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Abstract 

With advancement in science and technology every day the computational power of a 

system needs to be up to the mark to incorporate these advancements and changes. Since 

science is based on analysis, visualization and collaboration of available data so that 

useful information can be extracted for which high computation power is needed. Also, 

since scientific and engineering problems are getting more and more complex, user needs 

them to be solved precisely and accurately within the limited time. As a result of the 

increasing need of high computational power, the term parallel computing comes in to the 

picture.  

In parallel computing, multiple computer or processors work together to solve a single 

problem or to achieve a goal. This meets the requirement of improved performance and 

also the need of memory is satisfied. Parallel computing is of two types, parallel 

processing and distributed computing. In parallel processing, several no. of processors 

work together to solve a problem with each processor handling a section of code and is 

allowed to exchange the information between them. In distributed computing system there 

are multiple computers with multiple software components that are working together to 

achieve a single goal. 

  In distributed system the computers can be at same physical location or globally 

distributed and connected via high speed network. These distributed systems include 

cluster computer, super computer and storage systems etc. Cloud computing is defined as 

a type of computing that relies on sharing computing resources rather than having local 

servers or personal devices to handle applications. Cloud computing is comparable to grid 

computing, a type of computing where unused processing cycles of all computers in a 

network are harnessed to solve problems too intensive for any stand-alone machine.  

In cloud computing, the word cloud is used as a metaphor for "the Internet" so the 

phrase cloud computing means "a type of Internet-based computing" where different 

services — such as servers, storage and applications — are delivered to an organization's 

computers and devices through the Internet. The goal of cloud computing is to apply 

traditional supercomputing or high-performance computing power normally used by 

military and research facilities to perform tens of trillions of computations per second in  
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consumer-oriented applications such as financial portfolios, to deliver personalized 

information, to provide data storage or to power large, immersive online computer games.  

Resource allocation to different processes and application is known as scheduling 

which has been proven to be NP-hard for cloud environment. NP-hard is a class of 

problems where it is very difficult to find an exact solution.  In this category, exact 

solution cannot be determined but approximate solution can be obtained which is 

acceptable and considered as good as the exact solution. Such type of problem cannot be 

solved by traditional method because mathematical modeling is not easy. To handle NP-

hard problems soft computing techniques are used which include Neural Network, Fuzzy 

Systems, Probabilistic Reasoning and Evolutionary Computing. Among all soft computing 

techniques, evolutionary computing is considered as a better option since it is closely 

related to the nature. Evolutionary computing, a global search paradigm, includes 

Evolutionary Strategies, Evolutionary Programs, Genetic Algorithms and Genetic 

programming. Genetic Algorithm was inspired by the Darwin theory of evolution i.e. 

―fittest of the survival‖.  

Genetic Algorithms (GA) are most common in all evolutionary paradigms. GA mimics 

the process of natural evolution and finds its use in solving computing and optimization 

problems. In GA, a population of chromosomes, generally a sequence of bits is randomly 

selected. This population is then transformed into some new population by the use of some 

methods which are similar to the natural selection by the use of operators which are 

inspired by the natural genetic operators like crossover, mutation and inversion operator.  

Fitness function is the deciding criteria for the natural selection of a population. 

According to that, the chromosomes having optimum fitness value can survive and are 

allowed to reproduce offspring. Among all chromosomes that survive the fittest 

chromosomes can reproduce to produce new offspring than the less fit chromosomes. 

Then the crossover operator performs crossover  on the selected chromosomes based on 

certain features like bit location in the parent chromosomes to produce new offspring 

having same size. The mutation operator flips/replaces the bits at selected locations by a 

certain value. The inversion operator reverses the order of a subsequence in a 

chromosome.  

When the new generation of a population is completed, then it is checked for the 

stopping criteria. If stopping criteria is met then the algorithm is stopped otherwise the 
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fitness value is again evaluated for the chromosomes of this generation and the whole 

process is repeated till the stopping criteria is not met. For any job execution the 

minimization of energy consumption has become an important issue since energy is a 

precious resource. In this work we have tried to develop a energy aware scheduling model 

based on Genetic Algorithm. GA  is an established soft computing tool for such kind of 

combinatorial problems. The model analyses the performance of the scheduling scheme 

on basis of number of tasks. The simulation study reveals the effectiveness of the model. 
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Chapter 1 

Cloud Computing 

1 Introduction 

 One of the most emerging technologies which has reshaped the IT industry in the recent 

past is Cloud computing. It has been the hottest topic of research in the last few years. Cloud 

computing is a word which refers to different things to different group of people. For a group of 

people it means computing services provided over the internet seamlessly, for another it‘s just a 

way of describing ―IT Outsourcing‖ and for some others it‘s a bought-in service that resides 

outside one‘s premises [2]. 

 We often do cloud computing throughout the day without actually realizing it. When we 

type a query into Google and it gives a prompt reply within fraction of a second, it‘s not our 

desktop or laptop which is doing most of the work, in fact it just acts as a messenger. When we 

type the words, those are quickly transferred over the Internet to hundreds of thousands of 

servers of Google. These servers search for the information we requested for and prompt us back 

with all the relevant information.  

 There are two entities involved in a cloud computing environment, the user and the 

service provider. User is the entity which is entitled to use the services of a cloud over the 

internet. Service provider is the entity which builds its own infrastructure to provide services. 

The user is charged for the services it uses on the ―pay as you go‖ basis. There exists a service 

level agreement between the user and the service provider to ensure the Quality of Service (QoS) 

[3]. 

 Cloud computing has evolved over a period of time through different phases such as 

mainframe computing, parallel computing, distributed computing, utility computing and grid 

computing. The following sections discuss the standard definitions of cloud computing, its 

characteristics, evolution, service models, deployment models, issues and challenges etc . 
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1.1 Cloud Evolution  

 Different phases are involved in the evolution of cloud computing, which are shown in  

Figure 1.1. Each phase has been separately explained in the following sections [6]. 

                    
                                                 Figure 1.1: Evolution of Cloud Computing [5] 

1.1.1 Mainframe Computing 

 To cater the demands of large organizations which requires very huge amount of 

computations, mainframe computers were used. Mainframe computers are very large computers 

with high computing capacity. These are centralized computing system with dummy terminals. 

This concept was prevalent when the personnel computers were not popular. After the PCs 

gained popularity parallel computing came into the picture. Some examples of mainframe 

computers are IBM 704 (1965), IBM RAMAC 305 (1956). IBM RAMAC 305 used 50 iron 

coated revolving disks those could accept magnetically coded  data which significantly improved 

the state of data processing.  

1.1.2 Parallel Computing 

 Parallel computing refers to the concept of using multiple processors on the same 

machine and solve a computationally big problem by dividing it into small problems. Each 

instance of the problem could run simultaneously on the multiple processors thus giving high 
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performance. Personal computers are far economical than the mainframes so they gained 

popularity. Parallel computing suffered from the drawback of being centralized. Example of 

parallel computing include processors with multiple cores which could work independently e.g. 

Intel Core2 duo, Intel Quad core and Intel Octa core processors. The basic philosophy in parallel 

computing is that a big task can be solved by dividing it into smaller tasks with these smaller 

units running on different cores. 

1.1.3 Distributed Computing 

 Distributed computing can be referred to the collection of many autonomous computer 

system connected through a network where each computer has its own processor and memory. 

These computers are used to solve a computationally big problem by running different instances 

of the problem on each single machine. Later on the solutions of each machine are combined to 

reach the final solution of the problem. Distributed system carries out parallel processing but it‘s 

not centralized as in the case of parallel computing. Some examples of distributed computing can 

be telephone networks, cellular networks, Computer networks such as the Internet too is an 

example of distributed computing. 

1.1.4 Utility Computing 

 Utility computing is a model where a service provider owns, manages and operates the 

resources and computing infrastructure and the user accesses these whenever required on a pay 

as you go basis. The resources can be accessed over the Internet or any virtual private network. 

