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ABSTRACT

In this work, a simple reformulation of the Lagrangian dual of the 2-norm twin
support vector machine based regression (TWSVR) is proposed as unconstrained
minimization problem. The proposed Lagrangian twin support vector regression based on
twin support vector machine (LTWSVR) requires at the outset the inverse of a matrix but
this can be expressed as matrix subtraction of identity matrix by a scalar multiple of the
inverse of a positive semi-definite matrix. The LTWSVR is solvable by computing the
zeros of its gradient. Further it is proposed to solve this problem by simple iterative
methods: functional iterative method (FLTWSVR), Newton method (NLTWSVR) and
Generalized derivative approach (GLTWSVR). To demonstrate the effectiveness of
LTWSVR, numerical experiments were performed on a number of interesting synthetic
and real-world benchmark datasets. The results obtained show similar or better
generalization performance with much faster learning speed in comparison with SVR,
TSVR and TWSVR.
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Chapter 1

Introduction: SupportVector Machine in Regression

1.1 General

Support Vector Machines (SVMs) also known as Kernel Machines are one of the
best supervised learning technique for both classification problems as pattern recognition
and regression problems as function approximation, proposed by Russian Scientist
Vladimir Naumovich Vapnik (Vapnik, 2000). They embody several features from
statistical learning theory, machine learning, and optimization theory, and employ kernel
functions as one of their essential ingredients. SVM has been the most promising machine
learning method due to its formulation based on the novel paradigm vested in the
structural risk minimization induction principle (SRM principal) (Cristianini and Shawe-
Taylor, 2000; Vapnik, 2000; Kecman, 2001) and can effectively avoid the local minimum
and overfitting problem in classical machine learning methods such as neural networks
(NNs), which performs Empirical Risk Minimization (ERM). Unlike ERM which
minimizes training error, structural risk minimization (SRM) minimizes the upper bound
on expected risk or generalization error consists of both an empirical risk term and
regularization term that measures the complexity of the machine (norm of the classifier or
regressor) and is superior than ERM (Gunn, 1998). This is the difference that powers the
SVM to have good generalization i.e. better prediction on previously unseen data (Burges
& Scholkopf, 2007; Kecman, 2001).

Mathematically, classification and regression problems in SVM have been shown
as optimization problems having quadratic objective function and linear constraints; i.e.
they are convex programming problems with unique solution (Cristianini & Shawe
Taylor, 2000; Kaufman, 1999; Vapnik, 2000). A clear benefit of SVM is that its solution
is sparse; i.e. only some of the samples contribute in determination of the decision
function (Gunn, 1998; Scholkopf & Smola, 2002).
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SVM has been successfully applied to real world data analysis problems in many
fields (bioinformatics, handwriting recognition, stock market etc), often providing better
results than (or comparable outcomes to) ANNs (Kecman, 2001). In comparison with
most other learning techniques, SVMs show improved result in pattern recognition and
regression estimations problems of practical importance such as: Combustion engine
detection (Rychetsky et al.,1999), Face detection (Osuna, Freund & Cirosi, 1997),
Financial time series forecasting (Mukherjee, Osuna, & Girosi, 1997; Tay & Cao, 2001,
Kim, 2003), Handwritten digit recognition (Burges & Scholkopf, 1997; Cortes & Vapnik,
1995), Object recognition (C. P. Papageorgiou, M. Oren, & T. Poggio, 1998), Marketing
(Ben-David & Lindenbaum, 1997), medical diagnosis (Tarassenko et al.,1995), text
categorization (Joachims, 2002), estimating manufacturing yields (Stoneking, 1999) etc.

1.2 The Regression Problem
Assume that we are given a training data set of m samples
S={(X,, V1) (X V)b X =Xy %) € X SR, y; €Y SR, (1.1)

with x,,---,X,, drawn according to an unknown probability distribution P(x,y) and

m

Y; = fhe(X;) forall ie[l,m]. Let Hbe a hypothesis set of linear functions mapping X
toV, ie.

H={f | f(x)=w'x+b}, w,xeR", beR (1.2)

We denote the loss function by L:Y xY — R, used to measure the magnitude of

error. The most commonly used loss function in regression is the quadratic loss L,defined

? Vy,y €Y, where y and y' are actual and predicted output

asL(y,y'=f(x)=[y-y’
values corresponding to a given input x or being a more general L loss defined by

p

L(y,y = f(x)) :|y— y'|" Vy,y' €Y and for some p > 1.

The task of regression is to find a hypothesis f € H that minimizes the expected
risk or generalization error (Kecman, 2001),

RN =B Ly, O =[L(y, FO0)dP(x,y), (L3)
with respect to target f based on the training data set S.
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Throughout in this work, we denote the training dataset inputs {X;};_, ., by a

matrix AeR™" whose i" row A eR" represents the i" training sample and their

corresponding outputs {y;};_, .., by an output vector y = (y,,--,y,)" respectively.

1.3 Support Vector Regression

SVM can be successfully applied in regression i.e. function approximation
problem by the introduction of a novel loss (error) function different from the classical
quadratic error function. This is the & —insensitive loss function for support vector
regression (SVR) proposed by Vapnik (Vapnik, 2000).

In SVR, the linear regressor or linear hyperplane (approximation function
f :R" — R) for regression problem given in section 1.2 can be defined as
f(x)=w'x+b (1.4)
and can be obtained by simultaneously minimizing the weight vector norm (w) and
empirical risk which can be written as an unconstrained optimization problem,

min%||w||2 +ciL(yi, f(x,)) (1.5)

where C >0 is the regularization parameter and L(-,-) is the error loss function. For ¢ -
insensitive error loss function, L(y;, f(x;)) =]y, — f(x;)| ., the problem (1.5) becomes

w,beR"!

Min 2w’ +¢ Yy, - (Aw+b), (1.6)

Error Loss Function Function definition L(y, f (X))

Laplacian or Linear loss

ly—f(x)

Gaussian or Quadratic loss

ly—f(x)

Huber’s Robust loss
(Gunn, 1998)

%(y—f(x))2 ifly— f(x)|<e

2
ely—f(x)|- % otherwise

Linear ¢ — insensitive loss
(\Vapnik, 2000)

{0 ly-f(x)|<e

ly—f(x)|—¢ otherwise

Quadratic ¢ — insensitive loss

max{0,|y — f (x)| -}

Table 1.1: Common Loss functions
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Figure 1.1: Graphs of Loss Functions: Laplacian, Gaussian and Huber’s robust

The loss functions summarized in Table 1.1 can be used in derivation of support
vector algorithms that lead to quadratic programming problems but only linear and
quadratic & —insensitive loss functions will produce sparse representation of the regressor

I.e. approximation function.

The Laplacian (Linear or absolute) loss function in Figure 1.1(a) corresponds to
the median of the conditional distribution and its optimization means predicting the
(conditional) median of data. Gaussian (Quadratic) loss function in Figure 1.1(b) like
traditional least square method penalizes the large deviation from target outputs while
ignoring the small residuals and its optimization means predicting the (conditional) mean
of the data. Laplacian loss function is less sensitive to outliers than Gaussian loss function.
Huber loss functions in Figure 1.1(c) is a robust loss function where nothing specific is
known about the distribution describing the data.

25 B

15 B

05 1

3 2 1 0 1 2 3 -3 -2 -1 0 1 2 3

(a) Linear e-insensitive (b) Quadtratic e-Insensitive

Figure 1.2: Graphs of Loss functions: Linear and Quadratic &- insensitive

The linear and quadratic ¢ -insensitive loss functions in Figure 1.2 can be seen as

the generalizations of the Laplacian and Gaussian loss functions.
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1.4 Linear SVR

Figure 1.3: Linear Support Vector Regression with e- insensitive loss

The objective of linear SVR is to find a function f (x) (1.4) that comes closest to
training data (1.1) but for all training data of at most & —deviation from their

corresponding targets y; is allowed and the function must be made as flat as possible.

In Figure 1.3, the deviation of data points (denoted by x symbol) are captured by

introducing vectors of slack variables i.e. &;,,.Only data points outside the & -tube are

considered as training errors. Vectors &, and &, measure the deviations of data points that

are above and below the & -tube respectively.

1.4.1 SVR with Linear ¢ -Insensitive Loss

Using the & -insensitive loss function, the optimization problem (1.5) for
regression problem described in section 1.3 can be written as a constrained optimization

problem i.e.

- 1 m
min EMWHZ +CD (& +&) (1.7)
we i-1
subjectto y;, —(w'x;, +h)<e+&;,
(WX; +b) -y, <e+&,,

£.E, >0, i=1..m
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Optimization problem (1.7) can also be written as

%wtw +C(e'g, +e'E,)

(W,b,E_,l,E_,z)ERn+l+m+m
subject to

y—Aw-be<ee+&,,
Aw +be -y <ee+¢&,,
£iéx 20 1=1..,m (1.8)

where & = (&, Em)' 8y = (Enree &)t are  vectors  of slack variables and

e=(1,--1)' €R™ is the vector of ones. The constant C > 0influences the trade-off
between the flatness of f and the amount up to which deviation larger then ¢ are

tolerated. An increase in value of C penalizes the large errors while decrease in value
penalizes small errors.

Introducing Lagrange multipliers  u; = (Uyy,-++,Uy) ' Uy = (Uyg,-++, Uy )" the
Lagrangian function in primal variables of the above problem (1.8) can be formed as
L(Wabi‘gl’gz’ul’uz):%WtW+C(et§1+et§2)_(8etu1+§§u1_ytu1+(AW)tu1+betu1)

—(e€'u, +e'€Lu, +y'u, —(Aw)'u, —be'u,) (1.9)

According to KKT conditions (Karush, 1939; Kuhn et al., 1951) the partial

derivative of (1.9) with respect to the primal variables w,b,&,;,&, vanish at optimality

oL

N %:W—At(ul—uz)zo =w=A'(u,—u,)
%zet(ul—uz), i=Ce—u1=0, a—L=Ce—u2=0
ob 0§, 05,

Substituting these results back into (1.9), the dual of problem (1.8) can be formed as,

min %(ul—uz)tAAt(ul—uz)—yt(ul—u2>+eet(u1+u2)

(ug,up)beR™™
subject to e'(u; —u,)=0and 0<u,,u, <Ce (1.10)
Now, for any example x € R", the regressor function (1.4) can predict its output as

f(x)=(u,—u,) Ax+b. (1.12)
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1.4.2 SVR with Quadratic ¢ -Insensitive Loss

Using the quadratic ¢ -insensitive loss function, the optimization problem (1.5) for

regression problem (1.2) can be written as a constrained optimization problem i.e.

1 ., C,.. .
(W,b,E_’l'E_’z)!QJerer EW W+ 2 (glgl +§2§2)

subject to

y—-Aw-be<ee+§,,
Aw +be-y<ee+&,,
k20 i=1..,m (1.12)

where &, = (&, &) and &, =(&,,-,&,, )" are vectors of slack variables and C > 0.
This formulation has only 2m non-negative and linear constraints.

Introducing Lagrange multipliers  u; = (Uyy,-++,Uy) ' Uy = (Uyg,-++, Uy )" the
Lagrangian function in primal variables of problem (1.12) can be formed as
L(w,b,E,,&,,u,,U,) = %wtw+%(§§§l +E&58,) — (ee'u, +&;u, —y'u, + (Aw)'u, +be'u,)

—(ge'u, +e'€ u, +y'u, — (Aw)'u, —be'u,) (1.13)

Proceeding as in previous section, the dual of (1.13) can be obtained in the

following form,

1 1 t t I t t
min E(ul —U,) (AA +E)(u1 —U,) -y (U, —u,)+ee (U, +u,)

(uy,up)eR™™
subject to

0<u,u,

where | is an identity matrix of size m. The term 1/C is added to diagonal of Hessian
matrix, which ensures positive definiteness of Hessian and stabilizes the solution and there

IS no upper bound onuy,u,.

For any input x e R" the regressor function (1.4) becomes

f(x)=(u,—u,) Ax+b (1.14)
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1.5 Nonlinear SVR

The practical application of support vector regression procedure is only possible
with linear functions because we only have an optimality criterion for linear functions
(linear hyperplanes). There are no general results for nonlinear functions. For many
applications, a linear solution does not provide good performances; so at many times a
nonlinear approach is needed.

