DEVELOPMENT OF EUTOMATED LAB MANEGEMENT SYSTEM
~ ON ORACLE

Dessertation submitted to Jawaharlal Nehru University
in partial fulfilment of the requirements
for the award of the Degree of

MASTER OF TECHNOLOGY

' A}

S . Natly ,¢< P.c
Nofes |
V. Mo (L ’Tedﬂ)
MARTHALA VASAVI Toveraboaalsd Nebar
' Uy 19 89

2. Typesenph

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI-110067

INDEX

ACKNOWLEDGEMENTS

PREFACE

ABSTRACT
1. INTRODUCTION. .
2. . COMPARATIVE STUDY OF ORACLE AND INGRES.
3. . ORACLE RDBEMS.

i. ORACLE TECHNOLOGY
ii. PRODUCTIVITY TOOLS
iii. ERROR HANDLING
4. LAB MANAGEMENT SYSTEM.
i. INTRODUCTION TO LMS
ii. OVERVIEW OF THE EXISTING LMS

iii. NEED FOR THE AUTOMATION OF THE LMS.
A

1

5. AUTOMATED LAB MANAGEMENT SYSTEM (ALMS)
i. DESCRIPTION AND IMPLEMENTA?ION CF ALMS
{i. TABLES DESIGNED AND NORMALIZATION DONE
145, HOW USER FRIENDLY THE PACKAGE IS 7
iV. FUTURE ENHANCEMENTS
6. SHORTCOMINGS OF ORACLE.
7. BIBLIOGRAPHY.
APPENDIX

A TABLES USED.
B SCREEN PRINTOUTS OF VARIOUS SQL*FORMS USED.

C COMPARATIVE STUDY BETWEEN ORACLE AND INGRES.

CERTIFICATE

This project titled’” AUTOMATED LAB MANAGEMENT
SYSTEM "has been carried out by me under the supervision of
Mrs.Anjali Raina , Research Engineer ,C-DOT and
469{C.P.C.Nath, Associate Professor , SC & SS , Jawaharlal
Nehru University, New Delhi .

This work submitted in partial fulfillment of the

requirement of the MASTER OF TECHNOLOGY degree of Jawaharlal

Nehru University ,New Delhi 1is original and has not been
submitted in.part or full for any degree or diploma in any
other institution .

H'mﬁ&(/}‘

(M.VASAVI)
Candldate
b ,Z/
Mrs.Anjali Raina , At &f.C.P.C.Nath ’
External Supervisor , Assd&rases Professor ,
Research Engineer , School of Computer &
System Sciences ,
C-DOT ,New Delhi . Jawaharlal Nehru Univ.,

New Delhi .

v
Profu#P .Muli@rjee , Dean ,
School of Computer & system Sc1ences ’
Jawaharlal Nehru University , ’
New Delhi. o

ACKNOWLEDGMENTS

It 1is pleasure to acknowledge Mrs. ‘Anjali Raina,
Research Engineer, SQA group, C-DOT, for giving me full
freedcn, nécessary guidance‘ahd encouragement to work on my

project at C-DOT. -

i am élso_thankful'tovMrs;Kanvihdéyéroup~Leédéﬁaﬁ_
SQA, ,Mr.Shﬁkla ,Reé¢arch Engineer ,C—DOTV and Mt.Sfivétsa&a_
Research Engineer , C—DOT for giving constant asSiétance;
qodperation and for the interest shown on my project.

I gratefully acknowledgé thé valuable advises,
suggestions, inspirétion' and . motivation fendered by-
?rof.C.P,C.Nath during the work on my project.

Finally I am delighted to acknowledge my debt to

all those who are difectly or indirectly involved in giving

this final stage to-my work and report.

[M.VASAVI]

PREFACE
The title of the thesis is DEVELOPMENT OF AUTOMATED
LAB MANAGEMENT SYSTEM (ﬁq ORACLE. The aim is to develop an
application program viz AUTOMATION OF THE LAB MANAGEMENT
SYSTEM at C-DOT, Center for Development Of Telematics, in an
RDBMS env1ronment |
| Th1° thesis is organlzed at’ three distinct 1levels.

It 'does,tnot suffice 'just to develop. ‘the
apolication 3program”on-any RDEMS,'it Was_felt.that a_comparaj
tive study has to done among a selected fe@_RDBMSé before the
development of the application program on an optiﬁal‘RDBMS is
carrled on.At the time of doing this project ORACLE and INGRES
are two of the few RDBMSs having optimal pedlgrees of the
busginess.

Chaoter 2. is dedicated for this purpose. It
compares various technical features of ORACLE and INGRES and
the justification is given for choosing CRACLE as the working
environment.

Merely choosing ‘the right RDBMS one cannot start’
developing the application program unlessyhe/She is familiar
with thdt RDBMS. So-the»second oart, chapter 3 diecusees in a |
brief vyet 'clear .way about ORACLE. 'It describes the ORACLE
technology, the product1v1ty tools prov1ded by it' and -the'

error handllng technlques in brlef

The last part of this report describes the
development of the application program, viz AUTOMATED LAB
. MANAGEMENT SYSTEM. It discusses how the program is first

developed using data flow diagrams (DFDs) and then how each

DFD is implemented on ORACLE.

Appendix A contains a list of relations designed
for the implementation of ALMS.
Appendix B has the screen printouts of various

SQL*Forms that are designed.

Appendix C gives a list of comparative study

betweeh ORACLE and INGRES

ABSTRACT

Labs are provided in many software organizations
to ald the engineers to test the sqftware that was developed
by him/her. So automation of lab management is essential for
the efficient utilization of labs. Automation of lab
management 1is done on ORACLE RDBMS using various tools
provided by the system.

| CRACLE 1is preféred to INGRES because of 1its
speciai featurés which include &a larger record and fields in
ORACLE, no page level .locks, better usage of indexes and a

better Online Transaction Processing.

1. INTRODUCTION

C¥DOT:isza S/W organization‘for the development of

telematlcs 'In'all.such S/W organizations testing of the
software. developed by the englneer ~is important before it
fcould be released “for the appllcatlon. For this purpose of
.testing, labs are prov1ded to glve a real time environment to
test the packages. However, there 1is always a rush of
engineers wanting to test their models in the labs.In order to
manage such"requests from the ‘engineers to use the labs, the
' LAB MANAGEMENT has come up.
" Barlier, the'lab‘management'was done manually.,Lab
- managers allot shifts to engineers on a time slot "basis and
_the‘scheduling Was done on'the basis of the priority of the‘
'job, ‘There was always a overhead on the lab manager to keep'
track of all the data regardlng labs such as requests, allo-
cation of the shlfts,'log out data, ex1st1ng:patch;l;nks and:
etc. - | | ..

In order to avoid the.short,comings faced bylthe
manually operated lab management, it ‘was decided to automate‘
'the lab management system. The data regarding the 1lab .
management is stored 1in the tables, and can be accessed
through the various tools provided by the ORACLE such as
SQL*Plus, SQL*Forms, SQL*Reports and etc. In this part of the
book we shallzconsider in detail the need for the automation

and how it is achieved.

But before this, a comparative study was done

between TINGRES and ORACLE tc choose the appropriate RDBMS to
develop the -package. Conclusion was drawn that due to many

distinct features that ORACLE has and which INGRES does not,

ORACLE 1is preferred.

2. COMPARATIVE STUDY OF ORACLE AND INGRES

Before the development of any application package,
a right RDBMS which could match the needs of the application
has to be chosen.

Two of the efficient RDBMS at present are ORACLE
and INGRES. Performance level of these two RDBMSs are almost
at the same level except for minor differences. In some
aspects ORACLE outperforms INGRES and in some cases INGRES
gives a better performance. Here we shall consider in brief,
the performance characteristics of ORACLE and INGRES.

Firstly, ORACLE has the rolling forward facility
which the INGRES RDBMS does not have. That 1is, when, for
example, system failure has occurred, ORACLE’s system monitor
after rolling forward all the committed and uncommitted
transactions, rolls backward the uncommitted transactions, the
information about which is stored in the rollback segments.

ORACLE makes use of indexes (if one 1is created)
very efficiently, while performing the queries. It outperforms
the AI search techniques, which is used in INGRES to perform a
query, provided index 1s created on the fields in the WHERE
clause of the query. Bpt the more the number of indexes per
table, the more is the problem to maintain the table.

A record 1in INGRES RDBMS can accommodate fewer
fiélds than that in ORACLE. The samé applies even to the field

lengths. In INGRES each record have a maximum of 127 fields

per record and 2000 character per record where as in ORACLE
there can be 255 fields per record and 128K -characters per
‘recordr'

In INGRES page level locks are the lowest level
that the system can prov1de If a user wants to access a data
from afpage, flrStly the‘system locks the page thus-disabling'
5any other ‘user to access dlfferent rows in the same page Thisi
is not the case in casevof ORACLE, as. the system locks only
the rows that the user is access1ng, and not the whOleApage.

ORACLE prov1des shared update -locks. lt does notgy
obstruct users from readlng the same row in the same page.
INGRES places locks even if the user wants-to read the record
'So the user has to walt tlll the flrst user flnlshes readlng
the record. ThlS is not the case in ORACLE

Occurrence of deadlocks is more frequent in
INGRES'than ln ORACLE as INGRES provides even’read locks. Thati
is, 1in INGRESCa read lock 1is placed on every page that the
user wants to read. Consider the following situation:

, Suppose user A locks the page 1 to read certain
record of that page'at time tl and user B locks page 2 to read
few records of that:page at time t2 (t1<t2) .Now at time t3
(t3. > t2), user A wants to access records of page 2 and user Bff
that of page 1, a deadlock would result 'THls 1s detected byt>
INGRES, and 1t kills the transactlons of one user ‘Such

situatlon_W1ll not arise in ORACLE as there are no read locks

wﬁichveﬁébles maﬁy'usefs to read the samé rows at the same
time.

CONCLUSION : Fiom the comparative study between
ORACLE and INGRES, the conclusion was drawn 't:hat;_ ORACLE is
better}éuited to develop the package. In appendix C, a table
”of comparatiQe study between INQRES and ORACLE is giveh.
,Inlfhé next section a overview on ORACLE RDBMS is

‘considered.

3. ORACLE RDEMS

In this section, a brief overview of the ORACLE RDBMS
is given. It discusses features of ORACLE technology, various

productivity tools offered by the system and the like.

ORACLE TECHNOLOGY

“The two major aims of relational database (rdb) are :

1.

ORACLE

Need for the Online transaction processing

‘providing = a high performanée and fault

tolerable with relatiOnal~productivity.
Enterpriée wide computing ~ instant access to
information on mainframes, minicomputers,
microcomputers.

delivers the " distributed . OLTP, . ‘efficient

.decisidn support and all the benefits that éreéinherent to a .

SQL' relational "database. We shall &see 'how ORACLE works to

achieve the two major aims, mentioned above, 6f.the rdb

environment .in the subsequent pages.

HOW OLTP iS ACHIEVED BY THE ORACLE DATABASE SYSTBM ?
Relational database én?ironment has the follqwing
 :bénefits:‘ | “
R 1. Non-précedural access -'Making'the.éyStem. more
user ffiendiy as the user néed not bothef about how' the
results are retrieved.
‘2. Standard access - SQL , a simple, comprehensive_
language that is useful for all database activity.
© 3. Reduced maintenanée' cost - Reprogramming‘not
reqﬁired' ihcasg Qf‘any physigal changeé_to.thé data- storage.
| 4, Highlyifléxiblef- The'database‘sysﬁem adjusts.
immediately to changés in the buSiﬁess. | |
| | 5. 'Reducéd.’ applicatién 'bécklbg 7v,-application
development is faster‘and less time.is,épen£ méintaihing code.,
6. High transaction voiumes - often hunéreds of,
transactions .per second.
| 7. Fast respphse rates - Usually a sUbsécond.4
8. Fault tolerance - virtually hé down time
9. Large, 'oniine ’user c§mmﬁnities - often many
- hundreds of users. |
10. - Very large databases - sometimes hundreds of
gigabytes in size.
Most of the DBMSs provide what the low-end decision
support needs viz the;first five benefits. ORACLE is suitable

to satisfy the high-end systems as it is capable of handlinag

all the ten bénefits that ﬁhe relationai‘environment dan
provide to‘thé_users.
| ORACLE enijs “the Ljoint ‘advantages of both the
: ffél@ﬁi&hél'as:wéil és_t§édipi6nai'DBMSéQ.ORACLE'pfovides;high

.peffo;mance that - a ﬁfaditidnél‘ﬁBMS provides along with - the
high productivity that 1is inherent 'to the relational
environment.

