
REAL TIME GRAPHIC STATUS DISPLAY
OF C-OOT DIGITAL SWITCHING SYSTEM

(Graphic Interface Module)

ARUN VISWANATHAN

School of Computer and System Sciences

Jawaharlal Nehru University

New Delhi

May, 1989

REALTIME GRAPHIC STATUS DISPLAY 0F.
C-OOT DIGITAL SWITCHING SYSTEM

(Graphic Interface Module)

Gissertati<!>n submitted t0 Jawaharlal Nehru University in partial
fulfillment 0trequirements f0r the award of the Eiegree 0f

MASTER OF TECHNOLOGY

m

Computer Science and Technology

by

ARUN VISWANATHAN

School of Computer and System Sciences

Jawaharlal Nehru University

New Delhi

May, 1989

to my parents

Certificate

his work titled: REAL TIME GRAPHIC STATUS DISPLAY OF C-OOT DIGITAL

TswiTCHING SYSTEM (Graphic Interface Module) has been carried out by Mr. Arun

Viswanathan, a bonafide student of School of Computer and System Sciences,

Jawaharlal Nehru University.

This work is original and has not been submitted so far in part or full for any degree

or diploma in any other University or Institute.

~:~/
ARUN VISWANATHAN

Candidate

Prof. Karmeshu

SupeNisor

SCSS, JNU, New Delhi.

~Cu---
Prof. Karmeshu

Dean,

SCSS, JNU, New Delhi.

1ll

Prof. B.S. Khurana

SupeNisor

SCSS, JNU, New Delhi.

Contents

Preface·
Abstract

VII

X

Cha ~r1 . · 1

Project Overview
1.1 Configuration
1 .2 The Libraries
1 .3 Application Layer
1.4 Development Environment

.2

.3

.4

.4

. 1

Cha ter2 . 6

The SOAP Library
2.1 The SOAP Protocol
2.2 Design Consideration
2.3 The PC End
2.4 The lOP End
2.5 SOAP Library routines

. '\ .

6
.7

14
18
19

. 25

Cha ter3 30

The CGRAPHIC Library 30

IV

3.1 Library structure
3.2 Core Routines
3.3 Geometric Routines
3.4 String Manipulation Routines
3.5 Cursor Control Routines
3.6 Mapping Routines
3. 7 Miscellaneous Routines
3.8 Debugging Aids

. 31

. 33

. 34

. 39

. 42

. 44

. 45

. 47

Contents

Cha ~r4 _ 49

The GIM
4.1 Hardware Requirements
4.2 Software Architecture
4.3 Alarm Display
4.4 Error Messages
4.5 Duplex Mode

. 50

. 50

. 58
58

. 58

. 49

Cha ter 5 60

Conclusion
5.1 Protocol
5.2 Graphics
5.3 Application Layer

. 60

. 61

. 62

. 60

A endix A 64

Glossary . 64

A endix B · 67

Notes on C-OOT DSS
8.1 Hardware Architecture

8.'2 Software Architecture Overview
8.3 Development Environment

v

. 67

. 69

. 72

. 67

Contents

endix C · 73

Notes on Serial Communication 73

A endix D 76

Notes on Interrupts
D.1 Types of interrupts
D.2 Hardware Interrupts

. 76

. 77

. 76

endix E 79

Notes on the IBM EGA
E.1 Display Memory Organization
E.2 Bit Mask Register
E.3 Map Mask Register
E.4 Set/Reset Register
E.5 EGA Write Modes
E.6 EGA Color Palettes
E.? Data Rotate Register

. 80

. 81

. 81

. 81

. 82

. 82

. 83

. 79

A endix F 84

System And Function Calls
F.1 UNIX System Calls
F.2 ·c· Function Calls
F.3 C-ISAM Function Calls

. 84

. 85

. 86

. 84

A endix G 88,

Bibliography . 88

VI

Contents

endix H · 91

Source Listing
H.1 CGRAPHIC Listing
H.2 SOAP Listing
H.3 GIM Listing
H .4 Snapshots

VII

. 91

. 95

. 99

. 101

. 91

Preface

R eal time systems have varied applications such as, Petrochemical plants, Nuclear

plants, Digital Switching systems etc. All these systems have one thing in common for

which they are called real time systems: they are required to caterto the external environment

imposing time constraints to be met at all cost. These time constraints are usually of the order

of few seconds or even less. Due to these constraints the system is required to keep pace

with the changes and demands of the external world with which they interact. Moreover they

pose stringent requirements on response time. Summing up, real time systems are very

sensitive to the external world and are mercurial in their status- "A real time system is that

which responds spontaneously to extraneous events or inputs".

Hence it is essential that some kind of monitoring panel exist along with these systems

so that their activity can be closely observed. This manuscript discusses the design and

implementation of such a software driven display panel developed for the Center for

Development of Telematics' (C-OOT) Digital Switching System (DSS).

Since the real time systems have always evinced interest in me, I approached C-OOT

for a project. Their acceptance in addition to the motivation and encouragement rendered

by my supervisors Prof. Karmeshu and Prof. B. S. Khurana made me sign up with the project

Graphic Interface Module (GIM). I was assigned to the Operating Systems Group (OS Group)

headed by Mr. H. Ghosh. The project was to graphically display the status and performance

of the C-OOT DSS on real time basis. This project has been successfully completed and the

Vll

Preface

package is running at the C-OOT's Exchange at Ulsoor, Bangalore.

Constitution of the manuscript

This work has been divided into five chapters. Chapter 1 is basically a conspectus of

the total project. But before going through any of the chapters it might be useful to riffle .
through Appendix B which gives an overview of the C-OOT's OSS software and hardware

Architecture. Chapter 2 deals with the protocol library SOAP.1 It considers the conceptual

and implementation aspects of the protocol. Related to this chapter we have two Appendices

C and D. They give a brief note on the Serial Communication and Interrupts respectively.

Chapter 3 deliberates on the graphic library CGRAPHIC developed for the IBM Enhanced

Graphic Adapter (EGA). This chapter expands on the functions available with this luxuriant
I

library. Also a brief note on EGA is available in Appendix E. Chapter 4 deals with the GIM

package. It describes the design and implementation of the package. Chapter 5 takes a

retrospective view of the project and points out the possible enhancements and

improvements that could be inoculated. Appendices A, F, G and H contain Glossary, Unix

System calls, Bibliography and the source listing respectively. Most of this work is

self-contained and requires not much of pre-requistes since sufficient information has been

supplied in the appendices.

Acknowledgments

I wish to express my sincere thanks and deep sense of gratitude to my supervisors

Prof. Karmeshu and Prof. B.S. Khurana fortheirkeen interest, valuable guidance, inspiration,

and constructive criticism during the course of this work and particularly through the planning

and completion of this manuscript.

I am more than grateful to H. Ghosh, Group Leader, OS Group, C- DOT, under whose

dynamic guidance and close monitoring I have been able to successfully complete this

project. His consummate knowledge and skills in Computer Science was a great source of

learning and help. My gratitude to him goes beyond what is expressed herein. I am equally

1 Simplest Of All Protocols.

Vlll

Preface

grateful to S. Ramanathan. It was a fruitful experience to have worked with him. There was

a lot to learn from his inordinately mellifluous ·c· code. He was always there to help me out

of the drudgery of finding elusive bugs. Special thanks are due to K. Pramod and Ronki

Shariwale for critically analyzing this manuscript and suggesting many useful and meaningful

changes. Thanks are also due to S. Sreedhar, Ashis Chattopadhyaya and Yogesh Sharma

for providing a very amicable work atmosphere and also for the secours rendered by them.

Finally, I would like to the thank C-OOT for providing all the facilities and resources to make ·

this project a success. In all, experiences in C-OOT will ever remain to be memorable and

cherishable.

I would also like to exte.nd my thanks to my colleagues Sunil Sindwani and Naveen

Jain for all the help they rendered.

~-~· ~
Arun Vis anathan

May 1989, New Delhi.

IX

Abstract

I n any large and complex real time system such as Thermal Power stations, Power

distribution units, Nuclear Reactors, Telephone switching systems, Chemical factories

etc., it is essential that status of the entire system be be shown on a display panel. The task

of analyzing the status of these systems, which involve innumerable parameters, can be

reduced to a great extent if the software driven display panel shows the statuses graphically

by means of flow diagrams, charts, etc. Moreover, the tedium involved in system performance

evaluation can be reduced almost to zero. Such a display panel can also help in taking

corrective measures at the appropriate time.

Since real time systems are very sensitive their statuses can change in a matter of

seconds or even less. Therefore, up-to-date status and performance related data should be

available to such display panels for presentation and moreover. they are required to work

off-line without loading or hindering the system's functioning. Hence a reliable data transfer

mechanism should be established to transfer data from the system to the off-line computer

(display panel). Furthermore, this display unit should give fast response to the user: that is

the status and performance screens should be made as fast as possible, using the latest

modified data. This calls for an enhanced graphic facility to draw screens fast and thereby

reducing the response time. Also the protocol for data transfer should be fast and reliable.

This manuscript deliberates on the design and implementation of such a package for

the C-OOT's (Center for Development of Telematics) Digital Switching System (DSS).

The Graphic Interface Module is a graphic package that will fetch data related to the

status and performance of the C-OOT DSS MAX (Main Automatic Exchange) from a UNIX

machine through a protocol and show it graphically on a video screen. The GIM is a totally

X

. .

Abstract

~enu-driven package. This has been built as an application layer over two libraries

developed for this purpose, which otherwise are fully generalized. One library has routines

related to the protocol for data transfer from the host machine to the off-line computer. The

other one is a graphic' library. The Graphic Interface Module (GIM) has been implemented

on an IBM/AT with an EGA card. This package has been developed and has also been tested

out at the C-OOT's Exchange at Ulsoor, Bangalore and is working satisfactorily.

XI

Chapter 1

Project Overview

I n any large organization, such as a thermal power plant, a petrochemical complex, or a

nuclear reactor etc., it is customary to have a large control room in which the status of

various parameters of processes or machines is continuously displayed as alarm

annunciation or a line flow chart or video screens. When the number of parameters become

very large, the size of the control room become larger and one operator cannot manage to

keep an eye on the whole process. With the advent of computers, it is now possible to collect

and store all parameters on an on-line basis, show generated alarms if required, and display

the status on a Video Display Unit (VDU) in graphical manner to the minutest possible detail.

The aim of this project is to design and implement such a display system which can show

the status and performance related parameters of the C-DOT Digital Switching System (DSS)

in a graphical manner on a real time basis, so that the manager or the operatorof the switching

system can know the status and performance of the Main Automatic Exchange (MAX) at a

glance. This will not only make the MAX operator's work simple but also the handling of the

system much easier. It will be easy for the operator to take necessary corrective measures

related to the configuration antJ performance of the system. It can also facilitate the operator

in localizing the faults to various modules/sub-modules/units. Even the tedium involved in

analyzing exchange performance can be reduced to a great extent. Finally, but not the least,

such a package can increase the salability and marketability of the C-DOT switch.

1

Configuration 1. Project Overview

1.1 Configuration

The data base related to the status and performance of the MAX is stored in the Input

Output Processor (lOP), which supports a UNIX environment. This is a full fledged computer

based on the Motorola 68000 processor. For detailed information on the C-OOT DSS

architecture the reader is referred to Appendix B, [6]-[8], and [23]-[25]. This data base gets

periodically updated as and when the statuses are changed by the processes in the module

where the actual call processing related activity takes place. The objective of the project is

to access this data and show it in a visual form. Earlier such a configuration was available

with a Tektronix Graphic terminal attached to the lOP. But that had a severe disadvantage;

it used to load the lOP for its computations. So it was decided to attach an IBM PC XT/AT to

the lOP, which is quite powerful and provides good graphic facilities. The advantage of such

a configuration is that we can have data fetched on demand, thus reducing the traffic between

the IBM PC XT/AT and the lOP, and all the processing can be offloaded to the IBM PC XT/AT

while keeping the activity at the lOP minimal. Moreover, the IBM PC XT/AT could be attached

to both the lOPs (Master and Slave) [cf. Appendix B] through two of its four serial

communication (COM) ports. The IBM PC XT/AT would communicate with one of the lOPs

and would automatically switch to the other lOP when it is not able to communicate with the

first one. Such a duplex configuration would provide uninterrupted display of status and

performance related parameters.

The configuration stated above engender the availability of two basic building blocks

-firstly, a protocol for transfer of data from the lOP to the IBM PC XT/AT via the RS-232 serial

hardware interface. The protocol will increase the data reliability and can moreover reduce

data red.undancy. Another advantage of such a protocol is that, we can transfer only the

desired number of bytes from the lOP, thus making the work simple and fast as required by

real time environment. Secondly, a good graphics library that provided fast and useful

routines. For this reason we had chosen an IBM PC XT/AT (the reader may note that the

IBM PC XT/AT will hereafter be referred to as PC) with Enhanced Graphics Adapter (EGA).

We have not used any of the MS-DOS internals in ei~her of the basic building blocks. So

these routines, though developed in MS-DOS environment, could be ported to a machine

having a different environment with only minor chang~s. These two basic building blocks

2

The Libraries 1. Project Overview

have been developed as libraries. The SOAP 1 Library provide routines to communicate with

the lOP. The CGRAPHIC Library provide routines to draw geometric figures, string

manipulation, etc. in graphics mode (16/14) of the IBM EGA.

1.2 The Libraries

Though the two libraries have been built as substratum to facilitate the development

of GIM (Graphic Interface Module), they are totally general and completely extendible. The

SOAP Library routines have been built over a lower level protocol. In fact, the 'handshaking'

principle is carried out by this lower level protocol. Towards this end a whole driver has been

developed at the PC-end and an application layer over the lOP driver to serve the request

commands from the PC. At the PC-end the serial port driver has been built as Interrupt

Service Routines (ISR). These interrupts use the serial COM ports of the PC for their

communication with the lOPs. At the lOP-end the application program interprets the request

and serves it. This library and its counterpart in lOP have been discussed extensively in

Chapter 2. All the library routines have been developed through register programming. The

serial port controller is directly manipulated to achieve transfers.

The CGRAPHIC Library routines directly manipulate the IBM EGA registers and

access the EGA display memory. Almost all the routines in the library have a counterpart in

the library that are lower level routines accessing the hardware directly. The lower level

routines are also available to the application programer. Chapter 3 deals with this library.

We have tried to keep the SOAP Library as general as possible, while serving our

specific requirements. Needless to say, the CGRAPHIC Library is totally generalized. Both

the libraries are availabl~ with 'C' interface, i.e., the routines in the library can be directly

called in any 'C' program. Both the libraries have been built keeping speed, as the primary

consideration, in mind. They are neat, easy to use and fast. An added advantage of these

libraries is that they can be enhanced by the user to suit his purpose by using the lower level

routines that have been made available to him. We have also tried to maintain code

optimization in these libraries but whenever a need for tradeoff was there, we preferred time

over space. This was typically because these routines would be used in a real time

1. Simplest Of All Protocols.

3

Development Environment 1. Project Overview

. environment as far as our requirements were concerned.

1.3 Application Layer

Using these two libraries a Menu-driven application layer has been built. The status

of each module of the MAX is shown in a page. The user can also expand on any of the

sub-modules being shown in that page. The application layer follows a forest structure. By

default we show all the sibling pages of a particular tree of the forest in round robin loop. If

the user wants he can go to any of the sibling page or expand on a child or go to the parent

page. The user can also escape to the main- menu page from any where in the forest and

hence can jump to the root of any tree in the forest. We also show the alarms that arise in

the MAX along with its status. The application layer has been developed by using highly

expedient data structures and we have used them freely. This has given modularity to the

whole package. This approach also helped us in adding pages, changing configuration of

the pages, etc. This modularity will not only help in maintaining the package but also in

enhancing it when required. The application layer also provides the user with saving a

displayed page onto a storage system or replay an already stored page and many other such

facilities. This application layer, which is the major objective of the project, has been named

Graphic Interface Module (GIM). Chapter 4 is devoted to GIM.

1.4 Development Environment

Since the source code is big, we feel that a comment should also go about it. A part

of the source code is given in Appendix H. All of the programming is in 'C' programming

language except for two routines in SOAP that are written in assembly language. We have

followed the C-OOT coding guidelines in writing our programs. We have tried to maintain

modularity at each phase of the project. This has been achieved through data abstraction,

i.e., we have tried that routines do not become dependent on the data structures of the other

routines they call. All variables and function names are in lower case letters. The functions

that are hardware dependent start with an 'underscore'. All macros and hash-defines are in

upper case letters. All typedefs start with an upper case letter. We have also tried to slip in

lot of useful comments to help understand and maintain the package.

The working environment was an IBM/AT running MS_DOS with an EGA card with

4

Development Environment 1. Project Overview

256 KB of display memorry and two serial COM ports. The other machine was a Motorola

System 1000 running System V/68 (UNIX) with Motorola 68010 processor.

5

Chapter2

The SOAP Library

T he transfer of data from the lOP to the PC would require that the two machines establish

some kind of communication protocol so that the reliability of the data transferred is of

highest degree. Not only will the data reliability increase, but also data redundancy would

reduce to almost zero. By data redundancy we mean that the same data being transferred

more than once, even though data was transferred correctly, the first time. There could be

another use of such a protocol; we can fetch only those many bytes that are required at an

instant. This is of utmost importance to us, because the Graphic Interface Module (GIM)

package showing real time status of the system would require that the response to the user

be fast. One of the crucial factors determining this would be the amount of data transfer that

we make. We wanted to reduce this to the barest minimum; that is, requesting for only those

many. bytes of data that would be needed to make up a page.

At first a lower level protocol was developed that would transmit and receive data

packets, and validate them. Before transmission the lower level protocol would embed the

data in a standard format that both sides recognize. The lower level protocol at the PC-end

has been implemented as interrupts. Some of the lower level routines of the SOAP Library

have been developed over these interrupts. The standard SOAP Library routines have been

built by using these lower level routines. Hence at the PC-end there exists three layers of

the protocol. That is,

• top layer: standard SOAP routines
• middle layer: lower level routines

6

Top Layer

soap_ fetch()

soap_ date()

etc.

Middle Layer I
soap_recvO

soap_ send()

etc.

Bottom Layer f

PC-end

Middle Layer

Command Request Interpreter

Bottom Layer -f~----
,~pipe

p~read;~

r-"""--"

lOP-end

ACIA link

SOAP Software architecture

Figure 2.1

The SOAP Protocol 2. The SOAP Library

• bottom layer: interrupts .

The routines of subsequent two layers are also available to the user. He can use them

to enhance the SOAP Library. But it calls for deligence on the part of the user while using

these lower level routines. The SOAP Library has a server at the lOP-end. This lOP-end

counterpart has been developed as an application layer over the UNIX driver. There are two

processes at the lOP-end. One reads the port, while the other forms the packets and

transmits them to the PC. These two processes establish a 'pipe' for inter process

communication.

As far as the present implementation at the lOP-end is concerned, it remains.to be a

server to the requests generating from PC-end. We have not developed any library or request

facility at the lOP-end. This was because that such an implementation would be better if we

were to write a whole driver at the lOP-end, otherwise the application can become quite slow.

Moreover, the GIM project didn't have any such requirements. The lOP-end has a request

interpreter that identifies the PC request and serves it. The figure 2.1 gives an overview of

the whole communication protocol between the two machines.

2.1 The SOAP Protocol

The SOAP Protocol is based on the Tektronix, Inc.'s ICOM40 communication protocol.

As the name suggests we have tried to keep the lower level protocol as simple as possible.

We have avoided incurring unnecessary overheads in implementing this protocol. This was

because our requirement was to transfer data from the lOP-end to the PC-end. But presently,

the protocol developed, supports much more facilities and moreover it can be enhanced by

any application programmer.

This section considers the protocol at the conceptual level. We have chosen serial

transmission since this mode is cheaper than the parallel transmission. "Serial

communication is cheaper than parallel because it requires fewer data lines- as few as two

for two-way communication. Also the asynchronous mode of transmission makes much less

7

The SOAP Protocol 2. The SOAP Library

demand on the hardware because there is no need for special hardware to maintain

synchronism between transmitter and the receiver".1 As the communication over the serial

data link interface RS-232 is asynchronous, a proper handshaking is required between the

two machines to avoid reading noise as data and to re-transmit lost/corrupted data. Such a

handshaking would also help the sender in knowing whether the data packet had reached

uncorrupted, so that he can transmit further packets.

Now assume that the sender wants to transmit a packet to the other end. For this the

sender needs some kind of signaling to inform the receiver that the data packet is following

and he is also required to supply the data attributes such as data length, etc. Such a signal

is said to constitute a Header. But now the receiver is required to distinguish between the

Header and the Data block. For this purpose the Header and Data blocks can start with a .

control byte, e.g. we can keep a byte <SOH> indicating the start of Header. Similarly, when

the receiver gets a packet he is required to inform the sender about it. For this purpose he

needs two blocks, one to 'acknowledge' the successful receipt of the packet and another to

mark the 'negative acknowledgment'. As these blocks also need to be distinguished from the

other ones, we can take a similar approach by choosing two bytes <ACK> and <NAK> to

indicate the start of the Ack and Nak block respectively.

Now lets see what should constitute the Header, Ack, Nak, and Data blocks. The task

is simple. The Header should consist of the <SOH> indicating that a Header follows, and

information about the data, i.e., data length, sequence number, source, destination, and a

checksum. The data length field helps the receiver in knowing the length of the data that is

to follow. Source field represents the identity of the process that has sent the data packet.
·.

