

Lagrangian Twin Support Vector Regression
Based on Twin Support Vector Machine

(LTWSVR)

A dissertation submitted to the Jawaharlal Nehru University
in partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE AND TECHNOLOGY

BY

SUBHASH CHANDRA PRASAD

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI – 110067
INDIA

JULY 2015

DeDicateD to

MY PARENTS & GOD, who gave me all the

beautiful things I needed.

ACKNOWLEDGEMENTS

 I take this opportunity to express a deep sense of gratitude for my supervisor

Prof. S. Balasundaram for his outstanding guidance, support and care throughout

the year while I was working on my dissertation. Successful completion of the

present research effort not has been possible without him, who not only served as

my guide but also encouraged and challenged me throughout my research.

 I wish to thank Professor C. P. Katti, Dean, School of Computer and

Systems Sciences, Jawaharlal Nehru University, for providing the necessary

research facilities.

 I would like to express my sincere thanks to Dr. T.V. Vijay Kumar who has

been very kind and generous in giving his precious time for personal and academic

discussions.

 I am thankful to my colleagues Deepak Gupta, Gagandeep, Yogendra

Meena and Tarundeep Kaur Saini for their help and support. I would also like to

thank all my friends for the great time I have always had with them. Apart from the

fun, some of my friends have also been a great source of learning and inspiration.

Thanks a lot to one and all and special thanks to Saurabh, Vikas and Ram Nayan

Verma.

 Finally, I must admit that a “thank you” is something too small for the role

played by my parents and my supervisors in shaping this dissertation. In their

absence, this desertation would have been very different or perhaps would not have

existed at all.

Subhash Chandra Prasad
 JNU, New Delhi

ABSTRACT

 In this work, a simple reformulation of the Lagrangian dual of the 2-norm twin

support vector machine based regression (TWSVR) is proposed as unconstrained

minimization problem. The proposed Lagrangian twin support vector regression based on

twin support vector machine (LTWSVR) requires at the outset the inverse of a matrix but

this can be expressed as matrix subtraction of identity matrix by a scalar multiple of the

inverse of a positive semi-definite matrix. The LTWSVR is solvable by computing the

zeros of its gradient. Further it is proposed to solve this problem by simple iterative

methods: functional iterative method (FLTWSVR), Newton method (NLTWSVR) and

Generalized derivative approach (GLTWSVR). To demonstrate the effectiveness of

LTWSVR, numerical experiments were performed on a number of interesting synthetic

and real-world benchmark datasets. The results obtained show similar or better

generalization performance with much faster learning speed in comparison with SVR,

TSVR and TWSVR.

i

Contents

Table of Contents .. i

List of Figures ... iii

List of Tables .. iv

List of Symbols .. v

List of Abbreviations.. vi

Chapter 1: Introduction: Support Vector Machine in Regression 1

1.1 General ... 1

1.2 The Regression Problem ... 2

1.3 Support Vector Regression .. 3

1.4 Linear SVR ... 5

1.4.1 SVR with Linear  -Insensitive Loss .. 5

1.4.2 SVR with Quadratic  -Insensitive Loss ... 7

1.5 Nonlinear SVR ... 8

Chapter 2: Twin Support Vector Machine in Regression ... 11

2.1 Introduction .. 11

2.2 Twin Support Vector Regression (TSVR) ... 12

2.2.1 Linear Twin Support Vector Regression ... 12

2.2.2 Kernel Twin Support Vector Regression ... 15

Chapter 3: Twin Support Vector Machine Based Regression (TWSVR)............... 18

3.1 Introduction .. 18

3.2 Linear TWSVR ... 19

3.2.1 Hard classifier Linear  -Insensitive TWSVR ... 20

3.2.2 Soft classifier Linear  -Insensitive TWSVR .. 22

3.3 Nonlinear TWSVR ... 24

ii

Chapter 4: LTWSVR: Lagrangian Twin Support Vector Regression Based on
.....................Twin Support Vector Machine ... 26

4.1 Introduction .. 26

4.2 Lagrangian Twin Support Vector Regression Based on Twin Support Vector
.......Machine (LTWSVR) ... 27

4.3 Newton method for LTWSVR ... 32

4.4 LTWSVR as an absolute value equation problem by Newton method 33

4.5 Generalized Newton method for LTWSVR ... 34

Chapter 5: Experimental Results and Analysis .. 35

5.1 Experimental Specification ... 35

5.2 Illustrations and Experiment on Synthetic Datasets ... 36

5.3 Real-world Benchmark Datasets ... 41

5.3.1 Numerical experiment using linear regressors ... 43

5.3.2 Numerical experiment using nonlinear regressors ... 49

Chapter 6: Conclusion and Future Research ... 54

6.1 Conclusion .. 54

6.2 Future Research .. 54

References .. 55

iii

List of Figures

Fig. No.

Title Page

1.1 Graphs of Loss Functions: Laplacian, Gaussian and Huber’s robust 4

1.2 Graphs of Loss functions: Linear and Quadratic ε- insensitive 4

1.3 Linear Support Vector Regression with ε- insensitive loss 5

1.4 Mapping into Higher Dimensional Feature Space .. 8

1.5 The geometrical interpretation of kernel SVR .. 10

2.1 Geometrical interpretation of linear TSVR .. 12

2.2 Geometrical interpretation of kernel TSVR ... 16

3.1 SVM Regression; (a) original data (b) shifted data and separating hyperplane (c)

........regression plane (Bi & Bennett, 2003). .. 19

5.1 Results of approximation of)cos()sin(2xx by SVR, TSVR, TWSVR and

........proposed methods: FLTWSVR, NLTWSVR, GLTWSVR on testing set.

........Gaussian kernel was employed. ... 38

5.2 Prediction Error over the test set by SVR, TSVR, TWSVR, FLTWSVR,

........NLTWSVR and GLTWSVR for the dataset generated by the function
)cos()sin(2xx .Gaussian kernel was employed. .. 39

5.3 Result of comparison on Gas furnace dataset. Linear kernel was employed 45

5.4 Prediction Error over the whole dataset by SVR, TSVR, TWSVR, FLTWSVR,

........NLTWSVR and GLTWSVR for the gas furnace dataset of Box-Jenkins. Linear

.........kernel was employed. ... 45

5.5 Result of comparison on Gas furnace dataset. Gaussian kernel was employed
d...... ...50

5.6 Prediction Error over the whole dataset by SVR, TSVR, TWSVR, FLTWSVR,

........NLTWSVR and GLTWSVR for the gas furnace dataset of Box-Jenkins.

........Gaussian kernel was employed. .. 50

iv

List of Tables

Table No. Title Page

1.1 Common Loss functions ... 3

1.2 Examples of Kernel functions used in SVM ... 9

5.1 Functions used for generating synthetic datasets ... 37

5.2 Performance comparison of our proposed methods: FLTWSVR, NLTWSVR

...........and GLTWSVR with SVR, TSVR and TWSVR on synthetic datasets for

...........uniform and Gaussian additive noises. RMSE was used for comparison.

...........Gaussian kernel was employed. Time is for training in seconds. Bold type

...........shows the best result. .. 40

5.3 Performance comparison of our proposed methods: FLTWSVR, NLTWSVR

...........and GLTWSVR with SVR, TSVR and TWSVR. RMSE was used for

..........comparison. Linear kernel was employed. Bold type shows the best result. ... 46

5.4 Average ranks of SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and

..........GLTWSVR with linear kernel. .. 48

5.5 Performance comparison of our proposed methods: FLTWSVR, NLTWSVR

...........and GLTWSVR with SVR, TSVR and TWSVR. RMSE was used for

...........comparison. Gaussian kernel was employed. Bold type the shows best result.

dzzz...51

5.6 Average ranks of SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and

..........GLTWSVR with Gaussian kernel. ... 53

v

List of Symbols
Symbol
R Real numbers

R Non negative real numbers
nRx Input vector

y Output vector
tx Transpose of x

miyS ii ,,1},),({  x Training set

j
t
i xx ~~ Inner product between ix and jx

)(x Mapping from input space into Feature space via the
function 

w Weight vector in nR
b Threshold

),(jik xx Kernel function

K Kernel matrix

p
 p -norm

 2 -norm

C Penalty parameter

ξ Vector of slack variables

u Vector of dual variables, Lagrange multiplier vector

x Vector x with all negative components set to zero

i)(*x












0if
0if
0if

0
5.0

1

i

i

i

x
x
x

, where i(.) represents ith component

0x  Each component of x is nonnegative

)(xdiag A diagonal matrix having components of x as its
diagonal elements

 tnxfxff  /,,/)(1 x Gradient of function f

 tji xxff  /)(22 x Hessian matrix

vi

List of Abbreviations

Abbreviation
ANN Artificial Neural Network

CQPP Constrained Quadratic Programming Problem

ERM Empirical Risk Minimization

GEPSVM Generalized Eigenvalues and Proximal Support Vector
Machine

LTWSVR Lagrangian Twin Support Vector Regression Based on
Twin Support Vector Machine

SRM Structural Risk Minimization

SVM Support Vector Machine

SVR Support Vector Regression

TSVM Twin Support Vector Machine

TSVR Twin Support Vector regression

TWSVR Twin Support Vector Machine Based Regression

Page | 1

Chapter 1

Introduction: Support Vector Machine in Regression

1.1 General

 Support Vector Machines (SVMs) also known as Kernel Machines are one of the

best supervised learning technique for both classification problems as pattern recognition

and regression problems as function approximation, proposed by Russian Scientist

Vladimir Naumovich Vapnik (Vapnik, 2000). They embody several features from

statistical learning theory, machine learning, and optimization theory, and employ kernel

functions as one of their essential ingredients. SVM has been the most promising machine

learning method due to its formulation based on the novel paradigm vested in the

structural risk minimization induction principle (SRM principal) (Cristianini and Shawe-

Taylor, 2000; Vapnik, 2000; Kecman, 2001) and can effectively avoid the local minimum

and overfitting problem in classical machine learning methods such as neural networks

(NNs), which performs Empirical Risk Minimization (ERM). Unlike ERM which

minimizes training error, structural risk minimization (SRM) minimizes the upper bound

on expected risk or generalization error consists of both an empirical risk term and

regularization term that measures the complexity of the machine (norm of the classifier or

regressor) and is superior than ERM (Gunn, 1998). This is the difference that powers the

SVM to have good generalization i.e. better prediction on previously unseen data (Burges

& Scholkopf , 2007; Kecman, 2001).

 Mathematically, classification and regression problems in SVM have been shown

as optimization problems having quadratic objective function and linear constraints; i.e.

they are convex programming problems with unique solution (Cristianini & Shawe

Taylor, 2000; Kaufman, 1999; Vapnik, 2000). A clear benefit of SVM is that its solution

is sparse; i.e. only some of the samples contribute in determination of the decision

function (Gunn, 1998; Scholkopf & Smola, 2002).

Page | 2

 SVM has been successfully applied to real world data analysis problems in many

fields (bioinformatics, handwriting recognition, stock market etc), often providing better

results than (or comparable outcomes to) ANNs (Kecman, 2001). In comparison with

most other learning techniques, SVMs show improved result in pattern recognition and

regression estimations problems of practical importance such as: Combustion engine

detection (Rychetsky et al.,1999), Face detection (Osuna, Freund & Cirosi, 1997),

Financial time series forecasting (Mukherjee, Osuna, & Girosi, 1997; Tay & Cao, 2001,

Kim, 2003), Handwritten digit recognition (Burges & Scholkopf, 1997; Cortes & Vapnik,

1995), Object recognition (C. P. Papageorgiou, M. Oren, & T. Poggio, 1998), Marketing

(Ben-David & Lindenbaum, 1997), medical diagnosis (Tarassenko et al.,1995), text

categorization (Joachims, 2002), estimating manufacturing yields (Stoneking, 1999) etc.

1.2 The Regression Problem

 Assume that we are given a training data set of m samples

 .,),,()},,(,),,{(111 RYyRXxxyyS i
nt

iniimm   xxx (1.1)

with mxx ,,1  drawn according to an unknown probability distribution),(yP x and

)(itruei fy x for all],1[mi . Let H be a hypothesis set of linear functions mapping X

to Y, i.e.

 RbRbffH nt  ,,},)({ xwxwx (1.2)

 We denote the loss function by  RYYL : used to measure the magnitude of

error. The most commonly used loss function in regression is the quadratic loss 2L defined

as YyyyyfyyL  ,))(,(2x , where y and y are actual and predicted output

values corresponding to a given input x or being a more general pL loss defined by

YyyyyfyyL p  ,))(,(x and for some 1p .

 The task of regression is to find a hypothesis Hf  that minimizes the expected

risk or generalization error (Kecman, 2001),

 ),,())(,())}(,({)(
),(~

ydPfyLfyLhR
yP

xxx
xx

 (1.3)

with respect to target f based on the training data set S.

Page | 3

 Throughout in this work, we denote the training dataset inputs mii ,,1}{ x by a

matrix nmRA  whose thi row n
i RA  represents the thi training sample and their

corresponding outputs miiy ,,1}{  by an output vector t
myy),,(1 y respectively.

1.3 Support Vector Regression

 SVM can be successfully applied in regression i.e. function approximation

problem by the introduction of a novel loss (error) function different from the classical

quadratic error function. This is the  insensitive loss function for support vector

regression (SVR) proposed by Vapnik (Vapnik, 2000).

 In SVR, the linear regressor or linear hyperplane (approximation function
RRf n :) for regression problem given in section 1.2 can be defined as

 bf t  xwx)((1.4)
and can be obtained by simultaneously minimizing the weight vector norm)(w and
empirical risk which can be written as an unconstrained optimization problem,

 



m

i
ii fyLC

1

2))(,(
2
1min xw (1.5)

where 0C is the regularization parameter and),(L is the error loss function. For  -

insensitive error loss function,


)())(,(iiii fyfyL xx  , the problem (1.5) becomes

 





m

i
iiRb

bAyC
n

1

2

,
)(

2
1

1
min


ww

w
 (1.6)

Error Loss Function Function definition))(,(xfyL

Laplacian or Linear loss)(xfy 

Gaussian or Quadratic loss 2)(xfy 

Huber’s Robust loss
(Gunn, 1998) 












otherwise
2

)(

)())((
2
1

2

2





x

xx

fy

fyiffy

Linear  insensitive loss
(Vapnik, 2000) 







otherwise,)(
)(0




x
x

fy
fy

Quadratic  insensitive loss
2})(,0max{  xfy

Table 1.1: Common Loss functions

Page | 4

Figure 1.1: Graphs of Loss Functions: Laplacian, Gaussian and Huber’s robust

 The loss functions summarized in Table 1.1 can be used in derivation of support

vector algorithms that lead to quadratic programming problems but only linear and

quadratic  insensitive loss functions will produce sparse representation of the regressor

i.e. approximation function.