In ghe next section’ we shall see how the ORACLE
Aachiévéd thé demands of high productivity 'as well as high

performance.

OLTP. PERFORMANCE

'ARCHITECTURE:

ORACLE delivers high‘peffofmance’thrOugh.é combinatién
of optimal_client /‘mﬁltiserver architecture and cohdurrency
control mechanism that gniquely supports simultaneoﬁs online
tranéaction processing and decision support.

Ciient/éerver architeétgre provides the following
édvéntages : |

1. Cost efféctiveness
2. Expandability

3. Remote access -
4.‘Flexibility

ORACLE was tHe‘first commercial rdb to offer a full
client/server architecture; This architectufe of ORACLE

precisely divides user code (client) and database code.

(sefver);» Client handles all"useri interface Qheféas server
maﬁages ai; thé datébase actions; With this architecture one
can run _én‘ application on one machine while simultanéously‘\
J:gnﬁéﬁg_ﬁhé datébasé on the other.

- ’ Incése'of ﬁuitiserver aréhitecture, the system gives a
very good response rates and the transaction volumes are high
as théhhardware of such systems uses several loosely cogpledv
or tightly# coupled CPUs thus avoidiné the performance
constraint by a single CPU. ’

'6RACLE: uses multiserver architecture to deliver'a.high
performance] Logicaliy a. servér is dedicated to each user
thbugh’physicaliy allrthe,cliepts shére-the-same server code.
fhis technique'ofVSharing'thé'muiti-threaded fé-entrant cbde :
saveé memory. u - o | |

Now users‘can'db work siﬁultaneously on-Symmetrié"
multiprocessor computers. Performance 1is directlyirelated to -
the number of CPUs per computer ahd theihorsepower of each
CPU. |

In a single serve;’architecture'the.system‘cannot' taé
more‘tﬂan,qne CPU’s poWerat‘aAtimé. Théugh the siﬁgle server
performs all the database work dne can ‘execute on only one CPU
at-a time..Thﬁs with one server the performanéé is limited to
the speed of oﬁe CPU though the computer has multiple CPUs.

Moreover ORACLE’s multiserver architecture delivers
completé scalability.‘Tﬁis‘aréhiteéture provides incremental

throughput as one adds CPUs.

TW9AsE

method is best to retrieve the required blocks.

I/0 OPTIMIZATION:
TheA requirements of OLTP performance donot create any

bottlenecks during I/0 transactions.These I/0 bottlenecks are

takenfcaré'of by'ORACLE‘s,éfficient_I/O»algorithms. Here we

shaii?discuss'how'these bottle necks_ére avoided by t;acing*

the actions of a transaction.

ORACLE processing of READS:
It is the user who actually performs all the database
operations including read because it 'is he/she who- executes

both the server code and client code. While retrieving the

‘blocks thatjcohtains,the required rows the first point to be

censidered is how fast it can be done. For this purpose ORACLE

along with the standard access pagns uses the'following access -

methods

1. Multiple indexes. -
2. Data stored in index.
3. Clustered table.

ORACLE query optimizer decides as to which access

‘Once the required blocks are idéntified, 'these blocks
are stored in the shared’memory cache after the user reads the
necessary blocks from the database. Subsequent’request_for'the‘
same blocks by the same user or other user nééd no more 1/0
operations and the retrieval this time is done from the
memory.To boost the performance ORACLE can be configured to

use any size memory cache that one’s application asks for.

DISS
631.30£%

in ORACLE multiple block reads can be done in one I/0
request. Thus a-query'thaﬁ requires 1000 blocks could perform
10 I/0s of 100 blocks each rather than performing 1000 I/0s of.
one block ‘each. This éhéracteristic;of mu;tiplé’bloék a¢ceséx
in a Single i/O bperation béosts tﬁé berformancé df thé system'f
as low number of;I/O regUésfs.ére‘iséued< ;

ORACﬂE‘proceSsiné Writes :

The'transactioﬁs are committed only after the required
blocks aré brought into the memory.
| ‘; ORACLE .uﬁes ;Redo_>iOg files.tov guarantee that . the
chmiGEed traﬁééctiohs remain éefmanént. A process,.redo log
writer (LGWR), protects the changes made to the blocks in'the
memory by recording these changés in the redolog files.

Incasé of system failure, ORACLE automatically recovers
the daﬁabase upon staftup using the online redolog files. The‘
_entire media'failure protection can be achieved_by a pfocess
called Archiver process which copies all the redo log files to
the tape. Thus the archiver logs has:a,complete histcry of_all
#he changes “that :has 'b§en ‘made ‘to the .db :éinéé“thé'Aléét.
‘backup. | | | |

Thé LGWR' précess- is very ‘efficiént because iﬁ
sequentially writes only a minimal information in ﬁhe redolog -
file about each transaction. Moreovér sequential write to the
redolog .file is much faster than the random write to the

databasg file. This sequential write of a transaction’s data

is dcne in a single I/0 operation. Hence the perfcrmance is
much greater than most other DBMSs which requires more than 1
I1/0 per transaction. |

Transactions are_piggybacked when multiple transaction.
request to commit toge*her. This makes on average less than‘
~one I/O per transactlon boostlng the performance of the
system. Rather - than serving each transactlon one at. a tlme
LGWR erltes' all the transactlons' w1sh1ng ‘tcl commit
'simultanecnsly.

‘A process viz DBWR, ,database writer, writes the
'fmcdified'blocksifroﬁ memdry to the database. Each time a block
isvﬁoéified in memorQ, DBWR does not Qrite thetmodified block
from the memcry to the database immediately. This writiné is
deferred until the memory cache cannot hold any more requested
blocks. The DBWR writes the modified blocks from memory into
the database on the least recently used basis thus’boosting
.the performance by ensuring that the recently mcdified blocks
remain in tne memcrf.

*To summarize, ORACLE’s I/O‘ algorlthm guarantees :

1. + Minimal data is wrltten very qu1ckly

2. Max1mum .of - one. sequential wrlte lis frequired:. per
transaction. | | |

3. :Frequently, less than cne seéuentiél write is reQUired'

per transaction.

4. Commits donot require that changes be written to the

database.

DATABASEII/O OPTIMIZATION : It can be achieved at the global
database .level by assigning the database ogjects like tables,
indexes, temporary segments (db space used for sorting and
ordering),.rollbadk segments (db space uséd.for transaction
reco&éry} ahd redolog“file54£b separaﬁe devices tqifurther.
‘ihcrease 1/0 cohcurrénéy;vMoféover all the ijé§;s ¢$h spar

multiple devices.

NETWORK OPTIMIZATION:

win‘ thé distributed environment, commﬁnication channel
'5andwi§th.'impdées rgstfiction on the ‘traﬁsaétionY proceésing
betWeén the client and the database server. This ovefload-is
removed in ORACLE by its unique array interface and PL/SQL
procedural t;anSaCtion processing language. '

While other DBMSs mo&é data. betweeh application’
prograﬁé aﬁd database bne row_at a time,.ORACLE array
';;nterface‘ éllows‘ thié traﬁsaction of multipie rows by

‘transferring data in batches instead of row by row.

4
¥

..PL/SQL also reduce’théldemandé onLnérrOW” goﬁmunigation
channel byigrdupinéTmuitiplé DBMS réque§ﬁs into a single
request. Before returning the' control to'.thé user,l,éRACLE
executesv.the PL/SQL procedure hiding all thé iﬁtéfmediate ,

results from the user.

ROW LEVEL CONCURRENCY.CONTROL:

ORACLE delivers high perforﬁance by maximizing data
access by multiple ahd Concurrent-users without Jjeopardizing
data integrity.,This"is achieved through the following 3
mechahiémé | | '
| 1._Row lé§el.mulfiversion'read‘coﬁsiéﬁehcy. f

.2.;§ow'levei”locking. o | |
3. Seéuenéévnumber.geneiapor.

Row level multiversion read consistency :

¥

‘ VQRACLE/S“ multiversion snapshot model allows queries to
re%dywithoutwlocké'and consequently qﬁeries donot block both
queries and‘update and élso_updates donot block queries.

When ORACLE wupdates a row, it also records enough
information to generate a pre-update snapshot of the réw in
‘memory'orrin rollback segment areas of the database. Rollback
segments are used for read cqnsistenCy to.enSUre that a_quéry
uses a éoqéisﬁent image of the db as the start of tlie query.

¢ By executing‘quefiés without’l@cks,'bne qanlupdate a
row'While other can read thé.same.row at'thé'Same ﬁime fromv
the énapshbt i.e;.qﬁériés,dohot biockfupdétes;thusVaqhieying,
high concurrency which means no waitihg whi¢h ih£ufﬂ>meaﬁs'
high performance. . | |

Unlike in many other DBMSs, in ORACLE there 1is no
tradedff betﬁéen ‘consistency and concurrency.In many other'

RDBMs one is achieved at the cost of the other.

For example, to process a .join same rows,of one table
may bé read more than once. Thus the row’s value should be
protectedvrom update during the proceés.of join. To achieve
this, in many DBMSs, locks are imposed on all the blocks read
by the‘query during the duration of the transaction. Though .
‘this eﬁsg:es read consisteﬁcy cothrrency is';educed as no one
_can Ubdate.thoéevrowsvunti1 the jdin is resolved.

Cbnversely, to achieve high concﬁfréncy,iother DBMSs
turnsoff:the readlocks but thig would result in thé Qrong.rows
being retﬁrned.during a join operation.‘
| These 'problems éfe remcved in OkACLE by its
'muiiiversion' snapshot model of read .consistenCQ that gives
high éqncurfency and high data integrity. |

Stable query responsé time is yet another advantage of
ORACLE’ s read consistenéy algorithm. Since quries nevef Qait
for quate transactions or dther queries, theré "is little
véfiétion in-response times -‘as the number of current ‘updates
increase. - | | |

?vInmost DBMSs deadlocks can occu? if twé or more
‘transactions update two.different fowsvaﬁd.thén eéch attemﬁts.
to read the row thatbfhe other hés.lockéd._rhis is not ‘the

case in ORACLE as it doesnot place any read locks.

level 1dcking
Locking in ORACLE 1is done at row level with the
following unique advanﬁages'::' |
l; Qsérs can update rows in the same page .
2. Users can place unlimited number of locks .
3.;Useré avoid lock escalatidn deadlock
4. ﬁérformanéé is sustéined eveniwith.the»data,agd " index
level hdtspots': |
'(HotSpots, the cdéncentrated pdrtions “of the table,
occurs when multiple users update rows of the same table or if
dafa diét:ibution happens to'place the rows to bé updated in
‘lﬁheQSEme:physicalvspacé.): |

"5, Inserts are multi-threaded.

NO - WAIT SEQUENCE NUMBER GENERATORS :

ORACLEV generates un;que numbers for all forms of
primary keys without waiting or programming and it does so
without locking. | | |
| With programming) thé:typical method of generating a
seqﬁeqcé numbér,‘éay brder_no,-is lock brder*no tablé,
increment the current order'numbér énd release the tabie; Each”
\uSer has to wéit his turn to lock the‘tablé‘which is a single

threaded operaticn.
HOW ORACLE AVOQOIDS ROW LOCK OVERHEAD :

'ORACLE = elevates the concept of row lock waits to the .

transaction level. For example, user A has locked ten rows of

a table and user B wants to update five of-these:ten'rows.
'ORACLE does not'keep,track'of tne'fiverlock3'thatbhasjto be-
reléased in or‘der #6 'procéed w}ith B's ‘requ'?st}v inStéad' O,R%\C_LE'
just remembers that user B is waiting:for user A’s transaction
to finish. Consequently ORACﬁE manages one transaction instead
of five separate row locks. This provides the usage of
unlimited number of row locks and also no row lock escalation
—which makes ORACLE- to deliver a highest possible concurrency
even uhder heavy loads.
FAULT TObERANCE:

OLTP applications besides processing fast must,alsol be
available at any time. With ORACLE need not be shutdown and

H/W failures that shutdown the system can be prevented.

Cnline database administration minimizes the down time:

'With ORACLE one can perform - online database
configuration, diagnosis; ‘backup vand .recovery w1thout-
interrupting the work: of the database users running any
application programs,

o Online database configuration

| One can.tune performance in many ways including

addition‘of_tables and columns of tabies, alteration of
fekisting'columns,~indexes, clusters Tne feature of ORACLE to
'manage the database space online permits one to move filesﬂ
vfrom disk to disk or move infrequently used portion of

database to tape or even expand the database by adding the

4

files online. All these changes are transparent to users and

applications.

o A, Online diagnosis :
v ORACLEfé online pérformanCe monitor'determinés the
staﬁusgof fhe database at any point in timé. The-data can be
'Usedggo improve the tranééctiéd‘pr0ces$ing fbf‘maximum'
'perforﬁance. The datéhthat the onliné hgnitér displays'} ‘ |
1. I/0s by user an by files. | | | |
2. Locks at the user and the database level.
3. Réllback segments information.
-4.‘System étatics suchlas . logons, cursor opens, database
calls, and buffer usage. |
_ 5.,U§er_session informafion.
| -0 ~ Online backup:

Complete or partial ohlihe backup to the database. is
allowed without impeding the work of any Oracle user, even
those updating the databaée.