Similarly, the destination field represents the identity of the process to whom this data packet

should be handed over at the receiving end. The checksum will help in knowing whether the

Header block had reached uncorrupted. There remains another field in the Header block that

needs explanation-the sequence number. This field plays a major role in the lower level

protocol. This field will represent the last packet that has been successfully transmitted by

1. [1] p.453.

8

The SOAP Protocol 2. The SOAP Library

the sender. This has been taken up in greater detail later in this section.

<SOH><data_length><sequence_number><source><destination><Check_sum>

Header Block

<Af;K><Sequence_ number>

Ack Block

<NAK><expected_sequence_number><error_code>

Nak Block

<STX><data><ETX><Check_sum>

Data Block

Figure 2.2(a)

<SOH><data_length><sequence_number><source><destination><data><Check_sum>

Clubbed Data Block

<ACK><Sequence_number>

Ack Block

<NAK><expected_sequence_number><error_code>

Nak Block

Figure 2.2(b)

The Ack block will consist of a control byte <ACK> to identify the Ack block another

field should be the sequence number indicating the sequence number of the last packet

successfully received, while the Nak block will have a control byte <NAK> indicating the start

of a Nak block. Since the packet did not reach successfully another field is required to indicate

the type of error, so the sender can take appropriate corrective measures. Similar to the Ack

block the Nak block should also contain a sequence number, but this time indicating the

expected sequence number, i.e., one more than the sequence number of the last successfully

received packet. Lastly, the Data packet could be sandwiched between two control bytes

<STX> and <ETX> to indicate the start and end of the Data block respectively. Hence all the

possible transmission blocks are distinctively identified by the control bytes. One more control

byte will be required to indicate end of transmission (EM- End of Medium). This control

byte will be sent by the receiver on successful receipt of a Data block. This may be called

as the Em block. In fact, the Ack block can also be used to acknowledge the successful

receipt of data packet. Figure 2.2(a) describes the blocks that have been discussed above.

9

The SOAP Protocol 2. The SOAP Library

Both the parties will communicate under the protocol stipulated below.

• The sender transmits a Header block.
• . The receiver sends an Ack block to indicate successful receipt of the Header.
• The sender transmits the Data block.
• The receiver sends an Em block on successful receipt of a Data block .

The protocol is not as simple as to be able to put in the above four lines, they only

remain to represent a general way of transaction. It is highly likely that many complications

might arise while transactions take place. Say; for example, that the Header gets

lost/corrupted, or an Ack gets lost/corrupted, or the Em gets lost etc. How should the sender

and receiver ends react to such imminent circumstances ? Are they capable of handling all

such occurrences? And so on. The protocol is required to detect such occurrences and take

corrective and remedial measures. But there could be such freak cases that might never

occur to our mind. For such cases the protocol should support some kind of built-in recovery

strategy, so that the transactions start taking place after a momentary lapse in

communication. Nevertheless this work is not all that imponderable as it looks to be. A proper
/

step by step evaluation of the protocol can help in developing a very stable communication

protocol. We describe below some of the cases that could arise and also the steps to be

taken.

Message Tracking

At any time of transaction a whole message can get lost. Hence both the parties are required

to keep track of the number of successfully transmitted and received messages. This

is where the sequence number in the Header block comes into picture. The receiver

end can compare the sequence number in the Header with his successfully received

sequence number to judge whether the packets are coming in proper order. Both,

sender and receiver, are required to increment the successfully transmitted and

received sequence number respectively at their ends to maintain seemliness in

transmission of packets. The sequence number should be rolled back from 127 (or

255 if the byte is unsigned) to 1. The sequence number 0 is reserved for special

purpose. At any time during the transactions either party can reset to sequence

number 0, and neither of them should consider the sequence number 0 to be out of

order. This can serve two purpose. One is that to start a new set of transactions.

Secondly, it can be effectively used as one of the recovery strategies. The sender can

10

The SOAP Protocol 2. The SOAP Library

signal his re-sequencing request in the Header block while the receiver can request

for re-sequencing through a Nak block; both blocks having sequence number equal

to zero.

Lost Em Syndrome

Assume that the sender successfully transmits a Data block. The receiver will send an Em

to acknowledge the event. Assume that, for reasons unknown, the Em gets lost. The

sender will time out and try to re-transmit the Header of that Data block, for which he

will receive a Nak. If the sender's successfully transmitted sequence number is two

less than that of the expected sequence number in the Nak block the sender can

safely assume that the Data block had reached successfully. Such an understanding

is essential otherwise it can lead to redundant data.

Time-outs

It may happen that either side waits for an event that might not occur. In such cases, the

party concerned may have to time-out. Lets consider an example to explain this. It

may happen that the sender transmits a packet and receives no response from the

receiving end and he may then have to time-out. For such reasons each party is

required to time the events. lime-outs could be to made occur for one of the following

reasons.

•
•

receiver waits for a complete packet
sender waits for an Ack/Nak

It is essential that time-outs are tuned properly. Consider that the receiver is reading

a packet and due to noise in the link only a section of the· packet reaches him and he

waits for the remaining packet. While at the same time the sender will wait for an

Ack/Nak. If the sender times-out first, he will re-transmit the packet and the receiver

might take it to be the remnants of the packet on which he was waiting. Hence it is

essential that the receiver times-out first and then the sender. Proper time-out can

help in synchronization and restart a surceased activity. But a word of caution,

time-outs are highly environment dependent. The party at the receiver end should

always wait for further activity after time-outs rather than sending a Nak, since the

sender will retry anyway, on time-out.

11·

The SOAP Protocol 2. The SOAP Library

Error Conditions

The entire responsibility of checking whether the packet was transmitted successfully lies

with the receiving end. The receiver can signal an error condition to the sender, who

will then re-transmit the packet. The error conditions can be treated in two ways. Firstly,

the receiver can signal an error condition through a Nak block with the appropriate

error code. Secondly, the receiver on detecting a communication error goes into a

wait state. The sender then times-out and re-transmits the packet. The different types

of communication errors that could arise are listed below .

•
•
•

sequence error
checksum error
no <STX> at start of Data block

• parity error
• framing error
•
•
•
•
•

overrun error
illegal destination identity
invalid state error
no buffer at receiver end
multiple errors

If communication error like 'overrun error' occur very frequently, then it might require

to lower the Baud rate. The 'invalid state error' means that both the parties were in

incompatible states, for example, one party was in SEND state and received a Data

or Header block.

Till now 'we have considered that the Header and Data block to be as separate units.

But after re-thinking and re-analyzing we realized that it would be better for our application

if they can be clubbed-up into one packet. See Figure 2.2(b) for the data format. The reason

for this is that our Data blocks are manageably small (SOAP packets can accommodate 128

bytes of data) [cf. section 2.2] and we can avoid a lot of overheads by combining them with

the Header block. After every Header is transmitted, it has to be validated and also

Acked/Naked. Validation would require computing check sum and then comparing them. A

similar procedure has to be followed with the Data block. Since the Data block is small and

Header block is already small a re-transmission of the clubbed packet will not increase the

effective transaction time. But if the Data blocks are big it is advisable to keep Header and

Data blocks as separate units. The algorithm related to the actual protocol that has been

12

The SOAP Protocol 2. The SOAP Library

implemented is given in Figure 2.3 in pseudo code. The reader will notice that there isn't

much of a change in the protocol by clubbing up the Header and Data block. In fact, all the

things we said before hold good here too. The actual implementation may vary a little from

the above algorithm, but the basic theme remains the same. The next section deals with

precisely this aspect.

procedure sender;
begin

reset retry_ count;
retry: retry_count: retry_count + 1;

end;

if (retry_count > max_retry_count) then
return ERROR;

send the clubbed data packet;
while (not ACK!NAK) do

nothing; t drop noise and wait tor ACK!NAK *)
case (controLbyte)
begin
TIME-OUT:

goto retry;
NAK:

case (nak_error_code)
begin
SEQUENCE_ ERROR:

If (transmit_sequence_number + 1 = nak_sequence_number) then
begin

advance transmit_sequence_number;
return SUCCESS;

end t fi *)
else
begin

reset receipt_sequence_number;
reset transmit_sequence_number;
goto retry;

end; t esle "')
OTHERS:

goto retry;
end; t esac "')

ACK:
If (transmit_ sequence_ number= ack_sequence_number) then
begin

increment transmit_sequence_number;
return SUCCESS;

end t ti *)
else

goto retry;
end; t esac *)

13

Design Consideration

procedure receiver;
begin

reset retry_count;
retry: retry_count: retry_ count+ 1;

end;

if (retry_count > max_retry_count) then
return FAILURE;

while (not SOH) do
nothing; t drop noise and wait for SOH *)

read Header of the clubbed packet;
get data_ length from the packet;
read data_length number of bytes;
If (hardware_ error) then
begin

send Nak block with proper error_code;
goto retry;

end; t fi *)
If (time_ out) then

goto retry;
validate checksum;
if (checksum_ error) then
begin

send NAK with proper error_code;
goto retry;

end; t fi *)
get the sequence_ number in packet;
If (sequence_number = 0) then
begin

reset receipt_sequence_number;
reset transmit_sequence_number;

end; t fi ·;
If (sequence_number = receipt_sequence_number) then
begin

send Ack block to indicate SUCCESS;
advance receipt_sequence_number;
return SUCCESS;

end t fi ·;
else

send Nak block with SEQUENCE_ERROR;

Figure 2.3

2.2 Design Consideration.

2. The SOAP Library

Since our application required data flow from the lOP-end to the PC-end only, we

decided not to develop the request facility at the lOP-end. For the same reason no request

14

Design Consideration 2. The SOAP Library

handler is supported at the PC-end. This was because such an implementation will increase

the code and more STATE related checks [cf. section 2.3] will have to be done. This could

slow down the whole process of transaction. Because we require this library in a real time

environment, we could not afford it. But while implementing it we have taken enough care to

enable easy enhancement of the implemented protocol, to provide request from lOP end

also.

There is another aspect of the protocol that we have not implemented yet, i.e., source

and destination, since both are fixed at present. This aspect needs to be provided when

multiple senders and receivers are supported. The reason for this is precisely the same as

above. And also that there is no concept of source and destination at the PC-end. But this

can be implemented with ease at the lOP-end (cf. Section 5.1]. The actual structure used by

the protocol for transmitting data packets is given below:

typedef struct {
unsigned char
unsigned char
unsigned char
char

} Packet;

cntt_byte;
seq_num;
data_ size;
info [MAX_DATA_LENGTH };

The first three fields of the structure stand for control byte, sequence number, and

data length respectively. The reader may wonder where the other data attributes and the

command request attributes are defined. These are maintained in a structure within the

packet which protocol transmits. This structure is called Creqres [cf. Appendix H], acronym

for Command REQuest and RESponse. Note that this data structure is just like any other

data for the lower layer of the protocol. This data structure is interpreted by the middle layer.

Also note that there are onfy two layers of the protocol at the lOP-end .. The top layer does

not exist as there is no user interface at this end. This structure is given below:

typedef struct {
unsigned char
unsigned char
unsigned char
unsigned char
long

} Creqres;

msg_length;
msg_type;
command;
seq_num;
status;

This structure plus the actual data is placed in the array defined in the structure Packet.

15

Design Consideration 2. The SOAP Library

The data length in the two structures represents two different lengths. In the former structure

it represents the total length, while in the latter it represents the length of the actual data.

Similarly, the sequence numbers in the above structures carry different meaning. The

sequence number in the structure Packet represents the successfully transmitte~ sequence

number. But the sequence number in the structure Creqres is used when the data packets

exceed the maximum length supported by the protocol and they are required to be transmitted

in quantums. Creqres is the structure with which the receiver can identify whether the packet

has a request or a response by looking at the field 'msg_type'. The field 'command' gives

the identity of the request. The field 'status' in Creqres is used only while responding to a

request. This gives the status of the response, i.e., it gives the type of the error that had

occurred, if any, else will give success. Note that these errors are different from the ones that

have been mentioned in section 2.1. They would represent wrong request, such as, bad file

name etc. This structure is solely used by the middle layer of the protocol. Different types of

request commands are supported by the SOAP protocol and they have been defined in the

header file soapint.h (not all of the commands have been implemented). Finally, a checksum

will follow. Except the control byte all the other bytes in the Packet structure are used in

computing the checksum.

There is a severe overhead in the implementation that could not be avoided. The PC

supports an Intel processor that stores the MSB first and LSB as the last byte. While the lOP

machine which supports Motorola 68010 does just the opposite way. It requires that all the

information that are not 'chars', (one byte) be swapped while transmitting to the either of the

end. Such work is completely handled at the PC-end and the lOP-end is transparent to this.

For this reason we have tried keeping only chars in the SOAP transaction structures. But the

user is required to take care of this while he transmits or receives packets. This overhead is

simply unavoidable.

In the Nak and Ack block structures we have put some null bytes (don't care bytes).

It can be attributed to the fact that at the lOP-end four bytes are allocated even if the structure

is of three bytes. Whereas, at the PC-end the number of bytes to be allocated is precisely

equal to the size of the structure. Hence to maintain compatibility we have inserted don't care

bytes. Note that both the Ack and Nak block are of same size. They have been given below:

l6

Design Consideration

typedef struct {
unsigned char
unsigned char
unsigned char
char

} Nak;

typedef struct {
unsigned char
unsigned char
char
char

} Ack;

cntl_byte;
seq_num;
code;
null; t NOT USED •)

cntl_byte;
seq_num;
null; t NOT USED •)
filler; t NOT USED •)

2. The SOAP Library

The user can select any Baud rate he wants, but the default Baud rate is 9600. The

other settings are o~e stop bit and 8 bits data. The reason for keeping 8 bits data is to enable

transmission of non-ASCII data. Since the data is of 8 bits we have kept no-parity.

The lOP-end basically does disc related 1/0s. Still we have eschewed using buffered

call, e.g., fread. It is so because further 'freads' may not get the data that have actually got

modified in the file. For similar reasons we cannot perform anticipatory data fetches. These

are some of the bindings imposed by real time systems.

The reader may also note that we have kept the maximum length of the data that can

be transferred as 128 bytes. Not that data beyond this cannot be transmitted but the Soap

Library routines will split the data in quantums of 128 bytes for transmission. This restriction

can be elaborated by the fact that the lOP-end server is basically an application layer over

the UNIX driver and hence packets more than the buffer size of the driver can get corrupted,

in fact, can get over-written. But as far as the transfer from the lOP-end to the PC-end is

concerned this restriction can be lifted because the PC-end maintains its own buffer for

transmission and reception of data.

Extreme care has to be taken while transmitting the data type 'int'. This is because at

the PC-end 'int' is of two bytes and at the lOP-end it is of four bytes. Either the user should

transmit 'long' instead of 'int' or he should interpret them appropriately after transmission.

The protocol is transparent to such transfers. The data is only interpreted as stream of bytes

17

The PC End 2. The SOAP Library

as far as the protocol is concerned.

2.3 The PC End

The lower level protocol at the PC-end is interrupt driven. Two interrupts have been

developed to handle the incoming and outgoing packets. The reasons for such an

implementation is well explained by the following lines. "When events occur unpredictably

(or 'asynchronously' in computer jargon), there are two ways to detect them. First, the

program can check periodically to ascertain if an event has occurred. If so, program acts on

it in the appropriate manner, then resumes program execution. This method, known as

polling, wastes the time of both the processor and the programmer. In the second method,

the event itself notifies the program that it has occurred and the program performs the

required service when it sees fit. This is the interrupt method" .1

"Even though the ROM BIOS, standard on all the MS-DOS systems, and MS-DOS

itself include some support for programming the RS- 232C ports (for example, interrupt

number 14h) this support, ... , is not adequate for high speed communications".21n fact, these

interrupts fail to work properly even at 1200 Baud rate, i.e., overrun may occur. Since both

MS-DOS and ROM BIOS provide no useful facility for serial communication, we developed

our own interrupt handlers to' handle the serial communication from COM1 and COM2 (note

COM3 and COM4 can't be made interrupt driven) by directly handling the 8250 Universal

Asynchronous Receiver Transmitter (UART) and the 8259 Peripheral Interrupt Controller

(PIC). The reader is referred to Appendix C and Appendix D for notes on UART and PIC

respectively.

Both the interrupts maintain separate ring buffers on which they operate. The

interrupts have been actually written in 'C' as functions. These functions are called from

routines written in assembly which perform the interrupt handler entry and exit operations.

There exists three buffers each for both, receive and transmit, separately. They

1. [5] p.314.
2. [1] p.453.

18

The/OPEnd 2. The SOAP Library

correspond to the three layers of the SOAP. The buffer corresponding to the top layer is the

buffer into which data will be finally placed or picked up for transmission. The buffers

corresponding to the lower layer are the ring buffers which the interrupt handlers use. The

buffers corresponding to the middle layer are intermediate buffers. When the data is copied

from the ring buffer to the buffers corresponding to the middle layer, or vice versa, the

interrupts are temporarily disabled so that the ring buffers don't get modified while copying

is taking place. The need for copying from the ring buffer to the· middle layer buffer is that the

read pointer to the ring buffers could get modified and moreover the bytes of the packet may

not be contiguous in the ring buffer (since no buffer can be physically circular).

There is another feature with the SOAP protocol that has not been discussed in section

2.2. The synchronization between the sender and receiver is also achieved by STATE

checks. There exists three types of states: STATE_ SEND, STATE_RECV, and STATE_IDLE.

From the STATE_IDLE it can switch overto either of the other two state and only Data packets

will be accepted in this state. In STATE_SEND all Data packets are ignored while in

STATE_RECV all Ack/Nak are ignored. Appropriate messages are also sent so that

synchronization takes place.

If the ring buffer overflows the Data packets get ignored while the previous packet~

are ignored in case of valid Ack/Naks. Also note that both the Data packets and the control
. .

pack~ts are placed in the ring buffer. The advantage of doing so is that automatic sequencing

is maintained and furthermore it guarantees that packets received from lOP-end are

according to the request put forward.

2.4 The lOP End

This part of the protocol has been written as an application layer over the UNIX driver.

The idea of implementing this part as an application layer was that the lOP-end required only

to serve the requests generating from the PC-end. Hence we have put minimum effort and

at the same time have tried to develop a good request handler. This part of the protocol only

waits for the request commands from the PC-end and issues no request to the PC- end. The

process here is designed such that it will start polling the specified terminal port. The PC's

COM port_ can be directly attached to this terminal port to enable the two machines to

19

The/OPEnd 2. The SOAP Library

communicate.

Here we have developed two processes to achieve the task in hand. The two

processes are called 'pcserver' and 'pcreader'. The pcserver 'forks' the pcreader when it is

initiated and they then use a 'pipe' already established by 'pcserver' for inter-process

communication. Intact both these processes are 'exec-ed' by another process called 'main'.

Main first 'forks' and 'execs' pcreader and then 'execs' pcserver. It has been implemented in

this fashion because in _UNIX the 'exec-ed' process is overlayed on the process 'exec-ing' it.

Hence for obvious reasons we wanted the 'exec-ing' process to be small in size. The job of

the pcreader is to poll the terminal port to receive the packets coming from the PC-end and

validate them before sending them to the pcser-ier through the 'pip~· established. The

pcserver picks the packets from the 'pipe' servers the request if it is a request command.

After having sent the requested packet it waits in an infinite loop on the pipe for Ack/Naks. It

is the job of the pcreader to Ack/Naks all the Data packets that come in from the PC-end.

The pcserver sets a 'signal' to catch the death of the child (pcreader) and whenever

he gets this 'signal' he commits suicide, i.e., he exits. The transmission sequence number is

maintained by the pcserver process and while the receipt sequence number is maintained

by pcreader. The re-sequencing requests are handled in the following manner. Whenever

the PC-end requests for a re-sequencing the pcreader resets his receipt sequence number

and also signals the pcserver to reset his transmission sequence number.

For the request commands the pcserver calls a routine that identifies the request and

serves it. We may also note here that the GIM would require information from two types of

file. One being the UNIX stream files and the other being C-ISAM files [cf. Appendix 8]. The

UNIX stream files and the C-ISAM files are dealt separately. For the UNIX stream file it keeps

the last five files opened for which the request came. While in the case of the C-ISAM file it

keeps only the last three files opened. Such an implementation would help in promptly serving

the PC requests. Figure 2.4 through Figure 2.15 give the implementation of this side of the

protocol in pseudo code. All the UNIX system calls have been put in"""- for example, close

call is represented as 'close'. The reader is referred to Appendix F, or [26]-[29] for details on

this system calls.

20

The lOP End

program main; (main routine*)
begin

set 'signal' to ignore SIGINT;
open_ device(); t Figure 2.5 *)
init_device(); (*Figure 2.6 *)
create pipe through 'pipe' system call;

'fork' and 'execlp' READER_ PROCESS and
pass pipe_ write_ file_ descriptor as
command line argument;

'close· pipe_write_file_descriptor;
'execlp' the SERVER_ PROCESS and pass the

child_process_identity as command line
argument;

Figure 2.4

procedure open_ device; (*open the terminal device *)
begin

'open' terminal device;
connect the the device_file_descriptor to stdout;

end;

Figure 2.5

procedure init..device; (*initialize the terminal settings *)
begin

call'ioctl' to get present terminal settings;
save this settings;
make changes for the required terminal settings

in the above obtained information;
call'ioctl' with this new information to change

terminal settings;
end;

Figure 2.6

program reader;(* READER_PROCESS *)
begin

validate the pipe_write_file_descriptor;
call 'plock' to lock into memory;
call 'nice· to increase priority;
for (forever) do
begin

read one character from port;
case (above_character)
begin
SOH:

21

2. The SOAP Library

~ s ... ~~o-t·,.,....
G € 1, a ·o G: ~ 2.\ ·,; ·o G

V?;2.

