
AN INTERACTIVE MENU-DRIVEN VAX

RELATIONAL DATABASE SYSTEM

Dissertation submitted in partial fulfilment of

the requirements for the De9ree of

MASTER OF TECHNOLOGY IN COMPUTER SCIENCE

BY

MANOJ KUMAR GUPTA

SCHOOL OF SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI

1989

CERTIFICATE

The research work embodied in this dissertation has

been carried out at the School of Computer Sciences,

Jawaharlal Nehru University, New Delhi-110007. This work is

original and has not been submitted so far, in part or full,

for any other degree or diploma of any University.

fv1~~ k.. ~
<MANOJ K~AR GUPTA)

Student

··rev-r~
-< D r • P • C • S A X E N A)

,~ Superviser
. ._. \~~

(Prof. ~{:umeshu)-------

School of Computer Sciences,

Jaw~harlal Nehru University,

New Delhi 110007

PREFACE

Of late database management has come under the more

useful and powerful applications of computers. Many models

of database have been proposed for effective and efficient

implementation of data, for example, network, hierarchical,

relational etc. Of these, the Ralational Data Model offers

both the simplicity of design and efficiency at

implementation.

In Jawaharlal Nehru University, we have the super

mini-computer VAX-11/780, that supports both the VMS

<version 4.4) and the Ultrix operating systems. The VMS

also supports the software package on Relational Database

System which we shall henceforth call as Rdb/VMS.

Rdb/VMS<version 2.2>, on which this project has been

implemented, runs on both the VMS and the MicroVMS operating

systems.

VAX Rdb/VMS is a relational database management system

for VMS systems. It is a part of Vax Information

Architecture. Rdb/VMS is intended to be used as a data

access method by high-level language programs. Rdb/VMS

includes ROO (relational database operator>, an interactive

utility for data definition, learning and prototyping.

The Rdb/VMS is currently useful only to knowledgeable

database programmers with access to manuals and other

facilities. The primary objective of this work is to bring

this utility within the reach of layman by implementing a

user-frienly interface. This interface is essentially a

menudriven system. All the ruotines of the package are

accessible from the menus. The user has to select an option

alphabet to invoke a particular ruotine. The main menu

drives the sub-menus.

A modular approach has been given to the design of the

system. The major sub-systems are:

l.Data definition.

2.Data entry.

3.Data modification or editing.

4.Processing data.

The user can bypass to any sub-system depending upon

his ne~ds. All the menus tell the user how to proceed with

necessary instructions.

The software has been implemented on VAX-11/780

mini-computer supported by Rdb/VMS<version 2.2) and

operating system VMS<version 4.4). The programming language

used for the implementation is VAX PASCAL.

Chapter 1 gives an introduction about relational data

model and VAX/Rdb terminology. This chapter also describes

in brief the approach and solution to the developed system.

Chapter 2 describes the methods of retrieving and

updating data, RDO (relational database operater), RDML

(relational data manipulation language), high-level language

precompiled program, RDBPASCAL preprocessor interface and

CALLABLE RDO

RDBSINTERPRET).

interface (including the function

It also includes the main program algorithm

and statement execution process. These explain the basic

scheme of control logic of the menu-driver and also how

input data from the user is synthesised into Rdb statements

and passed to RDBSINTERPRET.

Chapter 3 describes defining database, fields and

relations. It also explains VAX/Rdb datatypes and their

conversion by the RDBPASCAL and RDBSINTERPRET interface. It

gives an account of how to enter data values in the

respective fields.

Chapter 4 is about editing the field values, that is

how to insert, delete or modify them.

Chapter 5 describes the various statistical functions

that can be used on the field values to give useful

information.

ACKNOWLEDGEMENTS

I wish to express my gratitude to my superviser, Dr.

p. c. Saxena, Associate Professor, School of Computer

Sciences, Jawaharlal Nehru University, for his valuable

guidance and co-operation. He was a constant source of

encouragement thruoghout this project.

I would also thank Professo~ Karmeshu, Dean, School of

Computer Sciences, Jawaharlal Nehru University, for his

co-operation and for providing all the facilities in

completing this work.

I am also thankful to my friends, Shri R. Gupt:::t

and Shri N. K. Jain for their help and useful discussions.

My thanks are also due to Shri Singhv

Administrative Officer, Computer Center and Shri Randhir

Singh for their co-operation and help in many ways.

CONTENTS

CHAPTEf< 1 INTRODUCTION

1.1 MENU-SYSTEM a • a • a • n A a n a 1-4

CHAPTER 2 PROGRAM SCHEME DESCRIPTION

RDO, THE INTERACTIVE RDB/VMS UTILITY 2-1

HIGH-LEVEL LANGUAGE PRECOMPILED PROGRAMS. ':> --, Aol .\:.1

2.2.1 RDBPASCAL Preprocessor Interface "]_,..)
• • a • • ~ ~

2.3 RDML ••

CALLABLE RDO, HIGH-LEVEL CALL INTERFACE 2-3

RDB$INTERPRET • 2··-4

2.6 TRANSACTIONS • • 2-·8

CHAPTER 3 DATA DEFINITION AND ENTRY

3.]. DATA TYPE CONVERSIONS • 3-J.

3.1.1 PRECdMPILED PROGRAM DATA TYPE CONVERSIONS •• 3-2

3.1.2 CALLABLE RDO PROGRAM DATA TYPE CONVERSION •• 3-2

3.2 DEFINING DATABASE • • • 3--4

3.3 DEFINING FIELDS

3.4 DEFINING RELATION 3-6

3.5 COMMANDS AND DEFINITIONS n • n a 3-7

::3. G DATA ENTRY 3·-11

CHAPTER 4 DATA·· ED IT INf.:l

4.1 COMMANDS AND DEFINITIONS a • • a a a a a a a 4~M2

CHAPTER 5 PROCESSING DATA

5.1 STATISTICAL FUNCTIONS 5···1

5.2 COMMANDS AND DEFINITIONS 5-4

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS

B IBLOGF1APHY

APPENDIX A

APPENDIX B

CHAPTER 1

INTRODUCTION

A relation is simply a two-dimensional table that has

several properties. First, the entries in the table are

single-valued; neither repeating groups nor arrays are

allowed. Secondly, the entries in any column are all of the

same kind. Further each column has a unique name and the

order of the columns is immaterial.

Columns of a relation are referred to as attributes.

Finally 9 no two rows in the table are identical and the

order of the rows is insignificant. Each row of the

relation is known as a tuple. If the relation has n columns

than each row is referred to as n-tuple. Also, a relation

that has n columns or n attributes is said to be of degree

n. The following table shows the correspondences between

different sets of terminology:

- 1 -

P.:1ge 1-2

I
I DATABASE ENTITY I RELATIONAL JARGON I VAX Rdb/VMS I , _________________ l ___________________ l __________________ l

I I I I
I Table I Relation I Relation I l _________________ l ___________________ l __________________ l

I I I I
I Column I Attribute I Field I

'-----------------'-------------------~------------------' I I I I
I Row I Tuple I Record I , _________________ , ___________________ l __________________ l

Every record stored in the database must have at least

one field that can be used to locate a single record. This

field is called a primary key. A primary key must have

certain features that allow it to locate one record from all

the records in the database. Two important characteristics

of a primary key follow:

o Must not contain duplicate values.

o Must not contain null values.

This dissertation aims at providing the facilities of

VAX/Rdb in a user-friendly environment. VAX/Rdb <Relational

database package available on VAX-11/780 mini-computer)

gives complete facilities for data definition, maintenance,

and manipulation. The guidance to use the system is

provided thruogh an on-line "HELP' feature. It is very

cumbersome for a novice to get started on the system using

- 2 -

Page 1-3

"HELP" since it can not be used interactively. Moreover

reading of lenthy manuals becomes necessary to implement any

worthwhile application.

The present project brings the VAX/Rdb facility within

easy reach of a layman by using an interactive menu-driven

approach. The user is guided at every step thruogh a number

of available options of which he can select anyone of his

choice. In this way he can proceed in a predetermined

manner, bypass some of the options or goback to where he had

started.

The system has been developed in VAX PASCAL. All VAX

languages that support the VAX Procedure Calling Standard

can use the Callable RDO <Relational Data Operater) program

interface like BASIC, C, FORTRAN, COBOL, PASCAL. PASCAL was

chosen particularly because of more convenient file reading

and writing, extensive use of which has has been made

thruoghout the program. Moreover PASCAL supports the

argument passing BY DESCRIPTOR mechanism, which is necessary

to pass VAX Rdb/VMS statements from a PASCAL program to the

Rdb interpreter. In any case the other languages could also

be used.