Without degrading the system performance, the Ilogging.
of all cnanges to thé redo log files provides space efficient
protection against all forms of system failures.

-Online baékup is 'fast as it is done by - the O/S.'

_ORACLEAS bdline'backup can take cohsistent'backup_and,dqéé nctnu
impact concurrent OLTP bpérétions,‘ | ‘ “

It the"database heéds‘.to be reéovéred, a‘ consistént

snapshot of the database can be created . from the tape copy of

theidatabase plus the redo lqgs that are archived during the
back up.

o) .Online recovery

While portiéns4of the aata'are'bnline and accessible,
one'canvrecover'the faiied section 'of the same .database by
taking the failed seétion»offlineg fecovefing that:seqtion and
bringihg baék”the‘Seétion oﬁline'pfevenﬁihg'thé database
shutdown. | - |

After CPU or media failure, database recovery ziS the .
process of rolling back the uncommitted transactions and
rolling‘forward the committed transactions. As a first step of
recovery a separate database process, the system monitor
(§MON)ﬁ uses redolog infofmatiOn_tb rollforward éll committed
and uncommitted changes. As a second step, the SMONvidentifies
the uncommitted changes using informétion in the rollback
segments.

Recqvery time is controllable. Recovery time depends on
the amount of redolog information that ﬁust'be'applied to the
database. Data in thé redolog files is no more needed once the
modified blocks have been written from the mémory to the
databasg; A cheék'point is.the act of flusﬁihg ali modifiéd’
blocks’from meméry’to the'databaSe..As one can‘contrpl'hqw_
much redolog'infofmatioﬁ‘is generated between Chéckfpoints;
the time fdr.£ecovery ofvthe:database‘after CPU”failure is

cqntrollable.

For disk failures, recovery time is directly dependent
on the amount of redo log information generated since Fhe last
backup. as the frequency oflthe backup is controllable ar.d
also since the database backup has no impact 6n performance,
s'the‘time:iﬁjtakes ﬁo recover_the database after disk failure
is also contrbllable;

~H/W Fault—tslerancs maximizes‘qptime‘:

| The fault tolerant Capabilities"of ORACLE makiﬁizes the
availability of the database informatida despita H/W failures.

Protection against ﬁser and program :failures:l ﬁith.
ORACLE the user failures such as intentional user aborts and
the program failures such as stalled or hung processes
Qccufrences automaticaliysrecovers the database without
shutting down or corrupting the database.

| Protection against disk failures : If a database disk
sﬁould fail the failed disk can be recovered online, restoring
it to its previous cansistent state without interrupting
applications accessing other disks. | |

Protection against CPU failures : The shared-disk
configuration allows any,number of combuﬁers to run ORACLE
client/multi-server DBMS. If one ofrthe computers fail, with
ORACLE_onevof the remaining computers automatically recovers
all trapsactions of,thé failéd compuﬁé:; At the same time one
;can move ﬁhe users from the failed computér on to anyldf'the

functioning computers.

Ptotection against network and node failure : As each
node operates independently, the network failures such as node
failures, line crashes or transmission errors donot . force to
. shut ddwn other nodes of the distributed database (ddb) and
- also they donot corrupt the datahase of the failed node. '

"pentral node distributed- have a single. pdiht of
failure - the global dictionary located at the central node_-
that cuts off access to all data on the netWOrk lf the central
node fails. With ORACLE the dictionarylis distributed among
nodes in the network so that the " failure of any ohe_ node
doesnot affect the accessibility of data 1located on other
nodes.)

| Fault Tolerant H/Wl

In addition to ORACLE’s complete set of online and
fault tolerant featutes, ORACLe runs on a number of fully
fault tolerant computers and disk monitoring systems to

provide as much fault tolerant as one requires.

VERY LARGE DATABASE SUPPORT
ORACLE supports very large database common to OLTP .
env1ronments through a combination- of no limits and useful
database management utilities.
Lo ‘,Virtgally no limits
Ehe"sizeiof the datahaseris-only»lihited:by-.ayailable
storage}'.An 7ORACLE database vot a table can span as many

physical disk devices as one make available. There are no

artificial limits on the number of Qalid or active users of a
database and also row loéks at the user, table or'database
level may extend to any 1limit. Moreover there is no
restrictions as to the number of simultaneous transactions
per database.

~With ORACLE, database can exceed the amount of
available storage - virtual stbrage capébility; One can take a
portion of database online when feguired and take it offline
when not required. When the sections are offline these
sections. can stored on magnetic tape:

‘o .. Database management uiilifies

The following thrée major features are pré&ided by ';He
ORACLE to control‘users and space : |

l.'One can'CoAtrol.access-or typéé‘ofAécéess to tables
-down toi‘field levels by a combiﬁatiohv of viewSP and GRANT
fcbmmgﬁaSéOﬁe caﬁbaléo,auait,acéeés}to'théfdaﬁébés§ and to the
'téble;{~0ne can aiso‘determine when-the giVen user has logged
on-and cff, what operations are performed against what tables
and whether the operation succeeded.

2. One has direct control over who uses what databases
and how much database space. Space allocations are dinamic aﬁd
.many_defaults‘cah be set. . o

One can aléo_éontrol'thé‘spége within a table - whether
the téﬁle §r0w3'in small or large increments, how. much space
is reserved in"eaéh._block Aof réw.'expansion"énd what" empty'-

space within a block is reused.

3. The dynamic ORACLE data dictionéry, where all the
usage information ié available, is tightly integrated with the
operatfon' of the database. Any change to the database is
immediétely reflected in the data dictionary. From the active
data dictionary, a range of information is available iﬁcludihg
what usefs havé access to the database, what tables'ér other

database objects have been created, how much space has been

"consumed and what privileges have been granted.

"OLTP . SUMMARY : ORACLE exténds the relational
productivity benefits of greater flexibility{ ease of use aﬁd
non-procedularity in accessing détabéée data, tolthe phline
transaction processing arena wiﬁh a cohbinatibn 6f higﬁ
performanCe, $éamless fault tqleraﬁce and very largé database

support.

THREE TIER, HETEROGENEQUS, ENTERPRISE-WIDE COMPUTING

Despite the different tiers of computing platforms (at
.corporéte level on mainframes;' at 'departmenf levél on
minicogputers ~and at workshop 1level on miérocomputers/work
stations) an despite "the heterogeneity in the computer
platforms (mainframes, minicomputers, microcomputers, work
stations),rall areas of organizatibn need to access and to

share informatibn'throughout the enterprise inorder to take

full advantage of their information resources.

1. Portable solution
ORACLE RDBMS 'is one stop sclution to three tié:;
¢ : : : . .
‘heterogeneoﬁs, enterprisefwide'Cdmputihg. Qraclé runs on all’
major compﬁter‘plathrms..

Advantégeé gained.With a portable RDBMS :

1. Increased flexibility.-‘

yZQ.Reduced develbpment cost.

"4 3. Reduced tréining costs;

4. Increased H/W independence.

2.Distributed database solution
‘ORACLE’s heterogeneous ., "ddb solutioﬁ provides the last
ingredient for enterpriée wide computing - data sharihg. |
Coupled with - ORACLEfs SQL*Net and SQL*Connect, all ORACLE
‘datébaSe and manyjnon-ORACLE détabasé can'share infoimation

through' the organization. .

The benefits of the distributed database include :

1.‘Flexible departmental éomputing : Ddb systems store
data'wﬁere it is most 1ikely to be needed - reducing network
traffic and maximizing data availability in case of network
failure - while permitting authorized usersvthroughout the

organization access to the same data.

2. Simplified application programming : Application can
access data stored on multiple computers with same ease as if

the information was stored on the same computer.

3. ‘Simplified-ldata sharing ;;Ddbi capabilities ,unify'
‘dissimilar applications on ééparate éompqtérs b?;ebabl}ng'thé@“
to operate on a éommon‘légicai database.-" |

Since " ORACLE runs on and conneéts between a' large
variety of‘platforms, application‘can access information from
differgnt envi;onments as- easily} as from Bomogenous
‘envizommenc. | . .

v‘3; Distributed architecture

The three characteristics of the ORACLE’s distributed
architecture‘are‘:

o} | ~Location transpafehcy‘: All Aata seems to reside
on thei'lodal database. User need not specify the physical
'locatioh of £he‘data. ORACLE's.data dictiohary‘performs this
task and retrieves the data the duery_refers to from the table

name specified by the user; The retrieved data may be a remote

data or local data or a combination of both. One can move the

data among the nodeé without recoding the query.

fO‘« Site autonomy : A network is said to have site
autonomy 1if there is no.central procéss of node responsible
for control over syétem—wide functions suc¢ch as routing,
écheduling, query optimization or deadlock detection.
Advéntages of site autonomy include_:
1. Better, local_;control over data definitionf and$
security. |
n2,erwer'ihtefdepartmental dependenciés.
. 3. No central bointsfof féiluré;
4. Easier failure reéovery'since‘ each .Site éan- bé
reqovéred_independently. N

5.:Easier system growth.

l§1 v ‘Né;wbrk findependence : ORACLE' s ddb‘féupports a
‘nUmbé% of”LANs‘andaWANs; It can evéh 5pef§té dvef several be
replaced without fecoding the applications.

ORACLE makes. enterprise-wide computing a reality by
proVidingv ORACLE on all types and sizes of computers ana
connecting these heterogénqus. systems with 'a sound ddb

architecture.

UMMARY : OLTP ana entérpriserwide_computing are the
power targeté in the relational database industry. ORACLE
RDBMS with transaction processing option is one DBMS that
addresses'botht ORACLE has the performance, fault toierahce‘
and lérge database support re@gired to deliver high
transaction‘ volume and fast response rates for hundreds of
users. ItS‘portabilify, distributed databaée architecture and
breadth of network of neﬁwork protoéql offerings’ make it +the
ideal solution for three . tier héte;ogeneous,enterprise—wide

computing. .

ii. PRODUCTIVITY TQOLS FOR APPLICATION

DESIGNERS AND DEVELOPMENT

Oracle provides devélopefs with ‘é_ complete
enyironment for designing aﬁd implementing robuét production
applications. Using Oracle’ application development tools, one
can create sophisticated transaction processihg, réporting,

menuing systems, all without programming.

)

SQL*Forms :

Complete application withogt programmingx: Forms-
based transaction processing appliCat;ons can be done quickly
and éffidiently, all withogtjprogramming.,i_i_

A | Effective.prototyping r'SQL*Erbmsf-unidue“non;"
procédurdi'approach’prémotes effective épblicatIOn'protyping-'
thus lettiﬁg one to féfine_his/hér application as one‘builds.
| Open Architecture: Application can 5e} built as
per the individuals”intefést without any reStrictioﬁs.
 Dé£abése1 ;abiés ' can be accessed by simplé'- SQL
stétéments.Embedded procédural macros or routines written‘in
COROL, C; FORTRAN, PASCAL eﬁc are allowed to customize any -
aspeét of application functionality.

Development flexibility: Development backlog can-

be‘eliminatéd gnd applications. can be kept as current as the

information needs since it takeé-very less time to adjust the

. SQL*P1lus

s

It delivers a full implementation of SQL as well
as powerful report-writing and data transfer capabilities. SQL
statements‘ and formattin§ .commands canv be executgd
interaéﬁiVeiy or from.stored command files.

SQL*Report
| ‘ "It is very useful to create evefything from basic

text to sophisticated multi-query reports. -

SQL *Design Dictioﬁa;y
It is a Computer -Aided System Engineeriné (CASE)
-system built on the ORACLE RDBMS in order to 'managé the‘
applicatibn development process. It, besides documenting every .
.component of -the_ application devéiopéd, also .performs
consistency aﬁd qualiﬁy -checks throughout the énalysis and

design process.

Programmatic Interfaces
ORACLE supéorts two types of programmatic
interfaces- precompilers and procedural interfaces.
Precompilers lets ohe ‘to access and manipulate data using
familiar’progrémming ‘languages in the form of embedded SQL
statements.'Precompilers convert such embedded SQL statéments.

into the-appropriate programming language sourée code.

