
AUDIT PROCESS IN C-OOT DIGITAL SWITCHING
SYSTEM

Dissertation submitted to Jawaharlal Nehru University in partial
fulfillment of requirements for the award of the degrE~e of

MASTER OF TECHNOLOGY

in

Computer Science and Technology

by

SUNIL SINDWANI

School of Computer and System Sciences

Jawaharlal Nehru University

New Delhi

April, 1989

Certificate

This work titled: AUDIT PROCESS IN C-OOT DIGITAL SWITCHING SYSTEM

. has been carried out by Mr. Sunil Sindwani, a bonafide student of School of Computer

and System Sciences, Jawaharlal Nehru University.

This work is original and has not been submitted so far in part or full for any degree

or diploma in any other University or Institute.

J ¥'- • . ~~
SUNIL SINDWANI

Student

Supervisor

SCSS, JNU.

Prof. Karmeshu

Dean,

SCSS, JNU.

~-5-~c::;~
Prof. B. S. Khurana

Supervisor

SCSS, JNU.

Abstract

F
ault conditions, can be disastrous for any system, especially for systems which are

required to work continuously. A public switching system falls under this category. It

forms the infrastructure required for communication systems and a fault in it can not be

afforded. By introducing redundancy, systems can be designed, which can detect and

recover from fault conditions. In such systems, duplicate copies of hardware is kept. One of

them is always working. The other one is kept as stand-by. In the event of detection of fault

in active unit, a smooth switch-over is performed from active to stand-by unit without

disrupting any ongoing process. The switch-over is performed by recovery sub- system. The

duplication, however, involves another vital factor- Availability of up-to-date data to stand-by

unit, to be able to take over from active unit. Further, such a mechanism is also required to

ensure consistency of global data present on different processors in a distributed processing

environment.

The task of providing up-to-date data to stand-by unit is a complicated one. In an

environment which supports distributed processing, in addition to fault tolerance, it becomes

even more complicated. An obvious way of accomplishing this task can be -To update the

data in stand-by unit, every time it is updated in active unit. However, there should be some

kind of checking mechanism by which consistency in both sets of data can be ensured.

Precisely, this is the task of AUDITS - To ensure the consistency of data by performing

consistency checks (audits), routinely and on request on different sets of duplicated data.

Several factors affect the design of audits. Synchronization problems and also race

Ill

Abstract

conditions, surface as different processes try to access same set of global data. Further,

holes in data area (unused bytes) can lead to unmeaningful auditing. The audit process

provides software support to distributed and fault tolerant computing environment but at the

same time it loads the system. A suitable compromise between extent of support and load

generated should also be worked out.

This thesis describes various aspects of, design and implementation of audits in

C-DOT Digital Switching System. The work was carried out at C-DOT and successfully

implemented.

t\'

Contents

Certificate
Abstract
Preface

C-OOT Digital Switching System

1.1 Hardware Architecture

1.1.1 Basic Modules- 1

1.1.1.1 Base Module - 2

1.1.1.2 Administrative Module - 2

1.1.1 .. 3 Central Module - 2

1.1.1.4lnput Output Processor - 3

1.1.2 Switching System Configurations- 4

1.1.2.1 Single Base Module (SBM) - 4

1.1.2.2 Multi Base Module (MBM) - 4

1.2 Software Architecture

1 .2. 1 Overview - 4

1.2.2 Sub Systems Integration - 5

1.2.2.1 Inter Process Communication - 6

1 .3 Development Environment

v

0

o I

Ill

o VIII

0 0 • 1

1

..... 4

. 6

1.3.1 Why UNIX and 'C'- 7

F au It Tolerance

2.1 Fault Tolerance in C-OOT DSS .9

2.1.1 Duplex lOP Architecture - 9

2.1.2 Maintenance Software On lOP - 9

2.2 Data Organization . . ·. . . 10

2.2.1 File Management Systems - 1 0

2.2.1.1 UNIX files- 10

2.2.1.2 C-ISAM files - 11

2.3 Processes On lOP 11

Audit Process ·

3.1 Audit Requirements 12

3.1.1 lOP - lOP (Disc to disc) audits - 12

3.1.2 lOP - BP (Disk to memory) audits - 12

3.2 Invocation 13

3.2.1 System Initiated Auditing - 13 ·

3.2.2 Calendar Based Routine Auditing - 13

3.2.3 Idle lime Audits - 13

3.2.4 Operator Initiated Audits - 13

3.3 Design Considerations

3.4 Auditing Strategy

\"!

Contents

... 8

.. 12

3.401 lOP - lOP Audits - 15

3.40101 File Level - 15

3.40102 Record Level - 16

3.402 lOP - BP Audits - 17

3.40201 Single Base Module - 17

3.40202 Multi Base Module - 17

Implementation - I .

401 lOP - lOP Audits

40101 Explanation of algorithm - 24

402 lOP - BP Audits 0 0

40201 Explaination - 27

Implementation- II

501 lOP-lOP Audits

· 502 IOP-BP Audits

Conclusion

601 Correctness of master file :

602 Deletion of record :

603 Locking :

6.4 Memory locks :

605C-ISAM

Contents

. . 18

18

0 26

.. 29

0 30

0 36

.. 37

0 37

0 38

. 38

0 38

0 39

Contents

6.6 CRC . 39

6.7 Dummy bytes in C-OOT data structures : . 40

6.7.1 System generated dummy bytes- 40

6. 7.2 User generated dummy bytes : - 41

6.8 Further Scope 41

A endix A - · <: .. ::.,~+- - · A-One

Abbreviations And Glossary A-One

A endix 8 - :.~.·. -.. ;,. __ ."' B-One

System And Function Calls B-One

8.1 UNIX System Calls B-One

8.2 'C' Function Calls . B-Three

8.3 HDLC Library Function Calls . B-Five

8.4 C-ISAM Library Function Calls . B-Five

A endix C ·, ~- "·~ .. ·1.. , C-One

Source Code C-One

C.1 The Organization . C-One

C.2 The Code . C-One

A endix D .- -:.. ~ ~ -~··: . l D-One

References and Bibliography D-One

....
nu

Preface

M
y urge to work in a real time environment led me to the Centre for Development of

Telematics (C-OOT), India's Telecom Technology Centre. C-OOT is currently

engaged in the developm~nt of a Digital Switching System (DSS).

Earlier, I along with my classmate Arun Viswanathan, had discussed the possibility

of undertaking project work at C-OOT with Prof. Karmeshu, Dean, School of Computer and

System Sciences, and Prof. B. S. Khurana, School of Computer and System Sciences,

Jawaharlal Nehru University. Their encouraging response led us to apply at C-OOT.

I was entrusted with the development of an AUDIT PROCESS which is the topic of

my dissertation. This project was carried out under the guidance of Mr. Lalit Dhingra, Group

Leader- UNIX Group.

Audits

The typical requirement of rnost of the Digital Switching Systems and other real timE!

applications is FAULT TOLERANCE. On systems which are required to work continuously ..

a fault condition can be disastrous. To ensure an error free system, one possibility i~;

duplication of Hardware. By introducing a measure of redundancy a system capable o;:

fault-detection and correction can be built.

Redundancy at Hardware level requires duplication of processors. At any given

instant, one of them is in ACTIVE state and the other one in STAND-BY.state. In case of a

VIII

Organization of Thesis tJrerace

fault, a switch over is performed from ACTIVE to STAND-BY system. The fault tolerant

software sub-system accomplishes the switch over task without disrupting any part of the

process. However, in case of software, duplication of data is also required. One set for active

module and other one for stand-by module. A crucial factor in design of fault tolerant systems

is availability of up-to-date data to stand-by unit. To achieve this, periodic updation and

auditing of data is performed. Audits are responsible for performing a consistency check on

different sets of duplicated data. In case of inconsistencies, data is updated from active

system. This thesis concentrates on AUDIT subsystem of C-OOT DSS.

Organization of Thesis

This thesis has been organized in six chapters and four appendices. Bibliography

and references have been inCluded at the end. For conciseness, only such information which

is considered absolutely necessary is provided.

Since, while working in a team, a designer has to stick to a specified frame, it is

desirable to familiarize the reader with the environment and specifications as given by

C-OOT. Chapter I gives an overview of architecture and programming conventions adopted

at C-OOT. An account of why "C" and UNIX are used for developm~nt is also provided.

Chapter 2 highlights the importance and need of performing audits after describing

the organization of data in DSS.

Chapter 3 describes the audits at conceptual level and points which need a

consideration at the time of. designing, in connection with C-OOT architecture and

requirements. It also discusses various means by which Audits can be initiated.

The implementation of main routine is discussed in Chapter 4. It also presents the

algorithm. A brief description of procedure for validating Audits is also provided.

IX

Acknowledgments Preface

Chapter 5 explains the different functions developed in order to implement the

algorithm. Different strategies used for implementing and optimizing them are also

discussed, wherever necessary.

The last Chapter concludes the discussion by mentioning some problems and

suggests their possible solution. Scope for further optimization at conceptual level is also

discussed.

An attempt has been ~ade to include all highly relevant but specific information in

this thesis. Extensive use of abbreviations makes it necessary to provide a list of

abbreviations. Appendix A provides such a list along with a glossary.

A brief description of different system and library function calls is given in Appendix

B ..

Appendix C contains C-OOT and audit process Hash Definitions and Type Definitions

and entire source code.

Bibliography and references have been lis~ed in appendix D.

Acknowledgments

I am grateful to Prof. Karmeshu, Dean, School of Computer and System Sciences,

and Prof. B. S. Khurana, School of Computer and System Sciences, without whose valuable

and constant encouragement, supervision, v~tal support and constructive criticism

throughout the planning and completion of this worl<, this project would not have materialized.

1 offer my sincere thanks to Mr. Lalit Dhingra, Group Leader UNIX Group C-OOT,

Vinay Deo, Adesh Gupta, Mukul Goyal, all of UNIX group for their constant support and

X

Acknowledgments t'rerace

guidance. Thanks are also due to Alka Anand, who was also involved in the design of audits

and who made me stick to project deadlines, and toR. Vasudha whose friendly talks made

me feel at home during the entire period of the project. I extend my thanks to R. Ramanathan

and Joydeep Bose also.

I feel greatly indebted to my classmates A run Viswanathan and Naveen Jain for their

help and suggestions during the preparation of the final copy of this thesis.

Thanks are also due to C-OOT for placing its resources and facilities at my disposal,

which were very essential for this project.

SUNIL SINDWANI

XI

Chapter 1

C-OOT Digital Switching System

C
-OOT Digital Switching System (DSS) is highly modular in structure and hardware is

duplicated, for fault tolerance, at every possible level. One module of the two, is called

ACTIVE and the other STAND-BY. Software in addition to modularity has other features of

layered and distributed processing also. Different processors running under different

environments process global data such as billing data, traffic data etc.

This chapter concentrates on Hardware and software organization of C-OOT DSS.

1.1 Hardware Architecture

1 .1 .1 Basic Modules

C-OOT family of products has four basic hardware units.

• Base Module (BM)

• Central Module (CM)

• Administrative Module (AM)

• Input Output Processor (lOP)

1

CM

l B l'v1 3 :11 t-------;L-------r--------'

IDP

'---------

DISKTAPE VDU PRINTER

FIG~-~ A TYPICAL CONFIGURATION

OF C-OOT DSS

B!VIS

BP

TIME

SWITCH

BP: BASE-PROCESSOR

Cl'v1 I: Cl'v1- INTERFACE

SCI: SERVICE &

CONTROL INTERFACE

FIG i.2 TYPICAL B!VI CONFIGURATION

Hardware Architecture 1. C-DOT Digital SWitching System

A typical configuration of these units is shown in fig 1.1.

Although lOP is a part of AM it is discussed separately, further details are provided

in C-OOT DSS ARCHITECTURE [1] and [9].

1 .1 .1 .1 Base Module

BM is primary growth unit of C-OOT DSS. BMs may differ in the types and quantities

of interface equipment they contain. It performs the task of actual switching through various

interfaces, like Dual Tone Multi Frequency receivers (DTMF), etc. on subscriber side. BMs

are further modular in structure. A typical BM configuration is shown in fig 1.2. Base

Processor (BP) provides the overall control. It is a 16/32 B~t 68010 CPU running under C-OOT

REAL TIME OPERATING SYSTEM (COOS). In its memory, 68010 has a large database for ,

controlling its working. BM is connected to other links via high speed high level data links

(HDLC). A detailed description of BM can be seen in "C-OOT DSS HARDWARE

ARCHITECTURE" [2].

1 .1 .1 .2 Administrative Module

This module provides administrative support to DSS for administrative and

maintenance functions such as support for maintaining billing records, traffic information.

The functions performed by AM include call processing functions, software recovery, overall

initialization. It also provides interfaces to mass memory and operator terminals via lOP. It

receives billing data from BMs on an hourly basis, and passes it to lOP.

1 .1 .1.3 Central Module

This provides the interconnection facility for BMs. It has a message switch (MS) which

handles the communication between BM and AM. BM and CM and between BMs (inter BM

connection). Interconnections are provided through high speed high level data links (HDLC).

Different types of Links (depending upon speed and number of channels required) connect ,

2

Hardware Architecture 1. C-DOT Digital Switching System

different modules. The architecture of CM is very much close to BM. CM comes into the

picture only when three or more BMs are to be linked together. In the exchange with one/two

BMs, functions of CM are performed by the BM/one of the BM. From lOP side both modules

are equivalent.

1.1 .1.4 Input Output Processor

lOP is a full fledged 16/32 Bit computer system with 68010 CPU running UNIX. lOP

communicates with BM, via CM for various administrative and maintenance functions, and

also supports a variety of peripherals such as printer, disk, magnetic cartridge tape, VDU

etc. It can support a maximum of sixteen terminals.

It acts as a front end processor for C-DOT DSS. The main functions performed by

lOP are

• Down loading software for DSS

• Handling databases for traffic and billing data

• Printing of billing and other reports

• Providing man machine interface for various maintenance and

administrative operations.

• Fault detection and recovery

• System status display

The bus architecture is similar in characteristics to VME bus.

3

BM

IOPO IOP1

FIG 1.3a SINGLE BASE MODULE

CONFIGURATION

(DUPLEX IOPs)

BMO

CM

BM31

AM

IOPO IOP1

FIG 1.3b MULTI BASE MODULE

CONFIGURATION

(DUPLEX IOPs)

BIVIO

I CP
jvtTCE

~DI'I!N

[os ~

I

_j

I I
·-

DISK TAPE VDU

CM

J

~ ~
[-;~~

J

~ E8
I OS l

PRINTER

I

CP- CALL PROCESSOR

MTCE- MAINTAINANCE

ADMN- ADMINISTRATIVE

OS- OPERATING SYSTEM

PP- PERIPHIRAL

AM

IOP

FIG ~.4 SOFTWARE ORGANIZATION

Software Architecture 1. C-DOT Digital Switching System

1.1.2 Switching System Configurations

· Using the above mentioned modules different types of switching systems can be

design~d. These configurations may have one lOP (simplex), which does not provide fault

tolerance, or two lOPs (Duplex) which provides for fault tolerance.

The configuration which are of interest, with duplex lOPs are

1.1.2.1 Single Base Module (SBM)

This is smallest possible configuration using above mentioned modules. In such a

configuration only one BM is connected to lOP. No AM or CM is present in such a

configuration. The functions of CM are performed by BM. Fig. 1.3a shows a single module

configuration.

1.1.2.2 Multi Base Module (MBM)

In such a configuration more than one BM (up to 32) are connected via CM to AM

and lOP. Every BM is assigned a unique number (from 0 to 31) which acts as BM identifier.

All files corresponding to a given BM have BM number suffixed in their file name. BM number

is also required while sending a message through HDLC. Such a configuration is shown in

Fig. 1.3b.

1.2 Software Architecture

1 .2.1 Overview

The software architecture in C-OOT DSS is distributed layered and highly modular in

nature. Every layer present higher level of abstraction to layer above it. The software is

divided into a number of sub-systems. Fig 1.4 shows the software architecture. Each

sub-system consists of number of modules (called processes) and every module in turn a

number of functions. The main sub-systems are

4

Software Architecture 1. C-DOT Digital Switching System

• C-OOT Real Time Operating System (COOS) - A real time operating

system which provides uniform interface to application programs. In

distributed architecture of C-OOT DSS, one of the important roles played

by the COOS is to provide inter process communication between process

residing in the different processors, through HDLC links. BM runs under

coos.

• Call processing (CP) sub-system - is responsible for executing functions

which actually process a call, e.g. call routing, call metering etc.

· • Administrative (ADMN) sub-system - provides for management of

exchange (billing, operator commands etc.) and other administrative

support functions.

• Maintenance (MTCE) sub-system - provides functions for uninterrupted

services to subscribers. This subsystem is responsible for detecting faults

and recovering from them. It also provides for close monitoring of the

systems sanity, comprehensive resource and data auditing facility which

enables it to quickly detect software faults and prevent their propagation.