XZ
X
Kx | X X £
X e, X
E & X — d(X)
X §ox 7 x
. X
X & Xx Xy X
A
X X
X X X
X
X —
V2X{X,
Input space Feature space

Figure 1.4: Mapping into Higher Dimensional Feature Space

As a generalization of linear SVR to nonlinear SVR, the basic idea is that input

vector x e R" in the input space will be mapped into a higher dimensional Hilbert space

called the feature space through a nonlinear mapping function ¢(x) (B. Scholkopf et al,
1999; Aizerman et al., 1964; Boser et al., 1992). A linear regression function can be
constructed in this feature space but it stays nonlinear in the input space. This is possible
only with virtue of the Mercer’s Theorem.
Most of the mapping functions ¢(x) are unknown, but the dot product of the
mapped vectors can be expressed as a function of the input vectors as
P(x1) B(Xz) = KXy, X,) (1.15)
The feature spaces are called Reproducing Kernel Hilbert Spaces (RKHS), and k(-,-) is

a Mercer kernel. Fortunately, an explicit representation of the vectors in the feature space
is not required as the SVM formulation only contains dot product of the mapped vectors.
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The Mercer theorem gives the condition that a kernel function k(x;,X,) must
satisfy in order to be the dot product of a Hilbert space, i.e. there is a function ¢ inR"

such that k(x,,X,) = ¢(x;)'é(x,) if and only if for any function g(x) for which

[a(x)?dx <o (1.16)
the inequality

j K(x,2)g(x)g(z)dxdz >0 (1.17)

holds.

Kernel functions must be symmetric and its Kernel matrix K is defined as

k(Xl’Xl) k(Xl,Xz) k(Xl’Xm)

K - k(Xz:,Xl) k(xz:,xl) k(XZ:’Xm)

k(Xm’Xl) k(er;’Xl) k(Xm’X

m

The kernel matrix K is positive semi- definite (i.e. all its eigenvalues are non-negative i.e.

A, 20,i=1---,m and A, is an eigenvalue).

Kernel Function Kernel Definition K(X;,X ;)
Linear kernel XiX;
. t d
Complete polynomial of degree d L+xx;)", d>1
- e —x[f
Gaussian RBF expl—"—— | o>0
20
Sigmoidal tanh(yx;x; + u)*, 7 >0,u>0

Table 1.2: Examples of Kernel functions used in SVM

The nonlinear mapping for polynomial kernels can be found in an explicit way and
the corresponding Hilbert space has finite dimension. The nonlinear mapping for Gaussian
kernel is not explicit and the dimension of Hilbert space is infinite.
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Figure 1.5: The geometrical interpretation of kernel SVR

For the nonlinear case, the kernel support vector regressor (f : R" — R) is defined
as f(x)=w'g(x)+b (1.18)

and will be obtained by the solving the following quadratic programming problem
(Cristianini & Shawe-Taylor, 2000)

(Wvbvélvéz )ERn+1+m+m 2

1 m

~w'w+ CZ(éi +&5)
i=1

subject to

Yi — (thb(Xi) +b) <e+ &y,
(W'p(x;)+b) -y, <e+&y,
Ei 620, Vi=12,...,m (1.19)

where &;,&,; are slack variables, y =(y,,---,y,)" is output vector and C>0,6>0 are

input parameters.
Proceeding as in linear SVR and using kernel trick (1.15), the dual of (1.19) can be
obtained as

mln li(uli _u2i)k(xiaxj)(u1j _uzj)_iyi(uli _u2i)+8i(u1i _u2i) (1.20)

u;,uyeR™ 2”.:1
subject to
e'(u, —u,)=0and 0<u,,u, <Ce

Finally, for any sample x € R" the nonlinear regressor (1.18) becomes

() =3 (U - Uy k(%) +b (121)
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Chapter 2

Twin Support Vector Machine in Regression

2.1 Introduction

Support Vector Machines (SVMs) have been extensively studied and applied to a
number of classification and regression problems which have shown remarkable success
compared to other machine learning methods such as ANNs. SVMs show distinct
advantages such as better generalization, the ability to find a global optimum, and the
increased speed of learning. However, training an SVM involves solving a constrained
quadratic programming problem (CQPP). Its training computational complexity is

O(m®), where m is the total size of training set. This means much increased

computational time for large dataset.

In order to speed up the training process of SVM, many efforts have been made
such as chunking and decomposition methods (Boser et al., 1992; Joachims, 1999;
Kaufman, 1999; Osuna et al., 1997), exact SVM training algorithm SMO (Platt, 1999),
approximate SVM training algorithms (Tsang et al., 2005; Achlioptas et al., 2002; Fine et
al., 2001), LS-SVM (Suykens & Vandewalle, 1999; Suykens, Lukas, Van Dooren, et al.,
1999), etc. The above algorithms solve the dual of CQPP iteratively and at each step of
iteration only a subset of the dual variables are optimized. Recently Twin Support Vector
Machine (TWSVM) has been proposed (Jaydeva et al., 2007) by extending the work of
GEPSVM (Mangasarian & Wild, 2006) in which two nonparallel planes are constructed
such that each plane is closer to one of the two classes and is as far as possible from the
other. The performance of TWSVM is better than GEPSVM and is approximately four
times faster than SVM.

As for SVR, there exist some corresponding approximation algorithms as in
classification, such as Smooth SVR (Lee et al, 2005), SMO (Shevade et al, 2000), etc. A
fast training algorithm known as Twin Support Vector Regression (TSVR) (Peng, 2010) is

described in the next section 2.2. Most recently Twin Support Vector Machine Based

Page | 11



Regression (TWSVR) proposed in (Khemchandani, Goyal and Chandra, 2015) overcomes
the restrictions associated with TSVR will be introduced in the next Chapter.
2.2 Twin Support Vector Regression (TSVR)

In the spirit of TWSVM, an efficient twin support vector regression, termed as
TSVR, is proposed in (Peng, 2010) for regression problem to improve the computational
training speed. Assume that we are given a training dataset (1.1). The TSVR generates a
pair of nonparallel hyperplanes such that one of them determines the ¢ -insensitive down

bound f, (x) = w;x+b, and another one the upper bound function f,(x)=w;x +b, of the

end regressor. Similar to the idea of maximum margin, these hyperplanes are constructed

to be as far as possible from each other.

The final regressor is obtained by taking the mean of these functions as follows:

f(x) =§(f1(x>+ fz(x»=§(w1+wz)‘x+§(bl+bz)

ie. f(x):%([wl b,]+[w, bz])m 2.1)

2.2.1 Linear Twin Support Vector Regression

y“

f,(X)+¢,

f, (%)

> X
Figure 2.1: Geometrical interpretation of linear TSVR

It is well known that, TSVR constructs two nonparallel hyperplanes in the input

space (see Figure 2.1) defined as

f,(x)=wix+b, and f,(x)=w;x+b, (2.2)

These hyperplanes are determined by solving the following pair of constrained quadratic
programming problems (CQPPs):
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LN, 2y -es, — (Aw, +eb) (v —ec, — (Aw, +eb) + Ce's,

subject to y—(Aw, +eb)>eg -&,, & >0 (2.3)

and L ané(y ree, — (AW, +eb,)) (y +es, — (AW, +eb,)) + C,e'z,

subject to (Aw, +eb,)-y>eg, -&,, &,20 (2.4)

where C,,C, >0,¢&,,&, >0 are input parameters; & = (&, &) & = (Expr i Eom )"
are vectors of slack variables and the training samples are organized in matrix A whose i
row A becomes X;.

Introducing Lagrange multipliers &, = (ayy,-+ 0ty) By = (Byys-- By )t and

o, = (ay, 0 ) By = (Boys1 By )t fOr CQPPs (2.3) and (2.4), their Lagrangian

functions can be written as:

1
L,(w,,b,,&,,a,,B,) = E(y—ee1 —(Aw, +eb)))' x(y—eg, —(Aw, +eb,))+C.e'¢,

_a:tl(y_(Awl +eb1)_e‘91 +§1))_B¥§1 (2-5)

L,(w,,b,,E,,a,,B,) =%(y+882 —(Aw, +eb,))" x(y +es, — (Aw, +eb,)) + C,e'¢,
_atz ((Aw, +eb,) -y —eeg, +§2))_|3t2§2 (2.6)

Using the KKT conditions for Lagrangian function (2.5), we get:

—~A'(y-eg, —Aw, —eb)+A'a=0 (2.7)
—e'(y—eg, —Aw, —eb)+e'a, =0 (2.8)
Ce—a,—PB,=0 (2.9)
y—Aw, —eb, >eg -§;, & =0 (2.10)
o ((y—Aw, —eb)—eg +&,)=0, @, >0 (2.11)
&, =0, B, >0 (2.12)

Since B, =0, from (2.9) we have

0<a,<Cpe (2.13)
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Similarly for Lagrangian function (2.6), we get

~A'(y +eg, —Aw, —eb,) —A'a, =0 (2.14)
—e'(y+es, —Aw, —eb,) —e'a, =0 (2.15)
C,e—-a,—PB,=0 (2.16)
(Aw, +eb,)-y>eg, -&,, &,20 (2.17)
oy ((Aw, +eb,) -y —eg, +&,) =0, a, >0 (2.18)
B2, =0, B, >0 (2.19)

Since B, >0, from (2.16) we
0<a, <C,e,
(2.20)

Now, combining (2.7) with (2.8) and (2.14) with (2.15), we get

(e forwme {3
L ] 1

1A o e o e]mﬂHﬂaz:o 2.22)
L ] 2

For the sake of convenience in expression, Equations (2.21) and (2.22) can be written in

the following simpler forms, i.e.
~G'f,+G'Gu, +G'a; =0  i.e. u; =(G'G)'G'(f, —ay). (2.23)
~G'f,+G'Gu,-G'a, =0 ie u, =(G'G)'G'(f, +a,). (2.24)
where G=[A e],f,=y-eg,u,=[w; b],f,=y+eec,, andu, =[w, b,]'.Note that
G'G is positive semidefinite but in order to overcome the situations in which its inverse
may not exist, a regularization term ol is introduced so that (G'G+ol) becomes
positive definite where o is a very small positive number (o =1e—7). Thus we have
u, =(G'G+col)*G'(f, —a,), (2.25)
u,=(G'G+cl)'G'(f, +a,). (2.26)
Substituting (2.23) in the primal Lagrangian function (2.5) and using (2.10) to
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(2.13), the dual CQPP of (2.3) can be obtained as
min %OL;G(GtG)thm1 —f!G(G'G)'Ga, +fla,

a;eR™
subject to 0<a,; <Cie. (2.27)
Similarly, substituting (2.24) in the primal Lagrangian function (2.6) and using (2.17) to
(2.20), the dual CQPP of (2.4) can be obtained as
1

an > :6(G'G) 'G'a, +1i6(G'G) 'G'a, ~fia,
subject to 0<a, <C,e. (2.28)

Once the vectors a, and a, are known, by solving (2.27) and (2.28) the output for any

data point X e R" is predicted by

F09=2(L00+ () =2 (@w, bI+lw, BDTX T = 1< T, +u,),

2.2.2 Kernel Twin Support Vector Regression

For the nonlinear case, let the input vectors xeR" be mapped into a high

dimensional feature space through a nonlinear mapping function ¢(x). Assume that the

dot product of any two vectors @(X,),#(X,) is given by

k(x1,%,) = (x1)" $(X,)
where k(.,.) is any suitable kernel function (see Table 1.2). Define the kernel matrix
K=K(AA") of sizz. mxm whose (i,j)"entry is k(x;,x;) and also let
K(x", A") = (k(x,x,) - k(x,X,)) be arow vector.

