
ONLINE INTERFACE FOR
If 7 SIGNALLING SYSTEM

Dessertation submitted to .Jawaharlal Nehru University

in partial fulfilment of the requirements

for the award of the Degree of

MASTER OF TECHNOLOGY

1989

BHOOPESH RAGHAV

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELH,-11 0067

Certificate

This project work entitled ONLINE INTERFACE FOR # 7

SIGNALLING SYSTEM has been carried out by Mr. Bhoopesh Raghav,

for partial fulfilment of the requirements of the degree of

Master of Technology in Computer Science and Engineering of

Jawaharlal Nehru University, New Delhi.

This work is original and has not been submitted so far

in part or full for any degree in any University or Institute.

Lt. co-?. ~tb
Supervisor

SCSS, JNU, N.Delhi

'
(/-

S\.-..CAAA k'CJ0LA.OJ\tA. "Jd ~
Mr. S. Shankarnarayan

Manager

CCITT group, C-DOT,N.Delh.

,~ X -- __./\ _ __.. \-
Prof Dr. ~ . P. Mukherj£E

Dean

SCSS, JNU, N. Delhi

ACKNOWLEDGEMENT

First of all I would like to express my deep gratitudes

for Mr. S. Shankarnarayan, Manager CCITT # 7 group at C-DOT,

for involving me in group activities and assigning me a

project as important as this. His guidance and lectures given on

technical matters time to time will remain unforgettable and very

helpful in future.

I also take this oppurtunity to thank

Lt. Col. C.P.C.Nath, for encouraging me to work on SS 7 and ISDN

related activities and costantly guiding me throughout this

project.

I also thank Jalaj Swami in no unequal terms, for his

untiring help and his pivotal role in my interaction with C-DOT

related activities.

I would also like to mention the names of Mr. Jasbir

Singh, Mr. B. S. Chauhan and all group members for maintaining

an encouraging and enthusiastic working environment which not

only made this period memorable but important and quite

enjoyable.

Bhoopesh Raghav

..
ll

PREFACE

The SPC Exchange plays an important role in the new

generation of Telecom networks. With the implementation of CCITi

recommendations on # 7 Signal:ing System the signalling

methodology has become very efficient and has provided a user

with data communication facilities as a stepping stone towards

ISD~ and beyond .

Having fully implemented the Online Interface Commands,

the Data Management in DSS Architecture will become very

efficient and give a thrust to coo~ oss through powerful Man

Machine Commands and hence, will improve upon the functioning of

SS7 in DSS.

. ..
Ill

CONTENTS

1. INTRODUCTION 1

PART I

2. C-OOT DSS ARCHITECTURE s

i SYSTEM ARCHITECTURE

ii DISTRIBUTED PROCESSING IN C-OOT DSS

i HARDWARE DESIGN

ii SOFTWARE ARCHITECTURE

3 . MAN MACHINE INTERFACE 20

i INTRODUCTION

ii MMI SOFTWARE ARCHITECTURE

iii MODES OF OPERATION

26
4. No 7 SIGNALLING SYSTEM

i COMMON CHANNEL SIGNALLING

ii MODES OF OPERATION

iii ARCHITECTURE OF SS7

iv IMPLEMENTATION OF No 7 SS IN DSS

i HARDWARE ARCHITECTURE

ii SOFTWARE ARCHITECTURE

r

Jy

CONTENTS

1. INTRODUCTION

PART I

2. C-OOT DSS ARCHITECTURE 5

~ SYSTEM ARCHITECTURE

ii DISTRIBUTED PROCESSING IN C-OOT DSS

i HARDWARE DESIGN

ii SOFTWARE ARCHITECTURE

3 . MAN MACHINE INTERFACE 20

i INTRODUCTION

ii MMI SOFTWARE ARCHITECTURE

iii MODES OF OPERATION

26
4 . No 7 SIGNALLING SYSTEM

i COMMON CHANNEL SIGNALLING

ii MODES OF OPERATION

iii ARCHITECTURE OF SS7

iv IMPLEMENTATION OF No 7 ss IN DSS

i HARDWARE ARCHITECTURE

ii SOFTWARE ARCHITECTURE

.
IY

PART II

S • ONLINE DATA UPDATION COMMANDS

i NE'l'WORK RELATED COMMANDS

ii CIRCUIT RELATED COMMANDS

6 • NUMBER 7 DATA UPDATE PROCESS (NDUP)

i PROCESS DESCRIPTION

7. DESIGN ASPECTS

i LOCAL DATA STRUCTURE

ii MESSAGES USED FOR COMMUNICATION

8 . FUNCTION CALLS

i FLOW OF COMMANDS

ii FUNCTION DESCRIPTION

9 • NETWORK AND DATA MANAGEMENT FOR No 7 SS

i GENERAL

ii No 7 SS RELATED DATA AT AP & BP

iii No 7 SS RELATED DATA AT SU

10. SOFTWARE RECOVERY IN NDUP

v

Contents

37

40

42

54

66

73

Contents

PART III

11. ANALYSIS OF NETWORKING FEATURES OF No 7 SS 81

APPENDIX

I. NAMING CONVENTION 87

II. coos, FUNCTION CALLS AND MACROS 92

III. NDUP 93

i. Index

ii. Function Calls

iii. Supplementary files

IV. REFERENCES 106

.
VI

CHAPTER .!

INTRODUCTION

The online inierface for #7 Signalling System provides

an ir.trface to the Man Machine Commands. These commands when

issued by an

Ptocessor(IOP)

operator are routed through

at Administration Processor (AP)

an Input Output

The purpose of

these commands is to modify or update the data required for

exchange maintenance, call processing and outward signalling

etc., maintained in the form of database at various processors.

In the case of No 7 Signalling System, the AP communicates to the

Signalling Unit through message communication. At SU the messages

are received by the Numbr 7 Data Update Process(NDUP), which has

been written for Online :nterface in this project.

The NDUP is an external process running in a single

state. Like other processes it's function is to add, delete or

modify the necessary data re:ated to Number 7 Signal:ing System

at SU as implemented in C-DO~ DSS.

l

Introduction

The DSS is a modular architecture and the concepts of

distributed processing are adopted for interaction betw~e~

different processes effectively. To make the designing and

implementation features of NDUP clear and to depict 1t 's role 1r.

C-DOT DSS System,

fo!lows.

t~is report has been divided suitably as

Starting with the chapter 2 in Part 1 on DSS Architecture,

the report gives an overview of Hardware and Software sub

systems, Administration Module (AM), Base Module (BM) ar.d

Signalling Unit (SU) in particular, which support most of the

processes NDUP is interacting with.

Administrative Processor supports the Man Machine

Interface through Input Output Processor (IOP), this is described

in chapter 3. The need of NDUP is more appreciable in case of

Online commands which operate on distributed databases at AP, BP

and SU in real time frame.

An overview has been given on Signalling System # 7 in

Chapter 4. ~his deals with the acceptability of SS 7 as a Com~on

Channel Signaling Syste~, it's various mode of operation,

Architecture of SS 7 and fina!!y its imp:e~er.tation inC-DOT DSS.

The second part of this report has been devoted to the

Online Interface Commands and its related features in C-DOT DSS.

2.

Introduction

Chapter ~ id8nt1.f1.es the ~e':worJ<. and Circuit re::.ated

co~~a~ds required for On!ine imp!ementation in C-OOT DSS.

t:c ·_:.is resides

Sig:ia::.ing ::nit of ::;ss and cor::~...::i:.cates with ~ther simlar

precesses through message ccr:.r:.·...:n i cation. The design aspects of

the NDl.JP are covered in Chapter 7. :'he C'lapter 8 outlines the

Cc~r:and F:ow and ditferen~ tun~ :on ca::.s used in NDUP. Chapter 9

for Nc 7 SS. and

gives an :.dea of :::!:..s:.r:.b·..:':0::i 'Ja:.a r:.a:..n':ained at AP, BP and s::.

The last. C:hap:.er :. s or; the Software recovery

strct':egy studied a:id imp!emented in NDUP for System recovery.

The SS 7 prov iti(:5 many U!:>efu l services through its

effi<:h:nt si,~rudliug rot;t,hodolgy. With the digital facilities

i m~ I r:mr:n L Lhr: uetworking fe<.t Lures are

anau.y.st-:d irt chaptt.·r 11 of part 3. Th,Jugh this chapter i• not

CUlt~ l 1J•: r I Clg I It< - m p o r •- rl n c e o f t h i s to t' i c and h a v i n g go en i n

~:;~~ ·r :rt m<~n~ cit:L<-:ti 1!3 ;-md ctppt-:nd Utf: matter here.

3

Introduction

To support this report an appendix is also included in

the end which describes the naming convention standards followed

at C-::)0':', higher leve: supplementary files for g.:obal variab:!.es

and data structures along with th~ pse~do code of NDUP process.

4

CHAPTER TWO

C-DOT DSS ARCHITECTURE

C-OOT digital switching system employs state of art

technology. It has a modular, distributed architecture consisting

of Admnistration Module, Centra.:. ~odule and number of Base

Modules depending on the confoguration.

2.1

2.1.1

SYSTEM ARCHITECTURE

Administratve Module (AM)

The AM provides system level administrative functions,

which are as follows :

Directory to equipment number translation for call

processing support.

System wide maintenance.

Software recovery.

Overall initialization,etc.

It also provides interface to mass memory and to man

machine communicat~on terminals through the Input Output

5

MOF

I
I 1 1- BM, Subscriber

()--- -
lines

Analog
Trunks • <>-- ·-

Digital
Trunks o-- ·-

o--
Digital Links From BM
Remole Units & It

Eldlanges

AM

~ f'.'\ .

'- 1''\

"l C> ~ ·.
f'. \ i)l- :

J NI>\)T (>..)1Pc'T P-<.1.\(i-'-:..~C"\

1"'1 /'JtiN hll\ R.t •!.vi 01-i (.<AMt:_

I

. I
~

Disk Tape vvu Printer

COOT OSS BASIC ARCHITECTURE

y

AM

lOP

PR

-.------------------------------

Sll

s
c
s
I

MU0 MU1

8100 8101

81C0 81C1

~--- ---1=-=~--- ---1
_ _J _ _J L- L __

AP0 AP1

256KB/S 64 KB/S I 256 KB/S
SERIAL 1 1 HDl C I 1 SERIAL LINK
LINK I I MESSAGE LINK I

128 KB/S 128 KB/S
MESSAGE MESSAGE LINK
LINK TO TO CMS

CMS

ADMINISTRATIVE MODULE (AM)

7
--- ____ _j

C-~0~ DSS Architecture

-processor (lOP).

2.1.2

The important components of the A~ are

- Administrative Processor

- Input Output Processor (IOP)

Central Module (CM) :

The CM provides the connectivity between BMs, between

fu~ and BMs, and between AM and CM itself.

The important components of the CM are

- Space Switch (SS)

- Space Switch Controller (SSC)

- Central Message Switch (CMS)

The BMs are interfaced to SS through two 512 channels,

10 bit parallel, 4 MB/sec links. Four of the 512 time slots carry

control messages and rest of them carry digitized voice. For a

call setup an idle time slot is selected by sse and the desired

terminals are connected to the time slot by the BM. Four time

slots are terminated on four central message switches for message

communication.

2.1.3 BASE MODULE (BM)

The Base Module performs time switching portion of the

time-space-time network. The lines and trunks terminate on

terminal units in the BM. Each BM is capable of interfacing with

C~ through a duplicated link. It provides the necessary

C-OOT DSS Architecture

capability for configuring a multimodule switching system. The

important components of the BM are

-Terminal unit(TU)

consisting of

- Terminal Interface Controller(TIC)

- Signalling Procesor(SP)

- 8igital Trunk Intterface

- :::...ine Card

- Analog Trunk Card, etc.

- Time Switch(TS)

- Base Message Switch(BMS)

-Service and Control Unit(SCU)

The TIC interfaces with signal processor. Four terminal

groups of thirty two channels each are terminated on the TIC for

providing 128 subscibers or trunks on 8 MB/sec link connecting

TIC to the time switch.

The different telephony events like call organization

detection,digit reception, digit out pulsing, reversal detection/

transmission etc are detected and perfor~ed by SP which inturn

communicates to TIC.