 The Laplacian (Linear or absolute) loss function in Figure 1.1(a) corresponds to

the median of the conditional distribution and its optimization means predicting the

(conditional) median of data. Gaussian (Quadratic) loss function in Figure 1.1(b) like

traditional least square method penalizes the large deviation from target outputs while

ignoring the small residuals and its optimization means predicting the (conditional) mean

of the data. Laplacian loss function is less sensitive to outliers than Gaussian loss function.

Huber loss functions in Figure 1.1(c) is a robust loss function where nothing specific is

known about the distribution describing the data.

Figure 1.2: Graphs of Loss functions: Linear and Quadratic ε- insensitive

 The linear and quadratic  -insensitive loss functions in Figure 1.2 can be seen as

the generalizations of the Laplacian and Gaussian loss functions.

0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2 3

(a) Laplacian

0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2 3

(b) Gausian

0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2 3

(c) Huber's robust

0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2 3

(a) Linear ε-insensitive

0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2 3

(b) Quadtratic ε-Insensitive

Page | 5

1.4 Linear SVR

Figure 1.3: Linear Support Vector Regression with ε- insensitive loss

 The objective of linear SVR is to find a function)(xf (1.4) that comes closest to

training data (1.1) but for all training data of at most  deviation from their

corresponding targets iy is allowed and the function must be made as flat as possible.

 In Figure 1.3, the deviation of data points (denoted by  symbol) are captured by

introducing vectors of slack variables i.e. 21,ξξ .Only data points outside the  -tube are

considered as training errors. Vectors 1ξ and 2ξ measure the deviations of data points that

are above and below the  -tube respectively.

1.4.1 SVR with Linear  -Insensitive Loss

 Using the  -insensitive loss function, the optimization problem (1.5) for

regression problem described in section 1.3 can be written as a constrained optimization

problem i.e.

 





m

i
iiRb

C
n

1
21

2

,
)(

2
1

1
min w
w

 (1.7)

 subject to ,)(1ii
t

i by   xw

 ,)(2iii
t yb  xw

 miii ,...,1,0, 21 

y

x

+ε

-ε
1iߦ

2iߦ

-ε +ε

 ߦ

 ߦ

Page | 6

 Optimization problem (1.7) can also be written as

)(
2
1

21),,,(1
21

min ξeξeww
ξξw

ttt

Rb
C

mmn




 subject to

)8.1(,...,10,

,
,

21

2

1

mi
bA

bA

ii 







ξeyew
ξeewy

where t
m),,(1111  ξ , t

m),,(2212  ξ are vectors of slack variables and

mt R)1,,1(e is the vector of ones. The constant 0C influences the trade-off

between the flatness of f and the amount up to which deviation larger then  are

tolerated. An increase in value of C penalizes the large errors while decrease in value

penalizes small errors.

 Introducing Lagrange multipliers t
muu),,(1111 u , t

muu),,(2212 u the

Lagrangian function in primal variables of the above problem (1.8) can be formed as

)9.1())((

))(()(
2
1),,,,,(

222222

111111212121

ueuwuyuξeue

ueuwuyuξueξeξewwuuξξw

tttttt

tttttttt

bA

bACbL









 According to KKT conditions (Karush, 1939; Kuhn et al., 1951) the partial

derivative of (1.9) with respect to the primal variables 21,,, ξξw b vanish at optimality

i.e.
0,0),(

)(0)(

2
2

1
1

21

2121

















ue
ξ

ue
ξ

uu

uuwuuw
w

CLCLe
b
L

AAL

t

tt

Substituting these results back into (1.9), the dual of problem (1.8) can be formed as,

)()()()(
2
1

21212121
),(21

min uuuuyuuuu
uu




tttt

Rb
eAA

mm


subject to 0)(21 uuet and euu0 C 21, (1.10)

 Now, for any example ,nRx the regressor function (1.4) can predict its output as

 bAf t  xuux)()(21 . (1.11)

Page | 7

1.4.2 SVR with Quadratic  -Insensitive Loss

 Using the quadratic -insensitive loss function, the optimization problem (1.5) for

regression problem (1.2) can be written as a constrained optimization problem i.e.

)(
22

1
2211

),,,(1
21

min ξξξξww
ξξw

ttt

Rb

C
mmn




subject to

)12.1(,...,10,

,
,

21

2

1

mi
bA

bA

ii 







ξeyew
ξeewy

where t
m),,(1111  ξ and t

m),,(2212  ξ are vectors of slack variables and 0C .

This formulation has only m2 non-negative and linear constraints.

 Introducing Lagrange multipliers t
muu),,(1111 u , t

muu),,(2212 u the

Lagrangian function in primal variables of problem (1.12) can be formed as

)13.1())((

))(()(
22

1),,,,,(

222222

11111122112121

ueuwuyuξeue

ueuwuyuξueξξξξwwuuξξw

tttttt

tttttttt

bA

bACbL









 Proceeding as in previous section, the dual of (1.13) can be obtained in the

following form,

)()())(()(
2
1

21212121),(21

min uuuuyuuuu
u




tttt

Ru
e

C
IAA

mm


subject to

 21,uu0 

where I is an identity matrix of size m. The term C/1 is added to diagonal of Hessian

matrix, which ensures positive definiteness of Hessian and stabilizes the solution and there

is no upper bound on 21,uu .

For any input nRx , the regressor function (1.4) becomes

 bAf t  xuux)()(21 (1.14)

Page | 8

1.5 Nonlinear SVR

 The practical application of support vector regression procedure is only possible

with linear functions because we only have an optimality criterion for linear functions

(linear hyperplanes). There are no general results for nonlinear functions. For many

applications, a linear solution does not provide good performances; so at many times a

nonlinear approach is needed.

Figure 1.4: Mapping into Higher Dimensional Feature Space

 As a generalization of linear SVR to nonlinear SVR, the basic idea is that input

vector nRx in the input space will be mapped into a higher dimensional Hilbert space

called the feature space through a nonlinear mapping function)(x (B. Scholkopf et al,

1999; Aizerman et al., 1964; Boser et al., 1992). A linear regression function can be

constructed in this feature space but it stays nonlinear in the input space. This is possible

only with virtue of the Mercer’s Theorem.

 Most of the mapping functions)(x are unknown, but the dot product of the

mapped vectors can be expressed as a function of the input vectors as

),()()(2121 xxxx kt  (1.15)

The feature spaces are called Reproducing Kernel Hilbert Spaces (RKHS), and),(k is

a Mercer kernel. Fortunately, an explicit representation of the vectors in the feature space

is not required as the SVM formulation only contains dot product of the mapped vectors.

x

߶:X ߶(X)

x x
x

x

x x x
x

x

x

x
x x

x
x x x

x
x

x

Input space Feature space

Page | 9

 The Mercer theorem gives the condition that a kernel function),(21 xxk must

satisfy in order to be the dot product of a Hilbert space, i.e. there is a function  in nR

such that)()(),(2121 xxxx  tk  if and only if for any function)(xg for which

  xx dg 2)((1.16)

the inequality

 0)()(),( zxzxzx ddggk (1.17)

holds.

 Kernel functions must be symmetric and its Kernel matrix K is defined as





















),(),(),(

),(),(),(
),(),(),(

K

11

21212

12111

mmmm

m

m

xxkxxkxxk

xxkxxkxxk
xxkxxkxxk









The kernel matrix K is positive semi- definite (i.e. all its eigenvalues are non-negative i.e.
mii ,,1,0  and i is an eigenvalue).

 Kernel Function Kernel Definition),(jik xx

Linear kernel j
t
i xx

Complete polynomial of degree d 1,)1( dd
j

t
i xx

Gaussian RBF 0,
2

exp 2

2














 
 


ji xx

Sigmoidal 0,0,)tanh(  d
j

t
i xx

Table 1.2: Examples of Kernel functions used in SVM

 The nonlinear mapping for polynomial kernels can be found in an explicit way and

the corresponding Hilbert space has finite dimension. The nonlinear mapping for Gaussian

kernel is not explicit and the dimension of Hilbert space is infinite.

Page | 10

Figure 1.5: The geometrical interpretation of kernel SVR

 For the nonlinear case, the kernel support vector regressor):(RRf n  is defined

as)18.1()()(bf t  xwx 

and will be obtained by the solving the following quadratic programming problem

(Cristianini & Shawe-Taylor, 2000)

)(
2
1

2
1

1
),,,(1

21

min i

m

i
i

t

Rb
C

mmn






ww

ξξw

subject to

)19.1(,,2,1,0,

,))((

,))((

21

2

1

mi
yb

by

ii

iii
t

ii
t

i











xw

xw

where ii 21 , are slack variables, t
myy),,(1 y is output vector and 0,0  C are

input parameters.
Proceeding as in linear SVR and using kernel trick (1.15), the dual of (1.19) can be

obtained as

)20.1()()())(,()(
2
1

1
21

1
21

1,
2121,

min 



m

i
ii

m

i
iii

m

ji
jjjiiiR

uuuuyuukuu
m

xx
21 uu

subject to
 0)(21 uuet and euu0 C 21,

Finally, for any sample nRx the nonlinear regressor (1.18) becomes

)21.1(),()()(
1

21 bkuuf
m

i
iii 



xxx

y

x

ε

1iߦ

2iߦ

Page | 11

Chapter 2

Twin Support Vector Machine in Regression

2.1 Introduction

 Support Vector Machines (SVMs) have been extensively studied and applied to a

number of classification and regression problems which have shown remarkable success

compared to other machine learning methods such as ANNs. SVMs show distinct

advantages such as better generalization, the ability to find a global optimum, and the

increased speed of learning. However, training an SVM involves solving a constrained

quadratic programming problem (CQPP). Its training computational complexity is

),(3m where m is the total size of training set. This means much increased

computational time for large dataset.

 In order to speed up the training process of SVM, many efforts have been made

such as chunking and decomposition methods (Boser et al., 1992; Joachims, 1999;

Kaufman, 1999; Osuna et al., 1997), exact SVM training algorithm SMO (Platt, 1999),

approximate SVM training algorithms (Tsang et al., 2005; Achlioptas et al., 2002; Fine et

al., 2001), LS-SVM (Suykens & Vandewalle, 1999; Suykens, Lukas, Van Dooren, et al.,

1999), etc. The above algorithms solve the dual of CQPP iteratively and at each step of

iteration only a subset of the dual variables are optimized. Recently Twin Support Vector

Machine (TWSVM) has been proposed (Jaydeva et al., 2007) by extending the work of

GEPSVM (Mangasarian & Wild, 2006) in which two nonparallel planes are constructed

such that each plane is closer to one of the two classes and is as far as possible from the

other. The performance of TWSVM is better than GEPSVM and is approximately four

times faster than SVM.

 As for SVR, there exist some corresponding approximation algorithms as in

classification, such as Smooth SVR (Lee et al, 2005), SMO (Shevade et al, 2000), etc. A

fast training algorithm known as Twin Support Vector Regression (TSVR) (Peng, 2010) is

described in the next section 2.2. Most recently Twin Support Vector Machine Based

Page | 12

Regression (TWSVR) proposed in (Khemchandani, Goyal and Chandra, 2015) overcomes

the restrictions associated with TSVR will be introduced in the next Chapter.

2.2 Twin Support Vector Regression (TSVR)

 In the spirit of TWSVM, an efficient twin support vector regression, termed as

TSVR, is proposed in (Peng, 2010) for regression problem to improve the computational

training speed. Assume that we are given a training dataset (1.1). The TSVR generates a

pair of nonparallel hyperplanes such that one of them determines the  -insensitive down

bound 111)(bf t  xwx and another one the upper bound function 222)(bf t  xwx of the

end regressor. Similar to the idea of maximum margin, these hyperplanes are constructed

to be as far as possible from each other.

 The final regressor is obtained by taking the mean of these functions as follows:

)(
2
1)(

2
1))()((

2
1)(212121 bbfff t  xwwxxx

 i.e. 









1
])[][(

2
1)(2211

x
bbf wwx (2.1)

2.2.1 Linear Twin Support Vector Regression

Figure 2.1: Geometrical interpretation of linear TSVR

 It is well known that, TSVR constructs two nonparallel hyperplanes in the input

space (see Figure 2.1) defined as

 111)(bf t  xwx and 222)(bf t  xwx (2.2)

These hyperplanes are determined by solving the following pair of constrained quadratic

programming problems (CQPPs):

y

x

)(2 xf
22)(xf

)(1 xf
11)(xf

Page | 13

 11111111
),,(

))(())((
2
1

)1(
111

min ξeeweyewey
ξw

tt

Rb
CbAbA

mn





subject to 0ξξeewy  11111 ,)(bA (2.3)

and 22222222
),,(

))(())((
2
1

)1(
222

min ξeeweyewey
ξw

tt

Rb
CbAbA

mn





subject to 0ξξeyew  22222 ,)(bA (2.4)

where 0,,0, 2121  CC are input parameters; ,),,(1111
t

m ξ t
m),,(2212  ξ

are vectors of slack variables and the training samples are organized in matrix A whose ith

row iA becomes t
ix .

 Introducing Lagrange multipliers t
m

t
m),,(,),,(11111111    βα and

t
m

t
m),,(,),,(22122212    βα for CQPPs (2.3) and (2.4), their Lagrangian

functions can be written as:

)5.2()))((

))(())((
2
1),,,,(

1111111

11111111111111

ξβξeewyα

ξeeweyweyβαξw

tt

tt

εbA

CbAebAbL



 

)6.2()))((

))(())((
2
1),,,,(

2222222

22222222222222

ξβξeyeAwα

ξeeweyeweyβαξw

tt

tt

b

CbAbAεbL









Using the KKT conditions for Lagrangian function (2.5), we get:

0αAeAweyA  tt b)(111 (2.7)

0)(1111  αeeAweye tt b (2.8)

0βαe  111C (2.9)

0ξξeeAwy  11111 ,b (2.10)

0αξeeAwyα  111111 ,0))((bt
 (2.11)

0βξβ  111 ,0t
 (2.12)

Since 0β 1 , from (2.9) we have

eα0 11 C (2.13)

Page | 14

Similarly for Lagrangian function (2.6), we get

0αAeAweyA  2222)(tt b (2.14)

0)(2222  αeeAweye tt b (2.15)

0βαe  222C (2.16)

0ξξeyeAw  22222 ,)(b (2.17)

0αξeyeAwα  222222 ,0))((bt (2.18)

0βξβ  222 ,0t
 (2.19)

Since 02 β , from (2.16) we

,22 eα0 C

(2.20)

Now, combining (2.7) with (2.8) and (2.14) with (2.15), we get

0][)(1
1

1
1 


































 αAw

eAey
e
A

t

t

t

t

eb
 (2.21)

0][)(2
2

2
1 


































 αAw

eAey
e
A

t

t

t

t

eb
 (2.22)

For the sake of convenience in expression, Equations (2.21) and (2.22) can be written in

the following simpler forms, i.e.

