components

as requested by the engineer in the SHIFT REQUEST

process. This process decodes the coded version of the

concatenation of required components' numbers which

uniquely .identifies the component.

After one of the above processes finishes its

task, the control go~s back to user from where he can

run another or the same process of his interest or make

an exit.

In the subsequent pages we shall see in

detail, how each process with DFD, is handled by the

SQL FORMS and SQL REPORT$ and hence how the automation

of·the Lab Management is achieved.

PROCESS NAME

·PURPOSE

DFD

DESCRIPTION

IMPLEMENTATION

*

*

*

PASSWORD

~o make an author~zation and to achieve the

data security

.Not shown.

This process verifies whether the user is

authorized user or not.

Read and validate user name

Read and validate password

Alter the password ~f required by the user

and Validate the altered password.

* Save the value of employee's number.

This process is built as one SQL*FORM with

three blocks.

* A field is created in one of the blocks

of this FORM to read the user name. A post

change trigger is defined on this field

which ensures that the name entered is in

the list of C-DOT EMPLOYEES table. If an

invalid username .is entered, then this

trigger fails and the error .mes~age i~·.

displayed. If a valid ·user name has been

entered, the next step is executed.·

* Another field is defined in the same

block as the USERNAME field is defined, to

Tead the pass~ord of the user. Similar

checks are done as in the USER NAME field.

If a right password has been entered the

POST-CHANGE trigger ·succeeds and then the

next step. is cont.inued . else the error

m~ssage is displayed to the uSer:

~ In the next block, the. user has to enter

his option whether he wants to change his

password or . hot. ·If the password

alteration . .is not required. then the next

process ASK OPTION is_called.

However if the password has to be altered,

the user has to enter the new password, in

the third block. Then he has to re-enter

the new password for validation. A KEY

OTHERS trigger defined on this VALIDATE

PASSWORD field checks whether the contents

of the NEW PASSWORD and VALIDATE PASSWORD

fields match. If it matches, then the old

password is repl~ced by the new one in th~

database table and ASK OP.TION is ,called.

Else the message that the va·lidation has

failed is displayed and the old password

is resumed. Then the ASK OPTION process is

called.

* Before going to the ASK OPTION process 1

the v a 1 u e o f the em p 1 o y e e 1 s number is

stored in the global variable, EMP NMBR.

PROCESS NAME

PURPOSE

DFD

DESCRIPTION

IMPLEMENTATION

*

*

*

ASK OPTION

To process the employees' purpose for

running this p~ckage.

Not shown.·

Read option number

Check for the va]_idity for the entered

·option number.

Store op_tion number for· reference in

future.

* B~anch to the p~ocess as reqQested by the

emp~oyee.

One SQL*Form with one block is created for

the implementation of this process. The whole

form fits in just one page.

* A field called OPTION NO is created in

*

*

this form. Employee can enter his option·

number in this field.

A step in KEY~OTHERS trigger* ensures that

the option number.entered .is between·o and

7.

A step in KEY-OTHERS trigger defined on

this field copies option number as entered.

by the employee into the global variable,

global.option~no

* A step in the KEY-OTHERS trigger calls the

SQL*Form as requested by the employee.

A. SHIFT REQUEST

.-------------------*i

REQUE::T""

USE:R

0
p
T

l?, ..
~

~-- ---------~

1
' D ' (r 'A L

p T f')

'r i B-
:R
E
Q

TO BE INPUTTE~ Bi THE USER.

E
'.C:
I ;
T

+--------------------~

UP[• ATE:.:

PROC.ESS .NAME ·

PURPOSE

DFD

IMPLEMENTATION

SUBPROCESS NAME:

PURPOSg.

DFD

DESCRIPTION

.SHIFT REQUEST

To save and process the shifts requested by

the employee.

Shown 'in the previous page ..

Two forms with 7 to 8 blocks and

several triggers, validation checks etc

are created to serve the purpose of this

process and h~nce its. child processes.

We· shall see now thr:· description an.d the

implementation of each child process ·of ·the·

SHIFT REQUEST process.

GET REQ

Gets the verified request details from the

employee.·

Not given.

*

*

*

Read the PURPOSE for requesting for the

shifts, TOTAL SHIFTS required. and a

concatenation of the work station

configuration components that the employee

requires.

Check for the

data.

validity of the inputted

Generate a unique REQUEST NUMBER ·for this

IMPLEMENTATION

*

request which uniquely identifies this

request.

Send· the data item, copy datl, to the

SHIFT ALLOCATE sub process, which is

·described later iri this. section.

The task of this process is done by few

triggers and validation checks. No separate

SQL*FORM is created to implement this process.·

*

' *

The parent SQL A-Form, . SFT _ REQ· has·

INPUT-ALLOWED fields foi the

th.ree

three

v'ar iables, PURPOSE,

CONFIGURATION ..

TOTAL SHIFTS AND WS

·A validati.on check is made for the TOTAL

SHIFTS field. to ensure that the value

enteied will always be in the range 1 to

24, as there are 24 one hour shifts pe;r

day.

A POST-CHANGE trigger is created in the

CONFIGURATION field. this trigger makes

sure that ·the first character of the

configuration string alwa~s hold~ a valid

· .WS type, · i.e· the first character should

. always be eithe~ S, if ~n SBM. is requested

or·M if an MBM is requested.

SUBPROCESS NAME:

PURPOSE

DFD

DESCR:J:PTION

* A PRE-INSERT trigger updates the maximum

request number used so far stored in the

database table SEQNOS by one and assigns

this number as the request-number to this

particular request.

* A KEY-CO~ll1IT trigger is. defined in several

steps such that· after committing the

transaction, the :value of th~ REQUEST

. NUt1BER and the WS CONFIGURATION string are

copied into global_' var_iables for future

i~ferences then the control is transferred

to the SHIFT ALLOCATE sub process.

VALIDATE UPDATION

Verifies that the updation done on the

records is valid ..

Not shown.

* Display only those recor.ds to which the

*

employee is allowed to do updation process.