?u.

The/OPEnd

end;
end.

ACK:
NAK:

read port for remaining packet;
call process_pkt() ("' Figure 2. 7 ·)

to validate the packet;
If (valid _packet) then

place it in the pipe;
continue;

read port for the remaining block;
place it in the pipe;

Figure 2.7

procedure process_pkt; t validate the packet and respond •)
begin

compute check sum;
If (computed_ check_ sum<> packet_ check_ sum) then
begin

end;

send Nak with CHECK_ SUM_ ERROR;
return FAILURE;

2. /The SOAP Library

If (packet_sequence_number <> receipt_sequence_number) then
begin

end;

If (packet_ sequence_ number<> 0) then
begin

end;

send Nak with SEOUENCE_ERROR;
·return FAILURE;

reset receipt_ sequence_ number; t request for reset*)
flush the pipe of all bytes;
call 'kill' to signal parent to reset transmit_sequence_number;

end;
sendAck;
increment receipt_ sequence_ number;
return SUCCESS;

Figure 2.9

program server; t SERVER_PROCESS *)
begin

set 'signal' to catch death_ot_child; t i.e. READER_PROCESS *)
on catching this signal call mourn_chlds_death(); t Figure 2.11 *)
process_messages(}; t Figure 2.12 *)

22

The lOP End

end.

procedure mourn_chlds_death;
begin

print message;
· 'exit';

end;

procedure process_messages;
begin

if ('setjmp' returns 0) then
reset_tx_seq(); (*Figure 2.13 *)
for (forever) do
begin

Figure 2.10

Figure 2.11

read from pipe sizeof(Ack I Nak block) bytes;
If (control_ byte= SOH) then

end;
end;

begin

end;

read from pipe the remaining bytes;
cmd_interpret(); (*Figure 2.14 ")
continue;

read pipe for one byte;

Figure 2.12

procedure reset_tx_seq; (" reset transmit_sequence_number *)
begin

set 'signal' to catch 'kill' signal from child _process;
reset 'alarm';
reset transmit_sequence_number;
'longjmp';

end;

Figure 2.13

procedure cmd_interpret; t serve the request command ")
begin

identify the request;
call the appropriate function to get required

information;
(" the function below has been logically placed here ")
("in fact it is called by the function called above ! ")

23

2. The SOAP Library

The/OPEnd

snd_data(); t Figure 2.15 *)
end;

Figure 2.14

procedure snd_data; (*transmit the data packet *)
begin

form the packet with proper header
and check sum;
flush the pipe from unwanted bytes;
repeat

write the data packet to the port;

set 'signal' to catch time_out alarm;
set 'alarm' to TIME_ OUT seconds;
reset time_out_flag;
for (forever) do
begin
If (time_out_flag =TRUE)

break;
If (read pipe fails) then
begin

end;

if (failure due to 'signal') then
continue;

fatal;

case (control_ byte)
begin
SOH:

read the remaining packet;
continue; t don't bother about above packet*)

ACK:

2. The SOAP Library

If (ack_sequence_number = transmit_sequence_number) then
begin

reset 'alarm';
increment transma_sequence_number;
return SUCCESS;

end;
continue;

NAK:
reset 'alarm';
If (INVALID_STATE_ERROR) then

return FAILURE;
If (SEQUENCE_ ERROR) then
begin

(* lost Em syndrome *)
If (transmit_sequence_number + 1 = nak_sequence_number) then
begin

increment transmit_sequence_number;

24

SOAP Library routines 2. The SOAP Library

end;
end;

end;

return SUCCESS;
end;
continue;

until (retry_count > maximum_ retry_ count);
reset 'alarm';
return FAILURE;
end;

Figure 2.15

2.5 SOAP Library routines

This section of the chapter explains the routines available with the SOAP Library. Only

some of the major routines have been listed in the figures 2.16 through 2.20 in pseudo code

to give an an overall view of the library. In what follows, we have taken one of thRSOAP's

standard routine, i.e. soap_fetch(), to explain how all the three layers of the protocol combine

to achieve data transfers. The other SOAP Library routines have been implemented in similar

fashion. The status of the transmit and receipt ring buffers are kept in the following data

structures:

Data structure to save the received characters by reading the COMM port.
"'I
typedef struct Rxbuf {

short
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned short
unsigned short
unsigned char
short
unsigned char

} Rxbuf;

/*

count;!"' Number of characters available "'!
p_avail; !"'Number of packets available *I
p_sts; i Flag to indicate that last recv packet is to be ignored •;
p_typ; !"'Type of the pkt: ACK,NAK or DATA"'!
"'wptr; !"' Pointer to the next free location *I
"'rptr; !"'Pointer to location from where next character must be read. "'!
"'p_beg; !"'Pointer to the beginning of the current packet being received ·;
p_len; !"'Length of the current packet "'!
p_size; !"'Expected size of the data packet "'!
p_csum; !"' Ckecksum of the packet"'!
rx_seq_no; !"'Sequence number of the next MSG •;
buffer[MA)(_DPKT_ SIZE "'4];

Data structure to save characters to be outputted to the COMM port.
·;

25

SOAP Library routines

typedef struct Txbuf {
short
short

count;;· Number of characters available •;
tx_seq_no; ;·transmit sequence number ·;
·wptr; i Pointer to the next free location •;

2. The SOAP Library

unsigned char
unsigned char
i

*rptr; i Pointer to location from where next character must be read. ·;

Buffer to save the characters to be written into the port.
·;
unsigned char

} Txbuf;
buffer{ sizeof(Packet) • 2 + sizeof(Ack)];

The following data structure is maintained to keep information about the COM ports.

Note that we have separate global variables for both the COM ports.

typedef struct Ctlport {
void (far • isr)(); i ISR routine •;
short
unsigned char
Rxbuf
Txbuf

port_ base; i Base address of the port •;
state; i State of communication •;
rx; i receipt ring buffer information ·;
tx; ;·transmit ring buffer information •;

} Ctlport;

procedure soap_fetch(filepath, offset, nbytes, buffer);
begin

..

end;

fill Creqres structure in request_buffer;
soap_send(active_port, request_buffer, message_length); (* Figure 2. 17 ·;
It (soap_ send() fails) then

return FAILURE;
tor (forever) do
begin

end;

soap_recv(active_port, response_ buffer, TIME~OUT); t Figure 2.18 ·;
It (key_board_hit) then

return FAILURE;
If (soap_recv(} fails) then

return FAILURE;
If (Creqres sequence_number not proper) then

return FAILURE;
It (any other error) then

return FAILURE;
copy data from response_buffer to user buffer;
It (all required bytes read) then

return SUCCESS;

Figure 2.16

26

SOAP Library routines

procedure soap_ send(port_id, data_ buffer, data_ size);
begin

copy data_ buffer to locaL buffer and form Packet;
note current time;
for (forever) do
begin

set state to STATE_ SEND;
flush receipt_ring_buffer;

2. The SOAP Library

_write_port(port_id, locaLbuffer, packet_size); t Figure 2. 19 *)
If (_write_port(} fails) then

end;
end;

begin

end;

set state to STATE_ IDLE;
return FAILURE;

for (forever) do
begin

end;

If (TIME_ OUT) then
begin

end;

If (retry_count > 0) then
begin

end;

decrement retry _count;
break;

set state to STATE_IDLE;
return FAILURE;

_read_port(port_id, packet); t Figure 2.20 *)
If (_read _port(} fails) then

continue;
case (controL byte)
begin
ACK:

If (packet_sequence_number = transmit_sequence_number) then
begin

end;
SOH:

increment transmit_sequence_number;
return SUCCESS;

continue;
NAK:

decrement retry_count;
If (retry_count 0) then

return FAILURE;
end;
break;

27

SOAP Library routines

Figure 2.17

procedure soap_recv(port_id, buffer, TIME_ OUT);
begin

note current time;
repeat

_read _port(port_id, locaLbuffer); t Figure 2.20 ·;
If (_read _port() fails) then

continue;
If (controL byte = SOH) then
begin

end;

copy local_ buffer to buffer;
return SUCCESS;

until (TIME_ OUT);
end;

Figure 2.18

procedure _write _port(port_id, buffer, packet_size);
begin

end;

If (no space in transmit_ ring_ buffer) then
return FAILURE;

disable interrupts;
copy buffer to transmit_ ring_ buffer;
update transmit_ring_buffer write _pointer;
If (no characters available in transmit_ ring_ buffer) then

enable transmit_interrupt;
update number of characters available in transmit_ ring_ buffer;
enable interrupts;
return SUCCESS;

Figure 2.19

procedure _read _port(port_id, packet);
begin

If (no packets available) then
return FAILURE;

save current receipt_ring_buffer read _pointer;
copy data from receipt_ring_buffer to packet;
disable interrupts;
If (receipt_ring_buffer read _pointer not changed) then
begin

update receipt_ring_buffer read _pointer;
enable interrupts;
return SUCCESS;

28

2. The SOAP Library

•

SOAP Library routines

end;
enable interrupts;

end;

2. The SOAP Library

Figure 2.20

29

Chapter3

The CGRAPHIC Library

T his chapter explains the CGRAPHIC Library routines, . their algorithm and

implementation. It might be useful to go through Appendix E before reading this chapter.

This Appendix explains about the EGA card. The basic idea of developing the graphic library

was the need to have specialized routines serving our specific requirements. Our

requirements were to have routines that had various styles and types for filling regions, strong

string manipulating functions, Cursor control functions, a character set in a 8 x 8 matrix, to

store and restore graphic screens, etc. Since all of these routines were required to be fast,

as they would be used in a real time environment, it required to handle the EGA directly

instead of using the MS-DOS interrupts (for the video, int 1 Oh) as they are very slow. "On an

PC/AT, the EGA BIOS will put 2.65 dots on the display in 1 millisecond (2.65 dots/ms)".1 And

whereas one can gain speed of over 200 percent above the MS-DOS interrupts. So we

thought of developing a complete library having even the standard available routines. This

approach would make available a complete library for other application programmers. We

have built all the routines as fast as they could be made to be. This was achieved by directly

handling the EGA card. The library is tailored to IBM EGA controlling a high resolution

monitor. But these routines are fully indepe.ndent of the operating system hence could be

1. [1] p.365

30

Library structure 3. The CGRAPHIC Library

ported onto some other environment without significant changes. In fact, they can be ported

onto systems having a different hardware. This is because, all the hardware related functions

have been used as MACROs hence it would require only to change these MACROs without

having to do major changes in the_ actual implementation. The library routines are available

with ·c· interface only, i.e., they can be called directly from any ·c· program.

3.1 Library structure

The functions available with the CGRAPHIC Library can be classified into two

categories: lower level routines and macro routines. The lower level routines are the basic

building blocks of the library while the macro routines are standalone, i.e., they are complete

in themselves and independent of each other. Hence macro routines can be called in any

sequence. However, they sometimes lead to redundant operations. The lower level routines

are to be used carefully in a definite order. But they will eliminate the redundant operations

and thereby speeding up the application. As mentioned earlier the lower level routines start

with an 'underscore' and directly manipulate the EGA registers and access the EGA display

memory.

The application programmer can enhance on the existing library by using these lower

level routines and in turn can maintain reasonable speed of his application program. To

explain this feature consider the following simple example. Suppose the user wants to draw

a hollow cube (not supported by the library) he has to use the following routines.

{

}

boxshe/1 (cq_-ords. of 1st rectangle, color);
boxshe/1 (co-ords. of 2nd rectangle, color);
line (co-ords. of 1st edge, color);
line (co-ords. of 2nd edge, color);
line (co-ords. of 3rd edge, color);
line (co-ords. of 4th edge, color);

Instead, he can use some of the lower level and core routines to achieve this. Note

that the color is being

{
_initega();
_setcolor(color);
_boxshe/1 (co-ords. of 1st rectangle);

31

Library structure

}

_boxshefl (co-ords. of 2nd rectangle);
_line (co-ords. of 1st edge);
_line (co-ords. of 2nd edge);
_line (co-ords. of 3rd edge) ;
_line (co-ords. of 4th edge);
_resetega();

3. The CGRAPHIC Library

passed to the library routines six times in the former program segment. Moreover, the library

will set and reset the EGA, and select and drop the color with each call. The latter program

segment demonstrates how this redundant operations can be avoided. But it should be noted

that no CGRAPHIC macro routines or MS-DOS calls involving the EGA be called between

calling the core routines _initega() and _resetega(). Now the user can save this cube drawing

function in the library and its speed will be comparable to other routines in the library.

There is another feature with this library. The CGRAPHIC Library comes along with

another library DGRAPHIC. The two libraries contain the same routines but the difference

with them is that the DGRAPHIC Library routines make checks for valid parameters and

other required checks. So DGRAPHIC Library can be used while program development. The

user can switch over to the CGRAPHIC Library when the application program is to be made

operational. This aspect of the library has been discussed in greater detail in the last section

of this chapter. The macro routines always return (0) for success and (-1) for failure (most

often parameter error). The parameter validation is however optional and once an application

has been debugged, it may be skipped. The lower level and core routines are void (does not

return anything) and never does any parameter validation.

The CGRAPHIC Library normally supports graphic mode 16 of the IBM EGA (High

resolution: 640 x 350) but it can be configured to the grap,hic mode 14 of the IBM EGA

(Medium resolution: 640 x 200) with are-compilation of the library routines. The CGRAPHIC

Library supports device co-ordinates (i.e., physical co-ordinates, one unit of length

. representing one pixel - picture element). Moreover, the horizontal direction (left to right) is

treated as positive X-axis and the vertical direction (top to bottom) as positive Y- axis, with

the origin of the co-ordinate system at the top-leftmost pixel.

Since the library is available with 'C' interface the user will be required to include some

Header files while using the library routines. The following Header files are supplied to the

32

Core Routines 3. The CGRAPHIC Library

user (the other Header files in the Appendix Hare internal to the library).

<graph.h> This Header file declares all the CGRAPHIC functions with their

parameters. It also defines all the parameter mnemonics.

<screen.h>

<screen14.h>

<screen16.h> These files define the screen size attributes in IBM EGA graphic mode

14 and 16 respectively.

<debug.h> This Header file is required only when the user wishes to write his own

error handling routines. Also refer to last section of this chapter for more

details.

3.2 Core Routines

This section explains some of the core routines that allow to configure the IBM EGA

so that the CGRAPHIC lower level routines can be called. They directly access the EGA

registers to do their part of the job. These core routines are used through out the library.

Though they are the basic routines, they still don't remain to be independent. Before any of

these routines are called the EGA has to be set to High Resolution graphic mode 16 or the

Medium Resolution graphic mode 14 [cf. section 3. 7]. The user is also required to take care

of the order in which he calls these routines. The routines are explained below. Their usage

and a brief note on them is given. All of the functions listed in this section access the graphic

controller register of the IBM EGA.

Function: _initega- initialize the EGA

Synopsis: #include <graph.h>

void _initega();

Notes: This function initializes the EGA so that the lower level routines of the

CGRAPHIC might work. It should be called prior to calling any lower level or

core routine. It actually initializes the EGA to the CGRAPHIC settings.

Function: _resetega()- reset EGA

Synopsis: # include <graph.h>

33

Geometric Routines 3. The CGRAPHIC Library

Notes:
void _resetega();

This function resets an initialized EGA so that the settings used by CGRAPHIC

Library routines may not clash with MS-DOS functions. It is to be called after

calling a set of lower level and core routines.

Function: _setcolor- set a color and a mix

Synopsis: #include <graph.h>

Notes:

void _setcolor (color, mix);

int color;

int mix;

This function sets a specified color and mix option for the subsequent lower

level routines (where applicable). It assumes that the EGA has been already

initialized. The JBM EGA allows 16 color out of the 64 colors. The mix operation

means the operation required with this color against the existing background

color. There are four kinds of mix operations- Replace, Xor, Or, and And. See

Appendix E for details. The mnemonic for color and mix are defined in the

header file <graph.h>.

Function: _setwriteop - set write operation.

Synopsis: #include <graph.h>

·Notes:

void _setwriteop(writeop);

int writeop;

The IBM EGA supports three kinds of writing operation on the EGA display

memory. The default write operation both for MS-DOS and CGRAPHIC

functions is (0). The write operation (1) is used for filling and write operation

(2) is for copying one area of the EGA display memory onto another area. Look

up [1], [15], and [20] for details and also Appendix E.

3.3 Geometric Routines

This section explains some of the geometric functions available with CGRAPHIC

Library. We have taken utmost care to keep this routines as fast as possible. Most of the

routines listed in this section use one property of the IBM EGA quiet frequently - each byte

in the EGA display memory represent eight consecutive horizontal pixels on the screen. The

,34

Geometric Routines 3. The CGRAPHIC Library

is required look up Appendix E for the configuration of the EGA display memory and also [1],

[15], and [20]. All the higher level routines listed in this section have corresponding lower

level routine that directly access the graphic controller register and the display memory of

the IBM EGA. The higher level routines initialize the EGA, sets color .and mix, and do some

other routine job. The lower routines assume that the EGA has been initialized, and color

and mix has been set., The higher level routines also do debugging jobs, which is however

optional. The actual implementation of the algorithm corresponding to a higher level routine

is basically carried out by the corresponding lower level routine. The idea of implementing

the library in this fashion was to make available the lower level routines to the user to enable

him to enhance the library to serve his requirements. Some of the CGRAPHIC routines are

listed below. They describe the usage and the implementation. We have tried to club up the

notes related to a group routines after their usage have been specified.

Function: point and _point- plot a point

Synopsis: #include <graph.h>

int point (x, y, color, mix);

void _point (x, y); int x, y;

int color;

int mix;

Function: verfine and _verfine -draw a vertical line

Synopsis: # include <graph.h>

int verline (x, y1, y2, color, mix);

void _verfine (x, y1, y2);

int x;

int y1, y2;

int color;

int mix;

Function: horfine and _horfine- draw a horizontal line

Synopsis: #include <graph.h>

int. horfine (y, x1, x2, color, mix);

void _horfine (y, x1, x2);

35

Geometric Routines 3. The CGRAPHIC Library

Notes:

int y;

int x1, x2;

int color;

int mix;

The function point plots a point at the co-ordinate (x, y). In the functions

verline() and horline() tt'1e first parameter represents the distance from the

Y-axis and X-axis respectively. The next two parameter represent the length of

the line.

Function: line and _line - draw a line of any slope

Synopsis: #include <graph.h>

int line (x1, y1, x2, y2, color, mix);

void _line (x1, y1, x2, y2);

int x1, y1;

int x2, y2;

int color;

int mix;

Function: sline and _sline- draw a stylish line

Synopsis: #include <graph.h>

Notes:

int sline(x1, y1, x2, y2, pts, blk, color, mix);

void _sline (x1, y1, x2, y2, pts, blk);

int eline(x1, y1, x2, y2, mask, color, mix);

void _eline(x1, y1, x2, y2, mask);

int x1, y1;

int x2, y2;

int pts, blk;

unsigned long mask;

int color;

int mix;

The function line() uses the Bersenham's Algorithm to draw a line from (x1, y1)

to (x2, y2). Refer to [16] and [30]. The function sline() draws a broken line joining

the points (x1, y1) and (x2, y2). The parameters pts and blk represent the

number of points to be light together and the number of consecutive blanks for

36

Geometric Routines 3. The CGRAPHIC Library

the broken line. This function also uses the Bersenham's Algorithm. Both the

function given above can draw line of any slope. The function eline() is again

a line drawi.ng function. But this work on a mask given for the line style. That

is, the mask Oxaaaa will produce a dotted line.

Function: boxshell and boxshell - shell of a box

Synopsis: # include <graph.h>

Notes:

int boxshell (x1, y1, x2, y2, color, mix) ;

void _boxshell (x1, y1, x2, y2);

int x1, y1;

int x2, y2;

int color;

int mix;

This function draws shell of a box (rectangle). The parameters (x1, y1) and (x2,

y2) represent the diagonally opposite co-ordinates of the box. The function

takes help of the functions _verline() and _horline().

Function: _band and _multiband- paint a vertical band

Synopsis: #include <graph.h>

Notes:

void _band (xoff, mask, sy, ly);

void _multiband(xoff, nmasks, pmasks, sy, ly);

int xoff;

int nmasks;

unsigned char mask, *pmasks;

int sy, ly;

These are highly specialized routines. The function _band() draws a band of

eight pixels (corresponding to a single byte in the EGA display memory) in width

and with top and bottom given by sy and ly respectively. The mask represents

the bit mask to be used to draw the band. The parameter xoff gives the distance

of the band in bytes (remember eight consecutive horizontal pixels represent

one byte in EGA display memory) from theY-axis. The function _multiband()

is also similar to _band(), it operates on a array of bit masks by using the same

bit masks after every nmasks lines in the band. The parameters nmasks and

pmasks represent the number of masks and the pointer to the array of masks ·

37

Geometric Routines

respectively.

Function: boxfill and _boxfill -filling a box

Synopsis: # include <graph.h>

int boxfill (x1, y1, x2, y2, color, mix);

void _boxfill (x1, y1, x2, y2);

int x1, y1;

int x2, y2;

int color;

int mix;

Function: connect- connect a sequence of points

Synopsis: int connect (lmask, npts, ppts, color, mix);

void _connect (lmask, npts, ppts);

unsigned long lmask;

int npts;

int *ppts;

int color;

int mix;

3. The CGRAPH/C Library

Notes: This routine connects a sequence of 'npts' points by straight lines of the style

given by the line mask parameter lmask. This routine can be used to draw

polygons etc.