Utility computing includes virtual storage, virtual servers, virtual software, etc. Example of 

utility computing includes renting out the computing facility of a supercomputer over a network 

and charge the users on the ―pay-per-use‖ basis. 

1.1.5 Grid Computing 

 Grid computing can be defined as the collection of multiple computing resources over 

various locations to attain a common goal of solving a single task. Grid computing is different 

from the conventional high performance computing in a way that each node in a grid performs 

different task or application. The nodes in a grid environment can be heterogeneous and 

geographically dispersed. Cloud computing is basically an extension of grid computing. 

 Typically applications like weather forecasting, protein folding and earthquake simulation are 
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prime candidates for a grid infrastructure. Grids have also been used to render large-scale 

animation projects, like movies. 

1.2 The Cloud 

 What cloud computing actually is? Numerous formal definitions have been proposed in 

the industry and the academia. The definition provided by U.S. NIST (National Institute of 

Standards and Technology) is one of the most appropriate which includes key common elements 

that are mostly used in the cloud computing community:  

―Cloud computing is a model for enabling convenient, on demand network access to a shared 

pool of configurable computing resources (e.g., networks, servers, storage, applications, and 

services) that can be rapidly provisioned and released with minimal management effort or 

service provider interaction” [3] 

                              

                                             Figure 1.2: A generic view of Cloud Computing [10] 

Another definition of cloud computing is as follows: 

“A large-scale distributed computing paradigm that is driven by economies of scale, in which a 

pool of abstracted, virtualized, dynamically-scalable, managed computing power, storage, 

platforms, and services are delivered on demand to external customers over the Internet”[8] 

Above two definitions point that cloud is an arrangement where resources are provided over the 

internet to a user in a way that the user is charged for the service. Accordingly some of the 

important characteristics of cloud should be [1, 3]: 



19 
 

1.2.1  On Demand Self Service 

 A user should be able to avail cloud services such as software use, network storage, CPU 

time etc as and when he wants without any human involvement.  It is the user who decides what 

type of services he wants and at which period of time. The basic characteristics of a cloud is that 

it should be able to provide the required service at a particular timeslot.  

1.2.2 Resource Pooling 

 The resources of a cloud service provider are pooled together in order to serve multiple 

users either using multi-tenancy or virtualization "with different physical and virtual resources 

dynamically assigned and reassigned according to consumer demand"[ ]. The benefit of having a 

pool-based computing system leads to two important factors: economies of scale and 

specialization. 

 The pool-based arrangement of computing resources results in a system where the 

resources become ―invisible‖ to the users. The users potentially do not know or control the 

location, originalities and formation or the resources and are completely unaware that where the 

data is going to be stored on the cloud. 

1.2.3 Rapid Elasticity 

 For users, the demand of computing resources may increase and decrease with time. 

There might be certain slot of time when the requirement of the resources rise rapidly or fall very 

quickly. The cloud should be able to adjust to these changes. It should appear to the consumer 

that the cloud has infinite resources and can cater its demand during the peak hours of service as 

well. 

1.2.4 Broad Network Access 

 The resources are provided over the Internet and used by different client applications on 

various platforms such as smart phones, desktop, laptop, PDA‘s etc. located at the user‘s site. 

1.2.5 Measured Service                                                                                              

 Even though the resources are shared and pooled by multiple users, the cloud 

infrastructure must be equipped with appropriate tools to measure the consumption by each user 
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individually. Each consumer should be charged for what it has used with a proper account 

maintenance.  

1.3 Cloud Service Models 

 Cloud provides a wide range of services. In order to provide these services the cloud 

environment has divided it into three major service models namely Software As a Service 

(SaaS), Platform As a Service (PaaS) and Infrastructure As a Service (IaaS) [hbc]. 

                

                                                        Figure 1.3: Service Models of a Cloud [10] 

1.3.1 Software as a Service (SaaS) 

 Cloud users can release their applications on the cloud environment that can be accessed 

by the application users through network on laptops, smart phones, PDAs, etc. The cloud user 

does not possess any control over the cloud infrastructure which generally uses virtualization to 

achieve optimization in terms of maintenance, performance, reliability, availability, speed and 

security. Some examples of SaaS include Google mail, Google Docs, Salesforce.com to name a 

few. 

1.3.2 Platform as a Service (PaaS) 

 PaaS constitutes of a development platform which supports the full ―Software Lifecycle‖ 

that enables cloud consumers develop cloud applications and services e.g. SaaS directly over the 

PaaS cloud environment. So the point of difference between PaaS and SaaS is that SaaS can only 

host developed cloud applications while PaaS can host developed cloud applications as well as 
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those cloud applications which are in-progress. For this the PaaS needs to be equipped with 

programming environment, configuration management, tools, etc. besides having an 

environment that hosts applications. Google AppEngine is an example of PaaS.  

1.3.3 Infrastructure as a Service (IaaS) 

 Cloud users use IT infrastructure such as storage, network, processing units and other 

computing resources available in the IaaS cloud model. This is extensively done by using 

virtualization which allows to combine/decompose resources in a manner to meet the increasing 

or decreasing demand of a cloud user. The concept behind virtualization is to build independent 

virtual machines (VM) which are separate from both the hardware and other virtual machines 

(VMs). Amazon‘s EC2 is an example of IaaS cloud.  

1.4 Cloud Deployment Models 

 There are four deployment models which are proposed for cloud computing. They are 

namely private cloud, public cloud, community cloud and hybrid cloud [1, 3]. 

            

                                                      Figure 1.4: Deployment Models of a Cloud [13] 

1.4.1 Private Cloud 

 This cloud is completely operated within an organization, which could be managed by the 

organization or a third party independent of the fact if it is located on premise or off premise. 

There could be several reasons behind developing one‘s own cloud. First, to optimize and 
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maximize the utilization of already existing resources. Second, due to security reasons such as 

data privacy, trust and reliability an organization may opt for a private cloud of its own. Third, 

the cost of data transfer from local infrastructure to public cloud is still considerable. Fourth, 

academics generally develop their own private cloud for teaching and research purposes. 

Meghdoot by CDAC, Baadal by IIT Delhi are some examples of private cloud.       

1.4.2 Public Cloud 

 This is one of the most popular cloud deployment models. A public cloud is meant to be 

used by the general public cloud users where the cloud service provider has complete ownership 

with its own value, policy, profit, costing and charging model. Some of the popular public clouds 

include Google AppEngine, S3, Force.com and Amazon EC2. 

1.4.3 Community Cloud 

 When multiple organizations collectively develop and share the cloud infrastructure, 

policies, concerns, values and requirements, the deployment model is known as community 

cloud. The cloud could be operated and managed by a third party or one of the participating 

organizations. Examples may include any collaboration of clouds between two or more 

organizations. 

1.4.4 Hybrid Cloud  

 Hybrid cloud deployment model the cloud infrastructure is a combination of  two or more 

clouds (public, private or community) staying as unique entities with connected standard 

technology which enables application and data portability. For example, to provide load 

balancing it can use cloud-bursting. The motive behind using a hybrid cloud among the 

organizations is to optimize the utilization of their resources through hybrid cloud deployment. 

But this model certainly raises various issues such as cloud interoperability and standardization. 

Combination of any two or more of the above mentioned clouds can be named as a hybrid cloud. 

1.5 Issues and Challenges of Cloud Computing 

 Cloud computing is a technology which has evolved recently. Since its not completely 

established, there are certain issued and challenges which needs to be addressed to utilize the 
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cloud computing paradigm to its fullest. Some of the issues and challenges based on a survey 

conducted by IDC are presented in following sections [1, 2, 3]. 

1.5.1  Security and Privacy 

 Security and privacy are the most dominant issues which have stopped the cloud from 

being adopted widely. Security has been the most debated issue in the cloud computing 

environment. Obviously moving ones data to the cloud through network, running its software on 

someone else‘s processor are quite a big thing for an organization to think about. Based on the 

data of the survey security and privacy stands on the top of the list which is quite obvious as it 

could be daunting for any person or organization to move its data over the network.  