- 3 -

P-3ge 1-4

A modular approach has been adopted in the desiging of

the system to ~nsure easy readability, modification and

debu~3gin~3.

sub-modules

The whole program is split in four major

i.e, data-definition,

data-modification and processing Cto include some useful

mathematical operations on the data).

The system incorporates the most basic and some of the

more useful facilities of VAX/Rdb. The report lays down the

designing approach and various algorithms needed for the

sub--systems. The system can be easily enhanced later on as

the need .:u ises.

1.1 MENU-SYSTEM

Menu-system contains a nucleus called menu-driver, a

program that takes control of the system on initiation and

provides full interaction facilities to the user. It maY..es

the approach modular.

is m-3de.

It loses control when an exit request

The whole program has been partitioned into several

modules:

* the format procedure

A data-entry procedure

* edit procedure

- 4 -

Page 1-5

* d~t~ processing procedure

The MAIN PROGRAM consists of one big CASE st~tement.

It displ~ys the m~in menu and ~sks for ~n option. Upon

reading the input, it tr~nsfers the control to that

sub-system.

The FORMAT PROCEDURE cont~ins the d~t~b~se defining

module. It asks the n~me of d~t~b~se, the v~rious fields,

the relations alongwith the datatypes of the fields. Using

this information it cre~tes the d~tabase with requisite

features.

The DATA-ENTRY PROCEDURE allows the user to store

values in his datab~se. For the convenience of the user it

displays the name of the field and the rel~tions along with

their det~ils if the user asks for them.

The EDIT PROCEDURE gives the user the facilities to

modify, delete or insert values in the fields.

The PROCESS PROCEDURE includes the various useful

oper~tions that ~ user can perform on the fields of the

database. They include sorting, mathematical functions like

maximum, minimum, count, average, tot~l etc.

-· 5 -

CHAPTER 2

PROGRAM SCHEME DESCRIPTION

As a programming tool, VAX Rdb/VMS has several

advantages:

o The versatility of the data manipulation statements

means that the database system itself can perform many

of the tasks that would other wise be needed to be coded

in a high level language.

o The interactive environment, RDO, allows the user to

prototype the applicationand its programs completely

before writing the program.

Rdb/VMS provides. several methods of retrieving and

updating information in a database. They are:

2.1 RDO, THE INTERACTIVE RDB/VMS UTILITY.

RDO is the interactive utility for VAX Rdb/VMS. RDO

- G -

Page 2-2

lets the user type Rdb/VMS statements interactively and see

the results immediately. RDO can be used for:

·o Defining and maintaining the database

o Learning about Rdb/VMS

o Testing and prototyping Rdb/VMS applications

o Performing small-scale data manipulation operations

2.2 HIGH-LEVEL LANGUAGE PRECOMPILED PROGRAMS.

With minor adjustments the statements developed using

RDO can be included in programs. Several precompilers are

available providing support for VAX C, VAX COBOL, VAX BASIC,

VAX FORTRAN, and VAX PASCAL programs containing embedded DML

statements.

2.2.1 RDBPASCAL Preprocessor Interface

Using the RDBPASCAL preprocessor interface, the Rdb/VMS

data manipulation statements can be directly included in the

program. When the suorce program is precompiled, the

preprocessor converts the DML statements to a series of

equivalent PASCAL calls to Rdb/VMS. The program is then

compiled as any 6ther PASCAL program. At run time, Rdb/VMS

- 7 -

P~ge 2-3

executes the calls and returns any retreived data to the

program.

2.3 RDHL

The Relational Data Manipulation Language <RDML> is

comprised of cluases, expressions and statements that can be

embedded in C and PASCAL programs. These programs can be

processed by the RDML preprocessor, which converts the RDML

statements into a series of equivalent DIGITAL Standard

Relatonal Interface CDSRI) calls to the database. Following

a successful precompilation, the programmer can submit the

resulting source code to the host language compiler.

2.4 CALLABLE RDO, HIGH-LEVEL CALL INTERFACE.

The Rdb/VMS language can be passed to the interpretive

interface, Callable RDO, using simple calls from any

language that adheres to the VAX Calling Standard.

While using the callable

program communicates with

RDO program interface, the

Rdb/VMS using a callable

procedure, RDBSINTERPRET. Unlike precompiler interfaces,

the Callable RDO interface functions in an interpretive

manner. When the program executes, the statements are

passed to Rdb/VMS in the procedure calls to RDBSINTERPRET.

- 8 -

Page 2-4

The interactive Rdb/VMS interface, RDO, then interprets and

executes them.

Callable RDO is significantly slower than precompiled

Rdb/VMS. Therefore it is used only when:

~ An Rdb/VMS precompiler does not existfor the host

language

* the program must perform data definition tasks

Though precompiled programs facilitate data

manipulation, they can not be used for data-definition.

Therefore Callable RDO interface must used for

data-definition tasks.

RDBSINTERPRET

RDBSINTERPRET is declared as an external integer

<longword) function. In the calling sequence both Rdb/VMS

statements and host variables are passed. The call to

RDBSINTERPRET returns a status value describing the success

or failure of the statement. The return status value is a

system-wide condition value that is either:

~ Success

~ A unique Rdb/VMS symbolic error code

- 9 -

Page 2-5

RDBSINTERPRET requires all parameters <the Rdb/VMS

statement and host variables) to be passed 'BY DESCRIPTOR'.

The PASCAL format of the RDBSINTERPRET calling sequence is:

o ret-status = RDB$INTERPRET<XSTDESCR 'rdb

statement'[,[%STDSCRJ[XDESCRJ host-var •••• J>;
t

~ ret-status : A program variable that holds the longword

integer describing the success or failue of the call.

The program tests the value of ret-stat and optionally

branches to an exception condition handling routine.

~ rdb-statement :The Rdb/VMS statement being passed to

Rdb/VMS.

* host-var A host-variable passed to Rdb/VMS as part of

the data manipulation statement.

The rdb statement can be included in the calling

sequence directly as a string literal. However, the length

of some Rdb/VMS statement may produce unwieldy code in the

call to RDBSINTERPRET. Instead the Rdb/VMS statement string

literal is assigned to a string variable. Then string

variable is passed in the calling sequence.

- 10 -

Page 2-6

The main program consists of one big Case staement. It

displays the opening menu and asks for the options.

Depending upon tne input it calls the appropriate procedure.

The scheme of logic has been taken according to the

facilities available in the PASCAL language. The system is

user-friendly and also takes input from the user. Besides

the syntax of the Rdb statement shuold not be visible to

user. The syntax as well as the input<like the names of the

fields and relations) have to be put together to make a

valid statement, which can then be passed to RDBSINTERPRET

to be executed.

Therefore for convenience a separate file is opened for

writing the input as well as the syntax. As soon as the

user wants a particular utility, the syntactical statement

pertaining to it are written on that file. The

user-supplied input is also put in its proper place by the

program. The contents of the file are then read into a

packed array. And finally the contents of this array are

passed to the function RDBSINTERPRET which executes them.

The contents of the file are erased before the next

statement is writen.

- 11 -

P:age 2-7

A menu-driven system must :also provide f:acilities for

going b:ack to the system or to the m:ain opening menu

whenever user wants. To go b:ack to the system the user h:as

to press CTRL/Y. To go b:ack to opening menu the user should

press '!'. Before taking any input from the user the

progr:am checks for '!' :and if it is encountered then the

control is transferred to the opening menu.

following is the :algorithm for the opening menu:

ALGORITHM

1. Displ:ay opening menu.

2. Get select code(=SC>.

3. If SC=CIRL/Y, e:-:1 t to system

4. If SC=l, invoke format

5. If SC=2, invoke enter

G. If SC=3, invoke edit

7. If SC=4, invoke process

B. If SC=8, invoke show

- 12 -

9. If SC = ANY OTHER KEY, display error message

10. Go to step 2

The various data-manipulation operations are done through

tr ::3nsact ions.

2.6 TRANSACTIONS

Rdb/VMS allows many users to access a database at the

~:.ame time. To avoid conflicts and data inconsistencies

Rdb/VMS requires each user to identify a database activity,

called a transaction. A transaction is an operation on the

database that must complete as a unit or not complete at

all. They end either by a COMMIT or ROLLBACK statement.

