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ABSTRACT 

 In this work, a simple reformulation of the Lagrangian dual of the 2-norm twin 

support vector machine based regression (TWSVR) is proposed as unconstrained 

minimization problem. The proposed Lagrangian twin support vector regression based on 

twin support vector machine (LTWSVR) requires at the outset the inverse of a matrix but 

this can be expressed as matrix subtraction of identity matrix by a scalar multiple of the 

inverse of a positive semi-definite matrix. The LTWSVR is solvable by computing the 

zeros of its gradient.  Further it is proposed to solve this problem by simple iterative 

methods: functional iterative method (FLTWSVR), Newton method (NLTWSVR) and 

Generalized derivative approach (GLTWSVR). To demonstrate the effectiveness of 

LTWSVR, numerical experiments were performed on a number of interesting synthetic 

and real-world benchmark datasets. The results obtained show similar or better 

generalization performance with much faster learning speed in comparison with SVR, 

TSVR and TWSVR. 
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Chapter 1 
 
Introduction:  Support Vector Machine in Regression 

 
1.1 General 

 Support Vector Machines (SVMs) also known as Kernel Machines are one of the 

best supervised learning technique for both classification problems as pattern recognition 

and regression problems as function approximation, proposed by Russian Scientist 

Vladimir Naumovich Vapnik (Vapnik, 2000). They embody several features from 

statistical learning theory, machine learning, and optimization theory, and employ kernel 

functions as one of their essential ingredients. SVM has been the most promising machine 

learning method due to its formulation based on the novel paradigm vested in the 

structural risk minimization induction principle (SRM principal) (Cristianini and Shawe-

Taylor, 2000; Vapnik, 2000; Kecman, 2001) and can effectively avoid the local minimum 

and overfitting problem in classical machine learning methods such as neural networks 

(NNs), which performs Empirical Risk Minimization (ERM). Unlike ERM which 

minimizes training error, structural risk minimization (SRM) minimizes the upper bound 

on expected risk or generalization error consists of both an empirical risk term and 

regularization term that measures the complexity of the machine (norm of the classifier or 

regressor) and is superior than ERM (Gunn, 1998). This is the difference that powers the 

SVM to have good generalization i.e. better prediction on previously unseen data (Burges 

& Scholkopf , 2007; Kecman, 2001). 

 Mathematically, classification and regression problems in SVM have been shown 

as optimization problems having quadratic objective function and linear constraints; i.e. 

they are convex programming problems with unique solution (Cristianini & Shawe 

Taylor, 2000; Kaufman, 1999; Vapnik, 2000). A clear benefit of SVM is that its solution 

is sparse; i.e. only some of the samples contribute in determination of the decision 

function (Gunn, 1998; Scholkopf & Smola, 2002). 
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 SVM has been successfully applied to real world data analysis problems in many 

fields (bioinformatics, handwriting recognition, stock market etc), often providing better 

results than (or comparable outcomes to) ANNs (Kecman, 2001). In comparison with 

most other learning techniques, SVMs show improved result in pattern recognition and 

regression estimations problems of practical importance such as: Combustion engine 

detection (Rychetsky et al.,1999), Face detection (Osuna, Freund & Cirosi, 1997), 

Financial time series forecasting (Mukherjee, Osuna, & Girosi, 1997; Tay & Cao, 2001, 

Kim, 2003), Handwritten digit recognition (Burges & Scholkopf, 1997; Cortes & Vapnik, 

1995), Object recognition (C. P. Papageorgiou, M. Oren, & T. Poggio, 1998), Marketing 

(Ben-David & Lindenbaum, 1997), medical diagnosis (Tarassenko et al.,1995), text 

categorization (Joachims, 2002), estimating manufacturing yields (Stoneking, 1999) etc. 

 

1.2 The Regression Problem 

 Assume that we are given a training data set of m  samples    

 .,),,()},,(,),,{( 111 RYyRXxxyyS i
nt

iniimm   xxx           (1.1) 

with mxx ,,1   drawn according to an unknown probability distribution ),( yP x  and 

)( itruei fy x  for all ],1[ mi . Let H be a hypothesis set of linear functions mapping X  

to Y, i.e.    

  RbRbffH nt  ,,},)({ xwxwx          (1.2) 

 We denote the loss function by  RYYL :  used to measure the magnitude of 

error. The most commonly used loss function in regression is the quadratic loss 2L defined 

as YyyyyfyyL  ,))(,( 2x , where y  and y  are actual and predicted output 

values corresponding to a given input x  or being a more general pL  loss defined by 

YyyyyfyyL p  ,))(,( x and for some 1p . 

 The task of regression is to find a hypothesis Hf   that minimizes the expected 

risk or generalization error (Kecman, 2001),       

  ),,())(,())}(,({)(
),(~

ydPfyLfyLhR
yP

xxx
xx

             (1.3) 

with respect to target f based on the training data set S.  
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 Throughout in this work, we denote the training dataset inputs mii ,,1}{ x   by a 

matrix nmRA   whose thi  row n
i RA   represents the thi  training sample and their 

corresponding outputs miiy ,,1}{    by an output vector t
myy ),,( 1 y  respectively. 

 
1.3 Support Vector Regression 

 SVM can be successfully applied in regression i.e. function approximation 

problem by the introduction of a novel loss (error) function different from the classical 

quadratic error function. This is the  insensitive loss function for support vector 

regression (SVR) proposed by Vapnik (Vapnik, 2000).  

 In SVR, the linear regressor or linear hyperplane (approximation function 
RRf n : ) for regression problem given in section 1.2 can be defined as   

    bf t  xwx)(           (1.4) 
and can be obtained by simultaneously minimizing the weight vector norm )(w  and 
empirical risk which can be written as an unconstrained optimization problem,  

   



m

i
ii fyLC

1

2 ))(,(
2
1min xw          (1.5)     

where 0C  is the regularization parameter and ),( L  is the error loss function. For  -

insensitive error loss function, 


)())(,( iiii fyfyL xx  , the problem (1.5) becomes 

   





m

i
iiRb

bAyC
n

1

2

,
)(

2
1

1
min


ww

w
             (1.6) 

Error Loss Function Function definition ))(,( xfyL  

Laplacian or Linear loss )(xfy   

Gaussian  or Quadratic loss 2)(xfy   

Huber’s Robust loss 
(Gunn, 1998) 












otherwise
2

)(

)())((
2
1

2

2





x

xx

fy

fyiffy
 

Linear   insensitive loss 
(Vapnik, 2000) 







otherwise,)(
)(0




x
x

fy
fy

 

Quadratic   insensitive loss 
2})(,0max{  xfy  

Table 1.1: Common Loss functions 
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Figure 1.1: Graphs of Loss Functions: Laplacian, Gaussian and Huber’s robust 

 The loss functions summarized in Table 1.1 can be used in derivation of support 

vector algorithms that lead to quadratic programming problems but only linear and 

quadratic  insensitive loss functions will produce sparse representation of the regressor 

i.e. approximation function.  

 The Laplacian (Linear or absolute) loss function in Figure 1.1(a) corresponds to 

the median of the conditional distribution and its optimization means predicting the 

(conditional) median of data. Gaussian (Quadratic) loss function in Figure 1.1(b) like 

traditional least square method penalizes the large deviation from target outputs while 

ignoring the small residuals and its optimization means predicting the (conditional) mean 

of the data. Laplacian loss function is less sensitive to outliers than Gaussian loss function. 

Huber loss functions in Figure 1.1(c) is a robust loss function where nothing specific is 

known about the distribution describing the data.   

  

Figure 1.2: Graphs of Loss functions: Linear and Quadratic ε- insensitive 

 The linear and quadratic  -insensitive loss functions in Figure 1.2 can be seen as 

the generalizations of the Laplacian and Gaussian loss functions. 
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1.4 Linear SVR 

 

Figure 1.3:  Linear Support Vector Regression with ε- insensitive loss 

 The objective of linear SVR is to find a function )(xf  (1.4) that comes closest to 

training data (1.1) but for all training data of at most  deviation from their 

corresponding targets iy  is allowed and the function must be made as flat as possible.  

 In Figure 1.3, the deviation of data points (denoted by   symbol) are captured by 

introducing vectors of slack variables i.e. 21,ξξ .Only data points outside the  -tube are 

considered as training errors. Vectors 1ξ and 2ξ  measure the deviations of data points that 

are above and below the  -tube respectively. 

 

1.4.1 SVR with Linear  -Insensitive Loss 

 Using the  -insensitive loss function, the optimization problem (1.5) for 

regression problem described in section 1.3 can be written as a constrained optimization 

problem i.e.  