In this case, the & -insensitive down bound and up bound functions are defined by (Peng,
2010)
f,(x) =K', AYw, +b,, f,(x)=K(x',A)w, +b, (2.29)

where w,,w, € R". An intuitive geometric interpretation of nonlinear TSVR is shown in

Figure 2.2.
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Figure 2.2: Geometrical interpretation of kernel TSVR

These hyperplanes are determined by solving the following pairs of CQPPs

min l(y—eg1 —(K(A AW, +eb)) x(y —eg, — (K(A AY)w, +eb)))

(Wi oy & )eRMH™ 2D

+Ce'€,
subject to
y—(K(A AW, +eb)>ee, —&, & >0 (2.30)
and
( bl’p)i F[(]Mmé(y +eg, — (K(A A)w, +eb,))' x(y+eg, — (K(A A)w, +eb,))
+CLe'E,
subject to
(K(A/AYw, +eb,)-y>ee, -&,, &,>0 (2.31)

Introducing ~ Lagrange  multipliers &, = (aty;, ) By = (B Bun)
o, = (ay, 0t ) and B, = (B, B,y)' the Lagrangian functions corresponding to

(2.30) and (2.31) become
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L, (w,,b,&,,0,,B,) = %(y—eg1 —(K(AAYw, +eb)))" x(y —eg, —(K(A A)w, +eb,)

+ Cletgl —ai(y - (K(A, At)Wl +eb)—eg +§;) - B:tlgl

and

(2.32)

L,(w,,b,,§,,a,,B,) :%(y+eg2 —(K(A AYw, +eb,))' x(y+eg, —(K(A A)w, +eb,))

+Czet§2 _atz ((K(A, At)Wz +eb2)—y—e32 +§2)_|3t2§2

respectively.

Proceeding as we have done for the linear case and taking [w;

(2.33)

b] =u, and

[w) b,]' =u,, the duals of (2.30) and (2.31) can be obtained in the following forms:

min %OL;G(GtG)thm1 —f!G(G'G)'Ga, +fla,

a;eR™

subject to 0<a,<Cepg,

and

min %OL;G(GtG)letm2 +f!G(G'G) G a, —fla,

a,eR

subject to 0<a, <C,e,
respectively, where G =[K (A A") el.

Further, we have
u,=(G'G+ol)*G'(f,—a,),
u,=(G'G+cl)'G'(f, +a,).

For an unknown sample x e R", its prediction becomes

f(x)=§(f1(x)+fz(x))=§[K(xHAt) 1(u, +U,)

(2.34)

(2.35)

(2.36)
(2.37)
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Chapter 3

Twin Support Vector Machine Based Regression

3.1 Introduction

In this chapter, we introduce TWSVM Based Regression (TWSVR) proposed by
Khemchandani, Goyal and Chandra (2015). This study was inspired from the work done
by Bi and Bennett (2003) where they have given geometrical interpretation on how a SVR

problem can be regarded as a classification problem. The end regressor f(x)=w'x+b is
the average of two nonparallel hyperplanes i.e. & -insensitive down bound and ¢,-

insensitive up bound regressors determined by solving a pair of CQPPs similar to TSVR
(Peng, 2010). They claimed that though Peng’s approach (2010) to TSVR was motivated
from TWSVM but its formulation is not on the lines of TWSVM and the parameters &;

and &, affect the linear shift of the end regressor f(x)=w'x+b. More precisely, only b

depends on the &; and &, but w is independent of the values of &; and &,.

TWSVR formulation has been mathematically derived from the TWSVM
(Khemchandani et al., 2015) as the standard SVR is related to SVM (Bi and Bennett,

2003). Unlike TSVR, both the parameters ¢; and &, contribute in the orientation of the end

regressor f(x)=w'x+b i.e. w and b are functions of both &, and &,.For the standard
SVR, epsilon also contributes in the orientation of regressor. This means value of epsilon
not only contributes to linear shift of regressor from origin but also determines the end

regressor.

Like TSVR, TWSVR also provides improved results than the standard SVR and is
approximately four times faster than standard SVR (Peng, 2010). Their formulations differ
in the ¢ term only. TWSVR also achieves comparable results to TSVR because ¢ is
chosen to be a small quantity. The formulation of TWSVR is not only better than TSVR
but also is the correct choice for future work on TWSVR (Khemchandani et al., 2015).
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3.2 Linear TWSVR

In this section we briefly introduce how a regressor problem (SVR, TWSVR) can
be regarded as classification problem (SVM, TWSVM) (Bi & Bennett, 2003,

Khemchandani et al., 2015) . Assume that we are given a training dataset (1.1) i.e.
S={(x,¥)r X0, ¥u)} X, =(Xyp %) € X <Ry, eY R
Let DT and D™ be formed by shifting up and down output variables of training points by
g'>0 ie. D" ={(x;,y; +&'),i=1---,;m} and D™ ={(x;,y; —¢'),i =1,---,m}.These can
also be written as
D" ={(A,y; +&'),i=1---,m} (3.1)

D™ ={(A,Y;—&)i=L-m}. (3.2)

(a) (b) (©

Figure 3.1: SVM Regression; (a) original data (b) shifted data and separating hyperplane (c)
regression plane (Bi & Bennett, 2003).

In the augmented spacen +1, we assign label +1 and -1 to training points of D"

and D™ respectively. We find a hyperplane separating these two classes of samples that
can be considered as the regressor function in the n dimensional space (input space).Thus
the problem of finding a SVR hyperplane in n dimensional space is equivalent to finding

a SVM hyperplane in n+1 dimensional space.

In case of TWSVR, TWSVM method instead of SVM is applied on the two sets

D" and D~ that determines two hyperplanes, one close to D™ and other to D~. These
hyperplanes become up bound and down bound function of the end regressor in the input

space, where the end regressor is their average.
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3.2.1 Hard classifier Linear ¢ -Insensitive TWSVR

In this section, we introduce the derivation of the TWSVR from the formulations

of TWSVM having no error term in their objective functions. We apply TWSVM on the

two sets D', D~

solutions of the QPPs

subject to

subject to

(see section 3.2) and obtain two nonparallel hyperplanes as the

min %”AW1 +m,(y +ee’) + eb1||2

wy.bym

(Aw, +7n,(y—eg")+eb)+e<0 (3.3)

min l||Aw2 +1,(y—eg’) +eb2||2

Wobpmp 2

(Aw, +1,(y +eg')+eb,)—e>0 (3.4)

Assume that the solution of (3.3) and (3.4) determines two hyperplanes

wix+n'y+b; =0 and wyx+n5y+b,=0. Now we fix n/for i=12 and apply the

following transformations (a) to (b) on above formulations as follows:

a) Assuming n/ >0 and replacing w; =-w;, /n{, b; =b; /n{ (3.3) and (3.4) become

subject to

subject to

min %(y +es’ —(Aw, +eb))' (y +es’— (Aw, +eb,))

wy.bym

m

min %(y—ee’—(sz +eb,))' (y—es’— (Aw, +eb,))

Wo ,bz 12

2

b) Subtract and add by &’ on the both sides of first and second CQPP respectively:

subject to

min %(y +es’ —(Aw, +eb))' (y +es’— (Aw, +eb,)))

wa.bym

(Aw, +eb))—eg' >y —(2es'—(1/n,)e)
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1

mbin (y—g'e—(Aw, +eb,)) (y—&'e—(Aw, +eb,))
W2,02.112
subject to (Aw, +eb,) +es' <y +(2ee'—(1/n5)e)

c) Replace be=be—e&’ and b,e =b,e+eg’ on the first and second CQPP.

min %(y—(AW1 +eb,))' (y - (Aw, +eb,))

wa.bymy

subject to (Aw, +eb) >y —(2es’ - (1/n])e)

min %(y—(AW2 +eb,)) (y - (Aw, +eb,))

W2 ,by 15
subject to (Aw, +eb,) <y +(2e&' - (1/n5)e)
d) Apply transformation & =2¢'—(1/n{) suchthat ¢, >0:
I'QLH %(y —(Aw, +eb,)))'(y - (Aw, +eb,))

subject to y—(Aw, +eb)) <eg (3.5)

min %(y—(AW2 +eb,)) (y - (Aw, +eb,))

Wo ,bz

subject to (Aw, +eb,) -y <eg, (3.6)

Considering these transformations, the solutions (—wj/n;,—b//n;—¢') and
(-w5 In;,—by In; +&'") of (3.5) and (3.6) determine the two regressor hyperplanes
f,(x) =wix+b and f,(X)=w,x+D,,
where Wy =—w} /n{, W, =-Wh /15, b =—b//n] —¢" and b, = by /n; +¢&'.
The final regressor f(x)=w'x+b is obtained as the mean of f,(x) and f,(x),

where w = (-wj/n; —w5/n3)/2 and b= (-b;/n, —by In;)/2.
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3.2.2 Soft classifier Linear ¢ -Insensitive TWSVR
In this section, we briefly describe the soft margin classifier & -insensitive
TWSVR for the linear case. Adding an error term in objective function, the soft classifier

formulation can be obtained in the following form:

1 1 t t
mb!g E(y_(Awl +eb1)) (y_ (AW1 +eb1))+cle 2;1

subject to y—(Aw, +eb)) <eg +&;, & =0 (3.7)

1 1 t t
MIN 2y —(Aw, +eb,))"(y —(Aw, +eb,))+Ce'e,

subject to (Aw, +eb,)-y<eg, +&,, &, =0, (3.8)
where C,,C, >0 are regularization parameters and &; = (&1, &))", &2 = (Ea1r 0 Eom )
are slack vectors.

Introducing ~ Lagrange  multipliers &, = (otyy, @) By = (Biys 2 Bun) '
o, = (ay, -+ 0t ) and B, = (By, -+, By )" the Lagrangian functions for (3.7) and (3.8)

can be written as:

L(Wy.b,&,) = %(y —(Aw, +eb,))'(y — (Aw, +eb,)) + C,e'E,

(3.9)
- a{(esl +& —y+(Aw, +eb)) - B:tlgl
and
1
L,(w,,b,,&,)= E(y —(Aw, +€b,)) (y — (Aw, +eb,))+C,e'g, (3.10)
- atz (eg, +&, —(Aw, +eb,) +Y)) - Btzgz
respectively. Applying the KKT conditions for Lagrangian function (3.9), we get:
~A'(y-Aw, —eb)-Ala=0 (3.11)
—e'(y—Aw, —eb)—e'a, =0 (3.12)
Ce—a,-p,=0 (3.13)
y—Aw, —eb <eg +§,, & 20 (3.14)
o (e, +&, —(y—Aw, —eb))=0, a,>0 (3.15)
B.&, =0, PB,>0. (3.16)
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Since B, =0, from (3.13) we get
0<a, <Ce. (3.17)

Similarly for the Lagrangian function (3.10), we get

~A'(y-Aw, —eb,)+A'a, =0 (3.18)
—e'(y—Aw, —eb,) +e'a, =0 (3.19)
C,e—a,—Pp,=0 (3.20)
(Aw, +eb,)-y<ee, +&,, &,20 (3.21)
a,(es, +&, —(Aw, +eb, -y)=0, a,>0 (3.22)
BL&, =0, PB,>0. (3.23)

Since B, >0, from (3.20) we get
0<a, <C,e (3.24)

Now, combining (3.11) with (3.12) and (3.18) with (3.19), we get

1Ay o WlD{A:}al:o (3.25)
e | | b e

A y-m e WZD{A:}Z:O (3.26)
e’ | b, e

Equation (3.25) and (3.26) can also be transformed into equations (3.27) and (3.28)
respectively, i.e.

~GYf+G'Gu, -G'a, =0 ie u,=(G'G)'G'(f+a,), (3.27)

~G'f+G'Gu,+G'a, =0 e u,=(G'G)*G'(f-a,), (3.28)
where G=[A ¢e], f=y, u,=[w; b], andu,=[w, b,]'. Again to overcome the
situation in which the inverse of G'G does not exist, a regularization term ol can be
introduced so that (G'G+ o) becomes positive definite with o being a very small
positive number, suchasc =1e 7.

Substituting (3.27) in (3.9) and using (3.14) to (3.17), the dual of (3.7) can be

obtained as
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min %aiG(GtG)thal +f'G(G'G)'G'a, —fla, —ge'a,

m
0.eR

subjectto 0<a,; <Cie. (3.29)

Similarly, substituting (3.28) in (3.10) and using (3.21) to (3.24), the dual of (3.8) can be
obtained as
1

mIRn S6(G'G) *Gla, ~f'G(G'G) 'Gla, +f'a, +ee'e,
subjectto 0<a, <C,e. (3.30)

The above formulations (3.29) and (3.30) determine hyperplanes f,(x) =w'x +b,

and f,(x)=w;x+b,.The end regressor is obtained by taking the mean of f (x) and

f,(X).