Using the COMMIT statement makes the changes parmanent.

ROLLBACK statement is used to undo the changes made to the

database within the scope of a transaction.

The following Rdb/VMS data manipulation statements can

be typed at the terminal in .3n RDO session or included in

high level programs. The folowing table introduces the data

manipulation statements:

- 13 -

Page 2-9

1 I
1 Statement I Description I l _______________ l _______________________________________ l

I I I
1 Commit 1 Ends a transaction, makes I
1 I changes parmanent I
l---------------1---------------------------------------l
1 Database 1 Declares a database I

1---------------j---------------------------------------l
1 Erase 1 Erases one or more records I
1 I from an existing relation I
1---------------l---------------------------------------l
1 Fetch 1 Advances pointer for a I
1 1 record stream to next record I
1---~-----------j---------------------------------------l
1 finish I Detaches process from database I

l---------------1---------------------------------------l
1 for I Executes a statement,once I
1 I for each record in a record stream I

l---------------1---------------------------------------l
1 Get I Retrieves field values from a
I I record stream and assigns them to
I I variables in a pro~ram
l---------~-----l---------------------------------------
1 Invoke I Declares a database, either to RDO
I I or in a host language program
l---------------1---------------------------------------l Modify 1 Modifies one record in an existing
I I relation
1---------------l--
l On-error I Specifies statements to be performed
1 1 if an error occurs during execution
I I of a data manipulation statement
1---------------l--------------------------~------------
l Rollback 1 Undoes the changes made during 1
I I transaction I
l---------------1---------------------------------------l
1 Start_Stream 1 Declares and opens a record stream 1
l---------------l---------------------------------------1
I Start_ 1 Initiates a transaction, which is a I
I Transaction I series of data manipulation I
I I statements executed as a unit I
l---------------l---------------------------------------1
I Store I Stores one record in an existing I
I I relation I l _______________ l _______________________________________ l

- 14 -

CHAPTER 3

DATA DEFINITION AND ENTRY

Rdb/VMS supports eight existing VAX data types, and a

special Rdb/VMS data type. the existing data types are:

* Signed WORD

* Signed LONGWORD

* Signed QUAD WORD

~ F FLOATING -

* G FLOATING -
A DATE

* TEXT

A VARYING STRING

The special data type is: SEGMENTED STRING

3.1 DATA IYPE CONVERSIONS

The host lang~age program<VAX PASCAL> may access an

Rdb/VMS data type that is not supported by the host

- 15 -

Page 3-2

language. in these cases, Rdb/VMS performs data type

conversions wherever possible before passing database values

to host variables. Rdb/VMS converts data types for:

* precompiled programs

* callable RDO programs

3.1.1 PRECOMPILED PROGRAM DATA TYPE CONVERSIONS

Precompilers declare a set of variables that act as an

intermediate between host variables and database values.

the data types assigned to these intermediate variables

depend on the data type of the database field being accessed

and the precompiler being used.

When a host language data type is the same as the data

typ~ of the database value, the precompiler declares a

variable of that data type and no data type conversion takes

place. However, when host language does not support Rdb/VMS

data type, the precompiler declares an intermediate variable

that is supported by host language.

3.1.2 CALLABLE RDO PROGRAM DATA TYPE CONVERSION

for Callable RDO programs host variable data types are

- 16 -

Page 3-3

selected that are compatible with the database data types

being accessed. When the host language does not support the

Rdb/VMS data type, Rdb/VMS performs the data type

conversions as listed in the table.

RDBPASCAL-Generated Data Typees for VAX PASCAL

Rdb/VMS Datatype

SIGNED WORD

SIGNED LONGWORD

SIGNED QUADWORD

P_PLOATING

G_FLOATING

DATE

TEXTn
I
'-------------------

I
VAX PASCAL Datatypel ____________________ I

I
[WORDJ-32768 •• 32767 I

I
INTEGER I

I
CBYTEC8)JRECORD END I

I
REAL I

I
DOUBLE I

I
CBYTE<8>JRECORD END I

I
PACKED ARRAY Cl •• nJI
OF CHAR I ____________________ I

The following steps show the algorithm for the FORMAT

sub-menu

ALGORITHM

1. Display format menu

2. Get database name

3. Define database

4. Get the no. of fields (henceforth referred as nof)

5. While nof < maximum no. of fields allowed, goto step 6

6. Get the name and datatype of each field and craete them

- 17 -

Page 3-4

7. Get the definition-of the relations and create them

B. Save the database thus created

9. Exit to opening menu

3.2 DEFINING DATABASE

The beginning is made by naming a database, which shall

contain all the fields and the relations. This database

will have to be invoked each time any operation is to be

done. The RDO command for defining database is "DEFINE

DATABASE 'NAME'.'. Following are the main steps:

1. Open filel and prepare it for writing

2. Write "DEFINE DATABASE' into filel

3. Read the database name from the user (keyboard) and

write it onto filel

4. If "! • is encountered goto opening menu

5. Else continue writing to filel until eoln is read

6. Read fieldname from keyboard and write it ao filel until

eoln

- 18 -

Page 3-5

7. Read contents of filel into packed array c

8. Pass c as argument to RDBSINTERPREI

9. Write blanks in c

3.3 DEFINING FIELDS

Next the fields are defined. The RDO statement

"DEFINE FIELD 'NAME' DATATYPE IS 'NAME'".

1. Read no. of fields (nof) user wishes to use

2. Display the datatypes fields can have

3. For i = 1 to nof do

4. Rewrite file1

5. Write "DEFINE FIELD" to file1

l·~ ~

' 6. Read fieldname from keyboard and write it ao filel until

eoln

7. Write "DATATYPE IS" to fi1el

8. Read datatype from keyboard and write it ao file1 until

eoln

- 19 -

Page 3-6

9. Read contents of filel into packed array c

10. Pass c as argument to RDB$INTERPRET

11. Write blanks in c

3.4 DEFINING RELATION

And finally the relation name is defined to which the

fields belong. The rdo statement is "DEFINE RELATION 'NAME'

[FIELDNAME lJ,[FIELDNAME 2J, ••• "

1. Rewrite filel

2. Write 'DEFINE RELATION" into filel

3. Read the RELATION name from the user (keyboard> and

write it onto filel

4. Read fieldnames from keyboard and write it ao filel

until eoln

5. Read contents of filel into packed array c

6. Pass c as argument to RDBSINIERPRET

- 20 -

Page 3-7

7. Write blanks in c

Some of the important RDO terms and definitions for

read-write in the database are described below:

3.5 COMMANDS AND DEFINITIONS

1. STARTTRANSACTION:

STARTIRANSACTION initiates a group of statements

Rdb executes as a unit. All the statements that

dify records within a transaction take effect when the

ransaction is completed, or none of them do. If the

o- tr ::ms:act ion is ended with the COMMIT s t:atement, a 11 the
.:}

statements within the transaction execute. If the

transaction is ended with a ROLLBACK statement, none of

\~ the st.':ltements t-':lke effect.

2. CONTEXTVARIABLE:

A temporary name that identifies a relation in a

record stream to Rdb. Once we have associated a context

variable with a relation, we use the context variable to

refer to fields from that relation. In this way, Rdb

always knows which field from which relation being

referred to.

- 21 --

Page 3-8

A context variable must be used in every data

manipulation statement and in every data definition

statement that uses a record selection expression.

If several record streams are being accessed at

once, the context variable allows to distinguish between

fields from different record streams, even if different

fields have the same name.

If several record streams are being accessed at

once that consist of the same relation and fields within

that relation, context variables allow to distinguish

between the two record streams.

3. FOR Statement:

The FOR statement executes a statement or group of

statements once for each record in a record stream

formed by a record selection expression. FOR statements

can be nested within other FOR statements to establish

relationships for outer joins.

The program can use either FOR statements or

STARTSTREAM statements to establish record streams.

Both methods can be used in one program. However, the

FETCH statement can not be used to advance the pointer

in a record strea~ established by a FOR statement. The

- 22 -

Page 3-9

POR statement automatically advances to the next record.

4. STARTSIREAH:

Declares and opens a record stream. The

STARTSTREAM statement:

o Forms a record stream from one or more relations.

The record selection expression determines the

records in the record stream.

o Places a pointer for that stream just before the

first record in this stream.

