
MAN MACHINE INTERFACE FOR 
-#7 SIGNALLING SYST~M 

D~ssertation submitted to Jawaharlal Nehru University 

in partial fulfilment of the requirements 

for the award of the Degree of 

MASTER OF TECHNOLOGY 

1989 

K. M. K. CHAKRAVARTHY 

SCHOOL OF COMPUTER & SYSTEMS SCIENCES 
JAW AHARLAL NEHRU UNIVERSITY 

NEW DELHI-110067 



C E R T I F I C A T E 

This is to certify that Mr. K.M;K.Chakravarthy who 

submitted this project report entitled "Man-Machine Interface for 

#7 Signalling System" for his M. Tech degree worked under my 

guidance and supervision. 

This work has not been submitted anywhere for awarding 

any other degree or diploma. 

Sha.U~o.AU'jO.~ 
Mr. S.Shankarnarayan, 

D~~&i~ 
(Dr.K.K.Nambiar) 

Manager ·school of Computer & 

CCITT #7 group Systems Sciences, 

New Delhi J.N.U., New Delhi. 

(Prof.N.P.Mukherjee) 

Dean 

School of Computer & 

Systems Sciences 

J.N.U, New Delhi 



CONTENTS 

Preface 

1. C-DOT DSS architecture overview 

2. # 7 Signalling system 

3. 

4 . 

2.1 -Signalling for telephony 

2.1.1 Channel associated signalling 

2.1.2 Common Channel signalling 

2.1.3 modes of operation in CCS. 

2.2 -CCITT #7 SS 

2.2.1 Signalling Messages 

2.2.2 Structured view of #7 SS 

2.3 -Basis for the Project work 

Project 

3.1 

3.2 

Design 

4.1 

4.2 

2.3.1 Overview of #7 in C-DOT DSS 

2.3.2 H/W architecture of #7 SU 

2.3.3 S/W architecture of #7 SU 

overview 

-Man-machine interface 

3 .1.1 Architecture 

3 .1. 2 Modes of operation 

-Man-machine interface for #7 ss. 

3.2.1 Commands 

and implementation 

-Algorithm 

-EQUIP-PC 

4. 2.1 Input parameters 



4.2.2 Command flow 

4.2.3 Data & file structures 

4.2.4 Example 

4. 3 -DEQUIP-PC 

4. 3. 1 Input parameters 

4 . 3 . 2 Command flow 

4.3.3 Data & file structures 

4 . .3. 4 Example 

4.4 -PUT-TRM-OOS 

4.4.1 Input parameters 

4.4.2 Command flow 

4.4.3 Data & file structures 

4.4.4 Example 

4.5 -PUT-TRM-TNS 

Appendix 

4.5.1 Input parameters 

4.5.2 Command flow 

4.5.3 Data & file structures 

4.5.4 Example 

Naming conventions 



A C K N 0 W L E D G E M E N T S 
--------------------------------

I am grateful to Mr. S. Shankaranarayan, Manager 

CCITT #7 group C-DOT for allowing me to do the project work at 

C-DOT New Delhi. 

I would like to thank my guides Dr. K.K. Nambiar 

at J.N.U and Mr. Jalaj Swami, Engineer #7 group, at C-DOT for 

their constant encouragement and guidance throughout the project 

work .. I am also grateful to Mr. A.G. Dixit, Senior group leader, 

Admin group for his kind help. 

I would also like to thank Mr.Anant Ghotkar, Group 
( 

leader, Engineers Mr~K.K.Das, Mr. Gulshan Kumar, #7 group for 

their helpful suggestions during my project work. 

Finally I thank all engineers of #7 group for 

making my stay here a memorable & enjoyable one. 

K.M.K.Chakravarthy. 



P R E F A C E 

This is a project report on the Design & 

Implementation of four Man-Machine commands for implementation of 

i7 Signalling System in C-DOT DSS. The commands implemented will 

make signalling terminals available to the exchange and makes the 

corresponding database updations at IOP. The software accepts 

operator's command, does corresponding updation at IOP and sends 

message to updat~ the same within the exchange. 

This work has been divided into four parts. 

Chapter 1 is the Overview of C-OOT DSS architecture. Chapter 2 

deals with the details about the #7 Signalling System and its 

implementation in C-DOT DSS . Chapter 3 'is the project overview 

Chapter 4 is a detail!~ of the Man-Machine Commands Design and 

their Implementation. 

K.M.K.Chakravarthy. 



CHAPTER ONE 

OVERVIEW OF C-OOT DSS ARCHITECTURE 
-----------------------------------

c-DOT digital switching system (DSS) has a 

modular, distributed architecture. It basically consists of four 

elements. 

Administrative module 

The Administration module provides system level 

functions. These include call processing support such as 

directory to equipment number translation, software recovery and 

overall initialization. It also provides interfaces to mass 

memory and man-machine communication via input output processor 

(lOP) . 

Base module 

The base module is the basic growth unit. All the 

subscriber lines like ordinary, PBX, coin collection box (CCB), 

line concentrator (LC) etc. and the associated services like 
1 

tones, announcements and signalling equipment are terminate on 

this unit. 

The base module consists of a time switch which 

is a time slot interchanger, a base module switch (BMS) , Base 

processor (BP), and memory units with appropriate interfaces to 

the processor. Presently a Signalling unit based on CCITT #7 

specifications is being added to the BM. This SU is designed to 

handle all the internal protocols along with the #7 protocols. 



Central module : 

The basic function of the Central module is to 

provide connectivity between BMs, between AM and BMs and between 

AM and CM itself. 

The CM consists of a space switch (SS) controlled 

by a Space switch controller (SSC) and a central message switch. 

The SS provides digital paths for switching connections between 

the BMs. The SSC will get an idle time ·slot from one of the two 

channels available and sets up a path in SS on which any two 

terminals can communicate. 

Input Output Processor (IOP) 

The lOP is a front end of the DSS and is based on 

, UNIX V.2 operating system. All the status of the exchange will be 

., maintained in the form of files as a back up and whenever the 
f.~ . . ' ... ' 

.,.e,xchange goes down it can downloadthe data from lOP. THe memory 
~~ ; ' 8 ' 
·is available in the form of Disk and Magnetic tape transport etc. 

The IOP provid~s interfaces to video display rinits and hard copy 

printers etc. 

'J 



MOF 

Subscriber BM 
1 

Lines 

Analo9 
~ 

Trunks • 

Digital 

v Trunks 
.., 

.... 
Digital Link$. from BM 
Remote Units & n 

EJChanges 

AM 

( 110 Oe vices ) 

r1 6 "" 0 ------

ICP 

Disk tape \IDU Printer 

1 COOTOSS BA~JC ARCHITECTURE 



CHAPTER 2 

#7 SIGNALLING SYSTEM 
-----------------------

2.1 Signalling for Telephony 

The basic service offered by a telephony network is 

an end to end (user to user ) ·circuit switched connection. A 

dedicated pair of lines will be allotted between the subscriber 

and the exchange for the whole call duration. If it is an inter 

exchange call, some inter_exchange circuits will also be used. 

·The subscriber makes a call and informs the exchange about the 

identity of the called party. Ttiese signals can be of the form 

,,Jo,op. (off-hook), no_loop (on-hook) or loop disconnect (digits). 