3.3 Nonlinear TWSVR

For the nonlinear case, TWSVR determines the ¢ -insensitive down and up bound

functions to be
f,(x) = K(x", A")w, +b, , (3.31)

f,(x)=K(x',A")w, +b, ’ (3.32)

These hyperplanes are determined by the TWSVR as the solution of the following
pair of QPPs:

; 1
(w blrp)!Rerm E(y - (K (AvAt )Wl + (abl))t (y - (K(A, Al )Wl + ebl)) + Cletgl

subject to y—(K(AA)w, +eb)<eg +&, & >0 (3.33)

: 1
WD == (KA AW, +e0,))! (= (K(A AW, +60,)+C,e'e,

subject to (K(A/A)w, +eb,)-y<eg, +&,, &,>0 (3.34)
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Introducing ~ Lagrange  multipliers &, = (otyy, @) By = (Biys 2 Bun) '

o, = (0y, 0t ) and B, = (Boy,-++, B,y )" their Lagrangian functions can be written as:

L (wy,0;,8,) =%(y—(K(A,At)W1 +eb,)) (y - (K(A,A")w; +eb,))
+C,e'¢, —a;(eg, +&; -y + (K(A,AY)w, +eb,)) —Bi&,
(3.35)
L,(W,.b,.5,) =%(y—(K(A,At)W2 +eb,)) (y = (K(A,A")w, +eb,))
+C,e'E, —a,(eg, +&, — (K(A,A")w, +eb,) + y) - B3E,
(3.36)

Proceeding as we have done for the linear case, the duals of (3.33) and (3.34) can
be obtained in the following form:

mL!\ %aiG(GtG)thal +f'G(G'G)'G'a, —f'a, +ge'a,

subject to 0<a, <Cpg; (3.37)
mIRD %(}L;G(GtG)thm2 ~f'G(G'G)'G'a, +f'a, +&,e'a,

subject to 0<a, <C,e. (3.38)
u, =(G'G+aol)'G'(f-a,), (3.39)
u,=(G'G+ol)*G'(f +a,), (3.40)

where u, =[w; b, u,=[w, b,]'and G=[K(AA") e].

For a new data point x € R", the end regressor can be obtained as

f(x)=%[K(xﬂAt) 11U, +u,)
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Chapter 4

LTWSVR: Lagrangian Twin Support Vector
Regression Based on Twin Support Vector Machine

4.1 Introduction

In this work, an implicit Lagrangian for the 2-norm TWSVR is proposed. This
Lagrangian formulation is motivated from the study of (Mangasarian and Musicant, 2001)
for classification problem as an unconstrained differentiable convex problem. Further it is
proposed to solve this problem by a simple and linearly convergent iterative Lagrangian
twin support vector regression method based on twin SVM (LTWSVR) algorithm.
LTWSVR requires at the outset the inverse of a matrix but this can be expressed as matrix
subtraction of identity matrix by a scalar multiple of the inverse of a positive semi-definite
matrix (Balasundaram and Tanveer, 2013). LTWSVR does not need any optimization

tools of linear or quadratic programming solvers.

Inspired by the study of Finite Newton method for Lagrangian SVM for
Classification proposed in (Fung & Mangasarian, 2003) , Newton method for implicit
Lagrangian formulation is discussed  i.e. unconstrained minimization problems

corresponding to the duals of TWSVR is also proposed in section 4.3.

The chapter is organized as follows. In section 4.2 we derive the linear and
nonlinear Lagrangian TWSVR (LTWSVR) by formulating the TWSVR in 2-norm as an
unconstrained minimization problem (Balasundaram and Tanveer, 2013) and obtain its
dual. In section 4.3 we describe Newton method for solving this unconstrained
minimization problem. In section 4.4 we consider LTWSVR as an absolute value equation
problem and it is proposed to obtain solution using Newton method. We also propose a
generalized derivative approach based solution in section 4.5.
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4.2 Lagrangian Twin Support Vector Regression Based on Twin Support Vector
Machine (LTWSVR)

For the linear TWSVR in 2-norm, it’s up-bound f,(.) and down-bound f,(.)
regressor of the form (2.2) and (2.3) are determined by solving the pair of QPPs:

- 1 W, t W, Cl t
I;'V[]b!g E(y—[A e]{bl D (y—[A e]{bl DWL7§1§1

subject to (y ~[A e]{vt\:lD <es +§, (4.1)

1

and
- 1 W, t W, Cz t
Vrvpb!g E(y —[A e]{ b, D (y —[A e]{ b, D +7§z§z

subject to ([A e]m’z} - yJ <es, +&, (4.2)

2

where C;,C, >0 and slack vectors & = (&, ,&1m)"s & = (£, 6om)" - Note that the

non-negative constraints of & and &, have been dropped in (4.1) and (4.2) because they

will be satisfied automatically at optimality.

Let G=[A €],y Then (4.1) and (4.2) become
t
: 1 w w C
min =jy-g| ~G| ||+t
Woby gy Z(y |:bl }J (y {bl }J+ > &;1&1
. Wl
subject to y-G b <eg +§; 4.3)
1
and
t
: 1 w w C
min ={y-G| ° ~G| | |+2g!
My by Z(Y {bz D (y {bz D+ > 828,
. W,
subject to G b -y |<eg, +¢&, (4.4)
2
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Introducing Lagrange multiplier u, = (uy;,---,U,,)", the Lagrangian function L, (.)

corresponding to (4.3) can be written as:

b _1 G W, t G W, C.E! t G W,
L1(W11 1@1)‘5 y- |:bl:| y- |:bl:| + 1&1&1 U Y- {bl}_egl_él

Applying the KKT conditions for Lagarangian function L, (.), we get:

L _o = cy-¢/"||-cu =0 =|"|=@G6)G(y+u) and
1 1
{Wl:| bl bl
9
b,
oL, u
—1=0 =Cg,-u =0 =¢&=-"2.
agl 1&1 1 gl Cl

Substituting these results back into the Lagarangian functionL (.), and ignoring the
constant terms the dual of (4.3) can be written as a minimization problem of the form

mion L,(u,) = %UE[CI—JF HJUl —(y' -y'H -¢e'g)u,
2! 1

(4.5)

where H =G(G'G)'G".

Similarly by introducing the Lagrange multiplier u, = (Uy,--,U,)", L,(.) canbe

written as:

1 WZ t WZ t t WZ
LZ(W27b27§2):E{[yG|:b :D [y_G|:b :|J+C2§2§2:|+u2|:6|:b :|_y_82e_§2:|

Applying the KKT conditions for Lagrange functionL,(.), we get:

Ly =g y—c{wz} +G'u, =0 =|"?|=(G'G)*G'(y-u,) and
a|:W2:| bZ bZ
b

2

%:0 =C.L,-u,=0 =g, :ﬁ'
g, C,
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Substituting these results back into Lagrangian function L,(.), we get:

: 1 |
rﬂzlon L,(u,) :Eutz[c_"' HJuz ~(y'H-y' —¢e'g,)u,

2

(4.6)

The above minimization problems (4.5) and (4.6) can be equivalently written in
the following simpler form:

nULiOn L, (u,) =%u:tLQlul _rltul and
i 1. t
rﬂ!on Lz(uz)zauzQzuz — LU, (4.7)

respectively, where

Q, = 1 HQZ:—+H n=(1-H)y-ge and r=H-1)y-¢,e.
[ C,

Each of the above two QPPs determines the functions

f.(x) =[x 1]_\,tlll}=[xt 1](G'G)"'G'(y +u,) and

fL00=I' 1 VH=[xt 11(6'6) "G (y-u;) (@)

For the nonlinear TWSVR in 2-norm, it’s up-bound f,(.) and down-bound f,(.)

regressors are determined by solving the pair of QPPs:

H 1 t W1 t Wl C1 t
[an!!\ E(y—[K(A,A) e]{le (y—[A e]{le+7élél

s.t. (y ~[K(AAY) €] Vt\)llD <eg +§, (4.9)
. 1 . _WZ ' W, C2 ¢

and - MIN E(y K(AA) e D (y—[A e]{ 5 D+7azaz

s.t. [[K(A AY) e] } yJ <eg, +§, (4.10)
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Proceeding as we have done for the linear TWSVR, the dual QPPs of (4.9) and (4.10) can
be obtained as a pair of minimization problem of the form (4.7) where u,,u,,Q,,Q,,r;,r,
has the same definition as defined above but the augmented matrix G is defined by:

G=[K(AAY) €] - T e kernel regressor functions can be determined as the mean of

the up-bound f,(.) and down-bound f,(.) regressor functions as follows:

£,(x) = [K(x', Al 1]{\:)/1}=[K(Xt,At) 1(G'G)*G'(y+u,) and

1

f,(x) =[K(x', A") 1]{\::2} =[K(x",A") 1(G'G)"G'(y-u,) (4.11)

2

Now we discuss the solution of dual QPPs (4.7) by our iterative LTWSVR
algorithm.

The KKT necessary and sufficient optimal conditions (Mangasarian, 1994) for the
dual QPPs (4.7) will become

0<u, L(Qu,-r,)>0 and 0<u, L(Q,u,-r,)>0 (4.12)
For any two vectors aand b the following identity holds

0<alb>0<a=(a-ab),, a>0

Using this identity optimal condition, for any «;,a, >0 (4.12) can be written as
Qu; - =(Qu; —-n)-ou,), and Q,u,-r,=((Qu, -r,)-aU,), (4.13)

These optimality conditions are also the necessary and sufficient condition for the
unconstrained minimum of the implicit Lagrangian (Mangasarian and Solodov, 1993)
associated with the dual problems (4.7):

: 1 1
min L (u,)= Euinu1 —r/u, +§Q|(— a,u, +Q,u, —r1)+||2 ~[Quu, - r1||2)

ueR™ 1
and

: 1 1
min Lz (uz) :EutzQzuz _rztuz +§Q|(—052U2 +Qzuz _r2)+||2 _”Qzuz _r2||2)

u,eR™
2€ 2

(4.14)
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The optimality conditions (4.12) can also be written as

u, u u,  u
0<*t1-—-2t—-(rp,-Hu)>0 and 0<—*%1—2—(r,—Hu,)>0
Cl Cl (1 1) Cz C:2 (2 2)
u, u u, u
< 0<21-2-(rp,-Hu)>0 and 0<—%1—%2—(r,—Hu,)>0
Cl Cl (1 1) Cz c:2 (2 2)
= h:(rl—Hu1)+ and ﬁ:(rz—Huzh
C, C,
I I
£C1/2+Hjul:rl+|rl—Hul| and £C2/2+Hju2:r2+|r2—Hu2|

Finally, we have following simple iterative scheme for LTWSVR algorithm: 1=012,...

u, =Q2’1(r1 +‘r1 — Hu‘l‘) and u, =Q3j1(r2 +‘r2 — Hu‘z‘) (4.15)
where,
n=(-H)yy-ge, r,=(H-l)y-se H=G(G'G)'G', Q, :£C|/2+Hj,

1

0 L i G [A €] (linear)

= + an = .

*lc,l2 [K(AA) e]  (nonlinear)

Remark: The proposed LTWSVR algorithm requires at its very beginning the inverse of
matrices Q, and Q,. but this explicit computation are not required because once the

matrix (G'G)"is known, they can be easily obtained from the result (Balasundaram and

Tanveer, 2013)

1 =C,l 1 —Ck—/zH for k =1,2.
1+(C,/2)

Finally, the end regressor function is defined as:

() + f,(x)
2

where, for linear case

f00=[x' 1(G'G)*G (y+u,) and f,(x)=[x' 1(G'G)*G'(y-u,)

f(x)=

Similarly for the nonlinear case,
f,(x)=[K(x',A") 1(G'G)"'G'(y+u,) and f,(x) =[K(x',A") 1(G'G)*G'(y-u,)
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4.3 Newton method for LTWSVR

In this section, Newton method is described for the solution of the implicit
Lagrangian formulations i.e. unconstrained minimization problems (4.14) that lead to
highly effective iterative scheme (Fung et al., 2003). In short, (4.14) can also be written

as:

; 1 1
IILLD L (uy) =EULQkuk ~r U, +§m(_akuk +Q U, _rk)+||2 _”Qkuk _rk”Z) k=12

k

The basic Newton step for determining the vector u;* e R™ from its previous

value u, can be given by the following iterative formula:
VL (u)+o°L(u)(ut —uy) =0, fori=01,... (4.16)

The gradient of L, (u,) can be obtained as

VL, (u) = %= (Quu, —r) (@ - e D, - 1))

Oy
The Hessian matrix of second order partial derivative of L, (u,) does not exist because
gradient V(L, (u,)) is not differentiable. However, it has been shown that a generalized
Hessian matrix of L, (u,) exist (Facchinei, 1995; Hiriart-Urruty, Strodiot, & Nguyen,
1984) and is defined as follows:
a l - .
oL, (1) = {2 =2 Q-+ diag(Q, — e —1,). (a1 -Q,)
k
where diag(.). is a diagonal matrix and (-), denotes the step function, which is taken here
as the subgradient of the plus function (-),, i.e. the step function x. denotes a vector X

with all positive components set to 1 and all nonpositive components of X set to zero
(Mangasarian, 2002).