The FETCH statement must be used to advance the

pointer one record at a time through the stream and

other RDML statements (for example, MODIFY and ERASE> to

manipul~te each record.

5. FETCH:

Retrieves the next record from a record stream.

The FETCH statement is used:

o After a STARTSTREAM statement

- 23 -

Page 3-10

c Before any other RDML statements that affect the

context established by the STARTSTREAM statement

Ihe FETCH statement advances the pointer for a

record stream to the next record of a relation. Unlike

the FOR statement, which advances to the next record

automatically, FETCH statement allows us the

explicit control of the record stream. For instance,

one might use the FETCH statement to print a report

where the first six rows have five columns, and the

seventh row only three

6. COHHIT:

Ends a transaction and makes permanent any changes

you made during that transaction to the database.

7. ROLLBACK :

Terminates a transaction and undoes all changes

made to the database since the program's most recent

STARTTRANSACTION statement or since the start of the

specified transaction.

- 24 -

Page 3-11

8. ONERROR

The ON ERROR clause specifies the statement(s) the

host language performs if an error occurs during the

execution of the associated RDML statement.

The ON ERROR clause can be used in all RDML

statements except the DATABASE statement.

3.6 DATA ENTRY

The following ROO statement is used to assign values to

the fields:

o STORE Stat~ment

Inserts a record into an existing relation. We can

add a record to only one relation with a single STORE

statement. The statements between the keywords STORE

and ENDSIORE form a context block. The RDO format for

the store staement is: ' STORE C IN REL USING C.FIELD =
"VALUE· ENDSTORE I

Algorithm for entering data follows:

ALGORITHM

- 25 -

P::19e 3-12

1. Displ::ly menu

2. Re::1d the dat::Jb::Jse n::1me

3. Invoke the d::lt.3b.3Sf?

4. Rewrite filel

5. write 'STORE C IN • to filel

6. re::Jd the relation name ::1nd write it to filel

7. Write 'USING C." to filel

8. Read the n::1me of the field to which value is to be

asssigndand write it to filel

9. Write • - ' 1 to filel

10. read the v::Jlue to be stored ::1nd write it to filel

11. Write"' ENDSTORE 1 to filel

1 ~, Read contents of filel into packed ::1rr::1y c

13. Pass c as argument to RDBSINTERPRET

14. Write bl::1nks in c

- ~36 ·-

f'.:Jge 3-13

· 15. COMMIT or ROLLBACK as the user requires

16'. E:-~ it to the opening menu

-· 27 -

CHAPTER 4

DATA-EDITING

Edit gives the facility to modify, erase, or insert a

new record. There is also a facility to display the details

of the database, fields and relations in case the user has

forgotten any of these.

Following is the scheme for EDIT sub-menu:

ALGORITHM

J.. Displ.'3y edit menu

'')
~:.j II Get select code

3. If sc -· ! ' e:dt to opening menu

4 a If sc :: l , invoke insert

t:'
-.J. If sc :: 3, invoke delete

-- 28 --

Page 4-2

G. If sc = 2, invoke modify

7. If sc -- 8, invoke show

8. If sc -- CIRL/Y ~3oto the system

9. If sc = ::tny other key, display opening menu

4.1 COMMANDS AND DEFINITIONS

1. MODIFY:

Changes the value in a field or fields in one or

more records from a relation or open stream

Before using a MODIFY statement:

o A READWRIIE transaction must be started

o A record stream with a FOR statement or SI~RISIREAM

statement must be established

The context variables referenced in a MODIFY

statement must be the same as those defined in the FOR

or SIARTSTREAM statement.

- 29 -

The RDO format for the MODIFY statement is: FOR

H IN REL MODIFY H USING H:FIELD = "VALUE" ENDFOR 1

Detailed algorithm for MODIFY sub-section:

1. Read the database name

2. Invoke the database

3. Rewrite filel

4. Write •FOR M IN • to filel

5. Read the relation name and write it to filel

G. Write "MODIFY MUSING M." to filel

7. Read the name of the field to which value is to be

asssignd and write it to filel

8. Write • - '" to filel

9. read the value to be modified and write it to filel

10. Write • 1 ENDFOR • to filel

11. Write COMMIT or ROLLBACK as the user requires

- 30 -

Page 4-4

12. Read contents of filel into p~cked ~rr~y c

13. Pass c as argument to RDBSINIERPRET

14. Write bl~nks in c

] ·=· . ;; . Exit to the opening menu

2. BRASE

Deletes records from a re1~tion or open stream, one

~t ~ time. The RDO form~t for the ERASE st~tement is:

' FOR E IN REL WITH E.FIELD = •vALUE" ERASE E ENDFOR '

M~in steps in ERASE sub-section ~re

1. Read the dat~base n~me

2. Invoke the d~tab.3Se

3. Rewrite fi1el

4.. Write •foR E IN • to file1

5. Read the re1~tion name and write it to filel

6. Write •wrTH E." to file1

-- 31 -

Page 4-5

7. Read the name of the field whose value is to be

erased and write it to filel

8. Write • - 11 to filel

9. Read the value to be erased and write it to filel

10. Write • 1 ERASE E ENDFOR • to filel

11. Write COMMIT or ROLLBACK as the user requires

12. Read contents of file\ into packed array c

13. Pass c as argument to RDBSINTERPRET

14. Write blanks in c

15. Exit to the opening menu

3. INSERT

STORE statement inserts a record into an existing

relation. We can add a record to only one relation with

a single STORE statement. The statements between the

keywords STORE and ENDSTORE form a context block.

The RDO format for the store staement is: STORE

c IN REL USING C.FIELD = 'VALUE" ENDSTORE I

- 32 -

Page 4-6

The al9orithm for INSERT is similar to that used of

STORE in the previous chapter.

- 33 -

CHAPTER 5

PROCESSING DATA

For processing data VAX/Rdb provides several

statistical fuctions like max, min, count, total and

average. Besides these SORTED BY facility provided by Rdb

has also been included in this module.

5.1 STATISTICAL FUNCTIONS

Calculate values based on a value expression for every

record in a recor~ stream. A value expression is not

specified for the COUNT statistical function because it

operates on the record stream formed by the RSE, not on a

value expression. When using the AVERAGE, MAX, MIN, and

TOTAL statistical functions, we specify a value expression

and a record selection expression <RSE>. Rdb then:

- 34 -

Page 5-2

o Evaluates the value expression for each record in the

record stream formed by the RSE

o Calculates a single value based on the results of the

first step

The RDML Statistical functions are:

o AVERAGE

o COUNI

o MIN

o MAX

o TOTAL

The folowing table shows statistical expressions and

their result:

---------------------------------~--------------
I
I Statistical Result
I Expression I I
1---------------l-------------------------------l
I AVERAGE I Average of non-missin9 field I
I I values in current stream I
l---------------1-------------------------------l
I COUNT I Number of records in current I
I I stream I
l---------------1-------------------------------l
1 MAX 1 Largest value of field in I
I I current stream I
l---------------l-------------------------------1
I MIN I Smallest value of field in I
I I current stream I
1---------------l--------------~----------------l
I TOTAL I Sum of values of field in I
I I current stream I l _______________ l _______________________________ l

- 35 -

Page ~i-:3

Ihe algorithm for PROCESS sub-menu is:

ALGORIIHH

1. Display process menu

2. Get the database name

3. Ittvoke the database

4. Re.::~d the option

c:·
,J • If sc = 1 , find ma:·~ i mt1m

6. If sc -- 2, find minimum

7. If sc -- 3, count

. B. If sc -- 4, find .::~ver.::~ge

9. If sc = 5, tot.::~1

10. If sc ·- 6, sort

1 1 • If sc -- 8, show

1.2. If sc = I . , displ::3y opening men•J

13. If sc = CTRL/Y , go to system

- :36 -

Page 5-4

14. If SC = any other key display opening menu

1 .. -,J • Display opening menu

The description of various statistical and associated

RDO statements occurs below:

COMMANDS AND DEFINITIONS

1. GET:

The GET statement is used to retrieve one, several,

or all the fields in a database record. The statitical

GET statement is used to retreive statitical values from

the dat:ab:ase. The GET statement is a read operation.

The result of the statistical expression c:an be

retreived directly without processing each record in the

record stream. The result of a GET statement is always

numeric. So the by-descriptor mechanism must be used

for any field that receives the result of a statistical

GET st:atement.