Then the first exchange will select a free inter--exchange 

circuit and signals the next exchange abotit the identity of the 

c~lled party and connects the calling party to the outgoing 

circuit. These signals are also of!the form of loop, no-loop at 

the outgoing end and normal or reversed polarity of the battery 

for clear forward, answer, called party clear etc. at incoming 

end. The other exchanges also will., do the same· to forward the 

bonnection upto last exchange. Aft~r completion of the call all 

the inter exchange circuits will be released. So for setting up a 

call and releasing it certain signalling information needs to be 

conveyed between the exchange and the subscriber and between the 

e~cnanges. 

There are different signalling schemes like loop

disconnect # 5 etc. Signalling schemes are also differentiated in 

3 



two ways. One is Channel Associated signalling (CAS) type and the 

other is Common Channel· Signalling (CCS) type. This CCS is a 

modern one which is considered to be a stepping stone in the 

development of ISDN and is designed to support both voice as weli 

.as non-voice into communication networks. 
. ' 

2.1.1 Channel associated signalling (CAS) 

There is a dedicated signalling channel for each of 

the inter exchange circuit. The 
1 
signal conveyed as change in 

sieady state has to be derived at the other end with the help of 

·'~i~e discriminatio~. In a SPC type of exchange the signals are to 

:Qe converted in the form of events at one end and need to be 

converted into steady signals at the other end. 

2.1.2 Common Channel Signalling System (CCS) 

This system uses a common data link between 
.l 

the processors of two SPC proceseors of two exchanges. The 
'I 

signalling information of any voice circuit can be sent in the 
f •. i 

. form of messages. The message ~hoMld identify to which voice 

circuit it is meant for. If the transmission medium is analog 

then modems are used to derive the data link. 

Advantages of CCS over CAS 

1. Fast and reliable. 

2. Eliminat~on of per circuit hardware as in the case of CAS 

and thus more economical. 



Associated 

--------0 
Quasi - Associated 

CCS MODES 

Quasi • Associated Network 

Signalling Link 

,. 
Circuit Group 

0 Signalling Point ( S P ) 

0 Signal Transfer Point ( S T P ) 

0 S P with S T P Functions 



3. In digital transmission if the time slot 16 channels are 

unused they can be used for voice traffic. 

4. New features like closed User Group (CUG), Redirection of 

calls, Credit calls from any telephone etc. can be 

introduced. 

2.1.3 Modes of operation of CCS 

There are two modes of operation. 

1. Associated mode 

There will be a signalling link between any 

·. two exchanges. 

2. Quasi Associated mode 

Here two exchanges will be connected by a 

circuit group and they exchange the signalling information via a 

third exchange known as Signalling Trarisfer Point (STP) where as 

the former two will be Signalling. Points (SPs) . A 

Point can be a source or a sink. 

Signalling 

Quasi associated working saves inter exchange 

data-links & signalling terminal hardware. Saved data links can 

be used for voice connections. 

2.2 CCITT #7 SS 

This is a CCS type with quasi associated 

networking· features. For reliability two quasi associated SPs 

will have a minimum of two signalling routes via different STPs & 



not more than two STPs in tandem. There are various kinds of 

signalling messages used in #7 SS. 

2.2.1. Signalling messages 

There are three types of signalling messages 

1. Message Signal Unit (MSU). 

2. Link Status Signal Unit (LSSU). 

3. Fill In Signal Unit (FISU). 

Message signal unit (MSU) is the information 

carrier over the #7 signalling link. It is divided into number 

of fields by different levels. It contains level 3 functions like 

The Originating point code (OPC), Destination Point Code (DPC), 

and Circuit Identification Code (CIC) for routing and level 2 

functions like Forward sequence nu~er (FSN), backward sequence 

number (BSN), Check bits (CK) etc. to ensure reliable 

transmission. 

Whenever there is an error, it will be 

corrected by retransmission. Even when there is no message 
! 

traffic on the channel, FISUs will be transmitted to monitor the 

error performance of the channel. 

LSSUs are sent to convey the status of the 

link during the alignment. 

2.2.2. Structured view of #7 SS 

#7 SS has a layered structure. It comprises of 

' ""four levels. Levels 1 to 3 constitute the message 



, ,. 
I 

Level 4 I ,......_----

\ 

I 
I 

I 
Level 2 __j -

I 

Level 2 

I 

~ I .....___ Level 3 I 

I 

Bytes Is Bytes 
I 

Bytes\ n 1 Byte 2 , Byte I 1 Byte 1 Byte 1 Byte 1 Byte \ 

Flag \ Flag 

Check Serv· Service F B 
ice Label 

Length FSN BSN 
Bits Indicator Indicator I I 

I Info. I B B 
\01111110 011111iq Field I 

I 

Forward Indicator Bit • 

Backward Indicator Bit ----··· - ·-------

1 M S U f:OAMAT 



transfer part which ensures a reliable transmission of 

the message without loss or 

parallel user parts will make 

the messages. 

duplication. A number of 

use of this MTP to convey 

Level 1 : 

It define a Signalling data link layer which may of 

64kb/s channel (usually timeslot 16 of PCM). 

level 2 

It defines the functions and procedures for the 

reliable transmission of variable length message signal 

units (or packets) received from Level 3. The functions will 

be like sequence numbering, keeping track of incoming 

sequence, error checking & correcting by retransmission. 

Level 3 : 

It defines common fu~ctions for all signalling 

links and to user parts of level 4. Three major categories 

of transport functions are there. 

1. Message transfer functions : 

a) Proper routing of the outgoing messages. 

b) Collecting all the incoming messages by 

checking the destination point code. 

c) Distribution of incoming messages to 

different user parts of Level 4. 



2. Signalling connection control part (SCCP) 

To establish, to maintain, to dismantle 

logical data connection for transporting packets 

from ISDN users to slow speed terminals. 

3. Signalling network functions : 

a) Signalling link management. 

b) Signalling route management. 

c) Signalling traffic management. 

Level 4 

Depending upon the bits in the field of service 

indicator one of the sixteen parallel user parts will be 

selected. Presently there are two user parts. One is 

Telephone user part and second ISDN user part is in 

evolution. 

2.3 Basis for the Project Work 

2.3.1 Over view of #7 SS in C-OOT DSS 

The #7 SS is now being implemented in C-DOT 

DSS. A #7 SU housed in standard terminal frame connects to the 

time switch of a BM a one of the 8 serial interfaces of 128 

timeslots. The internal message channels are different from that 

if #7 protocol .So the #7 SU is so designed to make both protocol 

conversion, format translation during routing of messages between 

#7 links and BMs. Work is in progress to develop a packet switch 

to implement CCS in PABXs, RSUs and ISD~ users. 



~ User Parts --+----- - - Network Service Part 
Level 4 · Level 3 

'l lo.~~ P ~ ~sec 1- Signalling link 

I 
1 

Level 2

1 

I 

I ! i I 

-i ! 

-------

Level 1 
~----~------------ ---

Signalling Data link 

MUP I 
Message H Link 

i Control 
X.__ __ _ 

ISU P 
Switch 

,.___ 
..___ Signalling 

Network 

TUP ~ 
I Mgmt. 
l 
' 
' I 

i 

' 
DUP I 

~ ! 