Allow updation only to the PURPOSE field

and the WS CONFIGURAl'ION field. In the

later case the first character of the

string is not restricted from updation as

it contains the type of the work station·

the engineer wants to use the shift~ in,

)II

I
H
I)
A
L
I
D

HALID

SHIFT ALLOCATE·

SFTSlll
U S E Fl t---tl>t

I IHIAL I r>

IH\IALI[I

YES

H(J
'-----·------

L AB:__S F T

TO BZ INPUTTZD BY THZ USZR.

YES

LEMENTATION:

?ROCESS NAME:

)OSE

:RIPTION

Even this sub-process is implemented i!).

ORACLE through triggers, validation checks

and usir

* A V.7HERE clause in the WHERE / ORDER BY

*

*

option window is written so as to retrieve

at the time of execution of the query only

those records witp employee number same as

that stored in the global variable.

For total shifts field, the UPDATION

'AL.LOWED·. option· is .deselected in the

ATTRIBUTES WINDOW.

A PRE-UPDATE trigger is defined to check

that the fir~t character of the WS

CONFIGURATION. field is not chan9ed as thj,s

first character cont~ins the type of the WS

requested.

SHIFT ALLLOCATE

To provide on-line. selection of the shifts.

Shown in the previous page.

* CHK COUNT

If the shifts to be chosen is zero th~n

this sub-sub-process issues a 'ALL SHIFTS

CHOSEN' message and t~rminates its parent

process i .. e. SHIFT ALLOCATE.

However if the shtfts to· be chosen is

greater than zero theh this process issues.

the message 'SHIFTS ARE TO BE CHOSEN'· and.

the control goes to the user t6 read the

input.

* CHK SHIFT COUNT

'Read shift details viz on ~hich .date what

shifts are required.

If the SHIFTS TO BE CHOSEN is greater than

or equal to shifts that are requested at

present, then the process invokes the next

process else the control goes back to the

user with the message TRIED TO CHOOSE

MORE SHIFTS' .

* FIND WS

If any of the Wor~ Stations (WS) of· the

type as chosen in -the .~HI.FT REQUEST

process, has . free shi.fts on the date .. and

during the shifts as chosen by the user in

the above process, and can accommodate all

the configuration components as requested

by the user for these shifts then. a status

signal 'VALID' is issued and the next

process, SHIFTS

execution.

COLLISION starts its

IMPLEMENTATION

* CHK SHIFT COLLISION

If any interactive shifts* are chosen by

the user and if few or all of these

interactive shifts has already been chosen

by the same user on the same date the this

process issues a 'SHIFTS COLLISION' signal

and the control goes to the user else the

control goes to the DEC -SFTS process.

* DEC SHIFTS

This process decrements the val~e stored

in the SHIFTS TO BE CHOSEN variable by the·

number of shifts that are chosen.

The subprocess SHIFT ALLOCATE is implemented

in ORACLE using one form with seven blocks

and several triggers. "The implementation of

each subprocess whose description is given

above is described.

* CHK COUNT

In the KEY-COMMIT trigger before COMMIT

macro, a check is made to ensure that the

contents of the field 'SHIFTS TO BE

CHOSEN' is greater than or equal to zero.

* CHK SHIFT COUNT

Three INPUT ALLOWED fields are defined in

the SQL*FORM to read the values of the

s hi f t date., s t art and the 1 as t s hi f t

nu~bers from the user.

Few steps in the PRE-INSERT t~igger are

written to check that the SHIFTS TO BE

CHOSEN field .is not· less than the

difference . of the last and the start

shifts as requested by the user.

* FIND WS

Few steps in the PRE-INSERT trigger are

written to check the following:

(The trigge~ aborts if any of the

following two steps fails and the control

goes back to the approriate message else·

the control goes to the next process.)

~hether there are any WSs, of the type

as chosen by the . user in the SHIFT

REQUEST process, free on· the date ·and·

during the shifts as required by. the

user.

Whether all configuration components as

required by the user are available in

any of.the WSs chosen in the above step.

* CHK SHIFT COLLISION

A step in the PRE - INSERT trigger ensures

that the same user will not be given the

same interactive shifts on any date.

)EC SHIFTS

~ POST-LNSERT trigger is defined so that

~ach time a record of shift details is

Lnserted into the table, it decrements

)HIFTS TO BE -CHOSEN value by one.

B. SHIFT CANC / REALLOC

t I
I

\ ~
I
I ~

HO
+--+---~--~-~-----------~---------___.-

us'ER

1

C A tt C

LA B_:REQ

• TO BE INPUTTED 5~ THE USER.

PROCESS NAME

PURPOSE

DFD

DESCRIPTION

SHIFT CANCELLATION AND REALLOCATION

.Provide on-line cancellation and reallocatioh

of the requested shifts.·

Shown· in ~he previous·page

This process ha~ six child processes.

* REALLOC CANC

Read use:[:' s name, request number, work

station number, shift date, and start and

the last shift numbers to which the

cancellation or reallocation is requested

along· with the status value. for running

this process viz REALLOC for reallocation

or CANC for cancellation.

* CHK

If the status of the above shifts as

entered by the use.r is 'ONLY REQUESTED'

and not 'WILL BE ALLOTTED' then 'this

process passes the control ·to the CHECK

STATUS process else the .control goes to

the CHK.PRIVILEGE· proc~ss.
' . '

* CHK PRIVILEGE

Read password.

If a right password. has been ent~red then

the process ~s terminated and the control

goes to ihe next proc~ss viz, CHK $TATUS

IMPLEMENTATION

Else the process aborts and the control

goes back to the user.

* CHK STATUS

*

If the shifts are to be canceled then.

~he process DEC SHIFTS is invoked else the

process SHIFT ALLOCATE is invoked. This

process also removes all shifts that are

given, either for cancellation or

reallocation, from the LAB SFT table

after inserting the same into the

SHIFT MOD CANC table which has the details

of those shifts that are canceled or

·reallocated.

DEC SHIFTS

This process decrements_· the value stored

in the TOTAL SHIFTS co~u~n of the

corresponding recordr in LAB_REQ table by

the number of shift that are cancelled.

* SHIFT·ALLOCATE

Same as that in the SHIFT REQ~EST process.