• · Data base (DBMS) sub-system- manages the data bases globally. It uses

a indexed sequential file management system (C-ISAM). It hides the

physical organization of dc:.ta from application programs.

• Peripheral processors (PP)sub-system -Actual telephony hardware (with

6502 CPU) is controlled by the sub-system.

·; .2.2 Sub Systems Integration

Entire processing is distributed among these sub systems. They share and process

global data and communicate. with each other through different means of inter process (or

~

/
/

/
/

/
/

/

.~

/
/

/

/
/

/

BP

A.
/ \.

' ' ' ' ' '\
'\

'\
'\

'\

' ' ' ' '

IOPO IOP1..

IOP-IOP LINK

IOP-BP L_INK

FIG ::1~5 HDLC LINKS FOR

COMMUNICATION

Developm.ent Environment 1. C-DO T Digital Switching System

inter prOGeSsor) communication.

1.2.2.1 Inter Process Communication

Since different module::> of different subsystems are functioning on diffemnt

processors (in order to integrat•3 them) inter-process (or inter-processor) communicat;on

becomes a vital aspect of software architecture. COOS provides a uniform interface to all

applications, so it becomes nasy to communicate via COOS. ·Fig. 1.5 shows how

communication is performed betNeen mate lOPs and between lOP and BP. (Here one would

like to clarify that in SSM configuration lOP is connected to BM but in MBM it is connec:ed

to CM. Due to similarity in the architecture of CM and BM, for our purpose, we will not

distinguish between the two). High level data Link Controller (HOLC) is used to control the

communication, and a compwhensive library of functions is provided for applicaton

programs. Communications within lOP, however, are handled via different means provided

by UNIX; such as message queues, semaphores etc.

Every process has a UNIX message queue associated with it, by means of a unique

key, defined in C-OOT header files. A!l messages are to be received in this queue only. For

sending messages the queue associated with destination process is used. HDLC also makes

use of these queues for sending messages across the lOPs. This integrates the process o.'f

receiving a message from within the lOP and across the lOP.

1.3 Development Environment

The development environment at C-OOT is highly systematic. A number of VAXs,

microVAXs (under VMS) and Motorola 68010 based systems (under UNIX) are used. These,

systems are interconnected via Ethernet. Motorola systems (commonly known as IOPsj

provide an ideal environment, which is very close to target environment, for maintenance

and administrative sub-systems. However, actual validation of software is done in laboratmy,

which has experimental DSS configurations, and on site at Delhi Gantt. and Ulsoot

Bangalore telephone exchanges.

6

Development Environment 1. C-OOT Digital Switching System

C programming language is used. C-OOT has its own data structures for various

purposes, defined in Various "C" header files [App. C]. Files and libraries are well organized

and follow hierarchial system provided by most operating systems. An application

programmer is required to include these hE!ader files, depending upon configuration of DSS

and different release. Further, files are placed in different directories [1 0] depending upon

various conditions such as which subsystr3m they are meant for, whether a file is process

related or data related etc.

1.3.1 Why UNIX and 'C'

The UNIX operating system and "C" programming language are used for

development as [7]

• UNIX is widely accepted standard operating system .

• Most of standard packages (as C-ISAM) are available on UNIX

• Highly portable system, runs on a variety of hardware.

• The structure of UNIX makes it adaptable to the applications needs.

• Inter-process communication is easily performed in UNIX

• and "C" provides a good interface to UNIX. It also on its own has powerful

system programming facilities.

7

Chapter2

Fault Tolerance

F
ault tolerant computing is becoming more and more popular and indispensable as

computer systems are being put to more and more complex applications. Literally fault

tolerant system means, a system capable of recovering from a fault condition.

Providing uninterrupted power through battery backup to a computer system is a

common example of a fault tolerant system. In order to achieve this two different sources of

power are kept. In case main power supply fails, a switch over is performed from main supply

to battery without any delay. The switch-over is performed by a system (electrical or

electronic) which is capable of detecting a fault in main power supply. Similarly by introducing

redundancy systems can be developed which are capable of detecting faults and recovering

from them.

In certain systems, such as public switching system a condition of fault is not

affordable. As B. Egert puts it, in connection with switching systems, in his paper titled

Recovery Strategy for a Telephone Switching System (3]; "A very important factor in

maintaining a telephone exchange is need to reach stringent reliability requirements by

detecting and recovering from faults". Thus their design must incorporate features of fault

tolerance. C-OOT DSS has been designed with this view in mind.

Fault Tolerance in c .. DOT DSS 2. Fault Tolerance

2.1 Fault Tolerance in C-OOT DSS

In all the basic modules, except lOP, duplication of hardware has been incorporated

at card level. For example in BM, memory card and CPU card etc., are duplicated. At any

instant one of them is active. In case of a fault in active card, a switch-over is performed from

active to stand-by card without disrupting any of the ongoing processes. In the meanwhile

factors responsible for the occurrence of fault can be cleared.

2.1.1 ·Duplex lOP Architecture

lOP, however, has been duplicated as a whole. Each lOP has its own set of 1/0 devices

such as winchester disk, floppy disk, cartridge tape, printer, VDU etc. 1/0 devices of each

lOP are not duplicated. Hence lOP with its own set of 1/0 devices forms a security block.

lOPs are not configured as active/stand-by. Both lOPs function at any instant and are

connected to each other via High Level Dat_Cj. Link Controller (HDLC). One of the lOP is
-.

designated as master lOP and other one as slave lOP. The master lOP is connected to BM

(or CM) and is responsible for performing all the major functions. The slave lOP is tied to

master lOP and all slave lOP- BM messages are routed through master lOP. Both the lOPs

have their own set of duplicated data also. Backup devices like winchester are updated in

both the lOPs; that is whenever an updation is performed on its winchester the master lOP

requests the slave lOP to perform a similar updation on its own winchester. In case master

lOP goes faulty, the slave lOP takes over the functions of master lOP. However a system is

needed which is capable of detecting faults. Software faults are taken care of by maintenance

software on lOP itself.

2.1.2 Maintenance Software On lOP

After the lOP's power is switched on, when UNIX is booted, maintenance

sub-system's main process Input Output Configuration Manager (IOCM) takes the control.

It schedules the other processes in the maintenance sub-system. It is responsible for

resolving master/slave status of lOPs, resolving active/stand-by status of BPs etc. It stores

9

Data Organization 2. Fault Tolerance

all information regarding statii etc. in lOP memory through semaphore operations (as

provided by UNIX). It also monitors the overall sanity of lOP and if required changes the

statii accordingly. It also ensures availability of up-to-date data to slave lOP by performing

routine comparison (audit) of different sets of data present on lOPs. Audit Process is a part

of maintenance software and is scheduled by IOCM.

2.2 Data Organization

C-OOT DSS supports distributed processing. BMs, running under COOS perform

actual switching. In their memory they have huge database. However for their mass storage

requirements 1/0 devices connected to lOP are used. On lOP this data is stored in different

files. As described earlier memory cards in BM are duplicated, the Base Processor (BP)

writes on both the cards simultaneously, but reads from active card only. BP updates its

database as and when required ancl updates the backup data residing in lOP files on an

hourly basis.

Data on lOP is stored in different files. Files are further divided into different sets

depending upon the kind of data they contain. Each lOP has same sets of files. Different file

management systems are used to conveniently store different types of data.

2.2.1 File Management Systems

Although Unix offers only one kind of file, C-OOT DSS has two types of file systems.

2.2.1 .1 UNIX files

As provided by UNIX. It has a distinct feature, a UNIX file is a consecutive stream of

bytes without any control character ! Practically it is possible to store every character (from

0 to 255) in a UNIX file. A main cjrawback in UNIX file is that it can not be truncated according

to need. Truncation of files and selective modification is not permit!ed. This makes, removing

of a few bytes from a UNIX file a complicated task. Different functions are provided by UNIX

10

Processes On lOP 2. Fault Tolerance

to manage this kind of file. UNIX allows more than one users to access a file simultaneously;

that is two or more process can simultaneously perform read/write operations on a file. ·

2.2.1.2 C-ISAM files

Built over UNIX file system, this type of file offers functions to store, retrieve and

manipulate data in indexed sequential manner, and makes management of Database an

easy task. Every C- I SAM file can have multiple indices wit.h duplicate or unique key values.

In C-OOT C-ISAM files are indexed on two four byte long fields with unique key value. For

managing C-ISAM files different functions are provided in its library. However, there is no

equivalent of lseek system call in C-ISAM file. Appendix C provides a list of C-ISAM library

calls used in audit process. The information about record size, index fields, number of indices

etc. is stored in the file itself and can be extracted from there. A B+ tree is maintained for

sequential access of records in either increasing or decreasing order. It also provides for

locking at record as well as file level. The information about locks is stored in a different file.

2.3 Processes On lOP

A number of processes are running on lOP. At any given instant both lOPs are active.

The distinction between the lOPs is made on the basis of functions they perform. One of

them is known as master, as it performs major functions and also directs its mate on other

lOP (slave lOP) to perform the supporting functions. On both lOPs same executable image

of a process is kept. Every program is divided in two distinct parts. After finding the lOP

master/slave status, the process executes the required portion of program. As the number

of process present in lOP is large, some processes have been added to schedule other

related process, to streamline the inter process communication, to ensure that mutually

exclusive functions are not executed simultaneously and to execute different functions

according their priority.(for example Input Output Configuration Manager (IOCM))

11

Chapter3

Audit Process

A
s discussed earlier, duplex lOP architecture requires routine auditing of duplicated

sets of data present on lOPs. In addition to this the distributed processing architecture

also requires some kind of mechanism to ensure consistency of different sets of global data

available to different modules. This necessitates performing audits on sets of global data

present on different basic hardware modules.

This chapter concentrates on different design requirements and considerations of

audit process.

3.1 Audit Requirements

As has been discussed, two kinds of audits are required.

3.1.1 lOP- lOP (Disc to disc) audits

Essentially required by duplex architecture of lOP, these audits .. however also help

in maintaining overall consistency of global data structures. These are performed by

comparing corresponding files on lOPs. In case of inconsistency data is to be updated from

master lOP.

12

Invocation 3. Audit Process

3.1.2 lOP- BP (Disk to memory) audits

To ensure the availability of consistent data to different hardware modules such audits

are performed. The data structures residing in BP memory are compared with corresponding

files on lOP. In case of inconsistency data is to be updated from lOP file. lOP -BP audits are

performed after lOP- lOP audits to ensure that data in lOP files is consistent.

3.2 Invocation

As discussed earlier audits should be performed periodically and on request. In

C-OOT DSS audits can be invoked by different means.

3.2.1 System Initiated Auditing

Audits are invoked by system in case of any recovery. All unexpected errors

encountered by processes lead to audits. Also whenever the system has reasons to suspect

the data corruption or a data inconsistency, appropriate audits are to be performed. For

example, in case of lOP switch over, there is a possibility of files generated or modified due

to system initiated action to become inconsistent.

3.2.2 Calendar Based Routine Auditing

To run audits periodically, audit commands can be placed in calendar process.

Calendar schedules these audits at specified frequency (say 1 0 Hr.).

3.2.3 Idle Time Audits

It is possible to schedule audits when the processor has no work at hand. All audits

run during idle time depending upon frequency assigned to them.

3.2.4 Operator Initiated Audits

The operator can start audits by placing appropriate command. These are carried out

13

Design Considerations 3. Audit Process

with highest priority, as it is assumed that operator will initiate audits when some kind of

malfunctioning is noticed by him.

3.3 Design Considerations

• Audits are prone to race conditions i.e.: by the time one gets the two sets

of data, which need to be compared, one of them may get changed or it

may be in a transient state. As a result audits may fail although the data

may be consistent.

• Passing on the complete file or record, for comparison leads to heavy

loading of communication links and thus should be avoided.

• Running of master functions of audits on master lOP will load it and rnay

result in its performance degradation.

• Since there are some unused (dummy) bytes in data structures, checksum

or even a byte by byte comparison may fail even though data structures

may be consistent.

• Since IOCM schedules some other processes also, a provision should be

there to abort the audits, whenever IOCM requires. Another provision for

continuing the audits, from the point where audits were aborted, should

14

Auditing Strategy 3. Audit Process

also be there.

• Files present on lOP are well arranged in different sub- directories.

•

Nevertheless a provision should be there to change the path connecting

these files without recompiling whole program. ·This will facilitate

re-arrangement of files, if needed, at a later stage.

Since there is no way to find the link status, in case of failure, audit may

keep ~:m waiting for a reply from its mate.

• The DSS configuration can have upto 32 BMs. Audit process should adjust

itself according to actual number of BMs present in the configuration.

• Last but not the least, ali messages should have a format as specified by

C- DOT. Opcodes are defined in various header files and should be taken

from there. However definitions which are exclusive to audits and are not

required by any other process, can be defined locally.

3.4 Auditing Strategy

With above mentioned points following strategy was adopted for implementing audits.

3.4.1 lOP- lOP Audits

lOP -lOP audits can be performed at two levels. One which provides a gross check

and other which provides an extensive check on data files. These are categorized as FILE

LEVEL and RECORD LEVEL respectively.

3.4.1.1 File Level

It is possible to audit two files existing in lOPs. These audits will run periodically and

also during idle time. However no corrective measure is taken based on this check. A failure

I
IS

Auditing Strategy 3. Audit Process

of this check leads to extensive Record Level check. If this check is satisfied then Record

Level check is not done in case of routine and idle time audits.

The process of file level audits is as follows : The file on slave lOP is taken as slave

file and file on master lOP is taken as master file. File size, in case of UNIX file and number

of records in case of C~ISAM file, is computed by slave lOP and it directs the master lOP to

perform the same function and reply back with results. Comparison is performed on salve

lOP, after a reply is received from master lOP. If these checks pass, audits are said to be

passed. The slave lOP will perform the task of report generation also.

3.4.1.2 Record Level

The process of record level auditing is as follows :The file on master lOP is taken as

master file and file on slave lOP is taken as slave lOP as slave file. The slave file is scanned

sequentially from the first record. Records are locked, a block of records is read and Cyclic

Redundancy Code Checksum (CRC) of individual records are computed. To speed up the

comparison process a CRC of all ~Res is also. computed. (size of block can be decided).

Similar operation is carried out on master file, and the CRCs are passed on to slave lOP

which carries out the task of comparing them. Individual CRCs are compared only when

master CRC comparison fails. After detection of inconsistency, record is updated from master

lOP. In case no discrepancy is found next block is read and process is repeated till end of

file is reached. There is possibility of hitting following errors:

• Record is missing in slave lOP: Corresponding record from master lOP is

ADDED in slave lOP file.

• CRC mismatch occurs : Corresponding record from master lOP file is

COPIED on slave lOP file.

• Record is missing in master lOP : Extra record present in slave lOP file is

DELETED.

1()

Auditing Strategy 3. Audit Process

• Audits fail in locking a record or file : This may be a temporary situation.

Again n number of tries are given, if every try fails a report to this effect is

sent to IOCM to enable it to take necessary action.

3.4.2 lOP- BP Audits

The data structures in BP memory are compared against the files existing on lOP.

The lOP data is taken as master data, in case of any inconsistency. The record level locking

concept holds good in this case also except that it is not possible to lock the data in BP . .

memory. lOP - BP auditing is done after lOP - lOP auditing is over, to ensure that lOP has

consistent data. Further lOP- BP audits have to ·take care of a number of BMs present in

the configuration. The task of comparing CRCs etc. is done at BP end. On lOP end the

process only retrieves the required data from files and pass the CRC/data to BP end. BP-end

of lOP- BP audits has already been designed and implemented. To take care of variability

_in number of BMs present in the configuration following steps are taken:

3.4.2.1 Single Base Module

Since there is only one BM, one such process can take care of all such audit requests.

In this case there is no need to provide BM number for communication, filename suffix etc.

3.4.2.2 Multi Base Module

In this case upto 32 BMs can exist and audit request can come from any of these

BMs. The BM number is specified along with the request. A new copy of the process is

executed for every request from a different BM. To achieve this a scheduler is written which

schedules the audit requests and creates copies of the process for each BM.

17

Chapter4

Implementation - I

I
n the previous chapter we discussed the strategy adopted for performing audits. This

chapter concentrates on actual implementation· of audits and attempts to describe its

algorithm.

4.1 lOP- lOP Audits

The algorithm adopted in case of lOP- lOP audits is shown in fig 4.1. For convenience

the algorithm has been divided in different portions. The reference to the divided portion

appears in block letter with comments. Further, although a check is done for every kind of

error, the steps are not shown in the algorithm. All kinds of errors, with a few exceptions,

encountered lead to a function 'err_hand()' which handles these errors. This function is

discussed in the next chapter. Errors which do not lead to this function are shown at the

appropriate places.