Alternatively('SQL stataments can be executed by

the ORACLE call interface to péss SQL procedure calls to
BMS .

~'Besides 'thesé quls there. are._many'.pther. tools

ORACLE provides. Few.of them are :

sQL*Calc, to ' make portable and consistent
faces across machines;

_ SQL*QMX/'which combines dynamic query facilities

afd easy yet po&erful report writer;

Spreadsheet Interface which delivers the
tages of ORACLE RDBMS coupled with the capabilities of aﬂ
to learn spreadsheet ‘

" SQL*GRAPH that provides graphics facility

iii. ERROR HANDLING TECHNIQUES IN ORACLE RDEMS

”,

~tErrofs that might be encountered while using
QﬁACLE icorporatién“,progréms;,are.‘brbadiy' divi@ed.:iﬁto ‘three
categdriésiz' o - ‘ ,
1. ORACLE erfdrs :.Thése efrorS'éré.déteétéd by ORACLE
RDBMS and might Sccur while running ahy ORACLE prograﬁ. Each
Oracle error message has a prefix ORA. |
- 2. Product—specific errors : These errors are specific
to on product. | |
3. System-specific~ efrors : These errors are specific
to one operating system.
| Error messages are very descriptive that in most
of the cases t@e errors can be debugged without going-through
the.manuals.
- ORACLE’s extensiye self-checking helps to detect
RDBMS internal errors‘(when a process méets an unexpééted
condition). .It issues ‘a‘ catchall é;ror message for ORACLE
program exgeptions-in the folldwing format : -
pﬁAf6OO inte;nal'érrqrvcbdé,_argUméﬁﬁS'[numl, [?],_Lé];
(21, (21. | EET
where the_ﬁessage text is followed upto sﬁ? arguments which
indicates the origin and'the é;tributes of the errors. The
first .afgument is the internal error.code number énd' the
,othe;- a;gﬁments are_varidﬁs numbers, names :and' charaéter

'*stfingsw(Empty brackets may be -ignored).

Such bugs can'be debugged by reporting as a'S/W
>ug to CUSTOMER SUPPORT with all the six arguments.

When an error occurs while in recursive routine,
inseead‘oflissuing the sametefrbr.meésage<for,each recursiye
step, ORACLE diepiays.what ie happehing by~edding>10000.to the
errer number.ef the ;aet recursive error;ﬁessage:

Trace files can also be used to debug_errofs. Each
Lime 'an‘_ORACLE instance 1is stagted or an unexpected ‘event
chursiiﬁ a ueei process or.in a background process, a trace
file fs‘ereated'wifh the file'extehsioﬁ as TRC‘aed the file
name includee the procese name, instance name and the ORACLE
orocess number. The contents of the file may include the dumps
of the system global area, precess global area, superQieor
stack and registers.

_-The location for trace files created by the ORACLE
oackgro@nd process4(PMON, DBWR,-LGWR,VSMON) end user
prbcesses (SQL*PLUS, PRQ*C) can be known by the. INIT.ORA
barameters viz BACKGROUND_DUMP_DEST and USER_DUMP_DEST. - |

| fThese trecelfiles hae tefbe.formatted (using
YUMPFMT uﬁilility) before reporting to CGSTqﬁER SUPPORT to

1elp solve the problem.

4. LAB MANAGEMENT SYSTEM

4.i. INTRODUCTION

Invéhy.s/w organization/ all the S/W develdped'haé'td
undergo,a.completevcyéle of the followiﬁé proceééés:
o Laying oﬁt specifications
o) Desighing |
.o“_Implementatlon
‘QIJ.Self testing
o Regression testing
o) Rélease
The tésting phase 1s generally best carried out in an
enviropmentv which is almost same to the actual real time
environment in which the software has to. actually run. The-
'real tlmevenv1ronment w1th the associated H/W -and other'
accesspries is generally kept in labs qs it is not possible tQ
provide _eaéh indi?idual- with an indiviaual'rreai time work-
Lstation vis-a-vis Qné terminal per‘pefson. o
In C-DOT, the entire S/W :is developed. f&rw the
electronic switching system, C-DOT DSS, and for teétiﬁg‘models
of the switch which are kept in labs. However there is forever
a. rushv of designers wénting to use these models fdr' their
vpesting. So some sort of methodology has to be worked out for
thimdm vutilization 0of the work stations by different

designers on a time-sharing basis.

4.ii. OVERVIEW OF THE EXISTING LMS :

To ensure a proper utilization of wofk stations the
designers are allotted time slots on different Work stations
in 2/3 hr. shifts. The shift~inchar§e gets requests from
different designers for a shift and acco;ding to the
priorities,.he makes a shift plan fpf all work stations.‘Thé
shiftnplan is circulated to, all the noncerned‘engineers. This‘

'

. is how theé present LMS is functioning in C-DOT.

4,iii. NEED FOR THE AUTOMATION OF THE LMS

However. this approach although appears to be good,
Aseeﬁs to have many.flaws; To mention a few
| o) * Invariably designers find the system down during their
éhift.tiﬁe such that most 6f their time is ‘spent in bringing
¥t»to a workable condition.

o Shifts may be éllotted on work stations which are not
according to the required configuration. So théré will be
wastagé 6f time in ‘terms. of accommoqating all desired
resources and getting-thém fixed

o) Non availability of informafibn regardiné the state in
which work stations have been left by'previoﬁs users.

o' 'Q‘Noh availabiiity df. the ihformationv regarding the
patChés installedvor'rembved in a pérticularlworletatién.".

o No one'direétiy ﬁeld responsible for éll the chédé
generally:éncounteréd and hence it continues.

o Non availability status of the resources alcng with the

ijrkWStatibns hnkhown tili'thevpime of the'allotment.of
shifté.. . ‘ |

o} ‘Canceilation and feallocation of the shifts can be done
only by the shift ihcharge. It is a risksome on the part of
the engineef to approach shift incharge for even a simple.task
like shifts cancellation and reallocation. |

The @nly way all these'disérepancies~could be removed
was'by autqﬁatingftﬁe“entire syéteﬁ to the maximum extent

possible.

5. AUTOMATED LAB MANAGEMENT SYSTEM

The drawbacks éf the unautomated lab managemént system

can be oyercome by automating the system.

| By automating the LMS, ws mean the following should b
pfovided: | |
R 1. Users éhoﬁld be allowed fo give ihputs, lik
requesting for shifts énd etc, online without the interventio
Of the LAB MANAGER.

2. Lab manager need not bother about the scheduling o]
the shifts uniess in some extreme conditions, 1like when th
scheduling done by the system needs some alterations and etc.

3. User should be allowed to select the shift:
according to his convenience and shifts availability.

4. Users. should be known of the current software
status’oflthe labs. Fof future refe?ence{we shall call ther

‘Patch/Prom links.

5.. The estimation of the utilization-vof ﬁhe labs
should be done without much diff%cult.

6. Data sécurity shquld be p;ovidediso that anyvuser
_bﬁheyﬁthén lab,ﬁanaéers,_cén access only "his records and nc

S
one. else’s.

In this section, the - outline of. the AUTOMATED LAB

MANAGEMENT system is described.

'The approdch ‘and the bofation ‘employed for the’
diséussion of ﬁhe de?elobment of tHe a?plicétion<program,,ALMS'
is considered here.

The whole ALMS proces§ is répresented by oné déta flow
diagram':(DFD). Thereafter each .pfocess and sub proéess of
every DFD is described either algorithmically in a feW'steps'
or through a DFD again, which ever method is more convenient.
Eof eaéh‘DFD the contents of the.data'items thAt pass along
the arcs of the DFDs are deécribed. Finally the implementation
of.eaqh procéss on ORACLE is discussed.

Notation used while drawing the DFDs are same as the
standa:d,notation.of the database DFDs. Each bubble represents
a process. Data'base tables are repreéented'knf a rectangle
with only three sides shown. The source and the sink are shown
by a closed rectangle. The data flows between processes,

sources and sinks. The data flow is shown along the arcs.

EMPLOYEE

ALMS

e |

Uus ER «

t
mIic o™

SFT REQUEST®

SFT REALLOCX

SFT PAT

EXITH
"ASK —
OPTION
LAB QUERY™
REQ TO ALLOC™
CHX HS CONFG™

oo

— SHIFT
—% SHIFT
—+ PATCH
—% SHIFT

REQUEST

CANC 7/ REALLOC
LINKS

LOG

‘m

~—— HS COMFIGURATION
F — SHIFT STATUS CHANGE
— LAB QUERY

o

TO BE INPUTTED %v THE USER.

i. -DESCRIPTION AND IMPLEMENTATION OF ALMS

AN e M e =

DESCRIPTION

vThé.DFD for the'whole ALMS shown‘in.the
previous'page isvimplemen;ed in several forms as
V‘déscribed bélow;

Eaéh,(subfprocesé ih~the ALMSfDFD[more of
less, is iﬁplemented. as a separate form. .There are
.around ten representative forms designed, eaéﬁ of which

serves a distinct purpose.

In this section a brief description of how.
each process is transformed>int6'a form and what
.purpose ‘does ea@h suéh form serves is givem}

When the user logs in, he has to enter his
correct user name along with his password (arc
AUTHOR{ZATION‘INPUT). The proceés PASSWORD.CheCks
whether the user name andr the password entered are
valid.

If the user authorization succeeds, the
PASSWORD issues aﬁ AUTHORIZATIQN SUCCESS status aﬁd the
.control goes to the next'proégssL ASK' OPTION.

(Héwéverﬁv if the user éntérs ‘a wrong password ‘the
PASSWORD_gives an,AUTHORIZATiON: FAILURE signal and the
control goes béck to the user enabiing thé.user to try

for a successful login this time.

This process PASSSWORD is implemented using one form.
The process ASK OPTION which is run when the user makes °

a successful login, is implemented as a form called

ASK_OPTION.

This' process reads the purpose of the user who is
running the LMS and branches _té the .sub—procéss as
-reQuifed byvthe usér.The procesé ASK OPTION hay call
an§ ofvthe.foilbwing sévenvsub%proCessés dépendinq_upoﬁ
.the reQuesﬁ of'thé uger : |
A. SHIFT REQUEST

) This process is‘calied when the user wants to
: ma)fce.a request for the - shifts. The function ‘of this
LpgoceSS is to.read the request of the employee and to
"stofe the sufficient .data regarding this request in the
database table. Two forms are designed to implement
“this process.
B. SHIFT REALLOCATION /‘C-ANCELLATION:

" This process is invoked when requests for the
.Cancellétion and reéllocation task. Thére are bréadly
‘two distinct type of shifts thap may be requested by
thé employees for»thé‘canceilationyér‘realloca&ion-

L - Eirét' one 1is wheﬁﬂ the shifts are’ jﬁst
reéuested i.e.‘theée shifts may or'mayfnot75e alloted

to that employee; and secondly Qhen the shifts. are

pguaranteed to be allotted. These two cases are handled
adeptly by this process and ensures that a con31stent
data transaction takes place always. |

| 'The task'of this process 1is oone by two
" different forms;
C. . SHIFT PATCHES:

This 1is another‘sub—process of the ALMS
process and is run when ever. some data has to be
retrieved or inserted into the database tables
-regardlng the PATCH/DROM llnks, defined'in the.glossaryu

‘ Only one form is bu1lt to serve the purpose

.of this process.

D. SHIFT LOG:

| After the employee uses the shifts that are
~allotted to hlm, he-has ro run'rhisvprocess which reads
Atﬁe. details. of the shifts that have been.used.
Rigorous checks has to be done to ensure that the data
~always remains consistent. This process takes care of

such checks while manipulating the data in the database.

This process is implemented using one Form.
E. WS"CONFIGURATION:
; This process maintains .a~ list- of WS
conflguratlon components whlch can be dlsplayed for the

rev1ew1ng purposes. It also keeps ﬁrack of(all newly

Gl

installed patches and also of all new components. It.

allows for the insertion: and/or deletion of . the

'requiréd components that. the employees may want to

insert-or delete.
This_procesé again is carried out.by'one form.

F. -~ REQUESTED TO ALLOCATED

Every once in a week, all the shifts that are
requested for the next week should be given a status

'WILL BE .ALLOTTED. Once the status of the shift is

- changed té the value mentioned above, that shift will

be definitely allotted unless and otherwise it is

‘changed by the Lab manager in some extreme conditions.

The form REQ ALL takes care of this task.
LAB INCHARGE QUERY: |

:This process 1is of a great help to the lab
incharge who has to arrange thé WS with the components
as requested by ﬁhe ehgineer in the SHIFT REQUEST
proééss. This proceés decodes the coded version of‘the
concatenation of required components’ numbers which

uniquely .identifies the component.