The process, SHIFT REALLOCATION /CANCELLATlON

is implemented through two SQL*FORMS with

around eight blocks and several triggers.

Implementation of each sub-process is given

below which constitutes to the implementation

of the whole process.

* REALLOC CANC

This ·process is ~mplemented through . an

SQL*Form with fields for ent~ring the

value.s of the variables EMP-NMBR, REQUEST

NUMBER, SHIFT DA:TE, WS 'NUMBER, START AND

LAST SHIFT ·NUMBER and the purpose of

runn~ng this form.

This form also has a field to display ihe

total number' of shifts that are cancelled

or reallocated.

* CHK

The task of this .sub-process is done by a

p~rt of the PRE-INSERT trigger defined in

few steps. Few steps in t·he PRE-INSERT

trigger i's define.d to check t,hat all the

shifts as inputted. by the user has the
. . . .

status ·as 'REQ' and not 'ALLOC'. If this

part of the ·.trigger succeeds then ·the

process. CHK STATUS. is invoked. Else the

process CHK PRVG is invoked.

* CHK PRIVILEGE

This process is implemented as a .BLOCK of

the SQL *FORM. It has the field called

PASSWORD with ECHO option dese;ected. If a·

wrong password has been entered the POST

CHANGE trigger defined on this fiels:J. fails

and control goes to the user with the

f.ailure message. Else the control goes to

that part of the PRE,-INSERT trigger by

means of whictt the process t~K-STATUS is

implemented.·

* CHK STATUS

This process is a part of the KEY-COMMIT

trigg~r. This process is defined after the

COMMIT macro in ·the trigger. It ensures

that if cancellation was required then the

process DEC SHIFTS is called else the

process SHIFT ALLOCATE is called.

* DEC SHIFTS

This process is defined as a user defined

trigger, DEC SFTS. It decrements the

'TOTAL SHIFTS' column of the correspondirtg

record stored in the LAB_REQ table (this

record is 'ident i f.ied ·by the request number

as ent·ered by the user) by the 'total
,.

number of shifts that. are cancelled in

order to achieve the data consistency.

* SHIFT ALLOCATE

Same as ·that in·the SHIFT REQUEST process.

PROCESS NAME

PURPOSE

DFD

DESCRIPTION

*

SHIFT PATCHES

Keeps track of the information regarding the

Patch/Prbm links on the BMs.

Not given.

T~is part of th~ process reads the pu~pose ·

why the user is calling this process.. It

then processes the inputted value and

calls t'he appropriate sub processes.. It .

als~.validates the entered opticin.·

The valid' options are the following

Report successful installaticin of the

patch link.

Report the successful removal of the

patch link.

Re'port the failure to install the patch

link.

Report the failure to remove the ·patch

link.

Just to know the details of the patch

links.

Update the status of the pa~ches.

~ Validatibn of the the inputted or updated

records.

..
!PLEMENT~TION:

Users can update only those records with

patch- link status as 'FAILED TO INSTL' and

'FAILED TO REMOVE' to 'SUCCESSFULLY

INSTLD' and. 'SUCCESSFUL REMOVED'

respectively.

Users should be allowed to ·perform

nothing more than wqat has been chosen in

the last sub process .

The PATCH LINK protess i~ implemented

'
through a single FORM.hav{ng two blocks.

* In the first block th~ user has to enter

the option DUmber mitching the action that

he wants to perform ..

A KEY-OTHERS trigger is defined to check
. .

that the entered ci:ption numbe.r is valid ..

If the option number entered is that of

EXIT then the process terminates else the

next block is called.

* A post fie'ld trigger is defined in the

STATUS field of the second· block. This

trigger checks in non cipdate mode; before

leaving that field wh~ther the status

field. has the value· as opted in ·the first

·block. If not~ the cursor remain.s ·in the

field else the next command is executed~

A POST .CHANGE trigger is defined on the

STATUS field again, .to make sure that the

status. which was 'FI' can be updated to

'SI' and etc.

In the ·coMMIT trigger that is defin'ed on

this blo<;:k, checks whether the necessary

data has been inputte.d and deletes any

superfluous data entered.

For example when the STATUS is FI (for

Failed to Instal) the REASON is necessary

to mention . why the failure has occurred,

at the same time SINCE WHEN is not

necessary as the patch is

installed nor removed.

neither

PROCESS NAME

PURPOSE

DFD

DESCRIPTION

SHIFT LOG

To keep track of the informat~on regarding

the shifts that have been used.

Shown in the previous page~

Four small subprocesses.constitutes the SHIFT

LOG process: Here the description of these

three sub-processes is given which hence

describes the task of the SHIFT LOG process.

k CHK STATUS

This process processes the data entered by

the user. It checks whether the shifts

mentioned are really all~tted to the user

or not .. If the shifts ·are allotted then

the process terminates su~cessfully and

the next process, ·SANCEL. begins its

e~ecuti~n. H0wever, if the user inputs the

details of those shifts that are not yet

allotted to him, then this process aborts

.transferring the·control to the·U$er along

with the error message.

CANCEL

This process will be made active when.the

CHK STATu·s process finishes i.ts task

successfully.

IMPLEMENTATION

.1.1L1.<::> 1-JLUL;I:::!<::><::> UI::!.1.1::!LI::!:S Lilt! :Silli:"CS Oe"Call.S

for which the log is being made from the

LAB SFT table. .

It also stores enough information of the

shifts,' that are being logged. It· is,

through this information that. ,o:ne ca.n

estimate the utilization ·of the Work

stations.

* DEC SHIFTS

The tasi of this process is mainly to keep

the data consistently. This process keeps

track of the shifts that are yet to be

used by the employee.

The SHIFT LOG process is implemented by means

of an SQL*form having three blocks and

se~eral triggers ..

. Here we shall consider the implementation of

each sub-process ·of the .SHIFT LOG process.

* .CHK STATUS

This task is performed by a F'ORM and ·a

PRE-INSERT trigger.

The· form has fields for the values of the

variables to be inputted by the user.