 0111  αuf ttt GGGG i.e.).()(11
1

1 αfu   tt GGG (2.23)

 0222  αuf ttt GGGG i.e.).()(22
1

2 αfu   tt GGG (2.24)

where .][and,,][,],[2222211111
tttt bbG wueyfwueyfeA   Note that

GG t is positive semidefinite but in order to overcome the situations in which its inverse

may not exist, a regularization term I is introduced so that)(IGG t  becomes

positive definite where  is a very small positive number).71( e Thus we have

),()(11
1

1 αfu   tt GIGG  (2.25)

).()(22
1

2 αfu   tt GIGG  (2.26)

 Substituting (2.23) in the primal Lagrangian function (2.5) and using (2.10) to

Page | 15

(2.13), the dual CQPP of (2.3) can be obtained as

 111
1

11
1

1)()(
2
1

1

min αfαfαα
α

ttttttt

R
GGGGGGGG

m
 



subject to .11 eα0 C (2.27)

Similarly, substituting (2.24) in the primal Lagrangian function (2.6) and using (2.17) to

(2.20), the dual CQPP of (2.4) can be obtained as

 222
1

22
1

2)()(
2
1

2

min αfαfαα
α

ttttttt

R
GGGGGGGG

m
 



subject to .22 eα0 C (2.28)

Once the vectors 1α and 2α are known, by solving (2.27) and (2.28) the output for any

data point nRx is predicted by

)(]1[
2
1]1[])[][(

2
1))()((

2
1)(21221121 uuxxwwxxx  tttbbfff .

2.2.2 Kernel Twin Support Vector Regression

 For the nonlinear case, let the input vectors nRx be mapped into a high

dimensional feature space through a nonlinear mapping function)(x . Assume that the

dot product of any two vectors)(),(21 xx  is given by

)()(),(2121 xxxx  tk 

where (.,.)k is any suitable kernel function (see Table 1.2). Define the kernel matrix

),(tAAKK  of size mm whose thji),(entry is),(jik xx and also let

)),(),((),(1 m
tt kkAK xxxxx  be a row vector.

In this case, the  -insensitive down bound and up bound functions are defined by (Peng,

2010)

 111),()(bAKf tt  wxx , 222),()(bAKf tt  wxx (2.29)

where ., 21
mRww An intuitive geometric interpretation of nonlinear TSVR is shown in

Figure 2.2.

Page | 16

Figure 2.2: Geometrical interpretation of kernel TSVR

 These hyperplanes are determined by solving the following pairs of CQPPs

11

111111),,(
))),((())),(((

2
1

)1(
111

min
ξe

eweyewey
w

t

ttt

Rb

C

bAAKbAAK
mn









subject to

 0ξξeewy  11111 ,)),((bAAK t (2.30)

and

22

222222),,(
))),((())),(((

2
1

)1(
222

min
ξe

eweyewey
ξw

t

ttt

Rb

C

bAAKbAAK
mn








subject to

 0ξξeyew  22222 ,)),((bAAK t (2.31)

 Introducing Lagrange multipliers ,),,(,),,(11111111
t

m
t

m    βα

t
m

t
m),,(and),,(22122212    βα the Lagrangian functions corresponding to

(2.30) and (2.31) become

x

x

x

x

x

x

x
x

x

)(2 xf

)(1 xf

)(xf

22)(xf

11)(xf

x x
x x

x x x
x

x

x
x

x
x

x

x

x x

x x

x

x

x

x

x
x

x

x
x

x

x

x x

1.4

1.2

1

0.8

0.6

0.4

0.2

0

0.2
0 500 1000 1500 2000 2500

Page | 17

)32.2())),(((

)),((())),(((
2
1),,,,(

111111111

111111111111

ξβξeewyαξe

eweyeweyβαξw

tttt

ttt

bAAKC

bAAKbAAKbL









and

)33.2())),(((

))),((())),(((
2
1),,,,(

222222222

222222222222

ξβξeyewαξe

eweyeweyβαξw

tttt

ttt

bAAKC

bAAKbAAKbL









respectively.

 Proceeding as we have done for the linear case and taking 111][uw tt b and

,][222 uw tt b the duals of (2.30) and (2.31) can be obtained in the following forms:

 111
1

11
1

1)()(
2
1

1

min αfαfαα
α

ttttttt

R
GGGGGGGG

m
 



subject to ,11 eα0 C (2.34)

and

 222
1

22
1

2)()(
2
1

2

min αfαfαα
α

ttttttt

R
GGGGGGGG

m
 



subject to ,22 eα0 C (2.35)

respectively, where].),([etAAKG 

 Further, we have

),()(11
1

1 αfu   tt GIGG  (2.36)

).()(22
1

2 αfu   tt GIGG  (2.37)

 For an unknown sample ,nRx its prediction becomes

)(]1),([
2
1))()((

2
1)(2121 uuxxxx  tt AKfff

Page | 18

Chapter 3

Twin Support Vector Machine Based Regression

3.1 Introduction

 In this chapter, we introduce TWSVM Based Regression (TWSVR) proposed by

Khemchandani, Goyal and Chandra (2015). This study was inspired from the work done

by Bi and Bennett (2003) where they have given geometrical interpretation on how a SVR

problem can be regarded as a classification problem. The end regressor bf t  xwx)(is

the average of two nonparallel hyperplanes i.e. 1 -insensitive down bound and 2 -

insensitive up bound regressors determined by solving a pair of CQPPs similar to TSVR

(Peng, 2010). They claimed that though Peng’s approach (2010) to TSVR was motivated

from TWSVM but its formulation is not on the lines of TWSVM and the parameters 1

and 2 affect the linear shift of the end regressor .)(bf t  xwx More precisely, only b

depends on the 1 and 2 but w is independent of the values of 1 and 2 .

 TWSVR formulation has been mathematically derived from the TWSVM

(Khemchandani et al., 2015) as the standard SVR is related to SVM (Bi and Bennett,

2003). Unlike TSVR, both the parameters 1 and 2 contribute in the orientation of the end

regressor bf t  xwx)(i.e. w and b are functions of both 1 and .2 For the standard

SVR, epsilon also contributes in the orientation of regressor. This means value of epsilon

not only contributes to linear shift of regressor from origin but also determines the end

regressor.

 Like TSVR, TWSVR also provides improved results than the standard SVR and is

approximately four times faster than standard SVR (Peng, 2010). Their formulations differ

in the  term only. TWSVR also achieves comparable results to TSVR because  is

chosen to be a small quantity. The formulation of TWSVR is not only better than TSVR

but also is the correct choice for future work on TWSVR (Khemchandani et al., 2015).

Page | 19

3.2 Linear TWSVR

 In this section we briefly introduce how a regressor problem (SVR, TWSVR) can

be regarded as classification problem (SVM, TWSVM) (Bi & Bennett, 2003;

Khemchandani et al., 2015) . Assume that we are given a training dataset (1.1) i.e.

 .,),,()},,(,),,{(111 RYyRXxxyyS i
nt

iniimm   xxx

Let D and D be formed by shifting up and down output variables of training points by

0 i.e. },,1),,{(miyD ii  x and },,1),,{(miyD ii  x .These can

also be written as

 },,1),,{(miyAD ii   (3.1)

 },,1),,{(miyAD ii   . (3.2)

Figure 3.1: SVM Regression; (a) original data (b) shifted data and separating hyperplane (c)
......................regression plane (Bi & Bennett, 2003).

 In the augmented space 1n , we assign label +1 and -1 to training points of D

and D respectively. We find a hyperplane separating these two classes of samples that

can be considered as the regressor function in the n dimensional space (input space).Thus

the problem of finding a SVR hyperplane in n dimensional space is equivalent to finding

a SVM hyperplane in 1n dimensional space.

 In case of TWSVR, TWSVM method instead of SVM is applied on the two sets
D and D that determines two hyperplanes, one close to D and other to .D These

hyperplanes become up bound and down bound function of the end regressor in the input

space, where the end regressor is their average.

(a) (b) (c)

Page | 20

3.2.1 Hard classifier Linear  -Insensitive TWSVR

 In this section, we introduce the derivation of the TWSVR from the formulations

of TWSVM having no error term in their objective functions. We apply TWSVM on the

two sets ,D D (see section 3.2) and obtain two nonparallel hyperplanes as the

solutions of the QPPs

 2
111,,

)(
2
1

111
min bA

b
eeyw

w
 



 subject to 0eeeyw ))((111 bA  (3.3)

 2
222,,

)(
2
1

222
min bA

b
eeyw

w
 



 subject to 0eeeyw ))((222 bA  (3.4)

 Assume that the solution of (3.3) and (3.4) determines two hyperplanes

0111  bytt xw and 0222  bytt xw . Now we fix i  for 2,1i and apply the

following transformations (a) to (b) on above formulations as follows:

a) Assuming 0i and replacing iii   /ww , iii bb   / (3.3) and (3.4) become

    )()(
2
1

1111,, 111
min bAbA t

b
eweyewey

w
 



subject to eeyew
1

11
1)(





 bA

    )()(
2
1

2222,, 222
min bAbA t

b
eweyewey

w
 



 subject to eeyew
2

22
1)(





 bA

b) Subtract and add by   on the both sides of first and second CQPP respectively:

    )()(
2
1

1111,, 111
min bAbA t

b
eweyewey

w
 



subject to  eeyeew)/1(2)(111   bA

Page | 21

   )()(

2
1

2222,, 222
min ebAbA t

b
 weyewey

w




subject to  eeyeew)/1(2)(222   bA

c) Replace   eee 11 bb and   eee 22 bb on the first and second CQPP.

    )()(
2
1

1111,, 111
min bAbA t

b
ewyewy

w




subject to  eeyew)/1(2)(111   bA

    )()(
2
1

2222,, 222
min bAbA t

b
ewyewy

w




 subject to  eeyew)/1(2)(222   bA

d) Apply transformation)/1(2 ii   such that :0i

   )()(

2
1

1111, 11

min bAbA t

b
ewyewy

w


subject to 111)(eewy  bA (3.5)

    )()(
2
1

2222, 22
min bAbA t

b
ewyewy

w


subject to 222)(eyew  bA (3.6)

 Considering these transformations, the solutions)/,/(1111   bw and

)/,/(2222   bw of (3.5) and (3.6) determine the two regressor hyperplanes

 *
1

*
11)(bf  xwx and ,)(*

2
*
22 bf  xwx

where ,/ 11
*
1   ww ,/ 22

*
2  ww   11

*
1 /bb and   22

*
2 /bb .

 The final regressor bf t  xwx)(is obtained as the mean of)(1 xf and),(2 xf

where 2/)//(2211   www and .2/)//(2211   bbb

Page | 22

3.2.2 Soft classifier Linear  -Insensitive TWSVR

 In this section, we briefly describe the soft margin classifier  -insensitive

TWSVR for the linear case. Adding an error term in objective function, the soft classifier

formulation can be obtained in the following form:

    111111,,

)()(
2
1

111

min ξeewyewy
ξw

tt

b
CbAbA 

subject to 0ξξeewy  11111 ,)(bA (3.7)

     222222,,
)()(

2
1

222

min ξeewyewy
ξw

tt

b
CbAbA 

subject to ,,)(22222 0ξξeyew  bA (3.8)

where 0, 21 CC are regularization parameters and ,),,(1111
t

m ξ t
m),,(2212  ξ

are slack vectors.

 Introducing Lagrange multipliers ,),,(,),,(11111111
t

m
t

m    βα

t
m

t
m),,(and),,(22122212    βα the Lagrangian functions for (3.7) and (3.8)

can be written as:

 1111111

1111111111

))((

))(())((
2
1),,(

ξβewyξeα

ξeewyewyξw

tt

tt

bAε

CbAbAbL




 (3.9)

and

2222222

2222222222

)))((

))(())((
2
1),,(

ξβyewξeα

ξeewyewyξw

tt

tt

bA

CbAbAbL






 (3.10)

respectively. Applying the KKT conditions for Lagrangian function (3.9), we get:

0αAeAwyA  tt b)(11 (3.11)

0αeeAwye  111)(tt b (3.12)

0βαe  111C (3.13)

0ξξeeAwy  11111 ,b (3.14)

0αeAwyξeα  111111 ,0))((bt  (3.15)

.,0 111 0βξβ t (3.16)

Page | 23

Since 0β 1 , from (3.13) we get

.11 eα0 C (3.17)

Similarly for the Lagrangian function (3.10), we get

0αAeAwyA  222)(tt b (3.18)

0)(222  αeeAwye tt b (3.19)

0βαe  222C (3.20)

0ξξeyeAw  22222 ,)(b (3.21)

0αyeAwξeα  222222 ,0)((bt  (3.22)

.,0 222 0βξβ t (3.23)

Since 02 β , from (3.20) we get

.22 eα0 C (3.24)

Now, combining (3.11) with (3.12) and (3.18) with (3.19), we get

0α
e
Aw

eAy
e
A



































 1

1

1][t

t

t

t

b
 (3.25)

0α
e
Aw

eAy
e
A



































 2

2

2][t

t

t

t

b
 (3.26)

Equation (3.25) and (3.26) can also be transformed into equations (3.27) and (3.28)

respectively, i.e.