Function: polyfill -.fill a polygon

Synopsis: int polyfill (npts, ppts, color, mix);

int npts;

Notes:

int *ppts;

int color;

int mix;

This function fills a box by the specified color and mix. Here the user is given

more options then just filling the box with specified color and mix. This function

supports different types of filling a box. The type of filling required can be

chosen by ORing the mnemonic (See dithering options in header file

<graph.h>) with the mix option. Such dithering options have been. made

38

String Manipulation Routines 3. The CGRAPHIC Library

available by using _multiband(). The function polyfill() fills any bounded polygon

described by the 'npts' points. This uses the Edge-List algorithm (cf. [30]] to fill

such regions. All the dithering and hatching schemes available with boxfill are

also available here.

3.4 String Manipulation Routines

Some of the string manipulating routines are listed here. These routines work on two

character sets. One is CGRAPHIC character set and the other is the standard MS-DOS

character set. The CGRAPHIC character set uses a dot matrix character font of dimension

8 x 8 (including separators at bottom and right edges). The MS-DOS character can be placed

on one of the 80 x 25 (both in graphic mode 16 and 14) matrix on the screen and they are

always placed on a black background. Unlike the MS-DOS characters the CGRAPHIC

characters can be placed any where on the screen, i.e., they need not be placed at any

special boundary. All ASCII character are supported and some special character are also

there. Note that this character font is fixed and can't be expanded or contracted. The routines

that manipulate the C~RAPHIC character set are prefixed 'print', while those manipulating

MS-DOS character set are prefixed 'write'. Here too, some of the routines have a

corresponding lower level routine; Some of the string manipulating routines are listed below.

Their usage and a brief description as to how these routines work is given.

Function: print and _print - print a CGRAPHIC character

Synopsis: # include <graph.h>

Notes:

int printchar (x, y, color, mix, ch);

void _printchar (x, y, ch);

int x, y;

int color;

int mix;

char ch;

This function will print the CGRAPHIC character ch with its top-left corner at

the position (x, y) by the specified color and mix, Note that there is no restriction ·

on the position of the character.

Function: printcol and _printcol- print in a column

39

String Manipulation Routines

Synopsis: #include <graph.h>

int printcol (x, y, color, mix, string);

void _printcol (x, y, string);

int x, y;

int color;

int mix;

char *string;

Function: printrow and _printrow- print in a row

Synopsis: #include <graph.h>

int print row (x, y, color, mix, string) ;

void _printrow (x, y, string);

int x, y;

int color;

int mix;

char *string;

3. The CGRAPHIC Library

Notes: These functions print a CGRAPHIC character string pointed to by the

parameter string with the top-left corner of the first character placed at the

co-ordinate (x, y) by the specified color and mix. The functions printcol() and

printrow() print the given string in a column and row respectively. Note that the

string should be null terminated.

Function: pcolfmt- print in a column (formatted)

Synopsis: #include <graph.h>

int pcolfmt(x, y, color, string, style, fcolor);

int x, y;

int color;

char *string;

int style;

int fcolor;

Function: prowfmt- print in a row (formatted)

Synopsis: # include <graph.h>

int prowfmt{x, y, color, string, style, fcolor);

40

String Manipulation Routines 3. The CGRAPHIC Library

Notes:

int x, y;

int color;

char *string;

int style;

· int fcolor;

These functions pcolfmt() and prowfmt() prints a CGRAPHIC character string

pointed to by the parameter string in the specified color in column and row

respectively. The co- ordinates x andy represent the center of the column and

row in the functions pcolfmt() and prowfmt() respectively. There are several

styles supported by the CGRAPHIC. These mnemonic are defined in the

header file <graph.h>. Some of the style are top justify, bottom justify, and

center justify at y for the function pcolfmt(). Similarly, left justify, right justify, and

center justify at x for the function prowfmt(). The parameter fcolor represents

the color of the the box enclosing the string. This parameter is don't care if

framing by a box is not opted for. Also note that the string should be null

terminated.

Function: writechar- write a MS-DOS character
I •

Synops1s: #include <graph.h>

Notes:

int writechar (x, y, color, mix, ch); int x, y;

int color;

int mix;

charch;

This function print a MS-DOS character of the given color and mix. Note that,

x andy are truncated to the near13st allowed character position.

Function: writerow- write in a row

Synopsis: #include <graph.h>

int writerow (x, y, color, rl]ix, string);

int x, y;

int color;

int mix;

char *string;

41

Cursor Control Routines 3. The CGRAPHIC Library

Function: writecol- write in a column

Synopsis: #include <graph.h>

Notes:

int writecol (x, y, color, mix, string);

int x, y;

int color;

int mix;

char *string;

These functions write row{) writecol() prints a string pointed to by the parameter

string in a row and column respectively of the specified color and mix. Note

that, x and y are truncated to nearest allowed character position and they

represent the co-ordinates of the first character in the string. The string should

be null terminated.

Function: getstr- get a string from keyboard

Synopsis: #include <graph.h>
'

Notes:

int getstr(x, y, prompt, color, buffer, nchar);

int x, y;

char *prompt;

int color;

char *buffer;

int nchar;

This function prints the prompt string and reads a string with echo and with

limited editing facility. The prompt and the echo string are displayed in a

horizontal row starting at (x, y). The string is terminated by a Carriage Return

. on the keyboard. Then the string is available in the user buffer pointed to by

the parameter buffer. DEL key can be used the character typed in.

3.5 Cursor Control Routines

The CGRAPHIC Library supports ·different types of cursors. This section explains

about the routines that control the cursors. Presently the CGRAPHIC supports five types of

cursors. They have been listed in the header file <graph.h>. At any given time the user can

have any five cursors (with repetition) on the screen and can move any of the cursors by

using the routines listed below. They give the usage and a brief description as to how they

42

Cursor Control Routines

work.

Function: cursset- set a cursor

Synopsis: #include <graph.h>

int cursset(cursnum, x, y, style, color);

int cursnum;

int x, y;

int style;

int color;

3. The CGRAPHIC Library

Notes: This function set a cursor of the given style and color. It is made to appear at

the location.(x, y). The parametercursnum represents the identity of the cursor

that the user would like have.

Function: cursmove- move cursor

Synopsis: #include <graph.h>

Notes:

int cursmove (cursnum, x, y, mode);

int cursmove;

int x, y;

int mode;

This function allows the user to move the cursor identified by cursnum from its

present location to the specified location (x, y). The parameter mode gives the

mode of movement of the cursor that the user would like to have.

Function: cursreset- reset a cursor

Synopsis: #include <graph.h>

int cursreset (cursnum);

int cursnum;

Notes: This function resets a set cursor identified by cursnum. The cursor is removed

from the screen.

· Function: _cursprint- print a cursor

Synopsis: # include <graph.h>

void _cursprint (cursnum, x, y);

43

Mapping Routines 3. The CGRAPHIC Library

Notes:

int cursnum;

int x, y;

The user can use this function to print a cursor _identified by cursnum at the

location (x, y). Note that the cursor is always XORed with the background.

3.6 Mapping Routines

CGRAPHIC also supports mapping windows. Similar to the cursors the user can select

a several window where ever it pleases him. t\,nd then can call the routines listed below to

work on any particular window. It provides any i.nteger type of world co-ordinates.
'
'
'
'

Function: map- defines a mapping window

Synopsis: int map (map_num, map);

Notes:

int map_num;

Mapping *map;
'

This routine maps a window to the ~evice co-ordinates. This helps in setting

the world co-ordinates to any view-port. Further interaction with this mapping

window can be done by referring the~.same mapping numoer 'map_num'. The

structure Map is defined in the headet file <graph.h> . . .
I

Function: calibrate- calibrate the mapping windqw

Synopsis: int calibrate (map_num, p_cal);

Notes:

int map_num;

Calibration *p_cal;

This routine is to be called only when the map() routine given above has already

been called for this map window identity. This routine basically takes care of

the. options involved with the mapping window such as, box around, logical

axis, calibration, grid, back ground color etc. The structure Calibration is given

in the header file <graph.h>.

Function: plot- plots logical points and connect

Synopsis: int plot (map_num, ln_type, pt_type, ppts, color, mix);

int map_num;

unsigned long ln_type;

44

Miscellaneous Routines 3. The CGRAPHIC Library

Notes:

int pt_type;

int *ppts;

'"int color;

int mix;

This function maps the set of points pointed by the parameter ppts to the

mapping window identified by the parameter map_num. It will also connect this

point by the line style given in the parameter ln_type. The parameter pt_type

represents the type of point to be put where the logical point gets mapped onto

the screen.

Function: bar- draw bar chart

Synopsis: int bar (map_num, bar);

.Not_es:

int map_num;

Bar *bar; ' ' l
This is bar chart drawing routine. It can draw several kind of bar charts such

. '
as horizontal bars, vertical bars, range,: divided bar etc. The chart will be drawn

in the mapping window identified by t~e parameter map_num. The structure

Bar and other bar chart related options:are given in the header file <graph.h>.
' ' '

3. 7 Miscellaneous Routines
' .

This section lists some of the general routine.s supported the CGRAPHIC Library.

Some of the routines listed here access the CRT contr~ller register and the graphic controller
'

register of the IBM EGA.

Function: setgmode- set graphic mode

Synopsis: # include <graph.h>

Notes:

int setgmode (mode);

int mode;

This function sets a graphic I text mode with the IBM EGA. Note that only one

graphic mode supported with CGRAPHIC Library. The user is required to set

graphic mode 16/14 of tlie IBM EGA before using any of the routines of the

CGRAPHIC Library.

45

Miscellaneous Routines 3. The CGRAPH/C Library

Function: spread - spread a color in a window

Synopsis: #include <graph.h>

Notes:

int spread(x1, y1, x2, y2, color, mix, style) ; ·

int x1, y1;

• int x2, y2;

int color;

int mix;

int style;

This function spreads a color in the window specified by the diagonally opposite

co-ordinates by the style specified. The filling styles are defined in the header

file <graph.h>. For example, it has a option to fill a given region by putting dots

randomly by using a linear congruential generator achieving a full cycle. See

[22].

Function: setpage - set a page for drawing

Synopsis: #include <graph.h>

Notes:

int setpage(pageno);

int pageno;

This function sets a drawing page in the display buffer of the IBM EGA. All

subsequent CGRAPHIC functions will draw in that page. This page may be

different from the one currently being displayed. The number of pages available

d~pends on the memory available with the EGA card. The page number are

enumerated (0) onwards. By default, page (0) is set for drawing.

Function: dispage- display a page

Synopsis: # include <graph.h> ·

int dispage (pageno);

int pageno;

Notes: This function displays the specified page from the display memory of the IBM

EGA. This page may be different from the one set for drawing.

Function: save- save a window in a file

Synopsis: #include <graph.h>

int save { page no, x1, y1, x2, y2, path name) ;

46

Debugging Aids 3. The CGRAPHIC Library

Notes:·

int pageno;

int x1, y1;

int x2, y2;

char *pathname;

The user can save any window specified by the diagonally opposite co-ordinate

(x1, y1) and (x2, y2) in the page given by page no. The window will be stored

as a file by the name pointed to by the pathname.

Function: restore- restore a window from a file

Synopsis: . # include <graph.h>

Notes:

int restore (pageno, mix, pathname);

int pageno;

int mix;

char *pathname;

This function read the file given by the parameter pathname for the digitized

information about a window to restore it to the specified page. The window

being restored can be made to overlap with the existing background with a

specified mix option. The file to be restored should be created through the

function save().

3.8 Debugging Aids

To achieve speed, the routines in the CGRAPHIC normally does not validate the

parameters passed by the application programs. With wrong parameters, e.g. co-ordinates

beyond the screen limits etc., makes the library behave unpredictably and these situation

are sometimes difficult to debug. To help the user in debugging, another library DGRAPHIC

exists along with CGRAPHIC. The DGRAPHIC Library contains identical routines of

CGRAPHIC but with parameter validations enabled for macro functions. The user can use

DGRAPHIC Library while developing application programs and switch over to CGRAPHIC

Library when it is to be made operational. With DGRAPHIC, the user can validate a program

in either of the two following ways.

By default, when the macro function of DGRAPHIC detects an error (usually a

parameter error), it print an error message at the bottom-most line of the screen indicating-

47

Debugging Aids 3. The CGRAPHIC Library

the erring routine, the invalid parameter and the its value and then halts. The user is now

given two options - either to skip the erring function, or to abort the program. This printing

can be disabled and enabled using the functions setgperror() and resetgperror() respectively.

The function gerror can be used to print an error message.

Secondly, the user may alternatively choose to do the error processing himself. For

this purpose two global variables 'gfunction' and 'gerrorno' (both of integer type) are made

available to the user. This are defined by DGRAPHIC to contain a code for the last called

function and error code respectively. When the macro function returns (-1), indicating an

error, the user may look into these variables. The codes used with the variables 'gfunction'

and 'gerrorno' are defined in the header file <debug.h>.

48
•

Chapter4

The GIM

T he application layer over the two libraries is called the G IM (Graphic Interface Module).

This layer shows the status and performance of the MAX. Since the MAX consists of

several modules and sub-modules, GIM shows the status of these modules and sub-modules

in several graphic pages. The graphic display of modules and sub-modules are proportionate

to their actual sizes. The statuses of the units in the modules and sub-modules are shown

in different colors.

The Graphic Interface Module (GIM) uses a Enhanced Color Display (ECD) high

resolution color monitor as·a display device. It is connected to the C-OOT DSS through two

Asynchronous Communication Interface Adapter (ACIA) links terminating on the two lOPs.

See Figure 4.1. GIM collects data about the DSS through these links from either of the lOPs

(whoever is 'In-Service-Active') and depicts them pictorially on the video monitor.

The G IM follows a forest structure. See Figure 4.2. That is, the status and performance

of the MAX has been distributed in several trees. Each node of a tree shows the status and

performance. By default, each of the sibling pages are shown in a round robin loop. The user

can go to any of the sibling page, or expand on a child page, or go to the parent page. The

user can also jump to the root of any of the trees in the forest through a menu page. The

implementation is highly modular. This has been achieved by using appropriate data

structures. Moreover, each set of different page forming routines are similar in structure. Such

a modular approach also helped us in changing configuration of several pages, inserting new

49

IOPO

PC/AT

IOP1

COM2 VDU

r----1 EGA driven

GDM Hardware Configuration

Figure 4.1

Bt..W
status

menu page

from any page to root page

S,_TUS TREE

system
status

• •

card level
status

PERI=ORMANCE TREE

BM31
status

card level
status

BMO
perfm.

Gl M Software Architecture

Figure 4.2

system
perfm.

.• . . BM31
perfm.

Software Architecture 4. The G/M

pages, adding a sub-tree, and moreover creation of a whole tree in the forest. Not only the

enhancement of GIM will be easy but maintenance will also be a simpler task.

The user is provided with several options in all the pages. He can store a page in a

file or view an already stored file. He can lock onto a page, but the page will periodically (this

period is tunable, presently it is tuned to 20 seconds and if the page is not locked it will display

the next sibling page) get updated. There are many other such facilities provided to the user.

4.1 Hardware Requirements

The hardware requirements for the GIM package are minimal. The GIM can run on

PC/XT also though the speed might slow down ~ little in this case. But any of the system

must have a 20 MB hard disk. The other hardware requirements are an EGA card, a ECD

high resolution monitor, and two ACIA ports. The EGA card and high resolution monitor are

compulsory because the main objective of the package was to show the status of the system

graphically, and such a package can give better performance with these supporting

hardwares. The ACIA is required as the communication between the PC and lOP is required

to transfer data from the lOP to show the statuses. Two ACIAs are required to maintain a

fault tolerant system so that the package works unhindered.

4.2 Software Architecture

There are similar set of routines for all the pages. Some pages use the same set of

routines. For example, the pages pertaining to all the Base Modules (BM) are drawn by the

same set of routines but they use a global variable to know which BM is to be drawn. Each

set is made up of the following routines: _getfiles(), _frame(), _putvalues(), _select() and
~+

_next(). They have been appropriately prefixed in accordance with the page they form. The

main job of the _getfile() routines is to fetch the data pertaining to that particular page and

place it in a buffer. The routines _frame() basically work on structures that totally describe

the page settings. These structures have been built such that it is enough to modify them for

changing the page setting without changing the _frame() routines. For example, the BM

status page routines uses the following data structures for showing this page.An enthusiastic

50

Software Architecture

reader may look up Appendix H for details.

typedef struct {
char •string; i module name *I
int xt, x2; i left and right x co-ordinates *I
int y1, y2; I* top and bottom y co-ordinates "!
int ex, cy; i cursor position for this object •;
char status; i module status (in color value) •;
char page_ no; i page_no to expand this object "!
char alm_id; i index into the aim info table "!
char alm_status; i status of the last alarm *I

} Module; r descriptor of an module "I

typedef struct {
Stream •stream; !"file to give status of this module •;

4. The GIM

int boff; i offset for first module of this type in buffer associated with the stream */
int nmodules; i no. of modules of this type "!
Module *module; i pointer to first module of this type "!

} Modules; i descriptor to modules of same type "I

The routines _putvalues() pick the status related data from the buffer, filled by the

corresponding _getfile() routine, and display them using appropriate colors. These routines

also access the corresponding structure mentioned above. Whenever the user wants to

expand on some modules being shown in that particular page the corresponding _select()

routine is invoked. This routine allows the user to select only those modules that are active

(since status of an inactive module cannot be shown). Each of the pages have a unique

page-identity. The main routine works with the help of the routines mentioned above and

invokes a set of these routines depending on the page-identity. The main routine keeps track

of its where-abouts in the forest. The main routine uses the following data structure for this

purpose.

typedef struct {
char "name; i name of this display page "!
int bg_color; i background color"!
int bg_style; i style for filling color "!
int parent_page; i parent page no. "!
int (far" getinfo)(); i routine to get info. from iop •;
void (far • drawtrame)(); i routine to draw the frame "!
void (far • putvalues)(); ;• routine to put values in the frame ·;
int (far· select)(); i routine to select an object·;
int (far· nextobj)(); ;• routine to get the next object ·;

} PageFunc;

51

Software Architecture 4. The GIM

A good number of facility is provided to the user in the menu on each pag~. The options

available with the menu are listed below.

•
•
•
•
•
•
•
•

lock/unlock current page (toggle key)
goto menu page
goto parent page
dump current page
replay a dumped page
goto next sibling page
select an module for expansion
stop alarm beep ...,

The user can lock onto a page. By this the automatic transition to the sibling pages

stop, and only on the demand of the user the next page is shown, which again will be locked

until the user unlocks the page. Even the current date and time are shown upto minutes in

every page. The user can save pages in a file or restore already saved files .. He can jump to

the parent page or to the main menu page where roots of all the trees in the forest are defined.

And finally a quit option is also provided to quit gracefully from the package. Some of the

other features of the GIM are explained in the following sections.

The GIM implementation has been explained in pseudo code in Figure 4.3 through

Figure 4.13.

program main();
begin •

gim_setup(}; t Figure 4.4 ")
note current time;
while (forever) do
begin

shqw_page(); t Figure 4.5 ")
while (forever) do
begin

show current time on screen;
If (key board hit) then

If (analyze_kb()) then t Figure 4.6 ")
begin

end;

change_screen :=TRUE;
break;

If (TIME_ SLICE over) then
begin

If (screen not locked) then
begin

If (no parent to current page) then t root page ? ")
begin

52

Software Architecture

end;
end;

end;
break;

end;

set next page;
change_screen := TRUE;
break;

call parent page's _next(); t Figure 4. 7 ")
if (success) then

change_screen := TRUE;

end;
end.