After the user enters the shifts date,

work statio~ number,·.start a~d l~st shifts

the PRE-INSERT trigger checks whether the

shifts as per the details given by the

user has the status 'ALLOTTED' instead of

I REQ' .

lf.these shifts has th~ status 'ALLOTTED'

then the next process is invoked else this

process makes an abnormal termination back

to the user with the error message.

* CANCEL

This process calculates how many shifts

have been used. And it deletes the

~orresponding entry of each used shift

fiorn the LAB SFT table~ ·

A part of the PRE.-INSERT triggl:?r is

defined as a loop as f~llo~s:

1. ss = · st·?J.rt shift. number and count = · 0

2. If cur sft > LAST SHIFT NO (given by

the user) then go to label 4.
. .

3. If ·the record in the table LAB SFT

with the values SHIFT OAT~, WS NO,

REQUEST~NMBR, EMP NMBR as entered by

the user and the ·SHIFT NO is equal to

cur sft ,exists then increment the

variable 'count' by one and delete

the same record f~om the table.

4; Go to label 2.

5. END ..

* DEC SHIFTS

This process updates the value of the

TOTAL SHIFTS field of the corresponding

LAB REQ record by ·the number of·. shifts

that have been used (the variable 'count'

has this value.

If the TOTAL SHIFTS value is reduced to

zero, then t~e corresponding record is

deleted from t~e LAB_REQ table as all the

shifts of that request are used.

This ·process is again a ·part of the PRE

INSERT trigger.

E~ WS ·CONFIGURATION

0
1.'

t
US EN t+---,

0
p
.T
I
0
H~

(I

ll
E
P. ~ .
'I><

CHEC.H
UHIOUE-

f.,
F: '-----• L A B >a...J S .

~ESS

I
CONFG

1_ _ _..~----1

~------------------~
·uNIQUE.

~ TO BE INPUTTED ~¥ THE USER.

PROCESS NAME.

PURPOSE

. DFD

DESCRIPTION

WS CONFIGURATION

Keeps track of the work station cqnfiguration

components.

Shown in the previous page .

This process has four child process, GET

OPTION, RETRIEVE, CHK UNIQUENESS, GENERATE

and SEQ NUMBER.

* GET OPTION

This process just checks the option

selected by the user and branches to the

a~proprfate process ~ccordingly~ If the

option chosen by the user is ;QUERY' theri

the ·process I RETRIEVE' is .. inv'oked. to . run

the query. r.f the option is ''INSE:RT' . then

the process calls CHK UNIQUENESS process

to ensure a valid data has been entered.

* RETRIEVE'

This process is very simple .. It just

retrieves all the configuration components

of the WS that are stored in the table.

* CHK UNIQUENESS

This process reads the component

description that the user wants to store

in the table.

IMPLEMENTATION

It ensures before inserting the new

component description, that the component

desc as entered by the user.does not exist.

in the table

* GENERATE SEQ NUMBER

Before the new component description is

stored in the database table, a unique

number has to·be assigned as referring a

component description is easier through a

smaller parameter, like a· 3 digit number,

r~ther than a lengthy textual expression.

This process g~nerates a ne~ sequence

number· which is· the .maximum seq nUI:nber·

that has been· used for this .·purpose plus.·

one and assigns this sequence number as

the component numbe~ of the new component.

Then it .inserts· the two values,

description as well as . its number, . into

the table.

* GET OPTION

This proce~s is implemented by using one

block of the SQL*FORM. Field is created to

read the· user's opti.on. A POST-CHANGE

trigger is used to process the option

number as entered by the user. This

trigger firstly checks whether the option

number is valid or not. If the option

number entered is valid and it is not QUIT

then this trigger transfers the conttol to·

the next block, WS CONFG. ·If the option

entered is QUIT then the trigger transfers

the co~trol to the user.

* RETRIEVE

*

This process is a part of the KEY-STARTUP

·trigger in the b:j_ock WS CONFG. A CASE

statement is written to process the.option

number as entered by the user in the

.previous pro~ess. If the option chosen in.

the'previous block is 'RETRIEVE' then the

EXECUTE QUERY macro is performed. As both

the fields in this block are defined.to be

non updatable, the inconsistency is

eliminated.

CHK UNIQUENESS

Thi~ is i~plemented as a PRE-INSERT

trigger and. a part of ·the KEY"-STARTUP

tri~ger. If the o~tjon ·entered is 'INSERT'

the CASE statement wiitien in the KEY- .

*

START·UP trigger detects and t.he .macro

CREATE RECOF..D is performed in which the

user ca.n . enter the record he wishes to

commit.

Aft~r reading a new component description

from the user, and after the user presses

I COMMIT' key the PRE-INSERT trigger

defined in this block ensures that the new

component description does not already

exist in.the table. If this part of-the.

trigger succeeds then the next part of the

trigger is executed. (next process) else

the trigger 'fails and the insertion of

this duplicate record ~s not done.

GENERATE ·SEQ NUMBERS

A table SEQNOS stores in a record, the·

maximum number that has been used so far

as the component ~umb~r of this table. A

step_in pre insert trigger retrieves this

number , increments it by one and assigns

this new maximum number to the .new

component before putting back the new

maximum number into the SEQNOS table.

F. CHANGE SHIFT STATUS

HO PRIVILEGE
USER

PASSWORD*

LAS_SFT
P~O(ESSI.HG DATE*

~ TO ~E kHPVTTED B~ THE USER.

PROCESS NAME

PURPOSE

DFD

DESCRIPTION

REQUESTED TO ALLOCATED

io process the requ~~ts of all the employees

who had asked for the shifts for next week.

Shown in the' previous page.

This process is run once in a we~k to change.

the status of those shifts that ar~ to be

allotted in the next week from 'REQUESTED:

to 'WILL BE ALLOTTED'.

This process has two . child proces.ses whose

description and. implementation is di~cussed

.below.

* CHK PRIVILEGE

Thi~ process checks whethe~ the person who.·

is running this tas~ is allowed to do so.

If privilege exists to that person then . .

the next· process is called else the

control·goes to the user.

* CHNG STATUS

This is the key task of the process, REQ

TO .ALLOC. The CHNG ·STATUS first reads the

starting date of the week the employee

wants to change the status. It make's a

validation check to see· that the date

entered is not less than the current date.