18

lOP- lOP Audits

program iopaudit

begin

initialize the global variables;

repeat

receive a message;

if lOP _status = master

then

begin

end

else

begin

FIGURE 4.1.1 (*perform slave functions*)

4. Implementation - I

FIGURE 4.1.2 (*perform master functions*) .
end

forever;

end (* of program *)

(* perform slave functions *)

case (opcode)

begin

OPEN:

begin

open the requested file:

fig 4.1

reply back with the result; (* send message *)

end

CLOSE:

begin

close the requested file;

reply back with the result; (' send message ·;

end

READ:

begin

read the requested file; (* one record at a time *)

reply back with the record; (* send message *)

end

CCRC:

begin

read the requested file; (*one block at a time ·;

compute CRC of all records;

compute CRC of all CRCs; (*master CRC *)
19

lOP- lOP Audits

reply back with the result; (" send message ·;

end

SIZE:

begin

if requested filetype =UNIX

then

begin

find its size; t number of bytes ·)

end

else

begin

find number of records in it; (" C-/SAM files ·;

end (* fi *)

reply back with the result; r send message .)

end

SEEK:

begin

move file pointer by requested amount; t of the current

file*)

reply back with the result; t send message *)

end

others:

begin

do nothing; t !!! *)

end

end (* esac ~)

(* perform master functions *)

case (opcode)

begin

START:

begin

extract set number;

fig. 4.1.1

form stack of all the filenames; r in the requested

set*)

CONTINUE:

begin

do nothing;

20

4. Implementation - I

lOP - lOP Audits

end

others:

begin

set bad_opcode_flag;

end

end (* esac *)

while stack is not empty and no error flag is set

do

read filename; t from top of the stack ·;

read filetype; t from top of the stack ·;

4. Implementation - I

case (subfield) t subtield of message received from IOCM

*)

begin

FILE_LEVEL :

begin

FIGURE 4.1.2.1 (* file level audits *)
end

RECORD_LEVEL:

begin

FIGURE 4.1.2.2 (*record level audit algorithm*)

od

end

end (* esa~ *)

if all flags are clear

then

begin

pop (* bring stack pointer down by one ·;

end (* fl *)

reply back with the result; t to IOCM and to actual initiator

*)

(* file level audits *)

if type = UNIX

then

begin

fig 4.1.2

find its size; (*number of bytes in the tile ·;

21

b B ' . 3 '0 ~ ~ 6 2..\ I 3 . 0'
s~ ~3

a.u

lOP -lOP Audits

end

else
·begin

find number of records in it; (* C-ISAM file ')

end

set timer alarm; t for time outs *)

send SIZE to mate; (*master lOP*)

receive a message;

if opcode =ABORT

then

begin

set abort_ flag;

end(* fi *)

if alarm

then

begin

set time_out_ffag;

end(* fi *)

if all flags are clear

then

begin

compare the file sizes

if file sizes are different

then

begin

increment error_count;

end (* fl *)

end(* fi *)

(* record level audits *}
open the file;

set timer alarm; t for time outs *)

send OPEN to mate; t master lOP*)

receive a message;

if opcode =ABORT

then

begin

set abort_flag;

end(* fl *)

if alarm

then

begin

set time_out_flag;

fig 4.1.2.1

22

4. Implementation - I

lOP- lOP Audits

end(* fi *)

if all flags are clear

then

begin·

4. lmplernentation - I

FIGURE 4.1.2.2.1 (*compute CRC, compare CRC, update*)
end

close the file;

set timer alarm; t for time outs *)

send CLOSE to mate; t master lOP ")

receive a message;

if opcode = ABORT

then

begin

set abort_flag;

end(* fi *)

if alarm

then

begin

set time_out_flag;

end(* fl *)

fig 4.1 .2.2

(*compute CRC, compare CRC, update *)
repeat

read a block;

compute CRC of all records;

compute CRC of all CRCs; (*master CRC ")

set timer alarm; (*for time outs *)

send CCRC to mate; (* master lOP ")

receive a message;

if opcode =ABORT

then

begin

set abort_ flag;

end(* fi *)

if alarm

then

begin

set time_out_flag;

end(* fi *)

if all flags are clear

then

begin

compare master CRC;

23

/

lOP- lOP Audits

if master CRCs are different

then

begin

only*)

increment file_ error_ count; r error count for this file

iffile_error_count > max_trials_to_be_given

then

begin

else

begin

update the fife;

4. Implementation - I

insert the file at bottom of the stack (*leave now, try

later*)

end (* fi *)

. end (* fi *)

end(* fi *)

until EOF or any flag is set;

4.1.1 Explanation of algorithm

fig 4.1.2.2.1

Audit process always keeps running (eternal process), it never exits on its own. After

initializing the process it enters an infinite loop. It is now ready to receive a message from

IOCM. After receiving the message it checks the master /slave status of the lOP. To avoid

loading of master lOP, slave functions are executed on it while master functions are executed

on slave lOP. [fig 4.1]

Slave functions, on master lOP, are tied to master functions. Only the requested

function is executed and the result including errors encountered, are sent back to mate lOP.

Opcodes are used to communicate. Subfield in the message is used to communicate the

result of operation (FAILURE/SUCCESS). These opcodes are

• OPEN

24

lOP- lOP Audits 4. Implementation - I

·• CLOSE

•· READ

• CCRC

• SIZE

• and SEEK

Master functions are responsible for controlling slave functions in addition to

performing their usual task of comparison etc. After receiving the message from IOCM, if

lOP status is slave then these functions are executed. Two opcodes are expected from

IOCM: START and CONTINUE.

In case of START a function is called to form a stack, implemented by a linked list, of

all the filenames which belong to the requested set. In case of CONTINUE, however, such

a stack already exists (remaining files of previous audits, which were aborted for some

reasons) so only the can_not_continue_flag is checked to make sure that previous audits

were aborted.

File attributes (name, type etc.) are read one by one, starting from the top of the stack

and required audits (file level or record level), are performed. This process continues until

either stack becomes empty (all files audited) or some error flag is set due to time- out or

abort from IOCM etc. After this a report is sent to both IOCM and actual initiator of the audits.

File level audits are comparatively easier to implement as no corrective action is to

be taken. For every file, the file size is computed, a request is sent to mate to perform a

similar operation. Before going in wait state, expecting a message from mate, a timer alarm

is set. This timer alarm will wake up the process in case mate is not able to reply. This is

lOP- BP Audits 4. Implementation - I

done to avoid master functions waiting infinitely for a reply from mate.

At this point a check is also made for an ABORT message from IOCM. This provides

IOCM, a mechanism by which it can stop the audits without killing the audit process. On

reception of a 'SUCCESS' message from its mate, master function compares the file sizes.

On discrepancy error count is incremented. In case 'FAILURE' is received file is inserted at

the bottom of the stack. When rest of the files are finished this file will automatically come

up for auditing.

Record level audits are slightly complicated. Unlike file level audits, many dialogues

with mate lOP are required, in order to audit a file. First file is opened and after setting alarm,

a message is sent to mate. It should be clarified .here that whenever a dialogue with mate

lOP is initiated, timer is set and after every dialogue message is checked for an ABORT. On

receiving the reply from mate, a block is read and its CRCs calculated. The next message,

to read a block and compute its CRC is sent. Received master CRC is compared against

the one computed here. In case mismatch is found, no corrective is taken. Only a counter

is incremented, which counts the number of times the discrepancy was found in the file. The

process of reading a block, computing CRC etc. is repeated till end of file is reached.

However, if this counter becomes greater than a pre- defined number, say 5, then a function

is called to update the erroneous record from master file. This is done to ensure that

discrepancies which were found in their transient states are not propagated. Only when on

all occasions the comparison fails, the updation is performed.

4.2 lOP- BP Audits

The master functions of lOP - BP audits are residing on BP. On lOP only slave

functions were developed. The algorithm is shown in fig 4.2. The opcodes have been defined

globally, as a number of processes will be communicating with it.

26

lOP- BP Audits

program bpaudit
begin

initialize;

repeat

receive a message;

case (opcode)

begin

MINTRO:

begin

4. Implementation - I

extract the sender process· identification from the message;

reply with own identification. r· introduction ! ·;

end

MCRCRO : (* request for computing CRC *)

begin

end

open the required file;

iead a block;

compute CRCs of all t/7e records:

compute CRC of ali the CRCs: (" master CRC ·;

reply back with CRCs;

MCRCFAIL : (* a mismatch has occurred *)

begin

read the required record;

compute CRC of the record:

reply back with record and its CRC:

end

end (* esac *)

forever;

end(* of program*)

4.2.1 Explaination

fig 4.2

The lOP end of lOP - BP audits is tied to BP end. It performs only those functions

which are requested by the BP end. Three different requests are expected. These are :

MINTRO, MCRCRO, MCRCFAIL.

MINTRO is received when some one initiates audits and SP-end starts talking with

lOP-end. Process identifications are exchanged.

27

lOP- BP Audits 4. Implementation - I

MCRCRQ is a request to read a particular block and compute its CRCs. These CRCs

are then compared by BP-end. In case a discrepancy is conformed, BP-end sends a request

(MCRCFA1l) to read the erroneous record and send it alongwith its CRC.

Validation

Initial tests are carried out on the machine used for developmental work (node IOPF

in this case}. All errors are removed. After succeeding in these tests the process is tried in

lab, where an experimental setup is provided. After studying the behavior (such as CPU time

consumed, amount of disk 1/0 done etc.) of the process for some time, the process is

synchronized with other processes. When every thing goes fine it is tested on proper DSS

configurations, either in Bangalore or in Delhi. The audits have been tried successfully on·

IOPF (one used for developmental work) and in the lab.

28

Chapter 5

Implementation .. II

S
implicity, Upgradability and Maintainability are some of standard measures of software

quality. While developing a software, programs should be modular so that they can be

easily modified. Debugging modular software is a relatively easier task and is easier to

understand by others. Modular design of software makes field debugging and upgrading,

an easy task. Further, installation of patches becomes less tedious [5].

Keeping in mind these factors various functions were developed for implementation

of AUDIT PROCESS. This chapter attempts to explain the different functions, algorithm

adopted for functions is also discussed wherever necessary. For providing flexibility, all

variables which are likely to change, have been defined as shell variables and then used

inside the program. UNIX provides functions to manipulate the shell variables inside a ·c·

program.

As audits are very sensitive in nature; i.e. any Error caused by audits may lead to

fatal errors in the system. It is also important to handle error conditions in Audits very carefully.

Any kind of modification in files should be done only when discrepancy is absolutely clear.

Keeping this in mind, at every level extensive checks for various errors has been provided.

All unexpected errors lead to abortion of audits and audit initialization.

29

lOP-lOP Audits 5. Implementation -II

5.1 lOP-lOP Audits

• audit_init(}

Initialization is a very important task. Every flag is reset. Global variablns like

master/slave status of lOP are also initialized. This status is written in a semaphore by

IOCM and is read from there. Message queue associated with audit is created, if re·=1uired,

and flushed. This is done to avoid reading spurious messages, if present in the queue.

Pathname of files to be edited, is also read from shell variable "GLBDATAP". This steo

facilitates the re-arrangement of files at a later stage.

• rev _msg(buffer)

• send_msg(qid, buffer, nbytes)

• send(pid, buffer)

For receiving and sending messages three functions have been written. All

messages, including from BP and mate lOP are received on queue attached to audits.

However messages across lOP are dispatched using send call of HDLC library anj

messages within lOP are dispatched using msgsnd call of UNIX.

• extract(setno)

For storing the attributes of all the files. on which audits are to be performed, a stack

is implemented using_ linked list. A function has been written to extract all the required

filenames (belonging to given set. set number 0 implies all files) and form a stack using

linked list. Complete list of files present on lOP has been divided in different sets. A request

for audits specifies whether all files are to be audited or a particular set (of files) is to be

audited.

30

lOP-lOP Audits 5. Implementation -II

• push(stack number, item list)

• pop(stack number)

• insert(stack number, item list)

For manipulating the stack, three functions have been provided. These are :

• push: Which places an element on top of the stack.

• pop: which removes an element from top of the stack.

• insert: Which inserts an element at the bottom of the stack. Algorithm has

been derived from one described by D. E. Knuth [1].

• fil_open(name, type)

• fil_read(fd, type, buffer)

• fil_seek(fd, type, offset, wt1ence)

• fil_crc(fd, type, nrecords, buffe1·)

• fil_close(fd, type)

• fil_size(fd, type, &recsize)

File operations require opening of files, with a proper check for locks, closing of file

after releasing all locks, and reading the file record by record, after locking the records. For

31

lOP-lOP Audits 5. Implementation - II
--------------~~---

these purposes different functions have been written.

fil_open: This function opens a file, by using !SAM function call isopen, in case of

ISAM file. For UNIX file it executes system call open. Since UNIX does not provide for file

locking, a kind of mutual exclusion technique is used. Existence of lock is indicated by the

presence of a file by same name in directory specified by a shell variable. Before opening

the required file, a check is made for existence of lock file. After successful opening of file,

lock file is created in specified directory, to exclude others.

fil_close: It closes the required file, and releases all locks. UNIX file locks are released

by deleting the file, created by fil_open. Releasing of locks is a very important operation. As

locks exclude other processes from accessing the files, an unreleased lock can cause major

damage to system sanity.

fil_read: This function reads a record of size recsize from a file identified by its file

descriptor and type ano fills the buffer with the data read.

fil_seek: Another very important file operation is to move around in a file. In case of

UNIX lseek system call implements this, however, in case of C-ISAM files indirect approach

had to be taken. In case of C-ISAM files the file pointer is moved according to the primary

index only. Offset can be \positive or negative. Pointer is moved in forward direction for

positive offsets.

fil_size: Yet another file operation is to determine the number of records (bytes) in

a C-ISAM file (UNIX). Function fil_size has been written for this purpose.

fil_crc: This function reads a block of data, calculates CRCs of all the records and

CRC (master CRC) of all the CRCs. These CRCs are put in a buffer.

To calculate CRC of the data following function was developed.

32

lOP-lOP Audits

• ere(buffer, nbytes)

program ere
begin

initialize ere to 0;

initialize byte pointer i=O;

repeat

set ere= exor two input bytes with ere:

initialize bit counter;

repeat

shift the ere by 8 bits:(' shift ')

5. Implementation- II

set j = (exor ere with FF Hex) · ? (' mask and mul ·;

set k = jth element in look-up table:·

set ere= exor ere with k.

increment bit counter:

until bit counter> LIMIT t limit flash defined ·;

until i > nbytes;

end (* of program *)

fig 5.1

The algorithm has been. derived from the one (reduced table look up algorithm)

explained in [2]. The values of shift, mul, mask and li~it have been set after analyzing the

performance of algorithm at different values.

• update(mcrc_buff, scrc_buff, m_nrecords, s_nrecords)

For comparing CRC and updating records whenever required, another procedure has

been provided.

program update
begin

nrecords =min(s_nrecords. m_nrecords)

i = 0

repeat

if mere_ buff{ i] not= sere_ buff{ i] ('mismatch pin pointed ·;

33

lOP-lOP Audits

then

begin

move the pointer to ith record:

set timer alarm;

5. Implementation - II

send SEEK to mate;(* bring mate's pointer to required place *)

receive a message;

if opcode = ABORT

then

begin

set abort_flag;

end (* fl *)

if alarm

then

begin

set time_out_flag;

end

if all flags clear

then

begin

set timer alarm:

send READ to mate:(* ask mate for the record *)

receive a message:

if opcode =ABORT

then

begin

set abort_llag:

end (* fi *)

if alarm

then

begin

set time_ouf_:_flag:

end

if all flags clear

then

begin

if filetype = UNIX

then

begin

write record;(* for UNIX file simply over-write the record *)

end

else

begin

rewrite the currenr record: (* try re-writing the record *)

if rewrite fails: r it fails if current record has different key value .. *)

3-l

lOP-lOP Audits 5. Implementation- II

then (* .. this means either a record is missing or is extra In master

begin

write tlw record; t try adding the record ")

if write fails (* it may tail if record with this key value is present in sl.

then

begin

delete current :ecord; t delete the extra record in slave file •

end(* fi *)

end(* fi ")

end(* fi *)

end (* fi *)

end t ti ·;

increment i; t look for discrepancy in ttw next record ")

until i > nrecords; t until all records are checked ·)

if s_nrecords m_nrecords r stave has some missing records ·)

then

begin

add all corresponding records frori1 master file; .

end(* fi *)

if s_nrecords m_nrecords t slave t1as extra records ·)

then

begin

delete all such records;

end (* fl *)

end (* of program *)

fig 5.2

It performs the task of updation. The strategy is as follows. In case of UNIX file the

record form master file is copied or added as such for deletions, since UNIX does not allow

for removing of bytes from a file, in indirect approach is used. A new temporary file is created

with only required bytes. Then temporary file is moved in actual file name using 'C' function

system(). In case of C-ISAM files first the record from master file is rewritten on erroneous

record in slave file. If operation fails due to index duplication, which means a record is either

extra or missing on slave file. Then record is written (added) on slave file, failure of this

operation will indicate presence of an extra record on slave file which is then deleted. This

process is repeated for every erroneous record.

err_hand(function, errorno)

35

IOP-BP Audits 5. Implementation- II

Finally for handling different kinds of errors a procedure has been written. This

function provides an extensive error checking mechanism. On every encounter of error, this

function is called. This function analysis the error, in case of unexpected errors a check is

made on master/slave status oUOP, on confirmation of a change, audits are aborted without

sending a reply, otherwise abortion is accompanied by a report as usual. It also maintains

a list and count of all errors encountered by audits.