Figure 4.3

· procedure gim_setup();
begin

end;

setgmode(16); (" CGRAPHIC Library")
dispage(1); (" CGRAPHIC Library")
soap_setup(); ("SOAP Library")
flush alarm buffer;
make gim screen partitions;
display GIM version number;

Figure 4.4

procedure show _page();
begin

error_flag := FALSE;
first_time := TRUE;
tor (forever) do
begin

check if alarms exist;
If (cannot communicate) then
begin

call next_page's _getinfo(); ("Figure 4.8 ")
If (_getinfo() succeeds) then

break;
end;
If (error_flag =FALSE and key board hit) then
begin

If (first_time =FALSE) then
return;

flash error message;
flush key board queue;
continue;

53

4. The GIM

Software Architecture

end;

end;

end;
flash error message; t cannot communicate *)
show communication failure help_menu;
repeat

if (key board hit)
begin then

end;

case (character)
begin
QUIT

exit GIM;
REPLAY:

replay(); t Figure 4. 11 *)
continue;

end;

until (TIME_ OUT);
If (DUPLEX mode) then
begin

end;

cancel alarms;
reset next_page;
first_time := TRUE;
soap_switch(); t SOAP Library*)

initialize active port; t SOAP Library *)
change_screen := TRUE;
error_ flag= TRUE;

if (change_screen = TRUE) then
begin

end;

call next_page's _frame(); t Figure 4.9 *)
change_screen := FALSE;
first_time := FALSE;

call next_page 's _putvalues(); t Figure 4. 10 *)
exist_page := next_page;

Figure 4.5

procedure analyze_kb();
begin

get character;
case (character)
begin
MENU:

menu(); t Figure 4. 12 *)
return SUCCESS;

LOCK:

54

4. The GIM

Software Architecture

toggle lock position;
return FAILURE; t does not mean failure ! *)

SELECT:
call exist_page's _select(); t Figure 2.13 *)
return value returned by _select();

NEXT: .

call exist_page parent's _next(); t Figure 4. 7 *)
return value returned by _next();

PARENT:

QUIT:

If (no parent to exist_page) then
begin

end;

flash error message;
return FAILURE;

next_page := parent_page;
return SUCCESS;

exit GIM;
DUMP:

get file name;
save();(* CGRAPHIC Library*)
return FAILURE; t does not mean failure!*)

CAN ALM:
cancel alarm beep;
return FAILURE; t does not mean failure!*)

DEFAULT:(* junk!*)

end;

flash error message;
return FAILURE;

end;

procedure _next();
begin

end;

set next page;
set module_number if required;
return SUCCESS;

procedure _getinfo();
begin

get lOP filename;

Figure 4.6

Figure 4.7

call appropriate SOAP Library routine to get information;
If (SOAP routine fails) then

return FAILURE;

55

4. The GIM

Software Architecture

end;

put information in buffer;
return SUCCESS;

procedure _frame();
begin

Figure 4.8

make fresh GIM screen partitions;
access next _page ·s data structure and

draw frames for all modules in this page;
end;

procedure _putvalues();
begin

Figure 4.9

access the information buffer and
color all modules to show status and performance;

end;

procedure replay();
begin

while (forever) do
begin

get file name;

Figure 4.10

restore(); t CGRAPHIC Library")
show replay_menu;

end;
end;

while (forever)
begin

end;

get character;
case (character)
begin
NEXT:

break;
QUIT:

return;
end;

Figure 4.11

56
/

4. The G/M

Software Architecture

procedure menu();
begin

draw menu_page;
display menu_page menu;
display all root page names;
while (forever) do
begin

high light currently selected item;
while (no key board hit) do

update time window;
get character;
case (character)
begin
NEXT:

high light next item;
continue;

SELECT:
set next_page to high lighted item;

QUIT:

end;·
end;

return;
REPLAY:

replay{);
return;

DEFAULT:(* junk ! ·;
flash error message;

end;

Figure 4.12

procedure _select();
begin

if (only one module in the exist_page) then
return FAILURE;

point cursor to first module in the exist_page; t CGRAPHIC Library ·;
show select_menu;
get character;
case (character)
begin
NEXT:

advance cursor to next module;
continue;

EXPAND:

remove cursor; t CGRAPHIC Library ·;
set next_page;
set module_number if required;
return SUCCESS;

57

4. The GIM

Duplex Mode

QUIT:

end;
end;

show menu;
remove cursor;
return FAILURE;

4.3 Alarm Display

4. The GIM

Figure 4.13

The GIM also shows the alarms that aries in the system. It can act effectively as an

alarm display panel of the total system. The alarms are kept in a C-ISAM (cf. Appendix B]

file in the lOP. It gets updated as soon as the alarms arise or get rectified. This information

is fetched only in the root page of the status tree, and if alarms exist it is shown by a flag at

' the top of the screen and also the user's attention is attracted by a beep. He can stop this

beep by a cancel option provided in the menu. At all other times it is only checked whether

the file has been modified since the last access, and if so the user is informed by changing

the color of the alarm flag and sounding a beep which is set again in such cases. The

implementation is so ~ince picking the alarm information frequently will slow down the

package.

4.4 Error Messages

The package flashes error. messages whenever such conditions arise. We have kept

a special error window to flash the error messages. These messages are self descriptive

and can help the user in properly handling the package. If the GIM is not able to communicate

with the lOPs it flashes an error message indicating the lOP to which it is not able to

communicate.

4.5 Duplex Mode

The GIM works in a duplex mode, i.e., it can communicate with both the lOPs (Master

and Slave) for fetching status and performance related data. The GIM will basically

communicate with one of the lOPs. But it will automatically switch over to the other lOP if the

COM port, for any reason, fails with the first lOP. This switching is done only if the GIM

58

Duplex Mode 4. The GIM

configuration is set to DUPLEX mode. By default the GIM runs in SIMPLEX mode. The GIM

h~s been developed for both Single Base Module (SBM) and Multi Base Module (MBM)

configuration [cf. Appendix B]. This has been achieved through the conditional compilation

available with 'C'.

59

Chapter 5

Conclusion

T his chapter takes a retrospective view of the total project. Here we discuss the possible

improvements and enhancements that could be made. This aspects have been

discussed in the sequence in which the chapters appear in this manuscript (with the exception

of the first chapter). We briefly describe as to how the enhancements could be made

especially in areas where they are immediately required. Moreover, this chapter also

discusses the portions of the package where implementation could be improved.

5.1 Protocol

The protocol explained in chapter 2 can be implemented to the fullest extent. That is,

developing a full fledged request facility at the lOP-end and a request handler at the PC-end.

This can be implemented by identifying whether it is a request or a response from the Creqres

structure [cf. section 2.2]. At both the ends appropriate modules can be developed to handle

the respective jobs. Even the 'source' and 'destination' concept in the protocol can be

implemented. At the lOP-end this would require that the pcreader identifies the response and

passes the packet to another module. This module should pass on the packet to the

appropriate process. This can be implemented through 'message queues' of UNIX. The

processes at the lOP-end can register their requests through the pcserver. The processes

that would like to communicate to the PC-end should enroll themselves with the lOP-end

interface, by which they can identify themselves, and further interaction can be done based

60

Graphics 5. Conclusion

on this identity. As far as the PC-end is concerned there is no concept of more than one

process running at a time [cf. section 5.3]. Hence it should suffice to build only a request

handler at this end. Note that this protocol then should not be used in the present status of

GIM. It could incur unnecessary overheads. But if further expansion of GIM requires such

facility, this might prove to be very useful [cf. section 5.3]. But such an extension can have

other users to whom this can prove to be highly beneficial. This configuration can then be

used for lOP to lOP communication also via the PC, or even directly, i.e., by-passing the PC.

Furthermore, even PC to PC communication can be established. This might require slight

changes in the implementation. For example, presently, the variables that are of the type int,

short, or long are swapped while transmitting to either end [ct. section 2.2]. This will not be

required in PC-PC communication. These implementations can prove to be very useful.

Other improvements that could be made in the implemented protocol includes trying

to reduce the copying of the data packet into buffers at various levels at the PC-end. Presently

the copying is done thrice. The reason for implementing it this way was to free the lower level

buffer as soon as possible. Because during this copying it a must that the interrupts are

disabled, otherwise the data packet being copied could get corrupted. Another reason being

that the middle layer routines will then have to take care when the packets are not contiguous

(note that no buffer is physically circular} and thereby reducing modularity. But avoiding this

extra copying properly can make the protocol more efficient.

5.2 Graphics

Though the graphic library is quite generalized, we feel there remains plenty of room

for enhancements. The present implementation supports only device co-ordinates. But

facility to set world and normalized co-ordinates could be one major enhancement. This

would remove the device dependency and also help the user in working in any co-ordinate

system he feels comfortable. This can be developed as a layer over the existing library

working with device co-ordinates. We can straight away transform the requirement from the

world or normalized co- ordinate level to the device co-ordinate level where the actual

implementation can take place.

At the existing level itself the user can be provided with many more functions such as

drawing graphs, drawing different kinds of statistical charts, three dimensional images,

61

Application Layer 5. Conclusion

rotation, translation etc. Another useful package can be developed with whom the user can

interactively draw his graphic figures. Furthermore, a useful add-on could be a graphic

plotter/printer driver that prints the files saved by the function save().

What ever routines the library supports are quite powerful as well as fast. But we

realize that the CGRAPHIC Library does not fully exploit the EGA facilities, for example,

character generation etc.

5.3 Application Layer

The basic structure of the whole application layer could be made better looking, this

may not actually add to the efficiency of the package. That is, we can keep all the information

regarding a page in a structure. We can then form a linked structure of the above structure

of the sibling pages. Each of these nodes should have a pointer to the child, as well as to its

parent. Such an implementation can bring the actual tree structure in the forest. But this

would require a complete re-structuring of the whole package.

Since the GIM shows the real time status of a system it is important that it is made as

fast as possible. Toward this end we have a suggestion. Though difficult to implement, we

can introduce multitasking. This will increase the speed of the package by a noticeable

degree. The multitasking facility is supported only in PC/AT. The interrupts for this is lnt 15h.

It only provides very primitive tools towards this end. To introduce multitasking a whole

scheduler might have to be developed. The following lines echo our thoughts. "In general,

MS-DOS does not support multitasking, although MS-DOS for the IBM PC AT computers

has provisions for simple rr1ultitasking. Multitasking is a very powerful technique for real time

system. It simplifies system design and makes it possible to design large, complex systems.

A real-time system is aimed at processing several independent events that occur at random

times. The event can be asynchronous and concurrent. This means that an event can occur

while one is already being processed. Multitasking can be used in such systems to simplify

62

Application Layer 5. Conclusion

software design" .1

But lastly we feel that there is al~ays enough room for improvements no matter what

the job be ...

1. (1] p.276.

63

(

Appendix A

Glossary

68010

A CIA

ACK

ASCII

AM

BIT

BYTE

BM

c

C-OOT

C-IS AM

coos

CGRAPHIC

-Serial number of a micro processor manufactured by Motorola Inc. of
U.S.A. It is a member of 68xxx series of micro processors.

- Asynchronous Communication Interface Adapter

- Acknowledgment

-. American Standard Code for Information Interchange.

-Administrative Module: A basic module of C-OOT digital switching
system.

-Binary Digit.

- A group of BITs (usually eight).

-Base Module: Primary growth unit of C-DOT Digital Switching System
and one of its four basic modules.

- A programming language having powerful capabilities for system
programming.

-Centre for development of Telematics: India's Telecom technology
Centre.

-A professional package for indexed sequential access file management
system.

-C-OOT's real time operating system: Base Processor with 68010 CPU
runs under COOS and provides uniform interface to rest of the modules.

-The graphics library developed for GIM

64

COM(port)

CPU

CM

CP

DSS

DTMF

EGA

ETX

EM

GIM

HDLC

110

IOCM

lOP

ISR

MAX

MBM

micro VAX

Ms-oos

A. Glossary

- Communication port

-Central Processing Unit

-Central Module: A basic module of C-OOT Digital Switching Syst_em.

-Call Processing: A number of complex functions are performed to
process a telephone call. Providing dial tones etc., searching of
available path for making physical connections between the called and
calling party etc., all of these fall under call processing functions.

-Digital Switching System: Generally used for telephone/telex
exchanges designed using digital technology.

- Dual Tone Multi Frequency : A coding in which two tones on different
frequencies are used for distinguishing digits dialed by a telephone
user.

- Enhanced Graphic Adapter

-End of Text

- End of Medium

- Graphic Interface Module

- High Level Data Link Controller: Used in C-OOT Digital Switching
System for communication link control between various modules.

- lnpuVOutput

- Input Output Configuration Manager: A process which schedules audit
process.

- Input Output Processor: The front end computer system for C-OOT
Digital Switching System built around 68010 CPU and running under
UNIX. It supports a variety of peripherals such as VDU, printer, disk
derive, tape derive etc.

- Interrupt Service Routine

-Main Automatic Exchange

-Multi Base Module: A typical configuration of C-OOT Digital Switching
System in which upto 32 base modules are present. Such a
configuration is under going trials at Ulsoor, Bangalore, telephone
exchange.

-Micro VAX: a computer system developed by Digital Equipment
Corporation U.S.A.

- Operating System for the IBM PC and compatibles developed by
Microsoft, Inc., U.S.A.

65

NAK

oos

PIC

PC

pp

RS-232

SBM

SOAP

SOH

STX

UART

UNIX

VAX

VDU

A. Glossary

- Negative Acknowledge

-Out Of Service: Condition indicating that a unit is not working properly
and has been removed from service.

- Peripheral Interrupt Controller

- Personal Computer

- Peripheral Processing: Actual switching i.e. making the physical
connection between caller and called party, and other related functions
fall under this category.

- Standard serial hardware link

-Single Base Module: a configuration of C-OOT Digital Switching
System in which only one base module is present such a configuration
is under going trials in Delhi Cantt exchange.

- Simplest Of All Protocols. Communication protocol Library developed
for GIM.

- Start of Header

- Start of Text

- Universal Asynchronous Receiver Transmitter

- An operating system becoming more and more popular due to its
flexibility, simplicity, portability and adaptability.

-Virtual address extension: a brand name of computer system
developed by Digital Equipment Corp. U.S.A.

- Visual Display Unit: A gadget on which output from a computer is
displayed on a television like screen.

66

AppendixB

Notes on C-OOT DSS

C -DOT Digital Switching System (DSS) is highly modular in structure and hardware is

duplicated, for fault tolerance, at every possible level. One module of the two, is called

ACTIVE and the other STAND-BY. In the event of fault a smooth switch over is performed,

from active to standby. Software in addition to modularity has other features of layered and

distributed processing also. Different processors running under different environments

process global _data such as billing data, traffic data etc. This Appendix concentrates on

Hardware and software organization of C-OOT OSS.

B.l Hardware Architecture

C-OOT family of products has four basic hardware units.

• Base Module (BM)
• Central Module (CM)
• Administrative Module (AM)
• Input Output Processor (lOP)

A typical configuration of these units is shown in Figure A.1. Although lOP is a part of

AM it is discussed separately further details are provided in C-OOT OSS ARCHITECTURE

[6]-[8].

Base Module

BM is primary growth unit of C-OOT OSS. BMs may differ in the types and quantities

67

laMO
I l

Ctv1

Btv13:1.

AM

I
IOP . I

,_____ _____ j

DISK TAPE VDU PRINTER

Figure A.~ A Typical Conriguration

or C-OOT DSS

[.___~ T_u_o -----~l~---l ----i

i

r
sc~ su

--
Btv1S

BP

TIME

SWITCHr-----11 CMI l
I

BP BASE-PROCESSOR

MI: CM-INTERFAC'

CI: SERVICE cSa

ONTROL INTERFACE

c
s
c

Figure A.2 A Typical BM Configuration

Hardware Architecture B. Notes on C-OOT DSS

of interface equipment they contain. It performs the task of actual switching through various

interfaces, like Dual Tone Multi Frequency receivers (DTMF), etc. on subscriber side. BMs

are further modular in structure. A typical BM configuration is shown in Figure A.2. Base

Processor (BP) provides the overall control. It is a 16/32 Bit 6801 0 CPU running under C-OOT

REAL TIME OPERATING SYSTEM (COOS). In its memory, 68000 has a large database for

controlling its working. BM is connected to other links via high speed data links (HDLC). A

detailed description of BM can be seen in "C-OOT DSS HARDWARE ARCHITECTURE" (24].

Administrative Module

This module provides administrative support to DSS for administrative and

maintenance functions' such as support for maintaining billing records, traffic information.

The functions performed by AM include call proc~ssing functions, software recovery, overall

initialization. It also provides interfaces to mass memory and operator terminals via lOP. It

receives billing data from BMs on an hourly bases, and passes it to lOP.

Central Module

This provides the interconnection facility for BMs. It also has a message switch (MS)

which handles the communication between BM and AM, BM and CM and between BMs (inter

BM connection). Interconnections are·provided through high speed data links. Different types

of Links (depending upon speed and number of channels required) connect different

modules. The architecture of CM is very much close to BM. CM comes into the picture only

when three or more BMs are to be linked together. In the exchange with one/two BMs,

functions of CM are performed by the BM/one of -the BM. From lOP side both modules are

equivalent.

Input Output Processor

lOP is a full fledged 16/32 Bit computer system with 68010 CPU running UNIX. lOP

communicates with BM, via CM for various administrative and maintenance functions, and

also supports a variety of peripherals such as printer, disk, magnetic cartridge tape, VDU

etc. It can support a maximum of sixteen terminals. It acts as a front end processor for C-OOT

DSS. The main functions performed by lOP are:

•
•
•
•

Down loading software for DSS

Handling databases for traffic and billing data
Printing of billing and other reports

Providing man machine interface for various maintenance and administrative operations

68

BMO

BM

CM I ---------- I

';
BM31 J

\ AM

IOPO IOP1

/~
r . I IOPO l IOP1

·I

Figure A.3(a) Single Base Module Figure A.3(b) Multi Base Module

Configuration configuration

(DUPLEX IOPs) (DUPLEX IOPa)

Software Architecture Overview B. Notes on C-OOT DSS

• Fault detection and recovery
• System status display

The bus architecture is similar in characteristics to VME bus. lOP is also duplicated.

Each copy is connected to other through High level Data Link Controller (HDLC) link. Two

separate sets of 1/0 devices are attached to each lOP. 1/0 devices of each lOP are not

duplicated. Hence each lOP with its 1/0 devices forms a security block. These lOPs are not

configured as active/stand-by. Both lOPs are active at any given instant, one of them acting

as master. All slave lOP - AP me ssages are routed through master lOP. Backup devices,

like winchester are updated in both the lOPs; that is whenever an updation is performed on

its winchester the master sends a message to other copy of lOP to perform a similar updation

on its winchester.

Switching System Configuration

Using the above mentioned modules different types of switching systems can be

designed. These configurations may have one lOP (simplex), which does not provide fault

tolerance, or two lOPs (Duplex) which provides for fault tolerance.

The configuration which are of interest, with duplex lOPs are

Single .. Base Module (SBM)

In such a configuration only one BM is connected to lOP. No AM or CM is present in

such a configuration. The functions of CM are performed by BM. Figure A.3(a) shows a single

module configuration.

Multi Base Module (MBM)

In such a configuration more than one BM (up to 32) are connected via CM to AM and

lOP. Every BM is assigned a unique number (from 0 to 31) which acts as BM identifier. All

files corresponding to a given BM have BM number suffixed in their file name. BM number

is also required while sending a message through HDLC. Such a configuration is shown in

Figure A.3(b).

B.2 Software Architecture Overview

The software architecture in C-OOT DSS is distributed layered and highly modular in

nature. Every layer present higher level of abstraction to layer above it. The software is

69

BMO

CP CP- CALL PROCESSING
MTCE

AOMN MTCE- MAINTAINANCE

ADMN- ADMINISTRATIVE
OS CM

OS- OPERATING SYSTEM

PP- PERIPHERAL PROCESSING
---------·

Q
CP

MTCE AM

AOMN

I OS I

IOP

1-n
OS

DISK TAPE VDU

PRINTER

Figure A.4 Software Organization

/
/

/
/

/

"/

/
/

/

/
/

/
/

/

IOPO

Figure

BP

.A.
---r--~' ,----l

/ ·'\..'\.

\
' ' ' ' ' ' ' ' ' ./ '"" / . ' ' ' /

IOP:l.

....__ ______ _

-· -- -· IOP-IOP LINK

____ IOP-BP LINK

A 5 HDLC Links

Communi.cation

for

Software Architecture Overview B. ·Notes on C-OOT DSS

divided into a number of sub-systems. Figure A4 shows the software architecture. Each

sub-system consists of number of modules (called processes) and every module in turn a

number of functions. The main sub- systems are

- COOS -A real time operating system which provides uniform interface to application programs. !n
distributed architecture of C-OOT DSS, one of the important roles played by the COOS is to provide

inter process communication between process residing in the same or different processors, through

HDLC links. BM runs under COOS.

- Call processing sub-system - is responsible for executing ft:mctions which actually process a call,

e.g. call routing, call metering etc.

- Administrative sub-system - provides for management of exchange (billing, operator commands

etc.)

- Maintenance sub-system - provides functions for oninterrupted services to subscribers. It also

provides for close monitoring of the systems sanity, comprehensive resource and data auditing ·

facility which enables it to quickly detect faults and prevent their propagation.

-- Data base sub-system - manages the data bases globally. It uses a sequential indexed file

management system (C-ISAM). It hides the physical organization of data from application

programs.

- Peripheral processors sub-system - Actual telephony hardware (with 6502 CPU) is controlled by

the sub-system.

Inter Process Communication

Since different modules of different subsystems are functioning on different

processors (in order to integrate them) interprocess (or interprocessor) communication

becomes a vital aspect of software architecture. COOS provides a uniform interface to all

applications, so it becomes easy to communicate via COOS. Figure A.5 shows how

communication is performed between mate lOPs and between lOP and BP. (Here one point

should be made clear, in SBM configuration lOP is connected to BM but in MBM it is

connected to CM. Due to a likeness of CM and BM, for our purpose, we will not distinguish

between CM and BM). High level data Link Controller (HDLC) is used to control the

communication, and a comprehensive library of functions is provided for application

programs. Communications within lOP, however, are handled via different means provided

by UNIX; such as message queues, semaphores etc.

Every process has a UNIX message queue associated with it, by means of a unique

70

Software Architecture Overview B. Notes on C-OOT DSS

key, defined in C-OOT header files. All messages are to be received in this queue only. For

· sending messages the queue associated with destination process is used. HOLC also makes

use of these queues for sending messages across the lOPs. This integrates the process of

receiving a message from within the lOP and across the lOP.

File Management System

Although Unix offers only one kind of file, C-OOT DSS has two types of file systems.

As provided by UNIX it has a distinct feature, UNIX file is a byte stream without any control

character! Practically it is possible to store every character (from 0 to 255) in a UNIX file.

A main drawback in UNIX file is that it can not be truncated according to need. Only truncation

allowed is of, zero length. This makes, removing of a few bytes from a UNIX file a complicated

task. Different functions are provided by UNIX to manage this kind of file. The other file system

supported by C-OOT is C-ISAM files. Built over UNIX file system, this type of file offers

functions to store, retrieve and manipulate data in indexed sequential manner, and makes

management of Database an easy task. Every C-ISAM file can have multiple indices with

duplicate or unique key values. In C-OOT C-ISAM files are indexed on two four byte long

fields with unique key value. For managing C-ISAM files different functions are provided in

its library. However, there is no equivalent of I seek system call in C-ISAM file. To move around

in C-ISAM file is very inefficient. Appendix F provides a list of C-ISAM library calls used in

audit process. The information about record size, index fields, number of indices etc. is stored

in the file itself and can be extracted from there. A B+ tree is maintained for sequential access

of records in either increasing or decreasing order. It also provides for locking at record as

well as file level. The information about locks is stored in a different file.