We note that if Q, be symmetric positive definite matrix and e, >|Q, | then both

(1 -Qy)

VL, (u,) and &°L,(u,) containing multiplicative factor ~—~——kZwill be positive
Oy
definite. So Newton iteration (4.16) is simplified to:
h (u})+oh(u})(uy* —u,)=0 i=01... (4.17)
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where,

ay

hy (Ulk) = (QkUL -r)—((Q, _akl)uik -r), ZEMJ VL, (UL) and

oh (ul) = Q, +diag((Q —ay UL —1, ). (et ] - Q) :[Mj JPL(u})

ay
4.4 LTWSVR as an absolute value equation problem by Newton method

Again, consider the absolute value equation problem

+Hjuk =r +[r, —Hu, |, k=12

I
o

I
C./2

Let, gk(Uk)=[ +Hjuk—(rk+|rk—Huk|), k=12

Then, the generalized Jacobian of g,(-) can be obtained in the following form

I
C,/2

agk(uk):E +Hj+diag(sign(rk—Huk))H

Then, Newton method becomes

69, (U )(Ut —ul)=-g,(ul) i=01...

H ! + Hj+ diag(sign(r; — Hu‘k))H}(u‘k+1 —uy)

C./2
- {[C:/Z + Hju‘k ~(r, +r - Hu‘k‘)}

k=12 and i=0]1,...
where,

rh=(-H)y-¢e, r,=(H-1)y-¢,e and H=G(G'G)'G"
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4.5 Generalized Newton method for LTWSVR

A generalized derivative approach studied in (Fung and Mangasarian, 2003;
Balasundaram and Singh, 2010) is described here for solving the unconstrained

minimization problems described in section 4.2:

Consider g, (u,) == —(r, — Hu,). and g,(u,)=—2—(r, — Hu,). .
C, C,

The gradients should be zero.

Then, using a generalized derivative, the generalized Jacobians of g,(u,) and g,(u,) can

be taken as

89, (uy) =Cl+diag<sign«r1 ~Hu,),)H

1

and

og(u,) = CL+ diag(sign((r, —Hu,),))H, respectively.

2
Using this, a generalized Newton method for solving g, (u,) =0, k =1,2 becomes
a9, (u)u™ —u) =-g,(u,) k=12,...and i=01...

which lead to the following iterative method:

| . . i+1 i
|:(Ck/2 + Hj+d|ag(3|gn((rk - Huk)+))H}(uk -uy)
:_{i_(rk _(rk _HUL)+)}

Cy

k=12 and i=0]1,...
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Chapter 5

Experimental Results and Analysis

In this chapter, we investigate the effectiveness and speed of the proposed method
LTWSVR, defined by gradient based iterative algorithms: FLTWSVR, NLTWSVR and
GLTWSVR, on five synthetic and several well known real world datasets. We focus on
the comparison of their results with standard SVR, TSVR and TWSVR in terms of

accuracy and learning time.

The chapter is organized as follows: we introduce the specification of experimental
environment for all computations in section 5.1. We describe the performance of proposed
method LTWSVR on synthetic and real world datasets in sections 5.2 and 5.3
respectively.

5.1 Experimental Specification

All experiments are implemented on a PC running Windows 7 with 3.2 GHz Intel
CORE 2 processor, 3 GB RAM with MATLAB 2008a. QPPs involved in SVR, TSVR
and TWSVR are solved by Mosek optimization toolbox (available online at http://www.
mosek.com) for MATLAB which implements fast interior point based algorithms for
convex optimization problems. No optimization tool is required for our proposed method

LTWSVR. In order to construct nonlinear regressor, Gaussian kernel with parameter
w1 > Odefined by k(x,,X,) =exp(—pu|x, —x2||2) is utilized. To compare the robustness of

the proposed method, root mean square error (RMSE) is employed and is defined as

RMSE=\/ﬁi(yi )

where y, and y, are the observed and predicted value for the i"™ sample respectively and

N is the number of test samples.
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To reduce the complexity of the optimal parameter selection procedure for TSVR,
TWSVR and proposed LTWSVR, we let C,=C,and g, =¢, as in Peng (2010).

Furthermore, we let regularization parameters C,C,=C, [107,...,10°], tolerance
parameters ¢,¢, =¢, €[107°,...,10™"] and kernel parameter ue[27°,...,2°]. These

optimal parameters are tuned by performing standard ten-fold cross validation on

experimental datasets.

5.2 lllustrations and Experiment on Synthetic Datasets

In this experiment section, we evaluate the performance of proposed LTWSVR
algorithms on five synthetic datasets generated by the functions which are defined in
Table 5.1. For each functiony = f(x), we generated 1000 testing samples(X,y) using
y = f(x)and 200 training samples (x,y)using y= f(x)+n randomly on the intervals
defined in Table 5.1, where n is additive noise. Note that for robust comparison, we
contaminated 200 training samples with two different kind of noises: a) uniform
distribution over the interval [-0.2, 0.2] and b) Gaussian distribution with mean O and
standard deviation 0.2. The optimal values for regularization, error tolerance and kernel
parameters are obtained from their appropriate ranges as described in section 5.1 by
performing ten-fold cross validation on the training set. Using these optimal values and a
Gaussian kernel, the RMSE on testing set for methods SVR, TSVR, TWSVR, FLTWSVR,
NLTWSVR and GLTWSVR were obtained and summarized in Table 5.2. It can be
observed from the Table 5.2 that the proposed LTWSVR achieve the competitive
generalization performance with much faster learning speed in comparison to SVR, TSVR
and TWSVR.

For evaluating the performance of LTWSVR algorithms, the first example
considered is the regression of the function (Riberio, 2002) as defined in Table 5.1, i.e.

f (x) =sin(x)cos(x?), xe<[O0, 6]

The approximation of this function by SVR, TSVR , TWSVR, FLTWSVR, NLTWSVR
and GLTWSVR methods for uniform and Gaussian additive noises over test set were
obtained and illustrated in Figures 5.1(a) and 5.1(b) where noisy training samples marked
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Table 5.1: Functions used for generating synthetic datasets

Name Function Definition Domain of Definition
Function 1 sin(x) cos(x*) x €0, 6]
Function 2 exp(x, sin(rx,)) Xis12 € [-11]
Function 3 Sin(Zﬂ(0'35X10+l)j x €[0,10]
0.35x +1
VY
Function 4 ® 5 X2) 5 X, , €[0,10]
3(5_)(1) +(5_X2) -
; _ 2
Cnction 5 1.9[1.35+exp(x,)sin(13(x, —0.6)°) Xrs <[01]

+exp(3(x, —0.5))sin(4z(x, —0.9)%)]

by symbol ‘o’. Prediction errors are obtained by taking the difference between the
observed and predicted values. The prediction errors by SVR, TSVR, TWSVR,
FLTWSVR, NLTWSVR and GLTWSVR methods for uniform and Gaussian additive
noises over test set were obtained and illustrated in Figures 5.2(a) and 5.2(b) respectively.
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Figure 5.1: Results of approximation of Sin(X)cos(x*) by SVR, TSVR, TWSVR and proposed methods:

FLTWSVR, NLTWSVR, GLTWSVR on testing set. Gaussian kernel was employed.
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Figure 5.2: Prediction Error over the test set by SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and GLTWSVR for
the dataset generated by the functionSin( X) cos(x*) . Gaussian kernel was employed.
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Table 5.2: Performance comparison of our proposed methods: FLTWSVR, NLTWSVR and GLTWSVR with
SVR, TSVR and TWSVR on synthetic datasets for uniform and Gaussian additive noises. RMSE was used for
comparison. Gaussian kernel was employed. Time is for training in seconds. Bold type shows the best

result.

a) Uniform noises from [-0.2, 0.2]

Dataset SVR TSVR TWSVR FLTWSVR NLTWSVR GLTWSVR
(Train Size, Test (C,me) (C1=Co, w, e1= €&2)  (C1=Co p, &1=&2)  (C1=C2 W, €1=€2)  (C1=C2 W, €1=€2)  (C1=C2, W, 1= €2)
Size) Time Time Time Time Time Time
Function 1 0.0444 0.0352 0.0358 0.0377 0.0350 0.0350
500X 11000 X 1 (10',2%10™) (10%,2%,10%) (10',2%10™) (10%,2%10%) (10%2%109) (10%2%109)
( ’ ) 0.1755 0.1355 0.1270 0.0212 0.0717 0.0719
Function 2 0.0715 0.0643 0.0644 0.0584 0.0592 0.0592
200 X2.1000 X 2 (10%,2*,10™) (10°,2*,10™) (10°,2,109%) (10%,2,109) (10%,2*,10%) (10%,2*,10%)
( ’ ) 0.1148 0.0875 0.0930 0.0128 0.0443 0.0407
. 0.0568 0.0599 0.0598 0.0595 0.0597 0.0597
FunCtlon 3 5 A0 -1. 0 ~2 -1 1,2 -1 4 A1 -2 2 H2 -1 2 H2 -1
200X 1.1000 X 1 (10°2°10™) (10°,2°,10™") (10',2%,10™") (10°2',10%) (10%,2°,10™") (10%,2°,10™")
( ’ ) 0.2286 0.0632 0.0662 0.0185 0.0391 0.0383
Function 4 0.0778 0.0902 0.0889 0.0901 0.0901 0.0901
200X 2.1000 X 2 (10°2%,10% (10%,2%,10%) (10" 22,10 (10°23,10% (10°23,10% (10°23,10%
( ’ ) 0.1084 0.0964 0.1351 0.0122 0.0226 0.0236
Function 5 02.3209 s 05.4(282 . 01.4(283 . 05.36561 s 01.4§10 . 01.4§10 .
200X2,1000 X 2) (10%,2°,107) (10°,2°,10™) (10',2°,10%) (10°,2°,107%) (10',2°,10%) (10',2°,10%)
( ’ 0.1235 0.1087 0.0734 0.0131 0.0330 0.0324
b) Gaussian noise with mean zero and standard deviation 0.2
Dataset SVR TSVR TWSVR FLTWSVR NLTWSVR GLTWSVR
(Train Size, Test (C,me) (C1=Co, w, e1= €&2)  (C1=Co p, &1=&2)  (C1=C2 W, €1=€2)  (C1=C2 W, &1=€&2)  (C1=C2, W, 1= €2)
Size) Time Time Time Time Time Time
. 0.0987 0.0853 0.0678 0.0783 0.0801 0.0801
FunCtlon 1 0 ~H4 -1 5 13 -1 0 ~3 -1. 2 3 -1 2 3 -1 2 3 -1
200X 1,1000X 1) (10°2° 10" (10°,2° 10™) (10°,2° 10™) (10%,2° 10 (10%,2° 10" (10%,2° 10"
( ’ 0.0690 0.3106 0.0630 0.0150 0.3270 0.4522
Function 2 0.1003 0.1084 0.1085 0.1048 0.1046 0.1046
200X 2.1000 X 2 (10°.2*,10%) (10°2*,10% (10°2*,10%) (102,109 (10'2%,109 (10'2%,109
( ’ ) 0.1153 0.0581 0.0565 0.0125 0.0413 0.0400
Function 3 04.09092 . 91.07236 . 91.07237 s 95.07225 s 95.07225 s 95.07225 s
200X 1,1000X 1) (10°2°,10%) (10%,2%,10%) (10%,2%,10?) (10°,2%,10? (10°,2%,10?) (10°,2%,10?)
( ’ 0.1855 0.0574 0.0604 0.0166 0.0275 0.0269
Function 4 0.1444 0.1339 0.1339 0.1334 0.1334 0.1334
. (10'2*,109 (10" ,2*,10™ (10" ,2*,10%) (10°,2*,10%) (10°,2*,10%) (10°,2*,10%)
(200X 2,2000 X 2) 0.1742 0.0615 0.0565 0.0166 0.0269 0.0269
Function 5 02.4389 . 91.57582 . 91.57582 . 05.3?84 s 00.5269 . 00.5269 .
200X 2.1000 X 2 (10%,2°,10%) (10%,2°,10%) (10%,2°,10%) (10°2°107%) (10°,2°,10%) (10°,2°,10%)
( ’ ) 0.1173 0.0584 0.0563 0.0177 0.0410 0.0413
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5.3 Real-world Benchmark Datasets

In this section, to further test the effectiveness of LTWSVR algorithms compared
to SVR, TSVR and TWSVR, we illustrate the experiments performed both linearly and
nonlinearly on several well known real-world datasets. For this we use 27 real-world
datasets: Hydraulic actuator (Gretton et al., 2001; Sjoberg et al., 1995); Gas Furnace (Box
and Jenkins, 1976); Pyrim, Servo, Triazines, Wisconsin breast cancer, Boston, Forest
fires, Concrete CS, Wine quality red, Concrete Slump and AutoPrice datasets form UCI
repository (Murphy and Aha, 1992); Flexible robotic arm
(http://homes.esat.kuleuven.be/~smc/daisy/daisy data.html); Pollution, NO2, Bodyfat,
Balloon and Quake (http://lib.stat.cmu.edu/ datasets); Motorcycle (Eubank, 1999); Demo
(DELVE, 2005); Sunspots  times  series  dataset (http://www.bme.oqi.
edu/~ericwan/data.html); I1BM, Standard & Poor 500 (SNP500), Citigroup, Intel,
Microsoft and RedHat financial time series datasets (http://finance.yahoo.com).