The Digital Trunk Interface offers the same interface

towards the SP as offered by line card for analog signal. The

important functions performed by it are

Tl -===><=·--
L_ ______ LITLI~====~~======~o

~--.1
---··-

_X CMI
1---

CM
-

-

-0

I s : ' I M \:: '. \jiT' ~1

S 1
) : <.., f~ \)I (f_ ' '?-I ,

cu
BASE MODULE ARCHITECTURE

BMO

CMI

CMI

I I
BM 31

CMI ~------~-+4-~--------· - -

CMI

I l
I I

~:--,c... ·. S\)Atf- ~1r.~1 l(rl ttNiR.uu.f:-~

cN\S ·. Jt-\··<-~- Mr-~~E S.wou-r

.__ CMS A-D

X
l I

AP

AM

CENTRAL MODULE ARCHITECTURE

/_V o
---z:v

-.:z=v 31

--7::._v

l

ss

I 1

sse

C-OOT DSS Architecture

- electrical matching to the external interface.

HDB-3 to NRZ code conversion.

- trace alignment 1 reconstitution I insertion I alarm

information, etc.

The Line Card converts t~e signalling information

from lines to a digital signalling format. The speech information

is converted 8 bit PCM format and is multiplexed on duplicated 2

Mb/sec link.

The Analog Trunk Card is similar to line card with the

difference that digits are pulses O:Jt on an outgoing trunk and

ringing is not required to be fed on trunks.

The Time Switch (TS) performs time slot interchange

functions for the base modules. The switching is performed for

eight 128 channels , 4 Mblsec serial links and 512 channel, 4

Mb/sec parallel links towards the central module. It also

performs intra BM switching between 1024 time slot.

The Base Message Switch provides message

communication between different controllers and base procassor.

I~ also does the job of error detection and retransmission. The

serial links used are of 128 Kb/sec and 64 Kb/sec for different

controllers. The BM supports a maximum of two message device

cards, each supporting sixteen HDLC links.

12..

C-DOT DSS Architecture

The important components of Service and Control Unit

(SCU) are

- Service And Control Interface (SCI)

- Control Unit

SCI is similar to termina: interface but without an

SP. It provides an interface between ~S and service circuits and

TS and Control unit.

The CU comprises of base processor memory interfaces

and the memory unit. Bus interface connects the duplicated BP

with duplicated memory unit.

To provide redundancy ir. the architecture all the

control units and the links between the controllers are

duplicated i.e., duplicated BPs, BMs, IOPs etc.

2.2 DISTRIBUTED PROCESSING IN C-OOT DSS

The C-OOT DSS architecture is highly modular. The

Hardware and Software has been designed suitably to cater the

distributed processing in it. Processors are built around 68K uP

mostly and Processes use messages for inter-process-

communication. The detail is as follows:

2.2.1 HARDWARE DESIGN

Processors

The processors are employed for both front end

processing as wel::. as main processing. Following

C-DOT DSS Architecture

processors are used in the system for this purpose-

- 6502 micro processor is used for front end.

- 16 bit 68000 microprocessor is used for main

processing.

Main Memory

2 Mb dynamic memory board with on board R&~

controller.

Mass storage

Disk memory for data backup.

magnetic tape for data transfer.

Module Contro~ Unit

68000 micro processor based subsystem which is

configurable as :

Base processor complex in BM.

Space switch controller in CM.

Administration processor in AM.

Interface Controller

8 bit, 6502 micro processor along with a time switching

network. (128 channel multiplexed time slots). This same

unit is configurable as :

Terminal interface contro~ler in TrT
Vo

Service control interface controller in SCU

lla

C-OOT DSS Architecture

Message switch

This has two parts

1. 68000 microprocessor based message switch controller

having six HDLC links for rr.essage communications with

other controllers.

2. Message switching device. One PCB of this module

provides sixteen 64 Kb/sec H8~C channels time

multiplexed to yield 2 ~b/sec link. Two such cards

provide maximum of 32 time multiplexed HDLC channels.

It is configurable as

Base message switch in BM.

Control message switch in C~.

yield 2 Mb/sec link

2.2.2 SOFTWARE ARCHITECTURE

The switch hardware is surrounded by a number of

software layers which provides higher level of abstraction. The

important features of software are simplicity of layered

architecture and loose:y coupled modules, maintainabi:ity due to

fault tolerant software and ~od~:ar design and efficiency due to

time critical process.

15

C-DO~ DSS Architecture

1 Operating System

The OS depending on it's functioning in DSS is divided

as follows :

:. C-DOT real time operating system (COOS).

2. OS for IOP.

3. Peripheral processor JS.

C80S, designed suitably for minimizing overheads in

terms of rea: time, provides effective interprocess communication

between the processes residing in same or different

processors. For communication it uses C.85 protocol

utilises the HDLC based message network.

which

Peripheral process8r s~b-sys~em hides the telephony

hardware. The 6502 microprocessor programmed in assembly level

languages does the sensing and detection of events and

communicate to BP for call processing. It also carries out

maintenance related test functions on hardware.

The above mentioned software subsystems are distributed

amongst BMs, CMs and AM. The OS does the partitoning for these

subsystems in the form of processes and take care of inter

process synchronization, interr~pt hand:ing, timing services and

etc. This helps in efficient resource sharing.

2 Call Processing (CP)

It constitutes the mai~ part of the application

i- -

•

8 Global Routing &
Resource Allocation

OUTGOING
TERMINAL
PROCESS

I

CALL
MANAGER

TERMINATING
TERMINAL
PROCESS

PERIPHERAL
PROCESSORS

pp

•
ORIGINATING
LINE

TERMINATING
LINE

PROCESSES IN CALL PROCESSING SOFTWARE

. I"/-

C-OOT DSS Architecture

software. It uses the terminal interface controller primitives

for controlling telephony features. Its important processes are

- Incoming Terminal Process No 7 (ICCTP7)

- Outgoing Terminal Process No 7 (OGTP7)

- Status Control Process (SCP)

- Globa: Path Contro: Process (GPC)

- Call Manager (~~RJ

3 Administration Software:

It provides man-machine-interface with the system. Its

salient features are :

- Provision for billing.

- Detailed billing record for STD calls.

- Exchange traffic and performance measurement.

- Managing recent change functions for program and

data updates.

3 Maintenance Software

It provides extensive mechanism for reliable operation

of the system. Hardware units generate necessary triggers for the

action to be taken by the subsystem. The important functions are:

- Fault detection for loca:ization.

C-OOT DSS Architecture

- Fault isolation and prevention from propagation.

- Fault recovery through the multiple levels of

initializations.

- Preventive maintenance functions like audits ,

overload control, performance monitoring and etc.

5 DataBase (DB)

category

service,

The database has been organized for the following

- Fixed office data.

- Extended office data.

Transient data for ca~~ processing.

Fixed office data comprises of terminal type, class of

etc. Extended office data is maintained for feature

related calls. Fixed and transient data are arranged on per

terminal basis.

billing,

backup.

For easy recovery the important data items like

configuration ate are stored periodically on the disk

6 CCITT No 7 SIGNALLING :

A part of the signalling system No 7 software is

resid~ng in No 7 SU which hand:es protoco~ message routing and

network management. The other part, distributed among various

BMs, integrates the ~o 7 SU with ca~: processing, administration

and maintenance sub-systems.

l?

CHAPTER 3

MAN - MACHINE INTERFACE

The Man-Machine Language (MML) is used to facilitate

the various administrative functions. It provides a transparent

interface to the operator to communicate with the exchange and to

modify the internal state.

The information related to the call processing,

exchange maintenance, signalliing etc. is stored in the form of

database. This database is normaly created or modified by the

operator using man-machine commands.

The data is stored in different processors depending

upon the requirements. Normaly data is stored in AP, BP, #7SU and

at IOP. If at any time the exchange goes down, all the data for

the exchange status can be down.ioaded from the IOP. The data

local to each BM is stored there itself where as the global data

needed by all the BM's is stored at AP.

2.0

~an-Machine :r.terface

3.1 Man-Machine Interface Software Architecture

Keeping the flow into consideration, the MMI comprises

of following different processes

- CRP Command Recognition Process

- CEP Command Execution Process

- IDUP Input Output Data Update Process

- ACI Administrative Command Interpreter

- DUP Data Update Process (AP)

- BDUP Base processor Data Update Process

- NDUP No 7 Data Update Process

Command Recognition Process (CRP)

The CRP is a dynamic process residing at IOP.

Whenever the operator logsin the terminal,this process is

created. It is a command interpreter and takes the parameters

from the imput keyed. It performs validation checks like range,

set checks etc. on the input parameters. After all the

va:idations it creates a dynamic process CEP, for that particular

co~~and and passes the relevant information.

\,.!.r;.:.ar
..... > c,.
'· l . \.· ... '· <

\..I

-..
2.l

~E.r
CRF·
ACI
DUP

BDUP
NDUF'
I DlJF·

Commiirrd E:-:ecution Prc:>cess
Curr .. 1ra.nd RE:c'coun i ti on Froces;:..
Administratve Corrlfncu1d Interorec:2r
Data Update Process
Base P~-c.c.essor Dat<:t l·Dda.te Proce..:s
No 7 Data Update Process
In~·'- r: /Output Dat-a ·.ilJ(j,_, t E' P,-c,c e..: s

22

Man-Machine Interface

Command execution process (CEP)

include

There is one CEP per man-machine command. Its functions

performing consistency checks.

Exhaustive para~eter va~idations.

Updations of database at IOP and make the same in the

exchange.

When the CEP is created, it gets arguments from CRP

and makes an exhaustive parameter validation. After all the

checks it sends a message to AC: from where the information goes

to AP in AM, BP in BM and NDUP in #7SU. The CEP gets either a

Success/Failure acknowledgement message from ACI, based on which

it sends output message to CRP.

The destination of the command may be lOP, AP, BP or

N~UP. If it is lOP , the CEP will be responsible for the data

updation, otherwise CEP sends a message to ACI and waits for the

response.

Input-Output Data Update Process (IDUP)

IDUP is an eterna: process residing in IOP. For

reliability issues :op work in Duplex mode. The CEP sends a

message to IDUP which creates an identical CEP at the other :oP

Man Machine Interface

for the data updtion. The CEP of IOPl waits for the message from

duplicate CEP indicating the successful completion of updations

before proceeding further.

Administrative Command Interpreter (ACI)

The ACI is an eterna: process residing in AP. It

provides an interface between the IOP and AP /BP /SU. It gets the

message from CEP and checks its c.:.ass and command code to know

about the place where the data updat ions are needed. Depending

upon it the ACI sends messages to Data Updation Process at AP or

Base Processor Data Updation Process at BP or No 7 Dataa Update

process at SU. Depending upon the result it sends an

acknowledgement message to CEP.

Data Update Processes

It consisists of :

DUP at AP,

BDUP at BP and

NDUP at SU.

These processes are single state processes. These

waitfor all possible messages in a single wait sate. The

processing is done for every message received, at the end of

Man Machine Interface

which, these processes come back to the original state. For

database updations these processes pass the control to the

relevant co~~and segment based on the Command class and Command

code. Each process has the provision of sending and receiving

ac~nowledgement and take necessary action.

3.2 Modes of operation

The man-machine commands are executed in two modes.

i. Growth Mode and

ii. On-line Mode

Growth mode is also known as Off-line operation

Mode. ~he command in this case updates the data at lOP only and

at the Disk for backup. The modified data is periodically

downloaded from lOP to the exchange.

In On-line mode data residing at both lOP and the

exchange is modified. ~hese modifications immediately effects

the performdnce of the exchange. It is also known as Normal mode.

2.5

CHAPTER 4

No 7 SIGNALLING SYSTEM

4.1 COMMON CHANNEL SIGNALLING (CCS)

The CCITT No7 signalling system is a standard for

interexchange common channe.i signalling system (CCS). A CCS is

different from IN-BAN~ ana.:og signalling channel as separate

shared ((common) channel i.e. signalling link) is used to convey

the signalling information.

In CCS networks terminal points or signa~ling points,

(SP), are distinguished from switching nodes. SP like a control

unit in SPC exchange, works as a source and destination for

signalling information. CCS network is connected through trunks

called signalling links (SL).

ccs
Signaller

0 EXCH.

A

(s p c)

C C S METHOO

Signalling Data Link
1--------------

between Processors

Voice Channel

EXCH.

B

(s p c)

ccs
Signaller

~-o

No 7 Signalling System

4.2 Modes Of Operation

The modes of operat1on in CCS network are as follows

1. Associated mode

2. Non-associated mode

3. Quasi-associated mode

In associated mode, an S~ serves the circuits belonging

to a given route only. ~his has a disadvantage of low utilization

if traffic is limited on the route.

In non-associated mode the uti:ization improves because

of induction of STPs connecting SPs uniquely. In this case a

fewer SLs provide the required traffic flow.

In quasi-associate mode, some SPs provide STP

functions to make a CCS network combination of both associated

and non-associated modes.

4.3 Layered Architecture of CCS

A CCS network incorporates the features essential to

any intelligent communications network. It also resembles the OSI

model of computer networking. The adjoining figure depicts the

similiraty between the two.

