A RULE—BASED EXPERT SYSTEM
IN THE DOMAIN OF LAW

— AN ANALYSIS
1173

Dissertation submitted to the Jawaharlal Nehru University
in partial fulfilment of the réquirements for
the award of the Degree of
MASTER OF TECHNOLOGY

-1 7M4AQM-TM6~]

LS donlal el
‘f MNMAP%“iﬁ/,ﬁ?%

£ | 2. feesowpes
@?*M

ASHUTOSH CHATURVEDI

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
'JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI—110067
" INDIA
1988



A
RULE-BASED EXPERT SYSTEM

IN THE DOMAIN OF LAW

- AN ANALYSIS



PREFACE

The research work embodied in this dissertation has
been carried out in the school of computer and Systems Sciences ,
Jawaharlal Nehru University, New Delhi. The work original and has
not been submitted so far, in part or full, for any other degree

or diploma of any university.

Aol gl

ASHUTOSH CHA%URVEDI

( ol

DR. P.C. SAXENA
SUPERVISOR

PROF. KARMESHU
DEAN

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110 067



CHAPTER 1

CHAPTER 2

CHAPTER 3

- CONTENTS

ACKNOWLEDGEMENTS

THE IMPORTANCE OF EXPERT

SYSTEMS

DESCRIPTION AND ANALYSIS

OF AN EXPERT SYSTEMS
CONCLUSION

LIST OF REFERENCES



ACKNOWLEDGEMENTS

I wish to express my gratitude to Dr. P.C. Saxena
Associate Professor, School of Computer and Systems
Sciences, J.N.U.; New Delhi for his motivation, guidance

and help which led to the culmination of this work.

As 'is widely known, the expertise of an expert
is an 1indispensable component of any expert systems
work. In this respect, I am very thankful to Mr. Aryind
Kumar, a noted lawyer of Delhi for his invaluable help

in providing literature and guidance.

ASHUTOSH CHATURVEDI
M.TECH (SC & SS)
J.N.U., NEW DELHI



Chapter 1
THE IMPORTANCE OF EXPERT SYSTEMS

Intelligence, as it has been described in dictionary
is the capacity to apprehend facts and propositions and their
relations and to reason about them. The c}edit for the origin
of Artificial Intelligence as it is known now must be givén
to M. Turing who gave the concept of Stored Program Compﬂter
which was different from the earlier computers in the sense
that the earlier computers were actually dedicated machines
that had to be wired differently to solve different problems.
But Artificial Intellifence in its ‘current form began around
1966 with the creation of LISP, the first artificial intelli-
gence language. Sincé then, many systems have been designed
in the field of artificial intelligence or AI as it is called
such as the chess-playing computer, computerised mathematical
proofs, the famous psychoanalysis program ELIZA efc. By now,
Al has become divided into different specialised areas of study
such as : natural language processing, knowledge representation,

learning, Expert systems etc.

An Expert System is a program that contains knowledge
about a certain field, and when interrogated, responds in a

way, that a human expert would respond.

There are various advantages inherent 1in the concept

of making commercially viable expert systems.



The first advantage is ‘'availability'. Since Many
expert systems can be created, whereas there may be a limited
number of human experts, making it virtually impossible in

many situations to have an expert available when needed.

The second advantage of an expert system over human
experts is its ‘'continued peak performance! whereas the re-
liability of a human expert is sensitive to changes in his

mental state.

An expert system is an 'impersonal tool' and so can
be more .effective than a human expert who may have personal

likes or dislikes.

MYCIN, designed to Help physicians diagnose certain
bacterial diseases was world's first successful expert system;
Another example of a commercially viable expert system is
PROSPECTOR, an expert in geology. Since early 1980s, various
dedicated expert systems' in fields like computer configupa-
»tions, Robotics, tax cénsulting, insurance advice, legai aid
etc. have been written. It is believed that in the vyears
to come there will be a large market for expert systems for

"personal” use such as at offices and homes.

1.1 Rules and Knowledge

Most of the useful work that is being done in AI today



is heavily based.upon the collection and usage of heuristics,
condition-actioh rules etc., because they can be used to

exhibit something like intelligence.

The famous psychiatrist Carl Jung has given a method
of looking at types of human experience, and the ways that

we process that experience.

Sensation

Knowledge -

A typology:
Artificial
Intelligence

Feeling----—-—--—-—=~—1 f——————— Thinking

Intuition

This simple presentation shows parts of opposing func-
tions which are available to process our experiences: sensation
and intuition for perceiving experience and thinking and

feeling for evaluating experience.

We perceive events in the physical world by our éensation
function, which 1is implemented by our five éhysical senses.
These éensory perceptions are passed on to the thinking
function which organises the sensory input and hands that

information to a feeling function. Finally, the intuitive



function is a kind of inner perceiving function which e#tends
past experience, allowing us to 1aok beyond our present situa-
tion. In fact, the capabilities of AI and of all the computer
science are limited to the perception of physical inputs and
their .processing by logical-deductive thinking processes.
We can also emulate feeling and intuitive functions on our
computers by discovering and codifying non-logical expert

activities using our logical deductive tools.

1.2 What constitutes an Expert System

&,

Every expert system has 2 parts : the knowledge base

and the inference engine.
1.2.1 Knowledge base

It is a database that holds specific information and

rules about a certain subject. The two important terms are:

Object : The conclusion that is defined by its associated

rules.

Attribute: A specific quality that together with its rule,

helps define the object.

A knowledge base is a list of objects with their asso-

ciated rules and attributes. Normally, an object is defined



by a list of attributes which the object either 'does' or
'does not' possess. For example, an expert system that iden-
tifies various types of fruit may have a knowledge base like

this :

Orange

has been grown 'on tree

has round shape

has not been grown in the north

has orange colour

Apple




1.22 Inference Engine : Once the knowledge base
consisting of rules has been formed , the next important
taksk is to chain through the rules to reach a

éonclusion, which involves essentially the following

1. Identify the rule as relevent to the conditions
(premises) of the problem situafion. This step may
actually result in finding more than one rule from the
knowledge base. If so,

2. We must resol?e the conflict among cohpeting rules,
the result being the selection of one rule.

3. We <can now excute the rule i.e. we <can reach the

conclusion implied by its premises.