IMPLEMENTATION .

Then the process.updatei the status of ~11.

the shifts details for which the ·SHIFT.

DATE"falls in the week in que~tio~.

After completion, ·as other processes

it returns tq the user.

This process is implemented using one

SQL*FORM having four blocks.

* CHK PRIVILEGE

A PRE-FORM trigger is defined to check

that the ·employee's number (stored in the

global variable at the time of running

PASSWORD p~oce~s) is in the database table

LAB-MNGRS which contains a list of

employee's numbers wh:o can run this FORM.

If the employee's numper exists in the

table, then the next ·process . is · called

else the .trigger fails and the. ca.ntrol is

returned to the user.

* CHNG STATUS

A ·block PROC DATE with one field,

PROC DATE is created. The user has to

enter the starting. dat~ of the week for

wh.ich the shift processing is required.

A post change trigger is defined in this

field to ensure that the user , enters the

date that comes after the current date.

A PRE-UPDATE t'rigger is defined on the

field, PROC-DATE. This trigger retrieves

all the s hi f t s de t a i 1 s which ' has the

SHIFT DATE value between the date as

entered in the PROC DATE field and

PROC DATE plus 6. It then changes the

status of each retrieved record from

'REQUESTED' to 'WILL BE ALLOTTED'.

PROCESS NAME LAB QUERY

PURPOSE To a~d the lab-in-chargS in setting up the

WS confi~uration components as requested

by each employee.

DFD

DESCRIP'l;;ION

* Ensure· that the employee who is runnin~

this form has privilege to do so.

* Read the date and the work station number

for which the user wants to see further

details.

* Retrieve all .. th~ s~ifts details that are

allotted on the date and in the work

station· as entered by the user. . . .

·* Ret.rieve the request details of that

shift as chosen by the user.

* Decode the encoded version of ·the

configuration string.

?LEMENTATION

* A. PRE-FORM trigger is defined to check

that ~he employee's number (stored in the

global variable at the time of running

PASSWORD process) is in the database table

LAB-MNGRS which contains a l~st of

.employee's numbers who can run this FORM.

.
If the employee's number exists in the·

table, t{len the process execution , is

continued else the process is abor~ed and

the control .is transferred to the user.

* A block, DATE_WS,with two fields,· one

for DATE and another for WORK STATION

number is created, The user has to enter

the date and work staiion of his iriterest.

* A KEY-'NXTFLD trigger is defined on the

*

last field of the DATE WS block to perform

the following:

Go to the block, SHIFT DETAILS,. where

the retrieved records of the shift d~tails

·can be displayed.·

Perform the execution of the query with

the WHERE · clause . as 'WHERE·· SHIFT DATE

:DATE WS.SHIFT DATE AND WS NO

:DATE WS.WS NO' and order clause as 'ORDER

BY SHIFT NO 'ASC'.

A KEY~ENTQRY trigger is defined to go to

the block 'REQUEST DETAILS' and to execute

a qu~ry there with REQUEST NUMBER=

:SHIFT_DETAILS.REQUEST_NUMBER. So whenever

the user presses SELECT key with the

cursor on the shift number of his

interest, this tFigger re~rieves the

details like ,to whom thi~ shift has been
'

allotted~ wha~ 6onfiguratio~ did . he

reques_t and etc.

* A KEY-HELP. trigger is defined to decode

the concatenated string of component

numbers. This trigger saves the string

till. it finds the.separ~tor (I have used a

~+ · sign as a separator between two

components numbers) It then starts from

this separator and again saves the string,

till it fin_ds another· separator. This

process is continued till the end· of the·

string is reached.

Then, this trigger gets the descriptio~ of

each component number saved, from the

database table · WS CONFG . which stores the

works t at ion co m'p one n t ·~ l on g, with it s

identity number.

CONCLUSION:

BROAD WORKING MECHANISM OF THE 'ALMS PACKAGE:

Each day is dividea into 24 shifts of on.e hour
duration each.

User gi~es his request.bnline·fo~ the allotm~nt of

~hift are chosen at the time of giving request.

Shifts will be allotted in only those wor:k
stations
where the c;:omponents required for the engineer who wants to

work on those shifts are available.

The status of each shift is 'REQ' at the time of
' '

req~esting for the shift.

The status of the shifts. will he·changed on every

·FRIDAY for those shifts which fall in neit week.

User can· cancel or request, for reallocation o.nly

those shifts which have the status 'REQ'.

Lab manager has privilege to cancel or reallocate

any shifts.

User inputs after using the shifts allotted to·

him. These inputs aid to estimate the lab utilization.

Lab inchar,9e· will be displayed of the components

that ~ny .particular engineer has requested.

In the next section, designing ·Of the database

tables and its normalization issues are considered.

ii.TABLES.DESIGNED AND NORMALIZATION DONE·

TABLES DESIGNED
(.. ..

Around ten relations are designed for various

pur~b~e. In this settion, each table is ~entioned b~iefly. The

details of each table is given in appendix A.

1. EMPLOYEE

This table has the information about each emplbyee

in the Organ~zation. The details like the employee's name, his

number, password and etc are stored in this table .

. 2 . LAB_:_ RE Q ·

This table stores the information about each

pending request .. Once the request is fulfilled, the

corresponding details·abo0t that request js deleted.

3. LAB SFT

It stores the details about each shift· requested

including the data, ws number, shift number. Records will be

deleted if the corresponding shifts are used.

4. LAB SFT CANCEL

It stores t.he complete· history of the canceled

shifts and·those shifts which are reallocated.

5.: LAB PATCH LINK

Has, the information of the private patches.

Whether these patches are instal.led, removed or to be

installed and etc can.be known through.this table.

6. LAB'SFT LOG

It keeps a history of a11· those shifts that have

been allotted~ This·relation is very useful ·in ~stimating the

utilization of the work stations.

7. LAB·WS DEF

This relation has the definition details of .each

work station, like the type of the work station, its location,

and etc.

8. SEQNOS

This table saves the maximum sequence numbers that

ha~ been u·sed for a particul-ar purpose like generation of

REQUEST NUMBER.