The Rdb format is: ' GET HOST-VAR = COUNT OF R IN

RELATION WITH R.FIELD = •vALUE" ENDGET •

- 37 -

P~ge 5-5

2. COUNT:

Returns the number of records in a record stream

specified by a record selection expression. The COUNT

function differs from other statistical functions

because it operates on the record stream defined by the

record selection expression rather th~n on the values in

that record stre~m.

The Rdb format is: ' PRINT COUNT OF R IN REL

The steps are:

1. Re~d the dat~b~se name from the keyboard and invoke

i t

2. Rewrite filel

3. Write "PRINT COUNT OF C IN" to filel

4. Read the relation name and write it to filel

5. Read contents of filel into packed array c

G. Pass c as argument to RDBSINTERPRET

7. Write bl~nks in c

- 38 -

P~ge 5-6

8. Exit to the opening menu

3. SORTED:

Sorts the records in the record stream by the

values of specific fields. Sorting is done on a

dat~base field value expression, c~lled ~ sort key. The

sort key determines the order in which Rdb returns the

records in the record stream. The default sorting order

is ascending order.

The Rdb format is: FOR S IN REL SORTED BY

"ORDER' S.SORT-FIELD PRINT S.FIELD ENDFOR '.Steps are:

1. Read the database name

2. Invoke the database

3. Rewrite filel

4. Write 'FOR S IN • to filel

5. Read the relation name and write it to filel

G. Write "SORTED BY" to filel

- 39 -

Page 5-7

7. Read "ascendin9" or· "descendin9" from the user and

write to filel

8. Write •s. • to filel

9. Read the name of the SORTPIELD to which value is to

be asssi9nd and write it to filel

10. Write "PRINT S. '" to filel

11. Read the name of the field whose sorted values are

required and write it to filel

12. Write • ENDFOR • to filel

13. Read contents of filel into packed array c

14. Pass c as ar9ument to RDBSINIERPRET

] ~ .~. Write blanks in c

16. Exit to the openin9 menu

4. MAX:

Returns the highest value for a value expression

for all records specified by a record selection

expression.

- 40 -

Page 5-8

Ihe Rdb format is: ' PRINT MAX M.FIELD OF M IN REL

Steps are:

1. Read the database name from the keyboard and invoke

it

2. Rewrite filel

3. Write "PRINT MAX M." to filel

4. Read the FIELD name and write it to filel

5. Write "OF M IN• to filel

G. Read the relation name, write it to filel

7. Read contents of filel into packed array c

8. Pass c as argument to RDBSINTERPRET

9. Write blanks in c

10. Exit to the opening menu

5. MIN

Returns the lowest value for a value expression for

all records specified by a record selection expression.

- 41 -

P~9e 5-9

The Rdb form~t ' PRINT MIN M.FIELD OF M IN REL

Steps ~re:

1. Re~d the d~tabase name from the keyboard and invoke

it

2. Rewrite filel

3. Write "PRINT MIN M.• to filel

4. Re~d the FIELD name ~nd write it to filel

5. Write sop M IN" TO FILEl

6. Re~d the rel~tion n~me, write it to filel

7. Read contents of filel into p~cked array c

B. P~ss c as ar9ument to RDBSINTERPRET

9. Write blanks in c

10. Exit to the openin9 menu

6. TOTAL:

•
Returns the sum of the values specified by a record

selection expression. The value expression must be a

numeric data type.

- 42 -

Page 5-10

The Rdb format is: ' PRINT TOTAL T.FIELD OF T IN

REL '.Steps are:

1. Read the database name from the keyboard and invoke

it

2. Rewrite fi1e1

3. Write "PRINT TOTAL T." to fi1el

4. Read the field name and write it to filel

5. Write "OF T IN" TO FILEl

G. Read the relation name, write it to filel

7. Read contents of filel into packed array c

8. Pass c as argument to RDBSINTERPRET

9. Write blanks in c

10. Exit to the opening menu

7. AVERAGE:

Determines the arithmetic mean of values for all

records specified by a record selection expression.

- 43 -

Page 5-11

The Rdb format is: ' PRINT AVERAGE A.FIELD OF A IN

REL I Steps are:

1. Read the database name from the keyboard and invoke

it

2. Rewrite filel

3. Write "PRINT AVERAGE A." to filel

4. Read the field name and write it to filel

5. Write "OF A IN" TO F!LEl

6. Read the relation name, write it to filel

7. Read contents of filel into packed array c

8. Pass c as argument to RDBSINTERPRET

9. Write blanks in c

10. Exit to the opening menu

- 44 -

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

VAX/Rdb is one of the most comprehensive relational

database available. It not only provides facilities for

data-definition, ~torage and handling but also for proper

privilege protection and error-messa9e handlin9. The

complete power of the system can be realised only when it is

used either thruogh RDO or a precompiled high-level language

program.

Due to the needs of a menu-driven system for use of a

layman, CALLABLE RDO interface must be used. Since CALLABLE

RDO is considerably slow, some power of the VAX/Rdb has to

be sacrificed in order to have a reasonable speed.

Accordingly error checking through RDBS.SIGNAL and SYSSPUTMSG

have not been incorporated. Also since the system is

supposed to be used by novices, they have not been asked to

define constraints in the definitions. Instead the program

itself defines the constraints and checks if they are

- 45 -

Page 6-2

violated. For the same reasons the settin9 of privile9e

protection or accesses by the user has been avoided.

The use of the system is restricted by the contents of

the existing menus. To add any operation, a program would

have to be written and properly linked to the system which

is a tedious job for an ordinary user. Also, after having

once become familiar with the system, the user would find

the interaction unnecessary.

The transfer control could have been done using system

ruotines providin9 maskin9 of characters.

from the keybaord is scanned and if "!"

Instead the input

is encountered,

control is transferred to the main pro9ram. Using this

module in VAX C could be done because it provides a

run-time-library function for scannin9 the keyboard.

While editing the record streams the user can edit only

one record at a time, whereas in RDO he could form a record

stream, and make changes in records selected by

record-selection expression. This limitation has to be put

because it can not be known in advance what RSE format user

mi9ht choose.

- 46 -

While defining fields the size is not specified by the

user. The sizes for various datatypes have been declared

fixed by the program. A suitable message is flashed to the

user if he exceeds these limits.

Some improvements can be effected with some more

pro~F·':lmming:

1. The option to change the field and relation definitions

could be provided.

2. Instead of using •sHOW ALL'statement, which displays all

the information, the • SHOW FIELDS" and 'SHOW RELATIONS"

statements can be used to display selective information.

3. Maskable characters can be used to transfer control

instead of periodically scanning the input.

4. The option to define constraints for fields can be

incorporated.

5. The access rights definition can be included so that

while a few can both read and write to the database,

others can only Presently, the only

diffrentiation between the users is according to the

names of their datatbase.

- 47 ·-

Page 6-4

G. The RDO HELP feature which is otherwise available to

users can also be included for better customi~ation.

7. A choice could be given to user between the interactive

and the non-interactive modes so that he could bypass

the interaction once he has become familiar with the

system

8. System services can be used to maintain backup files of

the running program so that in case power fails during

execution, the user does not have to start all over

again.

This project has been an attempt at providing a

reasonably efficient menu-driven databa~e system to new

users of the computer. Hence care was takan to make it as

user-friendly as possible. In the attempt some

sophistication of the VAX/Rdb ·had to be sacrificed.

Nevertheless the report lays down the fundamental program

and algorithm structure upon which suitable additions can be

made to make the system more useful.

- 48 -

BIBLOGRAPHY

1. Kroenky, D.M. "Database Processing: Fundamentals
Design, Implementation• Galgotia Publications <1986).

2. "VAX Rdb/VMS Guide to Data
Equipment Corporation (1985).

Manipulation" Digital

3. "VAX Rdb/VMS Guide to Database Design and Definition"
Digital Equipment Corporation (1985).

4. "VAX Rdb/VMS Guide to Database Administration and
Maintenance• Digital Equipment Corporation (1985).

5. "VAX Rdb/VMS Reference
Corporation (1987).

Manual" Digital Equipment

6. "VAX Rdb/VMS Guide to Programming" Digital Equipment
Corporation <1987).

7. "RDML Reference Manual" Di9ital Equipment Corporatioh
(1987).

8. Date, C.J. "An Introduction to Database system"
Addison-Wesley (1974).

9. "VAX VMS<4.4) User Manual" Digital Equipment Corporation
(1985).