For all experiments, first all samples are normalized before learning as follows:

min
. B
1 Xr_nax min

i X

X its corresponding estimated

xn? 1]

where x; is (i, j)" entry in the input matrix A

min
i

min

normalized value and x;™ =min(x;) and X" =min(x;), j=1...,n denote minimum
iem jen

and maximum values in the j™ column respectively. Second, optimal parameters are
determined by performing ten-fold cross-validation on training set as whole dataset. As for
testing, we apply the cross-validation by taking random ninety percent of the dataset for
training and remaining for testing. Repeating this process ten times and taking their

average, test accuracy is determined.

The Hydraulic actuator dataset is taken as the first example for our experiment. It
has been widely used in nonlinear system identification (Gretton et al., 2001; Sjoberg et
al., 1995). It contains 1024 samples with input variable u(t) and the output variable y(t)
denotes the valve position and oil pressure respectively. For the purpose of comparison,
1021 samples with five attributes are taken of the form (x(t), y(t)) where
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x(t) =[y(t-1),y(t-2),y(t-3),ut-1),u(t-2)I"

As for second example, frequently used for nonlinear identification problems, Box
and Jenkins gas furnace dataset is taken. It is a time series dataset which contains 296
samples with input variable u(t) and output variable y(t) denote gas flow rate and CO,
concentration respectively. In experiment 293 samples with six attributes of the form:
(x(t), y(t)) where x(t) =[y(t—1),y(t—2),y(t-3),u(t-1),u(t —2),u(t - 3)]', are taken for
testing. The prediction accuracy and prediction error plots over whole dataset employing
linear kernel by SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and GLTWSVR are
shown in Figures 5.3 and 5.4 respectively. Using Gaussian kernel, prediction accuracy and
prediction error over the whole dataset by SVR, TSVR, TWSVR, FLTWSVR,
NLTWSVR and GLTWSVR are shown in Figures 5.5 and 5.6 respectively.

As an interesting example, the flexible robotic arm, in estimation of the inverse
dynamics of a flexible robot arm (Souza et. al. 2006), is taken. The dynamics of robot arm
is modeled as a transfer function of the measured values of the reaction torque of the

structure (input time series, u(t)) whose output y(t) is its corresponding acceleration.
Following the work of (Souza and Barreto, 2006), samples are taken to be of the form:

(x(t), X (t)) where x(t) =[u(t=1),...,u(t=5),y(t=1),...y(t—=4)]" and x°"(t) = u(t).

In addition to the above datasets, experiments are performed on other well known
datasets: Bodyfat, NO2, Balloon, Pollution and Quake available from Statlib collection
http://lib.stat.cmu.edu/datasets. Bodyfat is a real dataset lists estimates of the percentage of
body fat of 252 peoples having from body density values. NO2 dataset contains 500
sample from a dataset with seven variables collected by the Norwegian Public Roads
Administration (Vlachos, 2005). Balloon dataset contains 2001 observations of radiation
having trend and outliers. The pollution dataset lists an estimate relating air pollution to
mortality. Quake dataset contains 2178 samples with three attributes (focal depth, latitude
and longitude), lists information for earthquakes occurred between January 1964 and
February 1986.

Another popular benchmark dataset, Motorcycle consists of a series of

accelerometer readings over time in a simulation of motorcycle accidents used to test
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crash-helmets (Silverman, 1985). The Demo dataset (DELVE, 2005) which consists of
294 samples artificially generated from a distribution based on assumptions and notions
concerning the relationships between people's sex, age, number of siblings, income, and
favorite colour. The Sunspots (http://www.bme.ogi. edu/~ericwan/data.html) time series
dataset, containing 295 yearly readings (year 1700 to 1994) but only 290 samples taken as

a whole because current value is predicted from five previous values.

To further test the performance of algorithms, we evaluated them on several
publicly available datasets from UCI repository including Pyrim, Servo, Triazines,
Wisconsin breast cancer, Boston, Forest fires, Concrete CS, Wine quality red, Concrete
Slump and AutoPrice datasets. These datasets are commonly used in testing regression
algorithms.

Finally, as examples of financial time series datasets, the stock index of Citigroup,
Intel, Microsoft and RedHat are considered. These datasets contain information about 755
closing stock prices (01-01-2006 to 31-12-2008). Since the current value is predicted from

five previous values so only 750 samples taken as a whole dataset.

5.3.1 Numerical experiment using linear regressors

In this sub-section, all the experiments are performed using the linear kernel. In
order to evaluate the performance of the LTWSVR algorithms (FLTWSVR,NLTWSVR,
GNLTWSVR) with SVR, TSVR and TWSVR, we obtained optimal parameter values by
performing ten- fold cross validation for each dataset and computed learning time, average
RMSE and standard deviation summarized in Table 5.3. As seen from Table 5.3, for most
of the cases, LTWSVR algorithms derive better generalization performance than SVR,
TSVR and TWSVR. As for training time, LTWSVR algorithms spend the least CPU time

among all the methods.

To analyze the performance of all the six algorithms over multiple datasets, we
used Friedman test with post hoc test which is stated as a simple, safe and robust non-
parametric test (Demsar, 2006). For this, we computed average ranks of these algorithms
on RMSE values which are listed in Table 5.4. Under the null hypothesis that all the

algorithms are identical, Friedman statistics can be computed as follows:
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2
72 = 1?( 37 {(4.77772 +4.09252 + 4.0372 + 2.6296% + 2.7777% +2.6851%) — 0 27 }
X
~ 32.4965
26 x 32.4965

=8.2427.

F T 97 x5-32.4965

where F; is distributed according to F —distribution with (5,130) degrees of freedom.
The critical value of F(5,130) is 2.2839 for the level of significance « =0.05 and
similarly 1.8920 for « =0.10. Since F; is greater than both critical values, so we reject

the null hypothesis. We use the Nemenyi test for further pair wise comparison. According
to (Demsar, 2006), the performance of two algorithms is significantly different if the

corresponding average ranks differ by at least the critical difference, at p =0.10 critical

difference (CD) is 2.5891/66 X277 ~1.3182. we have the following comparison results:
X

(i) For Absolute, Newton and Generalized; the difference of one algorithm with other two
algorithms is less than the critical difference value. This indicates that the post hoc test
fails to detect any significant difference among these three algorithms.

(i) The Absolute method significantly performs better than the SVR
(4.7777-2.6296=2.1481>1.3182), the TSVR (4.0925-2.6296=1.4629>1.3182)

and the TWSVR (4.0370—-2.6296 =1.4074>1.3182).

(iii) The  Newton method significantly performs better than the SVR
4.7777-2.7777=2>1.3182). There is no any significant difference detected for the

Newton method compared with the TSVR (4.0925-2.7777=1.3148<1.3182) and
the TWSVR (4.0370-2.7777=1.2593 <1.3182).

(iv) The generalized method significantly performs better than the SVR
(4.7777-2.6851=2.0926>1.3182), the TSVR (4.0925—-2.6851=1.4074>1.3182)

and the TWSVR (4.0370-2.6851=1.3519>1.3182).

Page | 44



Prediction

1.2 T

1 : _
: A
g [
Ag it P A g
08 § H £ d i3 .
i AN YUY G ial
PR {1 A L R Vi
o YA WA
i | ? 3 [ e M
04r° 4 f %w Y \ § A |
H g oF ' l&'
» F E = w %
RV
02 15888 Original
v 1) 2
]U 1 I%r FLTWSVR
3 MLTWSVR
L -2 GLTWSVR
0
' ——— SVR
TSVR
02 | | | | TWSVR
0 50 100 150 200 250 300
Samples
Figure 5.3: Result of comparison on Gas furnace dataset. Linear kernel was employed
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GLTWSVR for the gas furnace dataset of Box-Jenkins. Linear kernel was employed.
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Table 5.3: Performance comparison of our proposed methods: FLTWSVR, NLTWSVR and GLTWSVR with SVR, TSVR and
TWSVR. RMSE was used for comparison. Linear kernel was employed. Bold type shows the best result.

Dataset SVR TSVR TWSVR FLTWSVR NLTWSVR GLTWSVR
(Train Size, Test Size) C 9 (C=Cy, 1= 85) (C1=Cy &1= &) (C1=Cy, &1 &5) (C1=Cy e1= &) (Ci=Cy, &1= &)
' Time Time Time Time Time Time
Hydraulic actuator ~~ 0.0145:0.0046  0.0134:0.0034  0.0135:0.0034 ~ 0.0133:0.0038  0.0132:0.0041  0.0133:0.0038
(1021 X 5) (10,107 (102,107 (102,107 (10°,10%) (10°,10%) (10*10%)
4.3804 1.6917 1.7299 0.1617 0.3350 0.6250
Gas furnace 0.0199+0.0068 = 0.0168+0.0040 = 0.0167+0.0041  0.0165+0.0045 0.0165+0.0045  0.0166+0.0047
(293 X 6) (10%,10% (10",10%) (10",10%) (10°,10%) (10°,10%) (10°,10%
0.1438 0.0989 0.0980 0.0099 0.0111 0.0116
Pyrim 0.1056£0.0577 ~ 0.1268+0.0725 = 0.1257+0.0717  0.1183+0.0640 = 0.1241+0.0727 = 0.1241+0.0727
24X 26 (10°,107) (10',10%) (10°,10%) (10°,10™) (10°,10%) (10°,10%)
( ) 0.0080 0.0120 0.0160 0.0008 0.0054 0.0878
Servo 0.2288+0.1025  0.1608+0.0372  0.1605+0.0372  0.1608+0.0361  0.1608+0.0361  0.1608+0.0361
(10%,10%) (102,107 (10",10% (10°,10%) (10°,10%) (10°,10%)
(167 X 4)
0.0411 0.0289 0.0279 0.0021 0.0082 0.0083
Triazines 0.2217+0.0424  0.2063+0.0726  0.2104+0.0754  0.2073+0.0703 = 0.2073+0.0703 = 0.2073+0.0703
(186 X 58) (10°,10% (10",10%) (10°,10% (10°,10% (10°,10% (10°,10%
0.0512 0.0387 0.0356 0.0033 0.0114 0.0191
Wisconsin B.C. 0.1835#0.0558 ~ 0.1887+0.0405 = 0.1887+0.0404  0.1894+0.0613 = 0.1894+0.0613 = 0.1894+0.0613
(194 X 34) (10",10% (10°,10%) (10°,10%) (10°,10%) (10°,10%) (10*10%)
0.0498 0.0391 0.0395 0.0038 0.0077 0.0083
Boston 0.1130+0.0434  0.1076+0.0207 = 0.1076+0.0206  0.1061+0.0265 0.1062+0.0261 = 0.1061+0.0265
(506 X 13) (10°,10% (10",10%) (10",10%) (10°,10%) (10°,10%) (10*10%)
0.5735 0.2853 0.2876 0.0269 0.1032 0.1027
Forest fires 0.0441+0.0413 = 0.0415+0.0428  0.0416+0.0427 = 0.0436+0.0409  0.0436+0.0409 = 0.0437+0.0408
(517 X 12) (10°,10%) (10",10% (10",10%) (10°,10%) (10°,10%) (10%10%)
0.6717 0.3425 0.3476 0.0276 0.0790 0.1075
ConcreteCS 0.1305+0.0094  0.1328+0.0076  0.1306+0.0082  0.1304+0.0104  0.1305x0.0055 = 0.1305+0.0055
(1030 X 8) (10%,10%) (10,10 (10°,10% (10,10 (10,10 (10,10
3.8649 2.6391 2.0905 0.2377 1.6756 1.6685
Wine quality red 0.1423+0.0118  0.1304+0.0059  0.1303+0.0059  0.1302+0.0070 = 0.1301x0.0064 = 0.1300+0.0096
(1599 X 11) (10",10% (10",10M (10,10-3) (10°,10%) (10°,10%) (10*10%)
12.389 5.0902 5.1135 0.5791 2.2136 2.2322
Concrete Slump 0.0612+0.0161 =~ 0.0595+0.0150 = 0.0600+0.0152  0.0594+0.0151  0.0596+0.0180 = 0.0594+0.0151
(103 X 10) (10°,10% (10%,10M (10",10% (10°,10% (10°,10% (10°,10%
0.0131 0.0145 0.0148 0.0008 0.0029 0.0029
Auto price 0.0879+0.0259 = 0.0898+0.0253 = 0.0898+0.0253  0.0856+0.0225 0.0865:0.0226  0.0861+0.0238
(159 X 15) (10",10%) (10%10% (10,10 (10°10%) (10°,10% (10%,10%
0.0306 0.0379 0.0302 0.0024 0.0299 0.0150
Flexible robotic arm = 0.0150£0.0007 = 0.0149+0.0005 0.0148+0.0006  0.0148+0.0005 0.0148+0.0005 0.0148+0.0005
(1019 X 9) (10%,10% (10",10M (10",10%) (10,10 (10,10 (10,10
42171 1.8890 1.9419 0.2334 1.6090 1.5877
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Pollution
(60X 15)