9. LAB CONFG

It has the list of all the components that are

available in the work stat" ions. It even maintains the

informatidn about the p~ivate patche~.

NORMALIZATION ISSUES:

'
· Database tables should not involve r~dund~ncy

Normalization theory is applied for the. pesign of database

tables. Ail the tables designed are at least in BOYCE . I CODD

normal form (BCNF) . Here only fe\'·7" tables are considered and

are proved that they are in ~oyce Codd Normal Form~ For the

rest ?f the tables, it can be proved ~n simfla~ lin~s.

A relation is said to be in BCNF if and only if

every determinant is a candidate key.

Consider the LAB REQ relation. Here there is only

on candidate . key, REQ NUMBER which uniquely identifies the

tuples. Clearly this relation is in BCNF beca~se the primary

key is the only determinant in it.

Considering LAB_CONFG, it is in BCNF because each

of the two attributes that the relation has,· is a candidate

key and hen~e on each candidate key ~he other candidate key is

fully functionally dependent which satisfy the necessary and

sufficieht condition for a r~lation to be in BCNF.

LAB SFT is also in BCNF.

candidate key (with four attributes viz REQ_NMBR, EMP_NMBR,

SHIFT_DATE, WS NO) . Each of the other attributes are fully

dependent ·on the candidate key ~nd not on any subset of the

<::a.ndidate key.

Similarly. the rest of the relations can also. be .

proved to sho~ that they ~re in BCNF.

iii .HOW USER FRIEND,LY THE PACKAGE li 1.

The user who is .. using the package need not learn

its intertial structure~ like how it is .b~ilt, ho~ the system

' ptdcess~s his inputs and the like. A package is said ·:to

achieve the nature of an UFI· (User Friendly Interface) even if

the novice user could run the package without facing. any

problems.

In this section we shall discuss how user friendly

the package. is. The following are provided to achieve ·the

friendly interface between the user and the system:

o ·Help is provid~d to. all the ·sQL*Forms

-devel6ped, through which. the user·can find out the information

about the FORM that he is rur:ming. This iD'formatiOJ! includes

the function of the FORM, the purpose of each field created in

the FORM, and in which fields the values are to be inputted.

o A HELP TEXT is provided at the end of each

FORM . This text contains the informa'tion' about primary keys

that a~e used in that FORM. This help can be used by the user

for a quick review of the functioning of the keys.

o Same convention is employed in all the FQRMS

while creating. So, a ·user will not face any confusi6n while

running different FORMS as the keys that serve a particular

purpose· in one FORM serves the same purpose in all the other

FORMS.

o . Automatic help is provided for all the fields

in the FORM. When the user moves the cursor into any· field, a
•

help of what, is expect~d to be inputted into the field is

displayed.

o Rigorous checkings are ·made in orde.r to

achieve a good consistency o·f the data, before transactions
..

are committed into the database table .

. o Users can select the required shifts on-line.

He can as well ·know on which date what shifts are not

' available which would help him select the,available shifts.

iV. ·Fl~TURE ENHANCEMENTS

The major improvements that can be considered in

the second phase of the ALMS development are the following:

o Reports can be generated for all relations.

o Change over shift should be ~rovided during which

lab incharge, who sets up the .configuration in the. work

station, can modi;fy ·the existing con:(iguration. to match the

needs of th~ next engineer.

6. SHORT COMINGS OF ORACLE

While working on ORACLE RDBMS, few drawbacks of

the system ~re noticed. To mentioh a few :

Though indexing minimizes the retrieval time of

the rei:;ults of a query, the more the number of . indexes the

more diffucult to maintain the ta~l~ by the s~stem.

While using SQL*Forms tool, ,it 'does not allow the
. .

transfer of triggers from one level to another.

Global variables cannot be reffered directly by

SQL statements.

In many cases function keys o~ the SQL*Form donot

match with that of the SQL*Report for the s~me function.

BIBLIOGRAPHY

1. An Introduction To Database Systems

C.J.DA'l'E

2. Dat~base Processing: ,Fun~amentals Design,

Implementation

.DAVID KROENKE

3. A Guide To INGRES

'C. J. DA'l'E

4. ORACLE ~nuals

LAB_EMP:

P·"·ccwo~'D. ; ~['J..,.) .. , r.. ~

"

LAB_REQ:.

LAB_SFT:

Attributes

Ette__tlMBR
"B::NAHE
PWD

APPENDIX A

TABLES DESIGNED

Attributes

PASSWORD
DESIGNATION

Attributes

EEQ NMBR
DATE_OF_SUBMISSION
TOTAL.:_::,HIFTS ·
PURPOSE
CONFIGURATION
EMP_NMBR

Attributes

LABlSFT_CANCEL:
. I

Attributes

Null?

NOT NULL
NOT NULL
NOT NULL

Null?

NOT NULL
NOT NULL

Null?

NOT NULL
NOT_NULL

NOT NULL'

·Null?

Type

N\JMBER
CHAR(20)
CHAR(20)

Type

CHAR(20)
CHAR(~0)

Type

NUMBER(4)
DATE
NUMBER(2)
CHAR(100)
CHAR(200)
NUMBER(4)

Type·

.NOT NULL .' NUHBER(4)
NOT NULL . DATE

NUMBER(2)
NOT NULL NUMBER(2)

NUMBER(4)
CHAR(l) ·

Null? Type

NOT NULL NUMBER(4)
DATE
NUMBER(2)
NUMBER(2)

LAB_WS_DEF:

EMP_NMBR
CANCELLED_OR_REALLOCATED
DATE_OF_CANCELLATION
REASON

Attributes

WS_NO
SHIFT_DATE
START __ SHIFT ~NO
LAST ..:.SHIFT _NO ·
DOWN_TIME .
PROBLEMB FACED
EMP_NMBR
TOTAL_SHIFTS
SYS_CHANGES

Attributes

WS NO
WS_TYPE
ROOM_NO
RELEASE
SINCE_ WHEN

'LAB_PATCH LINK:

LAB..:...CONFG:

Attributes

WS_NO ·
PATCH_OR_PROM
STATUS
SINCE_ WHEN
REASON
EMP_NMBR

Attributes

.QQi·1P. NQ
DESCRIPTION

NUMBER(4)
NOT NULL CHAR(l)

DATE .
CHAR(20)

Null.?
----~---

. NOT NULL NUMBER(2)
DATE
NUMBER(2)
NUMBER(2-)
CHAR(5)
CHAR(100)

NOT NULL NUHBER(4)
. NUMBER'(2)

. CHAR(150)

Null? Type

NOT NULL NUMBER(2)
CHAR(3) .
NUMBER(4)
CHAR(15)
DATE

Null? Type

NOT NULL NUMBER(l)
NOT NULL CHAR(20)

CHAR(2)
DATE
CHAR(50)
NUMBER(4)

Null? Type.