APPENDIX A

s~mple run for the FORMAT sub-system

MAIN MENU
Press the option number ~ccording to your choice:
l •••• To define the d~t3b~se
2 •••• To enter the d~t~
3 •••• To edit
4 To process d~t~
B •••• To show det3ils of existing fields ~nd rel3tions
CTRL/Y •••• To go b~ck to the system
Now enter your option
INPUT--··1

Pr es;s
l _______ to form~t'>;
! _______ to opening menu'>;
CTRL/Y _______ to system'>;

INPUT---1

FORMAT
Format allows you to n~me your d~t~b~se, and define fields.
Press RET key ~fter entering ~ny n~me.
First of all, type the n~me of d~tabase

INPUT---MYDATA

Now enter the no. of fields you wish to use

INPUT·---2

Now you are ready to enter the description of the fields,
n~mely the n~me ~nd the d~t~type.
The datatype can be ~nyone of the following:

~ Signed longword (integer>'>;
~ F_floating Creal>'>;
~ d::1te' >;
1'\ te:<t ''>;

Fieldn~me

INPUT---NAME
E'ieldtype
INPUT---TEXT

Fieldn-3me
INPUT-·--CLASS

Fieldtype
INPUT---SIGNED LONGWORD

Enter the name of the relation
INPUT---PERS

If you wish to make the transaction parmanent
type 1, otherwise type 0
INPUT---1

MAIN MENU
Press the opti.on number accordin9 to your choice:
l To define the database
2 •••• To enter the data
3 •••• To edit
4 •.•• To process data
S •••• To show details of existing fields and relations
CTRL/Y •••• To 90 back to the system

APPENDIX B

(~ PROGRAM FOR MENU-DRIVEN VAX/RDB ~)

program p <input,output>;

label 100;
type
c = packed array[l •• lOOJ of char;
(~ common host var for single line statements ~)

a= array[l •• l06J of char;

var nof,n,m,i :integer;
filel : FILE OF char;
cl,c2,c3,c4:c;
-3l::a;
ch,op:char;

function RDBSINIERPRET
<ZSTDESCR X:packed array [1 •• 100] of Fhar
<i?Wtern-31;
function RDBSSIGNAL : INTEGER;
EXTERNAL;

procedure ho(var b:c> ;
<~ passes argument to RDBSINTERPREI ~)
begin
i := RDBSINTERPRETC%STDESCR b>;
end;

provedure moveblank(var bl:c>;
<~ puts blank spaces in the array ~)

be~) in
for i := 1 to 100 do begin

bl[iJ :=I';
end

f::>nd;

integer;;

procedure invoke; invokes the database

begin
rewrite (file!);
write(file1, 1 I 1

,
1 N1

,
1 V1 ,'0 1 ,'K 1 ,'E 1

,'
1
);

write(filel,'D','A 1 ,'T','A 1 ,'B 1 ,'A 1 ,'S','E 1
);

WRITE (f i 1 e 1 , 1 , , , F 1 , 1 I 1 , 1 L 1 , 1 E 1 , 1 N 1, 1 A,. , 1M,. , 1 E 1 , 1 1 , , • I) ;

writeln <'The DATABASE name you wish to work on ____ '>;
repeat
read (ch>;

if (ch <> '!') then begin
write<filel) end

else goto 100;
until eoln;

READLN;
WRITECfilel, 1 "'>;

reset (filel>;
while < not eof(filel)) do begin
read (filel, cl[iJ>;
i := i+l; end;

i : == 1 ;
ho(cl>;
moveblank<cl>;
end; (~ of invoke ~)

procedure show;
(~ shows details of the fields & relations *>

be9in
rewrite <filel>;
invoke;
write(filel,'S 1

,
1 H', 1 0', 1 W1

,
1

reset (filel>;

I I ,

while < not eof(filel)) do begin
read (filel, cl[iJ>;
i := i+l; end;

i : "~ 1 ;
ho(cl>;
moveblank(cl>;
END; <A of show ~)

procedure mainmenu;
(~ displays main menu ~)

be9in

I I

'
I , I A I , I L I , I L I) ;

writeln (' MAIN MENU'>;
writeln ('Press the option number accordin9 to your
choice:'>;
writeln ('l •••• To define the database'>;
writeln ('2 •••• To enter the data'>;
writeln ('3 •••• To edit'>;
writeln ('4 •••• To process data'>;
writeln('8 •••• Show details of existing fields and
relations>;

writeln <'CTRL/Y •••• To go back to the system'>;
end;

procedure format;
<~ defines database, fields I relations *>

(~ of format *>
begin
writeln<'Press'>;
writeln (' l _______ to format'>;
writeln (' ! _______ to opening menu'>;
writeln (' CTRL/Y _______ to system'>;

read(op>;
case op of
'l':begin
writeln <' fORMAT ');
writeln ('Format allows you to name your database, '>;
write('and define fields'>;
write ('Press RET key after entering any name. '>;
writeln ('First of all, type the name of database ____ '>;

rewrite(filel>;
write (filel,'D','E','F','I'?'N','E',' '>;
write (filel,'D','A','T','A','B','A','S','E',' '>;

repeat
read (ch>;

if (ch <> '!')then begi~
writeCfilel)

end
else goto 100;

until (eoln)
readln;

write (fi 1 e 1,' ', '. ');
reset (filel>;

while (not eof(filel)) do begin
read (filel, cl[iJ>;
i := i+l; end;

i : = 1 ;
ho<cl>;
moveblank<cl>;
writeln <'Now enter the no. of fields you wish to use __ '>;
read(nof>;

writeln ('Now you are ready to enter the description '>;
write('of the fields, namely the name and the datatype.'>;
write(' The datatype can be anyone of the following:'>;
writeln (' * Signd longword (integer)');
writeln (' * F_floating Creal)'>;

writeln ('
wr i.te 1 n ('

A d-3te'>;
-A te}~t '>;:

:for n :"-= 1 to nof do begin

writeln ('Fieldname _________ ');
rewrite(filel>;
write (filel,'D','E','F','I','N','E',' '>;
write<filel,'F','E','I','L','D',' '>;

r e pe::1t
re-3d <ch);

if (ch <> '! ') then be9in
write<filel) end

else goto 100;
until eoln;

READLN;
write<filel,'D','A','I','A','T','Y','P','E',' ','I','S','
I) ;

writeln C'Fieldtype _____________ '>;
r*?Pe-3t
re::~d (ch);

if <ch <> '!') then begin
write(filel) end

(·:dse goto 100;
until eoln;

re:3dln;
write (file 1,' ','. ');
reset (fileU;

while (not eof(filel)) do be9in
read <filel, cl[iJ>;
i := i+l; end;
i : =1;
hcl(cl>;
moveblank<cl>;

end; CA of defining fields -fr.)

writeln (' Enter the name of the relation _____ '>;
rewrite(filel>;
write Cfilel,'D','E','F','I','N','E',' '>;
write (fil~?l, 'R', 'E', 'L', 'A', 'I',' I', '0', 'N',' ');

repeat
re:3d <ch);

if Cch <> '!')then begin
write(filel) end

else goto 100;
until eoln;

READLN;
t.Jrite (filel,' ','.'>;
r(·::>set (filel>;

while (not eof(filel)) do be9in
read (filel, cl[iJ>;
i := i+l; end;

i : ==1;
ho(cl>;
moveblank(cl>;

''' goto 100;

otherwise
begin writeln ('Please enter a valid option'>;

goto 100;

<* of case *>
end;
end;
end; <* of format *>

procedure store;
<* stores the value for a field *>

be9in
writelnC'Press'>;
writeln ('l __ to store'>;
writeln ('8 show details of fields and relations>;
writeln ('! __ to opening menu'>;
writeln ('CTRL/Y _______ to system'>;
readCOP>;

case op of
'1': begin

writeln ('ENTER lets you enter the values to fields.
write('Press RET key after entering any name.To
be9in,first'>;
write ('type the name of relation ________ '>;
invoke;
ho(c4>;
rewrite(filel>;
write<filel,'S','T','O','R','E',' ','C',' ','I','N',' '>;

repeat
read <ch>;

if Cch <> '!') then
write(filel)

else goto 100;
READLN;

begin
end
until eoln;

write (filel,'U','S','I','N','G',' ','C','.'>;
writeln <'The field name ____________ '>;

repeat
read Cch>;

if (ch <> '!') then
write(filel>

else 9oto 100;

begin
end

until eoln;
READLN;

writ€~ (filel,' ','=',' ','"'>;
writeln <'The field value ____________ '>;

r e pe:::1t
re:ad <ch);

if <ch <> '! ') then begin
write<filel) end

else goto 100;
until eoln;

READLN;
write (fi lel pI I I' I; I pI I);
write (filel,'E','N','D','-','S','T','O','R 1 ,'E',' ');
writeln <'If you wish to make the transaction parmanent '>;
write<'type 1, otherwise type 0 ______ '>;
re:ad <m>;
c.::1se m of

END;

1 ho<c:n;
0 : ho(c3>;

reset (fileU;
while (not eof(filel)) do begin
read <filel, cl[iJ);
i := i+l; end;

i :=1;
ho(c].);
movebl::1rddcl);
~3oto 100;
end; (~ of easel ~)

1 !' ~3oto 100;
'8' show;

otherwise
begin writeln <'Please enter a valid option'>;

~~nd;
end;
end;

goto 100;

<~ of c:3se ~)

procedure edt;

(J.:. of enter J.:.)