There are two broad categories of inference
engines  : ¢deterministic’ and probabilistic. A
deterministic expert system would give a definite answer to
most queries. Whereas a probablistic expert system can give
an answer which can be treated as only probable or having a
certain success ratio. The basic ways to construct the
inference engine are three : forward-chaining, backward-

chaining, and rule value.

1.221 : Forward - Chaining Method : It is sometimes called
data - driven. Here inference engine acts on the

informatiom provided by the user to move through a network



: 6% @

of 1logical ANDs and ORs umtil it reaches a terminal point,
which is the object. Thus, a forward chanining inference
engine starts with some information and tries to find an

object that fits the information.

For example in the diagram given below when the
forward chaning inference engine 1is given the proper

attributes it arrives at the object apple.

Round Grows on trees Does not grow Red or yellow
’ in deep south i

v

Apple (object)

(Forward chaining to the object apple)



1.222 The Backward Chaining Method

In this case, the inference engine starts with a hypo-
thesis ‘(an object) and requests information to confirm or

deny it.

For the earlier example of a fruit, a backward chaining
Inference engine would take the apple as an object and then

would attempt to verify it by checking for its attributes.

Try apple

Grows on trees Grows on vine
A Is roudé/ ,
Is Orangez/// \\\\\\5\\\\5Red or
Yellow

Does nof
grow in -
deep South

Apple

Thus backward-chaining prunes a tree, the opposite
process of building a tree which happens in case of forward

chaining.
1.223 The Rule Value Method

In this method the general theory is that the system



makes request for éuch information as will remove the most
uncertainty from the system. vThus at each stage, the question

which is selec;ed is one that makes the most rapid progress
to a conclusion. The rule-value systems are difficult to imple-
ment because the real—life knowledge bases are so large that

the system can not decide as to which questions will take it

closest to the goal.
1.3 Expert Systemé in a specific problem area - Law

The fieid of law can lend itself to treatment by Expert
Systems technology in a very profitable manner. Because of
the large number of rules that legal subjects.gencrally have,
it becomes a trying task for a lawyer to go through the volumi-
nous rules manually and also be able to inferpret them in the
preciée manner. Thu§ having an expert system to store and
retrieve rules for a given problem area would greatly facilitate
the tasks of lawyers, ;cademicians, business houses and others
concerned with the subject. A la;gé number of expert systems
in the law field have been implemented. Extensive discussions
with lawyers, resulted in the identification of an area for

developing an expert system.

The example taken in this dissertation also relates tor
the legal field. An attempt has been made to show as to how

the expert system can be used in the field of law, which is



a relatively newer concept.

The subdomain.of the problem which has been taken out
of the vast domain of legal problems deals with the Hindu
,Marriage‘Act, 1955. This Act extends to‘the whole of India
except J&K, and aléo applies to Hindus domiciled in territories
.to which this act extends who are ouiside the s§id territories
(the act also applies to the- Hindus domiciled .in India but

" who are living outside India).

The sections which deal with divorce, judicial separation
and divorce by mutual consent are sections 13, 13A, and 13B

respectively.

A block diagram depicting the various sections, sub-
sections and various grounds in which they can be invoked is

given below (next page)

Thus it can be seen that there are sections dealing with
- divorce problems,'each section having a number of subsections,
and each subsection has a number of grounds. Some of these
subsections and grounds are common. Furthermore, there are
AND/OR linkages between the applicability of wvarious grounds.
Thus, this problem presents a good case for treatment by expert
system technology. Discussions with vlegal expert togethér
with going thfough the wvoluminous summary'of_éections, sub-

sections and ground rules in all their complexity helped a



SECT ,QN 1% | SECTION I3 A

CourT PASSES DrcCrREE

~COU1’{T DECIDES DiveRCE For. Jumicinl Sc PARATION

YA i 4 E S ' — . —
/Q LINKAGE S ) | . \f JIOR N4 GES ‘
SuzszeTieon L SupsSeccTionIAp | SUBSECTION 2 % . v _ -
- v 6 ‘ suCGsec 1 SUBSEC LA Subsec 2
ETITION Oy PETITON BY Pe TITION By Pe TITON DY PETITION BY PeTITION BY
CITHER OF EITHER OF WiFE EITHER OF EITHE R WIFE .
THE PARTIES THE PARTIES] Tue PARTIES] [ PARTY :
G GrRegdpds 2. & oo DS 4 GROU NDS ‘ ¢ Ggeon DS 2GReCNDS 2 G RAOVNDS
—— , o l . _ i L
INRNENNY [ L i |
A N.D/C‘ R _ _ .

LinNAGES

A SAMPLE
: ScHeMATA OF
SgeTioN 1353 _ _DIVORCE RUL cS

CoUR T DECIPES! . | ' T

DivoRCE BY MuTuAL :
CoNnsENT

/‘CR' L(NIKAG" €S

b L

1

SURBSEC 1 - o | suvesec 2
PETITION B)f ' _ ManNMER OF
DOTH PARTIE : PASSING DECREE
lﬁ dGRcunDS
Arip [ or

Ly NicACGES



: 11 ;

lot in building up a framework of a prototype of an expert
system which is presented in a greater detail in the next

chapter.