Associated

--------0
Quasi - Associated

Quasi· Associated Network

Signalling Unk

Circuit Group

Q Signalling Point (S P)

D Signal Transfer Point (S T P)

@ S P with S T P Functions

C C S MODES L-----·--·-----_.... _________________________ __

No 7 Signalling System

As against seven layers of OS1 model, only four layers

of SS7 are structured for communication. The lower levels 1, 2

and 3 together called message transfer part (MTP), correspond to

the layers 1, 2 and 3 of OSI model respectively. OSI layer 4 is,

tho~gh absent in SS No7 but a few networking related en~ to end

comrnur.icatio features are incorporated in the form of network

manager at level 3. The higher level layers 5, 6 and 7 of OSI are

mapped at level 4 and distinctily divided in the form of user

parts depending on the application.

level 1 :

signalling - data - circuit functions like provision of

medium, error performance, protection, switching etc

level 2 :

Signalling - data link functions

- message frame formatting

- Sequencing

- Error recovery through retrans~ission

- Error rate monitoring

- Link initialization

level 3

- Message handling

- Network managament

- Route and link management

J- · User Pans · -i ·- -·- -- Network Service Part ___ ' _ ..

Level 4 I Level 3

MUP
I

r-----1 l
.._____.._-.........~ i I

: J

IS UP !

TUP

I I

DUP I

~ I
I I , ,

Other I I

User
Par'ts

Message

.___ Signalling
Networ1<
Mgmt.

Signalling link

1

Level 2

I

.,___---1 Link
Control

•

LAVER ED STAUCTUAE OF CCI T T NO. 7 S S

Level 1

Signalling Data Link

X t--·- -- -

Switch

No 7 Signalling System

level 4

Application parts for TUP, DUP, OAMUP etc

4.4 IMPLEMENTATION OF No 1 SS IN OSS

The No 7 SU is housed in a standard terminal frame

connecting to the time switch of a BM on one of the eight serial

interfaces of 128 time slots. An incoming No 7 message is

distributed to the approriate process within the software sub

system and also to the approriate BM (in case of multiple BMs)

based on incoming route and circuit identity. This helps in

distribution of loadamongst BMs.

4.4.1 HARDWARE DESIGN

No 7 SU is implemented in DSS using two cards, protocol

cards and SUP cards as shown in the figure. One protocol card

handles eight protocol channels and such channels are controlled

by one microcomputer. The mocrocomputer along with HDLC chip does

the level 2 functions for each channel. Buffers are used in

memory for incoming messages and cleared later on after outgoing

messages. The 64 Kb/s serial streams of 32 channels are converted

to 2048 Kb/s. Four such links (8 Mb serial) connect to a standard

TJC card for Time Switching Interface.

\F
\)J

l

/

l
/
I
'
i

' /
i

'

-· TU

TU

I
I

I TU }r-----1

--il No 7 SU 1~------i

BP BMS ·-

I
I
I I
I I
I I

ss I TS

I

' J . \DIGITAL
TU l L •)TRUNKS

' J : LINES l TU l
I

/

' r-~
I
I LINES

/
.......

---[TU ~-- LINES
/

r---.-~ BMS 0
BM 1 - No. 7 LINKS 1 BM

_______________ 1. INTERNAL ..1 __________________ _
MSG.LINKS

NO. 1 SU IN C.OOT OSS

--------.,
['P.ROM ~ -~

I

CPU

'--------J

r--------,
I

'--------J

~-------------------- ..

'----------J----------J
r--------- ----------,

PROTOCOL CARD 3
'----------,----------J

I
I
I

r~--------~----------,
.-~~ I

PROTOCOL CARD 12
'----------,----------J

I

r---------~----------,
PROTOCOL CARD 15

I

'---------------------J
NO.7 S S HAADWARE SCHEME

No 7 Signalling system

The second card, signal unit processor (SUP), in

duplicated mode has on board ROM for code and RAM for routing

tables. SUP polls the protocol channels for incoming messages,

analyse and route on to outgoing channels. A serial link between

duplkicated SUPs is used for updating of routing tables to

maintain consistency and easy recovery.

4.4.2 SOFTWARE ARCHITECTURE

The software is implemented in two parts, one in No 7

SU and the other in BPs and AP.

The No 7 SU software primarily consists of message

handler (MH) and network manager. The MH implements the level 3

functions of routing, discrimination, distribution, etc. It polls

the protocol cards, analyzes the header and route the message on

the outgoing channel.

At regular intervals the MH is interrupted and the

control is passed on to a network management process which takes

the subsequent action under the control of c-oos ported on

toNo 7 su.

Software in BP containing different processes with the

sub-system software, implements the level 4 user part. The TUP

includes incoming No 7 tarnsfer part with CP.
;

!SUP is implemented with ICISTP, OGISTP and rest of the CP.

Layer 2
Protocol
Handler

Layer 2
Protocol

No. 7 Channels No. 7 Channels

-Layer 3 & TH
Functions

Internal Protocol Channels

------------------------,

NO.7 S S SOFfWARE SCHEME

,.....
/Mntc)
\Subsy_;, .-
'-- / "' (Admin. \

\Subsystem)
'- / - __.,

BPn

CHAPTER 5

ON LINE DATA UPDATION COMMANDS USED FOR MAN MACHINE COMMUNICATION

The Online commands are issued bu an operator in a

standard format. These are received by Command Recognition

Process (CRP) and communicated to Administrative Command

Interpreter (ACI) through Command Execution Process(CEP).

ACI analyzes the command class and command code to know

the destination processor and required database to operate upon.

The commands dealt for No 7 Signalling System are related to

either

- Network features

- Circuit features

ACI after analysis sends the message either to Data

Update Process (DUP) or to Base Processor Data Processor (BDUP)

for the updation at the respective databases. In case when the

8ata is required to be modified at the No 7 SU, the BDUP sends

ON LINE DATA UPDATION COMMANDS

the message to No.7 Data Update Process (NDUP). These procsses

after updation send an acknowledgement, which in case of NDUP

goes to BDUP and finally to ACI for backward confirmation to the

operator.

5.1 CIRCUIT RELATED COMMANDS:

1. Create Self Point Code - cre_spc

2. Create Circuit Group Set - cre_cgs

3. Modify Circuit Group Set - mod_cgs

4. Delete Circuit Group Set - del cgs

5. Alloc. Circuit Identity Code - aloc_cic

6. De-alloc. Circuit Identity Code - daloc cic

S . 2 NETWORK RELATED COMMANDS :

1. Create LINK Set - ere sls

2. Modify Link Set - mod sls

3. Delete Link Set - del sls

ON LINE DATA UPDATION COMMANDS

4. Create Link Set Bundle - ere lsb

5. Modify Link Set Bundle - mod lsb

6. Delete Link Set Bundle - del lsb

7. Create Signaling Route Set - ere srs

8. Modify Signaling Route Set - mod srs

9. Delete Signaling Route Set - del srs

OTHER NETWOK RELATED ONLINE COMMANDS

*1. Add Data Link

*2. Delete Data Link

*3. Create Data Link Group

*4. Modify Data Link Group

*5. Delete Data Link Group

- add dl

- del-dl

- cre_dlg

- mod_dlg

- del_dlg

* - these modifications are not reflected in NDUP.

3')

CHAPTER 6

NUMBER 7 DATA UPDATE PROCESS (NDUP)

6.1 PROCESS DESCRIPTION

The NDUP is implemented as a single state

process. This means that the process waits for all possible

messages in a single

every message received,

the original wait state.

wait state. The processing is done for

at the end of which NDUP goes back to

Each job for the data updation is identified by a code

byte. The job entries, in the form of messages are maintained by

a linked list called NDUPQ.

The commands handled by the NDUP are organised into a

col:.ection of command segments. Each segment consists of the

command codes used for different database actions. The

correponding command segment gains control in the/" forever'

function call and execute the command.

NUMBER 7 DATA UPDATE PROCESS (NDUP)

The NDUP also maintains the history of past few co~~annd

executed, in the history buffer, pointed by the hist_buf_pointer.

This helps in avoiding duplicate command execution and in a way

checking the redundancy in the database updations.

The N8UP process is a single state process, therefore,

after sending a message to an external process for record

fetching or to restart, it waits in original state where it again

gains control for the incomplete commands. The status of each

command therefore, is stored by the NDUP maintained in the form

of a doubly linked list called NPNODE for this purpose.

The NDUP interfaces with other processes also. It remains

in the receive message state before it is invoked by

- a command message from Administration Command

Interpreter (ACI).

- a co~~and message from DUP.

- a command message from BDUP.

~I

CHAPTER 7

DESIGN ASPECTS

7.1 LOCAL DATA STRUCTURES

7.1.1

Name command_ptr(Command pointer table).

Purpose To hand over control to the corresponding

command segment to process a input command

message

Location SU memory. (Read only)

Memory size : 2.0 K

Assuming 25 command classes, each class having a

maximum 20 command codes(provision for extra command

classes is taken into consideration) .

Organization : a two dimensional array of pointers
to functions.

Access mechanisim : indexed by command class and command code.

DESIGN ASPECTS

Accessed by NDUP

NDUP accesses this data structure only once in

passing control to the command segment handling the

specific command message.

Initialization :

Audit

7.1.2.

Name

Purpose

NDUP initialization routine. This is

called when the process first comes up.

The elements of the command pointer array

are made to point to the various command

segments.

A back up is on disk. Periodically the

audit verifies data consistency in memory

and on the disk.

NPNODE

:To maintain a link :ist of a:: pending

command messages inc:uding their present

status and other information.

Fields

Location

Memory size

Organization

DESIGN ASPECTS

:Each node contains the following fields:

Status : gives the current status of the

command.

Header contains message mnemonic,

message type, subfield 2 and

sender process id.

Command header: contains crp_id, size,

status, session id, job id, user id

and device id.

Mesg_ptr : points to the message.

Left :Points to the previous node in NDUPQ.

Right :Points to the next node in NDUPQ.

oldval_ptr :points to the old value of data

Rslt_ptr points to the combined result

SU memory

Each node occupies 40 bytes.

a double linked list of nodes.

access mechanism: sequential search. (user id,job,id &

session id together serve as

control key) .-

DESIGN ASPECTS

Initialization NDUP initialization routine does the

initialization. This is called when

the process just comes up. The header

of the link list is created.

7.2 MESSAGES USED

7.2.1 Messages for DOP -> NDUP

typedef struct {
Ulong crp id;
Ushort user id;
Ushort size;
Uchar status byte;
Uchar output-dev;
Uchar session id;
Uchar job id;
Execution num exe num;

Cmdhdr;

result header message:

typedef struct {
Ushort user id;
Ushort size;
Uchar no of entries;
Uchar output dev;
Uchar session id;
Uchar job id;
Uchar dummy byte;
Uchar statu~_~yte;
Long crp_id;
Execution num exe num;

Rslthdr;

DESIGN ASPECTS

7.2.2 Messages for circuit related commands:

cgs related message

typedef struct
{
Hdr
Cmdhdr
Ushort
Uchar
Ushort
Ushort
Par slot cic
}Ncktcre07;

hdr;
cmdhdr;
cgs_nurn;
pcm type;
dpc;
bytel slot cic;
slot_cic[vMPOS(bytel slot_cic)];

cic related mesage

typedef struct
{
Hdr
Cmdhdr
Ushort
Par rcic info
}Ncktcre09;

hdr;
cmdhdr;
bytel rcic info;
rcic_info[VMPOS(bytel_rcic info)];

7.2.3 Messages for Network related commands

cgs and dlg related message

typedef struct
{
Hdr
Cmdhdr
Ushort
Ushort
Ushort
Uchar
Uchar
Uchar
Uchar
Ushort
Par dl info
}NnetcreOl;

hdr;
cmdhdr;
dlg_num ;
cgs num ;
dpc-;
sgnl net id;
stdby dl ;
trmn flg ;
unuse dl ;
bytel-dl 1st ;
dl_info[VMPOS(bytel_dl_lst)] :

lsb related message

typedef struct
{
Hdr
Cmdhdr
Ushort
Uchar
Ushort
Ushort
Par stp users
}Nnetcre02;

hdr;
cmdhdr;
lsb num;
sw opt;
other end pc ;
bytel-stp-users;
stp_users[VMPOS(bytel

DESIGN ASPECTS

stp_users)];

ls and lsb related messages

typedef struct
{
Hdr
Cmdhdr
Ushort
Ushort
Uchar
Uchar
Uchar
Uchar
Uchar
Uchar
Ushort
Ushort

hdr;
cmdhdr;
ls num ;
lsb num ;
max-act links ;
min-act-links ;
max-avl-links ;
min-avl-links ;

recovery opt ;
bytel pc-served lst ;
bytel-link lst -;