5.2 IOP-BP Audits

Most of the functions required are common to both lOP - lOP and lOP- BP audits.

Only those functions, which are exclusive to lOP- BP audits are discussed here.

• extract_filname(index)

A function is needed which can provide name of file, if index of that file is given.

• block_seek(nblocks)

Since in case of BP- lOP audits, CRC are to be computed block by block, a function

for moving around in a file block by block has been developed over the function fil_lseek().

36

Chapter6

Conclusion

A
udits were implemented and tested successfully. Audits involved lot of complexities

and conceptual bugs besides programming bugs. In this chapter a critical review of

AUDIT PROCESS is presented highlighting shortcomings and its solutions. Major factors

determining quality of program are simplicity, sufficiency i.e. speed, and conceptual and

implementation correctness. All of these are considered while making critical comments on

a program.

6.1 Correctness of master file :

Here we have assumed that master file contains correct data. This assumption is not

correct. As discussed earlier lOPs are not working in ACTIVE/STAND-BY configuration, Both

lOPs are always active. One of them performing master functions and other one performing

slave functions. In a situation when both lOPs are working a process may write on slave lOP

first and then on master lOP. Some process may follow reversed sequence. In latter case

master file will have reliable data, but in first case slave file will have reliable data.

A possible solution to this can be worked out if it can be ensured that all process will

follow same sequence for, writing onto a file. Another approach could be to have triplicated

data and thumb rule of, majority is authority is adopted.

37

Locking: 6. Conclusion

However, both approaches involve a substantial increase in system overheads.

6.2 Deletion of record :

As far as question of deletion of record is concerned, It is always better to have a

record, may be incorrect, than nothing at all !' Deletion of record may lead to complete loss

of information. In case extra records are found in slave file these should be added in master

file.

6.3 locking :

To avoid synchronization problems locking is performed, this excludes other

processes from accessing the file. Consider a process which locks a file for access and after

locking is over, the operating system pre-empts the process. Now since file is locked, no

other process can access the file and the process, which created the lock is waiting to be

scheduled, by the operating system. In a situation, where locking is extensively used, the

response time of all applications is bound to increase substantially. However a more alarming

situation is, when after creating a lock, the process is killed due to, say, a bug in the software.

In this case, the lock will never be released, which may lead to fatal blows to the system.

A solution can be found if concept of MONITORS [ref. 3] is introduced; that is there

should be a process for performing read/write operations ori a file. All other processes willing

to perform read/write operation on a file should direct there request to this process, which

in turn, will schedule them. The question o' locking discussed in previous section can be

taken care of, by this process.

However, all processes in the software system will need a change, this will involve

several man-hours of programming.

CRC 6. Conclusion

6.4 Memory locks :

On BP side, the data resides in memory and there is no provision of locking the data

in memory. Every kind of synchronization problem can be encountered in such an

environment. The audit counterpart on BP side must take extra precautions, while updating

a record. Introduction of memory locking will make BP processes slow and hence should be

discouraged.

6.5 C-ISAM

The package used for handling C-ISAM files, is very slow. For manipulation of records

it consumes a lot of time. Since C-ISAM calls are extensively used by audits, and other

processes as well, these calls should be optimized and moved closer to the operating sys:em

kernel. This will result in an increase in overall response of the system. Further there is no

equivalent of !seek system call of UNIX, whictl makes moving around in a C-ISAM file, without

reading a record, highly inefficient. Providing such a function will make C-ISAM more

powerful and side by side improve efficiency of application programs.

6.6 CRC

In audit process records are not compared byte by byte. The comparison is done by

computing a Cyclic Redundancy Code for the records and comparing them. An inconsistency

is said to have been encountered if CRCs are different, for the corresponding records. As

has been observed, there are redundancies in CRCs; that is two altogether different records

may yield same CRC. This property, may hide some discrepancies in the records, from the

audits. If a 128 byte record is taken and a 2-byte CRC is computed, then on an average 64

different records may land up on same CRC. (we will refer to it as share ratio). Presently

no solution exists for such a problem. However improved CRC algorithms can be adopted.

For example, an algorithm which maps all records containing non ASCII data, onto a single

CRC, will improve the share ratio for ASCII data, at the cost of. non ASCII data. Such an

algorithm is known as biased algorithm.

39

Appendix A

Abbreviations And Glossary

6502

68010

- A micro processor with 8 bit data bus and 16 bit address bus.

-Serial number of a micro processor manufactured by Motorola Inc. of

U.S.A. It is a member of 68xxx series of micro processors.

AM -Administrative Module: A basic module of C-OOT digital switching

ASCII

BIT

BM

BYTE

c

coos

system.

-American Standard Code for Information Interchange.

-Binary Digit.

-Base Module: Primary growth unit of C-OOT Digital Switching System

and one of its four basic modules.

-A group of BITs (usually eight).

-A programming language having powerful capabilities for system

programming.

-C-OOT real time operating system: Base Processor with 6801 o CPU

A -On£.}

C-OOT

C-OOT

C-IS AM

A. Abbreviations And Glossary

runs under COOS and provides uniform interface to rest of the

modules.

-Centre for development of Telematics: India's Telecom technology

Centre.

-A professional package for indexed sequential access file

management system.

CM -Central Module: A basic module of C-OOT Digital Switching System.

CP -Call Processing: A number of complex functions are performed to

process a telephone call. Providing dial tones etc., searching of

available path for making physical connections between the called and

calling party etc., all of tt1ese fall under call processing functions.

CPU -Central Processing Unit

CRC -Cyclic Redundancy Code: A code used for transmission of data with a

scope for error detection/correction.

DSS -Digital Switching System: Generally used for telephone/telex

DTMF

HDLC

exchanges designed using digital technology.

-Dual Tone Multi Frequency :A coding in which two tones on different

frequencies are used for distinguishing digits dialed by a telephone

user.

- High level data link controller: Used in C-OOT Digital Switching System

A -Two

1/0 A. Abbreviations And Glossary

for communication link control between various modules.

1/0 - Input/Output

IOCM - Input Output Configuration Manager: A process which schedules audit

process.

lOP - Input Output Processor: The front end computer system for C-OOT

Digital Switching System built around 68010 CPU and running under

UNIX. It supports a variety of peripherals such as VDU, printer, disk

. . ' \

denve, tape denve etc.

microVAX -Micro VAX: a computer system developed by digital equipment

corporation U.S.A.

MBM - Multi Base Module: A typical configuration of C-OOT Digital Switching

System in which upto 32 base modules are present. Such a

configuration is under going trials at Ulsoor, Bangalore, telephone

exchange.

OOS -Out Of Service: Condition indicating that a unit is not working properly

and has been removed from service.

PP -Peripheral Processing: Actual s~itching ie. making the physical

connection between caller and called party, and other related functions

fall under this category.

SBM -Single Base Module: a configuration of C-OOT Digital Switching

System in which only one base module is present such a configuration

A- Three

UNIX

UNIX

VAX

VDU

A. Abbreviations And Glossary

is under going trials in Delhi Cantt exchange.

-An operating system becoming more and more popular due to its

flexibility, simplicity. portability and adaptability.

-Virtual address extension: a brand name of computer system

developed by Digital Equipment Corp. U.S.A.

-Visual Display Unit: A gadget on which output from a computer is

displayed on a television like screen.

A- Four

AppendixB

System And Function Calls

B.l UNIX System Calls

• int creat (*filename, mode)

Greats a file or prepares to rewrite an already· existing file by name pointed by

*filename. Returns filedescriptor or -1.

• int open (*filename, mode)

Opens a file pointed by filename with mode specifying read only, write only etc.

Returns file descriptor or -1.

• int close (fd)

Closes an open file described by filedescriptor. Returns 0 or -1.

• int read (fd, *buffer, nbytes)

-
Reads nbytes number of bytes in a buffer pointed by *buffer from a file described by

filedescriptor fd. Returns number of bytes actually read or -1.

• int write (fd, *buffer, nbytes)

B-One

UNIX System Calls B. System And _function Calls

Writes nbytes number of bytes from a buffer pointed by *buffer onto a file described

by filedescriptor fd. Returns number of bytes actually written or -1.

• int lseek (fd, nbytes, position)

Moves the file pointer of file decribed by fd by nbytes number of bytes from a position

specified by position. If position= 0 then start of file is taken, position= 1 then current position

of file is taken, position = 2 end of file is taken. nbytes can be negative or positive. Returns

positin of file pointer from start of file.

• int stat (*filename, *buffer)

This call fills the buffer pointed by "buffer with information about the file pointed by

*filename (such as file size, date of creation etc.). Returns 0 or -1.

• int msgget (key, flag)

Opens a queue tagged with a key value 'key'. if a queue with same key value does

not exist and (flag & IPC_CREAT) is true then a new queue is created. Returns queue

identifier of the queue or -1.

• int msgrcv (qid, *buffer, nbytes, mtype, msgflag)

Recieves first nbytes number of bytes of a message of type 'mtype' in buffer pointed

by *buffer from a queue described by 'qid'. msgflag specifies whether to wait for a message

or return immidiatly. Returns number of bytes recieved or -1.

• int msgsnd (qid, *buffer, nbytes, msgflag)

Sends nbytes number of bytes from a buffer pointed by *buffer with type of message

B-Two

'C' Function Calls B. System And Function Calls

as 'mtype' in a queue described by qid. msgflag specifies whether to return immidiatly or

keep on trying till message is actually sent. Returns 0 or -1.

• int semget (key, number_sema, sem_flag)

Opens orcreats number_sems number of semaphores tagged with a key value 'key'.

if a semaphore with same key value is not open and (sem_flag & IPC~CREAT) is true then

semaphores are created. Returns semaphore identifier.o.f the queue or -1.

• int semctl (sid, snum, command, arg)

Executes a variety of semaphore commands, specified by command and argument

on semaphore described by semaphore identifier sid and semaphore number snum. Returns

value as specified by command or -1.

• int (*signal (sig, function)) ()

Catches a signal specified by sig and performs function 'function'. Returns previous

value of function or -1.

B.2 'C' Function Calls

• char *getenv(*name)

This function finds the value associated with shell environment variable 'name'.

Returns pointer to value or NULL.

. char *malloc(size)

Allocates a memory area for the calling process of size 'size'. Returns pointer to

memory area or NULL.

B-Three

'C' Function Calls B. System And Function Calls

• void perror (*message)

Displays description of error encountered by calling process alongwith message

pointed by 'message'.

• int fprintf(*ptr, control, arg1, arg2, ... }

Prints arguments given in the list onto a file pointed by ptr according to a format

specified by control. Returns number of characters printed or -1.

• int printf (control, arg1, arg2, ...)

Same as fprintf. Only difference is that printing is performed on standered output file·

(stdout).

• int scanf (control, arg1, arg2·, ...)

Scans the standerd input fi.le (stdin) and accepts the values for arguments according

to format as specified by control. Returns number of arguments succesfully read. If input

terminates before any kind of conflict occurs then it returns EOF.

• char *strcpy (*s1, *s2)

Copies string pointed by s2 on string pointed by s1 stoping after null byte has been

copied. Returns pointer to s1.

• char *strcat (*s1, *s2)

Concatinates string s2 with string s1. The result is null terminated string. Returns

pointer to s1.

B-Fout·

C-ISAM Library Function Calls ___________ B. System And Function Calls

• int system (*command)

Issues a shell command pointed by 'command'. Returns -1 if it is unable to issue the

command. However if command is not a legal shell command, no error is reported.

B.3 HDLC Library Function Calls

• int addqid (qid, pid)

Maps the given qid into COOS type pid for communication through HDLC. Returns 0

or -1.

• int send (pid, *buffer)

Sends a message via HDLC to a process defined by pid from a buffer pointed ty

'buffer'. Returns 0 or -1 .

B.4 C-ISAM Library Function Calls

• int isopen (*name, mode)

Opens a C-ISAM file in the mode specified oy 'mode'. Returns file descriptor of the

file or -1 .

• i nt isclose (fd)

Closes an already open C-ISAM file. Returns file descriptor of closed file or -1.-

• int isread (fd, key, *buffer, mode)

Reads a record from a C-ISAM file described by 'fd' into buffer pointed by 'buffer'.

B-Fi \'e

C-ISAM Library Function Ca_{(s __ _ B. System And Function Calls

Mode specifies wheather next or previous or first or last or current record is to be read or a

recrd is to be read according to a specified key. Returns 0 or -1.

• int isrewritecurr (fd, *buffer)

Rewrites current record of a C-ISAf~t1 file described by 'fd' from a buffer pointed by

'buffer'. Returns 0 or -1.

• int iswrite (fd, *buffer)

Writes (adds) a record in a C-ISAM file from a buffer pointed by 'buffer'.

Returns 0 or -1.

• i nt isdelcu rr (fd)

Deletes the current record in a C-ISAM file described by 'fd'. Returns 0 or -1.

• int isindexinfo (fd, *buffer, type)

Fills the buffer pointed by *buffer with information about index of a C-ISAM file

described by 'fd'. The index information is oi two types. 'type' specifies what kind of

information is required. Returns 0 or -1.

• int isstart (fd, key, mode)

Brings the file pointer of a C-ISAM file described by 'fd' at the specified position.

Position can be first, last or as specified by key. Returns 0 or- 1.

B-Six

AppendixC

Source Code

C. I The Organization

T
he complete source code has been organized in twelve different files. Two files

'mauditsys.c' and 'mauditfun.c' contain all the lower level functions. Main routine for

lOP-lOP audits is in 'maudit.c', whereas main routine for BP-IOP audits is in 'bpiopaudit.c'.

'maudit.h' and 'bpiopaud.h' contain all the relevant hash and type defines. 'bpiopfun.c'

contains functions which are exclusive to BP-IOP audits. A function has been developed for

storing and retrieving the names of files present on lOP (ie. files to be audited) along with

their attributes. This function is in file 'mauditdir.c· with 'mauditdir.h' containing all the relevant

hash defines. A few macros developed as debugging tools are present in 'dbgmacro.h' with

some global variables defined in 'dbgmacro.c'. Finally 'maudmacro.h' contains a few macros

for lOP-lOP audits.

c.2 The Code

C-One

The Code

r
Debbuger Macros .,

extern char •,zerr{];
extern char •cont;
extern int auderrno;

#define ADD IN FOR MASTER FAIL 200
#define AD_MASTER- AOO_IN_FOR_MASTER_FAIL

#define MIN AUO ERR (sys_nerr + 1)
#define MAX_AUD_ERR 100

#define MIN_ERRNO (- HMAXERR)
#define MAX_ERRNO is_nerr

#ifdef debug

#define Prnts(s)
#define Pmtd(s,v)
#define Prntd1(s,v1,v2)
#define Pmterr(s)
#define CR()

fprintf(stderr, s)
fprintf(stderr,s, v)

fprintf(stderr,s, v1, v2)
perror(s)

fprintf(stderr,"\n")

#define Prntmsg(no) {\
if ((no) > MAX_ERRNO)\

{\
auderrno = (no)-MAXERRNO;\
cont = • ··on Master- %d";\
}\

else\
{\
auderrno =(no);\
cont = • •• On Slave - %d";\
}\

fprintf(stderr, cont. auderrno);\
if ((auderrno) < 0)\

{\
fprintf(stderr," :-%s", herrmsg[-(auderrno)]);\
}\

else if (auderrno < sys_nerr)\
(\ .

fprintf(stderr," :-%s", sys_err1ist[auderrno]);\
}\

else if (auderrno < MAX_AUD_ERR)\
{\ .
fprintf(stderr, • : -%s" ,zerrf(auderrno)-MIN _AUO _ERR]);\
}\

else if (auderrno < is_nerr)\
{\
fprintf (stderr, is_err1ist[auderrno- 100));\
}\

#define Paray(start,len,fmt)
lnt ii; \

\
for (ii=O; ii < (len); ii++) \

fprintf(stderr, fmt:((start)+ii));

#else

#define Prnts(s)
#define Prntd(s,v)
#define Prntd1 (s. v1,v2)
#define Pmterr(no)
#define CR()
#define Paray(start.len,fmt)
#define Pmtmsg(n)

#end if

int auderrno;
char •cont;

#ifdef debug
char •zerr{20)= (

#end if

"Job Over
"Aborted ,
"Bad Command ·,
"Unknown Error",
"No Such Set ·,
"TimeOut ·
"No Error