1.5.2 Availability 

 Availability can be defined as the extent to which the cloud services are available as and 

when they are required.  Even though if high availability constraints are implemented, the cloud 

can be affected by performance slowdown, denial of service attacks, natural disasters and 

equipment outages. Based on the data we can say that some of the current service providers have 

faced equipment outages, which recently happened with Amazon‘s EC2. So, availability is an 

important factor to consider for an organization which plans to move to cloud.  

1.5.3 Costing Model  

 When an organization decides to adapt to cloud, it can reduce a lot of investment on the 

infrastructure but at the same time some costs tend to increase. The data communication cost to 

and from a cloud will increase and as the amount of data increases the cost increases. Same 

happens with the computation, the cost of per unit of computation is higher which will increase 

the overall computation cost. Thus, before moving on to a cloud an organization has to analyze 

properly whether to move or not to move to cloud computing.  

1.5.4 Charging Model 

 Unlike a data center which charges its users for the underlying server, cloud computing 

charges its users for instantiated virtual machines (VM). Moreover the usage of the consumers 

change with time and the number of VMs too keep on changing due to elastic nature of the 
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cloud. Hence, the cloud needs a sound charging model which is equipped to handle the 

mentioned complexities.  

1.5.5 Service Level Agreement 

 Although a cloud user does not have any control over the cloud resources as it is 

completely owned by the service provider but the user needs to ensure the reliability, availability 

and performance of the resources after the it has moved on to the cloud. A service level 

agreement (SLA) exists ensuring certain QoS which has been negotiated between the user and 

the service provider and this ensures the above mentioned concerns of a cloud user. The issue 

with SLA is that the provider should make sure that the negotiated level of services is offered to 

the user, failing to which can lead to severe consequences.  

1.5.6 What to Migrate? 

 According to the survey conducted by IDC various organizations which have moved to 

cloud are: Applications Development and Deployment (16.8%), Personal Applications (25%), IT 

Management Applications (26.2%),Server Capacity(15.6%),Collaborative Applications 

(25.4%),Storage Capacity (15.5%) and Business Applications (23.4%). This data shows that 

organizations are still suspicious about moving their business to cloud. 

1.5.7 Cloud Interoperability Issues 

 Interoperability refers to the efficiency with which applications and tools could be used 

on various cloud platforms. It could be defined at many levels such as data, management, 

service, application interoperability. Cloud consumers must be able to move in and out of a cloud 

infrastructure without any locking period of the vendor whenever they want. Vendor lock-in 

period is one of the barriers in the cloud adoption process. The dominant factors are open 

standards, VMs lack standard interface formats, open APIs and service deployment interfaces. 

1.6 Scheduling in Cloud 

 A cloud is supposed to provide services to its users. The services could be of various 

types but ultimately it turns out to be in terms of processes and these processes require allocation 

of some resources. This process of resource allocation is known as scheduling. The main 
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objective of scheduling is to optimize the resource utilization along with the optimization of 

some parameters such as turnaround time, completion time, energy consumption, etc. 

 The software which is responsible for scheduling is known as the scheduler.  The nature 

of scheduler can vary across various clouds as it depends upon the cloud service provider which 

type of scheduling should be carried out on the basis of the parameters to be optimized. 

Scheduling has been broadly classified into two categories viz. static scheduling and dynamic 

scheduling [32, 33]. 

1.6.1 Static Scheduling 

 When the characteristics of a the process such as task processing time requirement, 

synchronization requirements, communication and data dependencies are known a prior, the 

communication can be done at compile time. This type of scheduling is known as static 

scheduling. A job can be represented using a weighted node-edge graph also known as directed 

acyclic graph (DAG) where each node represents a task in the job and edges represent the 

dependencies among the tasks. The weight of a node represents the processing time requirement 

of the task and the edge weight represents the communication as well as the data dependencies.   

1.6.2 Dynamic scheduling 

 When the scheduling decisions are made ―on-the-fly‖ the type of scheduling is referred to 

as dynamic scheduling. A few assumptions are made about the job before scheduling it. The 

objectives of the dynamic scheduling not include the minimization of completion time but 

optimizing the scheduling overheads also. Scheduling overheads comprise of a significant part of 

the total cost incurred for executing the scheduler.  

1.6.3 Cloud Scheduling: An NP Hard problem 

 Task scheduling on cloud has been proved to be an NP complete problem. Though there 

are some special cases which are an exception to this but in general, its considered to be an NP 

complete problem. Problems have been classified into many categories depending upon the 

amount of time it takes to solve a problem.  Following are the various class of problems 

discussed [13, 14]. 
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P-class of Problems 

 A problem is said to be P-class problem if a deterministic polynomial time algorithm 

exists for it. For example, sorting n numbers can be solved in O (n
2
) where n is the input size. 

NP- class of Problems 

 A class of problem for which the correctness can be verified for a given solution in 

polynomial time is known as NP class of problems. NP stands for non deterministic polynomial 

time. The NP class of problem is further classified as NP Hard and NP Complete. An example of 

NP problem is verifying Hamiltonian cycle problem. If the nodes are given then it can be 

verified in polynomial time whether it‘s a Hamiltonian cycle or not but its not possible to find a 

Hamiltonian cycle in polynomial time [16]. 

NP Hard class of Problems 

 There are some problems such that every single problem in NP can be translated to those 

problems and a polynomial time solution to those problems will give a polynomial time solution 

to every problem in NP. Such problems are known as NP hard problems. Finding the 

Hamiltonian cycle has been proven to be an NP hard problem.  

NP Complete class of Problems 

 There are some NP hard problems which are not under the circumference of NP class of 

problems. The problems which are in both NP hard and NP class of problems are known as NP 

complete class of problems. All NP complete problems are NP hard but vice versa is however 

not true. NP complete class of problems is known to be the hardest problems. Since, we have 

seen that verifying a Hamiltonian cycle is an NP problem and finding the Hamiltonian cycle is an 

NP hard problem so it is an NP complete problem too [15]. 

1.6.4 Approaches to Scheduling Problem 

 After explaining the NP complete class of problems it is now very obvious that obtaining 

an exact solution to this class of problems is very difficult. Many approaches have been 

suggested which give as best results as possible to the scheduling problem in polynomial time. 

Some approaches have been discussed as follows [16, 26]. 
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Approximation Algorithm 

 A way of dealing with NP hard class of problems is to use approximation algorithm. 

These algorithms do not guarantee the best solution. Approximation algorithms aim at giving close to 

optimum solution in a reasonable amount of time which is polynomial time in the worst case. 

Heuristic Algorithm 

 This approach is used when the classic algorithms fail to find the exact solution or when 

they are too slow. The heuristic algorithms find a feasible solution in reasonable time by 

performing the algorithm many times. The solution thus found is not guaranteed to be optimal. 

Heuristic algorithms are effective and simple to apply. Some examples of heuristic algorithm are 

Genetic algorithm, simulated annealing, Tabu search, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 



28 
 

Chapter 2 

Genetic Algorithm 

2.1 Introduction 

 Genetic Algorithm (GA) is a general purpose search algorithm based on the process of 

evolution observed in the nature. It is a heuristic search algorithm, a part of evolutionary 

computing and a booming area of Artificial Intelligence, inspired by the Darwinian theory of 

evolution ―survival of the fittest‖ for getting optimum solution of a problem which is not solved 

by traditional methods. In other words, GA is an adaptive heuristic search algorithm which uses 

the idea of natural selection and genetics [21].  