Par pc served lst
Par-link id
}Nnetcre03;

pc served Tst[VMPOS(bytel pc served lst)] ;
link_id[vMPOS(bytel link_Tst)] ;

dlg related messages

typedef struct
{
Hdr
Cmdhdr
Ushort
Ushort
Par dl info
}NnetcreOS;

hdr;
cmdhdr;
dlg num ;
bytel dl lst ;
dl info[VMPOS(bytel dl lst)] ;

47

typedef struct
{
Hdr
Cmdhdr
Ushort
Uchar
Uchar
}Nnetcre06;

hdr;
cmdhdr;
dlg num ;
stdby dl ;
unuse-d! ;

DESIGN ASPECTS

lsb related messages

typedef struct
{
Hdr
Cmdhdr
Ushort
Uchar
Uchar
Ushort
Ushort
Par stp users
}Nnetcre07;

hdr;
cmdhdr;
lsb num;
sw opt;
sgnl net id;
other end pc ;
bytel-stp-users;
stp_usersJVMPOS(bytel_stp users)];

ls and lsb related messages

typedef struct
{
Hdr
Cmdhdr
Ushort
Ushort
Uchar
Uchar
Uchar
Uchar
Uchar
Uchar
Ushort
Ushort
Par pc served 1st
Par-link id
} Nnetcre08;

dl related message

typedef struct
{
Hdr
Cmdhdr

hdr;
cmdhdr;

hdr;
cmdhdr;
ls num ;
lsb num ;
max-act links ;
min-act-links ;
rnax-avl-links ;
rnin-avl-links ;
act ls ;
recovery opt ;
bytel pc-served 1st ;
bytel-link 1st -;
pc served Tst[VMPOS(bytel pc served 1st) l ;
lirlk_id ~vMPOS (bytel link "J~-st)] ;

DESIGN ASPECTS

dlg num ; Ushort
Ushort
Par dl info
}NnetcrelO;

bytel ctl 1st ;
dl_info[VMPOS(bytel dl 1st)] ;

typedef struct
{
Hdr
Cmdhdr
Ushort
Ushort
Uchar
Ushort
}Nnetcre12;

typedef struct
{

hdr;
cmdhdr;
ls num ;
lsb num ;
sgni net id;
dpc ;

Hdr hdr;
Cmdhdr
Ushort
Uchar
Ushort
}Nnetcre13;

cmdhdr;
lsb num;
sgni net id;
other_end_pc ;

typedef struct
{
Hdr
Cmdhdr
Ushort
}Nnetcre14;

hdr;
cmdhdr;
dlg_num ;

typedef struct {
Hdr
Cmdhdr
Ushort
Ushort
Ushort
Uchar
Uchar
Uchar
Uchar
Uchar
Uchar

NdbrecOl;

hdr;
cmdhdr;
rel name;
key=size;
rec size;
key--type;
code byte;
dberr cnt;
bm no""i
key val[VMPOS(key size)];
rec=val[VMPOS(rec=size)];

49

DESIGN ASPECTS

7.2.4 Messages for record fetching:

typedef struct {
hdr;
cmdhdr;
rel name;
key-size;
key-type;
code byte;
dberr cnt;

Hdr
Cmdhdr
Ushort
Ushort
Uchar
Uchar
Uchar
Uchar
Uchar

bm no;
key_val[VMPOS(key_size)];

} NreqrcrdOl;

7.2.5 Acikill message

typedef struct acikillOl
{
Hdr
Cmdhdr
Uchar
Uchar

} Acikil!Ol;

hdr;
cmdhdr;
reason;
dummy;

7.2.6 Ack. timeout message

typedef struct {
Hdr
Uchar
Uchar

N acktoOl;

typedef struct {
Hdr
Cmdhdr
Char

Asettim;

typedef struct {
Hdr
Rslthdr
Uchar
Uchar

} Asettimr;

I

hdr;
code;
timer_type;

hdr;
crndhdr;
date[20];

hdr;
rsi.thdr;
err typ;
dummyl;

50

typedef struet {
Hdr
Rslthdr
Ushort
union {

Char
AemderrOl;

hdr;
rslthdr;
error_typ;

Ushort error no;
Ushort par_no_~pt;
par error;
rel-file_par_value[2:;

DESIGN ASPECTS

7.2.7 Result messages for Network and Circuit related commands

typedef struet
{
Hdr
Cmdhdr
Ushort
Ushort
}Nekterer07;

typedef struet
{
Hdr
Cmdhdr
Ushort
Ushort
}Nekterer09;

typedef struet
{
Hdr
Cmdhdr
Ushort
Ushort
}NnetererOl;

typedef struet
{
Hdr
Cmdhdr
Ushort
Ushort
}Nneterer02;

hdr;
emdhdr;
sue typ ;
dummy ;

hdr;
emdhdr;
sue typ ;
dummy ;

hdr;
emdhdr;
sue typ ;
dummy ;

hdr;
emdhdr;
sue typ ;
dummy ;

51

.•

DESIGN ASPECTS

typedef struet
{
Hdr hdr;
Cmdhdr emdhdr;
Ushort sue typ ;
Ushort dummy ;
}Nneterer03;

typedef struet
{
Hdr hdr;
Cmdhdr emdhdr;
Ushort sue_typ ;
Ushort dummy ;
}NnetererOS;

typedef struet
Hdr hdr;
Cmdhdr emdhdr;
Ushort sue_typ ;
Ushort dummy . ,
}Nneterer06;

typedef struet {
Hdr hdr;
Cmdhdr emdhdr;
Ushort sue typ ;
Ushort dummy ;
}Nneterer07;

typdef struet
{
Hdr hdr;
Cmdhdr emdhdr;
Ushort sue typ ;
Ushort dummy ;
}Nneterer08;

typedef struet
{

Hdr hdr;
Crndhdr emdhdr;
Ushort sue typ ;
Ushort dummy ;
}NnetererlO;

52

DESIGN ASPECTS

typedef struet
{
Hdr hdr;
Crndhdr erndhdr;
Ushort sue typ i
Ushort dummy i
}Nneterer12;

typedef struet
{
Hdr hdr;
Cmdhdr emdhdr;
Ushort sue typ i
Ushort dummy i
}Nneterer13;

typedef struet
{
Hdr hdr;
Cmdhdr emdhdr;
Ushort sue typ .

I

Ushort dummy .
I

}Nneterer14;

CHAPTER 8

FUNCTION CALLS

Functional Description

Following is the list of functions used for

implementation of NDUP process.

File name Function name

1 NP~NDCS xxxx ACIKILL.C nnd xxxx acikill()

2 NPNNDCS xxxx ARG.C nnd_xxxx_arg() - -
3 NPN~DCS xxxx CHKHIST.C nnd - xxxx chkhist()

4 ~PNNDCS xxxx COPYSTR.C nnd_xxxx_copystr()

5 :O:P~NDCS xxxx CRENODE.C nnd xxxx crenode() -

6 ~PNNDCS xxxx DELNODE.C nnd xxxx delnode()

7 '-:P~~DCS xxxx FOREVER.C nnd xxxx forever()

8 NP~~DCS xxxx HNTHIST.C nnd xxxx hnthist()

9 NPNNDCS xxxx HNTNODE.C nnd xxxx hntnode() - -

54

FUNCTION CALLS

10 NPNNDCS xxxx INITOtD. C nnd xxxx initcmd() - -
1 1 NPSNDCS xxxx ENTER.C

1 2 ~PNNDCS xxxx PRCINIT.C nnd_xxxx_prcinit()

1 3 NPNNDCS xxxx ROLLBACK.C nnd xxxx rollback()

14 NP~NDCS xxxx EXTERN.H -
I '5 ~P~NDCS xxxx DSELECT.C nnd xxxx dselect() -
1 6 NP~NDCS xxxx INSRCRD.C nnd xxxx insrcrd()

8.1 Flow of Commands in NDUP

The important steps involved in the command processing

in NDUP is as follows:

The NDUP is created by CDOS using system calls.

The initialization could be due to either of these reasons:

POWER ON (first time initialisation)

SYSBOOT (Stable restart due to S/W failyre)

STBCLR (Stable clear)

PARTINIT (Partial initialisation)

SOFTSTRT (S/W restart)

ROLLED BACK (Process roll back)

At the ti~e of initliasation nnd xxxx enter()

function is called with an argument for one of the above

mentioned reasons.

55

FUNCTION CALLS

This argument is passed on to the function

nnd_xxxx_arg()

depending on the type of initialisation nnd

xxxx_prcinit() ic called.

nnd_xxxx_prcinit() initialises all important data

structures i.e., map table, history buffer, timer structures etc.

nnd_xxxx_arg() also calls nnd xxxx forever() for

entering into an ongoing forever loop.

Forever loop is the basic characterstics of NDUP

which makes it a single state process. It receives message in

this state and calls nnd_xxxx_chklist() or nnd xxxx_ackto()

depending on the opcode in the message.

In nnd xxxx chklist it makes a search in NPNODE

list using nnd xxxx hntnode and in history buffer using nnd xxxx

_hntlist()

In nnd xxxx_hntnode() it passes control further

through a switch statement. The case values is N WT RSTRT or

N_WT_DBREC.

In the case of N_WT_DBREC, the command execution

might have been in suspension state due to non-availability of

record, therefore for the opcode DBREC, nnd xxxx_insrcrd() is

called.

In case of spurious message received, the

node from npnode list is deleted through nnd xxxx delnode and

nnd_xxxx_rollback is called.

56

FCNCTIOS CALLS

If the case value is ~ WT RSTRT the main updation

function is called through map table.

In the nnd xxxx checkhist function if the hunt

node doesnot succeed then the history bbuffer is searched through

nnd xxxx hnt list. The parameter for hunting is user id, job id

and session id.

1 f the search succeeds and status stored in

history is N EXEC OVER then a result message is prepared and sent

to DUP. In other case the message buffer is deallocated.

If the check in history buffer doesnot succeed and

process is not waiting on DBREC then the nnd xxxx initcmd

function is called.

In init cmd function the main updation function is

called through map table. For passing the control to the main

routine command class is used for distinguishing circuit related

and network related commands.

Main updation consists of following steps:

- do database updations.

- fill result message.

check for node in history buffer.

- if exists then

- set status to EXEC OVER.

- fill reult_ptr.

- send result message to destination.

- delete node from the list.

57

FVNCTION CALLS

8.2 FUNCTIONAL DESCRIPTION

8.2.1 NPNNDCS XXXX ACKILL.C

Function name nnd xxxx_acikill()

Purpose When the message is receveid by ~DCP at SC for t~e

database updations, it may not be possible to take the actions

immediately due to nonavailability of record or some other

reason. In such cases acikill message is sent to DUP to inform it

to go to Defferd mode i.e. not to wait for the acknowledgement

immediately. The acknowledgement is sent later on throgh OOD.

Actions

allocate sspace correspnding to AcikillOl.

prepare message for Acikill using typedef

AcikillOl

fill command related details using user_id,

session id, crp_id.

fill reason, opcode, sender id.

struct

job_id,

send Acikill message pointed to by the n_msg_pointer.

8.2.2 NPNNDCS XXXX ARG.C

Function name nnd_xxxx_arg()

58

FUNCTION CALLS

Purpose This function does the initialisation through switch

statement. It is called by nnd xxxx enter.c

Action: In the case of power up, system boot, stable

clear, partial initialisation, it calls nnd_xxxx_prcinit() and

nnd xxxx forever().

In the case of rollback it c d 1 Is

nnd xxxx forever() only.

8.2.3 NPNNDCS_XXXX_CHKHIST()

Function name nnd_xxxx_chkhist()

Purpose It checks the history buffer and passes the contol

to corresponding command segment.

Action

switch

calls nnd_xxxx_hntnode() for hunting npnnode list.

Depending on the status it passes the control to

statement for N WT DBREC , opode is NDBREC.It calls

nnd_xxxx_insrcrd(), otherwise in the case of error it calls

nnd xxxx_delnode() function and rolls back.

If status is N_WT_RSTRT, it checks the opcode for

~CKTCRE or NNETCRE and calls the main updation function through

map table.

59

FUNCTION CALLS

8.2.4 NDNNDCS XXXX COPY STR.C

Function name nnd_xxxx_copystr()

Purpose It copies a string of characters from one location

to another.

Action
Takes copy_ from, copy_ to and length on input

parameters and copies the contents pointed to by these pointers

while incrementing these till conunter = length.

8.2.5 NPNNDCS XXXX CRENODE.C

Function name nnd_xxxx_crenode()

Purpose : This function adds a new entry into the linked list

called npnode maintained by NDUP.

Action
Checks for the value of n codecount with the code

pointed to by the node_ptr.