I 

Other 
i 

User 
Par'ts 

I STAUCTUAE Of: C C ITT NO. 7 S S 



' 2.3.2 Hardware Architecture of 17 SO 
) 

#7 su consists of two ~ards. 

' 1. Protocol card 

Each protocol card has eight protocol 

channels called terminals where two protocol channels are 

controlled by one microcomputer •' By changing the firmware 

different protocols such as #7, I, D etc. can be handled. The 

firmware of the channel along with the HDLC chip connected 

to the channel will perform #7 level 2 functions like flag 

gen.eration I detection, zero insertion/deletion etc. The 

64kb/s serial streams of 32 channels of four protocol cards 

constitute 2048kb/s stream and four of these streams from a 

total of 16 PCs constitute 8Mb/ s stream towards the Time 

switch. 

2. 17 CPU card 

#7 CPU card is basically a 68000 based machine and 

contains one DMA controller, an, EPROM, and peripherals. The 
· I I 

CPU card is duplicated. Always one, 1 will be in ON-LINE and ,, ,, 

the other will be in STAND-BYE mode. A serial communication 

link interfaces both the CPUs. 

2.3.3 Software Architecture of 17 SU 

The software for implementation of #7 Signalling 

system is distributed over many processes like BP, AP, IOP 

etc. It can be.viewed as six different parts. 



1. Protocol Handler 

It handles all level 2 functions for the #7 SU and 

resides in Protocol card. 

2.0perating system 

It is a CCITT #7 adaptable operating system. 

3.Database Subsystem 

It processes the #7SU related data which is stored at 

AP and BP using standard database routines. 

4. Maintenance Subsystem : 

The functions include initialization of #7SU 

monitoring its health (including Protocol Cards ) , running 

audit tests on database periodically and management of 

terminals and maintenance of Protocol Cards and I channels. 

5. Message Handler : 

This is a CPU resident software to route the I, D, #7 

messages via the concerned Protocol Cards. 

6. Network manager 

The function includes management of link, route, 

traffic for #7 network using #7 management processes. 

10 



' ---- I J . \DIGITAL TU I TU L --· l - )TRUNKS • 
/ ' l I TU I I l ! LINES I I TU 

I /' 
/ I ' I I I ---1 I 

i TU I ss TU ! LINES 
......... TS /' 
/ ' 
I l ---\ I 

l No 7 SUI TU : LINES 
......... .. / 

[ BP BMS l ~.-1 BMS ~ r 

I I 
BM 1 -. - No. 7 LINKS 

_______________ 1. INTERNAL 
I BM 

~-------------------
MSG.LINKS 

I NO. 7 su IN C.DOT DSS 



CHAPTER 3 

PROJECT OVERVIEW 
---------------------

3.1 MAN - MACHINE INTERFACE 

The man-machine language (MML) is used to 

facilitate the various administrative and Maintenance functions. 

It provides a transparent interface to the operator to 

communicate with the exchange and to modify the internal state. 

#7 SU maintains a database about circuit group 

sets~ data link groups, link set bundles, signalling route sets, 

etc. 
In our case the database required, is related to 

the terminals and Protocol Cards. All the subscriber related 

signalling messages will go via the #7 channel. Level 2 functions 

will be handled by the terminals in t.he protocol card. The 

present status of these terminals and protocol cards will be 

maintained in the database. 

Before using a terminal for signalling, the 

exchange will check for the status of the terminal whether it is 

in service or out of service and also checks for the status of 

the protocol card relating to that terminal is in EQUIPPED or in 

DEQUIPPED condition. 

This information will help the exchange to use 

proper terminals for signalling. This database will be created, 

modified by the operator using man-machine commands.· 



3.1.1 Architecture 

The data is stored in different processors 

depending upon the requirements, generally will be in AP, BP, 

#7SU and at IOP. If at any time the exchange goes down, all the 

present status can be downloaded from the IOP. Data global to all 

BPs will be maintained at AP. 

For this interfacing purpose five processes have 

been recognized. 

1. Command recognition process : 

CRP is a dynamic process residing at IOP. Whenever 

the operator logs_in the terminal immediately this process will 

be created. It is a command interpreter and takes the parameters 

from keyboard. It performs validation checks like range, set 

checks etc. on the input parameters. After all the validations it 

will create a dynamic process called CEP for that particular 

command and pass the relevant information. 

2. Command execution process : 

There is one CEP per man-machine command. Its functions 

include :- • 
1. It checks for consistency of the information. 

2. Exhaustive parameter validations. 

3. Updations of database at IOP and informs the same to 

the exchange. 

Whenever CEP is created, it gets the arguments 



from CRP and makes an exhaustive parameter validations. After all 

the checks it will send a message to ACI in AP where the ACI 

depending upon the requirements, will send a message to AP in AM, 

BP in BM and NDUP in #7SU. Based on the Success/Failure message 

from ACI, CEP will send an output message to CRP. 

If the destination of the command is IOP itself 

C~P will do all the updations. But if it is SU or BP or AP then 

CEP will send a message to ACI and wait for the response. 

3. Input-Output Data Update Process 

IDUP is an eternal process residing in lOP. For 

reliability issues lOP work in Duplex environment. The CEP will 

send a message to IDUP which in turn will create an identical CEP 

at IOPl for the data updtion. The CEP of first lOP will wait for 

the message from CEP of IOPl indicating the successful completion 

of updations before proceeding further. 

4. Administrative command interpreter : 

The ACI is an eternal process residing in AP. It 

P.rovides an interface between the IOP' and AP /BPI SU. It gets the 

message from CEP and checks its class and command code to know 

about the place where the data updations are needed. Depending 

on it the ACI will send messages to Data Updation Process at AP 

or Base Updation Process at BP or #7 SU data update process at 

NDUP. Based on the result it will send a Success/Failure message 

to CEP. 

5. Output Outside Dialogue 

j3 



i 
I 

/ 
i 

I 

~ 
------··~-~--

f'1l A 1\1 ~'1 A C H 1 N E IN l E R F r\ c L. 



The OOD is an eternal process residing in IOP. 

When the CEP sends back the result message the OOD displays the 

results in a proper format to the operator. 

3.1.2 Modes of operation 

The man-machine commands can be executed in two 
modes. 

First is Growth mode also known as Off-line 

operation. The command will update the data only at IOP and the 

Disk. It will not affect the data at exchange. The modified data 

will be periodically downloaded from IOP to the exchange. 

The other is On-line mode. Here the data residing 

both at IOP and the exchange will be modified. These 

modifications immediately will effect the performance of the 

exchange. It is also known as Normal mode. 

This mode will be sent as status_flag from CRP to 
CEP . 

3.2 Man-machine interface for #7 Signaling system 

Every #7 SU unit can have 16 protocol cards . In 

each Protocol card there will be eight terminals which can handle 

level 2 protocols . The exchange has to modify its database 

according to the physical status of the terminal so that it can 

use proper terminals for signalling. 

All the terminals are soft configurable to any 

type of protocol like #7, I channel, D channel type etc. In the 

default state all are configured to #7 type. 

'14-

. I 



A terminal can hav,e five different states. 