After one of the above processes finishes its
task, the control goes back to user from where he can

run another or the same process of his interest or make

an exit.

In the subsequent pages we shall see 1in
detail, how each process with DFD, is handled by the
SOL FORMS and SQL REPORTS and hence how the automation

of. the Lab Management is achieved.

. -

PROCESS NAME

. PURPOSE

DFD

DESCRIPTION |

IMPLEMENTATION

PASSWORD

To make an authorization and to achieve the -

data security

iNot,shbwn;

This process verifies-whether.the'user is
authorized user or ﬁOt.

Read and vélidaté user name:

Read and validate password

Alter the password if required by the user
and Vaiidate the altered password.

Save. the value of employee’s number.

This process is built aé one SQL*FORM with
threé blocks.
| A field is created in one of the blocks
- of this FORM to réad_the user name. A post
change trigger 1is .defined Ion this field .
which ensures that the name entered is in
the list of C-DOT EMPLOYEES table. If an
invalid‘username ;s entered,‘then‘phis
tfiggerjvfails énd ‘the error ;message ‘iéf
-displayed, If a vaiid‘user héme has beén»
enteréd} the next step is executedg
Another field is defined in the same
block as the USERNAME field is défined,'to

read the password of the user. Similar

checks are done as in the USER NAME field.
If a right password has been entered the
POST-CHANGE trigger succeeds and then the
next step 1is continued‘eiée theverror
message isidisplayed~to the user. |
In‘theAhext block, the.ﬁser'hgévtoventef,
his‘option whether he Qants toAchange his
password or .not. If the - password
‘alteration .is not required then the next
| p§d¢e5s ASK OPTION is called. |
However if the password has to be altered,
the user has to enter the new password, in
the third biock. Then he has to re-enter
the new paésWord for validafion. A KEY-
OTHERS trigger vdefined on this VALIDATE
PASSWORD field checks whether the contents
6f the NEW PASSWORD énd VALIDATE.PASSWORD
fields match. If it’matches,ltheﬁ the old
bééswbrd is replaced by the ne&'one in'ﬁhé
database table and ASK OPTION is called. '
Else the message that the validatibd has

failed is displayed and the old passwbrd

is resumed. Then the ASK OPTION process is

called.

* Before going to the ASK OPTION process,
the value of the employee’s number is

stored in the global variable, EMP_NMBR.

PROCESS NAME

PURPOSE

DFD

DESCRIPTION

IMPLEMENTATION

3

ASK OPTION
‘To process the'employees' purpose for
running this package.

Not shown.

x Read option hUmbér

' Cheéck for the validity fofvtﬁé entered
“option number.

* Store option number for reference in

future.

* 'Branch’to the -process as requested by the

~employee.

One SQL*Form with one block is created for
the implementation of this process. The whole

form fits in just one paée.

* A field called OPTION _NO is created in

this form. Employee‘can'enterbhié option-
number in phis‘field.

x 2 step in KEQ;QTHERS trigéér* ensures fhatw
‘the option number.ehteredlis'betwéen'O'apd
7;‘

* A step in KEY-OTHERS trigger defined on
this field copies opﬁion numbef as entered
by the employee into the global variable,

global.option_no

* A step in the KEY-OTHERS trigger calls the

SQL*Form as requested by the employee.

A. SHIFT REQUEST

USEHR

A

OO0
»,

~3
*

OPTIOMN

REQUEST* | N UPLATE*

UALIDA-

TE
UPDATION

QUER

REQUEST

4

)
A g LT

Oy g

SHIFT
ALLOCATE

TG EBEE INFUTTED EY THI USERK.

PROCESS NAME *© : ~ SHIFT REQUEST
PURPOSE * : To save and process the shifts requested by
the employee.

DFD ; : Shown 'in the previous page.

IMPLEMENTATiON : Two forms with 7 to 8 blocks and
éeveral tfiggers, validation checks etc
are created to serve the purposé of this

- process and hence its child processes.

We " shall see now the"description and - the
implementation of each child process ‘of -the

SHIFT REQUEST process.

SUBPROCESS NAME: . GET REQ '

PURPOSE : Gets ;hé verified request details from the
| : _ employee. |

DFD ' ' . v Not given.

DESCéIPTION

* Read the PURPOSE for reqﬁesting for the
shifts, TOTAL SHIFTS required. and a
concatenation bf the work station
configuraﬁion compbnents that the employee
reduires. 4

. * Check for the -vélidity of the inputted
data. ‘ | |

* Generate a unique REQUEST NUMBER for this

IMPLEMENTATION . :

request which uniquely identifies this
request.

Send " the data item, copy datl, to the

SHIFT ALLOCATE sub process, which is

“described later in this. section.

The task of this process is done by few

triggers and validation checks. No separate

Lok

evSQL*FORM-is“created to implement this process.

The parent SQL*Form, SFT_REQ' has three
INPUT-ALLOWED fielaé for the three
variables, PURPOSE, . TOTAL SHIFTS AND WS
CONFIGURATION.. |

‘A Validafion:check‘is made for the TOTAL-

" SHIFTS field to ensure that the value

entefed will always be in the range l»tq
24, as there are 24 one hour shifts per
day.

A POST-CHANGE trigger is created in the
CONFIGURATION field. this trigger-makes.
sure thaﬁ'the first character of'ehe

configuration string always holds a valid

- WS type/'i.e;tﬁe first character should

_always be either S, if dn SBM is requested

or M if an MBM is requested.

'« A PRE-INSERT trigger updates.the maximum
request number used so far stored in the
database.table SEQNOS by one and assigns
this number as the request . number to this
particular request.

* A KEY-COMMIT trigger is. defined in several
-Steps suéh ‘that’ after committingi the
tranéactiqn, the yalué'of the REQUEST

 -NUMBERvahd the WS CONFIGURATION string are
. ¢bpiéd into giobaij variables for future
feferences then thévcon£roi is tfansferrea

to the SHIFT ALLOCATE sub process.

SUBPROCESS’ NAME ' VALIDATE UPDAT]EON

PUREOSE : Verifies that the ubdation done on the
o records~is valid. . |

DFD ' : . Not shown.

DESCRIPTION : ' , .
* Display only those records to which the

employee is allowed to do updatiqn process.
* Allow updation only to the PURPOSE field
and the WS CONFIGURATION field. In the
later case the first character of the
string is not restricted from updation as
it contains the type Aofrthe work statibn"

’the engineer wants to use the_shifts in.

 SHIFT ALLOCATE

(=l g R L

UALID
USER

ITHUALID

&

IHUYALID
-

CHK

SHIFTS
COLLISION

* TO BE INPUTTED BY THE USER.

LEMENTATION:

?ROCESS NAME

>OSE

+

&

SRIPTION

Even this sub-process 1is implemented in

ORACLE through triggers, validation checks

“~ o B e] I A —— — - -

and usir”.L .

* A WHERE clause in the WHERE / ORDER BY
optibn windéw'is written so és td,retrieve.
at the time of execution of the query only
those records with employée number saﬁe as
that stored in the global.variable.

* For total shifts field, the-UPDATION
'ALLOWED. option’ is deséelected in the

ATTRIBUTES WINDOW.

* A DPRE-UPDATE trigger 1is defined to check

that the first character of the WS
CONFIGURATION field is not changed as' this
first character contains the type of the WS

‘requested. .

SHIFT ALLLOCATE

vTo provide“on—lineAselection of the shifts.

Shown in the previous page.

* CHK COUNT
If the shifts to be chosen is zero then
this sub-sub-process issues a ‘ALL SHIFTS
CHOSEN’ message>and terminates its'pareht

~ process i.e. SHIFT ALLOCATE.

However if the shifts to be chpsen is
;greatér than zéro theh,thié process issues
_the message ’SHIFTS ARE TO BE CHOSEN’ and .
the céntrol goes to theiﬁser to fead the
input. | |
CHK SHIFT COUNT

‘Read shift détails viz on which,date whaﬁ
‘shifts are requiredl

If the SHIFTS TO BE CHOSEN is greater than
or equal to Shifts that are requested at
present, then the process invokes the next
process else the contfol_goes back to the
user with the message ’ TRIED TO CHOOSE

MORE SHIFTS' .

fIND_WS , _

Ianny‘of the wO#k Staéioﬁs (WS) of the
type'.as choéen in -tﬁe SHIET REQUEST
ﬁrocess, has free shifts on the daﬁefand
during the shifts as chosen by the user in
the above process, and can accommodate all
the configuration componeﬁts as requested
by the user for these shifts then a status
signal ’‘VALID’ is 1issued and the next
process, SHIFTS COLLISION starts its.

execution.

IMPLEMENTATION :

CHK SHIFT COLLISION

If ény interactive shifts* are chosen by
the user and if few‘or all of these
interactive shifts ﬁas already been choéeﬁ
by the same user on the same date the this
probess issues a ’SHIFTS COLLISION’ signal
and ;he control goes to thé user else the
contrel gbes to Ehe-DEC-SFTS process.

DBé SHIFTS ‘

This process decrements the value stored
in the SHIFTS TO BE CHOSEN variable by the

number of shifts that are chosen.

The subprocess SHIFT ALLOCATE is implemented

in ORACLE using one form with seven blocks

and several triggers. ‘The implementation of

each subprocess whose description is given

*

. aboye is described.

CHK COUNT

In the KEY-COMMIT trigger before COMMIT
macro, a check is made to ensure that the
contents of the field ‘SHIFTS TO BE

CHOSEN’ is greater than or equal to zero.

-CHK SHIFT '‘COUNT

Three INPUT ALLOWED fields are defined in

 the SQL*FORM to read the values of the

'shift date, start and thel last shift
.numbers fr&m the uégr; ‘ .
VFewvstebg'in the PRE—INSERT trigger are'
written to check that the SHIFTS TO BE
CHOSEN field .is noﬁ~ less than the
difference .of vthe- last‘ and the start
.shifts as'requesﬁed.byithé uéer. ‘
FIND WS
Few steps in the PRE-INSERT trigger are
written to check the following:
(The trigger aborts if ahy of the
following two steps fails and the control
§oes back to ;he ;pproriaﬁe message'else~
.the control goes to the next processl)
| Whether'there aré-an&_WSs,“pf Ehé type
‘és_éhosen by fhe.user'in.the SHI?T
REQUEST process, fréé on the date -and’
during the shifts ‘as required ,by,'thé
user.
Whether all configuration components as
required by the user are available in

any of .the WSs chosen in the above step.

CHK SHIFT COLLISION

A step in the PRE INSERT trigger ensures
that the same user will not be given the

'same interactive shifts on any date.

JEC sHiFTS' _

\VPOST—INSERT trigger is defined so that
rach time a record of shift details is
inserted into the table, it decrements

SHIFTS TO BE CHOSEN value by one.

B. SHIFT CANC / REALLOC

HO

4

A

L . -

REALLOC
CANC

COHHIT®

: : ALLOC,
USER b—

I

CHK :
LAB_SFT
ﬁ LOCATE PEHLLH« STATUS

N

CRAMC

LLARAB _MNMoOoD__

A

DEC
SHIFTS

LAaB__REQ

®* TO BE IMPUTTID BY THE USER.

PROCESS NAME SHIFT CANCELLATION AND REALLOCATION
PURPOSE = Provide oﬁ~;in§ cancellétion and réallocation
6f the requested'shifts.' -
DFD ' : : . Shown in the previoﬁS'page“
'DESCRiPTiON A‘:: 7 'Thié,proceSS‘has six cﬂildvproceSSeSL
* REALLOC CANC |
| Read user’s name, requeét'numbér,'work
station number, shift date, and start and
the 1last shift numbers to which 'the,
cancellation or réallécation is requested
aldng- with the status value. for running
this process viz REALLOC for reallocation
or CANC for cancellation.
* CHK
If the status‘hof the above shifts as
entered by the user is 'ONLY REQUESTED’
and not ‘WILL BE ALLOTTED’ then 'this
procéss passes the control to the CHECK
STATUS process glse the cont;oi goes_to'
the CHK PRIVILEGE- process. |
* CHK ERIVILEGE' |
Réadlbassword.
if a gight password has been entered then
the process is terminated and the control

‘goes to the next process viz, CHK STATUS

IMPLEMENTATION :

lElse fhe process aborts and‘the cont:b;
goes back tb.the user:
* CHK STATUS
If the shifts are iﬁ) be canceled then.
 the'process'DEC SEIFTS is invoked.else.the
' p?ocess SHIFT ALLOCATE is invoked. This
process also removes all shifts that are
given, either for cancellation or
reallocation, from the LAB_SFT table
after 1nserting the same iﬂto thé
SHIFT_MODﬁéANC table which has the aeﬁails
of those shifts tha£ are’canceledJof

‘reallocated.