<~ inserts, deletes & modifies field values ~)
begin

writeln ('EDT gives you the facility for modifying '>;
write<'or erasing a particu~ar'>;
write (' field value. The varies options available are '>;
writeln <~ l _____ insert'>;
writeln (' 2 _____ modify'>;

t4rit~?ln ('
writeln('
~tniteln.C'
writeln ('
re:ad<op);

3_ er.3se');
B _____ show details of fields and relations'>;
! _____ to opening menu'>;
CTRL/Y _______ to system'>;

case op of
'2': BEGIN

writeln<'MODIFY lets you chan9e the entry in a field
V-3lue.>;
write ('Press RET key after enterin9 any name. '>;
write<'To be9in first type the name of relation _______ '>;
invoke;
ho<c4>;
rewriteCfilel>;
write Cfilel,'f','O','R',' ','H',' ','I','N',' '>;

repeat
re:ad (ch>;

if <ch <> '!') then be9in
write(filel) end

(~ 1 se ~)(Jto l 00;
until eoln;

READLN;
write (filel,'M','O','D','I','F','Y',' ','H',' '>;
write(filel,'U','S','I','N','G',' ','H','.'>;
writeln ('The field name ____________ '>;

if

r~?pe.3t

re.3d (ch>;
< ch <> ' ! ') then

write(filel)
else ~j(Jto 100;
until eoln;

READLN;

begin
end

write (filel,' ','==',' ','"'>;
writeln <'The field value ____________ '>;

r e pe.:Jt
re.3d (ch);

if (ch <> '! '> then be9in
write(filel) end

E~lse 9oto 100;
until eoln;

READLN;
write (filel,'"',' '>;
write (fil.el,'E','N','D','_','F','O','R',' '>;
writeln (' If you wish to make the transaction'>;
write('parmanent type 1, otherwise type o ______ '>;
read (m);

C-'3se m of
1
0 :

END;

ho(c2);
ho(c3>;

reset (filel>;
while (not eof(filel)) do be9in
read (filel, cl[iJ);
i :::: i+l;

i ::::1 ;
ho<cU;
movebl::mV..Ccl);
~-3ot.o l 00;

end;

end; <* of modify *>

'3' begin
wr:i.tt:>ln~

write('ERASE lets you delete the entry in a field value.'>;
write ('Press RET key after entering any name. To begin '>;
write('first type the name of relation ____________ '>;
invoke;
ho(c4>;
rewrite(filel>;
wx-ite (filel,'f','O','R',' ','E',' ','I','N',' '>;

r e pe."3t
re-"3d (ch);

if. <ch <> '! ') then be'Jin
write(filel) end

<·? 1 se ~3oto 100;
until eoln;

READLN;
write (filel,'w','i','t','h',' ','e','.')
writeln ('The field name ____________ '>;

r e pe:at
re.\ld <ch>;

if (ch <>'!')then
write<fileU

&!lse goto J.OO;
until eoln;

READLN;

begin
end

write (filel,' ','=',' ','"'>;
writeln ('The field value ')" ---------------·-- ,

r e pe::1t
re:ad (ch>;

if (ch <> '!')then begin
write(filel) end

else goto 100;
until eoln;

READLN;
write (filel,'"',' '>;
write (filel,'E','R','A','S','F.',' ','E',' '>;
write (filel,'E','N',~D','-','F','O','R',' '>;

writeln (' If you wish to make the transaction '>;
write<'parmanent type 1, otherwise type o ______ '>;

re:ad
c.3se

END;

< m) ;

m of
1
0 :

ho(c2>;
ho(c3>;

reset (filel);
while (not eof(filel)) do begin
read (filel, cl[iJ>;
i := i+l; end;
i :==1;
ho(cl);
mc1veb 1 :ank (c 1);
~3oto 100;
f:)r! d ; .

I 1 I :

begin
writeln ('ENTER lets you enter the values to fields.>;
write ('Press RET key after entering any name. To '>;
writeC'begin, first type the name of .relation ______ '>;
i nvok~~;
ho<c4>;
rewrite(filel>;
write (filel,'S','T','O','R','E',' ','C',' ','I','N',' '>;

repeat
re:ad <ch);

if Cch <> '!') then be9in
write(filel) end

else 9oto 100;
until eoln;

READLN;
write Cfilel,'U','S','I','N','G',' ','C','.'>;
writeln ('The field name ____________ '>;
repeat

re:ad <ch);
if <ch <> '!') then begin
write(filel) end
else goto 100;

until eoln;
READI..N;

write (filel,' ','-:.:"',' ','"'>;
writeln ('The field value ')" ·------····--····· ,
repeat

re:ad <ch>;
if (ch <> '!')then begin
write(filel) end
else ~)oto 100;

until eoln;
READI..N;

write (f i 1 el, '• ','; ',' ');

write <filel,'E','N','D','_','S','T','O','R','E',' '>;
writeln (' If you wish to make the transaction '>;
write('parmanent type 1, otherwise type o ______ '>;
read <m>;
case m of

END;

1 ho(c2>;
0 : ho<c3>;

reset (filel>;
while (not eof(filel)) do be9in
read (filel, clEiJ>;
i := i+l; end;
i : = 1 ;
ho(cl>;
moveblank<cl>;
goto 100;
END;

'!' goto 100;
'8' show;

otherwise

<A of enter A)

begin writeln <'Please enter a valid option'>;
90to 100;

end;
end;
end;

<A of case A)
<A of edt A>

procedure process;
(A gives output of mathematical functions A)

begin
writeln;
write<'This facility allows you access to certain '>;
write(statistical functions like max, min, count, total'>;
write<'and avera9e. It must be noted, however t~at these'>;
write<'functions can take only numeric fields as
arguments'>;
write<' Besides sording is also provided both in the '>;
writeC'descending as well as. ascending order.'>;
writeln ('Press'>;
writeln (' l _____ find maximum'>;
writeln (' 2 __ ~ __ find minimum'>;
writeln (' 3 _____ count'>;
writeln (' 4 _____ find average'>;
writeln (' 5 total')"

----- y
writeln ('
writeln ('
writeln ('
writeln ('

6 _____ sort'>;
8 _____ show details of fields and relations>;
! _____ to opening menu'>;
CTRL/Y _____ to system'>;

read<op>;
C·'i:lSe op of

I 1 I :

begin
writeln ('MAX returns the l~r~est of the v~lues specified
I) ;

write('by v~lue expression for all the records specifiied'>;
write('by the RSE'>;
wiiteln <'Press RET key after entering ~ny n~me. '>;
invoke;
rewrite (fileU;
ho(c3>;
writeln (' Type the FIELD n~me _______ '>;
write(filel,'P','R','I','N','T',' ','M','A','X','
I ' I M I , I • I) ;

r f? peat
re.'i:ld Cch>;
if Cch <> '! ') then begin
write<filel) end
else goto l.OO

until eoln;
READLN;

WRITE (filel, 'O','F',' ','M',' ','I','N',' ');
WRITELN<' type the relation name _____ '>;

repeat
re.:Hi (ch);

if Cch <> '! ') then begin
write<filel) end

f.~lse goto 100;
•.mtU. C:)oln;