Processes On lOP

A number of processes are running on lOP. At any given instant both lOPs are active.

The distinction between the lOPs is made on the basis of functions they perform. One of

them is known as master, as it performs major functions and also directs its mate on other

lOP (slave lOP) to perform the supporting functions. On both lOPs same executable ima,g~ .

of a process is kept. Every program is divided in two distinct parts. After finding the lOP · r

master/slave status, the program executes the required portion of program. As a number of

process present in lOP is large, some processes have been added to schedule other related

process to streamline the inter process communication, to ensure that mutually exclusive

71

Development Environment B. Notes on C-OOT DSS

functions are not executed simultaneously and to execute different functions according their

priority.(for example Input Output Configuration Manager (IOCM))

B.3 Development Environment

The development environment at C-OOT is highly systematic. A number of VAXs,

microVAXs (under VMS) and Motorola 68010 based systems (under UNIX) are used. These

systems are interconnected via Ethernet. Motorola systems (commonly known as lOPs)

provide an ideal environment, which is very close to target environment, for maintenance

and administrative sub-systems. However, actual validation of software is done in laboratory,

which has experimental DSS configurations, and on site at Delhi Gantt. and Ulsoor,

Bangalore telephone exchanges. C programming language is used.

C-OOT has its own data structures for various purposes, defined in various "C" header

files. Files and libraries are well organized and follow hierachial system provided by most

operating systems. An application programmer is required to include these header files,

depending upon configuration of DSS and different release. Further, files are placed in

different directories [9] depending upon various conditions such as which subsystem they

are meant for, whether a file is process related or data related etc.

72

AppendixC

Notes on Serial Communication

T he Serial port on MS-DOS systems is capable of supporting the RS-232C standards

for asynchronous communication. This Appendix explains on how to access the IBM

PC hardware for serial communication. Serial, in contrast to parallel communication breaks

a data item into its constituent parts, then transmits each part separately. On the receiving

end, the parts reconstituted by reversing the process. Specifically, a 'parallel' byte is

disassembled into its individual bits, which are then transmitted serially over the data link. At

the receiver end the bits are once again assembled into byte. In fact, the 8250 Universal

Asynchronous Receiver Transmitter (UART) performs precisely this function, as we will see

later in this Appendix.

We explain some of the terms that have been used in the manuscript and as well they

will be used here. The designers of ASCII were careful to limit the code to 7 bits so that the

eighth bit could be employed for parity error checking after the 7 bits of a ASCII character

are transmitted, an eighth, or parity, bit is transmitted whose value depends on whether the

sum of the preceding seven bits was odd or even. Non-ASCII data, however, preserve the

information coded into the eight bit and is transmitted as 8 bits with no parity bit. When the

stream of bits is spewed onto the serial line, there is no accompanying signal to synchronize

the receiver and the transmitter and hence the term asynchronous. For this reason, to enable

the receiver to identify which bits constitute a byte, a logical 0 start bit is transmitted. Similarly,

after all the bits have been transmitted, a logical 1 stop bit is transmitted. The receiver relies

73

c. Notes on se;ia/ Communication ...
on these framing bits to identify valid bit groups (byte) for reassemble. The speed at which

bits are transmitted is called the Baud rate, i.e., the speed at which the communications line

reverses its electrical polarity. Hence from the above we can see that the number of

transmission bits for a byte is ten. The format of a single byte in asynchronous serial

communication is shown in [1], [3), [4) and [5).

The UART has seven registers. We will see how these register can be used to make

serial communication. The UART fetches bytes for transmission from the system's 8-bit

parallel data bus into a transmission holding register where they are shifted onto the serial

line at the current Baud rate. And conversely, the UART fetches the incoming bits, assembles

them into a byte, which is then moved into a buffer register. This buffer enables the UART to

begin assembly of the next incoming byte. This byte can be read from the buffer register, i.e.,

the UART will place the byte in the 8-bit data bus.

Clearly, the PC's processor can write bytes to the UART faster than the UART can •

disassemble and transmit them serially. Similarly, the processor can digest incoming bytes

much faster than the UART can assemble them. To prevent the garbling of data that would

result from overwhelming the transmitter or prematurely reading or re-reading the

non-existent received byte, the UART contains a status register two bits of which reflect the

readiness of its receiver and transmitter. By reading this register periodically, the process

can know about the arrival of a byte or when the previous outbound byte was serialized and
a.

if the UART is ready for another. Since all UART functions are controlled by simple IN and

OUT instruction, it should be convenient to write functions that enable to write and read the ..
ports.

Communications with the 8250 UART takes place through seven registers located at

processor's consecutive data port addresses. The PC supports serial cards known logically

as COM1-4. The base port address of the UART for each of these devices is maintained in

the ROM BIOS communications area beginning at 0:400-401 H. The address of the first

register of COM1 and COM2 are located at 0:400-401 Hand 0:402-403H respectively. The

other registers pertaining to the COM ports can be had by indexing from their respective

base address. The address of both transmitter and receiver are the same as the UART's

base address, while the status registe.r is at base address plus five (index of the status register

74

C. Notes on Serial Communication

is five). Similarly, address of other registers can be calculated.

Most of the serialization error are shown by the serial state register. Meaning that the

byte just received is not valid. Following are the bytes that represent different errors.

•
•

bit 1 Overrun error.
bit 2 Parity error .

• . bit 3 Framing error.
bit 4 Break . •

• bit 5 Byte being received.
• bit 6 Byte being transmitted.
• bit 7 Unused.

The other registers are Baud rate register, Data format register and RS-232 output

control register. The indices for these registers are 0, 1, 3, 4 respectively.

75

AppendixD

Notes on Interrupts

I nterrupts are the natural way to handle intermittent request for attention. Most of the

interrupts are required to identify itself to the microprocessor. It may identify itself explicitly

in the form of the address of the service routine, or indirectly, as a code that the processor

some how translates into the address of the service routine. Once .the processor has

discovered this address, it executes the code at the address, then resumes execution of the

process from where it left off. This Appendix will discuss the IBM PC's hardware interrupts.

The processor comes to knows about the identity of an interrupt indirectly in the form

of an interrupt identity, 0 through 255. This identity number acts as an index to an array whose

each element contain the address an interrupt service routine (ISR). This table occupies the

first Ox400 bytes of RAM-from 0000:0000 to 0000:03FF. Since each address is four bytes

long, the vector corresponding to an interrupt can be found by multiplying the interrupt identity

by four. And at this location we can find the address of the ISR. By resetting the interrupt flag

in the processor's flag register we can mask any hardware interrupt service request. Setting

this flag will allow the the processor to service the interrupts request.

D.l Types of interrupts

The PC supports three different types of interrupts. These are Software interrupts,

Hardware interrupts, and Predefined interrupts.

Software interrupts

76

Hardware Interrupts D. Notes on Interrupts

The software interrupts are generated by the processor itself by executing an INT

instruction. The software interrupts are not affected by the status of the interrupts flag.

Hardware interrupts

Hardware interrupts are generated by other physical device within the system. The

request for hardware interrupts arrive via a pin in the processor chip. Note that this interrupts

can be masked.

Predefined interrupts

The first five interrupts are usurped by the processor for internal use. For example,

he interrupts type 0 is for trapping division by zero, and interrupt type 2, known as

nonmaskable interrupts NMI, is used to bring the system to a halt in case of memory parity

error.

D.2 Hardware Interrupts

We, in this Appendix, will consider only the hardware interrupts. And the interrupts

related to serial communication falls under this category. The eight interrupts lines on the

PC's system bus are termed as IRQO to IRQ?. Only two of these interrupts are permanently

dedicated-the system timer is hardwired to IRQ 0 and the keyboard to IRQ 1. The remaining

IRQs are assigned arbitrarily by the Peripheral Interrupt Controller. These IRQ lines do not

lead directly to the processor, but to the Intel 8259 Peripheral Interrupts Controller (PIC),

which acts as a receptionist to the processor by controlling the interrupt traffic. When any of

the peripheral devices places its request on its assigned IRQ line, the PIC first examines its

. interrupts mask register to ascertain whether the system is entrusted in an interrupt from that

device. A TRUE bit (the appropriate bit) in the interrupt mask register of the PIC indicates

that the interrupt is masked, i.e., not active. On the other hand, if the appropriate bit in the

interrupt mask register is FALSE, the interrupt is not masked and the PIC signals the

processor that an interrupts has occurred. When the processor finishes its current instruction,

it checks the interrupt flag; if it is FALSE it ignores the PIC and if the interrupt flag bit is TRUE,

the processor signals an acknowledgment to the PIC, which inturn responds by placing on

the data bus the number of the IRQ l!ne that generated the interrupt request plus eight, which

in fact gives the interrupt identity. The eight hardware interrupt are-give.n below with their

77

Hardware Interrupts D. Notes on Interrupts

corresponding interrupts request line.

IRQO lnt 8 System timer
IR01 tnt 9 Keyboard
tR02 tnt A reserved
IR03 lnt B Asynchronous communication (COM1)
IRQ4 lnt C Asynchronous communication (COM2)
IRQS lnt D Fixed disk
IR06 lnt E Diskette
IRQ7 tnt F Printer

To process hardware interrupts correctly it is essential that we mask and unmask the

appropriate the bits in the controller's interrupts mask register (tMR). This read-write register

is located at the port address 21 H.

Interrupt priority is also maintained. As initialized by the ROM BIOS, the PIC is placed

in the fully nested priority mode. This means that lower-numbered interrupts are always

serviced before ones with higher numbers. It is required that the hardware interrupt handlers

inform the PIC when an interrupt service is complete. In this mode it is not necessary to

identify the interrupt type that has just completed, so this command is called a non-specific

end-of-interrupt (EO I) command. The EOI command sequence is

mov al, 20h
out 20h, al

Note that this should appear in all hardware interrupts and should be placed as close

as possible to the IRET instruction.

78

•

AppendixE

Notes on the IBM EGA

T he En[hanced Graphic Adapter (EGA) is rapidly becoming the most common graphic

card in the MS-DOS world.

There are four different graphic standards supported by the EGA..

- Color Graphic Adapter (CGA) compatible graphic mode.

- EGA graphic mode for 200-lines color monitors.

- EGA graphic mode for 350-lines color monitors.

- EGA graphic mode for use with monochrome (text) monitors.

The original EGA from the IBM comes with 64K of graphic display memory on the

card. This may be expanded on increments of 64K to 256K. The more the EGA memory,

greater the graphic capabilities. The EGA is designed to work with one of three differe~t

monitors:· the IBM Color Display, the IBM Enhanced Color Display (ECD), or the IBM

Monochrome Display.

In this appendix we will consider only ECD monitor. This monitor is compatible with

all the modes used with the Color Display monitor, and uses one more high resolution mode.

This high resolution mode 16, can be used only with the IBM ECD or its equivalents.

The EGA can display 16 colors from a 64-color palette when used with the ECD. The

16 colors are available only in mode 16 if there is more than 64K on the EGA. In high resolution

mode, EGA can maintain upto two pages of Graphic starting at segment OxAOOO. But again

79

Display Memory Organization E. Notes on the IBM EGA

this depends on the amount of memory installed on the card.

The information about the presence of EGA card, its memory and the type of the

monitor can be had from the encoded i11formation in the BIOS Data Area in the byte

Ox40:0x87. It is one of the several status bytes kept by the EGA BIOS for its internal use and

to provide information to the programs (note that EGA has a new BIOS that replaces the

original PC video functions and adds several new functions).

E. I Display Memory Organization

The EGA has two different display memory organizations for graphics. In modes 4

through 6, the EGA uses the same memory organization as the CGA. In those modes the

display memory segment starts at OxB800 and uses 80 bytes per scan line. The display

memory for modes 13 through 16 start at the segment OxAOOO and uses upto 64K of the

80x86 CPU address space. Each byte represent 8 pixel, with the most significant bit being

the leftmost. The scan lines are not separated like they are in the CGA modes, so the byte

offset of a pixel is easier to calculate. In mode 16, the EGA has a maximum resolution of 640

x 350, or 224,000 pixels. Since there are upto 16 color, each pixel must use 4 bits to specify

the color. Altogether, this represents a total memory usage of 1 09K.

The 80x86 CPU used in the PC can address only a segment of 64K. The EGA fits into

the 64K segment limit by dividing 128K of its 256K memory into four 32K bit planes. Each

bit plane corresponds to one bit of a pixel color. Imagine these four bit planes as being stacked

on top of each other at the same CPU address.

Reading or Writing 4 different bytes (one for each bit plane) at the CPU address

presents a problem. To overcome this problem, the EGA has four latch registers. The latch

registers temporarily hold one byte from each of the bit plane. The EGA logic fills each of the

four bit planes at the address last read by the CPU. When the CPU sends a byte to the

address last read, each of the four latch registers may be unchanged, modified, or entirely

replaced by the CPU data. The latch register contents are then written back to each of the

EGA's bit planes. When the latch registers are written back to the EGA's bit planes, they are

80

-
Set/Reset Register E. Notes on the IBM EGA

again "stacked" with one bit of each 4 bytes forming the 4-bit color for 8 pixel..

E.2 Bit Mask Register
/

It is important to note that the byte returned to the CPU after reading an address in

the EGA display memory has no use. That byte is read only to establish which pixels to work

with and to "prime" the latch registers, allowing the individual bytes of the bit plane to be

manipulated by the CPU data. Whether the latch register are modified, replaced, or

unchanged by the CPU depends on the setting of several EGA control registers. These

registers are accessed through one of five indexed VLSI chips on the EGA. These VLSI chips

are set by sending an index number corresponding to the function desired, followed by the

data for that function.

For example, the EGA has a bit mask register that will allow individual bits to the latch

register to be protected from change. Setting a bit to 0 in this register masks out the

corresponding bit in the latch register, and setting a bit to 1 allows that bit to be changed by

the CPU writes. This is programed by sending an index 8 (function number 8) to the port

Ox3CE, followed by the bit mask register to the port Ox3CF.

E.3 Map Mask Register

A second register that affects how the latch register contents are re-written is the map

mask register. If any of the four bits of the map mask register are zero, the corresponding bit

maps (bit planes) are protected from change. Sending a number between 0 and 15 to the

map mask register will allow the color corresponding to that number to be written to the EGA's

bit plane. However, note that the previous contents of the bit map should be cleared before

setting the map mask to mask for a new color; but after setting the bit mask, by writing a zero

to the byte containing the pixel to change. The map mask register is part of the EGA's

Sequencer Chip. The function number is 2 (index is 2) and this should be sent to the port

Ox3C4 and the map mask should be sent to the port Ox3C5.

E.4 Set/Reset Register

There is another register available with the EGA called the seUreset register .. The

81

EGA Color Palettes E. Notes on the IBM EGA

set/reset register will set a byte to OxFF in each EGA bit plane where a bit on in the set/reset

regsiter, and will reset a byte to 0 in each EGA bit plane where a bit is off. Therefore, the

previous contents of the latch register are replaced with the color number corresponding to

the value in the set/reset register. The map mask register has no effect on the set/reset

register, but the bit mask register is usable to protect adjacent pixels. To use the set/reset

register, one must first enable it with the enable set/reset register. The set/reset register and

the enable set/reset register are part of the EGA's graphic controller chip. The set/reset

register is accessed by first sending an index 0 to the port Ox3CE and then sending the

.tour-bit color code to the port Ox3CF. The enable set/reset register can be accessed by index

1 to the same port as above and also the data port remains the same.

E.5 EGA Write Modes

The EGA has three write modes: 0, 1, and 2. Changing the write mode changes the

way that EGA hardware reacts when the CPU sends a byte to the display buffer. Each write

mode is optimized for a different use. Write mode 0 is the general purpose write mode, write

mode is optimized for copying EGA memory regions, and write mode 2 is best used for color

fills. To access this function send index 5 to the port Ox3CE and the data to the port Ox3CF.

E.6 EGA Color Palettes

The 64-color palette has the same three basic color (red, green, blue) as the 16-color

palette, but there is no intensity bit. Instead, each color has 2 bits for individual color intensity,

giving three intensity levels for each color. The total 64-color palette may thus be represented

with 6 bits (3 color x 2 bits). The bits for the lower intensity of the three colors are the most

significant bits in the 6-bit value. The least significant 3 bits represent the higher-intensity

red, and blue. EGA palette registers are write only. When changing the palette through the

EGA BIOS function call will check for the existence of a 256-byte table called the parameter

save area when changing the palette register. BIOS will save the six bit color if the table

exists. If the BIOS is not called to change the palette then one must update the parameter

82

Data Rotate Register E. Notes on the IBM EGA

table himself.

E. 7 Data Rotate Register

The data rotate register allows one to select how the data sent by the CPU will be

combined with the EGA latch register. The options are to have the data be ANDed, ORed,

XORed, or unmodified with the bytes in the latch registers. Although the data rotate register

also has the ability to rotate the data coming from the CPU, in practice this is of little use.

The index for this function is 3. The ports for the function number and data remain the same

as above.

There are many more features available with the EGA. For details see [1], [15], and

[20).

83

AppendixF

System And Function Calls

This appendix explains about the system call .and function call used in the source code.

All the different types of call have been put under different headings. For further details

the reader is referred to [26]-[28] for UNIX system calls and function call. For the C-ISAM

function call the reader is referred to [1 0].

F. I UNIX System Calls

• int ere at (*filename, mode)

Greats a file or prepares to rewrite an already existing file by name pointed by

*filename. Returns filedescriptor or -1.

• int open (*filename, mode)

Opens a file pointed by filename with mode specifying read only, write only etc.

Returns file descriptor or -1.

• int close (fd)

Closes an open file described by filedescriptor. Returns 0 or -1.

• int read (fd, *buffer, nbytes)

Reads nbytes number of bytes in a buffer pointed by *buffer from a file described by

filedescriptor fd. Returns number of bytes actually read or -1.

• int write (fd, *buffer, nbytes)

Writes nbytes number of bytes from a buffer pointed by *buffer onto a file described

84

'C' Function Calls F. System And Function Calls

by filedescriptor fd. Returns number of bytes actually written or -1.

• int lseek (fd, nbytes, position}

Moves the file pointer of file described by fd by nbytes number of bytes from a position

specified by position. If position = 0 then start of file is taken, position= 1 then current position

of file is taken, position = 2 end of file is taken. nbytes can be negative or positive. Returns

position of file pointer from start of file ..

• int stat (*filename, *buffer)

This call fills the buffer pointed by *buffer with information about the file pointed by

*filename (such as file size, date of creation etc.). Returns 0 or -1.

F.2 'C' Function Calls

• char *getenv(*name)

This function finds the value associated with shell environment variable 'name'.

Returns pointer to value or NULL.

char *malloc(size)

Allocates a memory area for the calling process of size 'size'. Returns pointer to
)

memory area or NULL.

• void perror (*message)

Displays description of error encountered by calling process alongwith message

pointed by 'message'.

• int fprintf(•ptr, control, arg1, arg2, ... }

Prints arguments given in the list onto a file pointed by ptr according to a format

specified by control. Returns number of characters printed or -1.

• int printf (control, arg1, arg2, ... }

Same as fprintf. Only difference is that printing is performed on standard output file (

stdout).

• int scant (control, arg1, arg2, ... }

Scans the standard input file (stdin) and accepts the values for arguments according

to format as specified by control. Returns number of arguments successfully read. If input

terminates before any kind of conflict occurs then it returns EOF.

• char •strcpy (*s1, *s2 }

85

C-ISAM Function Calls F. System And Function Calls

Copies string pointed by s2 on string pointed by s1 stoping after null byte has been

copied. Returns pointer to s1.

• char *strcat (*s1, *s2) .

Concatenates string s2 with string s1. The re~ult is null terminated string. Returns

pointer to s1.

• int system (•command)

Issues a shell command pointed by 'command'. Returns -1 if it is unable to issue the

command. However if command is not a legal shell command, no error is reported.

F.3 C-ISAM Function Calls

• int isopen (•name, mode)

Opens a C-ISAM file in the mode specified by 'mode'. Returns file 9escriptor of the

file or -1.

• · int isclose (fd)

Closes an already open C-ISAM file. Returns file descriptor of closed file or -1.

• int isread (fd, key, *buffer, mode)

Reads a record from a C-ISAM file described by 'fd' into buffer pointed by 'buffer'.

Mode specifies wheather next or previous or first or last or current record is to be read or a

recrd is to be read according to a specified key. Returns 0 or -1.

• int isrewritecurr (fd, *buffer)

Rewrites current record of a C-ISAM file described by 'fd' fror)1_ a buffer pointed by

'buffer'. Returns 0 or -1.

• int iswrite (fd, *buffer)

Writes (adds) a record in a C-ISAM file from a buffer pointed by 'buffer'.

Returns 0 or -1 .

• int isdelcurr (fd)

Deletes the current record in a C-ISAM file described by 'fd'. Returns 0 or -1.

• int isindexinfo (fd, *buffer, type)

Fills the buffer pointed by *buffer with information about index of a C-ISAM file

described by 'fd'. The index information is of two types. 'type' specifies what kind of

86

C-ISAM Function Calls F. System And Function Calls

information is required. Returns 0 or -1.

• int isstart (fd, key, mode)

Brings the file pointer of a C-ISAM file described by 'fd' at the specified position.