% DEC SHIFTS

This process decreménts'the:&al@e stored

in the TOTAL SHIFTS column of the

corresponding repord’in LAB REQ table by

the number of shift that are cancelled.
* SHIFT - ALLOCATE

Same as that in the SHIFT REQUEST process.

The proceés, SHIFT REALLOCATION /CANCELLATION

is implemented through two SQL*FORMS with

around eight blocks and several triggers.

Implementation of each sub-process is given
below which constitutes to the implementation

0of the whole process.

REALLOC CANC
'Thié'proqessvis 'impiemeﬁted'th?ougb.an
ASQL*Eorﬁ with fieldé f&r entering the
values of ‘the variables EMP-NMBR, REQUEST
NUMBER, SHIFT DAfE, WS 'NUMBER, START AND
LAST SHIFT -NUMBER and the purpose of
runniné thisvformf o o

This form also -hasAa field to display the
total number of shifts that are cancelled
or reallocated.
CHK
The task of this_sub—process is done by a
part of the'PRE—INSERI triéger definea in’
féw steps. Few steps in the PRE-INSERT
triggerAiSIdefined to check ghat‘ail.fhe
shifts as ‘inputtéd< by the user haS”lﬁhe
stafdsfas 'REQ’ and not ’ALLOC'L If this
pért of the .trigger succeeds theﬁrfhé
process. CHK STATUS 1is invoked. ElseAthe
~ process CHK PRVG is invoked.

CHK PRIVILEGE ‘ |

This pgocess is implemented as a -BLOCK of
the SQL*FORM. It has the field called
PASSWORD with ECHO option deselected. If a-

wrong password has been entered the POST

CHANGE trigger defined on this field fails
_‘and control vgoes, to the user with the
fﬁilhre'ﬁéSSAgef Else the_control goes. to
that part of the PRE-INSERT trigéer by
_meaﬁs of whick the-pfbceés CﬁK-STATQS’ié"
implemented;' f |
CHK STATUS

This process is a part Qf the KEY-COMMIT
trigggr; This process is defined.after theA
COMMIT macro in ‘the trigger. It ensures
that if caﬁcellation was required then the
process DEC SHIFTS is célied else the
process SHIFT ALLOCATE is called.

DEC SHIFTS

This process is defined as a. user defined
trigger, DEC _SFTS. It decrements the
"TOTAL_SHIFTS' colﬁmn of the_cofresponding
record stored in the LAB REQ tablé (this’
’ recdrd is‘identifiedtby the request-numbe£‘
aé entéred by the user) bythé ﬁ6tal‘
number of shifts thag. are céncelled iny
ordér to achieve the data consistenc?.

* SHIFT ALLOCATE

~ Same as ‘that in-the SHIFT REQUEST process.

PROCESS NAME

PURPOSE

DED

DESCRIPTION

SHIFT PATCHES
Keeps track of the information regarding the
Patch/Prom links on the BMs.

Not given.

* This part of the proceés reads the purpose-
why £he user is calling this p:oceés. it
then processes the inputted Qalue'and

| calls fhe‘ éppropriatef sub .processes.’ It.
'also,validaﬁes - the entere& option.’ o
The valid options afe'the foilowing :
Repért sﬁccessful installation of the
patch link.
 Report the spccéssfui removal of‘the
patch ‘link. '
Report the failure to install the patch
link.
Report the failure to remove the patch
link. |
Just to know the details of the patch
links.
Update_the status of the,patches.
t VQlidatibh of the thé4inputted or updated.

records.

[PLEMENTATION:

V*,

Users can update only those records with

patch- 1link status as ‘FAILED TO INSTL’ and

"FAILED. TO REMOVE’ to ' SUCCESSFULLY

INSTLD' and "SUCCESSFUL REMOVED'
respectively.
Users should be allowed to perform

nothing more than what has been chosen in

the last sub process.

The PATCH_LINK proCess is 1mplemented

'through a s1ngle FORM. hav1ng two blocks.

In the first block the user has to enter
the optlon number matchlng the actlon.that
he wants to performh

A KEY-OTHERS trigger is .defined to check

' that the entered dptibn‘numher is valid..

If the optioh numher entered'is that of
EXIT then the process terminates else the
next block is called.

A post field trigger is defined in the
STATUS field of the second block. This
At;igger checks in non update mode}-before

leaving that field whether the‘status

_fleld has the value as opted in the first
'block If not, the cursor remains in the

“ field else the next'command is executed.

A POST_CHANGE trigger is defined on the
STATUS field again;-to make sure that the
status. which was ‘FI’ caplbe updated to

rSI’ and eﬁc. ’
In the‘COMMIT”triégér that isvdefihéa on.
this bloc¢k, <checks whether thé ﬁecessary
data has been inputted and deletes any
superfluous data entered.

‘ Fof' example when the STATUS 1is FI (for
Féiiedrto Instal) the kEASON is neéessary
to menﬁion,why the failure has occurred,
at the same time SINCE WHEN 1is not
necesséry as the patch is neithér

installed nor removed.

PROCESS NAME

PURPOSE

DFD

DESCRIPTION

SHIFT LOG
To . keep.track of the information regarding
the shifts that have been used.

Shown in the previous page.

Four small subprocesses.constitutes the SHIFT
LOG process. Here the description of these

three sub-processes is giver which hence

. describes the task of the SHIFT LOG process.

k CHK STATUS
This‘procéss proceésés the data entered by
the user. It checks whether the shifts
mentioned are really allotted to the user
or;hot..If-thg shifts are allotted then
the proéess tef@iﬁates.SUCCeésfully and
the ﬁext process, -éANCEL‘jbegins ifs‘
execution. However, if the user inputs the
details of those shifts that are not yet
allotted to him, then_this procéss aborts
'.t#ahsferring the:cohtroi tb the. user aiong
~with the error message.
CANCEL
This process will be made active when.thé
CHK STATUS. process finishes its task

successfully.

IMPLEMENTATION

Lul> pLUCESS deleles Lide sniIits aetalds
for which the log is being made from the-
LAB_SFT table.

It also stores enough informétion of the

shifts "that are being logged. It' is.

through this infbrmgtion that ,one can

estimate the utilization “of the Work
stations.

DEC SHIFTS

The task of this proCess:is mainly to keep

the data consistently. This process keeps . -
track of the shifts that are yet to be

used by the employee.

The SHIFT LOG process is implemented by means

of

an SQL*Form having three blopks and

several triggers.»

~Here we shall consider the’implementation of

eagh'.sub—proéess 'of»thé,SHIET LOG process.v

*

.CHK STATUS

This task is performed by a FQRM and a
PRE-INSERT trigger.

The form has fields for the values of the

" variables to be inputted by the user.

. Afper the user enters: the shifts date)

work.statién humber,Vstarﬁ and last shifté
the PRE-=INSERT triggef checké whethér‘the'
shifﬁs as per the deﬂails giVeh‘ by tﬁe’
user has the étatus ' ALLOTTED’ instead of
'REQ’ . “

* If these shifts has the status ’ALLOTTED’
then ﬁhe next procéss is invoked else this
process‘makes an abnormal termination baék

to the user with the error message.

CANCEL

This process calculates how many shifts
have been Au;edt And it deletes‘ the
corresponding entry of each used shift
‘ffom‘the7LéB_SFT‘tablel |

A.'paft. of the PRErINSﬁRT’ trigger'LiS
defined as a loop as fallows:.1' |

1. ss = start shift number and qoﬁnﬁ ='0

2. If cur_sft > LAST SHIFT NO (given by
the user) then go to labeL 4, '

3. If the record in the table LAB SFT
with the values SHIFT DATE, WS_NO,
REQUEST NMBR, EMP NMBR as entered by
the user andAthe'SHIFT;NO is equal to
cur sft ,exists then increment the
variable ’cdupt’ by one and delete
the same recordrfrom the table.

4;'Go to label 2.

5. END..

DEC SHIFTS

This process updates the value of the
TOTAL SHIFTS field of the corresponding
LAB REQ record by ‘the number‘ of - shifts
thapihave been used (the»Qafiable 'countf.
has this Value;r |
" If .thé'.TOfAL SHIfTS“?éiué ’iS-ﬂreduEéd to
éero, then Ehe correSponding.récqrd,is
deléted from the LAB_REQ table as all the
shifts of that request are uséd.
This'process is again a ‘part of the PRE-

INSERT trigger.

E. WS CONFIGURATION

l T.

Us ER ¢

(YO Ly . T

»*
. UHSERTIOM® //WF;::\‘ 1 EXIT™

OPTI0N
.-— . /

=

—r LAB . uS’
—— COMFG

CUNIQUE

® TGO TET INPUTTED Y THTI USER.

~

PROCESS NAME : WS CONFIGURATION

- PURPOSE - -~ : ° Keeps track of the work station configuration
components.
,DFD o . Shown in thé previous page.

DESCRIPTION
. This process has four child process, GET

" OPTION, RETRIEVE, CHK UNIQUENESS, GENERATE
and SEQ NUMBER.
* GET OPTION
This proceés' jgst cheéks the _thion
Selgcﬁed by the user and branchesﬁto the
‘appropriatelpropess éccordingl?;'lf the
dpﬁioﬁ‘chosen by'the.user is4;QUERY’ then
the'process ’RETRIEVE’iisfinvoked,tO'run.
£he query. If the option is "INSERT'{thén
the process calls CHK UNIQUENESS pchéss
to ensure a valid data has been entered.
* RETRIEVE
This ﬁrocéss is, 6 very simple."It just
retriéves all the configuration components -
of the_WS that are stored in the table.
* CHK UNIQUENESS
| This process ‘rgads the component
description-that the user wants to store

in the table.

IMPLEMENTATION :

*

It ensures before inserting the new
component description, that the component
desc as-entered by the user does not exist.

in the table

GENERATE SEQ NUMBER
Before .the new component description is
stored in the database table, a unique
number has to-be assignedbas referring a
component description is easier through a
Sméller parametef,llike a 3 digit number,
rather than a lengthy textual expression.
This proceés generates a new sequence

nunber which is the maximum seq number

" that has been used for thisfpurposé'pLUSf

one and assigns this sequence number as
the component number of the new component.

Then it inserts. the two values,

~ description as well as .its number, - into

the table.

GET OPTION
This process is implemented by using one
block of the SQL*FORM. Field is created to

read the. user’s option. A POST-CHANGE

trigger is used to process the option.
number as entered by the wuser. This
trigger firstly checks whether the option
number 1is vaiid or not. If the option
number entered is valid and it is not QUIT
.then this trigger transfers the control to
theAnext block,—WS_CONFG.'If the‘option
entered is QUIT then the triggef transferé
the control to the user. |
RETRIEVE

This process is a part of the KEY-STARTUP
4'trig<§er in the block WS CONFG. A CASE
statement ié.writteh to process the.option
- number as entered py'the user iﬁ the
.previous proceés.-If the optioh chosén in.
the previous block is ‘RETRIEVE’ then the
EXECUTEvQUERY macro 1is performed. As both
the fields‘in this block are defined to be
non updatable, the inconsistency is
eliminated.

' CHK UNIQUENESS |

This 1is implemented as a PRE—INSERTI
'»trigéer‘énd-a‘pa;t‘of'the'KéY+STARTUB
trigger. If the opt;on-enteréd'ié ;iNSERT’

the CASE statement written in the KEY- -

‘STARTUP triggér détects and the -macro -
CREATE RECORD 1is berformed.»in which the
user can. enter the record he wishes to
commit.
’After readiné a new component descr?ption
from the user, and after the user presses
"COMMIT’ key the ERE—INSERT triggér
defined in this block ensures that the new
component descripﬁiqn does no£ alreaay
‘existAin the table. If this parﬁiof-the.'
trigger suéceéds £hen thé_néxt ﬁart of the *
. trigger__is exepﬁtéd . (next pﬁoéess) else’
' phé. trigger ‘fails and thé‘ insertion of‘
this duplicate fecoéd is not‘done.
GéNERATE:SEQ NUMBERS
A table SEQNOS stores in a record, the
maximum number that has been used so far
as the component humbé; of this téblew A
step in pre insert trigger retrieves this .
nuﬁber , increments it by one and assigné
this new maximum number to the new
cdhponent before putting back the new

maximum number.into the SEQNOS table.

F. CHANGE SHIFT STATUS

1

HQ PRIVILEGE .
: P US ER
PASSHORD* . &

CHNG
STATUS

. CHK
PRIVILEGE

, _ .AB_SFT
FROCESSING DATEX - : '

* T0o RBE INPUTTED BV THE MSER.