READLN;
I'!:)Set (fUel);
while < not eof(filel)) do begin
read (filel, cl[iJ>;
i := i+l; end;
i :::=1;
ho(cl>;
moveb l.'i:lnk (c 1);
goto 100;
end; (-A of m::n: -A)

'2' ~ begin
writel.n;
write<'MIN returns the smallest of the values specifified'>;
write<'by the value expression for all the records '>;
write('specifiied by the RSE">;
write ('Press RET key after entering any name. ');
invoke;
rewrite (fileU;
hc><c3);

writeln (' Type the FIELD name _______ '>;
~"rite(filel, 'P', 'R',' I', 'N', 'T',' ', 'M',' I', 'N','
I , I M I , I • I) ;

r ~:? pe.'3t
read (ch);

if (ch <> '! ') then begin
·write<filel> end

else ~~oto 100;
•.mtil eoln;

l<EADLN;
WRITE (filel, 'O','F',' ','M',' ','I','N',' '>;
WRITELN<' type the relation name _____ '>;

repeat
re:ad <ch);

if (ch <> '!')then begin
write(filel) end

else ';)Oto 100;
until eoln;

READLN;
res;et (filel>;
while < not eof(filel)) do begin
read (filel, cl[iJ);
i := i+l; end;

i :"-=1;
ho(cl);
movebl:ank(cl);
~~oto 100;
end; (~ of min *>

'3': begin
writeln ('COUNT returns the number of '>;
write (' records in the stream specifiied by the RSE">;
write ('Press RET key after entering any name. '>;
rewrite (filel>;
invoke;
ho<c3);
writeln (' Type the relation name _______ '>;
write(filel, 'P', 'R',' I', 'N', 'T',' ', 'C', '0', 'U', 'N', 'T','
I) ;

WRITE Cfilel, 'O','P',' ',,'C',' ','I',N',' '>;
r f:? pe.'3t
read (ch>;

if (ch <> '!')then begin
write(filel) end

(·~lse ~~oto 100;
•.mtil eoln;

READLN;
reset (fileU;
while < not eof(filel.)) do begin
read (filel, cl[iJ>;

i :~ i+l; end;

i : =1;
ho(cl>;
moveblank(cl>;
goto 100;
end;

I 4 I :

begin
writelnC'AVERAGE returns the average of the values '>;
write<'specifified by the value expression for all the'>;
write<'records specifiied by the RSE'>;
rewrite (filel>;
write ('Press RET key after entering any name. '>;
invoke;
ho(c3>;
writeln (' Type the FIELD name _______ '>;
writeCfilel,'P','R','I','N','T',' '>;
write(filel,'A','V','E','R','A','G','E'>;
write(filel,' ','A','.'>;

repeat
read (ch>;

if (ch <> '!') then begin
write(filel) end

else goto 100;
until eoln;

READLN;
write Cfilel, 'O','F',' ','A',' ','I','N',' ');
writeln (' type the relation name _____ '>;

repeat
read (ch>;

if <ch <> '!') then begin
write<filel) end

else goto 100;
until eoln;

READLN;
reset (filel>;
while (not eof(filel)) do begin
read (filel, cl[iJ>;
i := i+l; end;
i :=1;
ho(cl>;
moveblank<cl);
goto 100;
end; <* of AVERAGE ~)

I 5 I :

begin
writeln;
write<'TOTAL returns the sum of the values specifified by'>;

write<'v::llue expression for all records specifiied by RSE'>;
rewrite (file].);
write ('Press RET key after entering any name. ');
invoke;
ho(c3>;
writeln (' Type the FIELD name _______ '>;
write(filel,'P','R','I','N','T',' ','T','O','T','A','L'>;
write(filel,' ','T','.'>;

r e pe.-at
read (ch>;

if (ch <> '!') then begin
write(filel) end

~::: 1 se ~Jato 100;
until eoln;

READLN;
WRITE <filel, 'O','F',' ','T',' ','I','N',' '>;
WRITELN<' type the rel::ltion n::lme _____ '>;

repeat
re::3d <ch);

if <ch <> '! ') then begin
write<filel) end

else goto 100;
•Jntil eoln;

READLN;
reset (fileU;
while (not eof(filel)) do begin
read (filel, cl[iJ>;
i := i+l; end;
i :c-::1;
ho(cJ.);
movebl::mk<cl);
goto 100;
end; <~ of TOTAL ~)

_, G I :

begin
ltJriteln;
write<'The SORTED BY cluase cuases RDO to arrange the ');
write('records in any order. A fieldn::lme that determines '>;
write<'the sort order is called a sort key.'>;
write ('Press RET key after entering any name. '>;
rewrite (fileU;
invoke;
ho<c3);
rewrite<filel>;
write (filel,'F','O','R',' ','S',' ','I','N',' '>;
WRITELN <'The relation name ____ -'>;
repeat

re::.d (ch);
if (ch <> '!') then begin
write(filel) end

else goto 100;
until eoln;

READLN;
write (filel,'S','O','R','T','E','D',' ','B','Y',' '>;
Writeln ('type either "ascendin9" or "descendin9" ______ '>;

repeat
read (ch>;

if <ch <> '!') then begin
write(filel) end

else goto 100;
until eoln;

READLN;
write (filel,' ','S','.',' '>;
writeln <'The SORT key ___________ '>;

repeat
read <ch>;

if (ch <> '!')then
write(file1)

else goto 100;
until eoln;

READLN;

begin
end

write<filel,' ','P','R','I','N','T',' ','S','.'>;
writeln<'fie1d name of which sorted values are required __ '>;

repeat
read (ch>;

if <ch <> '!')then begin
write(filel> end

else goto 100;
until eoln;

READLN;
write (filel,'E'i'N','D','-','f','O','R'>;
reset (file1>;
while < not eof(filel)) do begin
read (filel, cl[iJ>;
i := i+l; end;
i : = 1 ;
ho<cl>;
moveblank(cl>;
9oto 100;
end; (~ of SORTED ~>

1
I

1
: 90t0 100;

'8' : show;
otherwise

begin writeln <'Please enter a valid option'>;

end;
end;
end;

9oto 100;

(~ of case ~)

(~ of process ~)

<~ of main program *>

begin

c2 :=='COMMIT';
C3 := 'ROLLBACK';
C4 := 'START_TRANSACTION READ_WRITE';

writeln (' MAIN MENU'>;
writeln ('Press the option number according to your
choice:'>;
writeln ('
1-Jriteln ('
!.Jriteln ('
writeln ('
writeln ('
!,niteln ('
writeln <'Now

re.:Jd (op);

l •••• To define the database'>;
2 To enter the data'>;
3 •••• To edit'>;
4 •••• To process data'>;
8 •... Show details of fields and relations>;
CTRL/Y •••• To go back to the system'>;
enter your option ______ '>;

100 : begin
mainmenu;
end;

case op of
' 1 I for m.3t;
' .., ' .:.. ~;;tore;
I~~ I edt;
' 4 ' pr oce~;s;

'5' : mainmenu;
'8' sho!.Jj

otherwi~;;e

begin writeln ('Please enter a valid option'>;

f~nd;

end;
f?nd.

goto 100;

(f. of c.3se f.>

	TH29490001
	TH29490002
	TH29490003
	TH29490004
	TH29490005
	TH29490006
	TH29490007
	TH29490008
	TH29490009
	TH29490010
	TH29490011
	TH29490012
	TH29490013
	TH29490014
	TH29490015
	TH29490016
	TH29490017
	TH29490018
	TH29490019
	TH29490020
	TH29490021
	TH29490022
	TH29490023
	TH29490024
	TH29490025
	TH29490026
	TH29490027
	TH29490028
	TH29490029
	TH29490030
	TH29490031
	TH29490032
	TH29490033
	TH29490034
	TH29490035
	TH29490036
	TH29490037
	TH29490038
	TH29490039
	TH29490040
	TH29490041
	TH29490042
	TH29490043
	TH29490044
	TH29490045
	TH29490046
	TH29490047
	TH29490048
	TH29490049
	TH29490050
	TH29490051
	TH29490052
	TH29490053
	TH29490054
	TH29490055
	TH29490056
	TH29490057
	TH29490058
	TH29490059
	TH29490060
	TH29490061
	TH29490062
	TH29490063
	TH29490064
	TH29490065
	TH29490066
	TH29490067
	TH29490068
	TH29490069
	TH29490070
	TH29490071
	TH29490072
	TH29490073
	TH29490074
	TH29490075
	TH29490076