 Genetic Algorithm directs the search to the region of the sample space where better 

results can be obtained. Genetic Algorithm can be applied to wide variety of applications for e.g. 

computer games, scheduling, transportation problem, TSP, medical, adaptive control and stock 

market trading. In general, GA can be classified into two categories viz. Single optimization GA 

and Multi-objective GA. In the case of single objective optimization GA, one tries to obtain the 

best solution among all alternative solution by optimizing the single objective function whereas 

in the other case, there are multiple conflicting objectives that are to be optimized to produce a 

set of optimal solutions using the Pareto optimality theory and the optimal set of solutions must 

satisfy all the objectives as best as possible [22]. 

Some of the advantages of GA are as follows [21, 22]: 

 Easy to understand and covers the large search space. 

 Supports multi-objective optimization. 

 Good for noisy environment. 

 GA gives the solution of a problem through evolution process. 

 It can solve any optimization problem, which can be encoded using chromosomes. 

 Easy to exploit the result. 

 GA is good as good as the objective function is. 
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 Runs in parallel. 

 The fitness function can be changed at each iteration if needed to increase the 

 performance. 

The important disadvantages of GA could be [21, 22]: 

 GA is very slow. 

 We have to choose mutation rate, population size wisely; if the mutation rate is too high 

then they never converge to an optimal solution and if the population size is too small 

then search space is very small to find the solution. 

 Designing the fitness function for any problem is very crucial. 

 Convergence is always there, but time taken is uncertain depending on the objective 

function chosen. 

 It does not always give the exact solution. 

2.1.1 History 

 The term evolutionary computing was first coined by I. Rechenberg in 1960‟s in his 

work ―Evolutions strategy‖. His idea was further used and developed by other researchers. The 

term Genetic Algorithm (GA) was first introduced by John Holland while studying cellular 

automata, developed by him, his students and colleagues at the University of Michigan. Holland 

incorporated his work in a book named ―Adaption in Natural and Artificial Systems‖ published 

in 1975. Actually, Holland‘s goal was not to design algorithm for any specific problem but to 

understand the phenomenon of adaptation that occurs in nature and how to incorporate this way 

of adaptation in computer science. John Koza, in 1992 used the GA to evolve programs to 

perform certain task. This was named as Genetic Programming (GP) [23]. 

2.1.2 Biological Background 

 Cell is the basic building block of living organisms. Each cell has same set of 

chromosomes, which consists of genes, the basic unit of DNA. A string of DNA in a gene forms 

a particular trait. Each gene has its position in the chromosomes, called locus. The solution to a 

problem in Genetic Algorithm is called chromosomes, the parameter that is to be optimized. 

 Evolution is a method of searching the best among the huge number of possibilities. In 

biological terminology the huge possibility is the availability of set of possible genetic sequences 
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and the desired solution is the fittest organism among all available possibilities. In other words, 

solving a problem using GA can be seen as looking for a solution which is the best among the 

others [21]. 

2.2 Structure of Genetic Algorithm 

 The structure of Genetic Algorithm is explained as follows [22, 24, 25]: 

2.2.1 Fitness Function 

 To solve any problem using GA, we first require formulating its mathematical model in 

terms of a function. Then parameters that optimize the function of the model are determined. 

This is known as fitness function also known as the Objective function. Fitness function 

basically determines or analyzes the genes holding the data and returns the fitness value to 

quantify the fitness or suitability of the chromosomes. This results in selection of chromosomes 

having higher fitness value for producing the next generation. The better is the fitness, more 

chances are there of selecting those chromosomes to survive. The chromosomes having poor 

fitness value are discarded. The fitness function varies from problem to problem. The 

effectiveness of the fitness function determines how well a problem can be solved. 

2.2.2 Search Space 

 If we are looking for solution to a problem which will be best among the other, then 

search space comes into picture. Search space is the set of all possible solutions that can exist for 

a given problem. Search space is defined by the domain where all feasible/possible solution (or 

the object among those desired solutions) are present, also known as state space. Each solution or 

point in the search space is known as the feasible solution and is marked by its fitness value. 

Search space changes at each step of evolution. 

2.2.3 Termination Condition 

There could be various terminating conditions for the GA to stop. A programmer can use either 

one or multiple terminating conditions as per the domain requirements. Some of these are listed 

as follows: 
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 Generation number: A solution is obtained when maximum numbers of iterations have 

been run. 

 Evolution time: when the specified time limit exceeds the process can be terminated. 

 Fitness threshold: when the best fitness in the current population is less than the user 

specified fitness threshold value, when the aim is to minimize the fitness value. This also 

stops when the best fitness value in the current population becomes more than the user 

specified threshold value with the objective being maximization of the fitness. 

 Fitness convergence: The evolution process stops when fitness converges. 

 Population convergence: The evolution process also stops when population converges 

in next generations. 

 Gene convergence: A termination method that stops the evolution process when a user 

specified percentage of the gene of a chromosome is greater than the percentage of genes 

in a chromosome of current population. 

 Maximum iteration without termination: when further specified number of iteration 

does not improve the specified result the evolution process is terminated. 

2.2.4 Steps of Genetic Algorithm 

 GA is a method that produces or evolves to a better population or children at each step by 

choosing the best parent chromosomes from the available set of chromosomes. The newly 

generated chromosomes have better rate of survival than the previous generation as they have 

come from the fittest parents of the previous generation. This can be done by using methods of 

natural selection and other genetic inspired methods like cross-over, mutation and inversion etc. 

Genetic Algorithm evolves until a certain termination condition is met. 

The step by step process of GA can be represented as shown in Figure 2.1. The method presented 

can be summarized into various steps as shown below. 

1. Start with the randomly generated population of n, l bit chromosomes. 

2. Calculate the fitness f(x) of each chromosomes x in the population. 

3. Repeat the following steps until population of size n is created. 

a) Select a pair of parent chromosomes from the current population. Selection is made on 

the basis of fitness i.e. higher the fitness more is the probability of selecting the 

chromosomes. Same chromosomes can be selected more than once. 
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b) With a crossover probability (pc) mate the parents to form new children. If no crossover 

was performed exact copies of the children is obtained. Crossover can be single point or it 

can be a multi-point. 

c) Mutate the two offspring at each locus with probability pm, known as mutation 

probability or mutation rate and place the mutated children in new population. If n is odd, a 

randomly selected offspring is deleted or discarded. 

4. Replace the new population with the current one. 

5. If the termination condition is obtained then stop, otherwise repeat steps 2-4. 

 

                    

                                                  Figure 2.1: Steps for Genetic Algorithm [21] 

 

2.3  Operators of Genetic Algorithm 

 In order to solve a problem by GA sometimes it is not necessary to always encode the 

variable. But some problems can be only solved by encoding the variables. The most common 

method used for encoding is binary encoding. The length of string is decided by the accuracy 

needed. Encoding is done either by 0 and 1, real number or integer, depending on the problem. 

For e.g. after binary encoding chromosomes may look like [21, 24, 27]:         
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Chromosomes1 1100100101100001 

  

Chromosomes2 1000010110001011 

  

2.3.1 Selection Operator 

 Selection determines which chromosome is to be chosen and how many offspring are to 

be generated. Selection of chromosomes can be done, first by assigning fitness value to each 

chromosome. Then on the basis of their fitness value they are selected with both assigning fitness 

value to each chromosome and selection being done on the basis of certain algorithm [gahb]. 

2.3.2 Crossover operator 

 After encoding certain operation is performed on the chromosomes so that new offspring 

is generated/produced. One of them is crossover, in which two chromosomes are selected for 

producing offspring. To accomplish, this crossover point is selected randomly in each at same 

locus point. After this, in new offspring first part of chromosomes is selected from the first part 

of first parent and second part from second parent and so on as shown below: 

 

Chromosome1 11010|11000001110 

  

Chromosome2 10010|00101010100 

  

Offspring1 11010|00101010100 

  

Offspring2 10010|11000001110 

  

 

Here, crossover is performed at a single point. It can even be multi-point depending on the 

encoding of chromosomes in the problem. Specific crossover operator is used for specific type of 

problem. This increases the performance of the GA. Generally, single point crossover is used 

when size of the string is small and multipoint crossover is used when the size is large. 
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2.3.3 Mutation operator 

 After crossover is performed, mutation can be done. It is used to avoid the process of 

getting trapped in a local optimum. Using mutation, new offspring is randomly changed at any 

location. For binary encoding, in mutation, bits are randomly flipped i.e. at some position 1 flips 

to 0 and vice-versa. Mutation randomly changes the genetic information. When operated at bit 

level it is possible that mutation occurs at each bit but this has very lower probability as defined 

by mutation probability (Pm).  