EQUIPPED, INS or FREE, ACTIVE, OOS, Non Existent. Terminal status 

at IOP can take four states. 

1. Equipped Configured, before Diagnostics are 
run. 

2. INS Configured, after Diagnostics. 

3. oos Configured & off-line. 

4 . Non existent Not existing in the pool. 

3.2.1 Commands 

Depending upon the maintenance requirement four 

commands are recognized. 

First is Equipping a protocol card (EQUIP-PC) . 

This command is to make the protocol terminals available to 

the exchange. Here the operator physically jacks_in a card in 

the proper slot and gives a command with the slot identification, 

the type of card being used, and its version.number. 

The function of the command is to make an entry 

for that card and the terminals in that card, in the database at 

IOP and informs the exchange about it. 

In the exchange the SU will identify all the 

terminals corresponding to that Protocol Card as EQUIPPED and 

·runs Diagnostics on the terminals and all successful terminals 

~~11 be identified as INS. From then onwards the exchange will 

·use the terminals for signalling purposes. 



. :; 

The second command is Deequipping a protocol card. 

(DEQUIP-PC) . 

As the name suggests it will delete a protocol from on

line mode. At su all the active terminals on that PC will be 

switched over. After executing this command the exchange will 

recognize the terminals in that card as OOS. 

Another command recognized is Put terminal out of 

service (PUT_TRM_OOS) . Here the operator will specify the reason 

for doing it. The reason can be either for running the 

diagnostics or for any other reason like redistribution of the 

load etc. The command will accordingly modify the database at IOP 

and informs the same to the exchange. 

SU will then select another terminal either from the 

Protocol Card other than the one to which the present terminal is 

related if the reason is for running diagnostics or from anywhere 

if the reason is anything eise and make a terminal switchover. 

The status of the terminal that is being put out of 
J 

service will be modified as oos. This terminal further won't be 

used for signalling purposes . 

The last command is Put terminal in service. Here 

a terminal will be put into service and is informed to the 

exchange. 



, ... -------, 

~~ 

CPU 

"'-------~ 

'--------~ 

r----------------------. 

L---------J----------J 
r--------- --------9-, 

PROTOCOL CARD 3 

L------~--~----------~ 
I 
I 
I 

r---------~----------, 
PROTOCOL CARD 12 I 

~---------,----------~ 
I 

r---------~----------, 
~~- I 

PROTOCOL CARD 15 

~--------------------~ 

NO. 7 S S HA~OWAAE SCHEME 

0 

... 



CHAPTER 4 

DESIGN AND IMPLEMENTATION 

Whenever the operator logs in, a dynamic process 

(CRP) will be created by UNIX operating system for that terminal. 

When the operator inputs a Man-machine command CRP will check 

whether the command is valid one or not and checks. the ranges of 

the parameters, whether they are within the permitted values or 

not. After this the CRP forks and creates a new process called 

CEP and goes into Sleep state. 

CEP will perform various validations and syntax 

checks on the parameters. After successful completion of the 

validations it updates the files at IOP (s) and sends a message 

containing the information of updation to the process 

Administrative command interpreter) (ACI). (in on-line mode 

op~r~tion) • The ACI mails this message to DUP for data updations 

at AP and updations at su. 

After all the actions the ACI will send a 

Success/Failure message to CEP which in turn wakes up the CRP by 

a message. The CRP will send this result to OOD to display the 

results to the operator. 

4.1 Algorithm 

I 

1. CEP will gee the parameters from the operator 

and checks fnr the validation. It gets two arguments 



status_byte and qid (of the message queue being used for 

the flow of messages between CRP and CEP) from CRP. 

2. Validations of opcode and subfield of the 

command. 

3. Exhaustive parameter validations. 

4. Allocates space for history buffer. History 

buffer is needed because whenever the execution fails 

because of any fauL~, the recovery routine using history 

buffer will undo all the updations so far. 

In a history buffer, for the record 

which is going to ce modified both the present & previous 

records, for a record which is going to be deleted, the 

previous record, a::-:d for an insertion record, the current 

record will be stored. 

5. AfteJ: validations the CEP will send a message 

to IDUP to do the modifications at the duplicated IOP i.e. 

IOPl. 

6. vaL dations at tha,t IOPl 

7. Filling the History buffer for IOPl. 

8. Updations at the IOPl. 

9. CE~ of IOPl sends message to IOP. 

10. Updations at IOP. 

11. In on-li.ce mode CEP at IOP sends message to 

ACI and waits for the r·esponse. 

12. CEP then :3ends message to CRP and exits. 



4.2 Equip protocol card (EQUIP-PC) CEP. 

4.2.1 Input parameters : 

1. SLOT-ID (Slot id 

PARAMETER NAME 

MNEMONIC 

-TYPE 

POSSIBLE VALUES 

DEFAULT 

2. VERSION (version ) 

PARAMETER NAME 

MNEMONIC 

TYPE 

POSSIBLE VALUES 

DEFAULT 

SLOT-ID of the protocol card 

SLOT..,.ID! 

COMPOUND 

1-1-1-3 TO 32-4-4-24 

NONE 

VERSION NUMBER of protocol card 

VERSION 

3. HW TYPE Hardware type of, protocol card ) , 

PARAMETER NAME 

MNEMONIC 

TYPE 

POSSIBLE VALUES 

DEFAULT 

The command execution process contains following modules. 

File name function 

nepcd_entr.G main() 



nepcd_main.c 

nepcd_anls.c 

nepcd_form.c 

nepcd_out.c 

nepcd_rcvr.c 

4.2.2 Command flow : 

' I 
nepcd main () , 
nl rec validate ccs(), 
nl-validate ccs() . 

nepcd_rslt_ana () 

nepcd_form_cmderr_msg() 

.nepcd out msg () - -
nepcd rec rtn () - -

. CEP will be created by CRP using UNIX system calls and 

status_byte & queue_id will be the arguments from CRP to 

CEP. These two arguments will be taken by the main() 

function in nepcd_entr.c. 

The main() function initiates a file table structure which 

keeps all the files currently open to the process. 

The function a set def() will trap all the UNIX signals - - ; 

like interrupts to make CEP to continue its execution. 

Performs checks on the argumen~s . 

The msg_ rev () 
• \ ;f .j.. . . ~: . ' 

function. w.i.llJ .. :;',rE!cei ve a message from CRP 
-r...,---f :--~-~-~:_:· L~-~r·-·. i · 

' . 

from the queue specified by.qlietie_id. 

Calls the nepcd_main () for;; further execution. 

nepcd_main () 

It validates the opcode and sJbfield of the command . 

. <J.(), 



J 

. Creates a history buffer which will store the present and 

past records for the purpose of recovery if there occurs 

any problem in execution. 

It gets the slot_ id as an input . from CRP- and gets the 

Card_id using Sl~t_id to Card id conversion tables. These 

tables will be maintained in the database . 

. It checks the database using the routine nl validate ccs() 

with card id as primary key, for the existance of that 

card. 

. At any point during the execution, if any error like 

ERR BIT set etc., occurs, a recovery routine 

nepcd_rec_rtn() is called . 

. If the card is present, it means that the card is already 

in the database, so an error recovery routine is called . 