NOT NULL CHAR(.4)
NOT NULL CHAR(100)

SEQNOS:

·Attributes

~LQCKtl_AME
MAXSEQNO

Null!'

NOT NULL

Type

CHAR(30)
NUt:1BER(3)

Form: lms
MVAXA>

APPCNDJX J3

LAB MANAGEMENT

+--+
I , I
1 U r;e rna-.e I
I I
I Password : I
I I
+--+
1 Change your password IY/N) ? I
+---------------------------~------------------+

Block: PW Page: 1 SELECT: Char Mode: Replace

+--~---+
I HAIN MENU I
+-----------·--~-------~----------+
1 1. Shift request 5. HS Configuration components

I -1 2. Shift reallocation or cancellation 6. Lab incharge query form
I
I
I
I
I
I
I
I
I

3.

4.

Patch/Prom links 7. Allocate shifts

Shift log o. Exit

+ ---- --------------------+
Enter your option I

+--------------------------+
+----- ---~---------------------+

HELP: Enter option number and press HELP to know what the form does or

any other key to run the chosen form.
+--+

Form: OPTION
HVAXA>

Block: option Page: 1 SELECT: Char Mode: Replace

.---------------------------------- ----. ------ ----------+
I LAB SHifTS REQUEST OPTION BOX I
+--+

l.INSERTION OF A NEH RECORD. ': I
I 2.UPDATION OF AN OLD RECORD.
I
I O.EXIT TO MAIN MENU.
+--·

Enter your option and press any key to continue :__ I
. I

+--+

Form: SIT_REQ
MVAXA>

Block: ask_option Page: 1 SELECT: Char Mode: Replace

+----------------------- --------------------------------- ----4

1 SHIFT REQUEST FORM I
~ -- -- ·----- ------------ --. ---------------------------·-I

El11p number

Purpose

Tot a 1 11hif ts

Configuration:

NamP

·- -- .. -- -- ----- -· ----

I
I
I
I
I
I
I
I
I
I
I
I
I
I

·-- . -----------------------+ +------ ---------------------4
!Your Request number : ___ I
+---------------------------+

+--+
Form: SFT_REQ

MVAXA>
Block: request Page: 2 SELECT: Char Mode: Replace

+--------------------------+-------------~--------+----------------------------+
I Employee'e number ______ I SHIFT ALLOCATION I Request number I
+--------------------------+-----------+----------+-----~----------------------+
I Shifts to be choeen
I
I Sft date Start
I_
I
I
I
I
I
I
I
I
I
I

Last Hs no

Non available shifts on

Ws il
<SBHl

Ws i2
-<HBMl

Ws i3
<SBMl

are: I
I

Ws i4 I
<HBMl I

____ I
I
I
I
I
I
I
I
I
I

+----------------------- --------------+---------------------------------------+
IHELP : l.DOWN ARROW to go to the NEXT REC ; 2. DO or DOWN ARROW to COMMIT ;
I .
I 3.PF4 to exit.
+--+

Form: S~f_ALLOCA Block: allocate
MVAXA>

Page: 1 SELECT: Char Mode: Replace

+--+
I CANCELLATION AND REALLOCATION 1-'0RH I
+--- --· --+
I
1 Can~Pl nr reallocate
I

Emp nmbr Request nuaber Shift date

Ws no Start shift nmbr Last shift nmbr __

Reason

I
I
I
I
I
I
I
I
I
I
I
I

+--+
1 Total shifts that are cancelled or reallocated 1
+--------------------------------------~---------------+

+--+
(HELP :1. Fl3 to know the input details 2.HELP to know the info about the forml
I 3. DO to co11111it the trasactions 4.PF4 to exit. I
+---

Fora: Sfl'_Mon_CA Blnr.k: MOD_CANC
MVAXA>

Page: 1 SELECT:

-- - ·-· --------+
- ·-·--- ,--~---

ChAr Mode: ReplAr.e

+--+
I PATCH_LINK
+--------------------~---+
I ws t PATCH DESC STATUS EHP * INST/RHVD DATE I
I
1 -Reason I
+--- ----+
I
I +---+

+-----------~--+
I I
I I
I I
I l
+--+
(HELP : 1. HELP to know the infor.ation about this tora I
1 2. riND to execute a query and update the retrieved records. I
1 3. DOWN ARROW to go to next record. 4.DO to commit. 5. PF4 to exit. I
+--+

For111: SIT_PATCH_ Block: pa tch _ _linl(Page:- 2 SELECT: Char Mode: Replace

+--+
I Purpose Block
+---+

!.Successful Patch Installation 1
I

2.Successful Patch Removal 1
I

3.Failure to install 1
I

4.Failure to re~ove 1
I

S.Query I Update O. Exit _ I
+--+
I Enter your option and press <RETURN> : _
I to continue or <EXIT> to exit.
+--+

Form: SIT_PATCH_ Block: purp
HVAXA>

Page: l SELECT: Char Mode: Replace

+--+
1 Employee' B no __ SHIFT LOG FORM I
+---+
I I
1 Reque e. t number St,it t date Ws no I
I I
I I
I I
1 Start shift no Last e.hift no Down time _____ hrs I
I I
I I
I I
1 Problems faced I
I I
I +-------------------------+ I
1 1 Total shifts used : __ I I
+-------------------------+-------------------------+--------------------------+
!HELP : l.HELP to know the information about this form. I
1 2.Fl3 to know the input details and change the values if not correct. 1
I 3.DO to COMMIT and PF4 to EXIT. I
+--+