Chapter 2
DESCRIPTION & ANALYSIS OF AN EXPERT SYSTEM

Although, the two fields are quite far apart, yet a
parallel can be drawn between the problem at hand and that
of constructiﬁg a medical diagnostic system. When a doctor
has to diagnose.a pétient, he has a list of pfobable diseases
in.mind. Each of fhese_disease§ has a set of symptoms as its
indication, so the doctor looks for these symptoms in the pati-
ent. If the symptoms for a particular disease are not present
then the patient is examined for the next disease and this
process goes on until the cofrebt disease is found out. The
"patient" in the given problem is t@e client of a lawyer, i.e.
a husband or wife or both. The "diséaseé" are the number of
options of settlement before the spouses such as divorce,
jqaicial separation gtc.‘ The "symptoms" here are the various
sections, subsections and ground—fules as established in the

Hindu Marriage Act.

Thus, what is needed in the formulation of an expert
system for the solution of the given problem is the following

facilities at the highest level

(1) A facility to store a large number'ofvrules.

(2) A facility to map these rules onto real-world, i.e. a



facility to check the applicability of some or all of

these rules for a given physical éntity.'

Two kinds of storage are needed in this problem. One
is the collection of facts and rules.which does not change during
program execution. This 1is palled static database. The second
type of storage needed consists of facts obtained from the user
during the consultétion process that apply only to the current

consultation.

Thus the following type of structure is needed

Rule Base Working Memory
Static database) 4 (Dynamic database)
. /’\ x

i i
‘ !
i knowledge base i
. f
|
|
N /

\;.] . » J

7

Inference Engine

—
i User
[
i

Such a structure is called a production system which

is a common type of expert system. Using this model in mind,



a primitive expert system has been developed here.- This
system was developed using an IBM Personal Computer and the
only software that has been used here is the Turbo Prolog

compiler.
2.1 Use of Language PROLOG

The llanguage that has been used here is Prolog, an
Al language (more precisely Turbo-Prolog), which is different
from the conventional computer languages in the sense that
it is an object-oriented language. The conventionai langua-
ges are procedure-oriented languages which distinguish between
a program and the data it uses. Whereas Prolog uses only
data about objects and their relationships. A brief note
about Prolog would Ee in brder before we start a detaiied

discussion about the program.

As we have said, Prolog is an object oriented language,
which means that the collection of facts and rules (the so-
called data of conQentionai languages) and the relationships
between objects, thevcontrol structure and the user interface
(the so called program of the conventional languages are
both written iﬁ the language Prolqg. In fact, Prolog is
its own inference engine, which performs unification (i.e.
matchiﬁg), decides the order in which to scan the rules,

and performs conflict resolution. Prolog uses backward



15

chaining, i.e. it starts at the goals and works backwards.
Moreover, Prolog is limited to depth-first scanning. All
rules concerned with a particular goal are scanned as deeply
as possible for a solution before Prolog backtracks and
tried to prove another goal. .These concepts will be clearer,

once we come to a detailed analysis of the system.

The given law Problem requires the system to haye
the ability of testing through all the given conditions,
and in the event of any condition failing, going backwards
to have another variable binding and then continue to test
the conditions. An important feature of Prolog exechtion
called backtracking does just.this. In this, the solution
lof a compound goal proceeds fromlleft to right, if any con-
dition in the chain fails, Prolog backtracks fo the previous
condition, tries to prove it »again. with another variagle

binding, and then moves forward again to see if the failed

condition will succeed with the new binding.

Prolog uses a aatabase of 'facts' and 'rules'. Facts
are the assertions of something which is true expressed
in an encodéd for@. Facts are expressed in association
with ‘'objects', which represent an entify or a property
of an entity in the real world. An associated term is
'Relation' whyich is a name that defines the way in which

a collection of objects (or objects and variables referring



16

to objects) belong together. For example, consider,
Has=-a(X,X)

It represents a fact that an entity X 'has a' another
entity X. Here, 'Has-a' is a relation. The entire express-
ion before the period is called a 'predicate'. Predicates
are functions ‘with values true or false and they express
a property . or a. relationshi?. A 'rule' is an expression

that indicates that the truth of a particular fact depends

on one or more other facts.

Every rule has a 'conclusion' (or head) and an 'ante-
cedent' (or body). The antecedent consists of one or more
'premises'. The prehisgs form a disjunction or conjunction
of goals (as decided in the rule) and accordingl? all or
some of them must be satisfied for the conclusion té be
true. A comma expresses an ‘and' relationship and éemih
colon expresses an 'or' relationship. Rules can use both

variables and constants as their arguments.

Prolog executes using a matching process. The process

by which Prolog tries to match a term (a term is a simple

14
object, variable or structure) against the facts or heads,
of other rules in an effort to prove a goal is called

'unification'. Predicates unify with each other if



- They have the same relation name
- They have the same number of arguments

- All argument pairs unify with each other.

Unification is similar to parameter passing in proce-
dural programming. Values for one term are passed to another

term, binding any variables in that term,



2.2 Implementation Details

The following flow diagram shows how Prolog is applied

to the real world.

Real > The Knowledge " Turbo Prolog
world expert's representation language
abstraction Model model

/

A Turbo Prolog program consists of two or more sec-
tions. The ma_in body of the program, the 'clauses section'
contains the clauses and consists of facts and rules. The
relations used in the clauses of the clauses section are
defined in the "predicates section". The "domains section’
defines thé type of each object. Ther‘e are various domain
types in Turbo Prolog such as charts, symbol, real, string

etc.

The subsequént' discussion is based on the program
- printout attached near the end ofj this report. The domains
section here (kindly refer to the p»rogram)., contains the
types of various objects. The varriable ‘descn' refers to
the various types of decisions possible in the court in
the divorce cases, such as 'di_‘vorce, judicial separation,
mutual consent divorce, etc. The variable ‘'grnds' refers
to the various grounds whose fulfilment leads to some deci-

sion or the other. Likewise, the wvariable ‘'query' which



: 19

if of string type is used to ask questions by the system.
The variable answer is used to input the answers of user

to the queries made by the system.>

The domain section is followed by database section.
The two database predicates definéd here are 'xpositive'
(grnds)' and ‘'xnegative (grnds)’'. These together with -the
built in predicates ‘'asserta (fact) and _'retract—(fact)ﬁ
hel@ in creating and retrieving a dynamic database of facts.