"Size Mismatch",
"Bad Opcode ••
"Record Level •.
"CRC Mismatch •.
"File Level ••
"No Memory ••
"Master Fail •

);

c~ Source Code

mauditdi~.h
- " ' ' I

.define MAX_FILES_IN_DIRECTORY (sizeof(dir) I sizeof(struct
rrectory))

#define MAX_FIL MAX_FILES_IN __ DIRECTORY

#define MAX SET NUMBER 3
#define MAX:::SET- MAX_SET_NUMBER

#define MAX TYPES OF FILES 2
#define MAX:::TYP - MAX_TYPES_OF_FILES

r File types •t
#define UNIX 0
#define ISAM 1

extern struct directory dirf];

r .,

: · mauditdir.c

Structure which contains information about directory

struct directory (
Char •tname;
Uint setno;
Uchar type;
l dirf] = (

"dar , 1, UNIX.
"dat1" , 1, UNIX,
"dat2" , 1, UNIX,
"idar , 2, ISAM,
"idat1" , 2, ISAM,
"idat2" , 2, ISAM,
"DBID_LINE", 3, ISAM,
"DBID_TRNK", 3, ISAM,

r -Two

The Code C. Source Code

"DBID CCKT", 3, ISAM.
"DBID-SREO", 3, ISAM,
"DBID-TGOD·. 3, ISAM,
·Dalo::::sooD·. 3. ISAM.
"DBID CHRG", 3, ISAM,
"DBID-LNPF", 3, ISAM,
"DUID-SPRM", 3, I SAM,
"DUID-EXCD·. 3, ISAM,
"DAID-DTOE", 3, ISAM,
"DAID::::GP8K", 3, ISAM,
"DAID HMGP", 3, ISAM,
"DAID-ETOS", 3, ISAM,
"DAID-DAT8", 3, ISAM,
"DAID::::LVL1", 3, ISAM,
"DAID RTDS", 3, ISAM,
"DAID::::OFTG", 3, ISAM,
"DAID RTGP", 3, I SAM,
"DAID-PCTR", 3, ISAM,
"DAID-SCTR", 3, I SAM,
"DAID-TCTR", 3, ISAM,
"DAID-EOPD", 3,1SAM,
"DAID-RESF", 3, ISAM,
"DAID-SYDR", 3, ISAM.
"D81D-HDWR", 3, ISAM,
"DAID::::PA8X", 3, ISAM,
"DAID_TKGP", 3, ISAM,
"DAID_8MSS", 3, ISAM,
"DBID_HOUT", 3, ISAM,
"D81D NOUT", 3, ISAM,
"D81D-HPVT", 3, ISAM,
"D81D-DOAM", 3, ISAM,
"D81D::::DOA2", 3, ISAM,
"D81D FOLO", 3, ISAM,
"DBID::::DOBF", 3, ISAM,
"DBID DOBS", 3, ISAM,
"D81D-ALRM", 3, I SAM,
"DBID-QDAT", 3, ISAM,
"DBID-HNGP", 3, ISAM,
"DBID-ABRD", 3, I SAM,
"DBID::::SBRD", 3, ISAM,
"DBID DNA2", 3, ISAM,
"DBID-DNAS", 3, ISAM,
"DBID::::OPER", 3, ISAM };

maudmacro.h
--~

r status manipulting macros *I

#define Opcode status_g.opcode
#define Ecount status_g.err_eount
#define Gcount status_g.grand_e_count
#define State status_g.status_flag
#define Error status_g.error
#define Nfile status_g.files_left
#define Level status_g.level
#define Cset status_g.eurr_setno

r list manipulation macros *I

#define Name top_g(0)->name
#define Type top_g[0]->type
#define Set top_g(0)->setno
#define Index top_g(0)->index
#define Tries top_g(0]->try
#define Recno top_g[0]->record_no

maudit.h

r op-codes used internaly ,these are converted into op-codes
which are actualy used to communicate with IOCM .,

#define MSUCC 0
#define MFAIL -1

#define START RL 1
#define START-FL 2
#define ABORT- 3
#define CONTINUE FL 4
#define CONTINUE::::RL 5

#define OPEN 11
#define CLOSE 12
#define SIZE 13
#define READ · 14
#define M CRCC 15
#define LOC RECORD 16
#define DELETE 17

/* Structures for communication with mate lOP •t

I* Command to slave process on master lOP ·I

typedef struet I
Hdr msg;
Ulong offset;
Ulong whence;
} COmmand;

I* Reply for OPEN */

typedef struet I
Hdr msg;
U~har result;
Ulong error;
Uint ree_size;
Uint id;
} OPen;

I* Fleply for CLOSE */

typedef struct I
Hdr msg;
Uehar result;
Ulong error;
Uint id;
} Close;

/* Reply for SIZE */

typedef struet {
Hdr msg;
Uehar result;
Ulong error;
Ulong size;
Ulong no_of_ree;
} Size;

I* Reply for READ*/

typedef struct {
Hdr msg;
Uehar result;
Ulong error;
Uint rec_len;
Uchar ere;
Char record(1];
} REad;

I* Reply for CCRC *I

typedef struet {
Hdr msg;
Uehar result;
Ulong error;
Uint no_of_records;
Uint ree_len;
Uint last_ree_len;
Ushort master_ ere[1);
} cere;

/* Reply for SEEK */

C- Three

The Code

typedef struct {
Hdr msg;

. Uchar result;
Ulong error;
Ulong seeked;
Ulong current;
} SEek;

r Audit result •t
typedef struct {

Uchar opcode;
Uint err count;
Uint grand_e_count;
Uchar status_flag;
Ulong error;
Uint files left;
Uchar level;
Uint curr setno;
} STatUs;

r error codes in addition to UNIX, HDLC and C-ISAM errors •t

#define SIZE_FAIL (MIN_AUD_ERR + 11)
#define BAD_OPCODE (MIN_AUD_ERR + 12)
#define RL (MIN_AUD_ERR + 13)
#define CRC_FAIL (MIN_AUD_ERR + 14)
#define FL (MIN_AUD_ERR + 15)
#define NO_MEMORY (MIN AUD ERR+ 16)
#define MASTER_FAIL (MIN_::-AuD_::-ERR + 17)

r op-code definitions for actual communication with IOCM •1

#define JB_OVR (MIN_AUD_ERR + 1)
#define ABRTD (MIN_AUD_ERR + 2)
#define BAD_COMMAND (MIN_AUD_ERR + 3)
#define UNKNOWN (MIN_AUD_ERR + 4)
#define NOSUCH_SET (MIN_AUD_ERR + 5)
#define TIME_ OUT (MIN_AUD_ERR + 6)
#define NO_ERROR (MIN_AUD_ERR + 7)
#define BUSY (MIN_AUD_ERR + 8)

r opcodes used by mmu, pop, push, insert •t
#define INIT 01
#define ALLOC 02
#define FREE 03