In the case of non_availability, it creates the

node and fill up the relevant values.

8.2.6 NPNNDCS XXXX DELNODE.C

Function name nnd xxxx_delnode()

60

FUNCTION CALLS

Purpose : This function deletes an entry from ndupq after the

completion of command execution.

Action
Deallocates the npnode pointed to by the

n_temp_ptr -->store_pt. While deallocation it takes care whether

the node is an intermediate node or an end node.

8.2.7 NPNNDCS XXXX EXTERN.C - -

This file includes external definitions of global

variables and data structures used at NDUP process level.

8.2.8 NDNNDCS_XXXX_FOREVER.C

Function name nnd_xxxx forever()

Purpose This function module receives the message and passes

the control to the relevant command segment.

Action
Receives the message in an ongoing loop.

Based on the hdr.opcode pointed to by the

n_msg_ptr, it calls nnd xxxx_chkhist() for NCKTCLE and NN~ETCRE

opcodes and calls nnd xxxx_ackto() in the case of N ACKTO opcode.

61

FUNCTION CALLS

8.2.9 NPNNDCS XXXX HNTHIST.C

Function name nnd xxxx_hnthist()

Purpose This function hunts in the history buffer for given

user id, job id, session id pointed to by the msg_ptr.

Action
Takes msgptr as input parameter and hunts the

history buffer based on user_id, job_id and session id.

8.22.10 NPNNDCS XXXX HNTNODE.C

Function name nnd_xxxx_hntnode()

Purpose This function hunts in npnode list based on the

option given to it.

Action
It takes option as input parameter

It passes option to switch statement for hunting

using N HNT CODE or N_HNT_ID.

In the case of N HNT CODE it checks the opcode for

N_ACKTO or NNETCRE or NCKTCE and hunts the node list.

In the case of N HNT ID it hunts using user id,

job id and session id.

Retutn value is SUCCESS I FAILURE.

62

FUNCTION CALLS

8.2.11 NDNNDLS XXXX INITCMD.C

Function name nnd_xxxx_initcmd()

Purpose : This function calls relevant main command function

for database updations. The control is passed through a map

table.

Action
Checks the opcode passed to it for NCKTCRE and

NNETCRE.

In both the cases it calls nnd xxxx_crenode() and

call the function through ns~ap table based on command class and

command code.

8.2.12 NPNNDCS XXXX ENTER.C - -

Function name nnd xxxx_enter()

Purpose This is the first function called in NDUP. It calls

the nnd_xxxx_arg() for further processing.

Action
It takes arg as input parameter for the

initialisation.

It calls nnd_xxxx_arg and passes arg as parameter

63

FUNCTION CALLS

8.2.13 NPNNDCS XXXX PRCINIT.C

Function name nnd_xxxx_prcinit()

Purpose This function initialises the local data structures

used by NDUP mainly command pointer and npnode.

Action
Obtains the n_self_id for the message

Initialises the history buffer

Initialises the command pointer table based on

command class and command code. This is used as map table for

passing the control to main updation funtion.

Initialises the ti~er messages

8.2.14 NPNNDCS XXXX ROLLBACK - -

Function name nnd xxxx rollback

Purpose : This function is used as an error reccovery method.

In the case of spurious performance it deallocates the buffers

engaged and sends the message for partial initialisation.

Action

Depending on n rollvar value it deallocaates the

buffer pointed to by n_msg_ptr.

64

FCSCTIOS CALLS

it calls COOS system call start() and passes the

parameter n_self_id, ROLLED_BACK for reason.

finally it calls terminate() system call.

8.2.15 NPMNNDCS XXXX EXTERN.H

This file includes hash definedd external declartions.

CHAPTER 9

NETWORK AND DATA MANAGEMENT FOR No 7 SS

9.1

The Signslling Network is a part of either local trunk

or international network known by it's identity called

network id. In such a network an axchange is assigned a point

code called self point code (SPC). The network together with the

point code uniquely identifies the exchange.

The exchanges using #7 Signalling System are connected

by digital PCM links. A standaed PCM link has 32 multiplexed

channels. A group of PCM :inks is normally selected for one type

of seevice, which can be an incoming circuit group or outgoing

circuit group or ptiority circuit group ,etc. A circuit group has

4096 circuits. Therefore, 128 pcm links are used for one type of

service between two point codes. Any of the 4096 circuit can be

66

NETWORK AND DATA MANAGEMENT FOR No 7 SS

used for either voice or signalling purpose. These circuits

between two point codes constitute a circuit group set eGS) . The

circuits in a circuit group is uniquely identified by the circuit

identification code(ere). The ere is base on the time slot within

a 2048 kb/s digital path and the identity of the PeM itself.

The point code with the No 7 SS relation is

constituted of originating point code(OPe) and destination point

code (OPe) .

Two exchanges generally have a single eGS but more

than one eGS may be used in the case when the requirement for

inter exchange circuits is greater than 4096 or the circuits are

routed distinctly on different communication 1 inks such as

satellite or terestrial link. Each eGS in that case is assigned a

unique signalling relation.

9.2 DATA MANAGEMENT AT SU

The data is maintined in the distributed manner in

e-DOT DSS. It is distributed over Administarative processor,

Base Processor and Signalling Unit. Initia:ly yhe information is

downloaded from IOP at AP and later on the modifications are

carried out through MMe commands .
. /

67

NETWORK AND DATA MANAGEMENT FOR No 7 SS

The data relevant to SU for signalling and network

management is in the form of arrays. The required memory is

allocated at the time of initialisation only. This helps in

faster accsss and providing real time services. ' C ' language

provides the flexibility of data structures, therefore these ar0

used extensively for data storage. These data structures are

accessed using " id' s " as a key element. Different database

function calls are available to operate upon the records in

database.

Following is the data information maintained at the AP

and BP in the form of data structures. The important fields which

get modified are also mentioned here.

/* Data link related typedef structure */

Ddl data:

dd sts; I* status of data link at any time *I
dd dummy; I* dummy *I
dd cic; I* CIC corr. to data link *I
dd-lnk typ; I* specifies terrs. or satellite *I
dd-bm id; I* BM where data link is terminated *I -

I* Data link group related typedef *I

Ddlg_data:

dd cgs id; I* cgi id. *I
dd-data lnk cnt; /* t~tal no. of data links info. *I

dd no of stdby;
dd-trmn flg;
dd-trmn-dpc;
dd-sgnl-net id;
dd unuse_dl=flg;

NETWORK AND DATA MANAGEMENT FOR No 7 SS

/* no. of standbys to be kept */
/* terminated on same node as cgs or not*/
I* pc of datalnk termination if flag=YES */
/* signalling network id */
/* data link to be returned for voice */

/* link set related typedef structure */

Dls db inf:

dl act lnk cnt;
dl dummy;

Dls com inf:

dl linkset bundle;
dl-min act-links;
dl_max_act-links;

Nls su inf:

dl dpc[DMAX PCS SERVED];
dl-link[DMAX LINKS];
dl ___ parent route;
dl-rnin avi links;
dl-max-avl-links;
dl-recovery opt;
dl=pc_served_cnt;

Dls data:

d: ls db inf;
dl- ls-com inf;
dl-ls-su Inf;

69

/* active links */

NETWORK AND DATA MANAGEMENT FOR No 7 SS

I* circuit group set related typedef structure *I

Dsgnl_reln:

ds ope; I* originating point code *I
ds=dpc; I* destination point code *I

Dcgs_db_data:

de tel net id;
dc-sgni net id;
dc-su id;
dc-ckt cnt;
de-voice trf;
dc-cg cnt;
dc-cg-id[DMAX CG CGS];
dc=sgnl_reln;-

Dcgs _ iop _ inf:

I* telecom network identity */
/* signalling network identity */

I* SU7 identity */
/* no. of ckts in the cgs */
/* voice traffic ON or OFF *I
I* no. of ckt gps in the cgs *I

/* signalling relation *I

de remx code;
dc-remx-name[DMAX REMX SIZE];
dc=dlg_Td[DMAX_DLG_CGS];

Dcgs data:
de cgs db data;
de= cgs= iop _ inf;

I* Self Point Code related typedef structure */

Dse: f _pc_ data

ds self pc;
ds--network id;
ds=pc_allocated_flg;

NETWORK AND DATA MANAGEMENT FOR No 7 SS

The important data structures maintained at SU are as

follows. The important fields are also given hare.

Nconfig_struct:

Nself_pc_struct:

Ncicinfo struct:

sw config;
num of cgs ;
num-of-sig routeset ;
num-of-linkset bundle ;
num-of-linkset ;
num-of-link ;

pc num;
self pc;
network id;
pc_allocated_flg;

tirner_tag ;
proc num;
msg adr;
id recv flg;
iam flg;
dst -ter;
flush_msg __ cnt;

Nrouteset info struct:

srs num;
hi prio rt tbl[NRT TBL SIZE];
NhT prio rt tbl org[NRT TBL SIZE];
lo prio rt tbl[NRT TBL SIZE];
:o=prio-rt=tbl org(NR~=~BL_SIZE];
ope;
dpc;
rt tbl[NRT TBL SIZE];
available routes[NPRIORITY CLASSES]; /* lo prio rts first ! */
route[NPRIORITY CLASSES] [NMAx LOAD SHARERS]; /*-lo prio rts fiz
route_status[NPRIORITY_CLASSES] [NMAX_LOAD_SHARERSJT lo_prio_rt
current rt_grp_priority;

71

NETWORK AND DATA MANAGEMENT FOR No 7 SS

Nlinkset bundle info struct:

lsb num;
stp-user[NMAX STP USERS);
other end pc;
links[NMAX LINKS];
act links;-
max-act links;
dl count;
datalink[~DL SEARCH];
bm_id[NDL_SEARCH];

Nlinkset info struct:

ls num;
dpc[NMAX PCS SERVED);
other end pc;
link[N~AX=LINKS];
parent route;
linkset bundle;
act links;
avl-links;

Nlink info struct:

link num;
status;
timers;
act_type;
state;
datal ink;
parent linkset;
terminal;
seqnl;
linkset_bundle;

~terminal info struct:

trml num;
type;
link;
ter status;
empty chn req; /* from level 3 */
bm id; -
reset time[NTIME STR LEN]; /* reset time*/
mrecv-cnt; 7* msg recv. since last reset */

72

CHAPTER 10

SOFTWARE RECOVERY FOR NDUP PROCESS

The key factor in system reliability is the ability of

the system to continue functioning in the presence of hardware or

software faults. This chapter deals with how the system detects

and respond to software faults. In general, software reliability

is obtained at the expense of system real time performance. These

two factors are evaluated for the purpose of implementation and

following methods are discussed here -

- defensive checks,

- Maintenance-c:ear,

- recovery functions,

- use of Macros for c.s. and Database primitives,

-_;Process roll-back routine, etc.

73

Software recovery in NDUP

10.1 Defensive Checks :

Defensive checking is defined as a method of providing

execution time checks on a unit of code. Simple algorithms are

inserte in the code to perform these checks. The use of defensive

checks could be costly in terms of real time. For Online

commands thes checks are implemented at the level of CEP.

Following are the important points for the purpose of defensive

checks:

i. Parameter checks on messages received, especially

those which are received from other processors.

ii. Parameter checks in the beginning of all high level

functions to guarantee the integrity of the input

data to lower leve~ functions.

iii. Range checks on indices and pointers which are used

to access array elements so that read or writes can

only be done within a range.

iv. Checking for O.S. error return codes (from O.S.

primitives) on wrong param~ters and failures.

v. Introduce time-outs on aY! critical Receive Messages

or phases of the processes.

74

Software recovery in NDUP

vi. Build a layer above the protocol level to avoid

duplicate messages and lost messages. This could be

handled by having a sequence number and formal replys

to messages instead of just relying on the protocol

level Acks.

10.2 Recovery strategy :

On occurance of any inconsistent situation the system

is returned to a safe state. This is the objective of the

recovery strategy in NDUP. Following steps are considered for

recovery here:

- process level recovery is initiated ; No other process

is effected.

- the relevant process should rollback. In turn it will

release all the resources held by it.

- Reboot OS with NO LOAD option. This will result in the

process creation.

- System reboot, start initialization of the unit again.

In NDUP the recovery strategy is as follows:

i. ~he NDUP at it's single state should provide for

receipt of a Maintenance Clear message. On receipt of

such a message,the process should abandon the-current
,t

activity, release all resources held by the process,

clear itself up and go to the safe state.

soFT_ SJ"A~i 1--------_.:-~ ,. , ..
C. ~EATE. ,.,,..,, e..

J N tT\ ~ L \c&A.T I ON

l N\TlALl~ATtON

Software recovery in NDUP

ii. The NDUP should be able to handle error situation on

its own in the following cases:

- Time-outs on receive message when expecting a

message.