 0αuf  11
ttt GGGG i.e.),()(1

1
1 αfu   tt GGG (3.27)

 0αuf  22
ttt GGGG i.e.),()(2

1
2 αfu   tt GGG (3.28)

where .][and,][,],[222111
tttt bbG wuwuyfeA  Again to overcome the

situation in which the inverse of GG t does not exist, a regularization term I can be

introduced so that)(IGG t  becomes positive definite with  being a very small

positive number, such as .71  e

 Substituting (3.27) in (3.9) and using (3.14) to (3.17), the dual of (3.7) can be

obtained as

Page | 24

 1111
1

1
1

1)()(
2
1

1

min αeαfαfαα
α

tttttttt

R
GGGGGGGG

m
 



subject to .11 eα0 C (3.29)

Similarly, substituting (3.28) in (3.10) and using (3.21) to (3.24), the dual of (3.8) can be

obtained as

 2222
1

2
1

2)()(
2
1

2

min αeαfαfαα
α

tttttttt

R
GGGGGGGG

m
 



subject to .22 eα0 C (3.30)

 The above formulations (3.29) and (3.30) determine hyperplanes 11)(bf t  xwx

and 222)(bf t  xwx .The end regressor is obtained by taking the mean of)(1 xf and

).(2 xf

3.3 Nonlinear TWSVR

 For the nonlinear case, TWSVR determines the  -insensitive down and up bound

functions to be

 111),()(bAKf tt  wxx , (3.31)

 222),()(bAKf tt  wxx , (3.32)

 These hyperplanes are determined by the TWSVR as the solution of the following

pair of QPPs:

111111

),,(
))),((())),(((

2
1

)1(
111

min ξeewAAyewAAy
ξw

tttt

Rb
CbKbK

mn




subject to 0ξξeewy  11111 ,)),((bAAK t (3.33)

222222

),,(
))),((())),(((

2
1

)1(
222

min ξeewyewy
ξw

tttt

Rb
CbAAKbAAK

mn




subject to 0ξξeyew  22222 ,)),((bAAK t (3.34)

Page | 25

 Introducing Lagrange multipliers ,),,(,),,(11111111
t

m
t

m    βα

t
m

t
m),,(and),,(22122212    βα their Lagrangian functions can be written as:

 111111111

11111111

))),(((

))),((())),(((
2
1),,(

ξβewAAyξeαξe

ewAAyewAAyξw

tttt

ttt

bKC

bKbKbL







 (3.35)

222222222

22222222

))),(((

))),((())),(((
2
1),,(

ξβewAAξeαξe

ewAAyewAAyξw

tttt

ttt

ybKC

bKbKbL







 (3.36)

 Proceeding as we have done for the linear case, the duals of (3.33) and (3.34) can

be obtained in the following form:

1111

1
1

1
1)()(

2
1

1

min αeαfαfαα
α

tttttttt

R
GGGGGGGG

m
 



subject to ;11 eα0 C (3.37)

 2222
1

2
1

2)()(
2
1

2

min αeαfαfαα
α

tttttttt

R
GGGGGGGG

m
 



subject to .22 eα0 C (3.38)

),()(1
1

1 αfu   tt GIGG  (3.39)

),()(2
1

2 αfu   tt GIGG  (3.40)

where ,][111
tt bwu  tt b][222 wu  and .]),([etAAKG 

 For a new data point ,nRx the end regressor can be obtained as

)(]1),([
2
1)(21 uuxx  ttt AKf

Page | 26

Chapter 4

LTWSVR: Lagrangian Twin Support Vector
Regression Based on Twin Support Vector Machine

4.1 Introduction

 In this work, an implicit Lagrangian for the 2-norm TWSVR is proposed. This

Lagrangian formulation is motivated from the study of (Mangasarian and Musicant, 2001)

for classification problem as an unconstrained differentiable convex problem. Further it is

proposed to solve this problem by a simple and linearly convergent iterative Lagrangian

twin support vector regression method based on twin SVM (LTWSVR) algorithm.

LTWSVR requires at the outset the inverse of a matrix but this can be expressed as matrix

subtraction of identity matrix by a scalar multiple of the inverse of a positive semi-definite

matrix (Balasundaram and Tanveer, 2013). LTWSVR does not need any optimization

tools of linear or quadratic programming solvers.

 Inspired by the study of Finite Newton method for Lagrangian SVM for

Classification proposed in (Fung & Mangasarian, 2003) , Newton method for implicit

Lagrangian formulation is discussed i.e. unconstrained minimization problems

corresponding to the duals of TWSVR is also proposed in section 4.3.

 The chapter is organized as follows. In section 4.2 we derive the linear and

nonlinear Lagrangian TWSVR (LTWSVR) by formulating the TWSVR in 2-norm as an

unconstrained minimization problem (Balasundaram and Tanveer, 2013) and obtain its

dual. In section 4.3 we describe Newton method for solving this unconstrained

minimization problem. In section 4.4 we consider LTWSVR as an absolute value equation

problem and it is proposed to obtain solution using Newton method. We also propose a

generalized derivative approach based solution in section 4.5.

Page | 27

4.2 Lagrangian Twin Support Vector Regression Based on Twin Support Vector
Machine (LTWSVR)

 For the linear TWSVR in 2-norm, it’s up-bound (.)1f and down-bound (.)2f

regressor of the form (2.2) and (2.3) are determined by solving the pair of QPPs:

 11
1

1

1

1

1

,, 2
][][

2
1

111

min ξξ
w

ey
w

ey
ξw

t

t

b

C
b

A
b

A 


































subject to 11
1

1][ξe
w

ey 















 

b
A (4.1)

and

22

2

2

2

2

2

,, 2
][][

2
1

222

min ξξ
w

ey
w

ey
ξw

t

t

b

C
b

A
b

A 


































subject to 22
2

2][ξey
w

e 


















b
A (4.2)

where 0, 21 CC and slack vectors ,),,(1111
t

m ξ .),,(2212
t

m ξ Note that the

non-negative constraints of 1ξ and 2ξ have been dropped in (4.1) and (4.2) because they

will be satisfied automatically at optimality.

 Let)1(][ nmAG e . Then (4.1) and (4.2) become

 11
1

1

1

1

1

,, 22
1

111

min ξξ
w

y
w

y
ξw

t

t

b

C
b

G
b

G 


































subject to 11
1

1 ξe
w

y 















 

b
G (4.3)

and

22

2

2

2

2

2

,, 22
1

222

min ξξ
w

y
w

y
ξw

t

t

b

C
b

G
b

G 


































subject to 22
2

2 ξey
w




















b
G (4.4)

Page | 28

 Introducing Lagrange multiplier t
muu),,(1111 u , the Lagrangian function (.)1L

corresponding to (4.3) can be written as:

































































 11

1

1
1111

1

1

1

1
1111 2

1),,(ξe
w

yuξξ
w

y
w

yξw 
b

GC
b

G
b

GbL tt
t

Applying the KKT conditions for Lagarangian function 1L (.), we get:

)()(00 1
1

1

1
1

1

1

1

1

1 uy
w

u
w

w






































  tttt GGG
b

G
b

GyG

b

L and

 .00
1

1
1111

1

1

C
CL uξuξ

ξ





Substituting these results back into the Lagarangian function (.)1L , and ignoring the

constant terms the dual of (4.3) can be written as a minimization problem of the form

111

1
111)(

2
1)(

1

min ueyyuuu
0u

tttt HH
C
IL 











 (4.5)

where .)(1 tt GGGGH 

 Similarly by introducing the Lagrange multiplier ,),,(2212
t

muu u (.)2L can be

written as:

































































 22

2

2
2222

2

2

2

2
2222 2

1),,(ξey
w

uξξ
w

y
w

yξw 
b

GC
b

G
b

GbL tt
t

Applying the KKT conditions for Lagrange function (.)2L , we get:

)()(00 2
1

2

2
2

2

2

2

2

2 uy
w

u
w

w






































  tttt GGG
b

G
b

GyG

b

L and

 .00
2

2
2222

2

2

C
CL uξuξ

ξ





Page | 29

Substituting these results back into Lagrangian function (.)2L , we get:

 222
2

222)(
2
1)(

2

min ueyyuuu
0u

tttt HH
C
IL 










 (4.6)

 The above minimization problems (4.5) and (4.6) can be equivalently written in

the following simpler form:

 1111111 2
1)(

1

min uruuu
0u

ttQL 


and

 2222222 2
1)(

2

min uruuu
0u

tt QL 


 (4.7)

respectively, where

eyey 2111
2

2
1

1)(and)(,,   IHrHIrH
C
IQH

C
IQ .

 Each of the above two QPPs determines the functions

)()](1[]1[)(1
1

1

1
1 uyx

w
x 








  tttt GGG

b
xf and

)()](1[]1[)(2
1

2

2
2 uyx

w
x 








  tttt GGG

b
xf (4.8)

 For the nonlinear TWSVR in 2-norm, it’s up-bound (.)1f and down-bound (.)2f

regressors are determined by solving the pair of QPPs:

 11
1

1

1

1

1

,, 2
][]),([

2
1

111

min ξξ
w

ey
w

ey
ξw

t

t

t

b

C
b

A
b

AAK 


































s.t. 11
1

1]),([ξe
w

ey 















 

b
AAK t (4.9)

and

22
2

2

2

2

2

,, 2
][]),([

2
1

222

min ξξ
w

ey
w

ey
ξw

t

t

t

b

C
b

A
b

AAK 


































s.t. 22
2

2]),([ξey
w

e 


















b
AAK t (4.10)

Page | 30

Proceeding as we have done for the linear TWSVR, the dual QPPs of (4.9) and (4.10) can

be obtained as a pair of minimization problem of the form (4.7) where 212121 ,,,,, rruu QQ

has the same definition as defined above but the augmented matrix G is defined by:

)1(]),([ mm
tAAKG e .The kernel regressor functions can be determined as the mean of

the up-bound (.)1f and down-bound (.)2f regressor functions as follows:

)()](1),([]1),([)(1
1

1

1
1 uyx

w
x 








  tttttt GGGAK

b
AKxf and

)()](1),([]1),([)(2
1

2

2
2 uyx

w
x 








  tttttt GGGAK

b
AKxf (4.11)

 Now we discuss the solution of dual QPPs (4.7) by our iterative LTWSVR

algorithm.

 The KKT necessary and sufficient optimal conditions (Mangasarian, 1994) for the

dual QPPs (4.7) will become

     0ruu00ruu0  22221111 and QQ (4.12)

For any two vectors ba and the following identity holds

 0,)(   baa0ba0

Using this identity optimal condition, for any 0, 21  (4.12) can be written as

  ))((and))((2222222211111111 ururuururu  QQQQ (4.13)

These optimality conditions are also the necessary and sufficient condition for the

unconstrained minimum of the implicit Lagrangian (Mangasarian and Solodov, 1993)

associated with the dual problems (4.7):

  2

111
2

11111
1

1111111 2
1

2
1)(

1

min ruruuuruuu
u

 
QQQL tt

Rm




and

   2
222

2
22222

2
2222222 2

1
2
1)(

2

min ruruuuruuu
u

 
QQQL tt

Rm




 (4.14)

Page | 31

The optimality conditions (4.12) can also be written as

 0uruu00uruu0 )(and)(22
2

2

2

2
11

1

1

1

1 H
CC

H
CC

0uruu00uruu0 )(and)(22
2

2

2

2
11

1

1

1

1 H
CC

H
CC

 )(and)(22
2

2
11

1

1 uruuru H
C

H
C

2222
2

1111
1 2

and
2

urruurru HH
C

IHH
C

I




















Finally, we have following simple iterative scheme for LTWSVR algorithm: ,2,1,0i

  and111
1

21
iHQ urru    iHQ 222

1
32 urru   (4.15)

where,

,
2/

,)(,)(,)(
1

2
1

2211 







  H

C
IQGGGGHIHHI tteyreyr 

and
2/2

3 







 H

C
IQ

 
 




)nonlinear(),(

)linear(
e

e
tAAK

A
G

Remark: The proposed LTWSVR algorithm requires at its very beginning the inverse of

matrices .and 32 QQ but this explicit computation are not required because once the

matrix 1)(GG t is known, they can be easily obtained from the result (Balasundaram and

Tanveer, 2013)

 .2,1for
)2/(1

2/1
1 











 kH

C
CICQ

k

k
kk

 Finally, the end regressor function is defined as:

2

)()()(21 xfxff 
x

where, for linear case

)()](1[)(1
1

1 uyx   ttt GGGxf and)()](1[)(2
1

2 uyx   ttt GGGxf

Similarly for the nonlinear case,

)()](1),([)(1
1

1 uyx   tttt GGGAKxf and)()](1),([)(2
1

2 uyx   tttt GGGAKxf

Page | 32

4.3 Newton method for LTWSVR

 In this section, Newton method is described for the solution of the implicit

Lagrangian formulations i.e. unconstrained minimization problems (4.14) that lead to

highly effective iterative scheme (Fung et al., 2003). In short, (4.14) can also be written

as:

   2,1
2

1
2
1)(22min  

kQQQL kkkkkkkk
k

k
t
kkk

t
kkkRm

k

ruruuuruuu
u




 The basic Newton step for determining the vector mi
k R1u from its previous

value i
ku can be given by the following iterative formula:

 ,,iLL i
k

i
k

i
k

i
kk 10for,))(()(12   0uuuu (4.16)

The gradient of)(kkL u can be obtained as

)))(()(()()(


 kkkkkkk
k

kk
kk IQQQIL ruruu 




The Hessian matrix of second order partial derivative of)(kkL u does not exist because

gradient))((kkL u is not differentiable. However, it has been shown that a generalized

Hessian matrix of)(kkL u exist (Facchinei, 1995; Hiriart-Urruty, Strodiot, & Nguyen,

1984) and is defined as follows:

))())((()()(2
kkkkkkk

k

kk
kk QIIQdiagQQIL 


  


 ruu

where *(.)diag is a diagonal matrix and )(denotes the step function, which is taken here

as the subgradient of the plus function )(, i.e. the step function *x denotes a vector x

with all positive components set to 1 and all nonpositive components of x set to zero

(Mangasarian, 2002).

 We note that if kQ be symmetric positive definite matrix and kk Q then both

)(kkL u and)(2
kkL u containing multiplicative factor

k

kk QI


)( will be positive

definite. So Newton iteration (4.16) is simplified to:

 1,0))(()(1   ihh i
k

i
k

i
k

i
kk 0uuuu (4.17)

Page | 33

where,

)())(()()(
1

i
kk

k

kk
k

i
kkkk

i
kk

i
kk LQIIQQh ururuu 







 




 


 and

)()())(()(2
1

i
k

k

kk
kkk

i
kkkk

i
kk LQIQIIQdiagQh uruu 







 




 




4.4 LTWSVR as an absolute value equation problem by Newton method

 Again, consider the absolute value equation problem

 .2,1,
2









 kHH

C
I

kkkk
k

urru

Let,   .2,1,
2

)(







 kHH

C
Ig kkkk

k
kk urruu

Then, the generalized Jacobian of)(kg can be obtained in the following form

 HHsigndiagH
C

Ig kk
k

kk))((
2

)(uru 









Then, Newton method becomes

 1,0)())((1   igg i
kk

i
k

i
k

i
kk uuuu

i.e.

 



































 

i
kkk

i
k

k

i
k

i
k

i
k

i
k

k

HH
C

I

HHsigndiagH
C

I

urru

uuur

2

)())((
2

1

 ,1,0and2,1  ik

where,

 eyreyr 2211)(,)(  IHHI and tt GGGGH 1)(

Page | 34

 4.5 Generalized Newton method for LTWSVR

 A generalized derivative approach studied in (Fung and Mangasarian, 2003;

Balasundaram and Singh, 2010) is described here for solving the unconstrained

minimization problems described in section 4.2:

 Consider  )()(and)()(22
2

2
2211

1

1
11 uruuuruu H

C
gH

C
g .

The gradients should be zero.