   





m

i
iiRb

C
n

1
21

2

,
)(

2
1

1
min w
w

           (1.7)  

    subject to      ,)( 1ii
t

i by   xw       

     ,)( 2iii
t yb  xw       

     miii ,...,1,0, 21   

y

x

+ε

-ε
1iߦ

2iߦ

-ε +ε

 ߦ

 ߦ
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 Optimization problem (1.7) can also be written as     

   )(
2
1

21),,,( 1
21

min ξeξeww
ξξw

ttt

Rb
C

mmn



    

  subject to         

   
)8.1(,...,10,

,
,

21

2

1

mi
bA

bA

ii 







ξeyew
ξeewy

where  t
m ),,( 1111  ξ , t

m ),,( 2212  ξ  are vectors of slack variables and 

mt R )1,,1( e  is the vector of ones. The constant 0C influences the trade-off 

between the flatness of f and the amount up to which deviation larger then   are 

tolerated. An increase in value of C penalizes the large errors while decrease in value 

penalizes small errors. 

 Introducing Lagrange multipliers t
muu ),,( 1111 u , t

muu ),,( 2212 u  the 

Lagrangian function in primal variables of the above problem (1.8) can be formed as

)9.1())((

))(()(
2
1),,,,,(

222222

111111212121

ueuwuyuξeue

ueuwuyuξueξeξewwuuξξw

tttttt

tttttttt

bA

bACbL









          

 According to KKT conditions (Karush, 1939; Kuhn et al., 1951) the partial 

derivative of (1.9) with respect to the primal variables 21,,, ξξw b  vanish at optimality     

i.e.  
0,0),(

)(0)(

2
2

1
1

21

2121

















ue
ξ

ue
ξ

uu

uuwuuw
w

CLCLe
b
L

AAL

t

tt

 

Substituting these results back into (1.9), the dual of problem (1.8) can be formed as, 

  )()()()(
2
1

21212121
),( 21

min uuuuyuuuu
uu




tttt

Rb
eAA

mm
                

subject to  0)( 21 uuet  and euu0 C 21,            (1.10) 

 Now, for any example ,nRx  the regressor function (1.4) can predict its output as

    bAf t  xuux )()( 21 .       (1.11) 
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1.4.2 SVR with Quadratic  -Insensitive Loss 

 Using the quadratic -insensitive loss function, the optimization problem (1.5) for 

regression problem (1.2) can be written as a constrained optimization problem i.e.  

  )(
22

1
2211

),,,( 1
21

min ξξξξww
ξξw

ttt

Rb

C
mmn




               

subject to                      

  
)12.1(,...,10,

,
,

21

2

1

mi
bA

bA

ii 







ξeyew
ξeewy

where t
m ),,( 1111  ξ and t

m ),,( 2212  ξ  are vectors of slack variables and 0C . 

This formulation has only m2  non-negative and linear constraints. 

 Introducing Lagrange multipliers t
muu ),,( 1111 u , t

muu ),,( 2212 u  the 

Lagrangian function in primal variables of problem (1.12) can be formed as

)13.1())((

))(()(
22

1),,,,,(

222222

11111122112121

ueuwuyuξeue

ueuwuyuξueξξξξwwuuξξw

tttttt

tttttttt

bA

bACbL









  

 Proceeding as in previous section, the dual of (1.13) can be obtained in the 

following form,          

  )()())(()(
2
1

21212121),( 21

min uuuuyuuuu
u




tttt

Ru
e

C
IAA

mm
           

subject to           

  21,uu0   

where I is an identity matrix of size m. The term  C/1  is added to diagonal of Hessian 

matrix, which ensures positive definiteness of Hessian and stabilizes the solution and there 

is no upper bound on 21,uu . 

For any input nRx , the regressor function (1.4) becomes 

      bAf t  xuux )()( 21       (1.14) 

 



Page | 8  
 

1.5 Nonlinear SVR 

 The practical application of support vector regression procedure is only possible 

with linear functions because we only have an optimality criterion for linear functions 

(linear hyperplanes). There are no general results for nonlinear functions. For many 

applications, a linear solution does not provide good performances; so at many times a 

nonlinear approach is needed. 

                  

Figure 1.4: Mapping into Higher Dimensional Feature Space 

 As a generalization of linear SVR to nonlinear SVR, the basic idea is that input 

vector nRx   in the input space will be mapped into a higher dimensional Hilbert space  

called the feature space through a nonlinear mapping function )(x  (B. Scholkopf et al, 

1999; Aizerman et al., 1964; Boser et al., 1992). A linear regression function can be 

constructed in this feature space but it stays nonlinear in the input space. This is possible 

only with virtue of the Mercer’s Theorem. 

 Most of the mapping functions )(x  are unknown, but the dot product of the 

mapped vectors can be expressed as a function of the input vectors as   

    ),()()( 2121 xxxx kt         (1.15) 

The feature spaces are called Reproducing Kernel Hilbert Spaces (RKHS), and ),( k  is 

a Mercer kernel. Fortunately, an explicit representation of the vectors in the feature space 

is not required as the SVM formulation only contains dot product of the mapped vectors. 

x 
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 The Mercer theorem gives the condition that a kernel function ),( 21 xxk must 

satisfy in order to be the dot product of a Hilbert space, i.e. there is a function   in nR  

such that )()(),( 2121 xxxx  tk   if and only if for any function )(xg  for which 

     xx dg 2)(         (1.16) 

the inequality           

    0)()(),(  zxzxzx ddggk                  (1.17)   

holds. 

 Kernel functions must be symmetric and its Kernel matrix K is defined as  

       

   





















),(),(),(

),(),(),(
),(),(),(

K

11

21212

12111

mmmm

m

m

xxkxxkxxk

xxkxxkxxk
xxkxxkxxk









 

 

The kernel matrix K is positive semi- definite (i.e. all its eigenvalues are non-negative i.e. 
mii ,,1,0   and i is an eigenvalue). 

 Kernel Function Kernel Definition ),( jik xx  

Linear kernel j
t
i xx                       

Complete polynomial of degree d 1,)1(  dd
j

t
i xx  

Gaussian RBF 0,
2

exp 2

2














 
 


ji xx

 

Sigmoidal 0,0,)tanh(   d
j

t
i xx  

Table 1.2: Examples of Kernel functions used in SVM 

 The nonlinear mapping for polynomial kernels can be found in an explicit way and 

the corresponding Hilbert space has finite dimension. The nonlinear mapping for Gaussian 

kernel is not explicit and the dimension of Hilbert space is infinite. 



Page | 10  
 

 
Figure 1.5: The geometrical interpretation of kernel SVR 

 For the nonlinear case, the kernel support vector regressor ):( RRf n  is defined 

as    )18.1()()( bf t  xwx 

and will be obtained by the solving the following quadratic programming problem 

(Cristianini & Shawe-Taylor, 2000)        

   )(
2
1

2
1

1
),,,( 1

21

min i

m

i
i

t

Rb
C

mmn






ww

ξξw
               

subject to 

                        
)19.1(,,2,1,0,

,))((

,))((

21

2

1

mi
yb

by

ii

iii
t

ii
t

i











xw

xw

  

       

where ii 21 , are slack variables, t
myy ),,( 1 y  is output vector and 0,0  C  are 

input parameters. 
Proceeding as in linear SVR and using kernel trick (1.15), the dual of (1.19) can be 

obtained as      

 )20.1()()())(,()(
2
1

1
21

1
21

1,
2121,

min 



m

i
ii

m

i
iii

m

ji
jjjiiiR

uuuuyuukuu
m

xx
21 uu

                                  

subject to    
  0)( 21 uuet  and euu0 C 21,  

Finally, for any sample nRx  the nonlinear regressor (1.18) becomes 

    )21.1(),()()(
1

21 bkuuf
m

i
iii 



xxx  

y

x

ε

1iߦ

2iߦ



Page | 11  
 

 
Chapter 2 
 
Twin Support Vector Machine in Regression 
 
2.1 Introduction 

 Support Vector Machines (SVMs) have been extensively studied and applied to a 

number of classification and regression problems which have shown remarkable success 

compared to other machine learning methods such as ANNs. SVMs show distinct 

advantages such as better generalization, the ability to find a global optimum, and the 

increased speed of learning. However, training an SVM involves solving a constrained 

quadratic programming problem (CQPP). Its training computational complexity is 

),( 3m  where m  is the total size of training set. This means much increased 

computational time for large dataset. 

 In order to speed up the training process of SVM, many efforts have been made 

such as chunking and decomposition methods (Boser et al., 1992; Joachims, 1999; 

Kaufman, 1999; Osuna et al., 1997), exact SVM training algorithm SMO (Platt, 1999), 

approximate SVM training algorithms (Tsang et al., 2005; Achlioptas et al., 2002; Fine et 

al., 2001), LS-SVM (Suykens & Vandewalle, 1999; Suykens, Lukas, Van Dooren, et al., 

1999), etc. The above algorithms solve the dual of CQPP iteratively and at each step of 

iteration only a subset of the dual variables are optimized.  Recently Twin Support Vector 

Machine (TWSVM) has been proposed (Jaydeva et al., 2007) by extending the work of  

GEPSVM (Mangasarian & Wild, 2006) in which two nonparallel planes are constructed 

such that each plane is closer to one of the two classes and is as far as possible from the 

other. The performance of TWSVM is better than GEPSVM and is approximately four 

times faster than SVM. 