- ~~Y error on operator initiated action,operator

should be informed of the event by giving a message

on the Operator terminal.

iii. Use of Roll-back.

10.3 Roll-back routine description :

Corresponding to NDUP process there is a roll-back

routine called nnd roll back. It is invoked by the process on

receipt of a Maintenance Clear message. The nnd roll back may

also be called on CPU interrupts after which the process may not

be able to proceed.

The Roll-Back consists of the following:

- If the process is in CLEAR S~ATE then calling the OS

primitive RECREATE which will release all the O.S

resources held by the process, delete the process and

create it again with the same process-id as before. The

parameters passed while recreating the process is

SOFTSTRT. This ensures releasing of all O.S. resources.

- :f the process is not in the clear state the following

things are required to be done.

17

Software recovery in NDUP

(a) Releasing all the resources held-up by the process.

(b) Informing other related processes, if necessary,

that this process is getting restarted.

(c) Restarting this process.

The restart should be done by calling the O.S. primitive

"Start" followed by "Trmt" (Start request is queued and is

honoured only after the process has been terminated. While doing

Start, a parameter (ROLLED_ BACK) is passed to the process to

indicate that it should skip the create time initialization.

The Roll-back function has one parameter, the pointer the

PDB of the process. All the necessary information about the

resources held by the process and any information about related

communicating processes is either stored in PDB or in a global

area. The roll-back accesses these areas and releases the

resoures and informs other processes, if necessary.

s
Roll-back sgeudocode:

BEGIN nnd roll back (pdb_ptr)

IF (counter EQ 0) /* Same counter as used for clear state
RECREATE(SOFTSTRT);

ELSE

78

Software recovery in NDOP

IF(called from initiator or terminator leg)

counter = counter - 1;
IF(counter LT 0)

counter = 0;
END IF

IF(counter EQ 0)
SETCLR(XXXPUP)

END IF

END IF
Release resources held up for the current activity;

I* Resources include O.S. resources like
I* ALOC buffers
I* MALOC buffers
I* timers (MSGORD, MSGCYC)
Undo changes in certain global data structures;
If required, inform related processes of failure;
I* The related process can repeat
I* the message which started the activity
START (NOCOOR+INHPTY, pid, ROLLED BACK, 0, 0, 0, 0);
TRMT (); -

END IF

END nnd roll back

* The initial argument to the main of the process can
have one of the fo:lowing values:

POWRON

SYSBOT

STBC:_,R

SOFTSTRT

ROLLED BACK

/

0 For power-on initialization -- System
is coming up for first time

1 For System Bootup -- Complete reload
of all code and data is done

3 For process creation only

5 For software restart -- Data is reloaded

6 Wnen the process is rolled back

19

Software recovery in NDUP

Clear State :

Clear state as used by PUP and Maintenance has

significance only for eternal processes. For single state eternal

processes, clear state is that idle state when the process does

not have any knowledge of past events, i.e., the state is same as

that when it originated.

10.4 MODULE RECOVERY PROCESS

A process MRP would exist to handle messages from the

other maintenance processes. These processes can trigger MRP to

initiate recovery and then give up control. MRP on request, can

do sytem recovery, kill processes etc.

10.5 DATABASE FAILURES

As far as possible these would be taken care of by the

process recovery routine. Depending on the state of the process

and the message available in the pdb the process should be able

to undo the changes in the database done so far. If all of it

cannot be undone then audits can be initiated. In both the case

process roll back would be cailed.
-/

00

.-:HAPTER 11

NETWORKING FEATURES OF 55 1
-- ---------------

General

Th~ 3ign~lling 3ys~em No 7 network architecture and its

i nt r'-··.1Ut .. 'tion r~onst i tutes :m important step in providing useful

services t0 a suLscriber. These services mainly of credit card,

call forwarding, mobile phones, introduction of Intigrated

Services Digital Network etc., may be possible with the

implementation of SS 7 network.

SS 7 Layer Architecture

SS 7 is projected to have four layers. These are as

fol i.·Jw~. ·

LEVEL 1 Signalling data link functi~ns.

:'h 1 ~ l~vel i:: ,_, n<_'ern.=:-d with pL·oviding a two way

me. :r 1 :·;-r_ion path c·~<we.,n tv' adjacent signal lig poiuts(SP).

LAY&.~ l

MTP
T u\)

l. ~\J ~ '.

scc.P ·.

TUP

seeP

kET~O ~'<-.

L.\ N \(._

l>\-4'fS\(. A.\..

\"C'\ S. ~S.A~Ci ~A~ ~S ~ PA~"T
T E.LE~l-CbNf:: \JS.~ ll PA~ T
I S.'D""" \>S.(i(. ~At. T

I
I M •
1

I T
J p
I

I

'i.l~NALU"" CCWto(~Cfltt-4 c...DMTls:ll ~ T

ISUP

- - ~
+

L.1ii.V S.L.l
.y

NETWORKING F~ATURES OF SS 7

LKVKL 2 Signalling link functions.

These functions are also called link c-0ntrol

functions.These support reliable delivery of messages between two

adjacent SPs and correspond to layer 2 of OSI datalink layer.

LKVKL 3 Signalling network functions.

Level 3 is also cal h.:d comrn0n transfer function.

This level enables data and con~r0l informations 0f the

signalling messages t~ be exchanged between two non adjacent SPs.

LKVKL 4 : User or Application part.

This level includes user parts such as Telephone

0 s e r P '3. r t (T G P) , I S D N r] s e r P a r t (I S UP) , 3 i g n ~ 11 i n g Connect ion

r~ntrol Par-· 3CCP) et~.

The lower three levels 0f SS 7 are collctively called

Message Transfer Part(MTP). The 'iTP Pr<.""~vides datagram services

between two SPs.

Comparision of SS 7 Architecture with OSI model

The four layer architecture of SS 7 is functionally

analogous to layered model of OSI. However, the analogy fails on

many accounts.

The signalling data link and signalling link functions

~orrespond directly to the OS! physical and data lnk layers . The

signalling network functions are divided int twn -::at..,gor; ~s of

signall j ng mess at>.-- h"'~ndl' ng 3r.d -t.:h.,. s: ~n.<:\ll:. :.g network management

f·_mct ions. :'He f•:>rm~r ':'a.,. ~g0ry ·>)rr~sp•!nd.: ':t th~ nPtwork layer

of OSI model. though t.he netw(rk management fur.·-ct.ions i.e .. 1 ink

management, route managem~nt. au.:i traffic management makes 1 t

different from the OSI model. Th~ management functions include

selection. activation/ deactivatin. switch-over etc. of data

l.inks.

The fourth ~evel c•f

Part(SCCP) ·~0r·responds u .. t.he

prov .1.des basic and sequenced

:::; .:. I? n a .:. l ; ·: ..:! :.:::on L :- ._~ .t i c;r; Con t r o 1

~ r::t;I:3PC•rt :;_:\y!"r "f CJ:3: ffi()de:l. I~

•.:-onnec-t:.ionless

classses of connecti•.)n ·-•riented servi ,,,_.5'

'1nd error r~c~ovt"!r': Wlth flow '('nt.-.r··.:

Vi7-:.

s~rvice~ and thret:

basi•:-. fl· w contr·:>l

:'he •tpper : ay':"t' pr,-··vi ,_,_;; 'l.:">"""' a.nd app[i·~ation sE-rvice

p.-,rts whiC'h rnp trt,... upp-·r thre"" ~:\y-·r·· ··f <3I m··d-:-.:..

Signal Units

For the implE>mentati•:-.n ·~·f .,:~.,:"> 7 mes~at?:es signal units

"lrl:" used. Th·~se signa: ·tr-. its are of three t.ypes.

- Fill in Sign~l ~nit ~:~~.