Then, using a generalized derivative, the generalized Jacobians of)(11 ug and)(22 ug can

be taken as

HHsigndiag
C
Ig)))((()(11

1
11  uru

and

 ,)))((()(22
2

2 HHsigndiag
C
Ig  uru respectively.

Using this, a generalized Newton method for solving 2,1,0)( kg kk u becomes

 ,2,1)())((1   kgg i
kk

i
k

i
k

i
kk uuuu and 1,0i

which lead to the following iterative method:

 

































)(

)()))(((
2

1

i
kkk

k

i
k

i
k

i
kkk

k

H
C

HHsigndiagH
C

I

urru

uuur

 ,1,0and2,1  ik

Page | 35

Chapter 5

Experimental Results and Analysis

 In this chapter, we investigate the effectiveness and speed of the proposed method

LTWSVR, defined by gradient based iterative algorithms: FLTWSVR, NLTWSVR and

GLTWSVR, on five synthetic and several well known real world datasets. We focus on

the comparison of their results with standard SVR, TSVR and TWSVR in terms of

accuracy and learning time.

 The chapter is organized as follows: we introduce the specification of experimental

environment for all computations in section 5.1. We describe the performance of proposed

method LTWSVR on synthetic and real world datasets in sections 5.2 and 5.3

respectively.

5.1 Experimental Specification

 All experiments are implemented on a PC running Windows 7 with 3.2 GHz Intel

CORE i2 processor, 3 GB RAM with MATLAB 2008a. QPPs involved in SVR, TSVR

and TWSVR are solved by Mosek optimization toolbox (available online at http://www.

mosek.com) for MATLAB which implements fast interior point based algorithms for

convex optimization problems. No optimization tool is required for our proposed method

LTWSVR. In order to construct nonlinear regressor, Gaussian kernel with parameter

0 defined by)exp(),(2
2121 xxxx  k is utilized. To compare the robustness of

the proposed method, root mean square error (RMSE) is employed and is defined as

 RMSE= 



N

i
ii yy

N 1

2)(1

where ii yy and are the observed and predicted value for the thi sample respectively and

N is the number of test samples.

Page | 36

 To reduce the complexity of the optimal parameter selection procedure for TSVR,

TWSVR and proposed LTWSVR, we let 2121 and  CC as in Peng (2010).

Furthermore, we let regularization parameters]10,,10[, 55
21  CCC , tolerance

parameters]10,,10[, 13
21

  and kernel parameter]2,,2[55  . These

optimal parameters are tuned by performing standard ten-fold cross validation on

experimental datasets.

5.2 Illustrations and Experiment on Synthetic Datasets

 In this experiment section, we evaluate the performance of proposed LTWSVR

algorithms on five synthetic datasets generated by the functions which are defined in

Table 5.1. For each function)(xfy  , we generated 1000 testing samples),(yx using

)(xfy  and 200 training samples),(yx using )(xfy randomly on the intervals

defined in Table 5.1, where  is additive noise. Note that for robust comparison, we

contaminated 200 training samples with two different kind of noises: a) uniform

distribution over the interval [-0.2, 0.2] and b) Gaussian distribution with mean 0 and

standard deviation 0.2. The optimal values for regularization, error tolerance and kernel

parameters are obtained from their appropriate ranges as described in section 5.1 by

performing ten-fold cross validation on the training set. Using these optimal values and a

Gaussian kernel, the RMSE on testing set for methods SVR, TSVR, TWSVR, FLTWSVR,

NLTWSVR and GLTWSVR were obtained and summarized in Table 5.2. It can be

observed from the Table 5.2 that the proposed LTWSVR achieve the competitive

generalization performance with much faster learning speed in comparison to SVR, TSVR

and TWSVR.

 For evaluating the performance of LTWSVR algorithms, the first example

considered is the regression of the function (Riberio, 2002) as defined in Table 5.1, i.e.

]6,0[),cos()sin()(2  xxxxf

The approximation of this function by SVR, TSVR , TWSVR, FLTWSVR, NLTWSVR

and GLTWSVR methods for uniform and Gaussian additive noises over test set were

obtained and illustrated in Figures 5.1(a) and 5.1(b) where noisy training samples marked

Page | 37

Table 5.1: Functions used for generating synthetic datasets

Name Function Definition Domain of Definition

Function 1)cos()sin(2xx]6,0[x

Function 2))sin(exp(21 xx 

]1,1[2,1 ix

Function 3 










135.0
)11035.0(2sin

x


]10,0[x

Function 4 2
2

2
1

2
2

)5()5(3
)5(

xx
x




]10,0[,2,1 ix

Function 5
)])9.0(4sin())5.0(3exp(

))6.0(13sin()exp(35.1[9.1
2

22

2
11





xx
xx


]1,0[,2,1 ix

by symbol ‘o’. Prediction errors are obtained by taking the difference between the

observed and predicted values. The prediction errors by SVR, TSVR, TWSVR,

FLTWSVR, NLTWSVR and GLTWSVR methods for uniform and Gaussian additive

noises over test set were obtained and illustrated in Figures 5.2(a) and 5.2(b) respectively.

Page | 38

a) Uniform noise form [-0.2,0.2]

b) Gaussian noise with mean Zero and standard deviation 0.2

Figure 5.1: Results of approximation of)cos()sin(2xx by SVR, TSVR, TWSVR and proposed methods:
FLTWSVR, NLTWSVR, GLTWSVR on testing set. Gaussian kernel was employed.

Page | 39

a) Uniform noise from [-0.2,0.2]

b) Gaussian noise with mean zero and standard deviation 0.2

Figure 5.2: Prediction Error over the test set by SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and GLTWSVR for
the dataset generated by the function)cos()sin(2xx . Gaussian kernel was employed.

Page | 40

Table 5.2: Performance comparison of our proposed methods: FLTWSVR, NLTWSVR and GLTWSVR with
SVR, TSVR and TWSVR on synthetic datasets for uniform and Gaussian additive noises. RMSE was used for
comparison. Gaussian kernel was employed. Time is for training in seconds. Bold type shows the best
result.

a) Uniform noises from [-0.2, 0.2]

Dataset
(Train Size, Test
Size)

SVR
 (C,μ,ɛ)
Time

TSVR
 (C1=C2, μ, ɛ1= ɛ2)

Time

TWSVR
 (C1=C2, μ, ɛ1= ɛ2)

Time

FLTWSVR
 (C1=C2, μ, ɛ1= ɛ2)

Time

NLTWSVR
 (C1=C2, μ, ɛ1= ɛ2)

Time

GLTWSVR
 (C1=C2, μ, ɛ1= ɛ2)

Time

Function 1
(200 Χ 1,1000 Χ 1)

0.0444
(101,23,10-1)

0.1755

0.0352
(102,23,10-3)

0.1355

0.0358
(101,23,10-1)

0.1270

0.0377
(102,23,10-2)

0.0212

0.0350
(103,23,10-2)

0.0717

0.0350
(103,23,10-2)

0.0719

Function 2
(200 Χ2,1000 Χ 2)

0.0715
(101,21,10-1)

0.1148

0.0643
(105,21,10-1)

0.0875

0.0644
(105,21,10-2)

0.0930

0.0584
(102,21,10-2)

0.0128

0.0592
(102,21,10-3)

0.0443

0.0592
(102,21,10-3)

0.0407

Function 3
(200 Χ 1,1000 Χ 1)

0.0568
(105,20,10-1)

0.2286

0.0599
(100,22,10-1)

0.0632

0.0598
(101,22,10-1)

0.0662

0.0595
(104,21,10-2)

0.0185

0.0597
(102,22,10-1)

0.0391

0.0597
(102,22,10-1)

0.0383

Function 4
(200 Χ 2,1000 Χ 2)

0.0778
(100,2-2,10-1)

0.1084

0.0902
(10-5,2-3,10-3)

0.0964

0.0889
(10-1,2-3,10-1)

0.1351

0.0901
(100,2-3,10-1)

0.0122

0.0901
(100,2-3,10-1)

0.0226

0.0901
(100,2-3,10-1)

0.0236

Function 5
(200 Χ2,1000 Χ 2)

0.3609
(102,25,10-2)

0.1235

0.4082
(105,25,10-1)

0.1087

0.4083
(101,25,10-3)

0.0734

0.3661
(105,25,10-2)

0.0131

0.4110
(101,25,10-3)

0.0330

0.4110
(101,25,10-3)

0.0324

b) Gaussian noise with mean zero and standard deviation 0.2

Dataset
(Train Size, Test
Size)

SVR
 (C,μ,ɛ)
Time

TSVR
 (C1=C2, μ, ɛ1= ɛ2)

Time

TWSVR
 (C1=C2, μ, ɛ1= ɛ2)

Time

FLTWSVR
 (C1=C2, μ, ɛ1= ɛ2)

Time

NLTWSVR
 (C1=C2, μ, ɛ1= ɛ2)

Time

GLTWSVR
 (C1=C2, μ, ɛ1= ɛ2)

Time

Function 1
(200 Χ 1,1000 Χ 1)

0.0987
(100,24,10-1)

0.0690

0.0853
(105,23,10-1)

0.3106

0.0678
(100,23,10-1)

0.0630

0.0783
(102,23,10-1)

0.0150

0.0801
(102,23,10-1)

0.3270

0.0801
(102,23,10-1)

0.4522

Function 2
(200 Χ 2,1000 Χ 2)

0.1003
(105,2-4,10-2)

0.1153

0.1084
(100,2-1,10-1)

0.0581

0.1085
(100,2-1,10-3)

0.0565

0.1048
(102,2-1,10-3)

0.0125

0.1046
(101,2-1,10-2)

0.0413

0.1046
(101,2-1,10-2)

0.0400

Function 3
(200 Χ 1,1000 Χ 1)

0.0992
(104,20,10-3)

0.1855

0.0736
(10-1,22,10-3)

0.0574

0.0737
(10-1,22,10-2)

0.0604

0.0725
(10-5,22,10-2)

0.0166

0.0725
(10-5,22,10-2)

0.0275

0.0725
(10-5,22,10-2)

0.0269

Function 4
(200 Χ 2,1000 Χ 2)

0.1444
(101,2-4,10-2)

0.1742

0.1339
(10-1,2-4,10-1)

0.0615

0.1339
(10-1,2-4,10-3)

0.0565

0.1334
(10-3,2-4,10-3)

0.0166

0.1334
(10-3,2-4,10-3)

0.0269

0.1334
(10-3,2-4,10-3)

0.0269

Function 5
(200 Χ 2,1000 Χ 2)

0.4989
(102,24,10-3)

0.1173

0.5782
(10-1,25,10-3)

0.0584

0.5782
(10-1,25,10-3)

0.0563

0.3584
(105,24,10-2)

0.0177

0.5769
(100,25,10-3)

0.0410

0.5769
(100,25,10-3)

0.0413

Page | 41

5.3 Real-world Benchmark Datasets

 In this section, to further test the effectiveness of LTWSVR algorithms compared

to SVR, TSVR and TWSVR, we illustrate the experiments performed both linearly and

nonlinearly on several well known real-world datasets. For this we use 27 real-world

datasets: Hydraulic actuator (Gretton et al., 2001; Sjoberg et al., 1995); Gas Furnace (Box

and Jenkins, 1976); Pyrim, Servo, Triazines, Wisconsin breast cancer, Boston, Forest

fires, Concrete CS, Wine quality red, Concrete Slump and AutoPrice datasets form UCI

repository (Murphy and Aha, 1992); Flexible robotic arm

(http://homes.esat.kuleuven.be/~smc/daisy/daisy data.html); Pollution, NO2, Bodyfat,

Balloon and Quake (http://lib.stat.cmu.edu/ datasets); Motorcycle (Eubank, 1999); Demo

(DELVE, 2005); Sunspots times series dataset (http://www.bme.ogi.

edu/~ericwan/data.html); IBM, Standard & Poor 500 (SNP500), Citigroup, Intel,

Microsoft and RedHat financial time series datasets (http://finance.yahoo.com).

 For all experiments, first all samples are normalized before learning as follows:

 minmax

min

ˆ
jj

jij
ij xx

xx
x






where ijx is thji),(entry in the input matrix ,nmA  ijx̂ its corresponding estimated

normalized value and)(minmin
ijmij xx


 and njxx ijnjj ,,1),(minmin 


 denote minimum

and maximum values in the thj column respectively. Second, optimal parameters are

determined by performing ten-fold cross-validation on training set as whole dataset. As for

testing, we apply the cross-validation by taking random ninety percent of the dataset for

training and remaining for testing. Repeating this process ten times and taking their

average, test accuracy is determined.

 The Hydraulic actuator dataset is taken as the first example for our experiment. It

has been widely used in nonlinear system identification (Gretton et al., 2001; Sjoberg et

al., 1995). It contains 1024 samples with input variable)(tu and the output variable)(ty

denotes the valve position and oil pressure respectively. For the purpose of comparison,

1021 samples with five attributes are taken of the form))(),((tytx where

Page | 42

ttututytytyt)]2(),1(),3(),2(),1([)(x .

 As for second example, frequently used for nonlinear identification problems, Box

and Jenkins gas furnace dataset is taken. It is a time series dataset which contains 296

samples with input variable)(tu and output variable)(ty denote gas flow rate and 2CO

concentration respectively. In experiment 293 samples with six attributes of the form:

))(),((tytx where ,)]3(),2(),1(),3(),2(),1([)(ttutututytytyt x are taken for

testing. The prediction accuracy and prediction error plots over whole dataset employing

linear kernel by SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and GLTWSVR are

shown in Figures 5.3 and 5.4 respectively. Using Gaussian kernel, prediction accuracy and

prediction error over the whole dataset by SVR, TSVR, TWSVR, FLTWSVR,

NLTWSVR and GLTWSVR are shown in Figures 5.5 and 5.6 respectively.

 As an interesting example, the flexible robotic arm, in estimation of the inverse

dynamics of a flexible robot arm (Souza et. al. 2006), is taken. The dynamics of robot arm

is modeled as a transfer function of the measured values of the reaction torque of the

structure (input time series,)(tu) whose output)(ty is its corresponding acceleration.

Following the work of (Souza and Barreto, 2006), samples are taken to be of the form:

))(),((txt outx where ttytytutut)]4(),1(),5(,),1([)( x and).()(tutx out 

 In addition to the above datasets, experiments are performed on other well known

datasets: Bodyfat, NO2, Balloon, Pollution and Quake available from Statlib collection

http://lib.stat.cmu.edu/datasets. Bodyfat is a real dataset lists estimates of the percentage of

body fat of 252 peoples having from body density values. NO2 dataset contains 500

sample from a dataset with seven variables collected by the Norwegian Public Roads

Administration (Vlachos, 2005). Balloon dataset contains 2001 observations of radiation

having trend and outliers. The pollution dataset lists an estimate relating air pollution to

mortality. Quake dataset contains 2178 samples with three attributes (focal depth, latitude

and longitude), lists information for earthquakes occurred between January 1964 and

February 1986.