. The SU should be in equipped state. A check on this will 

be made by accessing Fequip_rec with bm_num,rack_num, 

frame num as key :The frame_type field of 

Fequip_rec must be SU FRAME. 

. After all the validations it sends a message to IDUP for 

validations and.updations at IOPl. 

After getting a success message from IDUP, data updations 

will be done. A 1ecord will be added in Fcard data for 

each card being equipped. These will be written into th~ 

data base using ISAM write() operation. ~~~~ 
"~ ~-! ~ LIBRA.RY ~- \ 

~A •~ $ 
~· >!>o ... 



Similarly corresponding to each terminal related 

to that protocol card, a record will be inserted in the 

Fterminal data and each terminal status will be written as 

EQUIPPED. 

Along with the updations history buffer fields will also 

be filled. 

The file structures Fcard data & Fterminal data are su id 

dependent. The su id is derived from fs su id field by 

accessing Fsu data Fsu data with ns bm id as the secondary 

key. 

If the CEP is run in NORMAL (ONLINE) mode then a message 

(Ncktcre20) is sent to ACI and CEP goes into wait state 

and waits for the result message (Ncktcreo20) from ACI . 

. Depending upon the operating mode and result, the result 

CEP will send a success or .error message (Ncktcrer20) to 

CRP. This is done by nepcd_out_msg() . 

In the case of error the recovery routine is called. The 

nepcd_rec_.rtn () function depending on the type of 

error, will call a function nepcd_form_cmderr(), with 

different parameters. 

The nepcd_form_cmderr () creates an error message 

(Acmderr01) and sends it to CRP. 

CRP will send this- message to OOD which displays the 

result in a proper fo~mat. 
2..2 



4.2.3 Data and File Structures 

File structures : 

typedef struct 
{ 
Ushort 
Uchar 

Ushort 

Uchar 
Fterminal data; 

trml num; 
version;/* Version number 

of equipment*/ 
hw type;/* hardware type 

- of equipment 
: not the trml. type */ 

ter status; 

TRMLFILE contains the records of data related to 

terminals namely Fterminal data and the primary key is trml num. 

typedef struct 
{ 

Fikey card_id; /* identity of the 

protocol card. */ 
} Fcard data; 

The ISAM file PCRDFILE 

typedef struct 
{ 

Here the primary key is card id ; 

Uchar ns status;' 
Uchar ns-bm id; 
Uchar ns-tic id; 
Uchar ns-link id; 
Uchar ns-unit-id; 
Uchar ns-dummy; 

Nss su·info; -

typedef struct 
{ 

·uchar 
Nss su info 

Fsu_data; 

The ISAM file is SUDTFILE 

fs su id; 
fs=su=data; 

Here fs su id is primary key and 

ns bm id is the secondary key. 



typedef struct SLOT INFO 
{ 

Uchar 
Uchar 
Uchar 
Uchar 

card typ; 
card-ver no; 
num of ckts; 
start ckt num; 

Slot info; 

typedef struct FEQUIP_REC 
. { 

Uchar 
Uchar 
Uchar 
Slot info 
Char-

} Fequip_rec; 

ten part[3]; 
len-part[2]; 
frame typ; 
slot[DMAX SLOTS]; 
asgn_byt[DMAX_CKTS]; 

The ISAM file is TNENFILE and ten_part[3] is the primary key. 

Data Structures at SU 

Data structures at SU are either accessed or updated at SU. 

Here 

typedef struct 
{ 

Ushort 
Uchar 
Uchar 
Uchar 
Uchar 
Uchar 
Uchar 

Uchar 
Uchar 

Ushort 

Ulong_ 

Nl312buf struct 
Nl312buf-struct 
Nl213buf-struct 
Nrx info-struct 
Ntx-info-struct 
Nidledq Tnfo struct 

Nterminal_info_struct; 

trml num is the primary key. 

trml_num; 
type; 
link; 
ter status; 
ec_option; 
msrv_cnt; . 
empty chn req; 

!* from level 3 */ 
bm id; 

reset time[NTIME STR LEN]; 
-/* reset tTme *! 

mrecv cnt; 
/* msg recv. since 

last reset *I 
dpbadr; 
I* base addr of DPRAM *I 
*ptrl 1312buf; 
*ptr2-1312buf; 
*ptr l213buf; 
*ptr-rx info; 
*ptr --tx-info; 
*ptr=idledq_info; 



Messages structures 

This header is used for messages from CRP -> CEP and CEP -> ACI. 

typedef struct 
{ 

Ushort 
Uint 

Execution num; 

app num; 
serial_num; 

typedef struct 
{ 

Ulong 
Ushort 
Ushort 
Uchar 
Uchar 
Uchar 

crp id; 
user id; 
size; 
status byte; 
output-dev; 
session id; 

I* 
I* 

Uchar 

Incremented as-soon as user logs in or *I 
job-id in the same session exceeds 256 *I 

job_id; 
Execution num exe_num; 

Cmdhdr; 

typedef struct 
{ 

Uchar 
Uchar 
Uchar 
Uchar 

Strt_posn; 

Message from CRP -> CEP 

typedef struct 
{ 

Hdr 
Cmdhdr 
Ushort 
Uchar 
Uchar 
Strt posn 

Ncktcrei20; 

Message from CEP -> ACI 

bm num; 
rack num; 
phy frame num; 
slot_num;-

hdr; 
cmdhdr; 
hw_type; 
ver no; 
dummy 1; 
slot Id; 



typedef struct 
{ 

Hdr 
Cmdhdr 
Uchar 
Ushort 
Uchar 
Uchar 

Ncktcre20; 

Header for Result Messages 

hdr; 
cmdhdr; 

su id; 
hw type; 
ver no; 
card id; 

This header is used for result messages from ACI -> CEP and 
CEP -> CRP. 

typedef struct 
{ 

short 
Uint 

Execution num; 

typedef struct 
{ 

Ushort 
Ushort 
Uchar 
Uchar 

app num; 
serial num; 

user id; 
sizeT I* size of the of message *I 
no of entries; 
output dev; I* V : VDU 

I* P : PRINTER *I 
I* D : DISK *I 

session id; 
job id;··-

*I 

Uchar 
Uchar 

I* 
Uchar 
Uchar 

incremented as user logs in. 0 to 255 *I 
dummy byte; 

I* Bit 0 
I* Bit 1 
I* Bit 2 

Ulong 
Execution 

Rslthdr; 

Message from ACI -> CEP 

typedef struct 
{ 

Hdr 
Rslthdr 
Uchar 

Uchar 
Ncktcrer20; 

status byte; 
Command iriitiated from command file *I 
Command initiated by calendar *I 
Results nat necessarily to be serit *I 

crp_id; 
num exe num; 

hdr; 
rslthdr.' 
sue type.: 

- lj SUCCESS or not SUCCESS *I 
dummy; 



Message from CEP -> CRP 

typedef struct 
{ 

Hdr 
Rslthdr 
Ushort 
Uchar 
Uchar 
Strt posn 
Uchar 

Ncktcreo20; 

4.2 .4 EXAMPLE 

hdr; 
rslthdr; 
hw_type; 
ver no; 
dummy 1; 
slot ld; 
su id; 

The following example demonstrates the inputting of the 

the command and corresponding input parameters. This 

also displays the result of the EQUIP_PC command. 