Form: SF'T_LOG
HVAXA>

Block: log Page: 1 SELECT: Char Mode: Replace

+---------- --+
I LAB INCHARGE QUERY FORM l.Jalc
I Ws no __ I
+--+
I REQUEST DrtAILS SHIIT DETAILS
1 Sft no Emp no
I Shift nrnbr ___ _
I
I Emp nmhr Emp Name
I '-
1 Rt>quest nlllbr
I
I Total shit ts
I
I Purpose
I
I Configuration +-------------------_--_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_+
I From Request details block press PREV SCRN to go to Shift details block.
I Press PF4 to exit.
I For information about this form press HELP.
+--+

Form: SIT_LAB
MVAXA>

Block: date_ws Page: 1 SELECT: Char Mode: Replace

+-----------------------------+----------------------+-~-----------------------+
I Processing date I ALLOCATION OF SHIFTS I Date I
+-----------------------------+----------------------+-------------------------+
1 Date _ _____ Check whether the records are processed or not {YINl _ _I

+------------------+-------------------+-------------------+-------------------+
WS t 1 I HS t 2 I HS t 3 I WS t 4 I

Sft Emp_no AIR I Sft Emp_no AIR I Sft Emp_no AIR I Sft Emp_no AIR I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I , I I

+------------------+---~---------------+-------------------+-------------------+
!Press Fl3 while in 'Processing date' field to know the def of the same. I
I I
+---------··--+ . .
-=----==-,...,--------:::-:---- ---- -· Forms SFT_REQ_AL Block: req_ all
HVAXA>

Page: 1 SELECT: Char Mode: Replace

APPENDIX C

COMPARITIVE STUDY OF THE DATABASE PACKAGES

SUBJECT

Database model

·Hardware/OS on

which available

Whether works

across network

(Ethernet/DECNET)

Supports·

Transparen~y for

lo~ation of data

. !
ln a network.

- INGRES AND ORACLE

INGRES ORACLE

Relational Relational

VAX, mVAX etc. Same

.VMS & ULTRIX, Also on XENIX

Different m/cs on PC.

UNIX , (Not .avai 1-

able on XENIX on

PC) .

Yes· Yes

Yes Yes

(INGRES/NET) (SQLNet)

I

.Gateway~

available for

data ;under other

DBMS

Form making

capabi~ities

Repo-rt.

generation

capabilities.

RI1S Gateways

for VAX/VMS

~·dbase III

Gateway for PCs.

Default and

customised form

making faciliiies

- VIFRED (visual.

form editor

- FRS (forms

runtime

system)

Default &

cus'tomised

report

generation

facilities

- Report by form.

- Report writer.

None. But can

access data of

DB II and

SQL/DS

Same

- SQL forms.

Same

- SQL reports

- Report writer

· Graphic report
i

generation

PC interface

Working in

multiuser

environment

P.ie 1 bar and

line charts

- VIGRAPH

Through

INGRES / PCLINK

PC packages like

LOTUS/ dbase III 1

wordstar can be·

used.

Yes

Same

- SQL graph

Through SQL*Calc

- Dbase files can

be used on data

convers'ion.

- has got a buiit-:

spread.sheet

facility

-SQL'calc

Yes

Query support Has SQL support Has SQL support
I

\

- IBM DB2 - Same

compatible,

Ansi standard.

- Has data - Same

transfer

facility.

- Date & money - Same

data types

accepted.

Data handling - any number of - Same

capability databases,

tables per db,

·rows in a table

- max. 127 fields - max. 255 fields

per r·ecord. per record.

- max. 2000 chars - max. 128K ch~rs

per record. per record.

-.max. 64K chars

for a field.

)Cking

Ldcilities

Locking·

facilities

Deadlock

Reso,l ut ion

Read & Write

locks at

- database level

- table level

- page of a

table level

Various options

available

Automatic

Deadl,ock

detection and·

required rollback.

is done

Shared update

locks at

- database level

- table level

- row (record

level

Same

Sa'me

	TH29560001
	TH29560002
	TH29560003
	TH29560004
	TH29560005
	TH29560006
	TH29560007
	TH29560008
	TH29560009
	TH29560010
	TH29560011
	TH29560012
	TH29560013
	TH29560014
	TH29560015
	TH29560016
	TH29560017
	TH29560018
	TH29560019
	TH29560020
	TH29560021
	TH29560022
	TH29560023
	TH29560024
	TH29560025
	TH29560026
	TH29560027
	TH29560028
	TH29560029
	TH29560030
	TH29560031
	TH29560032
	TH29560033
	TH29560034
	TH29560035
	TH29560036
	TH29560037
	TH29560038
	TH29560039
	TH29560040
	TH29560041
	TH29560042
	TH29560043
	TH29560044
	TH29560045
	TH29560046
	TH29560047
	TH29560048
	TH29560049
	TH29560050
	TH29560051
	TH29560052
	TH29560053
	TH29560054
	TH29560055
	TH29560056
	TH29560057
	TH29560058
	TH29560059
	TH29560060
	TH29560061
	TH29560062
	TH29560063
	TH29560064
	TH29560065
	TH29560066
	TH29560067
	TH29560068
	TH29560069
	TH29560070
	TH29560071
	TH29560072
	TH29560073
	TH29560074
	TH29560075
	TH29560076
	TH29560077
	TH29560078
	TH29560079
	TH29560080
	TH29560081
	TH29560082
	TH29560083
	TH29560084
	TH29560085
	TH29560086
	TH29560087
	TH29560088
	TH29560089
	TH29560090
	TH29560091
	TH29560092
	TH29560093
	TH29560094
	TH29560095
	TH29560096
	TH29560097
	TH29560098
	TH29560099
	TH29560100
	TH29560101
	TH29560102
	TH29560103
	TH29560104
	TH29560105
	TH29560106
	TH29560107
	TH29560108
	TH29560109
	TH29560110
	TH29560111
	TH29560112
	TH29560113
	TH29560114
	TH29560115
	TH29560116
	TH29560117