Offspring1 before mutation 0101101001011011 

  

Offspring1 after mutation with Pm=25% 1001001001001011 

  

 

On the basis of the encoding as well as the crossover, mutation is performed. For example in 

permutation encoding bits are exchanged. Mutation maintains genetic diversity and at the same 

time inhibits premature convergence. During evolution the mutation occurs according to the 

mutation probability, usually set to a fairly low value (0.01 is a good choice). If it is set to very 

high then the search will become a primitive random search. 

2.4 Parameters of Genetic Algorithm 

 The basic parameters of GA are crossover and mutation probability [21, 23,  24]. 

2.4.1 Crossover Probability 

 It shows how frequent the crossover occurs. If there is no crossover then children are the 

exact copy of their parents i.e. crossover probability is 0% whereas if crossover probability is 

100% then all offspring are formed after crossover. Crossover is done so that new generation has 

better fitness value to survive. Crossover rate should be high about 80%-95% but sometimes it 

appears that 60% of crossover rate can also serve well. 

2.4.2 Mutation Probability 

 This shows how often the part of chromosome is mutated. If no mutation is there, the 

chromosome remains exact copy of their parent. If mutation is there, part of the chromosome is 
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mutated. If mutation is 100% entire chromosome is changed, 0% means nothing is changed. 

Mutation rate should be very low, 0.5%- 1% is considered as best. Other parameters of GA are as 

follows: 

2.4.3 Population Size 

 It shows that how many chromosomes are there in the search space. If the population size 

is very small then after performing a certain operation, we have a very small search space. If the 

population size is very large then GA slows down. Good size of population is 20-30 whereas 

sometimes 50-100 gives better result. Research shows that appropriate population size depend on 

the encoding and the size of encoding string. 

2.5 Encoding 

 Encoding of chromosomes greatly depends on the problem. Some of the popular 

encoding schemes are presented below [22, 25]: 

2.5.1 Binary Encoding 

 Most commonly used encoding techniques uses strings of 0 and 1. For small number of 

alleles it gives a large number of chromosomes. This coding is not good as it faces many 

problems and sometime correction is needed after crossover and/or mutation. For e.g. Knapsack 

Problem uses Binary Encoding, where each bit of a chromosomes represent whether the 

particular thing is present in the knapsack or not. 

Chromosome1 1100100101100001 

  

Chromosome2 1000010110001011 

  

 

2.5.2 Permutation Encoding 

 When focus is on ordering in a problem then Permutation Encoding is used. For example 

in Travelling Salesman Problem ordering of cities is the key thing. In Permutation Encoding the 

fitness of chromosomes is decided by the position of genes. In this encoding scheme some type 

of correction in crossover and/or mutation is needed to make the chromosomes consistent 



36 
 

 

 

 

2.5.3 Value Encoding 

 This encoding is used where some complicated values such as real no. character or letter 

or words, is used in the problems. This can be used for developing some specific crossover 

and/or mutation depending on the problem. 

Chromosomes 1.2324 5.8243 0.4556 2.7293 

  

Chromosomes ABDJEIFJDHDIERHFNCJKNJW 
  

Chromosomes HI, WHAT DO YOU WANT? 
  

Chromosomes 1 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 
  

An example of the use of Value Encoding method is for finding weights for neural network 

where real value in chromosomes represents weights in the neural network. 

2.5.4  Tree Encoding 

 This encoding is mainly used for evolving programs where the gene represents 

programming language commands, mathematical operations and other components of the 

program. Programming language LISP is used since in this the program can be easily parsed 

which makes the crossover and/or mutation relatively easier. 

2.6 Selection 

 Chromosomes are selected from the population for producing children. Selection of 

chromosomes is done keeping in mind ―survival of the fittest‖ i.e. the chromosomes having high 

fitness value are selected to produce new offspring with expectedly high fitness value. Selected 

chromosomes then undergoes crossover and/or mutation to produce offspring for new 

generation. This selection operation is governed by various methods; some of them are shown 

below [23,27]:  

 

Chromosome1 1 5 3 2 6 4 7 9 8 

Chromosome2 8 5 6 7 2 3 1 4 9 
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2.6.1 Roulette Wheel Selection 

 Chromosomes with higher fitness value is selected. In roulette wheel all population is 

placed according to their fitness and then a chromosome is selected at random. Chromosomes 

having higher fitness value are selected quite often. In this case, the other chromosomes will get 

very few chances to get selected. This method is also known as stochastic sampling with 

replacement. 

2.6.2 Rank Selection 

 In the rank selection method, first the population is ranked, then the fitness value is 

decided by the rank associated with each chromosomes. The worst chromosomes have fitness 1; 

second worst have fitness 2 and so on. The best chromosomes have fitness N. After this all 

chromosomes have a chance to get selected but this can lead to slower convergence since the 

best chromosomes have very little difference between them. 

2.6.3 Steady State Selection 

 In this method the chromosomes with high fitness value are selected to produce offspring. 

These newly generated offspring replaces chromosomes having smaller fitness value to form a 

new generation. In this selection method the main focus is on surviving a large part of 

chromosomes for next generation. 

2.6.4 Tournament Selection 

 Tournament selection is a technique for selecting an individual for crossover in a genetic 

algorithm. In this method, various tournaments are held between the individuals chosen at 

random from the given population. The winner of each tournament is selected for crossover. The 

chosen individual should be removed from the population so that it is not selected again. 

2.6.5 Elitism 

 In this method we preserve the best chromosomes i.e. chromosomes having high fitness 

are copied to the next generation, as they may lose during crossover and/or mutation. The rest is 
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done in usual way. Since Elitism preserved the best chromosomes, this greatly increases the 

performance of GA. 

2.6.6 Linear Ranking Selection 

 In this method the individuals are ranked according to their fitness value. Individuals 

having higher fitness value have higher rank and individuals with lower fitness have lower rank. 

Then the probability of selection of individuals is linearly dependent on their rank. 

2.7  Crossover and Mutation 

 Crossover and Mutation are two operators of Genetic Algorithm. The type of operator 

used in a particular problem is decided by the encoding scheme used and the problem itself. 

There are a number of operator, few of them are discussed below based on the encoding scheme 

used [21, 22, 24]. 

2.7.1 Single point crossover 

 A crossover point is selected in chromosomes, from first chromosomes first part is taken 

and the rest is taken from the second chromosomes. 

 

               

 2.7.2 Two point crossover  

 In this kind of crossover, two crossover points are selected. Till first crossover point, bits 

are copied from first chromosomes, from first to second crossover point bits are copied from 

second chromosomes again first chromosome is used for coping the bits after the second 

chromosomes. 
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2.7.3 Uniform crossover 

 It can be considered as the generalization case of single point and two point crossover. In 

this case bits are randomly copied from the two chromosomes to produce an offspring since each 

bit has an equal chance of being chosen from either parent. Uniform crossover generates a 

random value between 0 and 1 for each gene. If the value exceeds the locus crossover probability 

then only the genes are exchanged otherwise they are just copied from their parents. 

2.7.4 Heuristic crossover 

 This uses the fitness of the two parent chromosomes to determine the search direction. 

The offspring‘s are generated according to the following equation. 

Offspring1 = Best parent + r*(Best parent – Worst parent) 

where r is a number randomly chosen between 0 and 1. 