U < EQUIP_PC 

S Equip Protocol Card 

VERSION = 1 

HW TYPE = 1 

SLOT-ID = 1-1-1-3 & 1-1-1-5 

< E/R/T = E 

The result screen will be as follows 

Equip Protocol Card 
************************************************* 
* * 
* Version = 1 * 
* * 
* Hw_type ·- 1 * 
* * 
* Slot id - 1-1-1-3 & 1-1-1-5 * 
* * 
* * i 

***********************'•************************* 



4.3 Dequip protocol card (DEQUIP-PC) CEP 

4.3.1 Input parameters : 

1. SLOT-ID (Slot id ) 

PARAMETER NAME SLOT-ID of the protocol card 

MNEMONIC SLOT-ID 

TYPE COMPOUND 

POSSIBLE VALUES 1-1-1-3 TO 32-4-4-24 

DEFAULT NONE 

The preliminary checks on the range/set will be done by CRP. 

The command execution process contains following modules. 

File name 

nupcd_entr.c 

nupcd_main.c 

nupcd_anls.c 

nupcd_form.c 

nupcd_out.c 

nupcd_rcvr.c 

4~3.2 Command flow 

function 

main() 

nupcd main(), 
nl rec validate ccs(), 
nl_val1date_ccs(). 

nupcd_rslt_ana () 

nupcd_form_cmderr_msg() 

nupcd _out_ msg () 

nupcd_rec_rtn () 

. CEP will be created by CRP by calling a UNIX system call 

'fork' and status __ byte & queue_id will be the arguments 

from CRP to CEP. Tttese two arguments will be taken by the 

main() function in nupcd_entr.c. 



. The main() function initiates a file table structure which 

keeps all the files currently open to the process. 

The function a_set_def() will trap all the UNIX signals 

like interrupts to make CEP to continue its execution . 

. Performs checks on the arguments . 

. The msg_rcv() function will receive a message (Ncktcrei21) 

from CRP from the queue specifie.d by queue_id . 

. Calls the nupcd_main() for further execution. 

nupcd _main () 

. It validates the opcode and subfield of the command. 

. Creates a history buffer which will store the present and 

past records for the purpose of recovery if there occurs 

any problem in execution. 

It gets the slot_id as an input from CRP and gets the 

Card_id using Slot_id to Card1 id conversion tables. These 

tables will be maintained in'the database. 

It checks the qatabase using the routine nl_validate_ccs() 

with.card id as primary key, for the existence of that 

card. 

. At any point during the execution, if any error. like 

ERR BIT set etc., occurs, a recovery routine 

nupcd_rec_rtn() is called. 



. The card should present in the database, with equipped & 

jacked-in state. nl validate ccs() will check for it . 

. The su should be in equipped state. A check on this will 

be made by accessing Fequip_rec with bm_num,rack_num, 

frame num as key . The frame_t~ype field of Fequip_rec must 

be SU FRAME. 

. After all the validations it sends a message to IDUP for 

validations and updations at IOPl. 

. A record will be deleted in Fcard data for each card being 

deequipped. 

. All the records of the terminals related to that protocol 

card in Fterminal data will be deleted. 

. Along with the updations history buffer fields will also 

be filled. 

. The file structures Fcard data & Fterminal data are su id 
. -

dependent. The su id is d~rived from fs su id field by 
. ' 

accessing Fsu data Fsu data with ns bm id as the secondary 

key. 

If the CEP is run in NORMAL (ONLINE) mode then a message 

(Ncktcre21) is sent to ACI and CEP goes into wait state 

and waits for the result message (Ncktcreo21) from ACI . 

. Depending upon the operating mode and result, the result 

CEP will send a success or error message (Ncktcrer21) to 

~0 



CRP. This is done by nupcd_out_msg() . 

In the case of error the recovery routine is called. The 

nupcd_rec_rtn() function depending on the type of 

error, will call a function ,nupcd_form_cmderr(), with 

different parameters. 

The nupcd_form_cmderr () creates an error message 

(Acmderr01) and sends it to CRP. 

CRP will send this message to OOD which displays the 

result in a proper format. 

4.3.3 Data and File Structures 

file structures at IOP .: 

File structures Fterminal_data, Fcard_data, Fsu-data, 

Fequip_rec are maintained as ISAM files in the database. The 

structures are defined earlier. 

Data Structures at SO 

Data structures Nterminal info struct is described in 

.the previous process. 

Messages structures : 

The header messages for command and result are common 

to all processes and are described earlie~. 

typedef struct 
{ 

Uchar 
Uchar 
Uchar 
Uchar 

bm num; 
rack num; 
phy frame num; 
slot_num;-



Strt_posn; 

Message from CRP -> CEP 

typedef struct 
{ 

Hdr 
Cmdhdr 
Uchar 
Strt posn 

NcktcreT21; 

Message from CEP -> ACI 

typedef struct 
{ 

Hdr 
Cmdhdr 
Uchar 
Uchar 

Ncktcre21; 

Message from ACI -> CEP 

typedef struct 
{ 

Hdr 
Rslthdr 
Uchar 

Uchar 
Ncktcrer21; 

Message from CEP -> CRP 

typedef struct 
{ 

Hdr 
Rslthdr 
Strt posn 
Uchar 
Uchar 

Ncktcreo21; 

4 . 3 . 4 EXAMPLE 

hdr; 
cmdhdr; 

dummy 1; 
slot_Td; 

hdr; 
cmdhdr; 
su id 
card id;' 

hdr; 
rslthdr; 
sue type; 
I* SUCCESS or not SUCCESS */ 
dummy; 

hdr; 
rslthdr; 
slot id; 
su id; 

dummy_l; 

The following example demonstrates the inputting of 



' 

the command and corresponding input parameters. 

also displays the result of the DEQUIP_PC command. 

U < DEQUIP_PC 

S Dequip Protocol Card 

SLOT ID = 1-1-1-3 & 1-1-1-5 

< E/R/T = E 

The result screen will be as'follows 

Dequip Protocol Card 
************************************************* 
* 
* 
* 
* 
* 

Slot id 1-1-1-3 & 1-1-1-5 

* 
* 
* 
* 
* 

************************************************* 

4.4 Put Terminal Out Of Service (PUT_TRM_OOS) CEP 

4.4.1 Input parameters 

1. SLOT-CKT (Slot number ) 

PARAMETER NAME SLOT-CKT of the protocol card 

MNEMONIC SLOT-CKT 

TYPE COMPOUND 

POSSIBLE VALUES 1-1-1-3-1 TO 32-4-4-24-8 

DEFAULT NONE 

2. REASON (Reason :either for running the 
DIAGNOSTICS or OTHER 

PARAMETER NAME REASON 

MNEMONIC REASON 

TYPE 

This 



CRP. 

POSSIBLE VALUES DIAGS or OTHER 

DEFAULT NONE 

The preliminary checks on the range/set will be done by 

The command execution process contains following modules. 