 Another popular benchmark dataset, Motorcycle consists of a series of

accelerometer readings over time in a simulation of motorcycle accidents used to test

Page | 43

crash-helmets (Silverman, 1985). The Demo dataset (DELVE, 2005) which consists of

294 samples artificially generated from a distribution based on assumptions and notions

concerning the relationships between people's sex, age, number of siblings, income, and

favorite colour. The Sunspots (http://www.bme.ogi. edu/~ericwan/data.html) time series

dataset, containing 295 yearly readings (year 1700 to 1994) but only 290 samples taken as

a whole because current value is predicted from five previous values.

 To further test the performance of algorithms, we evaluated them on several

publicly available datasets from UCI repository including Pyrim, Servo, Triazines,

Wisconsin breast cancer, Boston, Forest fires, Concrete CS, Wine quality red, Concrete

Slump and AutoPrice datasets. These datasets are commonly used in testing regression

algorithms.

 Finally, as examples of financial time series datasets, the stock index of Citigroup,

Intel, Microsoft and RedHat are considered. These datasets contain information about 755

closing stock prices (01-01-2006 to 31-12-2008). Since the current value is predicted from

five previous values so only 750 samples taken as a whole dataset.

5.3.1 Numerical experiment using linear regressors

 In this sub-section, all the experiments are performed using the linear kernel. In

order to evaluate the performance of the LTWSVR algorithms (FLTWSVR,NLTWSVR,

GNLTWSVR) with SVR, TSVR and TWSVR, we obtained optimal parameter values by

performing ten- fold cross validation for each dataset and computed learning time, average

RMSE and standard deviation summarized in Table 5.3. As seen from Table 5.3, for most

of the cases, LTWSVR algorithms derive better generalization performance than SVR,

TSVR and TWSVR. As for training time, LTWSVR algorithms spend the least CPU time

among all the methods.

 To analyze the performance of all the six algorithms over multiple datasets, we

used Friedman test with post hoc test which is stated as a simple, safe and robust non-

parametric test (Demsar, 2006). For this, we computed average ranks of these algorithms

on RMSE values which are listed in Table 5.4. Under the null hypothesis that all the

algorithms are identical, Friedman statistics can be computed as follows:

Page | 44

32.4965
4
76)6851.27777.26296.2037.40925.47777.4(

76
2712 2

2222222










 





F

8.2427.
32.4965-527

32.496526





FF

where FF is distributed according to F distribution with)130,5(degrees of freedom.

The critical value of)130,5(F is 2.2839 for the level of significance 05.0 and

similarly 1.8920 for .10.0 Since FF is greater than both critical values, so we reject

the null hypothesis. We use the Nemenyi test for further pair wise comparison. According

to (Demsar, 2006), the performance of two algorithms is significantly different if the

corresponding average ranks differ by at least the critical difference, at 10.0p critical

difference (CD) is 1.3182.
276
76589.2 


 we have the following comparison results:

(i) For Absolute, Newton and Generalized; the difference of one algorithm with other two

algorithms is less than the critical difference value. This indicates that the post hoc test

fails to detect any significant difference among these three algorithms.

(ii) The Absolute method significantly performs better than the SVR

),3182.12.14816296.27777.4( the TSVR)3182.11.46296296.20925.4(

and the TWSVR).3182.11.40746296.20370.4(

(iii) The Newton method significantly performs better than the SVR

).3182.127777.27777.4( There is no any significant difference detected for the

Newton method compared with the TSVR)3182.11.31487777.20925.4( and

the TWSVR 1.25937777.20370.4()3182.1 .

(iv) The generalized method significantly performs better than the SVR

),3182.10926.26851.27777.4( the TSVR)3182.14074.16851.20925.4(

and the TWSVR).3182.13519.16851.20370.4(

Page | 45

Figure 5.3: Result of comparison on Gas furnace dataset. Linear kernel was employed

Figure 5.4: Prediction Error over the whole dataset by SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and
GLTWSVR for the gas furnace dataset of Box-Jenkins. Linear kernel was employed.

Page | 46

Table 5.3: Performance comparison of our proposed methods: FLTWSVR, NLTWSVR and GLTWSVR with SVR, TSVR and
TWSVR. RMSE was used for comparison. Linear kernel was employed. Bold type shows the best result.

Dataset
(Train Size, Test Size)

SVR
 (C, ɛ)
Time

TSVR
 (C1=C2, ɛ1= ɛ2)

Time

TWSVR
 (C1=C2, ɛ1= ɛ2)

Time

FLTWSVR
 (C1=C2, ɛ1= ɛ2)

Time

NLTWSVR
 (C1=C2, ɛ1= ɛ2)

Time

GLTWSVR
 (C1=C2, ɛ1= ɛ2)

Time

Hydraulic actuator
(1021 Χ 5)

0.0145±0.0046
(101,10-2)

4.3804

0.0134±0.0034
(10-2,10-3)

1.6917

0.0135±0.0034
(10-2,10-3)

1.7299

0.0133±0.0038
(10-5,10-3)

0.1617

0.0132±0.0041
(10-5,10-3)

0.3350

0.0133±0.0038
(10-4,10-3)

0.6250

Gas furnace
(293 Χ 6)

0.0199±0.0068
(102,10-2)

0.1438

0.0168±0.0040
(10-1,10-3)

0.0989

0.0167±0.0041
(10-1,10-3)

0.0980

0.0165±0.0045
(105,10-1)

0.0099

0.0165±0.0045
(105,10-1)

0.0111

0.0166±0.0047
(105,10-1)

0.0116

Pyrim
(74 Χ 26)

0.1056±0.0577
(100,10-2)

0.0080

0.1268±0.0725
(101,10-3)

0.0120

0.1257±0.0717
(103,10-2)

0.0160

0.1183±0.0640
(105,10-1)

0.0008

0.1241±0.0727
(104,10-2)

0.0054

0.1241±0.0727
(104,10-2)

0.0878

Servo
(167 Χ 4)

0.2288±0.1025
(104,10-1)

0.0411

0.1608±0.0372
(10-2,10-3)

0.0289

0.1605±0.0372
(10-1,10-1)

0.0279

0.1608±0.0361
(100,10-3)

0.0021

0.1608±0.0361
(100,10-3)

0.0082

0.1608±0.0361
(100,10-3)

0.0083

Triazines
(186 Χ 58)

0.2217±0.0424
(100,10-1)

0.0512

0.2063±0.0726
(10-1,10-3)

0.0387

0.2104±0.0754
(100,10-1)

0.0356

0.2073±0.0703
(100,10-2)

0.0033

0.2073±0.0703
(100,10-2)

0.0114

0.2073±0.0703
(100,10-2)

0.0191

Wisconsin B.C.
(194 Χ 34)

0.1835±0.0558
(10-1,10-1)

0.0498

0.1887±0.0405
(100,10-3)

0.0391

0.1887±0.0404
(100,10-3)

0.0395

0.1894±0.0613
(10-5,10-3)

0.0038

0.1894±0.0613
(10-5,10-3)

0.0077

0.1894±0.0613
(10-4,10-3)

0.0083

Boston
(506 Χ 13)

0.1130±0.0434
(100,10-2)

0.5735

0.1076±0.0207
(10-1,10-3)

0.2853

0.1076±0.0206
(10-1,10-3)

0.2876

0.1061±0.0265
(10-5,10-3)

0.0269

0.1062±0.0261
(10-5,10-3)

0.1032

0.1061±0.0265
(10-4,10-3)

0.1027

Forest fires
(517 Χ 12)

0.0441±0.0413
(10-5,10-3)

0.6717

0.0415±0.0428
(10-1,10-1)

0.3425

0.0416±0.0427
(10-1,10-3)

0.3476

0.0436±0.0409
(10-5,10-3)

0.0276

0.0436±0.0409
(10-5,10-3)

0.0790

0.0437±0.0408
(10-4,10-3)

0.1075

ConcreteCS
(1030 Χ 8)

0.1305±0.0094
(101,10-1)

3.8649

0.1328±0.0076
(101,10-3)

2.6391

0.1306±0.0082
(100,10-1)

2.0905

0.1304±0.0104
(101,10-3)

0.2377

0.1305±0.0055
(101,10-3)

1.6756

0.1305±0.0055
(101,10-3)

1.6685

Wine quality red
(1599 Χ 11)

0.1423±0.0118
(10-1,10-1)

12.389

0.1304±0.0059
(10-1,10-1)

5.0902

0.1303±0.0059
(10-1,10-3)

5.1135

0.1302±0.0070
(10-5,10-3)

0.5791

0.1301±0.0064
(10-5,10-3)

2.2136

0.1300±0.0096
(10-4,10-3)

2.2322

Concrete Slump
(103 Χ 10)

0.0612±0.0161
(100,10-2)

0.0131

0.0595±0.0150
(10-5,10-1)

0.0145

0.0600±0.0152
(10-1,10-2)

0.0148

0.0594±0.0151
(100,10-2)

0.0008

0.0596±0.0180
(100,10-2)

0.0029

0.0594±0.0151
(100,10-2)

0.0029

Auto price
(159 Χ 15)

0.0879±0.0259
(10-1,10-3)

0.0306

0.0898±0.0253
(103,10-1)

0.0379

0.0898±0.0253
(101,10-3)

0.0302

0.0856±0.0225
(103,10-3)

0.0024

0.0865±0.0226
(103,10-2)

0.0299

0.0861±0.0238
(102,10-2)

0.0150

Flexible robotic arm
(1019 Χ 9)

0.0150±0.0007
(102,10-2)

4.2171

0.0149±0.0005
(10-1,10-1)

1.8890

0.0148±0.0006
(10-1,10-2)

1.9419

0.0148±0.0005
(101,10-3)

0.2334

0.0148±0.0005
(101,10-3)

1.6090

0.0148±0.0005
(101,10-3)

1.5877

Page | 47

Pollution
(60 Χ 15)

0.1175±0.0498
(10-1,10-2)

0.0059

0.1263±0.0495
(103,10-3)

0.0269

0.1264±0.0495
(101,10-3)

0.0098

0.1209±0.0497
(105,10-2)

0.0005

0.1261±0.0494
(103,10-3)

0.0035

0.1245±0.0489
(102,10-3)

0.0025

NO2
(500 Χ 7)

0.1025±0.0189
(105,10-1)
0.5956

0.1020±0.0097
(10-1,10-1)

0.2683

0.1020±0.0097
(10-1,10-3)

0.2631

0.1016±0.0126
(10-5,10-3)

0.0261

0.1010±0.0170
(10-5,10-3)

0.0985

0.1010±0.0170
(10-4,10-3)

0.0951

Bodyfat
(252 Χ 14)

0.0504±0.0486
(102,10-2)

0.1075

0.0234±0.0257
(10-1,10-1)

0.0737

0.0235±0.0256
(10-1,10-3)

0.0725

0.0257±0.0245
(10-5,10-3)

0.0041

0.0257±0.0245
(10-5,10-3)

0.0069

0.0257±0.0245
(10-4,10-3)

0.0132

Balloon
(2001 Χ 1)

0.0552±0.0046
(10-2,10-1)

20.444

0.0512±0.0061
(100,10-3)

17.161

0.0512±0.0061
(100,10-3)

17.090

0.0511±0.0057
(101,10-2)

1.2527

0.0511±0.0057
(101,10-2)

10.010

0.0511±0.0057
(101,10-2)

11.236

Quake
(2178 Χ 3)

0.1792±0.0103
(104,10-1)

39.092

0.1718±0.0091
(10-5,10-1)

12.358

0.1718±0.0091
(10-3,10-2)

11.007

0.1718±0.0091
(10-1,10-3)

1.3326

0.1718±0.0091
(10-1,10-3)

7.6448

0.1718±0.0091
(10-2,10-3)

5.2452

Motorcycle
(133 Χ 1)

0.2909±0.0542
(100,10-1)

0.0163

0.2224±0.0269
(10-1,10-1)

0.0185

0.2212±0.0278
(10-1,10-3)

0.0187

0.2211±0.0269
(10-5,10-3)

0.0011

0.2202±0.0299
(10-5,10-3)

0.0033

0.2202±0.0299
(10-4,10-3)

0.0033

Demo
(2048 Χ 4)

0.1026±0.0110
(100,10-1)

33.092

0.0997±0.0118
(10-3,10-3)

9.6141

0.0997±0.0118
(10-3,10-3)

9.7527

0.0997±0.0118
(10-5,10-3)

1.1899

0.0997±0.0118
(10-5,10-3)

4.4432

0.0997±0.0118
(10-4,10-3)

5.3983

Sunspots
(290 Χ 5)

0.0940±0.0219
(102,10-1)

0.1323

0.0882±0.0154
(10-1,10-1)

0.0852

0.0881±0.0199
(10-1,10-3)

0.0829

0.0881±0.0195
(10-5,10-3)

0.0075

0.0879±0.0174
(10-5,10-3)

0.0204

0.0879±0.0174
(10-4,10-3)

0.0255

IBM
(750 Χ 5)

0.0272±0.0032
(105,10-2)

1.9445

0.0270±0.0021
(10-2,10-3)

0.6950

0.0270±0.0030
(10-1,10-3)

0.8688

0.0269±0.0035
(10-5,10-3)

0.0736

0.0269±0.0035
(10-5,10-3)

0.1471

0.0269±0.0035
(10-4,10-3)

0.2760

SNP500
(750 Χ 5)

0.0222±0.0029
(100,10-3)

1.5770

0.0223±0.0029
(10-1,10-3)

0.8678

0.0223±0.0029
(10-1,10-3)

0.8637

0.0222±0.0033
(10-5,10-1)

0.0744

0.0222±0.0033
(10-5,10-1)

0.1140

0.0222±0.0033
(10-4,10-1)

0.1126

Citigroup
(750 Χ 5)

0.0149±0.0013
(104,10-2)

1.6472

0.0149±0.0013
(10-1,10-3)

0.9193

0.0149±0.0013
(10-1,10-3)

0.9113

0.0149±0.0013
(10-3,10-1)

0.0713

0.0149±0.0013
(10-2,10-1)

0.0991

0.0149±0.0013
(101,10-1)

0.0950

Intel
(750 Χ 5)

0.0294±0.0042
(102,10-2)

1.5290

0.0293±0.0049
(10-1,10-1)

0.8357

0.0293±0.0049
(10-1,10-3)

0.8333

0.0293±0.0049
(10-5,10-3)

0.0715

0.0293±0.0049
(10-5,10-3)

0.1467

0.0293±0.0049
(10-4,10-3)

0.2744

Microsoft
(750 Χ 5)

0.0279±0.0050
(102,10-3)

1.5535

0.0281±0.0029
(10-1,10-3)

0.8386

0.0281±0.0029
(10-1,10-3)

0.8441

0.0279±0.0047
(10-5,10-3)

0.0750

0.0279±0.0047
(10-5,10-3)

0.1503

0.0279±0.0047
(10-4,10-3)

0.2779

RedHat
(750 Χ 5)

0.0254±0.0052
(100,10-3)

1.5655

0.0255±0.0047
(10-1,10-1)

0.8445

0.0255±0.0047
(10-1,10-3)

0.8315

0.0254±0.0050
(10-5,10-3)

0.0716

0.0254±0.0050
(10-5,10-3)

0.1503

0.0254±0.0050
(10-4,10-3)

0.2800

Page | 48

Table 5.4: Average ranks of SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and GLTWSVR with linear kernel.