NO2
(500X 7)

Bodyfat
(252 X 14)

Balloon
(2001 X 1)

Quake
(2178 X 3)

Motorcycle
(133X 1)

Demo
(2048 X 4)

Sunspots
(290 X 5)

IBM
(750X 5)

SNP500
(750X 5)

Citigroup
(750 X 5)

Intel
(750 X 5)

Microsoft
(750 X 5)

RedHat
(750 X 5)

0.1175+0.0498
(10",10%)
0.0059

0.1025+0.0189
(10>10™)
0.5956

0.0504+0.0486
(10%,10%
0.1075

0.0552+0.0046
(10%,10M
20.444

0.1792+0.0103
(10%,10%)
39.092

0.2909:+0.0542
(10°,10%
0.0163

0.1026+0.0110
(10°,10%
33.092

0.0940+0.0219
(10%,10%)
0.1323

0.0272+0.0032
(10°,10%)
1.9445

0.0222+0.0029
(10°,10%)
15770

0.0149+0.0013
(10%,10%)
1.6472

0.0294:0.0042
(10%,10%
1.5290

0.0279+0.0050
(10%,10%)
1.5535

0.0254+0.0052
(10°,10%)
1.5655

0.1263+0.0495
(10°10%)
0.0269

0.1020+0.0097
(10",10%
0.2683

0.0234+0.0257
(10",10%
0.0737

0.0512+0.0061
(10°,10%)
17.161

0.1718+0.0091
(10°,10%
12.358

0.2224+0.0269
(10",10M
0.0185

0.0997+0.0118
(10°,10%)
9.6141

0.0882+0.0154
(10",10M
0.0852

0.0270+0.0021
(102,107
0.6950

0.0223+0.0029
(10",10%)
0.8678

0.0149+0.0013
(10,107
0.9193

0.0293+0.0049
(10",10%
0.8357

0.0281+0.0029
(10",10%)
0.8386

0.0255+0.0047
(10",10M
0.8445

0.1264+0.0495
(10,10
0.0098

0.1020+0.0097
(10",10%)
0.2631

0.0235+0.0256
(10",10%)
0.0725

0.0512+0.0061
(10°,10%)
17.090

0.1718+0.0091
(10,109
11.007

0.2212+0.0278
(10",10%)
0.0187

0.0997+0.0118
(10°,10%)
9.7527

0.0881+0.0199
(10",10%)
0.0829

0.0270+0.0030
(10",10%)
0.8688

0.0223+0.0029
(10",10%)
0.8637

0.0149+0.0013
(10,107
0.9113

0.0293+0.0049
(10,107
0.8333

0.0281+0.0029
(10",10%)
0.8441

0.0255+0.0047
(10",10%)
0.8315

0.1209+0.0497
(10°,10%)
0.0005

0.101620.0126
(10,107
0.0261

0.0257+0.0245
(10°,10%)
0.0041

0.0511+0.0057
(10%,10%
1.2527

0.1718+0.0091
(10,107
1.3326

0.2211+0.0269
(10°,10%)
0.0011

0.0997+0.0118
(10°,10%)
1.1899

0.0881+0.0195
(10°,10%)
0.0075

0.0269+0.0035
(10°,10%)
0.0736

0.0222+0.0033
(10°,10%
0.0744

0.0149+0.0013
(10°10%
0.0713

0.0293+0.0049
(10°,10%)
0.0715

0.0279+0.0047
(10°,10%)
0.0750

0.0254+0.0050
(10°,10%)
0.0716

0.1261+0.0494
(10°10%)
0.0035

0.1010+0.0170
(10°,10%)
0.0985

0.0257+0.0245
(10°,10%)
0.0069

0.0511+0.0057
(10%,10%
10.010

0.1718+0.0091
(10,107
7.6448

0.2202+0.0299
(10°,10%)
0.0033

0.0997+0.0118
(10°,10%)
4.4432

0.0879+0.0174
(10°,10%)
0.0204

0.0269+0.0035
(10°,10%)
0.1471

0.0222+0.0033
(10°,10%
0.1140

0.0149+0.0013
(102,10%
0.0991

0.0293+0.0049
(10°,10%)
0.1467

0.0279+0.0047
(10°,10%)
0.1503

0.0254+0.0050
(10°,10%)
0.1503

0.1245+0.0489
(10%10%)
0.0025

0.1010+0.0170
(10*10%)
0.0951

0.0257+0.0245
(10*10%)
0.0132

0.0511+0.0057
(10%,10%
11.236

0.1718+0.0091
(102,107
5.2452

0.2202+0.0299
(10*10%)
0.0033

0.0997+0.0118
(10*10%)
5.3983

0.0879+0.0174
(10*10%)
0.0255

0.0269+0.0035
(10*10%)
0.2760

0.0222+0.0033
(10*10%
0.1126

0.0149+0.0013
(10%,10%
0.0950

0.0293+0.0049
(10*10%)
0.2744

0.0279+0.0047
(10*10%)
0.2779

0.0254+0.0050
(10-4,10°%)
0.2800
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Table 5.4: Average ranks of SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and GLTWSVR with linear kernel.

Dataset SVR TSVR TWSVR FLTWSVR NLTWSVR GLTWSVR
Hydraulic actuator 6 4 5 25 1 25
Gas furnace 6 5 4 15 15 3
Pyrim 1 6 5 2 35 35
Servo 6 35 1 35 35 35
Triazines 6 1 5 3 3 3
Wisconsin B.C. 1 25 25 5 5 5
Boston 6 45 45 15 3 15
Forest fires 6 1 2 35 35 5
ConcreteCS 3 6 5 1 3 3
Wine quality red 6 5 4 3 2 1
Concrete Slump 6 3 5 15 4 15
Auto price 4 55 55 1 3 2
Flexible robotic arm 6 5 25 25 25 25
Pollution 1 5 6 2 4 3
NO2 6 45 45 3 1.5 15
Bodyfat 6 1 2 4 4 4
Balloon 6 45 45 2 2 2
Quake 6 3 3 3 3 3
Motorcycle 6 5 4 3 15 15
Demo 6 3 3 3 3 3
Sunspots 6 5 35 35 15 15
IBM 6 45 45 2 2 2
Snp500 25 55 55 25 25 25
Citigroup 35 35 35 35 35 35
Intel 6 3 3 3 3 3
Microsoft 25 55 55 25 25 25
RedHat 25 55 55 25 25 25
Average Rank 47777 4.0925 4.0370 2.6296 27777 2.6851

Page | 48



5.3.2 Numerical experiment using nonlinear regressors

In this sub-section, all the experiments are performed using the Gaussian kernel.
Again to evaluate the performance of the LTWSVR algorithms (FLTWSVR, NLTWSVR,
GLTWSVR) in comparison to SVR, TSVR and TWSVR; learning time, average RMSE
and standard deviation are computed for each dataset and summarized in Table 5.5 along
with optimal parameter value. For nonlinear case, one can observe from Table 5.5 that
LTWSVR algorithms also spend least CPU time in comparison with other methods and

has better generalization performance for most of the cases.

To analyze the performance of all the six algorithms over multiple datasets, we
used Friedman test with post hoc test (Demsar, 2006) as we have done for the linear case.
For this, we computed average ranks on RMSE values and are listed in Table 5.6. Under
the null hypothesis that all the algorithms are identical, Friedman statistics can be

computed as follows:

2
xi= 1?( 37 {(3.68512 +4.1666% 1 3.9250° + 2.8512% + 314817 + 3.2222%) ~ ° X47 }
X
~9.8407
c __26x9.8407 . ...

F 27x5-9.8407

where F; is distributed according to F —distribution with (5,130) degrees of freedom.
The critical value of F(5,130) is 2.2839 for the level of significance « =0.05. Since F;
is smaller than critical value (2.0442 < 2.2839), so there is no significant error between the

algorithms.

Finally, numerical experiments performed for both linear and nonlinear cases

validate that LTWSVR algorithms outperform the other three methods.
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Figure 5.5: Result of comparison on Gas furnace dataset. Gaussian kernel was employed
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Figure 5.6: Prediction Error over the whole dataset by SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and

GLTWSVR for the gas furnace dataset of Box-Jenkins. Gaussian kernel was employed.
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Table 5.5: Performance comparison of our proposed methods: FLTWSVR, NLTWSVR and GLTWSVR with SVR, TSVR and

TWSVR. RMSE was used for comparison. Gaussian kernel was employed. Bold type shows the best result.