-Link Status 3iRna: ~nit iL33D·

- Me s s a g ~" , ; i g n a 1 '." n i t 1 M S (1 ·

r

.___ _ _L_ -- ___ __._

FISU

~-----r- T- --,. -- ----r ----r- -

' . ~ ~
Gr CK '1-.'f.. L1.. l ~$.N 1

I ~ ~
- - _ _.___ --L------ l ___.__.......__~--"""1

LSSU

XY., ILl.
-r - -

~· I ·... ' r
~~~S.N I 

J - I 

MSU 

i='IE Li~ 

~ LAbr ~ l P..'-7 
~5. i ...... ~A(~\\.- A R!) s:: '- L ' ".l c_ F_ Nli. 

r~ J. s 8 .. 1-\C '£. w fJ..V C) 1"-l ~:,., (t\"1 l {. ;._XJ 

!=S.N r P ._,_i\ r ll -t G.l ( .. , ( '- t--1(. 

[:' I~ 't I' f \A,; ~~t~ -1 N f OP_N A 'IICN ~'1 

L1. L r "'("~~ H 1 "''~'c ,.•n, ~ 
'I. 'A . 1--lt-l . ~ f) . \ _.. -
RtS.E R~ ·.::.c. '. 
c; -L o s: • ~, .. ,( t , "'-n:c. oc, ~-,-
s l j: : S\b.NM.U~u~ n-\ rD. i , c L ~~ 
C.~ C' ~IF l.-W._ R. n ~ 

~ 
1 
;:., 

-

BS.N t= L~6t 

-

6 
1 
\ 

1 

i> 
2. 

(')')( s 
B 

--
f-:IR_S.T ~l 

- .... 
-, 

2. ~ S\l= ~ 2~ 2.. b't~ 

\~ 



~ETWOhKING FEATURES 0~ SS 7 

FISUs are transmitted on the line when no other 

si~naJ.. unit to be sent is 1Jending. These signal units naintain 

""bt=- ~.._,nn~·~tior:. altllOUGh a·~· information is t.ransmitted. 

L..SSU L3S0 is same as FISU but it also contains status 

information such as establishing a connection, checking normal 

alignment, 

MSU 

' -.. ...... •:;:) ..... alignment et.c. 

MSUs contain all the information transmitted on 

~ht !ine.~he ~~rmats of these are shown in he figure. 

Conclusion 

The four layer model of SS 7 though fully maps the 

st~Tt.:i<\rd 0.3: CTJ)de:, t.he usefulnass i.: still limited for the 

'1~~w r·i-:ing .1se Th..- iiffer .... nce l.1es 1n t:he application contex·. 

Th..- _;- m··..i-: W3.5 f(•rrnu1"ited to enable tnd users tv interconnect 

ir1 a st::trtdar.' mannt:r. The user remains external to a 

communication subnrtwork. Whereas, the S1gnalling System No 1 

pert-:..~rrns t: creatt> a ·:ommunication subnetwork for a 'netwo .. :k end 

US":"!' 

.:t!rt:al: fields in the SS 7 pacl<ets are ~hared among 

different levels. This adds efficiency but makes it impossible to 

rep:ace one protocol with anoth~r. although this rigidity reflects 

1 ts existence as a self-contained signalling architecture. The 



NETW0RKING ~EATURES OF SS 7 
--·· ··- -. ----------------------------

.-ervi ~~ in~: r:-:-:3t ior. Octet -")f M3t'. which idC'ntifies the type .--.f 

message. it 3 priority level, n~twork identity etc. is a part ,-,f 

lPv~~ : but it is useful for level 3 3nd level 4 also. Sjmilarly 

~h~ Signalling link s~l~~tion(SLS), Originating Pont cCode(OPC), 

~wd fl~:"":stiuativn Point Code(DPC) "\re USt=>d at level 3 and are

t=>q~ally important f0r :he srcp for trans~ort functions. This 

property 1~ ~ unique feature of 3S 7. 

The SS 7 also has highly developed reliability featur~s. 

In the Telephone network the accssi bili ty to the services and 

s l1 ') r t t i me res p <) n s e i s very important which may not be -~ o 

i mp••rtant in a normal communication network. 

The SS 7 is capable of adopting to the failures ard 

service J~gradations dynamic~ly by communicating to adjacent SPs. 

It has a provision of declaring ''link failure" and route the 

~~alls on different routes. It can also provide better services in 

degraded situati0ns of congestion. 

This way it can be seen that the SS 7 , though does n\.·t 

r..-semble5 completely with OSI model but it has efficient 

netwurking capabilities and can be recognised as a c0mput""r 

~ommuncaLion network for a few applications. 



APPENDIX - I 

I. NAMING CONVENTIONS 

This part of the Appendix describes the conventions 

followed in naming the messages and also the file structures, 

while designing a man machine command. 

Message Naming convention 

All man machine commands are divided into 

classes. Normally command having some logical utility will be in 

the same class such as create_cgs and allocate cic command will 

be in the same class. 

Message Name 

subsystem type - 1 char 

class name - 3 char 

category - 3 char 

type ' char Not present in all msg ) .... ... 
subfield ident.- 2 char opt}!onal 



APPENDIX - I 

Subsystem type 

All the commands related to #7 will have 

subsystem type as N 

Following class id have been identified -

1. ckt 

2. net 

for all ckt related command 

( call processing ) 

for all network management related 

command 

Category 

1. ere - for all create type of commands 

2. mod - for all modify type of commands 

3. dis - for all display type of commands 

Type 

This field is specified to identify the direction 

of the flow of the messages 

1. I for all input messages to cep form crp 

2. 0 for all output messages from cep to crp 

3. R for all messages returned by ACI to cep 

Messages from CEP to ACI will not have this field 

present. 



APPENDIX - I 

Subfield 

This identifies the sub field of the message. 

Note 

The direction type field 

CRP -> CEP type is I 

CEP -> ACI type is absent 

ACI -> CEP type is R 

CEP -> CRP type is 0 

ACI -> NDUP type is absent 

NDUP-> ACI type is R 

Example -

Message from crp to cep for creating a cgs 

NcktcreiOl 

File Naming conventions 

File names for Man Machine command will follow 

the conventions given below. 

File Naming format 

sub system name 1 char 

CEP process code 4 char 

hyphen char( ) " char ... 

file identifier 4 char 

89 



APPENDIX - I 

Process Code Naming conventions 

Process codes for the commands are 4 char long 1 

only first char has a convention other 3 identifies the 

command 

R remove type of command 

c create type of command 

D display type of command 

M modify type of command 

G general purpose command 

Function naming conventions 

There are two types of functions -

a. Library Functions 

b. Process level Functions 

Library functions will use nl as a prefix for a 

function name 1 support functions of these function will 

also use this prefix 

Process level functions will use following 

conventions -

Sub system name - 1 char 

Process name 

hyphen char( 

- 4 char 

- 1 char 

function identifier 

9o 



APPENDIX - I 

Example: Following process codes are fixed as -

Command name Process code Command code 

CRE CGS CCGS CGS 

CRE DLG CDLG DLG 
·-

CRE LSB eLSB LSB 
eRE SLS eSLS SLS 

ALOC ere cere ere 

CRE SRS CSRS SRS 

CRE SPC CSPe SPC 

'11 



APENDIX II 

Following are the System Calls used in NDUP. These 

ca:ls are in the form Macros written for CDOT Distributed 

Operating System (COOS). 

File name NSNXXCH MACRO. H 

.fif NDUP 

I* .......................................................... *I 

fdefine AMAC SEND(pid, ptr) {\ 
send(pid, ptr);\ 

ptr = NULL; \ 
} 

I* ......................................................... *I 

#define AMAC_ALOC(ptr, size) {\ 
while ((ptr = aloc(size)) ~=NULL) \ 

_pause(SEc; ONE); \ 

I * ......................................................... * I 

#define AMAC MALOC(ptr, size) {\ 
while ((ptr = maloc(size)) ==NULL) \ 

_pause(SEc; ONE); \ 

I * ......................................................... * I 

#define AMAC DALOC(ptr) {\ 
daloc(ptr); \ 

ptr = NULL; \ 
} 

I * . *I ............................. ·/ ......................... . 
fendif · 



APPENDIX III 

Following is the list of function calls used for N8UP 

process. 

Function name 

nnd_xxxx_arg () 

nnd_xxxx_ackill() 

nnd_xxxx_chkhist() 

nnd_xxxx_copystr() 

nnd_xxxx_crenode() 

nnd_xxxx_delnode() 

nnd_xxxx_dselect() 

nnd_xxxx_insrcrd() 

nnd_xxxx_forever() 

nnd_xxxx_hnthist() 

nnd_xxxx_hntnode() 

nnd_xxxx_initcmd() 

nnd_xxxx_prcinit() 

r.nd_xxxx_rollback() 

File name 

NPNNDCS XXXX ARG. C 

NPNNDCS XXXX ACIKILL.C 

NPNNDCS XXXX CHKHIST.C 

NPNNDCS XXXX COPYSTR.C 

NP~~~CS XXXX CRENODE.C 

NPNNDCS XXXX DELNODE.C 

NPNNDCS XXXX DSELECT.C 

NPNNDCS XXXX INSRCRD.C 

NPNNDCS XXXX FOREVER.C 

NPNNDCS XXXX HNTHIST.C 

NPNNDCS XXXX HNTNODE.C 

NPNNDCS XXXX INITCMD.C 

NPNNDCS XXXX PRCINIT.C 

NPNNDCS XXXX ROLLBACK.C 



File Name NPNNDCS XXXX ARG. C 

Void nnd xxxx arg(arg) 
Uint- arg; 

switch (arg) 
{ 

case POWRON: 
/* system is coming up for first time */ 

case SYSBO':': 
/* system restart due to s/w fail */ 

case STBCLR: 
I* stable clear */ 

case PARTINIT: 
I* partial init *I 

case SOFTSTRT: 
I* slw restart *I 

nnd xxxx prcinit(); 
-1* calling the function which does process initialisati 

I* fall thru *I 
case ROLLED BACK: 

I* process rolled back */ 
nnd xxxx forever(); 

-1* the actual processing of messages */ 
break; 

default: 
recre(SOFTSTRT); 

I* switch (arg) completes *I 

File Name NPNNDCS XXXX CHKHIST. C 

Void nnd_xxxx_chkhist() 

Rshort 
Ulong 
Rshort 

opcode; 
ret val; 
size; 



opcode = n msg ptr->hdr.opcode; 
ret val= nnd xxxx hntnode(N HNT ID); 
if (ret val =~ N RET SUC) - -

{ - - -
switch ((Int)n temp ptr->status) 

{ - -

case N WT DBREC: 
if-(opcode == NDBREC) 

{ 
if (((NdbrecOl *)n msg ptr)->dberr cnt 

==-n temp ptr->dberr cnt) 
nnd xxxx insrcrd(); - -

} 
else 

{ 

} 

NreqrcrdOl *reqrcrd_ptr; 

if (n temp ptr->reqrcrd ptr 
{ - -

} 

nnd xxxx delnode(); 
nnd-xxxx-rollback(NULL); - -

AMAC DALOC(n_msg_ptr); 
break; 

case N WT RSTRT: 
AMAC DALOC(n msg ptr); 
if (opcode !~ NDBREC) 

{ 
Ushort cmnd cls; 

switch (opcode) 
{ 

NULL) 

case NCKTCRE: 
cmnd cls = 
break; 

N CKTCRE CLS; 

} 

- -

case NNETCRE: 
cmnd cls = N NETCRE CLS; 
break; 

(*nsmap[n_cmnd_ptr[cmnd cls] [n_temp_ptr->hdr.subfield]] 

break; 
default: 

&VAC 8ALOC(n msg_ptr); 

} /* end if */ 
else 

{ 
ret val= nnd xxxx hnthist(n msg ptr); 
if (ret_val =~ N RET SUC) - -

{ 
if (nnd hist ptr->cmnd stat 

{ - - -
Rslt hdr *dum_ptr; 

95 

N _EXEC_ OVER) 



<"File Name 

Uchar 
Uchar 

*rslt ptr; 
*tobm_ptr; 

dum ptr (Rslt hdr *) (nnd_hist_ptr->rslt_ptr); 
if (durn ptr != NULL) 

{ -
AMAC_MALOC(rslt_ptr, (size= durn ptr->rslthdr.size)); 
nnd xxxx copystr(dum ptr, rslt ptr, size); 
_send(nnd_hist_ptr->dest_id, rslt_ptr); 

} 
AMAC_DALOC(n_msg_ptr); 

} 
else 

{ 

if (opcode != NDBREC) 
{ 

} 
else 

{ 

Crnd hdr *dum_ptr; 

durn ptr = (Cmd hdr *)n msg ptr; 
nnd-hist ptr ~ &nnd hist buf[nnd hist index+ 
nnd-hist-ptr->session id = dum ptr->Cmdhdr.session id; 
nnd-hist-ptr->user id- = durn-ptr->crndhdr.user id; 
nnd-hist-ptr->job id = durn-ptr->cmdhdr.job Td; 
nnd-hist-ptr->dest id = durn_ptr->hdr.sndr.id; 
if (nnd hist ptr->rslt ptr != NULL) 

{ - - -

} 

AMAC DALOC(nnd hist ptr->rslt ptr); 
nnd hist ptr->cmnd stat = N wT DBREC; 

- - I* some-value which-is not N EXEC OVER */ 

if (nnd hist index == N_MAX_HIST) 
nnd hist index = 0; 

nnd xxxx initcrnd(); - -

AMAC_DALOC(n_msg_ptr); 

NPNNDCS XXXX COPYSTR.C 

/ 
Void copystr(copy_from, copy_to, length) 

register 
register 

Uchar 
Uchar 

*copy from; 
*copy=to; 96 



register Ushort length; 

Rint i; 

for (i = 0; i < length; i++) 
*(copy_to++) = *(copy_from++); 

Fil.e Name NPNNDCS XXXX CRENODE. C 

Void nnd_xxxx_crenode() 

{ 
register 
register 