r defines to be used for CRCC computations ·1

#define SHIFT 4
#define MUL 1
#define LIMIT 2
#define MASK Oxf

r max defines .,

#define MAX_RECORDS 128

#define MAX UNIX RECORD SIZE 128
#define M_RSIZE - MAX_UNIX_RECORD_SIZE

#define MAX UNIX FILENAME 14
#define MAX::::NAME MAX_UNIX_FILENAME

#define MAX PATH STRING LENGTH 256
#define MAX::::PATH- MAX::::PATH_STRING_LENGTH

~~~Atf!~\FILE_NAME_STRING ( MAX_PATH + 

#define MAX_FNAME MAX_FILE_NAME_STRING 

#define MAX_ TRY 3 

r Buffer size definitions •i 

#define COMMUNICATION BUFFER SIZE 512 
#define S_CBUFF COMMUNICATION_BUFFER_SIZE 

C. Source Code 

rrfine CRC_BUFFER_SIZE ( (MAX_RECORDS -1) < 

#define S_CRBUFF CRC_BUFFER_cSIZE 

#define READ BUFFER SIZE 256 
#define S_RBUFF READ_BUFFER_SIZE 

#define STACK BUFFER SIZE 2048 
#define S_SBU#F STACK_BUFFER_SIZE 

r Structures for storing various variables •1 

typedef Char FName[ MAX_FNAME ); 

typedef struct 
{ 
FName name; 
lnt type; 
lnt setno; 
lnt index; 
lnt . error; 
lnt try; 
Ulong record_no; 
struct List •next; 
} List; 

: ; maudits s.c 

#ifdef INCLUDE 
#include <sysltypes.h> 
#include <Stdio.h> 
#include <errno.h> 
#include <Syslipc.h> 
#include <sys/msg.h> 
#include <syslstat.h> 
#include <fcntl.h> 
#include "/u!tools/rel1_13/systyp. h • 
#include ·audit.h" 
#include ·auditex1.c" 
#include <isam.h> 
#include "dbgmacro.h" 
#end if 

r Routine which initializes the audit process 
• Initialization includes 
• 1. Flushing of message recieve queues. 
• 2. Finding pid of mate, for hdlc send by addqid(). 
• 3. Finding master/slave status by maslave(). 
• 4. Resetting of all flags. 
• 5. Path string by getenv(). 
• 6. Own Pid by gethostid(). ., 
lnt audit_init() 

lnt qid; 

Pmts("[audit_init]: "); 

r Find mate and own Pid •1 
addqid (selfid_g,AUD_ID); 
own_pid_g = gethostid (); 
mate_pid_g = own_pid_g 11 Ox01 ; 
Pmtd1,l"r gethostid. returns ownid = %d mateid = %d •t· 
wn_pt~_g. mate_ptd_g ); · · 

r Reset all flags •t 
master_fail_flag_g = O; 
filelevel_g = 0; 
abort_Hag_g = 0; 
inconsis_count_g = 0; 

C- Four 



The Code 

#ifdef IOPF 

printf("Enter mas, rkey, skey: "); 
scanf("%d %d "/od", &master _g. &self_key_g. &skey_g); 

#else 

r Determine master/slave status of lOP*/ 
if ( ( master_g = maslave ()) == MFAIL) 

return ( MFAIL ); 
Pmtd("{ master_g = %d }", master_g ); 

#endif 

r Flush message queues *I 

l'f5~~~ff}~~~~tt~~y_g, c_buff_g, S_CBUFF, 

r Path string *I 
if ( ( pathname_g = getenv( "GLBDATAP")) == MFAIL) 

return ( MFAIL ); 
Prntd("r geteriv returns path = %s •t•, pathname_g ); 

r initialize linked list., 
mmu ( stack_g, sizeof ( stack_g ), INIT ); 

Prnts(" -initialised"); 
return ( MSUCC ); 
l 

/* Routine which finds master/slave status of lOP*/ 

lnt maslave() 

lnt val; 
lnt semid; 

Prnts("[ maslave ): "); 

r Find semaphore id */ 

~~w,ycy§~7._Ttrus_SEM_KEY,NO_SEMS,IPC_CREATI 
return ( MFAIL ); 

Prntd("/* semget returns semid_g = %d •t•, semid_g ); 

push(no,el,err,tr) 

lnt 
lnt 
lnt 
lnt 

no; 
el; 
err; 
tr; 

Prnts("(push): "); 

C. Source Code 

if( (ptr_mai=mmu (NULL, S_SBUFF, ALLOC)) I= NULL) 
{ 

else 

ptr_mai->element = el; 
ptr_mai->next=root_mai(no); 
ptr_mai->error=err; 
ptr _mai->try=tr: 
root_mai[no)=ptr_mai; 
} 

Prnts("-FATAL no memory abandoning this file"); 

insert(no,element,error,try) 

lnt 
lnt 
lnt 
lnt 

no; 
element; 
error; 
try; 

Prnts("[insert): "); 
if( (ptr~mai=mmu (NULL, S_SBUFF, ALLOC)) !=NULL) 
. ( 

else 

ptr _mai->element=element; 
ptr_mai->next=base_mai->next: 
ptr_mai->error=error; 
ptr_mai->try=try; 
base_mai->next=ptr_mai;. 
base_mai=ptr_mai; 
} 

Prnts("-FATAL: no memory abandoning this file"); 

2J (¥~kttsrmctf (semid_g,MAST_SLV_SEM_NUM,GETVAL,O)) pop(no) 

return ( MFAIL ); lnt no; 
Prntd("/* semctf returns val= 0/od *I·. val); 

if (val== SEM_ VAL_ MASTER) 
master_g = 1; 

else 
master _g = 0; 

return ( MSUCC ); 
} 

r 
• Routine which copies the given number of bytes from 
• source to destination and terminates it with null byte. ., 

Void stcpy (dest,src,num) 

Char *dest; 
Char *src; 
lnt num; 

{ 
while (num !=0) 

{ 
*dest++ = ·src++: 
--num; 
} 

Prnts("[pop): "); 
if (root_mai(no) != NULL) 

( 

} 

ptr_mai=root_mai[no)->next; 
mmu (root_mai[no), 0, FREE); 
root_mai[no)=ptr_mai; 
} 

r Routine which does the memory management for stack 
implementation*/ 

struct List *mmu ( buffer, buffsize. func) 
struct List *buffer; 
lnt buffsize; 
Uchar func; 

( 
static struct List *top; 
static struct List *top_sys; 
static struct List •sys_pointer; 

struct List *trnp; 

Prntd("[ mmu ): "); 
switch ( func ) 

( 

case INIT: 

r- ~iv~ 



The Code, 

if ( buffer == NULL ) 
rerum ( NULL ); 

top_sys = NULL; 
top = buffer; 
Imp = top+sizeof ( struct List ) ; 
for(; tmp<=buffer+buffsize; tmp+=Sizeof( struct List)) 

{ 
!Op->neXI = Imp; 
} 

top->next = NULL; 
top = buffer; 
re1urn ( top ) ; 

case ALLOC: 
if ( top != NULL ) 

{ 

else 

if ( top_sys == sys_pointer) 
{ . 

sys_pointer = top_sys =NULL; 
free ( sys_pointer ); 
} 

Imp= top; 
top = top->next; 
return ( tmp ); 
} 

{ 
if ( sys_pointer == NULL ) 

{ 

} 

{ 
avail= i; 
break; 
} 

if (avail == -1) 
{ 

C. Source Code 

Prnts("-too many queues open"); 
return ( MFAIL ); 
I 

if ((qid = msgget (key,0666jiPC_CREAT)) == -1) 
{ 
Pmterr("-msgget fails-·): 

. return ( MFAIL ); 
} . 

Pmtd("{ msgget returned qid=%d} ",qid); 

queues(avail].key =key; 
queues[avail].qid = qid; 
return (qid); 
I 

r 
• Routine which performs the send from the lOP ., 

NULL) 
if(( top_ sys=mmu(malloc(buffsize) ,buffsize, IN IT)== lnt 

Long 
MSgbuf 
lnl 

iop_send(dstkey,buf;nbyte) 
dstkey; 

r send message "I 

return ( NULL); 
sys_pointer = top_sys; 
} 

Imp= top_sys; 
top_sys = top_sys->next; 
return (Imp); 
} 

case FREE: 

if ( sys_pointer == top_sys) 
{ 

else 

buffer->next = top; 
top = buffer; 
re1urn ( buffer ); 
} 

{ 
buffer->next = top_sys; 
top_sys =buffer; 
return ( buffer); 
} 

r This routine returns the qid, if required it creats a 
• queue. 
• arg: key 
• returns : qid or -1 ., 
#define MAXOPEN 10 

lnt openqueue(key) 

Long key; 
{ 

static struct { 
Long key; 
lnt qid; 
I queues[MAXOPEN]; 

lnt i,avail,qid; 

Pmtd("(openqueue]: -key %d ",key); 
avail= -1; 
for (i = 0; i< MAXOPEN; i++) { 

if (queues[i].key == key) 
return (queues(i].qid); 

if (queues[i).key == 0 && avail== -1) 

{ 
lnt 
lnt 

*but; 
nby1e; 

qid; 
ret; 

Pmtd("(iop_sendl: -nbytes %d ·.nbyte): 
if ((qid = openqueue(dstkey)) == MFAIL) 

{ 
return( MFAIL ); 
} 

Pmtd("r qid=%d ·r.qid): 
buf->mtype = 1: 
if ((ret= msgsnd(qid,buf,nbyte,-IPC_NOWAIT)) == MFAIL) 

{ 
Pmterr("-msgsend fails-"); 
return (MFAIL); 
} 

retum(ret); 
} 

r 
• Routine which perfroms the receive message function. 
• arg : key, buffer, number of bytes, wait!nowait 
• returns : number of bytes actually read or -1. ., 
lnt iop_receive(srckey,buf,nbyte,nowait) 

Long 
Char 
lnt 

srckey; 
"but; 

nbyte,nowait; 

lnt qid; 
lnt ret; 

Pmtd("[iop_rcv): -nbytes %d •,nbyte); 
if ((qid = openqueue(srckey)) == MFAIL) 

{ 
return ( MFAIL ); 
} 

Prntd("{ qid=%d} ",qid); 

if ((ret= msgrcv(qid,buf,(nby1e-4),0,nowait)) == -1 ) 
{ 
Prnterr("-msgrcv fails-"); 

C- Six 



The Code 

return( MFAIL ); 
) 

Prntd("l" msgrev revd %d bytes •.t·. ret); 
return( ret); 
) 

r This routine determines the size (size of record) of a 
UNIX ( C-ISAM ) file. It also fills no. of complete 
records in 'second'. 

arg : filename. type of file. 

., returns : size ( no of records )_of the file or -1 

lnt size( !name, type, second) 

Char "!name; 
lnt type; 
lnt "second; 

struet stat but; 
struet dietinfo die; 
lnt i; 

Prnts("[size]: "); 
if (type) 

I 
if ( (i=stat(fname,&buf)) == MFAIL) 

I 
Prnterr("-stat fails-·); 
return ( MFAIL ); 
} 

Prntd("l" stat shows size=%1d ·r. buf.st_size); 
"second= buf.st_size I M_RSIZE ; 
return( buf.st_size ); 

} 
else 

I 
if ( ( i=isopen(fname,ISMANULOCK+ISINPUT)) == -1 ) 

I 
Prnterr(iserrno); 
return ( MFAIL ); 
) 

· if ( isindexinfo(i, &die, 0 ) == MFAIL) 
I 
Prntrnsg(iserrno); 
return ( MFAIL ); 
) 

isclose ( i ); 
Prntd("l" indexinfo shows nrecords=%d ·r.dic.di_nrecords); 
•second = die.di_nrecords ; 
return ( dic.di_recsize ); 
} 

r This routine opens a file in read-only mode 
arg : file-name , type of file 
returns :file identifier or MFAIL in case of error ., 

lnt fil_open(fname,type) 

Char "!name; 
lnt type; 

lnt I id· 
struct keyc!isc' key; 
struct dietinfo die; 

Prnts("[fil_open): "); 
if (type) 

I 
if ( (f_id=apen(fname,O_RDWR)) <= 0) 

I 
Prnterr("-open fails-"); 
return ( MFAIL ); 
) 

else 

rec_size_mai = 128; 
Prntd("l" fd = %d ·r.t_id); 
return( f_id); 
) 

{ 

C. Source Code 

MFAIV (f_id=isopen(fname, ISMANULOCK + ISINOUT )) == 

I 
Prntmsg ( iserrno ); 
return ( MFAIL ); 
) 

Prntd("l" isfd = %d ·r,f_id); 
if ( isindexinfo( f_id, &die, 0) == MFAIL) 

I 
Prntmsg ( iserrno ); 
return ( MFAIL ); 
) ' 

Prntd("l" rec-size,; %d ·r,die.di nrecords); 
rec_size_mai = dic.di_recsize; ·-
if ( isindexinfo( f_id, &key, 1) == MFAIL) 

{ 
Prntmsg ( iserrno ); 
return ( MFAIL ); 
L 

if ( isstart( f_id, &key, 0, 0, ISFIRST) < 0) 
{ . 

Prntrnsg(iserrno); 
return ( MFAIL ); 
} 

return ( f_id ); 
} 

r This routine closes an already open file 
arg : file identifier , type of file 
returns : MFAIL in case of failure or id of closed file. 

In! fil_dose(f_id.type) 

lnt f_id; 
lnt type; 

{ 
Prnts("lfil_close]: "); 
if (type) 

{ 
return( (close(f_id)== -1)? MFAIL: I id); 
} -

else 
{ 
return ( (isclose ( f_id )== -1 ) ? MFAIL: I id ); 
} -

r This routine reads in specified number of bytes from a file 
· arg : file identifier , type of file , pointer to buffer 

., 
pointer to buffer for crcc values 

returns : number of records read - 0 in case of EOF 
MFAIL in caes of failure 

In! fil_read(f_id,type, buff ,crcbuff,rec _size. fun) 

lnt f_id; 
lnt type; 
Char "buff; 
Ushort "crcbuff; 
Uint ree_size; 
FLg fun; 

lnt er, j; 
lnt count; 
Uint no; 

Prnts("[fil_read]: "); 

C- Seven 



The Code 

if (type) 
{ 
if (fun) 

no=rec_size ; 
else 

no=buff size ; 
if ( (er = read(f_id,buff,no)) < 0) 

{ 
Prnterr("-read fails-"); 
return ( MFAIL ) ; 
} 

Prntd("r read %d bytes ·r.er); 
if (fun ) 

{ 
if ( er <no) 

buff{er]=<>; 
return ( er ); 
} 

bytes_read _ mai=er; 
if ( er == 0) 

{ 
crcbuff{O]=O; 
return ( 0 ); 
} 

i=( ( er- 1 )/rec_size) + 1; 
for (count=1; count<= j; count++) 

{ 
if ( er >= rec_size) 

tmp_mai=rec_size; 
else 

tmp_mai=er; 
er -= tmp_mai; 
crcbuff{count] = cre(buff,tmp_mai); 
buff+= tmp_mai; 
} 

crcbuff(O]=ere(&crcbuff(1],2*(count-1 )); 
Prntd("-master crcc=%u ",crcbuff{O]); 
if ( count < 63 ) 

crcbuff{count]=O; 
return( (count-1) ); 
} I* if type =UNIX *I 

else 
{ 
for ( i=1; j<64; i++) 

{ 
if ( isread ( f_id, buff, ISNEXT) != SUCC ) 

{ 
switch (iserrno ) 

{ 
default: 

Prntmsg(iserrno); 
return ( MFAIL ); 

case EENDFILE: 

if (fun) 

} 

{ 
buff{er)=O; 
return ( 0 ); 
} 

break; r from for loop ., 
} 

Prntd(" %d",j); 
if ( fun ) 

{ 
if ( rec_size < niax_path_len) 

buff[rec_size)=O; 
return ( rec_size ); 
} 

crcbuff(j]=ere (buff, rec_size ); 
} 

bytes_read_mai=j*rec_size; 
tmp_mai=rec_size; 
if 0 <63) 

crcbuff( j ]=0; 
crcbuff(O)=ere ( &crcbuff[1), 2*(j-1 ) ); 
Prntd("-master crc=%ud •• crcbuff{O]); 
return ( j-1 ); 
)r else •t 

C. Source Code 

r 
routine to move around in a c-isam file specified by lid. 
buffer is filled with the record. 

arg : lid, offset, buffer 
returns :no of records actually moved, -1 if fail ., 

lnt islseek( offset, lid, buffer) 

lnt offset; 
lnt lid; 
Char *buffer; 

{ 
lnt i; 

Prntd("[islseek): -offest %d ·.offset); 
if ( isread ( lid, buffer, ISCURR ) == MFAIL) 

if ( iserrno != EENDFILE ) 
{ 
Prntmsg(iserrno); 
return ( MFAIL ); 
} 

if ( offset == .0 ) 
.{ 
return ( 0 ); 
} 

if ( offset < 0 ) 
{ 
for ( i=O; i<= -(offset) ; i++ ) 

if ( isread ( lid. buffer, ISPREV ) == MFAIL) 
break; 

return ( i-1 ); 
} 

if ( offset > 0 ) 
{ 
for ( i=Ct; i< (offset) ; i++ ) 

if ( isread ( lid, buffer, ISNEXT) == MFAIL) 
break; 

return ( i-1 ); 
} 

#ifdef INCLUDE 
#include <sysltypes.h> 
#include <stdio.h> 
#include <errno.h> 
#include <Syslipc.h> 
#include <sys/msg.h> 

mauditfun.c 

#include "/u/tools/rel1_13/systyp.h" 
#include "audit.h" 
#include "auditext.h" 
#include• "dbgmacro.h" 
#include "dbgmacro.c" 
#end if 

r This routine computes the ace of a given record 

., 
Ushort cre(input,nlength) 

Uchar *input; 
lnt nlength; 

static Ulong crc_table(] = { OxO,Ox1081,0x2102,0x3183, 
Ox4204,0x5285,0x6303,0x7387,0x8408,0x9489,0xa50a 
,Oxb58b.Oxc60c,Oxd68d,Oxe70e,Oxf781 }; 

C- Eight 



The Code 

Ushort pilp; 
Ushort inicrc, mask; 
Uchar i,mul,limit,shift; 

shift =SHIFT; 
limit= LIMIT; 
mask=MASK; 
mui=MUL; 
inicrc=O; 
for ( : nlength > 0 ; nlength- ) 

I 
((Uchar")&pinp)[O) ="input++; 
((Uchar*)&pinp)[1) ="input++; 
iniac"= pinp; 
for ( i=O; i<limit; i++ ) 

inicrc = ( inicrc >shift)" 
ere_ table[ mul • (mask & inicrc) ]; 

--nlength; 
} 

retum(inicrc); 
) 

r This is error routine "I 

tnt err_hand(i,j) 

Uint i; 
Uint j; 
{ 

Prnts("[err_hand): "); 
switch(i) 

{ 

case -1 : 

while (root_mai[1)!=NUll) 
{ 
Prntd(" o/os • ,directory[root_mai[ 1 )->element]Jname); 
Prntmsg(root_mai[1 }->error); 
pop(1); 
) 

break; 

case2: 
case 1: 

if ( root_mai[O)!= NULL) 
{ 
if ( i~~SIZE_FAIL) 

{ 
root_mai[O]->try=MAX_ TRY; 
} 

if ( master_fail_flag_mai ) i=msg_mai.extra+ 150; 
if (root_mai(O]->try++ >= MAX_ TRY) 

else 

{ 
Prnts("-too many tries, abandoning it."); 
push(1 ,root_mai[O)->element,j,root_ma~O)->try); 
) 

{ 
Prnts("-to be tried later. leaving it."); 
insert(O,root_mai[O}->element,j,root_marlO)->try); 
} 

if ( i I= 2) 
{ 

} 
break; 

default: 

pop(O ); 
CR(); 
} 

Prntmsg(i); 
PrntmsgQ); 
} r case ., 

C. Source Code 

r Rotine which reads a semaphore and returns the present 
• master slave status 

tnt maslave( semid ) 

tnt semid; 

{ 
tnt val; 

~j ~~kfcrmctl (sernid_g,MAST_SLV_SEM_NUM,GETVAL,O)) 

return ( MFAIL ); 
return (val); 
} 

• routine to initialize the global variables •t 

r This routine sends the message to the mate iop · 
arg: destination pid, buffer adderess, 1 of 

bytes. 
returns: 0 or -1 

•t 

lnt send_msg( pid, buffer, nbytes) 

Ulong pid; 
Char *buffer; 
Long nbytes; 

{ 

tnt j; 
Long dest; 

Prnts("[send_msg]: "); 

#ifdef IOPF 

( ( Hdr • )buffer )->pid = own__pid_g ; 
dest = pid; 

#else 

( ( Hdr • )buffer )->Pid = (Long )own_key_g ; 
dest = pid; 

#end if 
buffer= (MSgbuf *)&msg_mai; 
msg_mai.mtype=O; · 
msg_mai.opcode=code; 
msg_mai.flag = typ; 
i= sizeof(i->OpCOde) + sizeof(i->flag) + sizeof( i->extra ); 
stcpy( msg_mai.name, filename,nbytes) ; 
i+= nbytes + sizeof(i->nbytes); 
msg_mai.nbytes=j; 
if ( O=iop_send(skey,buffer,j)) == MFAIL) 

{ 
return ( MFAIL ); 
) 

Prntd1("-leng %d type %d ",msg_mai.nbytes,msg_mai.flag); 
retum(MSUCC); 
} 

r This routine recieves the message. 
arg : pointer to the message buffer 
returns : opcode in the message or -1. ., 

tnt rcv_msg ( buffer) 

Char *buffer; 

{ 

C- Nine J 



The Code 

lnt opcode, j, type, actual; 

Pmts("[rcv _msg}: "); 

AA~iiE)iop_receiw ( own_key_g, buffer, s_:_cBUFF, O)) == 

I 
return ( MFAiL ); 
} 

Pmtd("{ bytes read= o/od} •• j ); 

actual = ( ( Hdr • )buffer )->dummy; 
if ( j != actual ) 

( 
Prntd("-msg bytes lost, actual = %d •• actual); 
return ( MFAIL ); 
} 

opcode = ( ( Hdr • )buffer )-:>OpCOde; 
type = ( ( Hdr • )buffer )->subfield; 

Pmtd1("-opcode 'l'od type o/od -·. opcode, type); 
Paray( buffer+ sizeof ( struct Hdr ). 5, "%x ");· 
return( opcode ); 
} 

r This routine etxracts index to be audited from data 
structure containing details of files by forming a linked 
list ( root ). 

., 
arg: setno. 
returns :no of files extracted, In case no file is extracted 

MFAIL is returned 

lnt extract( set) 

lnt set; 

{ 
lnt all; 
lnt index=O; 
lnt count=O; 

Prntd("[extract ): -setno %d ·, set); 
all=set; 
if ( !set) 

set++: 
while ( set <= rnax_setno ) 

{ 
for (index=<>; indeX<=max_index; index++) 

if ( directory[index).setno==set ) 
{ 
Prntd("-file= %s ",directory(index).fname); 
count++; 
push( 0, index, 0, 0); 
} 

if ( all) 
break; 

set++; 
} 

if (root_mai(O)==NULL) 
{ 
Prnts("-no file in this set"); 
return( MFAIL ); 
} 

base_mai=root_mai(O); 
while (base_mai->next !=NULL) 

base_mai=base_mai->next; 
return( count); 
} 

r routine which sends the report to IOCM and to initiater 
process whose pid it recieved from IOCM. 
arg : pid, address of message buffer. 
returns : MSUCC or MFAIL 

I nt report ( pid, buffer ) 

??? pid; 

C. Source Code 

Char *buffer; 

• Routine which sends the message to the master lOP 
• giving the result of the audit function, 

Void s_mate(result,rec) 
lnt result; 
lnt rec; 
{ 

m_ptr_g = iomap_malloc(sizeof(struct lnkmsg)); 
l_ptr_g = (struct lnkmsg")m_ptr_g; 
l_ptr_g->mlen = (sizeoi(Mprfmd)); 
((Mprfmd*)(l_ptr_g->info))->msg.opcode = MPRFMD; 
((Mprfmd*)(l_ptr_g->info))->msg.subfield = 01; 

((Mprfmd*)(l_ptr_g->info))->msg.sndr.pr_id.mtce_byte=OPPHY; 

(Mprfmd*)(l_ptr_g->info))->msg.sndr.pr_id.module_num=mate_id_g 

~prfmd*)(l_ptr_g->info))->msg.sndt.pr_id.process_num=IOMAP _I 

dest_id_g = ((Mprfmd*)(l_ptr_g->info))->msg.sndr.id; 

(Mprfmd*)(l_ptr_g->info))->msg.sndr.pr_id.module_num=self_id_g; 

((Mprfmd*)(l_ptr_g->info))->result =result; 
((Mprfmd*)(l_ptr_g->info))->record_num = rec: 
send (dest_id_g,m_ptr_g); 
free (m_ptr_g); 

} 
} ., 

. . . maudit.c · l . 

#ifdef INCLUDE 
#include <Stdio.h> 
#include "/u/toolslrel1_13/systyp.h* 
#include <isam.h> 
#include c:ermo.h> 
#include ·audit.h" 
#include "dbgmacro.h" 
#include •mauditdir.h" 

. #endif 

r storage space allocation *I 

r Data structure for maintaining the linked list which holds 
information about files to be audited 
*I 

List "ptr_g, *top_g(2)={NULL,NULL}, *base_g; 

r Different global varialbles, buffers and flags 
*I 

Uchar 
Uchar 
Uchar 
Uchar 

Char 
Char 
Ushort 
Char 

lnt 
Char 
Char 
Ft~ame 
lnt 

master _fail_flag_g; 
abrt_flag_g; 
filelevel_g; 
master_g; 

combuff_g( S_CBUFF ]; 
*cbuff_g =(char*)( ((lnkmsg *)combuff)->info ); 
crcbuff_g( S_CRBUFF ); 
rbuff_g( S_RBUFF ): 

setno_g; 
*fname_g; 
*pathname_g; 

filename_g; 
f_id_g; 

C -Ten 



The Code 

lnt 
Uint 
lnt 
lnt 
lnt 

type_g; 
index_g; 

rec_size_g; 
last_rec_size_g; 
cur__ptr_g; 

#ifdefiOPF 
lnt sndr_qid_g; 
lnt mate_qid_g; 
#else 
Pid 
Pid 
#end if 
Pid 

sndr_pid_g; 
mate_pid_g 

own_pid_g;. 

lnt self_key_g = AUD_ID; 
lnt ioan_key_g = IOCM_ID; 

STatus status_g; 

main() 

{ 
lnt 
Char 
lnt 
Uint 
Uint 

lnt 
Flg 
lnt 
Long 
lnt 

opcode; 
*tmpbuf; 

tmpsize; 
level; 
setno; 

i,j,temp,k; 
file_flag; 

resultO,result1; 
rec red; 

read ]lag; 

Pmts("[main]: -initialising"); 

status_g.grand_e_count = 0; 
while ( audit_init() != MFAIL ); 
CR(); 

while ( 1) 

{ 
r For testing on iops compile with -DIOPF option *I 

#ifdef IOPF 

if ( master_g ) 
I 

else 

if t (opcode = rcv_msg( cbuff_g)) == MFAIL) 
{ 

} 

{ 

r it should report to its own IOCM */ 
audit_init(); 
continue; 
} 

printf("Enter code, level, setno : "); 
scanf(""/od "/od "'ad", &opcode, &level, &setno ); 
} 

#else 

if ( (opcode = rcv_msg( cbuff_g )) == MFAIL) 
{ 
r it should report to its own IOCM */ 