Offspring2 = Best parent 

2.7.5 Mutation 

 After crossover is performed, mutation can be done. It is used to avoid the process of 

getting trapped in a local optimum. Using mutation new offspring is randomly changed at any 

location. For binary encoding, in mutation, bits are randomly flipped i.e. at some position e.g. 1 

flips to 0 and vice-versa. Mutation randomly changes the genetic information. When operated at 

bit level, it is possible that mutation occurs at each bit but this has very lower probability as 

defined by mutation probability (Pm). 

Some of the types of mutation operator are as follows [gappr5]: 

 Flip bit: Simply selected bits are inverted. This mutation operator is used in Binary 

encoding scheme. 

 Boundary: In this the randomly selected genes are replaced by the lower or upper bound 

for that gene. 

 Non uniform: This mutation operator increases the probability that the amount of 

 mutation will be close to 0 (zero), which is a good choice. This also keeps the 

 population from stagnating in early stage of evolution and therefore gives the fine 

 solution at later stage therefore gives the fine solution at later stage. 
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 Uniform: In this, the selected genes are replaced by the uniform random value chosen 

between user defined upper and lower bound for that genes. 

 Gaussian: In this a unit Gaussian distributed random value is added to the chosen genes. 

If the newly generated gene falls outside the upper and lower bound for those selected 

genes, it is clipped. 

It is to be noted that all the above mutation operators are used for integer or float genes except 

the Flip bit mutation operator. 
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Chapter 3 

The Proposed Model 

3.1 Introduction 

 Cloud is a distributed computing model with heterogeneous resources to satisfy the user‘s 

demands. Since cloud is a business model, the resources are required to be optimally utilized to 

provide a good economy of scale. There are a number of resources which are used in the cloud 

computing model such as servers, CPUs, software, applications etc. For running any of these 

resources the cloud needs a power supply. In other words, the power supplied to a cloud is also a 

resource [29, 30]. 

 Power consumed over a period of time is termed as energy. One of the rising concerns in 

the field of modern computing is minimizing the energy consumption as it is a costly resource 

and is limited too (non-renewable sources). The question arises how can we minimize the energy 

consumption? There are many factors which affect the level of energy consumption one of which 

is scheduling [29, 31] 

Scheduling is at the core of the processes which are responsible for utilizing the deployed 

resources to a reasonable level. If the resources consuming energy are utilized properly, the 

energy consumption will also be minimized to a certain extent.  In other words, energy 

consumption can be directly linked to the scheduling strategy of a cloud computing model.  

Most of the times GA is preferred for such kind of highly complex problem, since it is based on 

natural selection and evolution process due to which it does not need to know the rules about the 

problem but uses its own methods to give a sub-optimal solution closer to the exact one. 

 This chapter focuses on Energy Efficient Genetic Algorithm based Scheduler for Cloud 

Computing. The strategy suggested in this chapter focuses on allocating the resources on the 

cloud in such a fashion which minimizes the energy consumption using Genetic Algorithm.  

The submitted job is divided in to sub-jobs (task) which are dependent on each other. Since 

different resources in the cloud would have different energy specifications and each task will 

take different amount of time on various resources with different energy consumption.  In 
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scheduling various tasks are mapped on to the available cloud resources considering the 

precedence of the job module as indicated by its directed acyclic graph (DAG) [30, 31].  

The model uses a centralized scheduler for scheduling the jobs using Genetic Algorithm. The 

chapter starts with the presentation of the scheduler, the data structures used and the notation 

considered for design of the model. Later, the scheduling algorithm is presented followed by the 

simulation results and their analysis. 

3.2 Proposed Scheduling Strategy Using Genetic Algorithm 

 The proposed scheduling model uses Genetic Algorithm to minimize the energy 

consumption of a job on certain set of processors. To solve any problem using GA, we first need 

to formulate its mathematical model in terms of a function. Then parameters that optimize the 

function of the model are determined. This is known as fitness function also known as the 

Objective function. Fitness function basically determines or analyzes the genes holding the data 

and returns the fitness value to quantify the fitness or suitability of the chromosomes. This results 

in selection of chromosomes having higher fitness value for producing the next generation. The 

better is the fitness, more chances are there of selecting those chromosomes to survive. The 

chromosomes having poor fitness value are discarded. The fitness function varies from problem 

to problem [30].  

 A cloud is a heterogeneous computing paradigm consisting of several hundred or 

thousands of processing nodes. These resources are divided into various groups or clusters with 

the help of virtualization. The proposed model considers a cluster of processors on which a job is 

to be scheduled. The processors in the cluster may have different attributes such as voltage, 

frequency, processing speed etc. [32]. 

 The job is submitted in the form of a DAG where the nodes represent tasks (dependent 

sub-jobs) and the edges between the nodes represent the communication between the nodes. The 

weight of the edge represents the communication cost. The scheduling starts with random 

generation of a chromosome whose entries contain the node number or the task number and 

indices contain the processor number meaning that the tasks are allotted to the processors 

randomly. The energy for this allocation is calculated and the remaining procedure of GA as 

discussed above is applied. The energy model, data structures used, notation used and fitness 

function are discussed in the following section.  



43 
 

3.2.1 Energy Model 

          The total energy consumption of any heterogeneous computing system depends on the 

factors such as processors, networks, disks, memory, cooling system, fans and other various 

components. A lot of research work is being done on system energy consumption, only 

processor‘s energy is considered in this work since processors consume a major part of the total 

energy of system. The power consumption of a processor comprises of two parts namely static 

part and the dynamic part. The static part is the leakage power of a circuit and dynamic power is 

the switching power of a circuit [31, 32 ]. 

The power consumptionof a processor p under execution is given by [32]: 

                                           Ptotal = Pstatic+  Pdynamic                                                                     (1) 

where Ptotalis the total power of the processor, Pstatic is the static power consumption which is a 

constant, and Pdynamic is the dynamic power consumption. When processor  pis in the idle mode 

Ptotal = Pstatic. When processor p is operated at a voltage level vand frequency level  f the dynamic 

powerPdynamic can be calculated using the equation 

                                            Pdynamic   =  c* v
2 *

 f                                                        (2) 

where ci is a constant known as physical capacitance of the processor pi..Power consumed over a 

period of time is known as energy which can be calculated as  

                                           Energy = Ptotal * T                                                  (3) 

where T is the time for which a task is executed on processor p. 

3.2.2 Data Structures Used 

DAG[no_task][no_task]: This matrix represents sparse graph having values 0 and 1, 

where 1 means there is a connection between the nodes and 0 means there is no connection 

between the corresponding nodes. 

ITC[no_task][no_task]:It holds the inter-task communication cost between the different 

tasks in terms of time units. 
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Chromosomes: The value in a chromosome is a mapping of a task to a processor. This 

kind of mapping makes possible to form a large set of chromosomes known as population. 

Population[no_chromosome][no_task]:This matrix is a population matrix having rows 

equal to the no. of chromosome and column equal to the number of tasks in the job. 

Prospecs[no_processors][ 3 ]:This matrix contains the specifications of the processors 

namely physical capacitance, voltage and frequency respectively. 

Power[ 1 ][no_processors]:This matrix stores the power of each processor calculated 

from the prospecs matrix.  

Sequence[ 1 ][no_task]:This matrix stores the order in which the tasks are to be executed 

since the job submitted consists of dependent tasks. 

Time[ no_task][no_processors]:This matrix stores the time taken by each task on each 

processor.  

MinEnergy[no_generations][ 1 ]:This matrix stores the minimumenergy of each 

generation. Each row contains only one value which is the minimum energy of that 

generation. 

MinEnergySchedule[no_generations][no_task]:This matrix contains the schedule 

corresponding to minimum energy for each generation. 