 As for SVR, there exist some corresponding approximation algorithms as in 

classification, such as Smooth SVR (Lee et al, 2005), SMO (Shevade et al, 2000), etc. A 

fast training algorithm known as Twin Support Vector Regression (TSVR) (Peng, 2010) is 

described in the next section 2.2. Most recently Twin Support Vector Machine Based 
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Regression (TWSVR) proposed in (Khemchandani, Goyal and Chandra, 2015) overcomes 

the restrictions associated with TSVR will be introduced in the next Chapter. 

2.2 Twin Support Vector Regression (TSVR) 

 In the spirit of TWSVM, an efficient twin support vector regression, termed as 

TSVR, is proposed in (Peng, 2010) for regression problem to improve the computational 

training speed. Assume that we are given a training dataset (1.1). The TSVR generates a 

pair of nonparallel hyperplanes such that one of them determines the  -insensitive down 

bound 111 )( bf t  xwx  and another one the upper bound function 222 )( bf t  xwx  of the 

end regressor. Similar to the idea of maximum margin, these hyperplanes are constructed 

to be as far as possible from each other. 

 The final regressor is obtained by taking the mean of these functions as follows:  

   )(
2
1)(

2
1))()((

2
1)( 212121 bbfff t  xwwxxx         

     i.e. 









1
])[][(

2
1)( 2211

x
bbf wwx                              (2.1)  

2.2.1 Linear Twin Support Vector Regression 

          
Figure 2.1: Geometrical interpretation of linear TSVR 

 It is well known that, TSVR constructs two nonparallel hyperplanes in the input 

space (see Figure 2.1) defined as  

  111 )( bf t  xwx   and  222 )( bf t  xwx  (2.2)  

These hyperplanes are determined by solving the following pair of constrained quadratic 

programming problems (CQPPs):  

y

x

)(2 xf  
22 )( xf  

)(1 xf  
11 )( xf  
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            11111111
),,(

))(())((
2
1

)1(
111

min ξeeweyewey
ξw

tt

Rb
CbAbA

mn



   

subject to        0ξξeewy  11111 ,)( bA  (2.3) 

and            22222222
),,(

))(())((
2
1

)1(
222

min ξeeweyewey
ξw

tt

Rb
CbAbA

mn





subject to        0ξξeyew  22222 ,)( bA  (2.4)  

where 0,,0, 2121  CC  are input parameters; ,),,( 1111
t

m ξ  t
m ),,( 2212  ξ  

are vectors of slack variables and the training samples are organized in matrix A  whose ith 

row iA  becomes t
ix .  

 Introducing Lagrange multipliers t
m

t
m ),,(,),,( 11111111    βα  and 

t
m

t
m ),,(,),,( 22122212    βα  for CQPPs (2.3) and (2.4), their Lagrangian 

functions can be written as: 

)5.2()))((

))(())((
2
1),,,,(

1111111

11111111111111

ξβξeewyα

ξeeweyweyβαξw

tt

tt

εbA

CbAebAbL



 

 

)6.2()))((

))(())((
2
1),,,,(

2222222

22222222222222

ξβξeyeAwα

ξeeweyeweyβαξw

tt

tt

b

CbAbAεbL









 

Using the KKT conditions for Lagrangian function (2.5), we get:                             

0αAeAweyA  tt b )( 111  (2.7)                                       

0)( 1111  αeeAweye tt b   (2.8)                                                           

0βαe  111C                    (2.9)                                                  

0ξξeeAwy  11111 ,b  (2.10)                

0αξeeAwyα  111111 ,0))(( bt
                                                 (2.11) 

0βξβ  111 ,0t
                     (2.12)                                                                                            

Since 0β 1 , from (2.9) we have                                                                          

eα0 11 C                                                                                                         (2.13) 
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Similarly for Lagrangian function (2.6), we get                   

0αAeAweyA  2222 )( tt b  (2.14)                     

0)( 2222  αeeAweye tt b  (2.15)                                              

0βαe  222C  (2.16)                                                    

0ξξeyeAw  22222 ,)( b  (2.17)                           

0αξeyeAwα  222222 ,0))(( bt  (2.18)                                           

0βξβ  222 ,0t
                   (2.19)                                                                                         

Since 02 β , from (2.16) we                                                                                 

,22 eα0 C                                                                                                                  

(2.20) 

Now, combining (2.7) with (2.8) and (2.14) with (2.15), we get  

0][)( 1
1

1
1 


































 αAw

eAey
e
A

t

t

t

t

eb
      (2.21) 

0][)( 2
2

2
1 


































 αAw

eAey
e
A

t

t

t

t

eb
  (2.22) 

For the sake of convenience in expression, Equations (2.21) and (2.22) can be written in 

the following simpler forms, i.e.                                                                       

 0111  αuf ttt GGGG        i.e. ).()( 11
1

1 αfu   tt GGG  (2.23)                                                  

 0222  αuf ttt GGGG      i.e. ).()( 22
1

2 αfu   tt GGG  (2.24)                                                  

where .][and,,][,],[ 2222211111
tttt bbG wueyfwueyfeA   Note that 

GG t  is positive semidefinite but in order to overcome the situations in which its inverse 

may not exist, a regularization term I  is introduced so that )( IGG t   becomes 

positive definite where   is a very small positive number ).71(  e  Thus we have 

  ),()( 11
1

1 αfu   tt GIGG   (2.25)                                                

    ).()( 22
1

2 αfu   tt GIGG   (2.26)                           

 Substituting (2.23) in the primal Lagrangian function (2.5) and using (2.10) to 
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(2.13), the dual CQPP  of (2.3) can be obtained as                                                                                         

           111
1

11
1

1 )()(
2
1

1

min αfαfαα
α

ttttttt

R
GGGGGGGG

m
 


                                             

subject to       .11 eα0 C  (2.27)                                                                                                               

Similarly, substituting (2.24) in the primal Lagrangian function (2.6) and using (2.17) to 

(2.20), the dual CQPP  of (2.4) can be obtained as                                                                                         

            222
1

22
1

2 )()(
2
1

2

min αfαfαα
α

ttttttt

R
GGGGGGGG

m
 


                                             

subject to       .22 eα0 C  (2.28)                                                                 

Once the vectors 1α  and 2α are known, by solving (2.27) and (2.28) the output for any 

data point nRx  is predicted by 

 )(]1[
2
1]1[])[][(

2
1))()((

2
1)( 21221121 uuxxwwxxx  tttbbfff . 

 
2.2.2 Kernel Twin Support Vector Regression 

 For the nonlinear case, let the input vectors nRx  be mapped into a high 

dimensional feature space through a nonlinear mapping function )(x . Assume that the 

dot product of any two vectors )(),( 21 xx   is given by  

   )()(),( 2121 xxxx  tk   

where (.,.)k  is any suitable kernel function (see Table 1.2). Define the kernel matrix

),( tAAKK   of size mm  whose thji ),( entry is ),( jik xx  and also let

)),(),((),( 1 m
tt kkAK xxxxx   be a row vector. 

In this case, the  -insensitive down bound and up bound functions are defined by (Peng, 

2010)   

  111 ),()( bAKf tt  wxx ,  222 ),()( bAKf tt  wxx  (2.29)  

where ., 21
mRww  An intuitive geometric interpretation of nonlinear TSVR is shown in 

Figure 2.2. 
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Figure 2.2: Geometrical interpretation of kernel TSVR 

 

 These hyperplanes are determined by solving the following pairs of CQPPs  
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and 
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subject to 

      0ξξeyew  22222 ,)),(( bAAK t   (2.31) 

 Introducing Lagrange multipliers ,),,(,),,( 11111111
t

m
t

m    βα

t
m

t
m ),,(and),,( 22122212    βα  the Lagrangian functions corresponding to 

(2.30) and (2.31) become 

x 

x 

x 

x 

x 

x 

x 
x 

x 

)(2 xf  

)(1 xf

)(xf  

22 )( xf

11 )( xf  

x x 
x x 

x x x 
x 

x 

x 
x 

x 
x 

x 

x 

x x 

x x 

x 

x 

x 

x 

x 
x 

x 

x 
x 

x 

x 

x x 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

0.2 
0               500             1000                         1500                          2000                         2500 



Page | 17  
 

)32.2())),(((
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111111111111
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



 

and 

)33.2())),(((

))),((())),(((
2
1),,,,(

222222222

222222222222

ξβξeyewαξe

eweyeweyβαξw

tttt

ttt

bAAKC

bAAKbAAKbL









respectively.