Uint 
Uchar 
Ulong 

struct npnode *node_ptr; 
Ushort opcode; 
check = FAILURE; 
time buf [20]; 
hours, mints, sees; 

n_clr_counter++; I* incrementing jobs to be done counter *I 

while (check != SUCCESS) 
{ 

node ptr = n perm ptr->right; 
while ((node-ptr T= NULL) && 

(n codecount !=node ptr->code)) 
node_ptr = node_ptr->right; 

if (node ptr != NULL) 
{ 

I* code is already existing *I 

} 
else 

n codecount++; 
if (n codecount >= N_MAX_COD) 

n-codecount = 1; 

check ""' SUCCESS; 

AMAC_ALOC(node_ptr, sizeof(struct npnode)); 

n last ptr->right = node ptr; 
node ptr->left = n last ptr; 
n_last_ptr = node ptrf 
n_temp_ptr = node ptr; 

node ptr->right = NULL; 
node=ptr->reqrcrd_ptr = NULL; 

I* testing for the limi 

I* code is unique *I 

I* end of "WHILE" check 

97 



r 

node ptr->aeikill ptr = NULL; 
node-ptr->status - = NULL; 
node=ptr->eode = nnd hist ptr->eode 

= n eodeeount++; 
node_ptr->dberr_ent = node_ptr->retry_ent = 0; 

if (n eodeeount >= N MAX COD) 
n-eodeeount = 1; 

opeode = n_msg_ptr->hdr.opeode; 

nnd xxxx eopystr(n msg ptr,&(node_ptr->hdr), (sizeof(Hdr) + sizeof(Cmdhc 

&VAC A~OC(node ptr->store ptr, node ptr->cmdhdr.size); 
nnd _xxxx_eopystr (n __ msg_ptr, node_ptr->store _ptr, node _ptr->emdhdr. size) 

time(time buf); 
hours = ({time buf[l2) - '0') * 10 + (tir::e buf[13] - '0')); 
mints= ((time-buf[15]- '0') * 10 + (tirr:e-buf[16)- '0')); 
sees = ((time_buf[18] - '0') * 10 + (tirne=buf[l9; - '0')); 

node_ptr->ere_time = sees + mints * 60 + hours * 60 * 60; 

Fil.e Name NPNNDCS XXXX DELNODE. C 

Void nnd_xxxx_delnode() 

AMAC __ DALOC (n_temp_ptr->store_ptr); 

if (n temp ptr->reqrerd ptr != NULL) 
AMAC_DALOC(n_temp_ptr->reqrerd_ptr); 

if ((n temp ptr->right !=NULL) && 
(n-temp-ptr->left •- NULL)) 

- - I* if a_temp __ ptr is pointing to some intermediate n 

} 
else 

{ 

n temp ptr->left->right 
n_temp=ptr->right->left 

n temp ptr->right; 
n=temp=ptr->left; 

I* a_temp_ptr pointing to the last r:"Jde * 

n last ptr = n_temp_ptr->left; 
n=last ptr->right = NULL; 

if (n temp ptr != n perm ptr) 
AMAC_DALOC(n_temp_ptr); qg 



n clr counter--; 
if (n-clr counter < 0) 

n-clr-counter = 0; 
I* if (n clr=counter == 0) 

} 

SETCLR(BDUPPUP); */ 

File Name NPNNDCS XXXX FOREVER.C 

Void nnd xxxx forever() - -

for(;;) 
{ 

/* if (n_clr_counter ==0); PUP requirement 

n rnsg ptr = recv(); 
switch (n_msg_ptr->hdr.opcode) 

{ 
case NCKTCRE : 
case NNETCRE : 

nnd xxxx chkhist(); 
break; -

case N ACKTO: /* time out trigger 
nnd xxxx_ackto(); 
break; 

default: 

{"File Name 

AMAC DALOC(n msg ptr); 
- 7• end switch */ 

/* end-for() */ 
/* end-forever */ 

NPNNDCS XXXX HNTHIST.C 

l.Jlong nnd_xxxx_hnthist(msg_ptr) 

Cmd hdr *msg_ptr; 

99 

*I 

*I 



Rint i; 

nnd hist ptr = nnd hist buf; 
for-(i =-0; i < N_MAX_HIST; i++) 

{ 
if ((msg ptr->cmdhdr.session id 

(msg-ptr->cmdhdr.user id
(msg-ptr->cmdhdr.job id 
break; -

nnd_hist_ptr++; 
} 

if (i >= ~ MAX HIST) 
return(~ RET FAIL); 

else -
return(N RET SUC); 

File Name NPNNDCS XXXX HNTNODE. C 

Ulong nnd_xxxx_hntnode(option) 

Uchar 

Ulong 
Uchar 

option; 

ret val = N RET FAIL; 
code_byte; 

switch ((Ulong)option) 
{ 

case N HNT CODE: 
{ 

switch (n msg ptr->hdr.opcode) 
{ - -

case N ACKTO: 

nnd hist ptr->session id) && 
nnd-hist-ptr->user id) && 
nnd_hist_ptr->job_id)) 

/* hunting node using code 

code byte = n_msg_ptr->n acktoOl.code; 
break; 

} 

case NNETCRE: 
case NCKTCRE: 

code byte n codecount; 
break; 

default: 
; 

n temp ptr = n perm ptr->right; 
while ((n temp-ptr T= NULL) && (code byte •

n temp ptr-= n temp ptr->right; -
if (n-temp-ptr !=NULL)-

ret vaT = N RET SUC; 

n_temp_ptr->code)) 



} 

} 
break; 

case N HNT ID: I* hunting node using job,user ids */ 
{ 

Cmd hdr *msg_ptr; 

msg ptr = (Cmd hdr *)n msg ptr; 
n_temp_ptr = n-perm_ptr->rTght; 

while ( (n temp ptr != NULL) && 
( (msg ptr->cmdhdr. session id 1 = n __ temp __ ptr->cmdhdr. session ! 

(msg-ptr->cmdhdr.user id '=-= n temp ptr->cmdhdr.·...:ser id) 
(msg-ptr->cmdhdr.job Ict '= n~temp=ptr->cmdhdr.job id ) 

n_temp_ptr = n_temp_ptr->right; 

if (n temp ptr != NULL) 
ret val = N RET SUC; 

break; 

default: 
i 

return(ret_val); 

File Name NPNNDCS XXXX INITCMD.C 

Void nnd_xxxx_initcmd() 

if ( n msg ptr->hdr.sndr.id == n dup id) 
{ - - - -

switch (n msg ptr->hdr.opcode) 
{ - --

case NCKTCRE: 
{ 

nnd xxxx crenode(); 
(*nsmap[n cmnd ptr[N CKTCRE CLS] [n temp ptr->hdr.subfield]] 
break; - - -

case NNETCRE: 
{ 

nnd xxxx crenode(); 
(*nsmap[n cmnd ptr[N NETCRE CLS] [n temp ptr->hdr.subfield]} 
break; - - -

IOJ 



} 
else 

} 
default: 

AMAC DALOC(n msg ptr); 
I* end switch - *I 

AMAC DALOC(n msg ptr); 
I* end main - *I 

File Name NPNNDCS XXXX ENTER.C 

Process enter(arg) 
Uint arg; 
I* when process is created this "arg" is passed to the process *I 

{ 
nnd xxxx arg(arg); 
} - I* end of main *I 

File Name NPNNDCS XXXX PRCINIT.C 

Void nnd_xxxx_prcinit() 

register 
register 
Rint 

Nndhist 
N acktoOl 
i; 

M_GETPID(n_self id); 

*histbuf ptr; 
*time_ptr; 

I* following statements are for history buffer initialisation 

~:stbuf ptr = nnd hist buf; 
for (i=O; i < N MAx HIST; i++) 

{ 
histbuf ptr->user id = 0; 
histbuf-ptr->sessTon id = histbuf_ptr-/job_id 
histbuf-ptr->rslt ptr = NULL; 
histbuf ptr->cmnd-~at ~ N WT DBREC; 
histbuf ptr++; 7 
} -

nnd hist index = 0; 
\02.. 

-- 0; 



I* following statements are for command pointer initialisatio~ 

n cmnd ptr[N CKTCRE CLS] [N CRE SPC] 
n-cmnd-ptr[N-CKTCRE-CLS] [N-CRE-CGS] 
n-cmnd-ptr[N-CKTCRE-CLS] [N-MOD-CGS] 
n-cmnd-ptr[N-CKTCRE-CLS] [N-DEL-CGS] 
n-cmnd-ptr[N-CKTCRE-CLS] [N-A~C-CIC] 
n=cmnd_ptr[N=CKTCRE=CLS] [N=DLC=CIC] 

n cmnd ptr[N NETCRE CLS] [N CRE SLS] 
n-cmnd-ptr[N-NETCRE-CLS] [N-MOD-SLS] 
n -cmnd-ptr [N-NE':'CRE-·CLS] [~-DE~-S:::...S: 
n--crr.nd-ptr[N .NE':'CRJ:..-C:.,s; ::--;-CRE-:::...SBj 
n-cmnd-ptr~N-NETCRE -CLSJ [~-~OD-LSB] 
n -cmnd-p': r [N-~JE':'CRE-CLS] ~N-DE::... -LSR: 
n-cr.-:nd- -pt r: N -NETCRE C:::...S: ::\ CRE SRS] 
n-cmnd-ptr[N-NETCRE--CLS] [~-~OD -SRS] 
n=cmnd=ptr[N=NETCRE=CLS] [N=DEL=SRS] 

= 
= 
= 
= 

= 

MAP CRE SPC; - CRE -CGS; MAP 
MAP -MOD -CGS; -
MAP DEL CGS; -MAP ALC CIC; - DLC -CIC; MAP -

MAP CRE SLS ; 
-MOD - SLS MAP ; - -

MAP DEL SLS ; 
- ···-· 

~..AP CRE ~SB; 
-· -· 

~p MOD i..SB; - -tv'..AP DEL LSB; 
-

~..AP CRE SRS; -
MAP MOD SRS; - -MAP DEL SRS; 

I* following statements are for time buffer initialisation * 

n time_buf[N_CYCLIC_TIMER] = 5 ; 

I* following statements are for :inked list npnode *I 

n clr counter = 0; 

n codecount = 1; 

I* tells how many jobs to done *I , 
/* key to the linked list node */ 

&~C_ALOC(n_perm_ptr, sizeof(struct npnode)); I* header node of the :i 

n __ perm_ptr->left = n perm ptr->right = NULL; 
n_temp ptr = n last ptr =-n perm ptr; 

1*-n perm ptr always points to the header node *I 
I* n-last-ptr always points to the last node in the list */ 
I* n-temp-ptr poits to the current processed node *I 
I* n-codecount gives the code with which a node will be created */ 
I* and that code is the key to identify the node *I 

AMAC_ALOC(n_ptr_dest_id, sizeof(Pid)); 

A."-1AC_MALOC(time_ptr, sizeof(N_ackto01) ); 

time_ptr->hdr.opcode 
time ptr->hdr. subf"ield 
time-ptr->hdr.sndr.id 
time=ptr->timer_type 

= N ACKTO; 
= ONE; 
= n self id; 
= N-CYCLIC TIMER; - -

I O!. 



File Name NPNNDCS XXXX ROLLBACK.C 

Void nnd_xxxx_rollback(pdb_ptr) 

char *pdb_ptr; 

if (n rollvar == 0) 
{ 

if (n_msg ptr != NULL) 
Alw'.AC DA::::..oc ( n __ ms g _pt. r l ; 

start(N6COOR + :NHPTY, n se~t id, Ro::::..::::.,ED BACK, 0, C, 0, Cl; 

_ t rrr.t () ; 

File Name NPNNDCS XXXX ACIKILL.C 

Void nnd xxxx acikill(reason) 
Uchar reason; 

register 
Rshort 

AcikillOl 
size; 

*acikill _ _ptr; 

size= sizeof(AcikillOl); 
if ( (n temp ptr->acikill ptr == NULL) I I 

- - (reason T= (Uchar) (n_temp_ptr->acikill ptr))) 

AMAC_MALOC(acikill_ptr, size); 

n_temp_ptr->acikill_ptr reason; 

acikill ptr->hdr.opcode = ACIKI::::..L; 
acikill-ptr->hdr.subfield = ONE; 
acikill_ptr->hdr.sndr.id = n se:f id; 

acikill ptr->cmdhdr.session id 
acikill-ptr->cmdhdr.user id
aciki:: ptr->cmdhdr.job Ict 
ac iki 11 ~~pt r->cmdhdr. crp = id 

n temp ptr->cmdhdr.session id; 
n -temp-ptr->cmdhdr. user id_;_ 
n-temp-ptr->cmdhdr.job Ict; 

= n-temp=ptr>cmdhdr.crp_Id; 

n temp ptr->cmdhdr.status byte; 
n=temp=ptr->cmdhdr.output=dev; 

= size; 

acikill ptr->cmdhdr.status byte = 
acikill-ptr->cmdhdr.output-dev 
acikill-ptr->cmdhdr.size -
acikill-ptr->reason = reason; 

_send(n_temp_ptr->hdr.sndr.id, acikill_ptr); 

lOt.. 



SUPPLEMENTARY FILES USED FOR ~ 

Following files have been used to support the NDUP 

process in No 7 SU. 

i. NPNNDCH XXXX EXTE~~.H 

This file includes e:·::_er-::-: de:ini+.: i:):1S ·__.:s<=>d for 

NDUP at process level. 

ii. NPNNDCH XXXX PDEF.H : 

This has process definition of NDOP only. 

iii. NPNNDCS XXXX EXTERN.C : 

This has external declaretions of variables at 

process level. 

iv. NSNXXCH CHASH.H 

This has hash defined constants used for No 7 

Software defined at higher level. 

v. NSNXXCH SYSTEM.H : 

This is system file which includes relevant files 

from " toolrel:, dbrel:, mtrel: " directories. 

vi. NSNXXCH TYPDEF.H : 

This has typ definitions of data structures used 

for NDUP process. 



APPRNDTX TV 

REFERENCES 

Common Channel Signalling System (Part I). 

CCITT Fed Book VI. 

3. 0verview of CDnT & DSS Pr~j~cts. 

4 

5. Ov~rvview of Signalling 3ystem N~ 7 

.. ,. r; ~.l" ~· .... ~~ 2 ~- r l f! ~ r . 

lOb 


	TH68380001
	TH68380002
	TH68380003
	TH68380004
	TH68380005
	TH68380006
	TH68380007
	TH68380008
	TH68380009
	TH68380010
	TH68380011
	TH68380012
	TH68380013
	TH68380014
	TH68380015
	TH68380016
	TH68380017
	TH68380018
	TH68380019
	TH68380020
	TH68380021
	TH68380022
	TH68380023
	TH68380024
	TH68380025
	TH68380026
	TH68380027
	TH68380028
	TH68380029
	TH68380030
	TH68380031
	TH68380032
	TH68380033
	TH68380034
	TH68380035
	TH68380036
	TH68380037
	TH68380038
	TH68380039
	TH68380040
	TH68380041
	TH68380042
	TH68380043
	TH68380044
	TH68380045
	TH68380046
	TH68380047
	TH68380048
	TH68380049
	TH68380050
	TH68380051
	TH68380052
	TH68380053
	TH68380054
	TH68380055
	TH68380056
	TH68380057
	TH68380058
	TH68380059
	TH68380060
	TH68380061
	TH68380062
	TH68380063
	TH68380064
	TH68380065
	TH68380066
	TH68380067
	TH68380068
	TH68380069
	TH68380070
	TH68380071
	TH68380072
	TH68380073
	TH68380074
	TH68380075
	TH68380076
	TH68380077
	TH68380078
	TH68380079
	TH68380080
	TH68380081
	TH68380082
	TH68380083
	TH68380084
	TH68380085
	TH68380086
	TH68380087
	TH68380088
	TH68380089
	TH68380090
	TH68380091
	TH68380092
	TH68380093
	TH68380094
	TH68380095
	TH68380096
	TH68380097
	TH68380098
	TH68380099
	TH68380100
	TH68380101
	TH68380102
	TH68380103
	TH68380104
	TH68380105
	TH68380106
	TH68380107
	TH68380108
	TH68380109
	TH68380110
	TH68380111
	TH68380112
	TH68380113
	TH68380114
	TH68380115