How actually this is done will be explained a little later.

In the diagram given inr the last chapter, it has
been made clear that sections 13, 13A and 13B deal with
divorce cases. Each of this sections consist of a number
of éubsections. Any of the subsections can be iﬁvoked for
the decision in that particulaf section to be méde. Thus
there are OR linkages:between the subsections within a sec-
tion. Furthermore, for each subsection to be invoked a
number of- --conditions (eifher all or some df them) have to-
be satisfied. Thus there are AND OR linkages between the
conditions within a subéecfion. Some of.these conditions
require the fulfillment of multiple subconditions before
they are themselves fulfilled. Also some of these conditions
require just one. of the m;ny subsections for them to be

true. Thus we can see that there are AND/OR linkages within



a particular condition between different subconditions.

For example, for divorce, in the broadest manner

péssible the following structure of rules is present.

"Divorce 1is ddmissible IF
(either of the spouses presents a petition
AND conditions for Section 1 are fulfilled)
OR (either of the spouses present§ a petition)
AND conditions for Section 1A are fulfilled)
OR (the wife presents a petitioh

AND conditions for Section 2 are fulfilled)"

Similar conétructs are present for the other decisions

such as decree for separation by mutual consent.

In a greater level of detail if we view the problem,
then we will see that Section 1 can be invoked in the foll-

owing cases which becoome clear by inspecting the following

rule :

"Invoke Section i IF,

Conditions for CONVERSION are present
OR IF

Conditions for RENUNCIATION OF WORLD are present
OR.IF .

Conditions for NOT HEARD LIVING are pfesent

OR IF



: 21

The conditions of say CONVERSION can be viewed in

a greater level of detail.
O

“A,RELIGIOUS CONVERSION" is said to happen'IF, the
- . . '

respondent abdicates his religion by an act of remuneration-

AND

The respondent adopts another religion by formal

conversion'.

All the judicial decisions are treated as Hypotheses
some or all of them may be possible. - The conditions and
subconditioﬁs discussed above are given as premises of these
hypotheses. Then.these premises are thémselves set up as

hypothéses, with their subcontinued as their premises.

:mnmv%ihe total program can be divided into three parts.

Declaratory and query management part
(B) . knowledge-base (rules) part

(C) User Interface part

For initiating the expert system, the user has to
type in a goal as "go". Then, following interchanges take

place between the various parts of the program.

;>ﬁ$
067.52!34
c342
PO



TH-96¢

21!

Y3

The queries which are asked are described below

in a brief manner.

First of all the system asks,

"What do you want?!"

At the same time it lists out a list of options

within which to choose.

Now the user can say,

"I want to know whether divorce is  possible"

or
L | want lto know whether judicial seperation is
possible"

or

"I want to know whether divorce by mutual consent is

possible".

Depending on these, the system goes ahead and
checks the truthfulness of the appropriate hypothesis. Then
depending on te hypothesis, it checks the truthfulness of
appropriate conditions, and subconditions by asking the
user various questions, which will be clear from the program

listing in the appendix attached at the end.

D\SS
©075 2 3Y
e 392

o Lo



22

2.3 System Flow Pattern
{ Starting the session
N S o | —
Query Knowledge User Interface
management base’ part
part part ' i
) (B) (C)
A - ‘
P
5 - 4
v Result
- User
Index of Execution Flow
(1) User specifies the goal 'go' which indicates the
query management part
(2) A checks for a particular hypothesis in B.
(3) B goes deeper inside the rules to get at the most
eleméntary predicate and triggers C
(4) C checks for the concerned data base predicate in

A.

Depending upon whether this database predicate in

true or not, a new set of execution flows occur in the order

2, 3 &

4.

At the end, the result is communicated to the user

through flow No.(5).



How exactly this flow occurs would now be discussed

in detail.

-

After data base section comes the predicates section
which declares all the predicators to be used. These prédi-
cates may be true or falée. | The symbols within brackets
are ‘the arguments of ~the predicates, which are themselves
defined in the domains section. The same predicate may be

true or false depending on the values of the arguments.

The actual program starts from the clauses section.
As user types in 'go', the ‘'go! pfedicate is tested and the
predicates which are its premises are tested. The symbol
'y' is for conjunction. The predicate xpositive (grnds)
is used to store facts proven true and xnegative (grnds)
is used to store facts prern false. First of all the dynamic
détabasesvvare rinitialised by clear facts predicate. Then
- the hypothesis (decsn) is tested. The sign '1' is a predicate
which is built in to alwa?s.succeed. It is called a cut.
Then the Prolog léoks for the first instancé of hypothesis
(Decsn) which it finds to be 'Hypothesis (divor)'.. Then it
checks for various premises of this Hypothesié which are
further describéd in the knowledge base. So it first comes
to test the predicate "method (eithpetn)". As we have said
earlier, the result of an IF statement is sebaratea from
its .premises by a ‘':-' sign. So the premise of 'method
(eithpetn)' says, "positive' ('"has the petition been moved

by either of the spouses (Y/N)?", eithpetn)®



24

This positive clause noQ'looks for a match all through
the program from the start. So it tries to find a match
with the first positive clause, namely "positive (-, grnds)".
As we know, Prolog executes by a process of unification.
So it ignores the argﬁment corresponding to '-' which happens
to be the query and binds 'Grnds' to ‘'eithpetn'. Then the
predicate xpositive (eithpetn) is tested. This will fail
since initially all -database predicates are empty. The progrm
then backtracks to the second ‘'positive (query, grnds)' pre-
dicate./ Since xnegative‘ (eithpefn)' is currently empty
so together with 'not' it succeeds and we come to the 'ask'
predicate. Here the query earlier mentioned in user-inter-
face part, is put to the user. When the user gives answer,
the systém remembers it as 'yes' by making ‘'xpositive (grnds)'
as -true or 'no!' by making 'xbegative (grnds)' as true. This
is done by the built in ‘'assertafact) predicate. So if by
this process, the predicate method (eithpetn) comes out to
be true, then the system tests for the nextApremise, namely,
'sec(one)! Its tésting requires the testing of another ruele'
with a number of premises. If assuming that all predicates
that are ANDed are true then the hypothesis becomes true
which is reflected by system declaring the parameter of that
hypothesis as'the decision. But if suppose any of the premi-
ses fails, leading to the failure of the_hypothesis..ln that

case, the system goes on to the testing of the next hypothesis .