 
 Proceeding as we have done for the linear case and taking 111 ][ uw tt b  and 

,][ 222 uw tt b  the duals of (2.30) and (2.31) can be obtained in the following forms: 

            111
1

11
1

1 )()(
2
1

1

min αfαfαα
α

ttttttt

R
GGGGGGGG

m
 


                                             

subject to        ,11 eα0 C  (2.34) 

and                                                                                                                         

            222
1

22
1

2 )()(
2
1

2

min αfαfαα
α

ttttttt

R
GGGGGGGG

m
 


                                             

subject to        ,22 eα0 C  (2.35) 

respectively, where ].),([ etAAKG   

 Further, we have  

            ),()( 11
1

1 αfu   tt GIGG   (2.36)                                                

            ).()( 22
1

2 αfu   tt GIGG   (2.37)                                                     

 For an unknown sample ,nRx  its prediction becomes  

 )(]1),([
2
1))()((

2
1)( 2121 uuxxxx  tt AKfff
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Chapter 3 
 
Twin Support Vector Machine Based Regression 
 
3.1 Introduction 

 In this chapter, we introduce TWSVM Based Regression (TWSVR) proposed by 

Khemchandani, Goyal and Chandra (2015). This study was inspired from the work done 

by Bi and Bennett (2003) where they have given geometrical interpretation on how a SVR 

problem can be regarded as a classification problem. The end regressor bf t  xwx)(  is 

the average of two nonparallel hyperplanes i.e. 1 -insensitive down bound and 2 -

insensitive up bound regressors determined by solving a pair of CQPPs similar to TSVR 

(Peng, 2010). They claimed that though Peng’s approach (2010) to TSVR was motivated 

from TWSVM but its formulation is not on the lines of TWSVM and the parameters 1

and 2  affect the linear shift of the end regressor .)( bf t  xwx  More precisely, only b  

depends on the 1  and 2 but w  is independent of  the values of 1  and 2 . 

 TWSVR formulation has been mathematically derived from the TWSVM 

(Khemchandani et al., 2015) as the standard SVR is related to SVM (Bi and Bennett, 

2003). Unlike TSVR, both the parameters 1 and 2 contribute in the orientation of the end 

regressor bf t  xwx)(  i.e. w  and b are functions of both 1  and .2 For the standard 

SVR, epsilon also contributes in the orientation of regressor. This means value of epsilon 

not only contributes to linear shift of regressor from origin but also determines the end 

regressor. 

 Like TSVR, TWSVR also provides improved results than the standard SVR and is 

approximately four times faster than standard SVR (Peng, 2010). Their formulations differ 

in the   term only. TWSVR also achieves comparable results to TSVR because   is 

chosen to be a small quantity. The formulation of TWSVR is not only better than TSVR 

but also is the correct choice for future work on TWSVR (Khemchandani et al., 2015). 
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3.2 Linear TWSVR 

 In this section we briefly introduce how a regressor problem (SVR, TWSVR) can 

be regarded as classification problem (SVM, TWSVM) (Bi & Bennett, 2003; 

Khemchandani et al., 2015) . Assume that we are given a training dataset (1.1) i.e.      

 .,),,()},,(,),,{( 111 RYyRXxxyyS i
nt

iniimm   xxx                           

Let D  and D be formed by shifting up and down output variables of training points by

0  i.e. },,1),,{( miyD ii  x  and },,1),,{( miyD ii  x .These can 

also be written as  

  },,1),,{( miyAD ii    (3.1)

  },,1),,{( miyAD ii   . (3.2) 

 

              

Figure 3.1: SVM Regression; (a) original data (b) shifted data and separating hyperplane (c) 
......................regression plane (Bi & Bennett, 2003). 

 In the augmented space 1n , we assign label +1 and -1 to training points of D

and D respectively. We find a hyperplane separating these two classes of samples that 

can be considered as the regressor function in the n  dimensional space (input space).Thus 

the problem of finding a SVR hyperplane in n  dimensional space is equivalent to finding 

a SVM hyperplane in 1n  dimensional space. 

  In case of TWSVR, TWSVM method instead of SVM is applied on the two sets  
D  and D  that determines two hyperplanes, one close to D  and other to .D  These 

hyperplanes become up bound and down bound function of the end regressor in the input 

space, where the end regressor is their average. 

(a) (b) (c) 
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3.2.1 Hard classifier Linear  -Insensitive TWSVR 

 In this section, we introduce the derivation of the TWSVR from the formulations 

of TWSVM having no error term in their objective functions. We apply TWSVM on the 

two sets ,D  D   (see section 3.2) and obtain two nonparallel hyperplanes as the 

solutions of the QPPs   

           2
111,,

)(
2
1

111
min bA

b
eeyw

w
 


                                                                                      

 subject to 0eeeyw  ))(( 111 bA   (3.3) 

          2
222,,

)(
2
1

222
min bA

b
eeyw

w
 


 

 subject to 0eeeyw  ))(( 222 bA   (3.4) 

 

 Assume that the solution of (3.3) and (3.4) determines two hyperplanes 

0111  bytt xw  and 0222  bytt xw . Now we fix i  for 2,1i  and apply the 

following transformations (a) to (b) on above formulations as follows: 

a) Assuming 0i  and replacing iii   /ww , iii bb   /  (3.3) and (3.4) become 

           )()(
2
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1111,, 111
min bAbA t

b
eweyewey

w
 


                                                                                             

subject to eeyew
1
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1)(





 bA   

     )()(
2
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2222,, 222
min bAbA t

b
eweyewey

w
 


 

 subject to eeyew
2
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1)(





 bA  

b) Subtract and add by    on the both sides of first and second CQPP respectively:

    )()(
2
1

1111,, 111
min bAbA t

b
eweyewey

w
 


                                                                                             

subject to  eeyeew )/1(2)( 111   bA
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   )()(

2
1

2222,, 222
min ebAbA t

b
 weyewey

w




subject to  eeyeew )/1(2)( 222   bA   

c) Replace   eee 11 bb  and   eee 22 bb  on the first and second CQPP.  

             )()(
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1111,, 111
min bAbA t

b
ewyewy

w



                                                               

subject to  eeyew )/1(2)( 111   bA   

     )()(
2
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2222,, 222
min bAbA t

b
ewyewy

w



 

           subject to  eeyew )/1(2)( 222   bA    

d) Apply transformation  )/1(2 ii    such that :0i  

 
   )()(

2
1

1111, 11

min bAbA t

b
ewyewy

w
                                                                

subject to 111 )( eewy  bA  (3.5) 

     )()(
2
1

2222, 22
min bAbA t

b
ewyewy

w


 

 
subject to 222 )( eyew  bA  (3.6) 

 

 Considering these transformations, the solutions )/,/( 1111   bw  and 

)/,/( 2222   bw  of (3.5) and (3.6) determine the two regressor hyperplanes  

  *
1

*
11 )( bf  xwx  and ,)( *

2
*
22 bf  xwx                                             

where ,/ 11
*
1   ww ,/ 22

*
2  ww   11

*
1 /bb  and   22

*
2 /bb .  

 The final regressor bf t  xwx)(  is obtained as the mean of )(1 xf  and ),(2 xf  

where 2/)//( 2211   www  and .2/)//( 2211   bbb  
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3.2.2 Soft classifier Linear  -Insensitive TWSVR 

 In this section, we briefly describe the soft margin classifier  -insensitive 

TWSVR for the linear case. Adding an error term in objective function, the soft classifier 

formulation can be obtained in the following form: 

  
    111111,,

)()(
2
1

111

min ξeewyewy
ξw

tt

b
CbAbA            

subject to 0ξξeewy  11111 ,)( bA  (3.7) 

      222222,,
)()(

2
1

222

min ξeewyewy
ξw

tt

b
CbAbA            

subject to ,,)( 22222 0ξξeyew  bA  (3.8) 

where 0, 21 CC  are regularization parameters and ,),,( 1111
t

m ξ t
m ),,( 2212  ξ

are slack vectors.  

 Introducing Lagrange multipliers ,),,(,),,( 11111111
t

m
t

m    βα

t
m

t
m ),,(and),,( 22122212    βα  the Lagrangian functions for (3.7) and (3.8) 

can be written as: 

 1111111

1111111111
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))(())((
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ξβewyξeα

ξeewyewyξw
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bAε

CbAbAbL




 (3.9) 

and 

 

2222222

2222222222

)))((

))(())((
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ξβyewξeα

ξeewyewyξw

tt

tt

bA

CbAbAbL






 (3.10) 

respectively. Applying the KKT conditions for Lagrangian function (3.9), we get:                                                

0αAeAwyA  tt b )( 11  (3.11)                                                

0αeeAwye  111 )( tt b  (3.12)                                                    

0βαe  111C   (3.13)                                                  

0ξξeeAwy  11111 ,b  (3.14)                

0αeAwyξeα  111111 ,0))(( bt    (3.15)                                     

.,0 111 0βξβ t   (3.16)                                                                                            
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Since 0β 1 , from (3.13) we get                                                                                    

.11 eα0 C   (3.17) 

Similarly for the Lagrangian function (3.10), we get                   

0αAeAwyA  222 )( tt b  (3.18)                                           

0)( 222  αeeAwye tt b  (3.19)                                                                      

0βαe  222C   (3.20)                                                    

0ξξeyeAw  22222 ,)( b  (3.21)                           