PROCESS NAME

PURPOSE

DED

'DESCRIPTION

¥
<

-

REQUESTED TO ALLOCATED

To process the requests of all the employees

who had asked for the shifts for’ next week.

Shown in the‘previous page.

This process is run once in a weék to change .
the status of those shifts that are to be
allotted rn the next week from ’REQUESTEQ!
to 'WILL BE ALLOTTED'.

This process has two .child processes whose
description ~and. implementation is discussed

below.

~* CHK PRIVILEGE

. This process checks whether the person who -’

is running this task 1is allowed to do'so
If privilege exists to that person‘then
the next process 1is called‘ else‘ the
control goes to the user. |

* CHNG STATUS ' . .

‘'This 1s the key task of the process, REQ

TO ALLOC. The CHNG 'STATUS first reads the

starting date of the week the employee
wants to change the status. It makes a
validation check to see that the date

entered 1is not less than the current date.

IMPLEMENTATION :

Then the process.updates the status of all.

the shifts details for which the "SHIFT’

DATE falls in the week in queStion.-

After completion, -as other processes ,

it returns to the user.

Ihis process is impieﬁented usiné one
SQL*FORM having four blocks.

CHK PRIVILEGE

A PRE-FORM trigger 1s defined to <check
ﬁhat the'eﬁployee's‘number'(sto;ed in the
global variable' at the time of ;unning
PASSWORD process) 1is iﬁ thevdatabése.table
LAB-MNGRS whiéh contains av list of
employeefs‘nqmbers'who can:ruﬁ ﬁhis_FQRM.
If the empldyeefs .number éxists_Ain 'phe
table, then the next fproééss is Vcélléd .
else the trigger fails and the.éoﬁtrél is

returned to the user.

CHNG STATUS

A .block PROC DATE with one field,
PRoc;DATE is created. The‘user‘has to
enter tﬁe starting date of the week for

which the shift processing is required.

A post change trigger is defineé in this

field to ensure that thé_userzénters the -
daté thaf comes after pﬁe current date.
A PRE-UPDATE t'r'igger"is defined on the
(.fie;d, PROC-DATE. This trigger fetrieyes
"all the shifts details which ‘has the
SHIFT DATE value between the date as
entered in the PROC_DATE field and
PROC DATE plus 6. It then changes the
status of each retrieved record from

"REQUESTED’ to 'WILL BE ALLOTTED’.

PROCESS NAME

PURPOSE

DFD -

DESCREPTION

>LEMENTATION

LAB QUERY
To aid the lab-in-charge in setting up the-
WS configuration components as requested

by each employee.

.Ensure~ that the employee who 1s running
this form has privilege to do so.

Read the date and the work station number
for which thé user wants to see further

details.

_Retrieve all:the shifts detailsAthat are

:allotted on the date and-'in the work.

station as entered by the user.

Retrieve the request details of that

shift as chosen by thé user.

Decode the encoded version of.thé

configuration string.

A . PRE-FORM trigger is defined to check
that the employeé’s number (stofed in tﬁe
global variable at the ‘time of ~running
PASSWORD process) is in the aatabasevtable

LAB-MNGRS whichH contains a 1list of

.employee’s numbers who can run this FORM.

If the employee’s. number: exists in the.
table, theh' the proceés exe;ution. is
continued else the érocess is aborted and:
‘the‘control,is transfeffed to Ehé‘uSer.
A block, DATE WS,with two fields, one
for DATE and another for wokx STATION
‘number is created, The psér has to enter
 the date and work station of his interest.
A KEY-NXTFLD trigger is definéd on tﬁe
last field.of the DATE WS block to pefform
the following:
Go to thé block, SHIFT DETAILS,. where
the retrieved records of the shift details
<can be displéyed; |

Perform the execution of the query with

i

the WHERE - clause as /WHERE -SHIFT DATE

:DATE_WS.SHIFT_DATE . AND WS_NO
| :DATE_WS.WS_NO’ and order clause as ‘ORDER
BY SHIFT_NOlASC’.V l

A KEY-ENTQRY trigger is defined to go to
the block "REQUEST_DETAILS’ and to execute
a- qugry ‘there with REQUEST NUMBER=
:SHIFT_DETAILS.REQUEST_NUMBER. So whenever
the user:presses SELECT key with the

cursor on the shift number of' his

interest, this 't;igger retrieyes the
"details like ,to whom this shift has been
;llotted; What éonfiéura;ion did~vﬁe_
request and etc. |
* A KEY-HELP. trigger is defined to decode

thé coﬁcateﬁated string of‘ coﬁpoﬁent
numbers. This triggér saves the string

~f_till(i.t finds thelseparatof (I have used a

EE sign. as a Asepérator between two
components numbers). It then starts from
this separétor and again saves the string.
till it finds another separator. This
process is continued*till the end- of the:
string is reached.

jThen, this ﬁrigger gets the description'éf
each c@mponent.number séVed,, from the
,databage table:WS_CONFé.which étoré#ithe
wofkstaﬁidn éompoﬁent along Wi£h its.

. identity number.

CONCLUSION-
' BROAD WORKING MECHANISM OF THE 'ALMS PACKAGE

, Each day 1is diVided into 24 shifts of one hour
duration each. ‘

R User gives his request)online'for the allotment of
shifts. ‘ : : o .

Shift are chosen at the time of giving request.
Shifts will be allotted in only those work
stations .
where the components required for the engineer who wants to
work on those shifts are available.
' Tne status of each shift is ’‘REQ’ at the time of
reqﬁestinojfor the shift.
The status of the shifts Wlll be - changed on every
.FRIDAY for those shifts whioh fall in next week.
" User can cancel or request for reallocation only_
.those shifts whichlhave the status. ’REQ’ -
| Lab manager has priVilege to cancel or reallocate
" any shifts.
User inputs after using the shifts allotted to-
him. These inputs aid to estimate the lab utilization.
| ' Lab incharge will be displayed of tne components '
that anylparticular engineer has requested.
| In the next section, designing .of the database

tables and its normalization issues are considered.

ii.TABLES DESTGNED AND NORMALIZATION DONE:

TABLES DpSiGNED

-Aroﬁnd tén relaéions a;e<des;ghed for various
' burpbéé. Iﬁlthis'SeCtiQn, cach table is mentioned briefly. The
detéils'of each table is given in appendix A. |

| 1. EMPLOYEE ‘

Thié table has the ;nformation about each employee
in the Q:ganization. The detaiis like the employee’s name, his
npmber;vpaséwora and etc are stored in this pable.

2. LAB.REQ

'This\table stores the information about each

pending request. .Once ;the‘ requést is fulfilled, the
éorresbonding details about that fequest is deletéd. I
| 3. LAB*SFT : | |
It stores the details about each sﬁift'rengsted
including théldata, ws number, shift number. Records will be
deleted if the corresponding shifts are useq.

4. LAB_SFT_ CANCEL

i

It stores the complete history of the canceled
shifts and:those shifts whicﬁ are reallocated.

5. LAB_PATCH. LINK

Ha5=‘£he information of the private patches.
Whether these patches are installed, removed of "to be

installed and etc can.be known through.this table.

6. LAB SFT LOG
: 'it keeps a history of all those shifts -that have
been aLlotted, This*reiation is vefy‘useful'in'éStima;ihg the
wtilization of the work stations. |

7. LAB:WS_DEF

This relation has the definition details d%.each
work station, like the type of the work station, its location,
and-etc.l | |

8. SEQNOS-

This table savés the maximum éequence ﬂumbers that
has been uSed for a partiéular purpose like generation of
REQUEST NUMBER. |

9. LAB_CONFG

It has the 1list of all the components that are
available in the work‘,stations. It even maintains the

information about the private patches.

NORMALIZATION ISSUES:
‘. patabase tables should not involve redundaﬁdy
Normalizatiqn ﬁhéory ‘is ébplied _for. the. design idf‘ détabaée
tables. All thé tables designed are atleast in BOYCE:/ CODDl
normal form (BCNF). Here only few'tableé are consideréd and
are,pfqvéd phat they are in Boyce Codd Normal Form. For‘the
‘;reét:Qf'theftab;eé,'it can be provéd.én Simflaf lines.
A ;elatioﬁ is said to be in BCNF if and only if

every determinant is a candidate key.

.Consider Ehe LAB;REQ relation. Here there is only
on _candidate ‘key, REQ NUMBER which uniquely‘ identifies the
tuples. Cleérly this relation is in BCNF because the'primary
key is the only determinant in it.

- Considering LAB_CONFG, it is-in BCNF because each
of the tw0‘attribute§'that the relation has, is a‘candidate
key and hence on each can&idate key the other candidate key is
fully functionaliy dependent which satisfy the ne;eésary and‘

sufficieﬁt condition for a pélatidn tc be in BCNF.
o VLAB_SFT‘ is also in _BCNF.. There' is ‘only éné'
candidate _.ke‘y (with four attributes viz ‘REQ_NMBR,. EMP_NMBR,
SHIFT_DATﬁy WS_NO).Eéch .of the other attributes are fully
dependentton the éandidate key vénd not‘on any sﬁbset of the
.candidate»key.‘

Siﬁilarly.the rest of the relations can also be

proved to show that they 'are in BCNF.

iii .HOW USER FRIENDLY THE PACKAGE IS 2

The user who is using the package need not learn

- its intermal structure, like how it is built, how the system

processeé his inputs and the iike. A package is saioi%to
achieve the nature of an UFI' (User Friendly Interface) even if
the novice user could run the package without facing ady
problems. J

o 'In'this section we shall diecuss how user friendly
'the package lis. The follOW1ng are prov1ded to achleve the
frlendly 1nterface between the user and the system:
' Kel - "Help is prov1ded to. all the SQL*Forms‘
Adeve;oped, throughAWhioh_the user can find out the information
about the FORM that he is running. Thie ihformatioh imoludeeh'
the function of the FOﬁM, the purpose of each field oreated in
the FORM, and in which fields-the values are to be inputted.

o o A HELP TEXT is provided at the end of each
FORM-. Thls text contains the information’ about prlmary keys
.that are used in that FORM. This help can be used by the user
for a qulck review of the functioning of the keys.v

) . o Same convention is employed in all the FORMS
while creating So, a user will not face any confu51on while

running dlfferent FORMS as the keys that serve a particular

purpose’ in: one FORM serves the same purpose in all the other

FORMS.

5 . Automatlc help is prov1ded for all the flelds
“in the FORM. When the user moves the cursor 1nto any’ fleld, a
help of what is expected to be inputted into the field is
displayed.

o Rigorous checkings are made in order to
achieve a geod consistency df(the date, befote transactions
are coﬁhitted into the database table .

td Users can seiect the requifed shifts en-line.
He can astwell'know on which date what shifte are not

available which would help him select the-available shifts.

'iV. FUTURE ENHANCEMENTS
| . The major improvemenfs that can be considéred'in
the second phase of the ALMS development are the following:
o Reports can be generated for all relations.
o Change over shift.should be provided duriﬁg which
lab inéharge,'who sets up the .configuration in the work
.Stétioﬁ, caﬁlmodify-the existing configuration. to match'fhe

needs of the next engineer.

¥

6. SHORT COMINGS OF ORACLE
While working on ORACLE RDBMS, few drawbacks of
the system are noticed. To mention a few :
| Though indexing minimizes the retrieval time.of-
thefresults of a query, the more - the number of .indexes the
more diffucult to malntaln the table by the sysLem'
| While using SQL*Forms tool, ‘it does not allow the
transfer of triggers from one level to;another.
Global-variableslcannot be reffeted directly by
vSQLzstatements.

In many cases function keys of the SQL*Form donot

match with that of the SQL*Report for the same function.

BIBLIOGRAPHY

An Introduction'Tg Database Systems
C.J.DATE_'

Database Processibg:_Fundamenﬁals Design,
Implementation |
.pAVID‘KROENKE
A Guide To' INGRES | |

| C.J.DATE -
ORACLE Manuals '

APPENDIX A
TABLES DESIGNED

. [Underlined attributes are primary ke¥s.]