audit_init(); 
continue; 
} 

#end if 

if ( master_g) 
{ 
lnt test; 

Pmts("Master: "); 

C. Source Code 

r What else can it do??? • 
if ( ( (COmmand • )cbuff )->msg.pid != mate__pid_g) 

continue;*/ 

switch ( opcode ) 

I 

ndex_g); 

Long tmp; 
Long second; 

case SIZE: 

type_g = ( ( COmmand • )cbuff )->f'l'lsg.subfield; 
index_g = ( (COmmand • )cbuff )->msg.dummy; 
Pmtd1("-SIZE type= 0/od, index= %d. name=·. type_g, 

fname_g = directory:_g( index_g ).name; 
.strcpy (filename _g. pathname_g ); 
strcat ( filename _g. fname_g ); 
Prnts(filename_g); 

== MFAIL V ( (temp=(Long)size( filename _g. type_g, &second)) 

{ 

else 

( (Size • )cbuff)->result = MFAIL; 
( ( Size • )cbuff)->error = ( type_g ? ermo : isermo 

} 

{ 
( ( Size • )cbuff)->result = MSUCC; 
( ( Size • )cbuff->size = temp; 
( (Size • )cbuff->no_records = second; 
} 

#ifdef IOPF 
test=send_msg(mate_qid_g, cbuff_g, sizeof(struct 

lze)); 
#else 

#end if 

( (lnkmsg *)combuff_g )->mien = sizeof ( struct Size); 
test= send( mate__pid_g, combuff_g ); 

break; 

case OPEN: 

type_g = ( ( COmmand • )cbuff )->f'l'lsg.subfield; 
index_g = ( (COmmand • )cbuff )->msg.dummy; 

nd ) 
Pmtd1("-SIZE type= o/od, index= o/od, name=", type_g, 

ex_g; . 

·sermo); 

fname_g = directory_g( index_g ].name; 
strcpy (filename _g. pathname_g ); 
strcat (filename _g. fname_g ); 
Prnts(filename_g); 

if ( (temp=fil_open( filename_g, type_g )) == MFAIL) 
I 
( (OPen • )cbuff)->result = MFAIL; 
. ( (OPen • )cbuff)->error = ( type_g ? ermo : 

} 
else 

{ 
. ( (OPen* )cbuff)->result = MSUCC; 
( ( OPen • )cbuff->id = temp; 
( (OPen • )cbuff->rec_size = rec_size_g; 
} . 

#ifdef IOPF 
test=send_msg(mate_qid_g, cbuff_g, sizeof(struct 

Pen)); 
#else 

#end if 

( (lnkmsg *)combuff_g )->f'l'llen = sizeof ( struct OPen ); 
test= send( mate__pid_g, combuff_g ); 

. break; 

C- Eleven 

case CLOSE: 

type_g = ( ( COmmand • )cbuff )->msg.subfield; 
fid_g = ( (COmmand • )cbuff )->msg.dummy; 
Pmtd1("-SIZE type= "/od, lid= %d •. type_g, fid_g); 

if ( (temp=fil_close( fid_g, type _g)) == MFAIL) 
I . 
( ( Close • )cbuff)->result = MFAIL; 



The Code 

isermo ),; 

else 

#ifdef IOPF 

( (Close· )ebuff)->error = ( type_g ? ermo: 

} 

I 
( (CLose • )cbuff)->result = MSUCC; 
( ( Close • )cbuff->id = temp; 
} 

test=send_msg(mate_qid_g, cbuff_g, sizeof(struct 
Close)); 

. #else 

) ; 

else 

C. Source Code 

I 
( ( SEek • )cbuff)->result = MFAIL; 
( (SEek • )ebuff)->error = ( type_g? ermo: isermo 

} 

{ . 
( ( SEek • )cbuff)->result = MSUCC; 
( ( SEek • )ebuff->seeked =temp; 
( (SEek • )ebuff->eurrent = eur__ptr_g; 
} 

#ifdef IOPF 
( (lnkmsg *)combuff_g )->mien = sizeof ( struct Close ); tesl=send_msg(mate_qid_g, cbuff_g, sizeof(struct 
test= send( mate__pid_g, combuff_g ); Pen)); 

#endif 

iserrno); 

break; 

case READ: 

type_g = ( ( COmmand· )ebuff )->msg.subfield; 
fid_g = ( (COmmand • )cbuff )->msg.dummy; 
Pmtd1("-SIZE type= %d, tid= %d ", type_g, fid_g); 

tmpbuf =((REad *)ebuff)->record; 
if((temp=fil_read(fid_g,type_g,trnpbuf))~=MFAIL) 

{ 

else 

( (REad • )cbuff)->result = MFAIL; 
( ( REad· )ebuff)->error = ( type_g ? errno : 

} 

I 
( (REad • )cbuff)->result = MSUCG; 
( ( REad • )cbuff->ree_len = temp; 
( (REad • )cbuff->ere = cre(trnpbuf, temp); 
} 

tmpsize = sizeof( struet REad ) + temp - 1; 
#ifdef IOPF 

#else 

#endif 

) ; 

test=send_msg(mate_qid_g, cbuff_g, tmpsize); 

( (lnkmsg *)combuff_g )->mien = tmpsize; 
test= send( mate__pid_g, eombuff_g ); 

break; 

caseCCRC: 

type_g = ( ( COmmand • )ebuff )->msg.subfield; 
fid_g = ( (COmmand • )cbuff )->msg.dummy; 
Pmtd1("-51ZE type= %d, fid= %d ", type_g,fid_g); 

tmpbuf = ((CCre *)cbuff)->master_cre; 
if((temp=fil_crc(filename_g,type_g,trnpbuf))==MFAIL) 

else 

I 
( ( CCre • )cbuff)->result = MFAIL; 
( ( cere • )ebuff)->error = ( type_g ? ermo : isermo 

} 

I 
( ( CCre • )cbuff)->result = MSUCC; 
( ( CCre •·)cbuff->ree_len ~ rec_size_g; 
( (cere. )cbuff->last_rec_len = last_rec_size_g; 
( (cere. )cbuff->no_of_records =temp; 
} 

tmpsize = sizeof( struct cere ) + ((temp - 1 ) < 1); 
#ifdef IOPF 

#else 

#end if 

test=send_msg(mate_qid_g, cbuff_g, tmpsize); 

( (lnkmsg *)combuff_g )->mien = tmpsize; 
test= send( mate__pid_g, combuff_g ); 

break; 

case SEEK: 

type_g "' ( ( COmmand • )cbuff )->msg.subfield; 
fid_g = ( ( COmmand • )cbuff )->msg.dummy; 
off= ((COmmand *)cbuff )->offset; 
from = ((COmmand *)cbuff )->whence; 
Pmtd1 ("-SIZE type= %d, indefid= %d ", type_g, fid_g); 

if( (temp=fil_seek(fid_g, type_g, off, from))== MFAIL) 

#else 
( (lnkmsg *)combuff_g )->mien = sizeof ( struct OPen ); 
test= send( mate__pid_g, combuff_g ); 

#end if 

else 

break; 

} r case stn.let *I 
CR(); 
Pmtd("send result= %d •• test); 
CR(); 
continue; r while ( 1 ) */ 
} 

I 

#ifdef IOPF 
#else 

opcode = cbuff->msg.opcode; 
level = cbuff->msg.subfield; 
setno_g = cbuff->msg.dummy; 

,#endif 

status_g.opcode = opeode; 
status_g.err_count = 0; 
status_g.status_flag =BUSY; 
status_g.setno = setno; 
status_g.error = 0; 
status_g.level = level; 

audit_ slave (opcode, level, setno_g, &status_g ); 
err _hand(resultO ,result1 ); 
Pmts("report follows"); 
r report();., 
err_hand(-1,-master_mai); 
CR(); 
CR(); 

} 
} r while ( 1 ) •t 

} r main ., 

r slave procedure., 

void audit_ slave ( opcode, level, setno. report) 
lnt opcode; 
lnt level; 
lnt setno; 
STatus •report; 

lnt ret= JB_OVR; 
lnt no_of_file; 
lnt i; 
lnt j; 
lnt result; 

Prnts("(audit_slave]: "); 
switch ( opcode) 

{ 

case START : . 

C- Twelve 



The Code 

top_g[O)=NULL; 
top_g[1)=NULL; 
if ( ( report->files_left =extract( setno ) )==MFAIL) 

( 
report->status_flag = ABRTD; 
report->error = NOSUCH_SET; 
return; 
I 

Prntd("-extracted %d files ·,report->files_left); 
CR(); 
break; 

case CONTINUE : 

if ( report->files_left) 
( 
report->status_flag = ABRTD; 
report->error = NO_FILES_LEFT; 

return; 
} 

break; 

default: 

report->status_flag = ABRTD; 
report->error = BAD_COMMAND; 

return; 

I 
while ( top_g[O)!= NULL) 

{ 
index_g = top_g[ 0 )->element; 
type_g =dirt index_g ).type; 
fnaine_g =dirt index_g ).!name; 
report->Curr_setno =dirt index_g ).setno; 
Prntd1 ("-index= %d -type= %1d ",index_g, type_g); 
strcpy (filename _g. pathname_g ); 
strcat (filename _g. fname_g ); 
Prnts(filename_g); 

switch ( level ) 
{ 

case FL: 

if( (result= perform(SIZE)) == MFAIL) 
( 
if ( report->status_flag ) 

{. 
report->error = ABORT; 
return; 
} 

err_hand(1, (type? errno: iserrno) ); 
continue; 
} 

if ( result != cbuff->size ) 
{ . 

err_hand(1 ,SIZE_FAIL); 
report->error = SIZE_FAIL; 
report->err_count++; 
report->grand _ e _count++; 
continue; 
} 

break; 

case RL: 

if( (f_id_g =perform(OPEN))==MFAIL) 
{ 
if ( report->status_flag ) 

{ 
report->error =ABORT; 
return; 
} 

err_hand(1 ,(type? ermo: iserrno)); 
continue; 
} 

if ((result= comp_updt ( f.:_id_g )) == MFAIL) 
report->error = CRC_FAIL;; 

if( ( result = perform(CLOSE))==MFAIL) 

C. Source Code 

{ . 

err_hand(1, (type ? ermo: iserrno)); 
continue; 
} 

if ( !report->status_flag ) 
{ 

else 

break; 

default: 

report->files_left--; 
pop(O); 
} 

{ 
report->error =ABORT; 
return ; 
} 

report->error = BAD_COMMAND; 
n~port->status_flag = ABRTD; 
return; 
} 

CR(); 
CR(); 
} r while., 

return; 
I 

r This routine compares and if required, updates the file 
described by id */ 

lnt comp_updt( id) 
lnt id; 

{ 
while ( ((result=perforrn(READ))!=MFAIL) && !abrt_flag_mai) 

{ 
if ( msg_mai.flag == 0) 

break; · 
if ( crcbuff[O) != "((Ushort ")(&msg_mai.name{O))) ) 

{ 
Prnts("-mismatch found"); 
if(root_mai[O]->try < MAX_ TRY) 

{ 
err_hand(2,CRC_FAIL); 
break; 
} 

=u~ateJr7j~·&grcbu~1J.&msg__mai.name(2],sizef,msg_mai.flag,ms 
_ a1.e , _I ,fnam ), 

if((i==MFAIL)&&(root_mai(O]->try<MAX_ TRY)) 
{ 
err_hand(2,CRC_FAIL); 
break; 
} 

ret= CRC FAIL; 
} -

r This routine performs the task of a given opcode including 
send & recv message ,check for failure at both ends 

arg: opcode 
returns: result of the fun. if every thing is fine else MFAIL ., 

lnt perform(opcode) 

lnt opcode; 

{ 
Long temp,temp1; 
lnt master_fail_flag =0; 

Prntd("[perform]: -opcode %d ·,opcode); 
switch( opcode) 

{ 
case OPEN: 

r- ThirtPPn 



The Code 

temp1=fil_open(isname,type); 
break; 

case READ: 

temp1 =fil_read(f_id,type,buff,crcbuff,rec_size_mai,O); 
msg_mai.extra= rec_size_mai ; 
break; 

case CLOSE: 

temp 1 =fil_close(f_id,type); 
break; 

case DELETE : 

case LOC_RECORD: 

msg_ mai.extra=tmp _ mai+ 1 ; 
temp1 =MSUCC; 
break; 

case SIZE: 

if ( ! type) 
{ 
len_isname = strlen (isname); 
} 

temp1 = size ( isname, type); 
break; · 

} 
if (temp1 == MFAIL && opcode !=CLOSE) 

{ 

else 

Prnts("-operation fails"); 
return ( MFAIL) ; 
} 

I 
if ( send_msg(opcode,isname,type,len_isname) == MFAIL) 

{ 
Prnts("-cannot send message"); 
return( MFAIL ); 
} 

r time outs., 
alarm ( 30 ); 
signal( SIGALRM, timout ); 
if ( (temp=rcv_msg(&msg_mai)) == MFAIL) 

I 
Prnts(" -cannot receive message "); 
return( MFAIL ); 
} 

alarm ( 0 ); 
if ( msg_mai.opcode != opcode ) 

{ 
r really no sol. "I 

abrt_flag_ mai= 1; 
Prnts("-opcode mismatch, aborting audit"); 
return ( MFAIL ); 
} 

switch(msg_mai.opcode) 
{ 
case ABORT : r any need? • I 

Prnts("-abort recieved, aborting audit"); 
abrt_flag_mai=1; 
return ( MFAIL ) ; 

default : 

if (msg_mai.flag == MFAIL) 
{ 

} 

master _fail_flag_ mai= 1 ; 
Prnts("-operation failed on master"); 
return ( MFAIL); 
} 

return ( temp1 ); 
} r else •t 

C. Source Code 

lnt update(type,slave,mastr, rec_s, rec_m, last_rec, tid, filename) 

lnt type; 
Ushort "slave, •mastr; 
Long rec_s • rec_m ; 
I nt last_rec; 
lnt fid; 
Char •filename; 

I 
Ushort crcbuff_s(max_path_len], crcbuff_m(max_path_len]; 
lnt max, min; 
lnt i, last_s; 
FLg flag; 
Char bu; 
lnt fd; 
lnt pos; 
Char command[max_path_len+ 18); 
Flg write_flag; 
Char tbuff[max_path_len<l; 
lnt inc:lex_s =0 ; 
Long num; 

Prnts("[update]: "); 
stcpy(crcbuff_s, slave, sizeof(crcbuff_s)); 
stcpy(crcbuff_m, mastr, sizeof(crcbuff_m)); 
if (type) 

{ 
if( (pos=lseek(fid, 0, 1 ))== -1) 

{ 
Prnterr("-lseek fails-"); 
return( MFAIL ); 
} 

strcpy(command, •mv why_no_c:lel.unx "); 
flag = ( rec_m < rec_s) ; 
if ( ( pos-lseek(fid,-bytes_read_mai, 1)) != bytes_read_mai) 

{ 
Prnterr("-lseek not proper-"); 
return (MFAIL ); 
} 

for ( tmp_mai=O; tmp_mak (rec_m-1) ; tmp_mai++ ) 
{ 
if ( crcbuff_s[ tmp_mai )!=ercbuff_m[ tmp_mai 1) 

{ 
if ( (i=perform(LOC_RECORD))==MFAIL) 

{ 
Prnts("-cannot update"); 
return(MFAIL); 
} 

. . if(write(fid, msg mai.name, rec size mai) != 
ec_stZe_maJ) - - -

else 

} 

} 

{ 
Prnterr("-write fails, cannot update-"); 
return( MFAIL ); 
} 

if (lseek(fid, rec_size_mai, 1) == -1) 
{ 
Prnterr("-lseek fails-"); 
return( MFAIL ); 
} 

if ( crcbuff_s[ tmp_mai l!=crcbuff_m[ tmp_mai 1) 
{ 
if ( (i=perform(LOC_RECORD))==MFAIL) 

{ 
Prnts("-cannot update last record"); 
return(MFAIL); 
} 

. lflwrite(fid, msg mai.name, msg mai.flag) != 
msg_ma~.Mg) - -

{ . 

"); 
Prnterr("-write fails on last record, cannot update 

return( MFAIL ); 
} 

last_s=bytes _read _mai; 
while ( last_s > rec_size_mai) 

, ~ - FonrfPPn 



The Code 

else 

else 

last s -= rec size mai; 
.if {(rec_s~=rec_m) && {iast_rec < last_s)) 

flag=1; 
} 

if (lseek(fid, pos, 0 ) != pos ) 
{ 
Prnterr("-ISeek fails-"); 
return ( MFAIL ); 
} 

if(flag} 
{ 
i=lseek(fid, 0, 1 ); 
if ( (fd= creat("why_no_del.unx·. 0644)) < 0) 

{ 
Pints(" -cannot truncate file on slave"); 
return( MFAIL ); 
l 

lseek(fid, 0, 0); 
whi6e ( i- > 0 ) 

{ 
read(fid, &bu. 1 ); 
max=write(fd, &bu, 1 ); 
l 

dose ( fd ); 
close ( fid ); 
strcat(command, filename); 
system(command); 
) 

return ( MSUCC ); 
} 

I 
flag=i rec_m != rec_s ); 
pos = isrecnum; 
for ( i=O; i <= rec_s; i++) 

{ 
if ( isread ( lid, tbuff. ISPREV ) < 0 ) 

{ 

} 

if ( iserrno I= EENDFILE ) 
{ . 

Prntmsg(iserrno); 
return ( MFAIL ); 
} 

tmp_mai =0; 
while ( (index_s < rec_s) && (tmp_mai < rec_m)) 

{ 
if (isread ( fid. tbuff, ISNEXT) I= MSUCC ) 

{ 
if ( iserrno I= EENDFILE ) 

{ 
Prntmsg(iserrno); 
return( MFAIL ); 
} 

write_flag = 1; 
l 

num = isrecnum; 
if ( crcbuff_s[ index_s )!=Crcbuff_m[ tmp_mai]) 

{ 
while ( 1) 

{ 
if ( index_s>=rec_s II tmp_mai>=rec_m ) 

break; 
if ( (i=perform(LOC_RECORD))==MFAIL) 

return ( MFAIL ); 
if( iswrite ( fid, msg_mai.name )==MFAIL) 

{ 

else 

if ( iserrno != EDUPL) 
{ 
Prntmsg(iserrno); 
return ( MFAIL ); 
} 

} 

{ 
tmp_mai++: 
continue; 
} 

while(isrewrec(fid,num.msg_mai.name)==MFAIL) 

I 

) 

C. Source Code 

{ 
if ( iserrno != EDUPL) 

{ 
Prntmsg(iserrno); 
return ( MFAIL ); 
} 

if(isdelrec (lid,num) == MFAIL) 
{ 
Prntmsg(iserrno); 
return (MFAIL); 
} 

index S++; 
if ( isread( tid, tbuff, ISNEXT) == MFAIL) 

{ 
Prntmsg(i serrno); 
return ( MFAIL ); 
) 

num = isrecnum ; 
l 

break; 
l 

index_S++; 
tmp_mai++; 

} r while loop., 
if ( tmp_mai < rec_m ) 

if ( perform(LOC_RECORD) == MFAIL) 
return ( MFAIL ); 

if( flag) 
{ 
if( index_s<rec __ s ) 

else 

while ( isread( lid, tbuff. ISNEXT) == MSUCC ) 
isdelrec (lid, isrecnum ); 

while (perform (LOC_RECORD) != MFAIL) 
{ 
tmp_mai++; 
if (iswrite (lid, msg_mai.name)==MFAIL) 

{ 
Prntmsg(iserrno); 
return (MFAIL); 
} 

return ( MSUCC ); 
} 

void timout(); 
{ 
status_g.status_flag = 1; 
} 

1 bpio aud.h 

lr Bufer sizes •t 

#define COMMUNICATION BUFFER SIZE 512 
#define S_CBUFF COMMUNICATION_BUFFER_SIZE 

#define READ BUFFER SIZE 256 
#define S_RBUFF READ_BUFFER_SIZE 

r Data ·structures for communication are defined in ?? ., 
#define MFAIL -1 
#define MSUCC 0 
#define ISAM 0 

#define OWN_KEY 4 
#define IOCM KEY 5 
#define BP _AUDIT _ID 10 

r block size ., 

C- Fifteen 



The Code 

#define BLOCK_SleE 2 

r Max defines *I 
#define MAX_UNIX_FILE_NAME . 14 
#define M_UNAME MAX_UNIX_FILE_NAME 

#define MAX PATH STRING 256 
#define M_PSTAING MAX_PATH_STRING 

~~ffgtr~,_fiLE_NAME_STRING (M_UNAME + 

#define M_FNAME MAX_FILE_NAME_STRING 

#define MAX RECORD SIZE UNIX 128 
#define UR_SIZE MAX_R-ECORD_SIZE_UNIX 

. b io aud.c 

lnt mintro_s = sizeof ( struct Mintro ); 
lnt mioprec_s = sizeof ( struct Mioprec ); 
lnt mcrcrep_s = sizeof ( struct Mercrep ); 
lnt lnkmsg_s = sizeof ( struct lnkmsg ); 
lnt mintro_s = sizeof { struct Mintro ); 
lnt 

Char kk_g[ S_RBUFF ]; 
Char •rnuffer_g = kk_g; 
struct { 

int mien; 
Char ki_g[ S_CBUFF ); 
} msgbuff_g; 

Char *cbuffer_g = msgbuff_g.ki_g; 

lnt own_key_g = OWN_KEY; 
lnt iocm_key_g = IOCM_KEY; 

Pid own_pid_g; 
Pid sndr_pid_g; 

Ulong rec_size_g; 

Char kp_g[ M_PSTRING ); 
Char *path_g = kp_g 

Char ku_g[ M_UNAME ); 
Char •uname_g = ku_g; 

Char·· kf_g[ M_FNAME ]; 
Char *fname_g = kf_g; 

main() 
{ 
lnt opcode; 
lnt dsize; 
Ushort ere; 
Ulong rcnum; 
lnt index; 
Char ·pntr; 

bpaud_init(); 
while ( 1) 

{ 
if (( opcode = rcv_msg ( msgbuff_g ) ) == MFAIL) 

{ 
Prnts("rcv_msg fails\n"); 
exit(2); 
} 

switch ( opcode ) 
{ 
case Ml NTRO : 

sndr_pid_g = ( ( Mintro • )cbuffer_g)->msg.sndr; 
#ifdef IOPF 

send_msg (sndr_pid_g, cbuffer_g, mintro_s ); 
#else 

((Mintro *)cbuffer_g)->msg.sndr = own_pid_g; 

#end if 

C. Source Code 

msgbuff_g.mlen = sizeof( struct lnkmsg ): 
send ( sndr_pid_g, msgbuff_g ); 

break; 

case MCRCRO : 

index= ((Mererq *)cbuffer_g)->file; 
length={ (Mercrq *)cbuffer_g)->length; 
bp_no = ( (Mercrq *)cbuffer_g)->msg.pr_id.module_num; 
blk_no = ((Mcrerq *)cbuffer_g)->block_no; 

if ( ( uname_g = extract_fname(index)) == NULL) 
{ 
Prnts("NO such Index"); 
exit(3}; 
} 

strcpy ( fname_g, 13ath_g }; 
strcat ( fname_g, uname_g ); 
r BP number concatination ?? *I 
r type of file?? ., 
if ( (fid_g =fit_ open ( fname_g, type_g)) == MFAIL) 

{ 
Prntd(" can not open %s •. fname_g ); 
exit ( 4 }; 
} 

Prntd("{ lid= %d} •• fid_g ); 

block_seek ( fid_g, blk_no ); 

sndr_pid_g = ( ( Mcrcrq • )cbuffer_g)->msg.sndr; 
#ifdefiOPF 

#else 

#endif 

send_msg ( ); 

((Mcrcdata *)cbuffer_g)->msg.sndr = own_pid_g; 
msgbuff_g.mlen = sizeof( struct lnkmsg ); 
send ( sndr_pid_g, msgbuff_g ); 

break; 

case MCRCFAIL :. 

sndr_pid_g = ( ( Mcrcfail • )cbuffer_g)->msg.sndr; 

index= ((Merdail ·)cbuffer_g)->file; 
bp no= ( (Mcrcfail · 

)cbuffer _g}->tnsg.pr_id.module _ num; 
blk_no = ((Mcrdail *}cbuffer_g)->block_no; 

if ( ( uname_g = extract_fname(index))== NULL} 
{ 
Prnts("NO such Index"}; 
exit(3); 
} 

strcpy ( fname_g, path_g }; 
strcat ( fname_g, uname_g ); 
r BP number concatination ?? *I 
r type of file???., 
if ( (fid_g =fit_ open ( tname_g, ISAM)) == MFAIL) 

{ 
Prntd(" can not open %s •. fname_g ); 
exit ( 4 ); 
} 

block_seek( fid_g, blk_no, ISAM ); 
pntr = &( ( (Mioprec • )cbuffer_g )->data); 
if (( rcnum=fil_read( fid_g, pntr, ISAM) == MFAIL) 

{ 
Prntd(" can not read %d •• fid_g ); 
exit ( 5 ); 
} 

if ( ( fid_g = fil_close ( fid_g, ISAM)) == MFAIL) 
{ 
Prntd( "can not close %d •. fid_g ); 
} 

ere= ere ( pntr, rsize_g ); 
pntr = ( (Mioprec •)cbuffer_g)->index; 
fill_index ( fid_g, ISAM, pntr ); 
r index?????., 
dsize = sizeof ( struct Mioprec) -1 + rsize_g; 
r·-1 forfield 'data[1)' in Mioprec ., 
( (Mioprec *)cbuffer_g )->dat_size = rsize_g; 
( (Mioprec *}cbuffer_g )->ere= ere; 

C- Sixteen 



The Code· 

#ifdef IOPF 

#else 

#end if 

send_msg ( ); 

msgbuff_g.mlen = dsize; 
({Mioprec •)cbuffer_g)->msg.sndr = own_pid_g; 
send ( sndr_pid_g, msgbuff_g ); 

break; 

} rend case •t 
} .r end while •t 

} rend of main •t 

if ( index < 0 II index > 44 ) 
return ( NULL ); 

return ( name[ index ) ); 
} 

C. Source Code 

r Routine which places the file pointer at the given block. 
arg : file descriptor, blockno, type of file. 
return : no of records moved or -1. ., 

lnt block_seek ( lid, blk, type ) 

lnt fid; 
Ushort blk; 

--------------------iUshort type; 

#ifdef INCLUDE 
#include <Stdio.h> 
#endif 

b io fun.c · 

r Routine which returns a pointer to name of the file with 
given index. · 
Arg :index 
Returns :pointer to filename. ., 

char •filename( index ) 

int index; 

I 
static char ·name[]= I 

"0810 LINE", 
"0810-TRNK", 
"0810-CCKT", 
"0810-SREO", 
"0810-TGOO", 
·osm:=sGOo·. 
"OBIO CHRG", 
"0810-LNPF", 
"OUID-SPRM", 
"OUID-EXCO", 
"OAIO-OTOE", 
"OAID-GPBK", 
"OAIO-HMGP", 
"OAIO=ETOS", 
"OAIO OAT8", 
"OAIO=LVL 1", 
"OAID RTOS", 
"OAID=OFTG", 
"OAIO RTGP", 
"OAID-PCTR", 
"OAIO-SCTR", 
"DAIO-TCTR", 
"DAIO-EOPO", 
"DAID-RESF", 
"OAID-SYDR", 
"0810-HOWR", 
"OAIO-PABX", 
"OAIO-TKGP", 
"DAID-BMSS" 
"0810-HOUT": 
"0810-NOUT", 
"D810=HPVT", 
"0810 OOAM", 
"0 BID-DOA2". 
"0810-FOLO", 
"DBID=DOBF", 
·os1o ooss· 
"DBID-ALRM": 
"0810-0DAT", 
"DBID-HNGP", 
"DBID-ABRO", 
·os1o-sam)·. 
"0810-ONA2". 
"0810-0NAS", 
"DBIO=OPER" }; 

lnt ret; 

if (type) 
( 

·else 

if ( (bytes = lseek ( fid, bytes, 0 ) ) == MFAIL) 
{ 
Prnterr(" can notlseek "); 
return ( MFAIL ); 
} 

return (ret): 
} 

{ 

if ( ( rec = islseek ( tid, rec ) ) == MFAIL) 
( 
Prnterr("can not is-lseek "); 
return ( MFAIL ); . 
} 

return ( ret ); 
} 

r This routine initialises the bp - iop audit process. 
arg: none 
returns : void ., 

void bpaud_init() 

{ 
own_qid_g = openqueue( own_key_g ); 
addpid ( own_qid_g, BP _AUOIT_ID); 
selfid_g = gethostid (); 

r get pathname from environment., 
path_g = getenv("GLBDATAP"); 

r Flush message queue •t 
~~~~B&{fffi~~~~lb~ey_g, msgbuff_g, s_C8UFF, 