0αyeAwξeα  222222 ,0)(( bt    (3.22)                                           

.,0 222 0βξβ t   (3.23)                                                         

Since 02 β , from (3.20) we get                                                                                

.22 eα0 C   (3.24) 

Now, combining (3.11) with (3.12) and (3.18) with (3.19), we get  
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Equation (3.25) and (3.26) can also be transformed into equations (3.27) and (3.28) 

respectively, i.e.                                                                        

 0αuf  11
ttt GGGG        i.e. ),()( 1

1
1 αfu   tt GGG  (3.27)                                                  

 0αuf  22
ttt GGGG       i.e. ),()( 2

1
2 αfu   tt GGG  (3.28)                                                  

where .][and,][,],[ 222111
tttt bbG wuwuyfeA   Again to overcome the 

situation in which the inverse of GG t  does not exist, a regularization term I  can be 

introduced so that )( IGG t   becomes positive definite with   being a very small 

positive number, such as .71  e   

 Substituting (3.27) in (3.9) and using (3.14) to (3.17), the dual of (3.7) can be 

obtained as 
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         1111
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min αeαfαfαα
α
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R
GGGGGGGG

m
 


                                             

subject to     .11 eα0 C  (3.29)  

Similarly, substituting (3.28) in (3.10) and using (3.21) to (3.24), the dual of (3.8) can be 

obtained as  

         2222
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2 )()(
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min αeαfαfαα
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tttttttt

R
GGGGGGGG

m
 


                                             

subject to     .22 eα0 C  (3.30) 

 The above formulations (3.29) and (3.30) determine hyperplanes 11 )( bf t  xwx  

and 222 )( bf t  xwx .The end regressor is obtained by taking the mean of )(1 xf  and 

).(2 xf   

3.3 Nonlinear TWSVR 

 For the nonlinear case, TWSVR determines the  -insensitive down and up bound 

functions to be 

   111 ),()( bAKf tt  wxx , (3.31)

  222 ),()( bAKf tt  wxx , (3.32)  

  These hyperplanes are determined by the TWSVR as the solution of the following 

pair of QPPs:  
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subject to        0ξξeyew  22222 ,)),(( bAAK t  (3.34) 
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 Introducing Lagrange multipliers ,),,(,),,( 11111111
t

m
t

m    βα

t
m

t
m ),,(and),,( 22122212    βα  their Lagrangian functions can be written as: 
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   (3.36) 

 Proceeding as we have done for the linear case, the duals of (3.33) and (3.34) can 

be obtained in the following form:   
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subject to       .22 eα0 C  (3.38)

            ),()( 1
1

1 αfu   tt GIGG   (3.39)

            ),()( 2
1

2 αfu   tt GIGG   (3.40) 

where ,][ 111
tt bwu  tt b ][ 222 wu   and .]),([ etAAKG     

 For a new data point ,nRx  the end regressor can be obtained as 

            )(]1),([
2
1)( 21 uuxx  ttt AKf  
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Chapter 4 
 

LTWSVR: Lagrangian Twin Support Vector 
Regression Based  on Twin  Support  Vector  Machine 

 

4.1 Introduction 

  In this work, an implicit Lagrangian for the 2-norm TWSVR is proposed. This 

Lagrangian formulation is motivated from the study of (Mangasarian and Musicant, 2001) 

for classification problem as an unconstrained differentiable convex problem. Further it is 

proposed to solve this problem by a simple and linearly convergent iterative Lagrangian 

twin support vector regression method based on twin SVM (LTWSVR) algorithm. 

LTWSVR requires at the outset the inverse of a matrix but this can be expressed as matrix 

subtraction of identity matrix by a scalar multiple of the inverse of a positive semi-definite 

matrix (Balasundaram and Tanveer, 2013). LTWSVR does not need any optimization 

tools of linear or quadratic programming solvers. 

 Inspired by the study of Finite Newton method for Lagrangian SVM for 

Classification proposed in (Fung & Mangasarian, 2003) , Newton method for implicit 

Lagrangian formulation is discussed  i.e. unconstrained minimization problems 

corresponding to the duals of TWSVR is also proposed in section 4.3.  

 The chapter is organized as follows. In section 4.2 we derive the linear and 

nonlinear Lagrangian TWSVR (LTWSVR) by formulating the TWSVR in 2-norm as an 

unconstrained minimization problem (Balasundaram and Tanveer, 2013) and obtain its 

dual. In section 4.3 we describe Newton method for solving this unconstrained 

minimization problem. In section 4.4 we consider LTWSVR as an absolute value equation 

problem and it is proposed to obtain solution using Newton method. We also propose a 

generalized derivative approach based solution in section 4.5. 
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4.2  Lagrangian Twin Support Vector Regression Based on Twin Support Vector     
Machine (LTWSVR) 

 For the linear TWSVR in 2-norm, it’s up-bound (.)1f  and down-bound (.)2f  

regressor of the form (2.2) and (2.3) are determined by solving the pair of QPPs:  
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where 0, 21 CC  and slack vectors ,),,( 1111
t

m ξ .),,( 2212
t

m ξ Note that the 

non-negative constraints of 1ξ  and 2ξ  have been dropped in (4.1) and (4.2) because they 

will be satisfied automatically at optimality. 

 Let )1(][  nmAG e . Then (4.1) and (4.2) become  
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 Introducing  Lagrange multiplier t
muu ),,( 1111 u , the Lagrangian function (.)1L

corresponding to (4.3) can be written as:   
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Applying the KKT conditions for Lagarangian function 1L (.), we get: 
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Substituting these results back into the Lagarangian function (.)1L , and ignoring the 

constant terms the dual of (4.3) can be written as a minimization problem of the form 
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where .)( 1 tt GGGGH                                                                                                

 Similarly by introducing the Lagrange multiplier  ,),,( 2212
t

muu u  (.)2L  can be 

written as:                          

































































 22

2

2
2222

2

2

2

2
2222 2

1),,( ξey
w

uξξ
w

y
w

yξw 
b

GC
b

G
b

GbL tt
t

 

Applying the KKT conditions for Lagrange function (.)2L , we get: 
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Substituting these results back into Lagrangian function (.)2L , we get: 
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 The above minimization problems (4.5) and (4.6) can be equivalently written in 

the following simpler form: 
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respectively, where                                                                                                   
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 Each of the above two QPPs determines the functions                                   
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 For the nonlinear TWSVR in 2-norm, it’s up-bound (.)1f  and down-bound (.)2f  

regressors are determined by solving the pair of QPPs:  
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Proceeding as we have done for the linear TWSVR, the dual QPPs of (4.9) and (4.10) can 

be obtained as a pair of minimization problem of the form (4.7) where 212121 ,,,,, rruu QQ

has the same definition as defined above but the augmented matrix G  is defined by: 

)1(]),([  mm
tAAKG e .The kernel regressor functions can be determined as the mean of 

the up-bound (.)1f  and  down-bound (.)2f  regressor functions as follows: 
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 Now we discuss the solution of dual QPPs (4.7) by our iterative LTWSVR 

algorithm. 

 The KKT necessary and sufficient optimal conditions (Mangasarian, 1994) for the 

dual QPPs (4.7) will become 
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For any two vectors ba and  the following identity holds 
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Using this identity optimal condition, for any 0, 21   (4.12) can be written as 

   ))((and))(( 2222222211111111 ururuururu  QQQQ  (4.13)  

These optimality conditions are also the necessary and sufficient condition for the 

unconstrained minimum of the implicit Lagrangian (Mangasarian and Solodov, 1993) 

associated with the dual problems (4.7): 
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The optimality conditions (4.12) can also be written as 
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Finally, we have following simple iterative scheme for LTWSVR algorithm: ,2,1,0i  
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Remark: The proposed LTWSVR algorithm requires  at its very beginning the inverse of 

matrices .and 32 QQ  but this explicit computation are not required because once the 

matrix 1)( GG t is known, they can be easily obtained from the result (Balasundaram and 

Tanveer, 2013) 
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 Finally, the end regressor function is defined as:                                        
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4.3  Newton method for LTWSVR 

 In this section, Newton method is described for the solution of the implicit 

Lagrangian formulations i.e. unconstrained minimization problems (4.14) that lead to 

highly effective iterative scheme (Fung et al., 2003). In short, (4.14) can also be written 

as:
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 The basic Newton step for determining the vector mi
k R1u  from its previous 

value i
ku can be given by the following iterative formula:  
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The gradient of )( kkL u  can be obtained as 
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The Hessian matrix of second order partial derivative of )( kkL u  does not exist because 

gradient ))(( kkL u  is not differentiable. However, it has been shown that a generalized 

Hessian matrix of )( kkL u  exist (Facchinei, 1995; Hiriart-Urruty, Strodiot, & Nguyen, 

1984) and is defined as follows: 
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where *(.)diag  is a diagonal matrix and )(  denotes the step function, which is taken here 

as the subgradient of the plus function )( , i.e.  the step  function *x  denotes a vector x

with all positive components set to 1 and all nonpositive components of x  set to zero 

(Mangasarian, 2002).  