3.2.3 Notations Used 

 no_task:Number of tasks in the directed acyclic graph (DAG) 

 no_chromosome: Number of chromosomes in the population 

 no_processors:Number of processors in the cluster 

 no_generations:Number of generations for which GA works 

 no_ins: Number of instructions 

 size_chromosome:size of chromosomes which is equal to the number of tasks 

 TAT: Turnaround time 

 Pdynamic,i: dynamic power of processor i 

 Pstatic,i: static power of processor i 

 pi :Processor i 

 cij  : physical capacitance of processor i while executing task j 
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 vij :Voltage of processor i while executing task j 

 fij : Frequency of processor i while executing task j 

 tij :Execution time of task j on processor i 

 tkj:Represents task j 

 Ci:Represents the communication cost of the tasks which are predecessors of the task 

tkj 

3.2.4 Fitness Function 

 The model considers a task to be allocated on a processor which results in minimum 

energy consumption. Since we have calculated the time for each task on each processor, the tasks 

should be allocated in such a way that they are scheduled on a processor which takes least time 

to execute it. The dynamic power of a processor pi is given by equation (2). The static power of 

any processor is constant which need not be calculated. Considering these factors, the energy for 

a chromosome (schedule) can be calculated as: 

                                      Energy = ∑ cijv
2

ijfij*(tij+max(Ci))+( ∑ Pstatic,i)*TAT                           (4) 

Here the first summation in equation (4) calculates the dynamic energy and the second 

summation calculates the static energy. The dynamic power is multiplied by the time for which a 

tasktkj executes on the processor piwhich gives the energy and finding its summation gives the 

total dynamic energy for all the tasks. Static power is constant so its summation is calculated and 

is multiplied by TAT the turnaround time of the task.The above equation acts as the fitness 

function or the objective function as we need to minimize this energy using GA over generations. 

The energy is calculated for each chromosome in the population, the minimum energy is 

recorded and the schedule (chromosome) corresponding to that minimum energy is recorded, this 

is repeated for all the generations until the termination condition is met. 

3.3 The Proposed Algorithm 

 The proposed algorithm schedules the job in the cloudso that the energy consumption can 

be minimized. The proposedstrategy being GA (Genetic Algorithm) is based on using Roulette 

wheel selection for selecting the chromosomes followed by performing the operations like 

crossover and mutation, if needed, on the population of chromosomes generated randomly. After 

performing the above mentioned operations the chromosome with minimum Energy value is 
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obtained, which offers the way, scheduling is done so as to optimize the resources. The algorithm 

is described in detail as below. 

 The cloud is considered to be having many clusters out of which one or a few clusters 

may be selected for evaluation of job execution. 

 For any job submitted the cluster is evaluated for Energy of the all tasks in thejob. The 

scheduler finally schedules the job on the cluster according to the schedule which results 

in minimum Energy. 

 For the job submitted a population of chromosomes is generated. 

 For the population of chromosomes generated,Energyis calculated which gives the 

energyfor each chromosome of the population. 

 Randomly select two chromosomes from the parent population using roulette wheel 

selection. If the selected chromosomes are same then repeat the selection process till 

chromosomes obtained remain the same. Crossover operation is performed next on the 

selected chromosomes to produces two child chromosomes. Here, crossover performed is 

single point crossover. These children are then stored in a new variable named 

population1. If child chromosomes generated after crossover are already there in the 

population1 then do not store these child chromosomes but repeat the same process again. 

This gives a new population of child chromosomes. Now calculate the Energyof each 

chromosome. Next, pool the parent and child chromosomes together and out of them 

select the best chromosomes to form the next generation population having same no. of 

chromosomes as that of parent chromosomes. 

 Perform mutation on the population if it satisfies the necessary condition. Mutation is 

performed after a fixed no. of generations. In this experiment the scheduling strategy is 

evaluated for mutation being performed after 5th, 10th and 15th generation respectively. 

Not all population is selected for mutation. The no. of chromosomes being mutated is 

varied from 25%, 50% and 100% population respectively. This means for a generation 

when mutation is being performed 

 Every 5th generation, at first 25% population is mutated and the mutated chromosomes 

replaces its parent chromosomes. Similarly, it is done using 50% and 100% of the 

population. If child generated after mutation is already there in the new population then 
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repeat that step again until different chromosome is not obtained. This step is repeated for 

all generations and Energyis repeatedly calculated for the new population. 

 The population generated in this generation is used as parent population for the next 

generation and so on. 

 Repeat the above steps for the no. of generations needed to optimize the obtained result, 

till the termination condition is reached. 

 

The algorithm for the same is given below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schedule(job) 

{ 

Submit the job in the form of a DAG 

Select the virtual cluster(s) for evaluation 

For each cluster 

   { 

Calculate the execution time of each task on every processor 

      // Generate ECT matrix  

Generate a population of chromosomes randomly 

     // No. of chromosomes = 50-100 

While (terminating condition is not met) 

{ 

Calculate energy for each chromosome in the population set 

           // Using the fitness function using the equation (4) 

Perform selection 

          // Roulette wheel selection 

Perform crossover 

         // Single point crossover 

Perform mutation 

// Every 5th, 10th and 15th generation for 25%, 50% and 100% of population 

// No. of genes mutated is equal to 10% of the size of the chromosomes 

} 

Record the chromosome which corresponds to minimum energy 

// Estimate the turnaround time for the chromosome offering minimum energy 

} 

Select the cluster with chromosome offering the minimum energy consumption 

Schedule the job according to the chromosome recorded above 

} 
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3.4 Illustrative Example 

 An illustrative example is presented here to make the model easy to understand. This 

shows the basic working of the model in terms of calculating the Energy for each chromosome 

for available cloud resources. The same method is used to calculate Energyfor all the other 

chromosomes in the population and finally the minimum energy. In this illustrative example, the 

parameters have been scaled down for better understanding of the working of the model. The 

illustration explains the analysis of the suitability of the jobs on one such cluster. The same 

method can be adopted to find the Energy offered to the job by other clusters. 

Let us consider that initially the cloud comprises of certain set of resources. Let‘s say we 

consider a cluster with four processors. The job submitted at any time at any cluster can 

berepresented in the form of a DAG as shown below. A typical job for execution in theform of 

DAG is represented in Figure 3.1.  

                           

                                              Figure 3.1 Directed Acyclic Graph 

The nodes of this DAG are the tasks represented by the number within the circle. The edges 

represent the inter-task communication. The details of the job is given in Table 3.1. 
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                                                                  Table 3.1 

Job Specifications 

 
t1 t2 t3 t4 t5 t6 t7 

No. of 

instructions 

(million) 

52 48 41 35 47 38 42 

 

The inter-task communication (ITC) can be represented in the form of a matrix. The matrix is 

represented in the Table 3.2. 

                                                                 Table 3.2 

Inter-task Communication matrix 

Task t1 t2 t3 t4 t5 t6 t7 

t1 0 8 3 7 0 0 0 

t2 0 0 0 0 9 0 0 

t3 0 0 0 0 5 7 0 

t4 0 0 0 0 0 6 0 

t5 0 0 0 0 0 0 8 

t6 0 0 0 0 0 0 9 

t7 0 0 0 0 0 0 0 

 

The specifications of the processors such as physical capacitance (c), voltage (v) and frequency 

(f) are stored in the matrix shown in table 3.3. 
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                                                                      Table 3.3 

Parameters of the Processors 

        Processors 

 

Capacitance               

(c) * 10
-8 

Voltage 

 (v) 

Frequency  

(f) * 10
9 

P1 3.80 1.12 1.80 

P2 4.08 1.34 2.40 

P3 3.59 1.68 3.00 

P4 2.96 1.57 2.80 

 

Since each processor has different frequency, every task will take different time on each 

processor to execute. The execution time can be calculated by dividing the number of 

instructions in the task by the clock frequency of that particular processor. The time foreach task 

on every processor has been calculated using this method and stored in the timematrix shown in 

Table 3.4. The time is in milliseconds. 