25

with another binding namely hypothesis (judsep). It agéin
restarts the same process, going through the same manner
 of execution flow and of course asking the different ques-
tions. The cut performs the heuristic function of)reducing
the search space, once a 'decision’ matching the 'grnds'

is found, the search is terminated.

The various levels of conditions and subconbditions
makes about 35 rules at the lowest level. Thus so many que-

ries are stored in the user interface.

Since Prolog looks for a matching in a sequential
manner, so the ordering of hypofhesis and premises is very
important.

Also, it is important to know that clauses of same
predicate aréqtofbe grouped'togethef. The 'method! predicate
is used to, K store the. method of- presenting petitions i.e.
single. jointly etc. Likewise, there are predicates such
as "condtn (grnds)®, 'subsec{grnds)" etc. which (each of

them) require a large number of premises.

Two important features of this system will become
clear by seeing its operation or by looking at the program

deep enough.

The first is that the system prunes the search space

by not asking the questions which have been asked earlier.



This is achieved through the device of dynamic data bases.
The query which the system asks is given an answer in 'Y"
or 'NO' and the system remembers this answer by the remember
predicate which stores this answer in 'xpositive'! if it is
'Y' and if 'N' then it is stored in 'xnegative'. This decides
the fact whether the question will be asked next time or
not. Thus the user is spared thé botheration of getting
askedvthe 'same question again and againb. Thus it is a very

powerful feature.

The second feature is that the system does not ask
the subsequent subquerigs if the earlier subqueries are ans-
wered in 'no' and if the subqueries are linked by an 'AND'.
This is achieved by the cut. Thus the search space is pruned

by this method. Let's illustrate this by a diagram.

Decision 1 | Decision Zl
N P e
A AND _ ;
i
ground 2 l ground 5 _
/// j\\\ i ground 6i
(ground 3 | ground 4 !
f
—> — —_— '

Let's assume that ground 1 fails. Then the control

"will try and test the hypothesis clause with another variable



27 ¢

binding say ‘'decision 2', instead of fruitlessly searching
ground 2, ground 3 etc. of hypothesis 1. Thus there is con-
siderable saving in ter@s of processing time. One part of
the search tree is completely written off momentarily for

one consultation session.

2.4 The Notion of Certainty

The examples of rules which have been considered
might give an impression that the rules, as stated, and the
interaction with the user, as described are relatively well

defined. This is not a typical case.

In general, experts' knowledge has some kind of cer-
tainty associated with it, as is the. case with the input
"from the user at decision .time. The important questions
with regard to certainty of knowledge are : How do we decide
how certain a particular piece of knowledge is a priori?
and if the premises themselves are uncertain, how do we combine
them to find the conclusion of a rule with a reagonable cer(-

tainty.

Every programming language has some explicit or im-

plicit equivaleht of the following statement



:-28 F

IF some things are true
THEN some other things are true

- ELSE yet other things are true

But there is a very basic difference between the
traditional IF-THEN rules and the production rules used in
knowledgé based systems, such as certainty, completeness
and dynamism. If_the rules are of the type in which the
conclusions are completely determined by the truth of the
conditions 1i.e. premisés they they are called ‘'deterministic!’
rules. Such rules occur generally in language such as COBOL
where for example if the input transactioﬁ is Add-a-Record,

then the Add-a-Record process should definately be executed.

The knowledge-based system rules are different in
the sense that when we make an expert rule, we may not be
absolutely certain that either the premises or the conclusions

are true.

For example, for the expert system being discussed

in this report, consider one of the rules

"Judiqial separation is admissible

IF Petition is presented by either of the spouseé

AND OR The respondent was incurably of uﬁsound mind
OR the respondent was suffering from incurable
and virulent leprosy
OR the respondent was suffering from veneral

disease)"



29

Now several questions come to one's mind after inspec-
‘ting this seemingly simple rule. Each of the premises given
is ‘amenable to a closer scrutiny in the following manner:

|
Cruelty What was the type and extent of cruelty?

What was the effect of cruelty?
Unsound - Was the person incurable ? was the person conti-
mind - nually afflicted with mental illness? »

What was the extent of mental illness?

Veneral What is the extent of veneral disease?
disease What parts of the body does it effect?

Is it of communicative form?

It would appear that having a large number of cbndi-
tions would increase the véertainty of the rules. In fact.
this is what has been actually done in the system implemented
as such. For each of the groundsvadmissiﬁle queries have
Seen framed at a finer level of ‘detail. But still the fact
can not be discounted that each of the new factqrs may be
true only to a certain degree and certainly that degree varies

from person to person,

In our expert system, each condition at the most
elementary level has a degree of uncertéinty associated with
it. Thus we can associate a probability P(gi) for each ele-
mentary condition gi. VThere are varioué elementary condi-

tions'!



30

gl, g2, g3 ceceececccces gn

And the final decisions can be given the probabilities

P(dl), P(d2), «ceccecveacesssess P(dn)
i.e. if the decisions are dl, d2,.¢cceceeee.. dn.

Thus the uncertainty of premises can be transmitted
to the uncertainty of the conclusion and this uncertainty

itself can be computed.