LAB_EMP: .
‘Attributes Null? Type
EMP _NMBR NOT NULL NUMBER
ENAME NOT NULL CHAR(20)
~ PWD NOT NULL CHAR(29)
. PASSWOED: | o
Attributes Null? Type
PASSWORD NOT NULL CHAR(2@)
DESIGNATION NOT NULL CHAR(ZG)
LAB_REQ: .
Attributes Null? Typev-
RES_ NMBR . : ~ NOT NULL , NUMBER(4)
DATE_OF SUBMISSION NOT NULL DATE
TOTAL_-HIFTS: : L NUMBER(2)
PURPOSE - CHAR(10@)
CONFIGURATION ') CHAR(209)
EMP_NMBR i NOT NULL NUMBER(4)
LAB_SFT: : a ' '
Attributes Null? Type
REQ_NMBR NOT NULL NUMBER(4)
SHIFT DATE NOT NULL DATE
SHIFT NO NUMBER(2)
WS NO NOT NULL NUMBER(2)
EMP_NMBR NUMBER(4)
STATUS CHAR(1)"
LAB. SFT_CANCEL:
{ .
Attributes Null? Type
REQ NMBR NOT NULL NUMBER(4)
- SHIFT DATE ‘ DATE
SHIFT NO NUMBER(2)
W3 NO NUMBER(2)

LAB_WS:

EMP_NMBR

CANCELLED_OR_REALLOCATED
DATE_OF_CANCELLATION

REASON

~Attributes

WS_NO
SHIFT_DATE
START _SHIFT._NO

LAST _SHIFT_NO -

- DOWN_TIME

LAB_WS_DEF:

PROBLEMS_FACED
EMP_NMER
TOTAL_SRHIFTS
SYS_CHANGES

Attributes

SINCE_WHEN

"LAB_PATCH_LINK:

" Attributes

LAB_CONFG:

WS_NO - :
PATCH_OR_PROM
STATUS ‘
SINCE_WHEN
REASON
EMP_NMBR

Attributes

CeriP. NO
- DESCRIFTION

NOT NULL

NOT NULL

NOT NULL

'NOT NULL

NOT NULL.
NOT NULL

NOT NULL
NOT NULL

NUMBER(4)
CHAR(1)
DATE
CHAR(20)

Lo -

NUMBER(2)
DATE

NUMBER(2)
NUMBER (2)
CHAR(5)

CHAR(100)
NUMBER(4)
NUMBER(2)

 CHAR(159)

Type
NUMBER(2)
CHAR(3) .
NUMBER(4)
CHAR(15)
DATE

Type
NUMBER(1)
CHAR(29)
CHAR(2)
DATE
CHAR(59)
NUMBER(4)

Type.

' CHAR(4)

CHAR(199)

SEQNOS:

‘Attributes _ Null? Type

BLOCKNAME NOT NULL CHAR(32)

MAXSEQNO ‘ NUMBER(3)

APPCNDIX B

LAB MANAGEMENT

e e et DL T +
[- I
| Usernawe : |
| . |
| Password : |
| {
B e ettt +
| Change your password (Y¥/N) ? |
e e e +

Form: lms Block: PW Page: 1 SELECT: Char Mode: Replace

MVAXA)>

MAIN MENU . |
e e e e e e e e m— e ——— +
| 1. Shift request 5. WS Configuration components |
(. » |
{ 2. Shift reallocation or cancellation 6. Lab incharge query fo;h |
| |
| 3. Patch/Prom links 7. Allocate shifts |
i |
§ 4. Shift log 0. Exit |
| |
| L R e L L e LDttt 2 |
| | Enter your option I | |
| o e ———— e +]
1 |
B B D e sttt Db b +
| HELP: Enter option number and press HELP to know what the form does or }
| |
| any other key to run the chosen form. |
B ittt e i E Tl T +

Form: OPTION Block: option Page: 1 SELECT Char Mode: Replace

MVAXA>

r +
i LAB SHIFTS REQUEST OPTION BOX |
___ +
| .
| 1.INSERTION OF A NEW RECORD.
|
| 2.UPDATION QF AN OLD RECORD. |
| |
| O.EXIT TO MAIN MENU. |
e e e ————— +
| Enter your option and press any key to continue :__ |
| v |
e e e e ———— +
Form: SFT_REQ Block: ask_option Page: 1 SELECT: Char Mode: Replace
MVAXA)>]

4o -
Emp number H

Purpose 3
Total shifts :

Conf iguration:

Name 3 ¢

________________________ +
T ettt ikt + |
| |Your Request number | |
e + |
B e e it e T T +

Form: SFT_REQ Block: request Page: 2 SEIL.ECT: Char Mode: Replace
MVAXA>

B e it Fm e e B e lata TR +

| Employee’s number _ | SHIFT ALLOCATION | Request number |
e e e e e kel L R e b T +

Shifts to be chosen Non available shifts on . are:

Sft date Start Last Ws no	HWs #1 Ws #2 Ws #3 Ha #4
~] (SBM) < MBM) {SBM) (MBM)	
} — - —] — — S	
i	
I	
]	
!	
e e e e + +

|HELP : 1.DOWN ARROW to go to the NEXT REC ; 2. DO or DOWN ARROW to COMMIT
| 3.PF4 to exit.

Form: SFT_ALLOCA Block: allocate Page: 1 SELECT: Char Mode: Replacé
MVAXA >

Cancel or reallocate _

Emp nmbr ___ Request number Shift date

Ws no o Start shift nmbr

Reason

| Total shifts that are cancelled or reallocated
gy +

|HELP :1. F13 to know the 1nput details 2.HELP to know the info about the form|
| 3. DO to commit the trasactions 4.PF4 to exit. |

|
|
|
|
|
;
Last shift nmbr__
|
1
|
|
|
|
|

e ——— g

"“Form: SFT_MOD_CA Block: MOD_CANC

‘Page:; 1 SELECT: Char Mode: Replace
MVAXA)>

+ ——
| PATCH_LINK
T
| WS # PATCH DESC STATUS EMP # INST/RMVD DATE

| 'Reason -

+

|HELP : 1. HELP to know the information about this form

| 2. FIND to execute a query and update the retrieved records.
| 3. DOWN ARROW to go to next record. 4.D0 to commit. 5. PF4 to exit.

Form: SFT_PATCH_ Block: patch_link Page: 2 SELECT: Char Mode: Replace

1.Successful Patch Installation

3.Failure to install

+

|

+

t

|

i 2.S5uccessful Patch Removal
|

!

|

| 4.Failure to remove
|

|

——— e

S.Query / Update 0. Exit
A e e +
| Enter your option and press (RETURN) : i
| to continue or (EXIT) to exit. |
D ettt T e T +
HvForm: SFT_PATCH_ Block: purp Page: 1 SELECT: Char Mode: Replace
AXA)>

| Employee’s no SHIFT LOG FORM

B e e ekl Attt ettt
|

| Request number . Shift date Ws no _

|

|

|

| Start shift no __ Last shift no _ Down time hrs

' '

|

|

| Problems faced

|

j o e e +

] | Total shifts used : __ |

D it b B e s e +

|HELP : 1.HELP to know the information about this form.

{ 2.F13 to know the input details and change the values if not correct.
i 3.0 to COMMIT and PF4 to EXIT.

Form: SFT_LOG Block: log Page: 1 SELECT:

Char Mode: Replace
MVAXA>

PUpEpep—————— S R

| LAB INCHARGE QUERY FORM Date

| C Ws no

e e e e e e e e e e . e e e E e e e e e e e m N e e e e e e A T e e e - -
| REQUEST DETAILS SHIFT DETAILS

| © 8ft no Emp no
| Shift nmbr

}

| Emp nmbr . Emp Name

| ~

{ Request nmbr

|

| Total shifts __

|

| Purpose

|

} Configurattion

+

From Request details block press PREV SCRN to go to Shift details block.
Press Pr4 to exit.

For information about this form press HELP.

Form: SFT_LAB Block: date_ws

Page: 1 SELECT: Char Mode: Replace
MVAXA)

frm - e e c—mr e, —— - D e L L el e el b D DR X +
| Processing date | -ALLOCATION OF SHIFTS | Date -1
D e B i T e B e T T +
| Date R Check whether the records are processed or not (Y/N) _|
Fommmm— e D e ettt T S Fomm e —ea s +
| WS & 1 | WS # 2 | * WS # 3 | WS # 4 |
| Sft Emp_no A/R | Sft Emp_no A/R | Sft Emp_no A/R | S8ft Emp_no A/R |
I - - . - | - -~ b - |
| i | | |
1 ! | | 1
i]			
	[i		
	!		
Fom e e D i At e o +			
Press F13 while in 'Processing date’ field to know the def of the same.			
{			
o e e e e e e +
Form: SFT_REQ AL Block: req all Page: 1 SELECT:

MVAXA>

APPENDIX C

COMPARITIVE STUDY OF THE DATABASE PACKAGES

- INGRES AND ORACLE

SUBJECT INGRES ORACLE

Database model Relational Relational
'Hardware/0S on ' VAX, mVAX etc. . Same
which available ~ VMS & ULTRIX, =~ Also on XENIX

) Different m/cs R on PC.
UNIX , (Not avail-

able on XENIX on

PC) .
Whether works Yes " Yes
across network
(Ethernet /DECNET)
Supports - ' Yes Yes
Transparency for _ (INGRES/NET) "~ (SQLNet)

location of data

. i
in a network.

. Gateways
" available for
data nnder other

DBMS

Form making

capabilities

Report
generétion

capabilities.

RMS Gateways
for VAX/VMS
& dbase III

Gateway for PCs.

Default and

customised form

making facilities

-~ VIFRED (visual

form editor)

- FRS (forms

runtime

system)f

- Default &

customised
report
generation

facilities

- Report by forml

- Report writer.

None. But‘can
access data of
DB II and

SQL/DS

Same

‘fSQLVfo;ms.

Same

- SQL reports

- Report writer

' Gréphic report

generation

PC interface

Working in
multiuser

environment

Pie, bar and

line charts
- VIGRAPH

Through

INGRES 7/ PCLINK
pC péckages like
LOTUS, dbase IITI,

wordstar can be

used.

Yes

Same

- SQL graph

Through SQL*Calc

- Dbase files can

be used on daté

conversion.

"has got a built-:

spread_sheét

facility

-SQL calc

Yes

'Query support ‘ Has SQL support Has SQL support
_ { : : . .

- IBM DB2 - Same
compatible,

Ansi standard.

- Has data, .= Same
transfer
facility.

- Date & money . } Same

data types -

accepted.
Data handling - any number of - Same
. capability’ © databases,
e C tables per db,

rows in a table

- max. 127 fields - max. 255 fields
per record. : per record.
- max. 2000 chars - max. 128K chars

per record. " per record.
- max. 64K chars

for a field.

>cking

Ltacilities

Locking
facilities
Deadlock

Resolution

Read & Write
locks at
~ database level

- table level

- page of a

table level

Various options

available
Automatic

DeadLéék

"detection and

required rollback .

éhared update
locks aﬁ

- database level
- table level

- row (reéﬁrd

level)
Same

Same

	TH29560001
	TH29560002
	TH29560003
	TH29560004
	TH29560005
	TH29560006
	TH29560007
	TH29560008
	TH29560009
	TH29560010
	TH29560011
	TH29560012
	TH29560013
	TH29560014
	TH29560015
	TH29560016
	TH29560017
	TH29560018
	TH29560019
	TH29560020
	TH29560021
	TH29560022
	TH29560023
	TH29560024
	TH29560025
	TH29560026
	TH29560027
	TH29560028
	TH29560029
	TH29560030
	TH29560031
	TH29560032
	TH29560033
	TH29560034
	TH29560035
	TH29560036
	TH29560037
	TH29560038
	TH29560039
	TH29560040
	TH29560041
	TH29560042
	TH29560043
	TH29560044
	TH29560045
	TH29560046
	TH29560047
	TH29560048
	TH29560049
	TH29560050
	TH29560051
	TH29560052
	TH29560053
	TH29560054
	TH29560055
	TH29560056
	TH29560057
	TH29560058
	TH29560059
	TH29560060
	TH29560061
	TH29560062
	TH29560063
	TH29560064
	TH29560065
	TH29560066
	TH29560067
	TH29560068
	TH29560069
	TH29560070
	TH29560071
	TH29560072
	TH29560073
	TH29560074
	TH29560075
	TH29560076
	TH29560077
	TH29560078
	TH29560079
	TH29560080
	TH29560081
	TH29560082
	TH29560083
	TH29560084
	TH29560085
	TH29560086
	TH29560087
	TH29560088
	TH29560089
	TH29560090
	TH29560091
	TH29560092
	TH29560093
	TH29560094
	TH29560095
	TH29560096
	TH29560097
	TH29560098
	TH29560099
	TH29560100
	TH29560101
	TH29560102
	TH29560103
	TH29560104
	TH29560105
	TH29560106
	TH29560107
	TH29560108
	TH29560109
	TH29560110
	TH29560111
	TH29560112
	TH29560113
	TH29560114
	TH29560115
	TH29560116
	TH29560117