                                                                     Table 3.4 

Expected Computational Time Matrix 

Tasks            P1 P2 P3 P4 

t1 28.88 21.66 17.33 18.57 

t2 26.66 20.00 16.00 17.14 

t3 22.77 17.08 13.66 14.64 

t4 19.44 14.58 15.66 16.78 

t5 26.11 19.58 15.66 16.78 

t6 21.11 15.83 12.66 13.57 

t7 23.33 17.50 14.00 15.00 
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The dynamic power of a processor can be calculated using equation (2). After calculating the 

dynamic power it is stored in the matrix which is shown in Table 3.5. 

                                                                   Table 3.5 

Dynamic power matrix 

 P1 P2 P3 P4 

Power(dyn) 85.80 175.82 303.97 204.00 

 

The static power of a processor is constant though it is different for every processor. The static 

powers of the processors are stored in the matrix which I shown in Table 3.6. 

                                                                   Table 3.6 

Static power matrix 

 P1   P2 P3 P4 

Power (static) 37.2 48.7 65.2 54.7 

 

The chromosome is an array which contains the information about how to allocate the jobs to 

resources. The structure of a chromosome is like that of an array. The entries in the array contain 

the processor id in which a task is to be scheduled. The indices of the array correspond to the 

task id. For example the entry in the 3
rd

index is 4 which means that the 3
rd

 task is to be scheduled 

4
th

 processor. 

Let‘s say we have a chromosome in the population as shown below: 

3 2 4 1 2 1 4 

         1                    2                      3                    4                     5                       6                  7 

Since the 1
st
  task is scheduled on the 4

th
 processor we need to calculate the time for which the 

task executes on this processor. This is the starting node so its communication time is 0. The data 

is shown in Table 3.7. 
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                                                                   Table 3.7 

Calculated values  

Task1 Processor3 

cv
2
f 303.97 

tij 17.33 

Pstatic,i 65.2 

 

From the data in Table 3.7 the calculated value of dynamic energy comes out to be 5.26. It is to 

be noted that the time is in milliseconds.Similarly the dynamic energy of task 2 can be calculated 

from the data given in Table 3.8. The static power would be calculated in the end when all the 

tasks have completed their execution and it is known that for how long the task was scheduled on 

the processor. 

                                                                  Table 3.8 

Calculated values  

Task2 Processor2 

cv
2
f 175.82 

tij (20.00+8) 

Pstatic,i 48.70 

 

The calculated valued for dynamic energy for task 2 comes out be 4.90. Similarly the calculated 

values of dynamic energy for remaining tasks can be calculated. The value for task 3 comes out 

to be 3.59. For task 4 it is 2.26. For task 5 it comes out to be 5.02 and for task 6 it is 2.32. Finally 

for task 7 it comes out to be 5.10. The total dynamic energy comes out to be 28.45 joules. 

The turnaround time comes out to be 99.91. The total static power Pstaticof all the processors is 

calculated to be 205.8. Thus the total static power comes out to be 20.56 joules. Adding the 
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dynamic and static energies for this chromosome gives the total value of energy which comes out 

to be 49.01 joules. Similarly the values of energies of all the other chromosomes can be 

calculated. This process is repeated for the entire population until the termination condition is 

met.  

3.5 Simulation Study 

 Simulation experiments were conducted to observe the scheduling of the job on the 

selected cluster. The experiment is conducted on Intel Core-i3 @1.8 GHz using MATLAB 7.6.0 

(R2008a). The data values taken in the experiment are generated dynamically during execution. 

 

                                                           Table 3.9 

Parameters Used 

S.No. Parameter Notation Used Range 
    

1 No. of Resources/Processor no_processor 5-20 
    

2 Clock frequency of processor f 10-20 
    

3 No. of tasks in a job no_task 5-50 
    

4 No. of instructions in a module no_ins 100-500 
    

5 Inter-task communication    ITC 2-8 
    

6 Population Size no_pop 50-200 
    

7 Size of chromosome size_chromosomes 5-50 
    

8 No. of generation no_generation 100,200 
    

9 Crossover considered during experiment Single point -- 
    

10 Mutation performed after no. of generations Mu 5,15,20 
    

11 % of Population selected for Mutation -- 25%,50%,100% 
    

12 Rank selection method 
Roulette wheel 

selection -- 
    

    

 

The experiment is performed for 50, 100, 150, and 200 tasks in job. The number of generations 

for which the algorithm runs is 200. The size of population is taken to be 100. The variations of 

energy and turnaround time for different experiments are plotted below.  
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               Figure 3.2: Energy Consumed v/s Number of Generations for 50 tasks 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Energy Consumed v/s Number of Generations for 100 tasks 
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Figure 3.4: Energy Consumed v/s Number of Generations for 150 tasks 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Energy Consumed v/s Number of Generations for 200 tasks 
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3.6 Observations 

After the experiments were carried out, the results were recorded and are plotted above. This 

section deals with the analysis and observations of the results.  

From Figure 3.2 which shows the energy graph for 50 tasks, it can be observed that the energy 

values decrease quickly up to 50 generations and then gradually up to 100 generations. After 100 

generations the energy value decreases at very slow rate. The rate of convergence in the 

beginning is highest which reduces in the middle and goes very low towards the end. 

From Figure 3.3 which shows the energy graph for 100 tasks, it can be observed that the energy 

values decrease quickly up to 70 generations and then gradually up to 120 generations. After 120 

generations the rate at which the energy value decreases is very low. The rate of convergence for 

100 tasks is lower as compared to that of 50 tasks. 

From Figure 3.4 which shows the energy graph for 150 tasks. It can be noticed that the energy 

values decrease at a high rate until 100 generations and then it decreases gradually up to 140 

generations. After 140 generations energy value decreases very slowly which almost becomes 

constant after a point. It can be observed that the rate of convergence for 150 tasks is less than 

that for 100 tasks. 

From Figure 3.4 which shows the energy graph for 200 tasks. It can observed that the energy 

values decrease quickly until 100 generations and then decreases slowly between 140 and 180 

generations. It can be noticed that the rate of convergence of 200 tasks is the slowest among the 

set owing to the larger batch size.  

Therefore, it can be concluded that the model tries to converge to the allocation which results in 

a better energy consumption over the generations. Further, as the number of tasks increases the 

rate of convergence decrease. The results have been found to work satisfactorily converging 

within 200 generations. 
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Chapter 4 

Conclusion and Future Scope 

 Cloud computing is a dynamic environment in which resources can leave or join the 

system at any time. This behavior makes the scheduling a tough job. Job scheduling in cloud 

system is an NP-Hard combinatorial optimization problem. Therefore, traditional methods are 

not suitable for such kind of complex problems as they have certain constraints such as they do 

not exploit the tolerance for imprecision and may not give the solution within the time 

constraints. Therefore, soft computing techniques like genetic algorithm, fuzzy logic and 

artificial neural network finds a wise use for such type of problem. 

 The proposed model uses genetic algorithm (GA) for scheduling a job on the cloud 

system so that the energy of the jobs that need to be executed on the system can be minimized. 

Here, the study is based on roulette wheel selection method for a single point crossover and 

mutation implemented after certain number of generations for certain percentage of the 

population. From the obtained results it can be said that allocations of tasks is done in such a way 

that the energy consumption is minimized. Tasks are allotted to those processors frequently 

which have such specifications that result in minimal energy consumption. Over the generations, 

energy value for the entire job reduces considerably. Further, simulation study reveals that the 

rate of convergence of the model depends on the number of tasks submitted for execution. As the 

number of tasks in the job increases, the rate of convergence decrease.   

 Since, scheduling is an NP-hard problem, the results obtained cannot be treated as the 

most optimized results. Accordingly, the proposed model can be tested for different selection, 

crossover and mutation schemes and compared with established peers for performance 

evaluation. Further, it also opens the possibility of the use of some other soft computing 

approaches like particle swarm optimization or ant colony optimization to be used and compared 

for performance evaluation. Multi objective functions or parameters can also be explored by 

optimizing more than one parameter.  
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