Suppose the following relations exists between the

decision and the conditions

"Invoke_dk IF

gl AND g2 AND ....cccceee.. AND gm"
" Thus the uncertainty associated with dk is given by

P(dk) = P (gl AND g2 AND ....ceces.. AND gn)

Also, if we assume that the fulfillment of a particular
condition is independent of that of any other condition then

from law of independent probability, we get
P (dk) = P(gl) * P (g2) * ..... cesees ¥P (gn)

If we consider the conditional probability,

P(dk/gl AND g2 AND ....... eess gm) = 1



This is because the decision dk has as its precondi-
tions, the conditions gl, g2 ..... gm and if all of them
are true, then the decision dk is certainly fo be taken,
but because of the uncertainty, it can have a value different

from 1./

Now consider another conditional probability which

is an apriori combinational conditional probability.
P(gl and g2 AND .eeeeeeeeesss. AND gm/dk) eveees(A)

According to 1laws of <conditional probability, it

can be written as

P (dk)\

Due to reasons discussed above, the .above can be

reduced to,

———————————————————————————————————————————————— (B)

Now, (A) can be further reduced to the following

form using independence of conditional probability.
P(glldk) * P (gz)ldk) ¥oooooo. . P(gm|d)) (C)

Since (A) & (B) were equivalent, hence (B) & (C)

are equivalent. Now (B) 1is of a form which can be computed



32

if we have the probabilities of fulfillment of individual
?onditions. These can be known from the expert of the field
based on his/her knowledge of frequency of occurrences of
these conditions. This can lead to éomputation of P(dk)

and thence of (B). Thus we can get (C). 1f we apply the

approximation

P(gl/d,) = P (g2/d)) = +enno...P(gm/d))

Then we can get the independent conditional probabi-

lities P (glldk) by computing the mth root of (C).

In th\e case of conditions linked with an 'OR', if
we consider the conditions to be mutually exclusive then

we can say,

P(gl OR g2 OR ........ OR gm/dk) = P (gl/dk) + P(gZ/dk) +

resseveseass + P (gm/d)) ) (D)

This is because

P(gl OR g2 OR ........ OR gm) = P(gl)+P(g2)+....+(gm)

Also from laws of conditional probability

P(gl OR ......0R gm/dk)

= P(g! OR ......... OR gm)*P(dklgl OR ......O0R gm)
P( dk) .
Here, P (dk/gl OR ......... OR gm) = uncertainty

factor, because these are the preconditions for dk'



So, P(gl OR ...eceee.. OR gm/dk)

= P(gl) + P(g2) + ¢eeeeee.. P(gm) * (Uncertainty Factor)

(E)

Since we cén find (E), from (D) and (E), we can find
P(gl/dk) in the same manner as discussed earlier for the
'"AND' case, if we assume that P(gl/dk) = P (g2/dk) Z s eesenns

= P(gm/dk)

Thus we can see that by having appropriate probability
‘assignments we can get over the problem of uncertainty din
rule definitions, because in real world cases, the predicates
have not only to Abe qualitatively ‘'true', or 'False' but

also quantitatively ‘'true' or 'false'.



Chaptef 3
CONCLUSION v

The way the expert system development has been attemp-

NS
ted; many shortcomings remain in the system. One reason for
this is not using the expert system shell or some kind of

front-end system. Many enhancements to the existing system

can be suggeéted which are as follows
3.1 Facility for Explanation

Using front-end systems to Proiog such as APES, i.e.
Augmented Prolog for Expert Systems we can give a facility
to the user to get an explanation as to how the system reached
é certain conclusion. For example, in the system being dis-
cussed in this report, we could have given a command using

a front-end such as APES :-

- FIND (DECISION; DIVPETN, LIVSEP, INCLIVTOGETH,

MUTDISSOL)

where the symbols after semicolon are a set of conditions.
The Prolog would have answered (the decision) as: » DIVORCE

BY MUTUAL CONSENT.

The 1interesting thing 1is that then, we could have

o
asked a question such as WHY? and fot the following kind



of explanation :

To Deduce -~

MUTUAL CONSENT DIVORCE as the decision

I used the rule

The decision is MUTUAL CONSENT DIVORCE if

(1 The petition is presented jointly AND

(2 Both live separately.for more than one yr AND
3 They have not been to live together AND

4 They have mutually ageed for dissolution)
I can show that

1 is true
2 is true
3 is true

4 is true

This is an extremely useful facility because, even
in the simplest of prototypes, it is easy to forget the
details of the rules being used, and it is better if the

system can remind.

The kind of knowledge which we have been most concerned
about till now is called the basic 'Decision Knowledge! -
that is, the rules that are used more or less explicitly
by the expert in reaching a decision. If in a knowledge
based we are concerned not only about what to do, but also_

about the reasons why something should or should not be done,



then we need a deeper level of knowledge which can be called
'support knowledge'. In the system implemented here, the
support knowledge would give the system the ability to ans-

wer the questions :
"Why should divorce not be the decision??®

In addition, the system can also be invested with
the capability to answer questions from the user as to why

it asked a particular question.
3.2 Change in the System Flow

An another level of knowledge is called the 'Meta-
Knowledge'. This affects the control of the decision-making
process rather than the decision itself - that is, meta-rules
a;e the rules that affect the way the inference engine uses
decision rules. Here is an example of Meta-rules which can
be applied to the expert systems discussed in the report

"If there are rules relevant to Judicial separation
and if there are rules not relevant to judicial separation

and IF the current goal is judicial separation
THEN use first any rules relevant to judicial separation”.