File name 

nrtrm entr.c 

nrtrm main.c 

nrtrm anls.c 

nrtrm form.c 

nrtrm out.c 

nrtrm rcvr.c 

function 

main ( J 

nrtrm main(), 
nl rec validate ccs(), 
nl-validate ccs( J • 

nrtrm rslt ana() - -
nrtrm form cmderr_msg() 

nrtrm _out_ msg () 

nrtrm rec rtn () 

4.4.2 Command flow 

. CEP will be created by CRP by calling a UNIX system call 

'fork' and status_byte & queue_id will be the arguments 

from CRP to CEP. These two arguments will be taken by the 

main() function in nrtrm entr.c . 

. The main() function initiates a file table stucture which 

keeps all the files cuurently open to the process . 

. The function a set def() will trap all the UNIX signals 

like interrupts to make CEP to continue its execution. 



. The msg_rcv() function will receive a message (Ncktcrei22) 

from CRP from the queue specified by queue_id . 

. Calls the nrtrm main() for further execution. 

nrtrm_main () 

. It validates the opcode and subfield of the command. 

. Creates a history buffer . 

It gets the ckt_id as an input from CRP and gets the 

Card_id using slot num to Card id conversion tables. These 

tables will be maintained in the database . 

. It checks the database using the routine nl_validate_ccs() 

with carct_id as primary ,key, for the existence of that 

card. 

. At any point during the ·e.xecution, if any error like 
, ' 1 
i 

ERR BIT set etc., occurs, a recovery routine 

nrtrm rec_rtn () is called. 

1 

. The card should present in the database, with equipped & 

jacked-in state. 

The terminal related to that card will be derived by using 

card id and ckt num as (term_num = 8*card id + ckt num -1) 

Using this terminal number as the primary key for 

Fterminal data database will be searched for that terminal 

status. 
.. 



. The terminal status should be INS. 

. Sends a message to IDUP for validations and updations at 

IOPl . 

. Updations of history buffer fields will be done . 

. A record will be updated in Fterminal data for each 

terminal being evacuated. 

. The file structures Fcard data & Fterminal data are su id 

dependent. The su id is derived froin fs su id field by 

accessing Fsu data Fsu data with ns bm id as the secondary 

key. 

. If the CEP is run in NORMAL (ONLINE) mode then a message 

(Ncktcre22) is sent to ACI and CEP goes into wait state 

and waits for the result message (Ncktcre22) from ACI . 

. Depending .upon the operating mode and result, the result 

CEP will send a success or error message (Ncktcrer22) to 

CRP. This is done by nrtrm_;_out_msg() . 

In the case of error the recovery routine is called. The 

nrtrm_rec_rtn () function depending on the type of 

error,will call a funnction nrtrm_form_cmderr{), with 

different parameters. 

The nrtrm_form_cmderr () creates 

(Acmderr01) and sends it to CRP. 

an error message 

CRP will send this message to OOD which displays the 



result in a proper format. 

4.4.3 Data and File Structures 

File structures at IOP 

File structures Fterminal_data, Fcard_data, Fsu-data, 

Fequip_rec are maintained as ISAM files in the database. The 

structures are defined earlier. 

Data Structures at SO 

Data structures Nterminal info struct is described ·in 

the previous process. 

Messages structures : 

All the headers of command & result messages are same 

and are described earlier. 

Message from 

typedef 
{ 

typedef 
{ 

typedef 
{ 

CRP -> CEP 

struct 

Uchar 
Uchar 
Uchar 
Uchar 

Strt_posn; 

struct 

Uchar 
Uchar 
Uchar 
Uchar 
Uchar 
Char 

Ten;· 

struct 

Hdr 
Cmdhdr 
Uchar 
Ten 
Uchar 

bm num; 
rack num; 
phy frame num; 
slot_num;-

bm num; 
rack num; 
phy frame num; 
slot num;
phy ckt num; 
dummy; -

hdr ; 
cmdhdr ; 

dummy 1 ; 
ckt_id ; 

reason ; 



} Ncktcrei22; 

Message from CEP -> ACI 

typedef 
{ 

struct 
Hdr 
Cmdhdr . 
Uchar 
Uchar 
Uchar 
Uchar 

Ncktcre22; 

Result Message Formats 

Message from ACI -> CEP 

typedef struct 
{ 

Hdr 
Rslthdr 
Uchar 

Uchar 
Ncktcrer22; 

hdr ; 
cmdhdr ; 

su id . , -
reason ; 
card id . , -ckt num ; 

hdr; 
rslthdr; 
sue type; 
I* SUCCESS or not SUCCESS */ 
dummy; 

Result Message from CEP -> CRP 

typedef struct 
{ 

Hdr 
Rslthdr 
Uchar 
Ten 
Uchar 

Ncktcreo22; 

4.4 .4 EXAMPLE 

hdr; 
rslthdr; 

dummy 1; 
ckt id; 
su_id; 

The following example demonstrates the inputting of the 

the command and corresponding input parameters. This also 

displays the result of the PUT TRM OOS command. 

U < PUT TRM OOS 

S PUT TERMINAL OUT OF SERVICE 



SLOT-CKT = 1-1-1-3-7 & 1-1-1-5-2 

REASON = OTHER 

< E/R/T = E 

The result screen will be as follows 

PUT TERMINAL OUT OF SERVICE 

************************************************* 
* * 
* Slot and circuit number 1-1-1-3-7 * 
* 1-1-1-5-2 * 
* Reason OTHER * 
* * 
* * 
************************************************* 

4.5 Put Terminal In Service (PUT TRM_INS) CE~ 

4.5.1 Input parameters 

1. SLOT-CKT (Slot number ) 

PARAMETER NAME SLOT-CKT of the protocol card 

MNEMONIC SLOT-CKT 

TYPE COMPOUND 

POSSIBLE VALUES 1-1-1-3-1 TO 32-4-4-24-8 

DEFAULT. NONE 

The preliminary checks on the range/set will be done by 

CRP. 

The command execution process contains following modules. 

File name function 

nctrm entr.c main() 



nctrm main.c 

nctrm anls.c 

nctrm form.c 

nctrm out.c 

nctrm rcvr.c 

4.5.2 Command flow 

nctrm main(), 
nl rec validate ccs(), 
nl-validate ccs() . 

nctrm rsl t ana () - -
nctrm form cmderr_msg() 

nctrm_ out_msg () 

nctrm rec rtn () - -

. CEP will be created by CRP by calling a UNIX system call 

'fork' and status_byte & queue_id will be the arguments 

from CRP to CRP. These two arguments will be taken by the 

main() function in nctrm entr.c . 

. The main() function initiates a file table stucture which 

keeps all the files currently open to the process. 

The function a_set_def() will trap all the UNIX signals 

like interrupts to make CEP to continue its execution . 

. Performs checks on the arguments. 

The msg_rcv() function will receive a message (NGktcrei23) 

from CRP from the queue specified by queue_id . 

. Calls the nctrm_main() for further execution. 

nctrm_main () 

. It validates the opcode and subfield of the command . 

. Creates a history buffer. 

40 



It gets the ckt id as an input from CRP and gets the 

Card_id using slot num to Card id conversion tables. These 

tables will be maintained in the database. 

Checks the database using the routine nl_ validate_ ccs () 

with card id as primary key, for the existence of that 

card. 

At any point 

ERR BIT set 

during the execution; 

etc., occurs, a 

nctrm rec rtn{) is called. 

if any error like 

recovery routine 

. The card should present in the database, with equipped & 

jacked-in state. 