}

End of Code

C- Seventeen

AppendixD

References and Bibliography

[1] K. B. Lal, T. Chandrasekaran, Y. K. Pandey "C-OOT OSS Architecture"- Overview

of C-OOT & OSS Projects, October 1986.

[2] K. B. Lal, T. Chandrasekaran, Y. K. Pandey "C-OOT OSS Hardware Architecture"

- Overview of C-OOT & OSS Projects, October 1986.

[3] B. Egert "Recovery Strategy For a Telephone Switching System" - Fifth

International Conference on Software Engineering for Telecommunication

Switching System, Conference Publication# 223, Southern Sweeden.

[41 Sunil S. Gaitonde, T.V. Ramabadran- "A Tutorial on CRC"- IEEE Micro, August

1988.

[5] R. L. Engram, P. A. Shannon, S. S. Weber "Transparent Software And Hardware

Changes In A Telecommunication System"- Fifth International Conference on

Software Engineering for Telecommunication Switching Systems, Conference

Publication # 223, Southeren Sweeden.

D-One

D. References and Bibliography

[6] K. B. Lal et. al. "C-OOT DSS Software Arcitecture" - Overview of C-OOT & DSS

Projects, October 1986.

[7] C-OOT DSS TRAINING, LECTURE NOTES ON lOP & UNIX - C-OOT Official

Publication.

[8] C-OOT DSS TRAINING, LECTURE NOTES ON Software Architecture Overview

-C-OOT Official Publication.

[9] C-OOT 512 MAX General Description- C-OOT Official Publication.

,,

[1 0] C-OOT DSS TRAINING, LECTURE NOTES ON CENTRAL FILE SYSTEM -

C-OOT Official Publication.

[11] D. E. Knuth "Fundamental Algorithms: The Art of Programming Vol. 2"- Addison

Wesley Publishing Company Inc. 1973.

[12] M. Ben-Ari "Concurrent Programming Principals" - Prentice Hall International

1982.

[13] Dennis M. Ritchie, Brian W. Kernighan "The 'C' Programming Language" -

Prentice Hall of India, 1985.

[14] Motorola Microsystems, Technical Documentation on System V /68 - #

M68KUNPM/D1 Dec. 1985.

[15] C-ISAM Reference Manual - Relational Database Management Systems Inc.

D-Two

	TH28790001
	TH28790002
	TH28790003
	TH28790004
	TH28790005
	TH28790006
	TH28790007
	TH28790008
	TH28790009
	TH28790010
	TH28790011
	TH28790012
	TH28790013
	TH28790014
	TH28790015
	TH28790016
	TH28790017
	TH28790018
	TH28790019
	TH28790020
	TH28790021
	TH28790022
	TH28790023
	TH28790024
	TH28790025
	TH28790026
	TH28790027
	TH28790028
	TH28790029
	TH28790030
	TH28790031
	TH28790032
	TH28790033
	TH28790034
	TH28790035
	TH28790036
	TH28790037
	TH28790038
	TH28790039
	TH28790040
	TH28790041
	TH28790042
	TH28790043
	TH28790044
	TH28790045
	TH28790046
	TH28790047
	TH28790048
	TH28790049
	TH28790050
	TH28790051
	TH28790052
	TH28790053
	TH28790054
	TH28790055
	TH28790056
	TH28790057
	TH28790058
	TH28790059
	TH28790060
	TH28790061
	TH28790062
	TH28790063
	TH28790064
	TH28790065
	TH28790066
	TH28790067
	TH28790068
	TH28790069
	TH28790070
	TH28790071
	TH28790072
	TH28790073
	TH28790074
	TH28790075
	TH28790076
	TH28790077
	TH28790078
	TH28790079
	TH28790080
	TH28790081
	TH28790082
	TH28790083
	TH28790084
	TH28790085