3.3 Capability of Modification of rules

This could be one of the most difficult to implement.
At each level of rule i.e. in the present case, the hypothe-

ses, the sections, the subsections, the conditions and the



grounds, we can have a parameter attached (to all the ins-

tances of each level) which can take the following values:

1 - Add
2 - Delete
3 - Modify s

At a prompt from the user to add/delete/modify for
_a.ﬂparticularﬂ ground.- (elementary condition), we can either
delete that condition or (if the option is l_or 3), we can
further ask the user to specify the new conditions which
can be placed in the knowledge base instead of the earlier
one. Then depending on 'Yes' or 'No', from the user we could
go a level higher and effect the same kind of changes there.
This way we can change the grounds, conditions or even hypo-
theses. Such an enhancement would make the expert system
worthy of a real’life environment as new rules and regula-

tions are formulated and 61d rules modified very fréquently.

In addition, we would 1include learning facilities
and a flexible user interface, possibly even in a natural

language.

Many of the enhancements which have been discussed
are still subjects for research in Artificial Intelligence.

~
These techniques have been barely out of the lab to give



evidence of fairly broad applicability in the business
world. Still, each of the techniques and tools must be

made specific to each expert domain, if the true essence

of expertise in that particular domain is to be captured.



LIST OF REFERENCES

(Barr and Feigenbaum 1981). "Handbook of Artificial

L 4
Intelligence". William Kaufmann, Los Altos, Ca.

(Duda and Hart 1973) Duda, R., and Hart, P. "Pattern

classification" and scene Analysis".
Charniak and Medermott, "Artifical Intelligence".

(Hayes - Roth, waterman and Lenat, "Building Expert Systems"

Addison Wesley, New York, 1983.

Schildt, "Advanced Turbo PROLOG". Osborne Mcgraw, Hill,

1987.
S.T. Desai, "Princciples of Hindu Law".

Robert Keller, "Expert system technology, development and

applications".

Sholom M. Weiss & casimir A. Kullikowski, "A practical

guide to designing expert systems".

Carbonell, J.G., Michalski, R.S., & Mitchell, T.M, 1983,

|"An overview of Machine learning.

Cohen,P.R. & Feigenbum, E.A. 1982, "The Handbook of

Artificial Intelligence."



Ay /% APPENDIX */

/% THIS SYSTEMTFOLLowS THE RERSONING */
-;lg/* OF A LAWYER IN ARRIVING AT A CONCLUSION®*/
/% ON DIVORCE PETITIONS #/
/7% PART A:DECLARATORY AND GUERY MANAGEMENT PART */
daomains
decsr, grvids =symbcl

query = string

answer =char

dat abase
xpositiveigrnds)
I xrnegativel(grnds)
predicates
hypothesis{decsrn)
sec (grrds) |
subsec (grnds) .
grnds(gfndsl
condtnigrnds) -
method {grrds)
resporise (answer)
| B
pasitive(query,grnds)v
Elearmfaéts
rewiember (grrds, answer)
ask {guery, grrds, answer)
clauses |
pas— clear_facts,

Clearwiricow,



nypothesis{Decsr), !,

jg write ("THE DECISION I15--" ,Decsn

clear_facts.
positive ( _ , Brrnds) -
xpositive (Grnds),?.
positive {(Query , Grrds)e-—
rict (xnegative(Grndé)),
agk (Query, Grrnds, Answer),
Ariswer = 'y',
ask {Guery, 6rnds, Answer) 1 -
4H wrrite (Guery), wl,
readchar (Answer),
wr-ite (RArmswer), ril,
remember(erds.Qngwer).
remember {Grvide, "y ) -
vasserta(xpositive(Grnds)).
remember {(Grrnds, 'n' )i —
asserta{(xnegative{Grnds) ).
clear_facts: -
¥ retract (xpositive(_)),fail.
clear_facts:—
retract(xwegative(_)),fail..

clear_facts.

/%  PART H: KNOWLEDGE-EBASE PRART #/

tiypothesis (divor) i—
methnod{eithpetr),
sec{ane)

methog{sitnoetnd .

),

nil,



gecicneal s
methoa(wifepetn),
§ec(tw§).
hypothesis{ judsep) -
methadi{eithpetnr),
covidt i {dashone).
hypothesis (mutcons) 3 -
;ubsec(one);

subsec (twa).

subsec {one) : -
grrds (divpetn),
grﬁds(livsep),
grnds(inclivtogeth),

gvrds (mutdissal).

Eubsec(twa):—‘
ands(matnboth),
gvnds{inatwith),
grvids {(satiscort).

écndtn(dashane):—
grrds (adultery);
grvds{cruelty)
grmids (desrrn) j
grrgs {ivicunsmind) j
grrds {irvicvirlep) s

grnds (vernldis).

cordtvi{two) : —
grrids (mcrwif) g

grrids (gl ltrapsad)

-

gr7ids (cochabrnicres) 3

oprros (befape! ,

grrcs {(reouag) .



secl{one) i—
grrgs (convirsan) §
prrds (relgordr) s
grndﬂ(nohfdliv);
" condtni{dashane).
sec (crea) 31—
grrds noresumcchab) .
grnas(ﬁ@restconJ).
sec {(two) 3~
methqd(wifepetw),
cordtri{twe) .

method (eithpetn) -

.positive(”has the petition beern moved by either of the soocuses({y/n)?”

seithpetnd.

method (wi fepetn) 1~

positive(”has the petition beern moved by the wife for dissalution

of marriage{y/n)?” swifepetr).
grnds(cruelfy):—
prrdel{iltretsuff);
grrds(iltretapp).
grnds(deérn):—
grnds(minqurn),
grnds(resncosf,
grnds(canséﬁt).
prrvds{canvrsr) 1 —
grvids {(abdrelg),
grnds {(adopreln).
grrds{incvirlep):-
grnds(v;rul),
grvids {i1vicur).
grvigcs(yimocunsinind ) 1 —

rads (inouns) g



B R R I R R S

grn&é(incomdev)g'
. grrds {psycho) .
grrds (venrlidis):—
grods(venyrl),
grvds (Commnuys) .
prwndse {(relgordr) s —

grrdse (rernwrld),

prrds (perfrite).