Dataset SVR TSVR TWSVR FLTWSVR NLTWSVR GLTWSVR
(Train Size, Test Size) (Cwe) (C1=Co, , &1 &82)  (C1=Co p, &1= &2) (C1=Co p, €1=€&2) (C1=Cy, W, E1= €2) (C1=Co, 1, £1= £2)
' Time Time Time Time Time Time
Hydraulic actuator ~ 0.0127+0.0041  0.0125:0.0026  0.01260.0022 = 0.0123:0.0034  0.0121:0.0033  0.0123:0.0034
(1021 X 5) (10%,2*,10%) (10%,2%,10M (10222107 (10°,2%,10%) (10°,2%,10%) (10°,2%,10%)
5.7962 2.3039 2.3074 0.7374 1.7106 1.7332
Gas furnace 0.0168+0.0042  0.0192+0.0055 = 0.0192+0.0055 = 0.0184+0.0033 = 0.0198+0.0058 = 0.0195+0.0050
(293 X 6) (10%2°,10%) (10" 27,10 (10" 27,107 (10°22,10%) (10°2%,10%) (10°2%,10%)
0.1807 0.1134 0.1118 0.0284 0.0628 0.0654
. 0.0788+0.0534  0.0779+0.0579  0.0779:0.0579  0.0777+0.0511 0.0777#0.0511  0.0777+0.0511
Pyrlm 0 ~-3 -2 -5 12 -3 142 -1 0 -2 -2: 0 -2 -2: 0 -2 -2:
A% 26 (10°2%10? (10°22,10%) (10',2%10% (10°2%10? (10°2%10? (10°2%10?
( ) 0.0092 0.0116 0.0116 0.0016 0.0025 0.0022
0.076740.0530 ~ 0.0797+0.0417 = 0.0797+0.0417  0.0797+0.0271 = 0.0787+0.0378 = 0.0787+0.0378
Se o 2 -1 -3 3 A0 -3 5 A0 -3 4 -1 -3 4 A0 -3 4 A0 -3
(10°,2%,10%) (10°2°,10%) (10°,2°,10%) (10°2%,10% (10°2°,10%) (10°2°,10%)
(167X 4) 0.0436 0.0530 0.0566 0.0069 0.0710 0.1684
Triazines 0.1685:0.0414  0.1678+0.0292 0.1678+0.0296  0.1679+0.0324  0.1679£0.0324 = 0.1679+0.0324
(186 X 58) (10°23,10% (10°,2*,109) (10°2*,10% (10'2*,10M (10'2*,10M (10'2*,10M
0.0539 0.0420 0.0421 0.0091 0.0170 0.0172
Wisconsin B.C. 0.1787+0.0563  0.1797+0.0546  0.1797+0.0546 0.1778+0.0551 0.1778#0.0551  0.1778+0.0551
(194 X 34) (10°.2*,10M (10" ,2°,10%) (10" ,2°,10%) (10°,2°,10%) (10°,2°,10%) (10°,2°,10%)
0.0636 0.0434 0.0432 0.0126 0.0133 0.0126
Boston 0.0780+0.0257 ~ 0.0769+0.0168  0.0769+0.0168  0.0768+0.0201  0.0768+0.0201 = 0.0769+0.0154
(506 X 13) (10%2°,109) (10" 22,109 (10" 22,109 (10°.23,10%) (10°.23,10%) (10°.23,10%)
0.7969 0.3755 0.3719 0.1082 0.2489 0.2517
Forest fires 0.0377+0.0479  0.0375+0.0470 = 0.0376+0.0469  0.0391+0.0463  0.0399+0.0455 = 0.0391+0.0463
(517X 12) (10%,2°,10%) (10" ,2°,10™) (10" ,2°,10%) (10%,2°,10%) (10%,2°,10%) (10%,2°,10%)
0.8668 0.4619 0.4526 0.1111 0.1525 0.1571
ConcreteCS 0.0792+0.0056 =~ 0.0869+0.0068 = 0.0868+0.0077 = 0.0788+0.0065 0.0865:0.0068  0.0865+0.0068
(1030 X 8) (10'2%,109 (10" 2,10 (10" 27,109 (10%2*,10% (10°2%,10%) (10°2%,10%)
5.5429 2.2415 2.2340 0.7944 1.7631 1.8199
Wine quality red 0.1278+0.0064  0.1277+0.0083 = 0.1276+0.0071 = 0.1275+0.0080 = 0.1274#0.0100 = 0.1273+0.0082
(1599 X 11) (10°,2°,109%) (10" 22,109 (10" 22,109 (10%,2%,10%) (10%,2%,10%) (10°,2%,10%)
17.966 6.9404 6.8864 2.5226 3.9555 4.1435
Concrete Slump 0.0232+0.0133  0.0366+0.0134  0.0367+0.0134  0.0224+0.0065 0.0357+0.0158  0.0357+0.0158
(103 X 10) (10°2°,10%) (10°2%,10%) (10°2%,10%) (10°.23,10%) (10°2%,10%) (10°2%,10%)
0.0174 0.0220 0.0268 0.0023 0.0077 0.0081
Auto price 0.0817+0.0277  0.0844+0.0241 = 0.0844:0.0241  0.0804+0.0189  0.0843+0.0261 = 0.0843+0.0261
(159 X 15) (10'2*,10% (10%2°,10% (10'2°,10%) (10%2°,10%) (10°.2°,10%) (10°.2°,10%)
0.0417 0.0373 0.0428 0.0057 0.0431 0.0427
Flexible robotic arm ~ 0.0143#0.0006  0.0248+0.0028 = 0.0249+0.0028 = 0.0152+0.0010 = 0.0246£0.0034 = 0.0241+0.0034
(1019 X 9) (10°.2°,10%) (10°2°,10%) (10%,2°,10%) (10°2%,10%) (10°2%,109) (10°2%,109)
6.1946 3.3086 3.2703 0.7808 5.2768 5.4293
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Pollution
(60X 15)

NO2
(500X 7)

Bodyfat
(252 X 14)

Balloon
(2001 X 1)

Quake
(2178 X 3)

Motorcycle
(133X 1)

Demo
(2048 X 4)

Sunspots
(290 X 5)

IBM
(750X 5)

SNP500
(750X 5)

Citigroup
(750 X 5)

Intel
(750 X 5)

Microsoft
(750 X 5)

RedHat
(750 X 5)

0.1085+0.0461
(10°.23,10%)
0.0085

0.0979+0.0124
(10°,2°,10%)
0.6977

0.0151+0.0228
(10%2°,10%)
0.1246

0.0449+0.0025
(10°,2°,10™)
33.170

0.1751+0.0161
(10°2*,10M
55.230

0.1143+0.0246
(10%,2°,10%)
0.0254

0.0885+0.0108
(10°,2%,109%)
42.370

0.0727+0.0100
(10'2%,109
0.1722

0.0272+0.0025
(10%2°,109)
2.2962

0.0220+0.0033
(10'2°,10%)
2.3142

0.0147+0.0024
(10'22,10%)
2.2938

0.0292+0.0044
(10%2°,10%)
2.3469

0.0277+0.0056
(10%2°,10%)
2.2596

0.0256+0.0070
(10'2%,10%)
2.3019

0.1113+0.0405
(10%,2°,10™)
0.0316

0.0972+0.0123
(10%,27,10™)
0.3521

0.0180+0.0215
(10" ,2*,10™
0.0844

0.0452+0.0020
(10°2%,10%
20.365

0.1718+0.0096
(10°,2°,10™)
16.964

0.1104+0.0224
(10°,2°,10™)
0.0249

0.0873+0.0110
(10%,2',10%
13.610

0.0715+0.0124
(10%,2°,.10%
0.1037

0.0270+0.0023
(10" ,2%10™
1.0976

0.0231+0.0052
(10°.2%,10%
1.3837

0.0149+0.0029
(10°.2%,10%)
1.2793

0.0290+0.0042
(10%,27,10™)
0.9380

0.02830.0059
(10°.2°,10%)
1.3622

0.0259+0.0075
(10" ,2°,10™)
1.0486

0.1111+0.0365
(10" ,2°,10™
0.0102

0.0972+0.0123
(10227107
0.3294

0.0182+0.0215
(10" ,2*,10%)
0.0823

0.0452+0.0020
(10°22,10%)
20.224

0.1718+0.0097
(10%,2°,10%)
15.641

0.1096:0.0222
(10°,2°,109)
0.0313

0.0873+0.0110
(10%,2',10%)
13.846

0.0710+0.0076
(10%,2',109)
0.0998

0.0270+0.0023
(10" 27,109
1.0781

0.0221+0.0049
(10°2*,10%)
1.2905

0.0149+0.0026
(10" 27,109
1.1395

0.0290+0.0042
(10227107
0.9223

0.02830.0059
(10°.2°,10%)
1.3571

0.02580.0052
(10" ,2°,10%)
1.0335

0.1113+0.0423
(10%,2°,10%)
0.0007

0.0972+0.0123
(10°,27,10%)
0.1039

0.0204+0.0203
(10%,2*,10%)
0.0154

0.0448+0.0040
(10%23,10%)
5.0500

0.1718+0.0096
(10" ,2°,10%)
6.1877

0.1095+0.0217
(10%,2°,10%)
0.0042

0.0873+0.0082
(10%,2',10%)
5.2906

0.0708+0.0090
(10',2*,10™)
0.0300

0.0269+0.0038
(10" 27,109
0.3064

0.0224+0.0051
(10°.2°,10%)
0.3321

0.0149+0.0028
(10°2*,10%)
0.3368

0.0290+0.0042
(10" 27,107
0.3077

0.0284+0.0060
(10%2°,10%)
0.3321

0.0256+0.0078
(10°.2*,10%)
0.3116

0.1113+0.0423
(10%,2°,10%)
0.0008

0.0972+0.0123
(10°,27,10%)
0.1716

0.0204+0.0203
(10%,2*,10%)
0.0182

0.0448+0.0040
(10%22,10%)
15.652

0.1718+0.0096
(10" ,2°,10%)
12.030

0.1092+0.0189
(10%,2°,10%)
0.0097

0.0873+0.0082
(10%,2',10%)
10.403

0.0707+0.0104
(10%,2,10™)
0.0526

0.0267+0.0038
(10" ,2210%)
0.6273

0.0229+0.0052
(10'2°,10%)
0.8775

0.0149+0.0026
(10'22,10%)
0.9140

0.0290+0.0042
(10" 27,107
0.6279

0.0285+0.0059
(10'2°,10%)
0.8755

0.0256+0.0078
(10°.2*,10%)
0.7525

0.1113+0.0423
(10%,2°,10%)
0.0008

0.0972+0.0123
(10°,27,10%)
0.1713

0.0208+0.0204
(10%,2*,10%)
0.0178

0.0448+0.0040
(10%22,10%)
16.023

0.1718+0.0096
(10" ,2°,10%)
12.441

0.1092+0.0189
(10%,2°,10%)
0.0100

0.0873+0.0082
(10%,2',10%)
10.719

0.0707+0.0104
(10%,2*,10™)
0.0568

0.0267+0.0038
(10" ,2%10%)
0.6545

0.0229+0.0052
(10'2°,10%)
0.9510

0.0149+0.0026
(10'22,10%)
0.9269

0.0290+0.0042
(10" 27,107
0.6471

0.0286:0.0052
(10'2°,10%)
0.9003

0.0256+0.0078
(10°.2*,10%)
0.7725
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Table 5.6: Average ranks of SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and GLTWSVR with Gaussian kernel.

Dataset SVR TSVR TWSVR FLTWSVR NLTWSVR GLTWSVR
Hydraulic actuator 6 4 5 25 1 25
Gas furnace 1 35 35 2 6 5
Pyrim 6 45 45 2 2 2
Servo 1 5 5 5 25 25
Triazines 6 15 15 4 4 4
Wisconsin B.C. 4 55 55 2 2 2
Boston 6 4 4 15 15 4
Forest fires 3 1 2 45 6 45
ConcreteCS 2 6 5 1 35 35
Wine quality red 6 5 4 3 2 1
Concrete Slump 2 5 6 1 35 35
Auto price 2 55 55 1 35 35
Flexible robotic arm 1 5 6 2 4 3
Pollution 1 45 2 45 45 45
NO2 6 3 3 3 3 3
Bodyfat 1 2 3 45 45 6
Balloon 4 55 55 2 2 2
Quake 6 3 3 3 3 3
Motorcycle 6 5 4 3 15 15
Demo 6 3 3 3 3 3
Sunspots 6 5 4 3 15 15
IBM 6 45 45 3 15 15
SNP500 1 6 2 3 45 45
Citigroup 1 4 4 4 4 4
Intel 6 3 3 3 3 3
Microsoft 1 25 25 4 5 6
Redhat 25 6 5 25 25 25
Average Rank 3.6851 4.1666 3.9259 2.8518 3.1481 3.2222
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Chapter 6

Conclusion and Future Research

6.1 Conclusion

A new iterative Lagrangian twin support vector regression based on twin support
vector machine (LTWSVR) for the twin support vector machine based regression
(TWSVR) is proposed. This leads to the minimization problem having strongly convex
objective functions with non-negativity constraints. LTWSVR requires at the outset the
inverse of a matrix but this can be expressed as matrix subtraction of identity matrix by a
scalar multiple of the inverse of a positive semi-definite matrix. Further it is proposed to
solve this problem by simple iterative methods: functional iterative method (FLTWSVR),
Newton method (NLTWSVR) and Generalized derivative approach (GLTWSVR). Our
formulation has the advantage that it does not need any optimization tools of linear or
quadratic programming solvers. Numerical experiments were performed on a number of
interesting synthetic and real-world benchmark datasets. The results obtained show similar
or better generalization performance with smaller computation time in comparison with
SVR, TSVR and TWSVR.

6.2 Future Research

Future work will include the study of implicit Lagrangian formulation
(Mangasarian and Solodov, 1993) for the dual TWSVR problem and its applications.

There is also a room for study of smoothing approach for solving Lagrangian TWSVR.
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