 We note that if kQ  be symmetric positive definite matrix and kk Q  then both 
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definite. So Newton iteration (4.16) is simplified to: 
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where,    
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4.4  LTWSVR as an absolute value equation problem by Newton method 

 Again, consider the absolute value equation problem 
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Then, the generalized Jacobian of )(kg  can be obtained in the following form                                                                                                                            
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 4.5 Generalized Newton method for LTWSVR 

 A generalized derivative approach studied in (Fung and Mangasarian, 2003; 

Balasundaram and Singh, 2010) is described here for solving the unconstrained 

minimization problems described in section 4.2: 
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Then, using a generalized derivative, the generalized Jacobians of )( 11 ug  and )( 22 ug  can 

be taken as 
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Chapter 5 
 
Experimental Results and Analysis 

 

 In this chapter, we investigate the effectiveness and speed of the proposed method 

LTWSVR, defined by gradient based iterative algorithms: FLTWSVR, NLTWSVR and 

GLTWSVR, on five synthetic and several well known real world datasets. We focus on 

the comparison of their results with standard SVR, TSVR and TWSVR in terms of 

accuracy and learning time. 

 The chapter is organized as follows: we introduce the specification of experimental 

environment for all computations in section 5.1. We describe the performance of proposed 

method LTWSVR on synthetic and real world datasets in sections 5.2 and 5.3 

respectively. 

5.1 Experimental Specification 

 All experiments are implemented on a PC running Windows 7 with 3.2 GHz Intel 

CORE i2 processor, 3 GB RAM with MATLAB 2008a. QPPs involved in SVR, TSVR 

and TWSVR are solved by Mosek optimization toolbox (available online at http://www. 

mosek.com) for MATLAB which implements fast interior point based algorithms for 

convex optimization problems. No optimization tool is required for our proposed method 

LTWSVR. In order to construct nonlinear regressor, Gaussian kernel with parameter 

0 defined by )exp(),( 2
2121 xxxx  k  is utilized. To compare the robustness of 

the proposed method, root mean square error (RMSE) is employed and is defined as 

  RMSE= 



N

i
ii yy

N 1

2)(1  

where ii yy and  are the observed and predicted value for the thi  sample respectively and 

N  is the number of test samples. 
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 To reduce the complexity of the optimal parameter selection procedure for TSVR, 

TWSVR and proposed LTWSVR, we let 2121 and  CC  as in Peng (2010). 

Furthermore, we let regularization parameters ]10,,10[, 55
21  CCC , tolerance 

parameters ]10,,10[, 13
21

   and kernel parameter ]2,,2[ 55  . These 

optimal parameters are tuned by performing standard ten-fold cross validation on 

experimental datasets.  

5.2 Illustrations and Experiment on Synthetic Datasets  

 In this experiment section, we evaluate the performance of proposed LTWSVR 

algorithms on five synthetic datasets generated by the functions which are defined in 

Table 5.1. For each function )(xfy  , we generated 1000 testing samples ),( yx  using 

)(xfy  and 200 training samples ),( yx using  )(xfy   randomly on the intervals 

defined in Table 5.1, where   is additive noise. Note that for robust comparison, we 

contaminated 200 training samples with two different kind of noises: a) uniform 

distribution over the interval [-0.2, 0.2] and b) Gaussian distribution with mean 0 and 

standard deviation 0.2. The optimal values for regularization, error tolerance and kernel 

parameters are obtained from their appropriate ranges as described in section 5.1 by 

performing ten-fold cross validation on the training set. Using these optimal values and a 

Gaussian kernel, the RMSE on testing set for methods SVR, TSVR, TWSVR, FLTWSVR, 

NLTWSVR and GLTWSVR were obtained and summarized in Table 5.2. It can be 

observed from the Table 5.2 that the proposed LTWSVR achieve the competitive 

generalization performance with much faster learning speed in comparison to SVR, TSVR 

and TWSVR. 

 For evaluating the performance of LTWSVR algorithms, the first example 

considered is the regression of the function (Riberio, 2002) as defined in Table 5.1, i.e. 

  ]6,0[),cos()sin()( 2  xxxxf                                                                   

The approximation of this function by SVR, TSVR , TWSVR, FLTWSVR, NLTWSVR 

and GLTWSVR methods for uniform and Gaussian additive noises over test set were 

obtained and illustrated in Figures 5.1(a) and 5.1(b) where noisy training samples marked  
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Table 5.1: Functions used for generating synthetic datasets 

Name Function Definition Domain of Definition 

Function  1 )cos()sin( 2xx  ]6,0[x  

Function  2 ))sin(exp( 21 xx 
 

]1,1[2,1 ix
 

Function  3 





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
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135.0
)11035.0(2sin

x


 
]10,0[x

 

Function  4 2
2

2
1

2
2

)5()5(3
)5(

xx
x




 ]10,0[,2,1 ix  

 

Function  5 
)])9.0(4sin())5.0(3exp(

))6.0(13sin()exp(35.1[9.1
2

22

2
11





xx
xx


 ]1,0[,2,1 ix  

 

by symbol ‘o’. Prediction errors are obtained by taking the difference between the 

observed and predicted values. The prediction errors by SVR, TSVR, TWSVR, 

FLTWSVR, NLTWSVR and GLTWSVR methods for uniform and Gaussian additive 

noises over test set were obtained and illustrated in Figures 5.2(a) and 5.2(b) respectively. 
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a) Uniform noise form [-0.2,0.2] 

 

b) Gaussian noise with mean Zero and standard deviation 0.2 

Figure 5.1: Results of approximation of )cos()sin( 2xx  by SVR, TSVR, TWSVR and proposed methods: 
FLTWSVR, NLTWSVR, GLTWSVR on testing set. Gaussian kernel was employed. 
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a) Uniform noise from [-0.2,0.2] 

 
 

 
b) Gaussian noise with mean zero and standard deviation 0.2 

Figure 5.2:  Prediction Error over the test set by SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and GLTWSVR for 
the dataset generated by the function )cos()sin( 2xx . Gaussian kernel was employed.  
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Table 5.2:  Performance comparison of our proposed methods: FLTWSVR, NLTWSVR and GLTWSVR with 
SVR, TSVR and TWSVR on synthetic datasets for uniform and Gaussian additive noises. RMSE was used for 
comparison. Gaussian kernel was employed. Time is for training in seconds. Bold type shows the best 
result. 

a) Uniform noises from [-0.2, 0.2] 

Dataset 
(Train Size, Test 
Size) 

SVR 
 (C,μ,ɛ) 
Time 

TSVR 
 (C1=C2, μ, ɛ1= ɛ2) 

Time 

TWSVR 
 (C1=C2, μ, ɛ1= ɛ2) 

Time 

FLTWSVR 
 (C1=C2, μ, ɛ1= ɛ2) 

Time 

NLTWSVR 
 (C1=C2, μ, ɛ1= ɛ2) 

Time 

GLTWSVR 
 (C1=C2, μ, ɛ1= ɛ2) 

Time 

Function 1 
(200 Χ 1,1000 Χ 1) 

0.0444 
(101,23,10-1) 

0.1755 

0.0352 
(102,23,10-3) 

0.1355 

0.0358 
(101,23,10-1) 

0.1270 

0.0377 
(102,23,10-2) 

0.0212 

0.0350 
(103,23,10-2) 

0.0717 

0.0350 
(103,23,10-2) 

0.0719 

Function 2 
(200 Χ2,1000 Χ 2) 

0.0715 
(101,21,10-1) 

0.1148 

0.0643 
(105,21,10-1) 

0.0875 

0.0644 
(105,21,10-2) 

0.0930 

0.0584 
(102,21,10-2) 

0.0128 

0.0592 
(102,21,10-3) 

0.0443 

0.0592 
(102,21,10-3) 

0.0407 

Function 3 
(200 Χ 1,1000 Χ 1) 

0.0568 
(105,20,10-1) 

0.2286 

0.0599 
(100,22,10-1) 

0.0632 

0.0598 
(101,22,10-1) 

0.0662 

0.0595 
(104,21,10-2) 

0.0185 

0.0597 
(102,22,10-1) 

0.0391 

0.0597 
(102,22,10-1) 

0.0383 

Function 4 
(200 Χ 2,1000 Χ 2) 

0.0778 
(100,2-2,10-1) 

0.1084 

0.0902 
(10-5,2-3,10-3) 

0.0964 

0.0889 
(10-1,2-3,10-1) 

0.1351 

0.0901 
(100,2-3,10-1) 

0.0122 

0.0901 
(100,2-3,10-1) 

0.0226 

0.0901 
(100,2-3,10-1) 

0.0236 

Function 5 
(200 Χ2,1000 Χ 2) 

0.3609 
(102,25,10-2) 

0.1235 

0.4082 
(105,25,10-1) 

0.1087 

0.4083 
(101,25,10-3) 

0.0734 

0.3661 
(105,25,10-2) 