/% PART C: USER-INTERFACE PART #/

B .grnds(nohrdliv)z—
pesitive("has the other spcuse not been heard of beiwg alive
far 7 years{y/n) 2"
sichivrdliv).

grrds{adulteryl):~

positive{ "has the cother spouse committed adultery(y/mw)?",adultery).

prvigs {inicurns) : —
positive(”is the other spouse incurably of unsound mind{y/n) 27, incur
prrde(mernitil) s~
positivg("is the other spouse continucusly afflicted with
mental illressi{y/vid",mermtil).
grnds(incomdevf:—
;7 pasitive("does the other socuse have ann  incomplete
develapment of mindiy/rn) 2"
s ATiICOmdev) .
orvicgs {(psycha) s —
positive(“ia the other socuse afflicted with a pesyonclogical
discrder of comt inucus natureliyv/nd 7Y

s PHYCHC) .,



mgrﬂdstittretsufﬁ%rv-w~ww»-a RS x
pOsitivé(“hasvthere pbeeri ill-treatmert by other spouse caﬁging
suffering in‘body cor mind (y/v) "
siltretsuff).
prrds{iltretapp):—
pasitive{”has there beers ill—-treatmernt by other socuse causing
apprehgngion that further cchabitation will be harmful (y/v) "
siltretapp).

prrds (morwif) 3~

positive(’does the husband have more tharn orne wife livingly/r)?”

sOrwift),
grmds{giltrapsod) : -
positive(”is the husband guilty of rape or socdomy (y/ny?"
® sQiltrapscd).
grwds(cohabnaréé}:—
pesitive("has the cohabitation rct been resumed for ONE YERR
after passing decree awarding maintenarce to wifely/n)?"
 Cohabriores).
érnds(befage):—
positive("was the piri's marriage sclemnised before attaining
the age of 15.YEQRS (y/w)f“
tbefage).
ﬁ grwvids (repud) s —
| pasitive(”has the girl repudiated the marriaée before attainin
the ape of 18 YEARS{y/rv) 2"
s repud).
prrnds (nmividuryn) ¢ —
pasitive(”has the desertiorn beenfor & corntirnucus period of
NOT LESS THON 2 YEARS JUST BEFQRE RETITION{y/r) 7"
« MATEUTT)Y .
arvics (resncos ) §—
sositivei’nas tnere been deserticon without reasonacle causely/n?

L TESTCOS .



grnds(éowbent):«
. positive(“has'there beeyr: desertiors without consent or wisb af
2 the petitiorer{y/n)?"
s COTiBsETIt) .
grﬂds(abdrelg)z-'
positive{’has the resporndernt abdicated his/her religion by a
clear act or weﬁunciaticn(y/n)?”
iﬁ .+ @abdrelag).
grrds{adoprelg) s —
positivé(“has the respondent adopted the other religiorn by underpoing
fermal cornversian(y/vn) "
s adopreln).
orrds {verirl) -
pusitivel{'dces the respondent have a veneral diseasel{y/n) 72"
s verrl).,
grvids (commur) 3 -
'R
positive(”is the disease of commpurnicative foarmiy/n)??
¢ CCmmuY) .
grﬁdstrenwrld)s—
positive(”has the resporndent rencurnced all worldly affairs
by adcptivg a relipicus 0r§er(y/n)?"
s rEMWrld).,
prrids (perfrite) s —
paesitive(”’has the respornderit performed the reguisite rites
of the particular religicue crderi{y/r)?*"
W . |
: sperfrite).
grrgs (divpetr) 1 —
pcsitive(“have both spouses 1cointly presented a petitidn
for civarcely/vw)*”

sdivpetn).

(43

grrcelliveen) i —
pasitive (' nave ootn soouses teern living s@eogsrateiy for

S e e v e,y e OC T T f-!f:.‘ o

TIV e v sy o



i

BERTIIWY o~ SRR R 2T TR RS R o I L S R I e J O

,iivsép).
grndstiéclivtqgeth):—
pasitive(”tﬁey have riot been able to live topether{y/v)?"
yimclivtogeth).
grride (mutdissal) ¢ -
positive(“they have mutually agreed for dissclution{y/n)?"
smutdisscl).
grrids (motnboth) 1 -
positive(”a petitién is macde by both parties aftter a period
>6 months‘of'déte of peticrn and (18 monthe of date of petitioan/n)"'
s otvniboth).
grnds}watwith):e
pdsffive("petition is rnot withdrawn inthe meantimel{y/vr)?"

s ictwith).,
grrds {(satiscort) : - W e

po;itive(”caurt feels that the avermernts in the pétition are truely/r:

s s8atiscort).
grvids (virul ) :—

pésitive(”is the cther soause'suffewing from virulent(i:e. malignant
or veromaus) leprosy iy /r) 2"

s Virull.
prrde (ivicur) ¢ —
pdsitive("is it incurableﬂyin)?”

s ivicur).

response (Answer) @ —
readchar (Answer),

write (Arswer), nl.

R R R 2 2 R E Ry I T I R R LT IR Y L



	TH29060001
	TH29060002
	TH29060003
	TH29060004
	TH29060005
	TH29060006
	TH29060007
	TH29060008
	TH29060009
	TH29060010
	TH29060011
	TH29060012
	TH29060013
	TH29060014
	TH29060015
	TH29060016
	TH29060017
	TH29060018
	TH29060019
	TH29060020
	TH29060021
	TH29060022
	TH29060023
	TH29060024
	TH29060025
	TH29060026
	TH29060027
	TH29060028
	TH29060029
	TH29060030
	TH29060031
	TH29060032
	TH29060033
	TH29060034
	TH29060035
	TH29060036
	TH29060037
	TH29060038
	TH29060039
	TH29060040
	TH29060041
	TH29060042
	TH29060043
	TH29060044
	TH29060045
	TH29060046
	TH29060047
	TH29060048
	TH29060049
	TH29060050
	TH29060051
	TH29060052
	TH29060053
	TH29060054