Dataset SVR TSVR TWSVR FLTWSVR NLTWSVR GLTWSVR

Hydraulic actuator 6 4 5 2.5 1 2.5

Gas furnace 6 5 4 1.5 1.5 3

Pyrim 1 6 5 2 3.5 3.5

Servo 6 3.5 1 3.5 3.5 3.5

Triazines 6 1 5 3 3 3

Wisconsin B.C. 1 2.5 2.5 5 5 5

Boston 6 4.5 4.5 1.5 3 1.5

Forest fires 6 1 2 3.5 3.5 5

ConcreteCS 3 6 5 1 3 3

Wine quality red 6 5 4 3 2 1

Concrete Slump 6 3 5 1.5 4 1.5

Auto price 4 5.5 5.5 1 3 2

Flexible robotic arm 6 5 2.5 2.5 2.5 2.5

Pollution 1 5 6 2 4 3

NO2 6 4.5 4.5 3 1.5 1.5

Bodyfat 6 1 2 4 4 4

Balloon 6 4.5 4.5 2 2 2

Quake 6 3 3 3 3 3

Motorcycle 6 5 4 3 1.5 1.5

Demo 6 3 3 3 3 3

Sunspots 6 5 3.5 3.5 1.5 1.5

IBM 6 4.5 4.5 2 2 2

Snp500 2.5 5.5 5.5 2.5 2.5 2.5

Citigroup 3.5 3.5 3.5 3.5 3.5 3.5

Intel 6 3 3 3 3 3

Microsoft 2.5 5.5 5.5 2.5 2.5 2.5

RedHat 2.5 5.5 5.5 2.5 2.5 2.5

Average Rank 4.7777 4.0925 4.0370 2.6296 2.7777 2.6851

Page | 49

5.3.2 Numerical experiment using nonlinear regressors

 In this sub-section, all the experiments are performed using the Gaussian kernel.

Again to evaluate the performance of the LTWSVR algorithms (FLTWSVR, NLTWSVR,

GLTWSVR) in comparison to SVR, TSVR and TWSVR; learning time, average RMSE

and standard deviation are computed for each dataset and summarized in Table 5.5 along

with optimal parameter value. For nonlinear case, one can observe from Table 5.5 that

LTWSVR algorithms also spend least CPU time in comparison with other methods and

has better generalization performance for most of the cases.

 To analyze the performance of all the six algorithms over multiple datasets, we

used Friedman test with post hoc test (Demsar, 2006) as we have done for the linear case.

For this, we computed average ranks on RMSE values and are listed in Table 5.6. Under

the null hypothesis that all the algorithms are identical, Friedman statistics can be

computed as follows:

9.8407
4
76)2222.31481.38512.29259.31666.46851.3(

76
2712 2

2222222










 





F

2.0442
9.8407-527

9.840726





FF

where FF is distributed according to F distribution with)130,5(degrees of freedom.

The critical value of)130,5(F is 2.2839 for the level of significance .05.0 Since FF

is smaller than critical value),2839.20442.2( so there is no significant error between the

algorithms.

 Finally, numerical experiments performed for both linear and nonlinear cases

validate that LTWSVR algorithms outperform the other three methods.

Page | 50

Figure 5.5: Result of comparison on Gas furnace dataset. Gaussian kernel was employed

Figure 5.6: Prediction Error over the whole dataset by SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and
GLTWSVR for the gas furnace dataset of Box-Jenkins. Gaussian kernel was employed.

Page | 51

Table 5.5: Performance comparison of our proposed methods: FLTWSVR, NLTWSVR and GLTWSVR with SVR, TSVR and
TWSVR. RMSE was used for comparison. Gaussian kernel was employed. Bold type shows the best result.

Dataset
(Train Size, Test Size)

SVR
 (C,μ,ɛ)
Time

TSVR
 (C1=C2, μ, ɛ1= ɛ2)

Time

TWSVR
 (C1=C2, μ, ɛ1= ɛ2)

Time

FLTWSVR
 (C1=C2, μ, ɛ1= ɛ2)

Time

NLTWSVR
 (C1=C2, μ, ɛ1= ɛ2)

Time

GLTWSVR
 (C1=C2, μ, ɛ1= ɛ2)

Time

Hydraulic actuator
(1021 Χ 5)

0.0127±0.0041
(102,21,10-3)

5.7962

0.0125±0.0026
(10-2,22,10-1)

2.3039

0.0126±0.0022
(10-2,22,10-3)

2.3074

0.0123±0.0034
(100,22,10-3)

0.7374

0.0121±0.0033
(100,22,10-3)

1.7106

0.0123±0.0034
(100,22,10-3)

1.7332

Gas furnace
(293 Χ 6)

0.0168±0.0042
(103,2-5,10-2)

0.1807

0.0192±0.0055
(10-1,2-1,10-1)

0.1134

0.0192±0.0055
(10-1,2-1,10-3)

0.1118

0.0184±0.0033
(105,2-2,10-3)

0.0284

0.0198±0.0058
(100,2-1,10-3)

0.0628

0.0195±0.0050
(100,2-1,10-3)

0.0654

Pyrim
(74 Χ 26)

0.0788±0.0534
(100,2-3,10-2)

0.0092

0.0779±0.0579
(10-5,2-2,10-3)

0.0116

0.0779±0.0579
(101,2-2,10-1)

0.0116

0.0777±0.0511
(100,2-2,10-2)

0.0016

0.0777±0.0511
(100,2-2,10-2)

0.0025

0.0777±0.0511
(100,2-2,10-2)

0.0022

Servo
(167 Χ 4)

0.0767±0.0530
(102,2-1,10-3)

0.0436

0.0797±0.0417
(103,20,10-3)

0.0530

0.0797±0.0417
(105,20,10-3)

0.0566

0.0797±0.0271
(104,2-1,10-3)

0.0069

0.0787±0.0378
(104,20,10-3)

0.0710

0.0787±0.0378
(104,20,10-3)

0.1684

Triazines
(186 Χ 58)

0.1685±0.0414
(100,2-3,10-1)

0.0539

0.1678±0.0292
(10-5,2-4,10-2)

0.0420

0.1678±0.0296
(100,2-4,10-1)

0.0421

0.1679±0.0324
(101,2-4,10-1)

0.0091

0.1679±0.0324
(101,2-4,10-1)

0.0170

0.1679±0.0324
(101,2-4,10-1)

0.0172

Wisconsin B.C.
(194 Χ 34)

0.1787±0.0563
(100,2-4,10-1)

0.0636

0.1797±0.0546
(10-1,2-5,10-3)

0.0434

0.1797±0.0546
(10-1,2-5,10-3)

0.0432

0.1778±0.0551
(10-5,2-5,10-3)

0.0126

0.1778±0.0551
(10-5,2-5,10-3)

0.0133

0.1778±0.0551
(10-5,2-5,10-3)

0.0126

Boston
(506 Χ 13)

0.0780±0.0257
(102,2-5,10-2)

0.7969

0.0769±0.0168
(10-1,2-3,10-3)

0.3755

0.0769±0.0168
(10-1,2-3,10-3)

0.3719

0.0768±0.0201
(100,2-3,10-3)

0.1082

0.0768±0.0201
(100,2-3,10-3)

0.2489

0.0769±0.0154
(100,2-3,10-3)

0.2517

Forest fires
(517 Χ 12)

0.0377±0.0479
(10-5,2-5,10-3)

0.8668

0.0375±0.0470
(10-1,2-5,10-1)

0.4619

0.0376±0.0469
(10-1,2-5,10-3)

0.4526

0.0391±0.0463
(10-5,2-5,10-3)

0.1111

0.0399±0.0455
(10-5,2-5,10-3)

0.1525

0.0391±0.0463
(10-5,2-5,10-3)

0.1571

ConcreteCS
(1030 Χ 8)

0.0792±0.0056
(101,2-1,10-2)

5.5429

0.0869±0.0068
(10-1,2-1,10-1)

2.2415

0.0868±0.0077
(10-1,2-1,10-3)

2.2340

0.0788±0.0065
(104,2-1,10-1)

0.7944

0.0865±0.0068
(100,2-1,10-3)

1.7631

0.0865±0.0068
(100,2-1,10-3)

1.8199

Wine quality red
(1599 Χ 11)

0.1278±0.0064
(100,20,10-2)

17.966

0.1277±0.0083
(10-1,2-3,10-3)

6.9404

0.1276±0.0071
(10-1,2-3,10-3)

6.8864

0.1275±0.0080
(10-5,2-3,10-3)

2.5226

0.1274±0.0100
(10-5,2-3,10-3)

3.9555

0.1273±0.0082
(10-5,2-3,10-3)

4.1435

Concrete Slump
(103 Χ 10)

0.0232±0.0133
(103,2-5,10-3)

0.0174

0.0366±0.0134
(103,2-1,10-3)

0.0220

0.0367±0.0134
(103,2-1,10-3)

0.0268

0.0224±0.0065
(105,2-3,10-3)

0.0023

0.0357±0.0158
(105,2-1,10-3)

0.0077

0.0357±0.0158
(105,2-1,10-3)

0.0081

Auto price
(159 Χ 15)

0.0817±0.0277
(101,2-4,10-2)

0.0417

0.0844±0.0241
(102,2-5,10-1)

0.0373

0.0844±0.0241
(101,2-5,10-3)

0.0428

0.0804±0.0189
(102,2-5,10-3)

0.0057

0.0843±0.0261
(105,2-5,10-3)

0.0431

0.0843±0.0261
(105,2-5,10-3)

0.0427

Flexible robotic arm
(1019 Χ 9)

0.0143±0.0006
(105,2-5,10-2)

6.1946

0.0248±0.0028
(103,20,10-3)

3.3086

0.0249±0.0028
(104,20,10-3)

3.2703

0.0152±0.0010
(105,2-1,10-3)

0.7808

0.0246±0.0034
(105,2-2,10-2)

5.2768

0.0241±0.0034
(105,2-2,10-2)

5.4293

Page | 52

Pollution
(60 Χ 15)

0.1085±0.0461
(100,2-3,10-2)

0.0085

0.1113±0.0405
(10-2,2-5,10-1)

0.0316

0.1111±0.0365
(10-1,2-5,10-1)

0.0102

0.1113±0.0423
(10-5,2-5,10-3)

0.0007

0.1113±0.0423
(10-5,2-5,10-3)

0.0008

0.1113±0.0423
(10-5,2-5,10-3)

0.0008

NO2
(500 Χ 7)

0.0979±0.0124
(100,20,10-2)

0.6977

0.0972±0.0123
(10-2,2-1,10-1)

0.3521

0.0972±0.0123
(10-2,2-1,10-3)

0.3294

0.0972±0.0123
(10-5,2-1,10-3)

0.1039

0.0972±0.0123
(10-5,2-1,10-3)

0.1716

0.0972±0.0123
(10-5,2-1,10-3)

0.1713

Bodyfat
(252 Χ 14)

0.0151±0.0228
(102,2-5,10-3)

0.1246

0.0180±0.0215
(10-1,2-4,10-1)

0.0844

0.0182±0.0215
(10-1,2-4,10-3)

0.0823

0.0204±0.0203
(10-5,2-4,10-3)

0.0154

0.0204±0.0203
(10-5,2-4,10-3)

0.0182

0.0208±0.0204
(10-5,2-4,10-3)

0.0178

Balloon
(2001 Χ 1)

0.0449±0.0025
(100,20,10-1)

33.170

0.0452±0.0020
(100,2-2,10-1)

20.365

0.0452±0.0020
(100,2-2,10-3)

20.224

0.0448±0.0040
(103,2-3,10-3)

5.0500

0.0448±0.0040
(102,2-2,10-3)

15.652

0.0448±0.0040
(102,2-2,10-3)

16.023

Quake
(2178 Χ 3)

0.1751±0.0161
(104,2-1,10-1)

55.230

0.1718±0.0096
(10-5,2-5,10-1)

16.964

0.1718±0.0097
(10-2,2-5,10-3)

15.641

0.1718±0.0096
(10-1,2-5,10-3)

6.1877

0.1718±0.0096
(10-1,2-5,10-3)

12.030

0.1718±0.0096
(10-1,2-5,10-3)

12.441

Motorcycle
(133 Χ 1)

0.1143±0.0246
(102,25,10-3)

0.0254

0.1104±0.0224
(100,25,10-1)

0.0249

0.1096±0.0222
(100,25,10-2)

0.0313

0.1095±0.0217
(101,25,10-3)

0.0042

0.1092±0.0189
(101,25,10-3)

0.0097

0.1092±0.0189
(101,25,10-3)

0.0100

Demo
(2048 Χ 4)

0.0885±0.0108
(100,24,10-2)

42.370

0.0873±0.0110
(10-2,21,10-1)

13.610

0.0873±0.0110
(10-2,21,10-2)

13.846

0.0873±0.0082
(10-1,21,10-3)

5.2906

0.0873±0.0082
(10-1,21,10-3)

10.403

0.0873±0.0082
(10-1,21,10-3)

10.719

Sunspots
(290 Χ 5)

0.0727±0.0100
(101,2-1,10-2)

0.1722

0.0715±0.0124
(10-1,20,10-1)

0.1037

0.0710±0.0076
(10-2,21,10-2)

0.0998

0.0708±0.0090
(101,21,10-1)

0.0300

0.0707±0.0104
(101,21,10-1)

0.0526

0.0707±0.0104
(101,21,10-1)

0.0568

IBM
(750 Χ 5)

0.0272±0.0025
(102,2-5,10-2)

2.2962

0.0270±0.0023
(10-1,2-2,10-1)

1.0976

0.0270±0.0023
(10-1,2-2,10-3)

1.0781

0.0269±0.0038
(10-1,2-2,10-3)

0.3064

0.0267±0.0038
(10-1 ,2-2,10-3)

0.6273

0.0267±0.0038
(10-1,2-2,10-3)

0.6545

SNP500
(750 Χ 5)

0.0220±0.0033
(101,2-5,10-3)

2.3142

0.0231±0.0052
(100,2-5,10-1)

1.3837

0.0221±0.0049
(100,2-1,10-2)

1.2905

0.0224±0.0051
(105,2-5,10-3)

0.3321

0.0229±0.0052
(101,2-5,10-3)

0.8775

0.0229±0.0052
(101,2-5,10-3)

0.9510

Citigroup
(750 Χ 5)

0.0147±0.0024
(101,2-2,10-3)

2.2938

0.0149±0.0029
(100,2-2,10-3)

1.2793

0.0149±0.0026
(10-1,2-2,10-3)

1.1395

0.0149±0.0028
(104,2-4,10-3)

0.3368

0.0149±0.0026
(101,2-2,10-3)

0.9140

0.0149±0.0026
(101,2-2,10-3)

0.9269

Intel
(750 Χ 5)

0.0292±0.0044
(103,2-5,10-3)

2.3469

0.0290±0.0042
(10-2,2-1,10-1)

0.9380

0.0290±0.0042
(10-2,2-1,10-3)

0.9223

0.0290±0.0042
(10-1,2-1,10-3)

0.3077

0.0290±0.0042
(10-1,2-1,10-3)

0.6279

0.0290±0.0042
(10-1,2-1,10-3)

0.6471

Microsoft
(750 Χ 5)

0.0277±0.0056
(102,2-5,10-3)

2.2596

0.0283±0.0059
(100,2-5,10-3)

1.3622

0.0283±0.0059
(100,2-5,10-3)

1.3571

0.0284±0.0060
(102,2-5,10-3)

0.3321

0.0285±0.0059
(101,2-5,10-3)

0.8755

0.0286±0.0052
(101,2-5,10-3)

0.9003

 RedHat
(750 Χ 5)

0.0256±0.0070
(101,2-1,10-3)

2.3019

0.0259±0.0075
(10-1,2-5,10-1)

1.0486

0.0258±0.0052
(10-1,2-5,10-3)

1.0335

0.0256±0.0078
(100,2-4,10-3)

0.3116

0.0256±0.0078
(100,2-4,10-3)

0.7525

0.0256±0.0078
(100,2-4,10-3)

0.7725

Page | 53

Table 5.6: Average ranks of SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and GLTWSVR with Gaussian kernel.