Position can be first,_ last or as specified by key. Returns 0 or- 1.

87

AppendixG

Bibliography

[1] Angermeyer, J., et.el., "The Waite Group's MS DOS Developer's Guide,"
Indianapolis, Indiana: Howard W. Sams & Company, Inc., 1988.

[2] Bach, M.J., "The Design of UNIX Operating System," Englewood Cliffs, New
Jersey: Prentice-Hall, Inc., 1986.

[3] Campbell, J., "A Programmer's Guide to Serial. Communication," Indianapolis,
Indiana: Howard W. Sams & Company, Inc., 1986.

[4] Campbell, J., "The RS-232 Solution," Berkeley, California: Sybex, Inc., 1984.

[5] Campbell, J., "Crafting C Tools for the IBM PC," Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1986.

[6] C-OOT, "C-OOT DSS Training, Lecture Notes on lOP & UNIX," New Delhi, New
Delhi: C-OOT Publication, 1986.

[7] C-OOT,"C-DOT DSS Training, Lecture Notes on Software Architecture Overview,"
New Delhi, New Delhi: C-OOT Publication, 1986.

[8] C-OOT, "C-OOT 512 MAX General Description," New Delhi, New Delhi: C-OOT
Publication, 1986.

[9] C-OOT, "C-OOT DSS Training, Lecture Notes on Central File System," New Delhi,
New Delhi: C-OOT publication, 1986 ..

[1 0] C-ISAM, "Reference Manual," Palo Alto, California: Relational Database
Systems, Inc., 1982-85.

88

G. Bibliography

(11] Christain, K., "The UNIX Operating System," New York, New York: John Wiley
& Sons, Inc., 1983.

(12] Duncan, R., "Advanced MS DOS," Redmond, Washington: Microsoft Press,
1986.

(13] IBM, "Disk Operating System 3.00 Technical Reference," Boca Raton, Florida:
IBM Corporation, 1984.

(14] IBM, "Personal Computer Technical Reference," Boca Raton, Florida: IBM
Corporation, 1983.

(15] IBM, "IBM Enhanced Color Display," Boca Raton, Florida: IBM Corporation, 1986.

(16] Johnson, N., "Advanced Graphics in C: Programming and Techniques,"
Berkeley, California: Osborne Me Graw- Hill, 1987.

(17] Kernihgan, B.W., and Dennis, M.R., "The C Programming Language,"
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1987.

(18] Kernihgan, B.W., and Pike, R., "The UNIX Programming Environment,"
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1984.

(19] King, R.A., "The IBM PC-DOS Handbook," Berkeley, California: Sybex, Inc.,
1983.

(20] Kliewer, B.D., "EGNVGA A Programmer's Reference Guide," New York, New
York: McGraw-Hill Book Company, 1988.

[21] Knuth, D.E, "Fundamental Algorithms: The Art of Programming Vol. 1 ,"Reading,
Mass.: Addison-Wesley Publishing Company, Inc., 1973.

[22] Knuth, D.E., "Semi numerical Algorithms: The Art of Programming Vol. 2,"
Reading, Mass.: Addison-Wesley Publishing Company, Inc., 1973.

[23] Lal, K.B., Chandrasekaran, T., Pandey, Y.K., "C-OOT DSS Architecture -
Overview of C-OOT & DSS Projects," New Delhi, New Delhi: C-OOT
Publication, October 1986.

(24] Lal, K.B., Chandrasekaran, T., Pandey, V.K.,"C-DOT DSS Hardware
Architecture - Overview of C-OOT & DSS Projects," New Delhi, New Delhi:
C-OOT Publication, October 1986.

[25] Lal, K.B., et. al., "C-OOT DSS Software Architecture- Overview of C-OOT & DSS
Projects," New Delhi, New Delhi: C-OOT Publication, October 1986.

(26] Motorola, "System V/68 Programmer's Reference Manual," Tempe, Arizona:
Motorola, Inc., 1985.

[27] Motorola, "System V/68 User's Reference Manual," Tempe, Arizona: Motorola,
Inc., 1985.

89

G. Bibliography

[28] Motorola, "System V/68 Support Tools Guide," Tempe, Arizona: Motorola, Inc.,
1985.

[29] Norton, P., "Inside the IBM PC," Bowie, MD: Robert J. Brady Co., 1983.

[30] Rochkind, M.J., "Advanced UN IX Programming," Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1985. -

[31] Rogers, D. F., "Procedural Elements for Computer Graphics," Singapore,
Singapore: Me Graw-Hill Book Company, 1985.

90

Appendix H

Source Listing

T his appendix gives the source code written for the development of GIM. The reader may

note that not all of the files have been listed here. Only the major files which give an

overview of the implementation have been listed. This appendix have been divided into four

section. The first two section gives the source listing of the two libraries. The third section deals

with the GIM source code. Finally the last section gives a few snapshots of the GIM. For coding

convention please refer to section 1.4.

H.l CGRAPHIC Listing

#define Ll REDOx04
#define u:::cYAN(LI_GREEN I LI_BLUE)
#define LI_MAGENTA(LI_RED I LI_BLUE)
#define LI_BROWN(LI_RED I LI_GREEN)
#define LI_WHITE(LI_RED 1 LI_GREEN 1 LI_BLUE) ----------------------1 #define HI_INTENSITYOx08

graph.h #define HI_BLACK(HI_INTENSITY)
#define HI_ BLUE(HI_INTENSITY I LI_BLUE)

_________ ;::;.:..:._;;;; ___ .;____;:~......;_-~....:j #define HI_ GREEN(HI_INTENSITY I LI_GREEN)

ifndef _GRAPH
define _GRAPH
#define C_REP(OxOO < 3)
#define C_AND(Ox01 < 3)
#define C_OR(Ox02 < 3)
#define C_XOR(Ox03 < 3)
#define C_GRANC(Ox01 < 8)
#define C_GRANF(Ox02 < 8)
#define C_PSLPC(Ox03 < 8)
#define C_NSLPF(Ox04 < 8)
#define C_NSLPC(Ox05 < 8)
#define C_PSLPF(Ox06 < 8)
#define C_HTONE(Ox07 < 8)
#define C_LIQUID(Ox08 < 8)
#define C_CORRUG(Ox09 < 8)
#define C_DOT(Ox10 < 8)
#define LI_BLACKOxOO
#define LI_BLUEOx01
#define LI_GREENOx02

91

#define HI_ RED(HI_INTENSITY I LI_RED)
#define HI_ CYAN(HI_INTENSITY I LI_CYAN)
#define HI_MAGENTA(HI_INTENSITY I LI_MAGENTA)
define HI_BROWN(HI_INTENSITY I LI_BROWN)
#define HI_ WHITE(HI_INTENSITY I LI_WHITE)
define FILL RTOLO
#define FILL:::LTOR1
#define FILL TIOB2
#define FILL-BTOT3
#define FILL:::CRUSH4
#define FILL EXPLDS
#define FILL-CONVH6
#define FILL:::CONVW7
#define FILL SPRDH8
#define FILL-SPRDW9
#define FILL:::BTOP10
#define FILL BBOT11
#define FILL:::BLEFT12
#define FILL BRIG13
#define FILL:::BCEN14

CGRAPHIC Listing

#define FILL_BEDGE 15
#define FILL RAND16
define FRM- POSOxOf
#define FRM::::TOPOx01
define FRM_BOTOx02
define FRM LFTOx01
define FRM::::RGTOx02
#define FRM_CENOx03
define FRM STYOxfO
#define FRM::::soxox10
define FRM BGROx20
#define FRM::::UNDOx30
#define CURS_ARROWNEO
define CURS ARROWNW1
#define CURS::::CROSSWIRE2
define CURS CROSSHAIR3
#define CURS-BUTTERFLY4
#define CURS::::JUMPO
define CURS FAST1
#define CURS-MED2
#define CURs::::sLOW3
#define HIDE_ARRO(Ox01 < 0)
#define SHOW_GRID(Ox01 < 1)
#define HIDE_CALI(Ox01 < 2)
#define HIDE_POSX(Ox01 < 3)
#define HIDE_POSY(Ox01 < 4)
#define HIDE_NEGX(Ox01 < 5)
#define HIDE_NEGY(Ox01 < 6)
define HIDE_X(HIDE_POSX I HIDE_NEGX)
define HIDE_ Y(HIDE_POSY I HIDE_NEGY)
#define HIDE_NXNY(HIDE_NEGX I HIDE_NEGY)
#define HIDE_AXIS(HIDE_X I HIDE_ Y)
#define HIDE_BOXS(Ox01 < 7)
#define HIDE_BCOL(Ox01 < 8)
define CHAR_XTOP(Ox01 < 9)
#define CHAR_YRIG(Ox01 < 10)
#define CHAR_XCOL(Ox01 < 11)
#define CHAR_ YCOL(Ox01 < 12)
#define BAR_ YAXIS(Ox01 < 0)
#define BAR_RANGE(Ox01 < 1)
define BAR_DIVDE(Ox01 < 2)
define BAR_NOBOX(Ox01 < 3)
#define BAR_SHADW(Ox01 < 4)
#define BAR_CLIPT(Ox01 < 5)
#define BAR_ TOPCH(Ox01 < 6)
#define EL FULLOxffffffffL
#define EL::::DIT10xaaaaaaaaL
#define EL DIT20x88888888L
#define EL::::ENGGOxfc01803fL
#define PT_NULO
#define PT DOT1
#define Pr::::saR2
#define PT_BOX3
typedef struct (
long ox, oy;
long max_x, max_y;
long min_x. min_y;
int tlx, tly;
int brx, bry;
} Mapping;
typedef struct {
int options;
int dx, dy;
char .. p_x;
char ··p_y;
int axiscolor. axismix;
int boxcolor, boxmix;
int gridcolor, gridmix;
int charcolor, charmix;
int backcolor, backmix;

} Calibration;

typedef struct (
unsigned int options;
int barwidth;
int offset;
int ndivd;
int "divcolor;
int nbars, •ppts;
int barcolor, barmix;
int boxcolor, boxmix.;
int shadowcolor, shadowmix;

} Bar;
endif

H. Source Listing

debug.h

ifndef _DEBUG
#define _DEBUG
#define INVX 1
#define INVY 2
#define INVCOL3
#define CANTOPEN?/ Cannot open file·;
#define CANTREAD8/ Cannot read·;
#define CANTWRITE9/ Cannot write·;
#define INVCRS10/ Invalid Cursor style·;
#define INVCRN11/ Invalid Cursor number •;
#define INVCRM12/ Invalid Cursor movement style ·1
#define INVPAGE13/ Invalid page no.·;
#define INVMPN14/ invalid map number·;
#define INVPTTYPE15/ Invalid point type·;
#define INVMAPX16/ Invalid map x coordinate·;
#define INVMAPY17/ Invalid map y coordinate·;
#define INVOX18/ Invalid map origin x coor ·;
#define INVOY19/ Invalid map origin y coor .,
#define HORLINEO
#define VERLINE1
.#define BOXSHELL2
#define BOXFILL3
#define PRINTCHAR4
#define PRINTROW5
#define PRINTCOL6
#define SETGMODE7
#define SPREADS
#define WRITECHAR9
#define WRITEROW10
#define WRITE COL 11
#define PROWFRM12
#define PCOLFRM13
#define LINE 14
#define RESTORE15
#define SAVE16
#define CURSSET17
#define CURSMOVE18
#define CURSRESET19
#define SETPAGE20
#define DISPAGE21
define GETSTR22
#define POINT23
#define PLOT24
define MAP 25
define BAR 26
#define CALIBRATE27
define CONNECT28
#define ELINE29
extern int gperror;
extern int gfunction;
extern void setgperror(), resetgperror(). gerror();
endif

92

CGRAPH/C Listing H. Source Listing

gperror = 1;
l

-----,------------------------1 void
resetgperror()
{ debug.c

--------------------------1 gperror = 0;

ifdef DEBUG
include "debug.h"
include "graph.h"
include "screen.h"
intgerrorno;
intgfunction;
static intgperror = 1;
static char ·error_msg[] = {
r dummy 0 "I··.
r INVX 1 "I "Invalid x coordinate= %d",
r INVY 2 "I "Invalid y coordinate = %d",
r INVCOL 3 "I "Invalid color = %d",
r INVMIX 4 "I "Invalid mix = %d",
r INVMODE 5"1 "Invalid mode= %d",
r INVFILE 6 "rlnvalid format %s",
r CANTOPEN7"/"Cannot open file %s",
r CANTREAD8"/"Read error on %s",
r CANTWRITE g·rwrite error on %s.",
r INVCRS 10"/"lnvalid cursor style= %d",
r INVCRN 11"/"lnvalid cursor no= %d",
r INVCRM 12"/"lnvalid cursor move style= %d",
.r INVPAGE 13"/"lnvalid page no= %d",
r INVMPN 14"/"lnvalid map no= %d",
r INVPTTYP 15"/"lnvalid point type= %d",
r INVMAPX 16"/"lnvalid map x coordinate= %d",
r INVMAPY 17"/"lnvalid map y coordinate= %d",
r INVOX 18 "/"Invalid map origin x = %d",
r INVOX 19 "/"Invalid map origin y = %d"

);
static char •tunc_name[] = {
"HORLINE" ro·1.
"VERLINE" rt"l,
"BOXSHELL" n· I,
"BOXFILL" r3·1.
"PRINTCHAR"r 4" I,
"PRINTROW" r5"1,
"PRINTCOL" r6"1,
"SETGMODE"r?" I,
"SPREAD" ra·1.
"WRITECHAR"r9"1,
"WRITEROW"r10"I,
"WRITECOL" rt 1" I,
"PROWFRM" rt2"1,
"PCOLFRM" rt3"1,
"LINE" r 14"1,
"RESTORE" r15"1,
"SAVE" r 16"1,
"CURSSET" r1r1.
"CURSMOVE"r 18" I,
"CURSRESET" r 19" I,
"SETPAGE" r2o·1.
"DISPAGE" r21"1,
"GETSTR" r22· I,
"POINT" r23"1,
"PLOT" r 24"1,
"MAP" r 25"1,
"BAR" r 26"1,
"CALIBRATE"r27"1,
"CONNECT" r28"1,
"ELINE" r29"1

);
void
setgperror()
{

l
void
gerror(errorno, value)
int errorno;
int value;
{
gerrorno = errorno;
if (gperror) {

static char buffer1[40];
static char buffer2[40];
sprintf(buffer1, error_msg[gerrorno]. value);
sprintf(buffer2, "%s :: %s",

func_name[gfunction), buffer1);
spread(0, YMAX - 12, XMAX, YMAX,

LI_RED, C_REP, FILL_TTOB);
printrow(10, YMAX-9, LI_WHITE, C_REP, buffer2);
printrow((XMAX > 1) + 10, YMAX-9, LI_BLACK, C_RE~.

"type 'a' to abort, 'p' to proceed");
while (1) {

char c = getch();
if (c ==·a· II c =='A') {

setgmode(3);
exit(1);

l
if (c == 'p' II c == 'P') {

spread(0, YMAX - 12, XMAX, YMAX.
LI_RED, C_REP, FILL_TTOB);

return;

l
l
#endif

ifndef _SCREEN
#define SCREEN
#define -=_EGA 16
ifdef _EGA16
#include "screen16.h"
endif
ifdef _EGA14
#include "screen14.h"
endif

screen.h

#define XMAX(N_ROW_PIXELS- 1)
#define YMAX(N_COL_PIXELS- 1)
#define CWIDTH(N_ROW_PIXELS I N_ROW_CHARS)
#define CHEIGHT(N_COL_PIXELS I N_COL_CHARS)
#define PAGESIZE((N_ROW_PIXELS I 8L)" N_COL_PIXELS • 4L)
endif

ifndef _SCREEN16
#define _SCREEN16
#define EGAMODE16

93

screen16.h

CGRAPH/C Listing

#define
#define

,#define
#define
#define
#define
endif

N_ROW_PIXELS640
N_COL_PIXELS350
N_ROW_CHARS80
N_COL_CHARS25
WCHAROx08
HCHAR0x08

umband.c

void _multiband(xoff, nmasks, pmasks, sy, ly)
int xoff, nmasks; unsigned char "pmasks; int sy, ly;
{
register int n : ly - sy + nmasks;
register int i : nmasks;
register char far"base;
while (-- i >: 0) {

}
}

if ("(pmasks + i) :: o)
continue;

SETMASK("(pmasks + i));
base : BASE(xoff < 3, sy + i);
{

register intm;
for (m : (n - i) I nmasks ; m > 0 ; m --){

MODIFY(base);
base +: nmasks • WIDTH;

}

H. Source Listing

{
register inti= pmasks_tbl -> nmasks;
unsigned char mod_masks[MAX_MASKS];
while (-- i >= 0)

mod_masks[i I=
pmasks_tbl -> mask_arr[i I & mask;

_multiband(sxoff, pmasks_tbl -> nmasks,
mod_masks, sy, ly);

if (lxoff > sxoff){
while (++ sxoff lxoff)

multiband(sxoff, pmasks_tbl -> nmasks,
pmasks_tbl-> mask_arr, sy, ly);
if (mask = Oxff < (7 - (lx & Ox07))) {
register inti : pmasks_tbl -> nmasks;
unsigned char mod_masks(MAX_MASKS 1:
while (-- i >= 0)
mod_masks(i I :
pmasks_tbl -> mask_arr[i I & mask;

multiband(sxoff. pmasks_tbl -> nmasks,
- mod_masks, sy, ly);

}
}

}

resetega();
return(O);
}

map.h

#define MAX_MAP _NUM6

--~ #definePOSX1
#define POSY2
#define NEGX3 boxfill.c

-----------------------------~-----------~ #define NEGY4

int
boxfill(x1, y1, x2, y2, colour, mix)
int x1,y1,x2,y2,colour,mix;
{ .
register int sx, sy;
register int lx, ly;

ifdef DEBUG
#include "debug.h"
gfunction: BOXFILL;
VALXY(x1, y1);
VALXY(x2, y2);
VALCOLMIX(colour, (unsigned char)mix);
VALDITH(mix);

endif
MAXMIN(x1. x2, lx, sx);
MAXMIN(y1, y2, ly, sy);
_initega();
sx ++; sy ++;
lx --; ly --;
SETCOLOR(colour, (unsigned char)mix);
{

int lxoff ,sxoff;
unsigned charmask;
register struct mask "pmasks_tbl =

_getmask((char)(mix > 8));
sxoff = sx > 3;
lxoff = lx > 3;
if (mask = Oxff > (sx & Ox07)) {

if (sxoff == lxoff)
mask &= Oxff < 7- (lx & Ox07);

#define X_MAP(p, x)(float)((p) -> usr.tlx) +\
(float) ABS((x) - (p) -> usr.min_x)\
• (p) -> x_map

#define Y_MAP(p, y)(float)((p) -> usr.tly) +\
(float) ABS((y)- (p) -> usr.max_y)\
• (p) -> y_map
typedef struct {
Mapping usr;
struct physical {

intox, oy;
} phy;
float x_map;
float y_map;

} Map;
typedef struct {
int x;
inty;

} Cartesian;
extern Map map_tbl[];
#define VALOAIGIN(p)\
{\

94

if ((p) ->ox> (p) -> max_x II\
(p) ->ox< (p) -> min_x) {\

}\

gerror(INVOX, (p) -> ox);\
return -1 ;\

if ((p) -> oy > (p) -> max_y II\
(p) -> oy < (p) -> min_y) {\

}\

gerror(INVOY, (p) -> oy);\
return -1 ;\

SOAP Listing

l
#define VALMAPNUM(x)\
{\
if ((unsigned) (x) >= MAX_MAP _NUM) {\

gerror(INVMPN, (x));\
return -1 ;\

}\
l
#define VALMAPXY(map_num, ppts)\
{\
register Mapping •p = & map_tbl[(map_num)].usr;\
if ((ppts) -> x < p -> min_x II\
(ppts) -> x > p -> max_x) {\

}\

gerror(INVMAPX, (ppts) -> x);\
return -1 ;\

if ((ppts) -> y < p -> min_y II\
(ppts) -> y > p -> max_y) {\

}\

gerror(INVMAPY, (ppts) -> y);\
return -1 ;\

l
#define VALPTTYPE(pt_type)\
{\

}

if ((unsigned int) pLtype > 4) I\
gerror(INVPTTYPE, (pt_type));\
return -1 ;\

}\

H. Source Listing

.2 SOAP Listing

PC-end

ifndef SOAP
#define -=_soAP
#define SIMPLEX(01)
#define DUPLEX(02)
#define NPORTS(02)
#define COM1_PORT(OO)
define COM2_PORT(01)
#define PROC INTR 0
#define IGNR INTR 1
#define KB HIT-1
#define BAD FIL-2
#define TIM_=-ouT-3
#define GEN_ERR-4
#define NOT_INI-5
#define NOT _MOD-6
#define ERR_REQ-7

soap.h

----------------------~ #define SND_FAIL-8
endif

map.c

Map map_tbl[MAX_MAP _NUM];
int
map(map_num, mpg)
intmap_num;
Mapping·mpg;
I
ifdef DEBUG
{
#include "debug.h"
gfunction = MAP;
VALMAPNUM(map_num);
VALORIGIN(mpg);
VALXY(mpg -> tlx, mpg -> tly);
VALXY(mpg -> brx, mpg -> bry);

}
endif
I

}

register Map·p = &map_tbl[map_num];
p -> usr = ·mpg;
p -> x_map = (float) (mpg -> brx - mpg -> tlx) 1

(float) ABS(mpg -> max_x- mpg -> min_x);
p -> y_map = (float) (mpg -> bry - mpg -> tly) 1

(float) ABS(mpg -> max_y - mpg -> min_y);
p -> phy.ox = X_MAP(p, mpg ->ox);
p -> phy.oy = Y_MAP(p, mpg -> oy);

return 0;

cntl.asm

ISRENT TEXTSEGMENT BYTE PUBLIC 'CODE'
ISRENT-TEXTENDS
_DATA SEGMENT WORD PUBLIC 'DATA'

DATA ENDS
CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS
_BSS SEGMENT WORD PUBLIC 'BSS'
_BSS ENDS
DGROUP GROUPCONST, BSS, DATA

C~~~~~~~T _ TEXT,DS:DGR~UP,;S:DGROUP, ES:DGROUP
ISRENT TEXTSEGMENT
PUBLIC- _disint

_disint PROC FAR
eli
ret!