0.0131 

0.4110 
(101,25,10-3) 

0.0330 

0.4110 
(101,25,10-3) 

0.0324 

 
b) Gaussian noise with mean zero and standard deviation 0.2 

 

Dataset 
(Train Size, Test 
Size) 

SVR 
 (C,μ,ɛ) 
Time 

TSVR 
 (C1=C2, μ, ɛ1= ɛ2) 

Time 

TWSVR 
 (C1=C2, μ, ɛ1= ɛ2) 

Time 

FLTWSVR 
 (C1=C2, μ, ɛ1= ɛ2) 

Time 

NLTWSVR 
 (C1=C2, μ, ɛ1= ɛ2) 

Time 

GLTWSVR 
 (C1=C2, μ, ɛ1= ɛ2) 

Time 

Function 1 
(200 Χ 1,1000 Χ 1) 

0.0987 
(100,24,10-1) 

0.0690 

0.0853 
(105,23,10-1) 

0.3106 

0.0678 
(100,23,10-1) 

0.0630 

0.0783 
(102,23,10-1) 

0.0150 

0.0801 
(102,23,10-1) 

0.3270 

0.0801 
(102,23,10-1) 

0.4522 

Function 2 
(200 Χ 2,1000 Χ 2) 

0.1003 
(105,2-4,10-2) 

0.1153 

0.1084 
(100,2-1,10-1) 

0.0581 

0.1085 
(100,2-1,10-3) 

0.0565 

0.1048 
(102,2-1,10-3) 

0.0125 

0.1046 
(101,2-1,10-2) 

0.0413 

0.1046 
(101,2-1,10-2) 

0.0400 

Function 3 
(200 Χ 1,1000 Χ 1) 

0.0992 
(104,20,10-3) 

0.1855 

0.0736 
(10-1,22,10-3) 

0.0574 

0.0737 
(10-1,22,10-2) 

0.0604 

0.0725 
(10-5,22,10-2) 

0.0166 

0.0725 
(10-5,22,10-2) 

0.0275 

0.0725 
(10-5,22,10-2) 

0.0269 

Function 4 
(200 Χ 2,1000 Χ 2) 

0.1444 
(101,2-4,10-2) 

0.1742 

0.1339 
(10-1,2-4,10-1) 

0.0615 

0.1339 
(10-1,2-4,10-3) 

0.0565 

0.1334 
(10-3,2-4,10-3) 

0.0166 

0.1334 
(10-3,2-4,10-3) 

0.0269 

0.1334 
(10-3,2-4,10-3) 

0.0269 

Function 5 
(200 Χ 2,1000 Χ 2) 

0.4989 
(102,24,10-3) 

0.1173 

0.5782 
(10-1,25,10-3) 

0.0584 

0.5782 
(10-1,25,10-3) 

0.0563 

0.3584 
(105,24,10-2) 

0.0177 

0.5769 
(100,25,10-3) 

0.0410 

0.5769 
(100,25,10-3) 

0.0413 
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5.3 Real-world Benchmark Datasets 

 In this section, to further test the effectiveness of LTWSVR algorithms compared 

to SVR, TSVR and TWSVR, we illustrate the experiments performed both linearly and 

nonlinearly on several well known real-world datasets. For this we use 27 real-world 

datasets: Hydraulic actuator (Gretton et al., 2001; Sjoberg et al., 1995); Gas Furnace (Box 

and Jenkins, 1976); Pyrim, Servo, Triazines, Wisconsin breast cancer, Boston, Forest 

fires, Concrete CS, Wine quality red, Concrete Slump and AutoPrice datasets form UCI 

repository (Murphy and Aha, 1992); Flexible robotic arm 

(http://homes.esat.kuleuven.be/~smc/daisy/daisy data.html); Pollution, NO2, Bodyfat, 

Balloon and Quake (http://lib.stat.cmu.edu/ datasets); Motorcycle (Eubank, 1999); Demo 

(DELVE, 2005); Sunspots times series dataset (http://www.bme.ogi. 

edu/~ericwan/data.html); IBM, Standard & Poor 500 (SNP500), Citigroup, Intel, 

Microsoft and RedHat financial time series datasets (http://finance.yahoo.com). 

 For all experiments, first all samples are normalized before learning as follows: 

  minmax

min

ˆ
jj

jij
ij xx

xx
x




  

where ijx  is thji ),(  entry in the input matrix ,nmA   ijx̂  its corresponding estimated 

normalized value and )(minmin
ijmij xx


   and njxx ijnjj ,,1),(minmin 


 denote minimum 

and maximum values in the thj  column respectively. Second, optimal parameters are 

determined by performing ten-fold cross-validation on training set as whole dataset. As for 

testing, we apply the cross-validation by taking random ninety percent of the dataset for 

training and remaining for testing. Repeating this process ten times and taking their 

average, test accuracy is determined.  

 The Hydraulic actuator dataset is taken as the first example for our experiment. It 

has been widely used in nonlinear system identification (Gretton et al., 2001; Sjoberg et 

al., 1995). It contains 1024 samples with input variable )(tu  and the output variable )(ty  

denotes the valve position and oil pressure respectively. For the purpose of comparison, 

1021 samples with five attributes are taken of the form ))(),(( tytx  where  
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ttututytytyt )]2(),1(),3(),2(),1([)( x . 

 As for second example, frequently used for nonlinear identification problems, Box 

and Jenkins gas furnace dataset is taken. It is a time series dataset which contains 296 

samples with input variable )(tu  and output variable )(ty  denote gas flow rate and 2CO  

concentration respectively. In experiment 293 samples with six attributes of the form: 

))(),(( tytx  where ,)]3(),2(),1(),3(),2(),1([)( ttutututytytyt x  are taken for 

testing. The prediction accuracy and prediction error plots over whole dataset employing 

linear kernel by SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and GLTWSVR are 

shown in Figures 5.3 and 5.4 respectively. Using Gaussian kernel, prediction accuracy and 

prediction error over the whole dataset by SVR, TSVR, TWSVR, FLTWSVR, 

NLTWSVR and GLTWSVR are shown in Figures 5.5 and 5.6 respectively. 

 As an interesting example, the flexible robotic arm, in estimation of the inverse 

dynamics of a flexible robot arm (Souza et. al. 2006), is taken. The dynamics of robot arm 

is modeled as a transfer function of the measured values of the reaction torque of the 

structure (input time series, )(tu ) whose output )(ty  is its corresponding acceleration. 

Following the work of (Souza and Barreto, 2006), samples are taken to be of the form: 

))(),(( txt outx  where ttytytutut )]4(),1(),5(,),1([)(  x   and ).()( tutx out   

 In addition to the above datasets, experiments are performed on other well known 

datasets: Bodyfat, NO2, Balloon, Pollution and Quake available from Statlib collection 

http://lib.stat.cmu.edu/datasets. Bodyfat is a real dataset lists estimates of the percentage of 

body fat of 252 peoples having from body density values. NO2 dataset contains 500 

sample from a dataset with seven variables collected by the Norwegian Public Roads 

Administration (Vlachos, 2005). Balloon dataset contains 2001 observations of radiation 

having trend and outliers. The pollution dataset lists an estimate relating air pollution to 

mortality. Quake dataset contains 2178 samples with three attributes (focal depth, latitude 

and longitude), lists information for earthquakes occurred between January 1964 and 

February 1986. 

 Another popular benchmark dataset, Motorcycle consists of a series of 

accelerometer readings over time in a simulation of motorcycle accidents used to test 
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crash-helmets (Silverman, 1985). The Demo dataset (DELVE, 2005) which consists of 

294 samples artificially generated from a distribution based on assumptions and notions 

concerning the relationships between people's sex, age, number of siblings, income, and 

favorite colour. The  Sunspots (http://www.bme.ogi. edu/~ericwan/data.html) time series 

dataset,  containing 295 yearly readings (year 1700 to 1994) but only 290 samples taken as 

a whole because current value is predicted from five previous values.    

 To further test the performance of algorithms, we evaluated them on several 

publicly available datasets from UCI repository including Pyrim, Servo, Triazines, 

Wisconsin breast cancer, Boston, Forest fires, Concrete CS, Wine quality red, Concrete 

Slump and AutoPrice datasets. These datasets are commonly used in testing regression 

algorithms. 

 Finally, as examples of financial time series datasets, the stock index of Citigroup, 

Intel, Microsoft and RedHat are considered. These datasets contain information about 755 

closing stock prices (01-01-2006 to 31-12-2008). Since the current value is predicted from 

five previous values so only 750 samples taken as a whole dataset.  

5.3.1 Numerical experiment using linear regressors 

 In this sub-section, all the experiments are performed using the linear kernel. In 

order to evaluate the performance of the LTWSVR algorithms (FLTWSVR,NLTWSVR, 

GNLTWSVR) with SVR, TSVR and TWSVR, we obtained optimal parameter values by 

performing ten- fold cross validation for each dataset and computed learning time, average 

RMSE and standard deviation summarized in Table 5.3. As seen from Table 5.3, for most 

of the cases, LTWSVR algorithms derive better generalization performance than SVR, 

TSVR and TWSVR. As for training time, LTWSVR algorithms spend the least CPU time 

among all the methods.  