Dataset SVR TSVR TWSVR FLTWSVR NLTWSVR GLTWSVR

Hydraulic actuator 6 4 5 2.5 1 2.5

Gas furnace 1 3.5 3.5 2 6 5

Pyrim 6 4.5 4.5 2 2 2

Servo 1 5 5 5 2.5 2.5

Triazines 6 1.5 1.5 4 4 4

Wisconsin B.C. 4 5.5 5.5 2 2 2

Boston 6 4 4 1.5 1.5 4

Forest fires 3 1 2 4.5 6 4.5

ConcreteCS 2 6 5 1 3.5 3.5

Wine quality red 6 5 4 3 2 1

Concrete Slump 2 5 6 1 3.5 3.5

Auto price 2 5.5 5.5 1 3.5 3.5

Flexible robotic arm 1 5 6 2 4 3

Pollution 1 4.5 2 4.5 4.5 4.5

NO2 6 3 3 3 3 3

Bodyfat 1 2 3 4.5 4.5 6

Balloon 4 5.5 5.5 2 2 2

Quake 6 3 3 3 3 3

Motorcycle 6 5 4 3 1.5 1.5

Demo 6 3 3 3 3 3

Sunspots 6 5 4 3 1.5 1.5

IBM 6 4.5 4.5 3 1.5 1.5

SNP500 1 6 2 3 4.5 4.5

Citigroup 1 4 4 4 4 4

Intel 6 3 3 3 3 3

Microsoft 1 2.5 2.5 4 5 6

Redhat 2.5 6 5 2.5 2.5 2.5

Average Rank 3.6851 4.1666 3.9259 2.8518 3.1481 3.2222

Page | 54

Chapter 6

Conclusion and Future Research

6.1 Conclusion

 A new iterative Lagrangian twin support vector regression based on twin support

vector machine (LTWSVR) for the twin support vector machine based regression

(TWSVR) is proposed. This leads to the minimization problem having strongly convex

objective functions with non-negativity constraints. LTWSVR requires at the outset the

inverse of a matrix but this can be expressed as matrix subtraction of identity matrix by a

scalar multiple of the inverse of a positive semi-definite matrix. Further it is proposed to

solve this problem by simple iterative methods: functional iterative method (FLTWSVR),

Newton method (NLTWSVR) and Generalized derivative approach (GLTWSVR). Our

formulation has the advantage that it does not need any optimization tools of linear or

quadratic programming solvers. Numerical experiments were performed on a number of

interesting synthetic and real-world benchmark datasets. The results obtained show similar

or better generalization performance with smaller computation time in comparison with

SVR, TSVR and TWSVR.

6.2 Future Research

 Future work will include the study of implicit Lagrangian formulation

(Mangasarian and Solodov, 1993) for the dual TWSVR problem and its applications.

There is also a room for study of smoothing approach for solving Lagrangian TWSVR.

Page | 55

References

D. Achlioptas, F. McSherry, and B. Sch¨olkopf. Sampling techniques for kernel methods, In Advances in

 Neural Information Processing Systems 14, T. G. Dietterich, S. Becker, and Z. Ghahramani, Eds., MIT

 Press, Cambridge, MA, 2002.

M.A. Aizerman, E.M. Braverman, and L.I. Rozono’er. Theoretical foundations of the potential function

 method in pattern recognition learning. Automation and Remote Control 25, pp.821–837, 1964.

S. Balasundaram, M. Tanveer, On Lagrangian twin support vector regression, Neural Computing &

 Applications, 22(1), pp. 257-267, 2013

S. Balasundaram & R. Singh. On finite Newton method for support vector regression. Neural Computing &

Applications, 19(7), pp. 967–977, 2010.

S. Ben-David, M. Lindenbaum. Learning distributions by their density levels: a paradigm for learning

 without a teacher, Journal of Computer and System Sciences, 55, pp. 171–182, 1997.

J. Bi & K.P. Bennett. A geometric approach to support vector regression, Neurocomputing, vol. 55, pp. 79-

 108, 2003.

B.E. Boser, I.M. Guyon and V.N. Vapnik. A training algorithm for optimal margin classifiers. In

 proceedings of the Annual Conference on Computational Learning Theory, D. Haussler, Ed., ACM Press,

 Pittsburgh, PA, pp. 144–152, 1992.

G.E.P. Box and G.M. Jenkins. Time series analysis: Forecasting and control (Holden-Day, San Francisco,

 CA), 1976.

C.J.C. Burges, B. Sch¨olkopf. Improving the accuracy and speed of support vector learning machines, In M.

 Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pp.

 375–381, MIT Press, Cambridge, MA, 1997.

C. Cortes, V.N. Vapnik,. Support vector networks. Machine Learning, 20, pp. 273–297, 1995.

N. Cristianini, J. Shawe-Taylor. An introduction to support vector machines and other kernel-based learning

 methods, Cambridge University Press, Cambridge, 2000.

Delve. Data for Evaluating Learning in Valid Experiments, http://www.cs.toronto.edu/~delve/data, 2005.

J. Demsar. Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning

Research, 7, pp. 1–30, 2006.

R. Eubank. Nonparametric Regression and Spline Smoothing, Marcel Dekker, New York, NY, 1999.

Page | 56

F. Facchinei. Minimization of SC1 functions and the Maratos effect. Operations Research Letters, 17, pp.

 131–137, 1995.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations, Journal of

 Machine Learning Research, 2:243–264, Dec 2001.

G. Fung, & O. L. Mangasarian. Finite Newton method for Lagrangian support vector machine,

 Neurocomputing, 55, pp. 39–55, 2003.

A. Gretton, A. Doucet, R. Herbrich, P.J.W. Rayner, B. Schölkopf. Support vector regression for black-box

 system identification, In proceedings of the 11th IEEE Workshop on Statistical Signal Processing, 2001.

S. R. Gunn. Support Vector Machines for Classification and Regression, Technical Report, 1998.

J.-B. Hiriart-Urruty, J. J. Strodiot, & V. H. Nguyen. Generalized hessian matrix and second-order optimality

 conditions for problems with CL1 data, Applied Mathematics and Optimization, 11, pp. 43–56, 1984.

Jayadeva, R. Khemchandai, and S. Chandra. Twin support vector machines for pattern classification, IEEE

 Transaction on Pattern Analysis and Machine Intelligence (TPAMI), vol. 29, pp. 905-910, 2007.

T. Joachims. Making large-scale SVM learning practical. In Advances in Kernel Methods—Support Vector

 Learning, B. Sch¨olkopf, C.J.C. Burges, and A.J. Smola, Eds., MIT Press, Cambridge, MA, pp. 169–184,

 1999.

T. Joachims. Learning to classify text using support vector machines, Kluwer Academic Publishers, London,

 2002.

W. Karush. Minima of functions of several variables with inequalities as side constraints. Masters thesis.

 Department of Mathematics, University of Chicago, 1939.

L. Kaufman. Solving the quadratic programming problem arising in support vector classification. In

 Advances in Kernel Methods—Support Vector Learning, B. Sch¨olkopf, C.J.C. Burges and A.J. Smola,

 Eds., MIT Press, Cambridge, MA, pp. 147–168, 1999.

V. Kecman. Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic

 Models, MIT Press, Cambridge 2001.

R. Khemchandani, K. Goyal, S. Chandra. Twin support vector machine based Regression, 2015 Eigth

 International Conference On Advances in Pattern Recognition(ICAPR), pp. 1-6, Jan 2015.

K. J. Kim. Financial time series forecasting using support vector machines. Neurocomputing, 55(1/2), pp.

 307–319, 2003.

H.W. Kuhn, A.W. Tucker, 1951. Nonlinear programming. In Proceedings of 2nd Berkeley Symposium on

 Mathematical Statistics and Probabilistics, University of California Press, Berkeley, pp. 481–492, 1951.

Page | 57

Y. J. Lee, W. F. Heisch and C. M. Huang.  - SSVR: A smooth support vector machine for  -insensitive

 regression,” IEEE Trans. Knowl. Data Eng., vol. 17, pp. 678–685, 2005.

O.L. Mangasarian. A finite Newton method for classification problems, Technical Report 01-11,Data

 Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin,

 December 2001. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-11.ps. Optimization Methods and Software,

 vol. 17, pp.913–929, 2002.

O.L. Mangasarian, MV. Solodov. Nonlinear complementarity as unconstrained and constrained

 minimization. Math Program B 62:277–297, 1993.

O.L. Mangasarian and E.W. Wild. Multisurface Proximal Support Vector Classification via Generalized

 Eigenvalues, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 28, no. 1, pp. 69-74,

 Jan. 2006.

O.L. Mangasarian and D. Musicant. Lagrangian support vector machines. Journal of Machine Learning

 Research (JMLR), vol 1, pp. 161–177, 2001.

S. Mukherjee, E. Osuna, F. Girosi, Nonlinear prediction of chaotic time series using support vectormachines,

 In proceedings of the IEEE Workshop on Neural Networks for Signal Processing, Amelia Island, FL,

 USA, pp. 511–520, 1997.

P.M. Murphy & Aha, D.W. UCI machine learning repository. http://www.ics.uci.edu/∼mlearn/

 MLRepository.html, 1992.

E. Osuna. R. Freund, and E. Cirosi. Training support vector machines: an application to face detection, In

 Proceedings of Computer Vision and Pattern Recognition, pages 130-136, IEEE Computer Society Press,

 1997.

C. P. Papageorgiou, M. Oren, and T. Poggio. A general framework for object detection. In International

 Conference on Computer Vision, Bombay, India, January 1998.

X. Peng, TSVR: an efficient twin support vector machine for regression, Neural Networks 23(3). 365–372,

 2010.

J. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances in

 Kernel Methods—Support Vector Learning, B. Sch¨olkopf, C.J.C. Burge, and A.J. Smola, Eds., pp. 185-

 208, MIT Press, Cambridge, MA,, 1999.

B. Ribeiro Kernelized based functions with Minkovsky’s norm for SVM regression. In: Proceedings of the

 international joint conference on neural networks, 2002, IEEE press, pp 2198–2203, 2002.

M. Rychetsky, S. Ortmann, and M. Glesner. Support vector approaches for engine knock detection, Neural

 Networks, vol. 2, pp. 969–974, 1999.

Page | 58

B. Scholkopf , C.J.C. Burges, and A.J. Smola. Advances in Kernel Methods—Support Vector Learning,

 MIT Press, Cambridge, MA, 1999.

B. Scholkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

S.K. Shevade, S.S. Keerthi, C. Bhattacharyya et al. Improvements to the SMO algorithm for SVM

 regression. IEEE Transactions on Neural Networks, 11(5), 1188-1193, 2000.

B.W. Silverman . Some aspects of the spline smoothing approach to non-parametric curve fitting. Journal of

 the Royal Statistical Society Series B, 47 (1) (1985), pp. 1–52, 1985.

J. Sjöberg, Q. Zhang, L. Ljung, A. Beneviste, B. Delyon, P.Y. Glorennec, H. Hjalmarsson, A. Juditsky.

 Nonlinear black-box modeling in system identification: a unified overview Automatica, 31, pp. 1691–

 1724, 1995.

L.G.M. Souza, G.A Barreto. Multiple local ARX modeling for system identification using the self-

 organizing map. Proc. of European Symp. on Artificial Neural Networks – Computational Intelligence and

 Machine Learning. Bruges, 2010.

D. Stoneking. Improving the manufacturability of electronic designs. IEEE Spectrum, 36(6), 70–76, 1999.

J.A.K. Suykens, J.Vandewalle. Least squares support vector machine classifiers. Neural Processing

 Letters,Vol.9, No.3, pp.293-300, 1999.

J.A.K. Suykens, L. Lukas, P. Van Dooren, B. De Moor, J. Vandewalle. Least squares support vector

 machine classifiers: a large scale algorithm, European Conference on Circuit Theory and Design,

 (ECCTD’99), Stresa Italy, pp.839-842, Aug 1999.

L. Tarassenko, P. Hayton,N. Cerneaz, M. Brady. Novelty detection for the identification of masses in

 mammograms, Proceedings fourth IEE international conference on artificial neural networks, Cambridge,

 pp. 442–447, 1995.

F.E.H. Tay and L. J. Cao. Application of support vector machines in financial time series forecasting,

 Omega, vol. 29, pp. 309–317, 2001.

I.W. Tsang, J.T. Kwok, and P.M. Cheung. Very large SVM training using core vector machines. In

 proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, Barbados, Jan

 2005.

P. Vlachos. Statlib datasets archive, URL http://lib.stat.cmu.edu/datasets/, 2005.

V. N. Vapnik. The nature of statistical learning theory, 2nd Edition, Springer, New York, 2000.