_disint ENDP
PUBLIC enbint

_enbint PROC FAR
sti
ret!

_enbintENDP
ISRENT TEXTENDS
END -

isrent.asm

ISRENT_TEXTSEGMENT BYTE PUBLIC 'CODE'

95

SOAP Listing

ISRENT TEXTENDS
DATA SEGMENT WORD PUBLIC 'DATA'
DATA ENDS

CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS
_BSS SEGMENT WORD PUBLIC 'BSS'

BSS ENDS
DGROUP GROUPCONST,_BSS,_DATA

c'1S1%~~~T _ TEXT,DS:DGROUP,SS:OGROUP,ESDGROUP
_BSS SEGMENT
stktop DW512 DUP(?)
stkbtm OW 1 DUP(?)
oldsp OW 1 DUP(?)
oldss OW 1 DUP(?)

BSS ENDS
EXTRN _rxisr:FAR
EXTRN _txisr:FAR
ISRENT TEXTSEGMENT
PUBLIC- com1isr

_com1isrPROC FAR
push ax
push ds
mov ax,DGROUP
mov ds,ax
mov oldsp,sp
mov oldss,ss
mov sp,OFFSET DGROUP: stkbtm
mov ss,ax
push bx
push ex

. push dx
pu·sh es
push di
push si
xor ax,ax
push ax
mov dx,1018
in al,dx
and al,6
emp al,4
jne $112
call FAR PTA rxisr
jmp SHORT $113

$112:
call FAR PTA _txisr

$113:
add sp,2
popsi
popdi
popes
popdx
pop ex
popbx
mov sp,oldsp
mov ss,oldss
popds
mov ai,20h
out 20h,al
pop ax
ire!

_com1isr ENDP
PUBLIC _com2isr

_com2isr PROC FAR
push ax
push ds
mov ax,DGROUP
mov ds.ax
mov oldsp,sp

. mov oldss,ss
mov sp,OFFSET DGROUP: stkbtm

mov ss,ax
push bx
push ex
push dx
push es
push di
push si
mov ax,1
push ax
mov dx,762
in al,dx
and a1,6
cmp al,4
jne $115
call FAR PTA rxisr
jmp SHORT $116

$115:
call FAR PTA _txisr

$116:
add sp,2
popsi
popdi
popes
popdx
pop ex
popbx
mov sp,oldsp
mov ss,oldss
popds
mov a1,20h
out 20h,al
pop ax
iret

com2isr ENDP
IS RENT_ TEXTENDS
END

H. Source Listing

soapini.c

Ctlport_etlbuf(NPORTS) = {

{

},
{

_eom1isr, Ox3f8, STATE_IDLE,
{

},

0, 0, ACC_PKT. 0, RX_BUFFER(O),
RX_BUFFER(O), RX_BUFFER(O),
0,0,0,0

{ 0, 0, TX_BUFFER(O),
TX_BUFFER(O)

}

eom2isr, Ox2f8, STATE IDLE, T -
0, 0, ACC PKT, 0, AX BUFFER(1),
RX_BUFFEA(1), RX_BUFFER(1),
0, 0, 0, 0 },

{ 0, 0, TX_BUFFER(1),
TX_BUFFER(1)

}
}

};
void
soap_init(port)
int port;
{
_etlbu~ port].tx.tx_seq_no = 0;

96

SOAP Listing

_ctlbuf[port].rx.rx_seq_no = 0;
)
void
_port_init(port_id, baud_rate)
int port_id;
int baud_rate;
{
register Ctlport ·p_ctlbuf = & _ctlbuf[port_id];
p_ctlbuf -> port_ base = _bpse_reg(port_id);
p_ctlbuf -> rx.count = 0;
p_ctlbuf -> rx.p_avail = 0;
p_ctlbuf -> rx.p_len = 0;
p_ctlbuf -> rx.rx_seq_no = 0;
p_ctlbuf ->state= STATE_IDLE;
p_ctlbuf -> rx.wptr = p_ctlbuf -> rx.rptr

= RX_BUFFER(port_id);
_config(port_id, baud_rate, p_ctlbuf -> isr);

}
void
_flush_rx_buf(port_id)
int port_id;
{
register Ctlport ·p_ctlbuf = & _ctlbuf[port_id];
_disint();
p_ctlbuf -> rx.count = 0;
p_ctlbuf -> rx.p_avail = 0;
p_ctlbuf -> rx.p_len = 0;
p_ctlbuf -> rx.p_sts = IGN_PKT;
p_ctlbuf -> rx.wptr = p_ctlbuf -> rx.rptr

= RX_BUFFER(port_id);
_enbint();
}
void
_set_state(port_id, state)
int port_id;
int state:
{
DBGMSG3("SET_STATE:: %d %d", port_id, state):
_ctlbuf[port_id].state= state:

}

soapsend.c

static Packet •torm_pkt();
#define DMSG1 "SOAP _SEND: packet sent, seq_num = o/od"
#define DMSG2 "SOAP _SEND: Recvd %x, %x %x"
#define DMSG3 "SOAP _SEND:: port= %d, data_size = %d"
int
soap_send(port, data, data_size)
int port;
unsigned char *data;
int data_size;
{
long time();
long start_time:
register int retry_count = 3;
register int trans_seq = _ctlbuf[port).tx.tx_seq_no;
register Packet ·p =

form_pkt(data, data_size, trans_seq);
DBGMSG3(DMSG3, port, data_size);
time(& start_time);
for(; ;) {

_set_state(port, STATE_SEND);
_flush_rx_buf(port);
if (_write_port(port,(unsigned char *)p,

PKT_SIZE(p)) == -1){
_set_state(port, STATE_IDLE);

H. Source Listing

return -1;
}
DBGMSG2(DMSG1, trans_seq);
for (;;){

Packet pkt;
if (time(OL)- start_time > PC_ACK_TIM_OUT){

if (retry_ count> 0){

}

-- retry_count:
break;

}
_set_state(port, STATE_IDLE);
return -1;

if (_read _port(port, (unsigned char *)&pkt) == 0)
continue;

DBGMSG4(DMSG2, pktcntl_byte, pktseq_num.
pktdata_size);

switch (pktcntl_byte){
case ACK:

if (pktseq_num == trans_seq){
_ctlbuf[port].tx.tx_seq_no =

NXT_SEQ_NO(trans_seq);
return 0;

}
_set_state(port, STATE_SEND);

case SOH:
continue;

case NAK:
if (-- retry_count < 0)

return -1;
}
break;

}
}
static Packet·
form_pkt(data, n, trans_seq)
unsigned char *data;
register int n:
unsigned char trans_seq;
{

}

static char buf [MAX_DPKT_SIZE];
register Packet *phdr = (Packet·)buf ;
register unsigned char •q =data;
register unsigned char check_sum = n;
phdr -> data_size = n;
{

}

register unsigned char "p =DATA(phdr);
do {

check_sum '= (•p ++ = •q ++);
} while (-- n > 0);
·p = check_sum ' (phdr -> seq_num = trans_seq) ;

phdr -> cntl_byte =SOH;
return phdr;

· soaprecv .c

int
soap_recv(port_id, buf, time_ out)
int port_id;
unsigned char "but;
int time_out;
{

97

long start_time, time();
time (& start_time);

SOAP Listing

}

do {
static Packetpkt;
if (_read __port(port_id,

(unsigned char ") &pkt) == 0)
continue;

if (pkt.cntl_byte ==SOH){

}

register int info_size = INFO_SIZE(&pkt);
register unsigned char·p_src =DATA(&pkt);
register unsigned char·p_dest =but;
register int n;
for(n = info_size ; n > 0 ; -- n)

·p_dest ++ = ·p_src ++:
return info_size;

) while (time(OL)- start_time <=time_ out); ·
return -1;

soapint.h

#define UNLINK Ox8
#define ISFETCH Ox9
define ISST AT Ox a
typedef struct Creqres {
unsigned charmsg_length;
unsigned charmsg_type;
unsigned charcommand;
unsigned charseq__num;
long status;

) Creqres;
typedef struct Fetch {
long offset;
long numbyt;

} Fetch;
typedef struct {
unsigned char acc_mode;
unsigned char max_rec;
unsigned short reclen;
ls_keydesc lo_key;
ls_keydesc hi_key;
long mtime;

)lsfetch;
;:.=.;__.;__ ___::;:.=_....::===........:-----------! #define ERR_OPEN(-1)

ifndef _SOAP INT
#define _SOAP INT
#include "soapism.h"
#define MAX INFO LEN 128
#define MAX=DATA::_LEN (MAX_INFO_LEN + sizeof(Creqres))
#define MAX SEQ N0127
#define MIN_PKT_SIZE (sizeof(Ack))
#define PKT_INF _SIZE (sizeof(((Packet ")0) ->info))
#define PKT_HDR_SIZE (sizeof(Packet)- PKT_INF _SIZE)
#define MIN_DPKT_SIZE (PKT_HDR_SIZE + 1) -
#define MAX_DPKT_SIZE (sizeof(Packet))
#define SEO_NUM(p) (((Packet ")(p)) -> seq_num)
#define ACK_SEO_NUM(p) (((Ack ")(p)) -> seq__num)
#define NXT_SEO_NO(n) (((n) == 127)? 1 : (n) + 1)
#define DATA(p) (&((Packet ")(p)) -> info[O])
#define DATA_LEN(p) (((Creqres ")(p)) -> msg_length.)
#define INFO_SIZE(p) (((Packet ")(p)) -> data_size)
#define MIN(x, y) ((x) <= (y)? (x) : (y))
#define PKT_SIZE(p) (((Packet ")(p)) -> data_size\
+ MIN_DPKT_SIZE) .

#define MSG_SIZE(p) (PKT_SIZE(p)- 1)
#define SOH ((unsigned char)Ox81)
#define ACK ((unsigned char)Ox86)
#define NAK ((unsigned char)Ox95)
#define SNOERR Ox01
#define CSMERR Ox02
#define STXERR Ox03
#define PTYERR Ox11
#define FRMERR Ox12

#define ERR_READ(-2)
#define ERR_SEEK(-3)
#define ERR_STAT(-4)
#define NOT_MODI(-5)
typedef struct Packet {
unsigned charcntl_byte;
unsigned charseq__num;
unsigned chardata_size;
char info[MAX_DATA_LEN + 1];
} Packet;
typedef struct Nak{
unsigned charcntl_byte;
unsigned charseq__num;
unsigned charcode;
char null;
} Nak;
typedef struct Ack{
unsigned charcntl_byte;
unsigned charseq__num;
char null;
char filler;
} Ack;
endif

lOP-end

H. Source Listing ·

#define OVNERR Ox13
#define DESERR Ox21 main.c
#define NOBERR Ox22
#define !STERR Ox31
define MULERR Ox40
#define MISERR Ox41
#define SUCCESS OxOO
#define CMDREQ Ox01
#define CMDRES Ox02
define CMDRET Ox03
define FETCH OxO
#define DATE Ox1
#define TIME Ox2
define OPEN Ox3
#define CLOSE Ox4
#define READ Ox5
#define SEEK Ox6
#define WRITE Ox?

98

intchild __pid = -1 ;
char·procname;
static char "baud_string;
static char "device_name;
int
main(argc, argv)
int argc;
char ·argv[];
{
register int baud_code;
int pfd[2];
signal(SIGINT, SIG_IGN) ;
signal(SIGOUIT, SIG_DFL);
procname = argv[0];

}

GIM Listing

if(argc < 2 II argc > 3)
fatal("Usage: %s line [baud]", procname);

{ .
register inti = 3;
do {

dose(i);
}while (++ i < 20);

I
(void)open_device(device_name = argv[1 1);
baud_string = (argc == 3) ? argv[2] : DEFAULT _BAUD;
if ((baud_code =get_ baud (atol(baud_string))) == -1)

fatal("illegal baud rate");
(void)init_device(baud_code);
if (pipe (pfd) == -1)

fatal("pipe failure");
DBGMSG3("Created pipe rd(%d) wr(%d)", pfd[O]. pfd[11);
CONNECT(pfd[0 I. R_PIPE_FD);
if ((child_pid = fork()) == 0){

char wfd[10);
sprint!(wfd, ""'od", pfd[11);
execlp(READER_PROCESS, READER_ARGO, wfd, 0);
fatal("cannot exec %s", READER_PROCESS);

I else if (child _pid == -1){
fatal("cannot fork");

}
signal(SIGCLD, mourn_chlds_death);
dose(pfd(1 I);
(void)process_messages();

}
int
get_baud(baud_rate)
int baud rate;
{ -
static struct baud_map {

int baud_rate;
int code;

I baud_map[I={
{50, 850 I.

};

{ 75, 875),
{ 110,6110),
{ 134,8134 },
{ 150,6150 },
{ 200,8200 I.
{ 300,6300 },
{ 600, 8600 },
{ 1200, 61200 },
{ 1800, 61800 },
{ 2400, 82400 I.
{ 4800, 84800 },
(9600, 89600 l

register int n =
sizeof(baud_map) I sizeof(struct baud_map);
register struct baud_map •p = baud_map;
do (

if (p -> baud_rate == baud_rate)
return p ->code;

p ++;
} while (-- n > 0);
return ·1;

void
mourn_chlds_death()
{

}

static char msg[) =
"%s: killing self due to death of child\n";

DBGMSG2(msg, procname);
fprintf(stderr, msg, procname);
exit(1);

H. Source Listing

cri.c

extern char •strncpy(), "strchr(), •getenv();
extern char "resol_fl();
#define TIME_ST_LEN16
#define FNAM_ST_LEN(MAX_INFO_LEN- sizeof(Fetch)+ 1)
#define TABLE_ SIZE(tbl, type)\
(sizeof(tbl)lsizeof(struct type))

void
cmd_interpret(creqres)
Creqres ·creqres;
(

static struct perform(
void (" p_func) ();

} perform_tbl[) = {
p_fetch,
p_datetime,
p_datetime,
p_open,
p_dose,
p_read,
p_lseek,
p_write,
p_unlink,
p_isfetch,
p_isstat,
p_kill

};
if (creqres -> command >= 0 && creqres ·> command <
sizeof(perform_tbl) I sizeof(struct perform))
(" perform_tbl[creqres ->command l.p_func) (creqres);
return;

}
p_datetime(creqres)
Creqres ·creqres;
(
char data{ MAX_DATA_LEN 1:
register Creqres •p = (Creqres ") data;
DBGMSG1(DMSG8);
if (time((long ")(p + 1)) == -1){

DBGMSG1(DMSGS);
p ->status= ERR_ TIME;
p -> msg_length = sizeof(Creqres);

}
else {

}

p -> msg_length = sizeof(Creqres) + sizeof(long);
p ->status = sizeof(long);
06GMSG2(DMSG10, (long")(p + 1)):

p -> seq_num = 1 ;
p -> msg_type = CMDRES;
p -> command = creqres -> command;
snd_data(p);

}

.3 GIM Listing

main.h

ifndef _MENU
#define _MENU

99

GIM Listing

define MPAGE2
define NPAGE5
define TSLICE30
define BAUD9600
define MENU'M'
define SELECT'S'
ifdef NEXT
undef NEXT
endif
define NEXT'N'
define LOCK'L'
define UNLOCK'U'
define QUIT ·a·
#define EXPAND'E'
#define PARENT 'P'
define DUMP'D'
#define REPLAY'R'
define CAN_ALM 'C'
define PAGE SYSO
#define PAGE-PERAM1
#define PAGE=IOP -1
#define PAGE_CM 2
define PAGE_BM3
#define PAGE_CARD4.
#define NEXT_PAGE(page_no) {\
if (++ page_no >= MPAGE)\

page_no = 0~
J
#define MENU_PRINT(item_no, color)\
prowfrm(XMAX > 1, (ITEM_ROW + (item_no < 1)) • HCHAR,\

color, page_func(item_no] . name, FRM_CEN, 0);
typedef struct {
char •name;
int bg_color;
int bg_style;
int parent_page;
int (far· getinfo)();
void (far· drawframe)();
void (far· putvalues)();
int (far • select)();
int (far· nex~obj)();
} PageFunc;
extern PageFuncpage_func(];
#define F _COLORLI_WHITE
#define 8 COLORLI BROWN
#define MENU ROWS
#define ITEM_ROW15
extern int exist_page, next_page;
endif

main.c

static void show_page(),gim_setup(),menu();
static int analyse_kb();
static int change_screen = 1;
int exist_page = 0;
int next_page = 0;
int soap_config =SIMPLEX;
static char see_above(] = ·see Above";
#define DISP _SEE_ABOVE() error_log(see_above)
PageFunc page_func(] = I
I

},

"SYSTEM STATUS",
L1 BLUE, FILL EXPLD, -1,
ss~elfiles, ss]rame, ss_putvalues,
ss_select, ss_next

I

},

I

}.
{

}.
{

}.
{

}
};

H. Source Listing

·EXCHANGE PERFORMANCE •.
Ll BLUE. FILL EXPLD, -1.
ep-=_getfiles. ep:)rame, ep_putvalues,
ep_select. ep_next

"CENTRAL MODULE STATUS",
Ll CYAN, FILL CRUSH, PAGE SYS,
cm_getfiles, cm-=_trame, cm_putvalues,
cm_select. cm_next

"BASE MODULE STATUS",
LI_CYAN, FILL_EXPLD, PAGE_SYS,
bm_getfiles, bm_frame. bm_putvalues.
bm_select, bm_next

"CARD STATUS",
LI_BROWN, FILL_EXPLD, 0,
cd_gelfiles, cd_frame, cd_putvalues,
cd_select. cd_next

• BASE MODULE PERFORMANCE ",
LI_CYAN, FILL_CRUSH, PAGE_PERAM,
bp_gelfiles, bp_frame, bp_putvalues,
bp_select, bp_next

main(argc, argv)
int argc;
char •argv(];
{
long start_time;
long time();·
if (argc > 2) {

fprinlf(stderr,
·usage : GIM [Duplex : 1, Simplex :default]\n");

exit(1);
}
if (argc == 2){

if (atoi(argv(1]) == 1)
soap_config = DUPLEX;

}
gim_setup();
error_log("Hit any key to continue·);
getch();
while (1){

100

show _page();
time(& start_time);
while (1){

showclock(page_func(exist_page].bg_color
I HI_INTENSITY);
if (kbhit())

if (analyse_kb()) I
change_screen = 1;
break;

}
if ((time(OL)- start_time) >= TSUCE) I

if (! islock()) {
int parent=
page_func(exist_page].
parent_page;
if (parent < 0) {
NEXT_PAGE(next_page);
if(next_paget=exist_page)
change_screen = 1;
break;

Snapshots H. Source Listing

H.4 Snapshots

101

	TH28860001
	TH28860002
	TH28860003
	TH28860004
	TH28860005
	TH28860006
	TH28860007
	TH28860008
	TH28860009
	TH28860010
	TH28860011
	TH28860012
	TH28860013
	TH28860014
	TH28860015
	TH28860016
	TH28860017
	TH28860018
	TH28860019
	TH28860020
	TH28860021
	TH28860022
	TH28860023
	TH28860024
	TH28860025
	TH28860026
	TH28860027
	TH28860028
	TH28860029
	TH28860030
	TH28860031
	TH28860032
	TH28860033
	TH28860034
	TH28860035
	TH28860036
	TH28860037
	TH28860038
	TH28860039
	TH28860040
	TH28860041
	TH28860042
	TH28860043
	TH28860044
	TH28860045
	TH28860046
	TH28860047
	TH28860048
	TH28860049
	TH28860050
	TH28860051
	TH28860052
	TH28860053
	TH28860054
	TH28860055
	TH28860056
	TH28860057
	TH28860058
	TH28860059
	TH28860060
	TH28860061
	TH28860062
	TH28860063
	TH28860064
	TH28860065
	TH28860066
	TH28860067
	TH28860068
	TH28860069
	TH28860070
	TH28860071
	TH28860072
	TH28860073
	TH28860074
	TH28860075
	TH28860076
	TH28860077
	TH28860078
	TH28860079
	TH28860080
	TH28860081
	TH28860082
	TH28860083
	TH28860084
	TH28860085
	TH28860086
	TH28860087
	TH28860088
	TH28860089
	TH28860090
	TH28860091
	TH28860092
	TH28860093
	TH28860094
	TH28860095
	TH28860096
	TH28860097
	TH28860098
	TH28860099
	TH28860100
	TH28860101
	TH28860102
	TH28860103
	TH28860104
	TH28860105
	TH28860106
	TH28860107
	TH28860108
	TH28860109
	TH28860110
	TH28860111
	TH28860112
	TH28860113
	TH28860114
	TH28860115
	TH28860116
	TH28860117
	TH28860118
	TH28860119
	TH28860120
	TH28860121
	TH28860122