The terminal related to that card will be derived by using 

card id and ckt num as (term_num = S*card id+ckt num -1) 

Using this terminal number, as the primary key for 

Fterminal data 

terminal status . 

database will be searched for that 

. The terminal status should be OOS. 

. Sends a message to IDUP for validations and updations at 

IOPl . 

. Up~ations of history buffer fields will be done .. 

A record will be updated in Fterminal data for each 

terminal being put into service . 

. The file structures Fcard data & Fterminal data are su id 



dependent. The su id is derived from fs su id field by 

accessing Fsu data Fsu data with ns bm id as the secondary 

key. 

. If the CEP is run in NORMAL (ONLINE) mode then a message 

(Ncktcre23) is sent to ACI and CEP goes into wa-it state 

and waits for the result message (Ncktcre23) from ACI . 

. Depending upon the operating mode and result, the result 

CEP will send a success or error message (Ncktcrer2 3) to 
i 

CRP. This is done by nctrm_out_msg() . 

. In the case of error the recovery routine is called. The 

nctrm_rec_rtn () function depending on the type of 

error,will call a funnction nctrm_form_cmderr(), with 

different parameters. 

The nctrm form cmderr() creates an error message 

(Acmderr01) and sends it to CRP .. 

CRP will send this message to OOD which displays the 

result in a proper format. 

I 
4.5.3 Data and File Structures 

File structures at IOP : 

File structures Fterminal_data, Fcard_data, Fsu-data, 

Fequip _ rec are maintained as ISAM files in the database. The 

structures are defined earlier. 

Data Structures at SU 

Data. structures Nterminal info struct is described in 



the previous process. 

Messages structures 

All the headers of command & result messages are same 

and are described earlier. 

Message from CRP -> CEP 

typedef struct 
{ 

Uchar 
Uchar 
Uchar 
Uchar 

Strt_posn; 

typedef struct 
{ 

Uchar 
Uchar 
Uchar 
Uchar 
Uchar 
Char 

Ten; 

typedef struct 
{ 

Hdr 
Cmdhdr 
Uchar 
Ten 

Ncktcrei23; 

Message from CEP -> ACI 

typedef struct 
{ 

Hdr 
Cmdhdr 
Uchar 
Uchar 

Ncktcre23; 

bm num; 
rack num; 
phy frame num; 
slot num;-

bm num; 
rack num; 
phy frame num; 
slot num;
phy ckt num; 
dummy; -

hdr ; 
cmdhdr ; 

dummy 1 ; 
ckt id ; 

hdr; 
cmdhdr; 
su id ; 

card id ; 

Result Message from ACI -> CEP 

typedef struct 
{ 



Hdr 
Rslthdr 
Uchar 

Uchar 
Ncktcrer23; 

hdr; 
rslt.hdr; 
sue type; 

/* SUCCESS or not SUCCESS */ 
dummy; 

Result Message from CEP -> CRP 

typedef struct 
{ 

Hdr 
Rslthdr 
Uchar 
Ten 
Uchar 

Ncktcreo23; 

4.5.4 EXAMPLE 

hdr; 
rslthdr; 

dummy 1; 
ckt id; 
su Td; 

.The following example demonstrates the inputting of the 

the command and. corresponding input parameters. This also 

displays the result of the PUT TRM INS command. 

U < PUT TRM INS 

s PUT TERMINAL INTO SERVICE 

SLOT-CKT • 1-1-1-3 & 1-1-1-5 

< E/R/T = E 

The result screen will be as follows 

PUT TERMINAL INTO SERVICE 

************************************************* 
* 
* 
* 

Slot ckt : 1-1-1-3 & 1-1-1-5 
* 
* 
* 

************************************************* 

4-4-, 



APPENDIX 

NAMING CONVENTIONS 

This Appendix describes the convent ions followed in 

naming the messages and also the file structures, while 

designing a man machine command. 

Message Naming convention 

All man machine commands are divided into 

classes. Normally command having some logical utility will be in 

the same class such as create cgs and allocate cic command will 

be in the same class. 

Message Name 

subsystem type - 1 char 

class name - 3 char 

category - 3 char 

type 1 char Not present in all msg ) 

subfield ident.- 2 char optional 

Subsystem type 

All the commands related to #7 will have 

subsystem type as N 

Following class id have been identified -

1. ckt for all ckt related command call 

r processing ) 
i. 

2. net for all network man~-~ement related 

command 



Category 

1. ere - for all create type of commands 

2. mod - for all modify type of commands 

3. dis - for all display type of commands 

Type 
This field is specified to identify the direction 

of the flow of the messages 

Subfield 

Note 

1. I for all input messages to cep form crp 

2. 0 for all output messages from cep to crp 

3. R for all messages returned by ACI to cep 

Messages from CEP to ACI will not have this field 

present. 

This identifies the sub field of the message. 

The direction type field 

CRP -> CEP type is I 

CEP -> ACI type is absent 

ACI -> CEP type is R 

CEP -> CRP type is 0 

For communication to duplex iop type will have to 

be identified . 

Example -

Message from crp to cep . for creating a cgs 

·Ncktcrei01 

File Naming conventions 

File names for Man Machine command will follow 



the conventions given below~ 

File Naming format 

.sub system name 

CEP process code 

hyphen char(_) 

file identifier 

1 ohar 

4 char 

1 char 

4 char 

Process Code Naming conventions 

Process codes for the commands are 4 char long 1 

only first char has a convention other 3 identifies the 

command 

R remove type of command 

c create type of command 

D display type of command 

M modify type of command 

G general purpose command 

Function naming conventions 

There are two types of functions -

a. Library Functions 

b. Process level Functions 

Library functions will use nl as a prefix for a 

function name 1 support functions of these function will 

also use this prefix 

Process level functions will use following 

conventions -



Sub system name - 1 char 

Process name 

hyphen char( 

- 4 char 

- 1 char 

function identifier 



BIBLIOGRAPHY 

1. Specifications for National application of CCITT #7 

(Common Channel Signalling System partl) 
• 

2. CCITT Red Book Vol VI 

4-9 


	TH68400001
	TH68400002
	TH68400003
	TH68400004
	TH68400005
	TH68400006
	TH68400007
	TH68400008
	TH68400009
	TH68400010
	TH68400011
	TH68400012
	TH68400013
	TH68400014
	TH68400015
	TH68400016
	TH68400017
	TH68400018
	TH68400019
	TH68400020
	TH68400021
	TH68400022
	TH68400023
	TH68400024
	TH68400025
	TH68400026
	TH68400027
	TH68400028
	TH68400029
	TH68400030
	TH68400031
	TH68400032
	TH68400033
	TH68400034
	TH68400035
	TH68400036
	TH68400037
	TH68400038
	TH68400039
	TH68400040
	TH68400041
	TH68400042
	TH68400043
	TH68400044
	TH68400045
	TH68400046
	TH68400047
	TH68400048
	TH68400049
	TH68400050
	TH68400051
	TH68400052
	TH68400053
	TH68400054
	TH68400055
	TH68400056
	TH68400057
	TH68400058
	TH68400059
	TH68400060
	TH68400061
	TH68400062