 To analyze the performance of all the six algorithms over multiple datasets, we   

used Friedman test with post hoc test which is stated as a simple, safe and robust non-

parametric test (Demsar, 2006). For this, we computed average ranks of these algorithms 

on RMSE values which are listed in Table 5.4. Under the null hypothesis that all the 

algorithms are identical, Friedman statistics can be computed as follows: 
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32.4965
4
76)6851.27777.26296.2037.40925.47777.4(

76
2712 2

2222222










 





F  

8.2427.
32.4965-527

32.496526





FF  

where FF  is distributed according to F distribution with )130,5(  degrees of freedom. 

The critical value of )130,5(F  is 2.2839 for the level of significance 05.0  and 

similarly 1.8920 for .10.0  Since FF  is greater than both critical values, so we reject 

the null hypothesis. We use the Nemenyi test for further pair wise comparison. According 

to (Demsar, 2006), the performance of two algorithms is significantly different if the 

corresponding average ranks differ by at least the critical difference, at 10.0p  critical 

difference (CD) is 1.3182.
276
76589.2 


  we have the following comparison results: 

(i) For Absolute, Newton and Generalized; the difference of one algorithm with other two 

algorithms is less than the critical difference value. This indicates that the post hoc test 

fails to detect any significant difference among these three algorithms.  

(ii) The Absolute method significantly performs  better than the SVR 

),3182.12.14816296.27777.4(   the TSVR )3182.11.46296296.20925.4(   

and the TWSVR ).3182.11.40746296.20370.4(    

(iii) The Newton method significantly performs better than the SVR 

).3182.127777.27777.4(  There is no any significant difference detected for the 

Newton method compared with the TSVR )3182.11.31487777.20925.4(   and 

the TWSVR 1.25937777.20370.4(   )3182.1 . 

(iv)  The generalized method significantly performs better than the SVR 

),3182.10926.26851.27777.4(   the TSVR )3182.14074.16851.20925.4(   

and the TWSVR ).3182.13519.16851.20370.4(   
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Figure 5.3: Result of comparison on Gas furnace dataset. Linear kernel was employed 

 

 
Figure 5.4: Prediction Error over the whole dataset by SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and 
GLTWSVR for the gas furnace dataset of Box-Jenkins. Linear kernel was employed.  
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Table 5.3: Performance comparison of our proposed methods: FLTWSVR, NLTWSVR and GLTWSVR  with SVR, TSVR and 
TWSVR. RMSE was used for comparison. Linear kernel was employed. Bold type shows the best result. 

Dataset 
(Train Size, Test Size) 

SVR 
 (C, ɛ) 
Time 

TSVR 
 (C1=C2, ɛ1= ɛ2) 

Time 

TWSVR 
 (C1=C2, ɛ1= ɛ2) 

Time 

FLTWSVR 
 (C1=C2, ɛ1= ɛ2) 

Time 

NLTWSVR 
 (C1=C2, ɛ1= ɛ2) 

Time 

GLTWSVR 
 (C1=C2, ɛ1= ɛ2) 

Time 

Hydraulic  actuator 
(1021 Χ 5) 

0.0145±0.0046 
(101,10-2) 

4.3804 

0.0134±0.0034 
(10-2,10-3) 

1.6917 

0.0135±0.0034 
(10-2,10-3) 

1.7299 

0.0133±0.0038 
(10-5,10-3) 

0.1617 

0.0132±0.0041 
(10-5,10-3) 

0.3350 

0.0133±0.0038 
(10-4,10-3) 

0.6250 

Gas furnace 
(293 Χ 6) 

0.0199±0.0068 
(102,10-2) 

0.1438 

0.0168±0.0040 
(10-1,10-3) 

0.0989 

0.0167±0.0041 
(10-1,10-3) 

0.0980 

0.0165±0.0045 
(105,10-1) 

0.0099 

0.0165±0.0045 
(105,10-1) 

0.0111 

0.0166±0.0047 
(105,10-1) 

0.0116 

Pyrim 
(74 Χ 26) 

0.1056±0.0577 
(100,10-2) 

0.0080 

0.1268±0.0725 
(101,10-3) 

0.0120 

0.1257±0.0717 
(103,10-2) 

0.0160 

0.1183±0.0640 
(105,10-1) 

0.0008 

0.1241±0.0727 
(104,10-2) 

0.0054 

0.1241±0.0727 
(104,10-2) 

0.0878 

Servo 
(167 Χ 4) 

0.2288±0.1025 
(104,10-1) 

0.0411 

0.1608±0.0372 
(10-2,10-3) 

0.0289 

0.1605±0.0372 
(10-1,10-1) 

0.0279 

0.1608±0.0361 
(100,10-3) 

0.0021 

0.1608±0.0361 
(100,10-3) 

0.0082 

0.1608±0.0361 
(100,10-3) 

0.0083 

Triazines 
(186 Χ 58) 

0.2217±0.0424 
(100,10-1) 

0.0512 

0.2063±0.0726 
(10-1,10-3) 

0.0387 

0.2104±0.0754 
(100,10-1) 

0.0356 

0.2073±0.0703 
(100,10-2) 

0.0033 

0.2073±0.0703 
(100,10-2) 

0.0114 

0.2073±0.0703 
(100,10-2) 

0.0191 

Wisconsin B.C. 
(194 Χ 34) 

0.1835±0.0558 
(10-1,10-1) 

0.0498 

0.1887±0.0405 
(100,10-3) 

0.0391 

0.1887±0.0404 
(100,10-3) 

0.0395 

0.1894±0.0613 
(10-5,10-3) 

0.0038 

0.1894±0.0613 
(10-5,10-3) 

0.0077 

0.1894±0.0613 
(10-4,10-3) 

0.0083 

Boston 
(506 Χ 13) 

0.1130±0.0434 
(100,10-2) 

0.5735 

0.1076±0.0207 
(10-1,10-3) 

0.2853 

0.1076±0.0206 
(10-1,10-3) 

0.2876 

0.1061±0.0265 
(10-5,10-3) 

0.0269 

0.1062±0.0261 
(10-5,10-3) 

0.1032 

0.1061±0.0265 
(10-4,10-3) 

0.1027 

Forest fires 
(517 Χ 12) 

0.0441±0.0413 
(10-5,10-3) 

0.6717 

0.0415±0.0428 
(10-1,10-1) 

0.3425 

0.0416±0.0427 
(10-1,10-3) 

0.3476 

0.0436±0.0409 
(10-5,10-3) 

0.0276 

0.0436±0.0409 
(10-5,10-3) 

0.0790 

0.0437±0.0408 
(10-4,10-3) 

0.1075 

ConcreteCS 
(1030 Χ 8) 

0.1305±0.0094 
(101,10-1) 

3.8649 

0.1328±0.0076 
(101,10-3) 

2.6391 

0.1306±0.0082 
(100,10-1) 

2.0905 

0.1304±0.0104 
(101,10-3) 

0.2377 

0.1305±0.0055 
(101,10-3) 

1.6756 

0.1305±0.0055 
(101,10-3) 

1.6685 

Wine quality red 
(1599 Χ 11) 

0.1423±0.0118 
(10-1,10-1) 

12.389 

0.1304±0.0059 
(10-1,10-1) 

5.0902 

0.1303±0.0059 
(10-1,10-3) 

5.1135 

0.1302±0.0070 
(10-5,10-3) 

0.5791 

0.1301±0.0064 
(10-5,10-3) 

2.2136 

0.1300±0.0096 
(10-4,10-3) 

2.2322 

Concrete Slump 
(103 Χ 10) 

0.0612±0.0161 
(100,10-2) 

0.0131 

0.0595±0.0150 
(10-5,10-1) 

0.0145 

0.0600±0.0152 
(10-1,10-2) 

0.0148 

0.0594±0.0151 
(100,10-2) 

0.0008 

0.0596±0.0180 
(100,10-2) 

0.0029 

0.0594±0.0151 
(100,10-2) 

0.0029 

Auto price 
(159 Χ 15) 

0.0879±0.0259 
(10-1,10-3) 

0.0306 

0.0898±0.0253 
(103,10-1) 

0.0379 

0.0898±0.0253 
(101,10-3) 

0.0302 

0.0856±0.0225 
(103,10-3) 

0.0024 

0.0865±0.0226 
(103,10-2) 

0.0299 

0.0861±0.0238 
(102,10-2) 

0.0150 

Flexible robotic  arm 
(1019 Χ 9) 

0.0150±0.0007 
(102,10-2) 

4.2171 

0.0149±0.0005 
(10-1,10-1) 

1.8890 

0.0148±0.0006 
(10-1,10-2) 

1.9419 

0.0148±0.0005 
(101,10-3) 

0.2334 

0.0148±0.0005 
(101,10-3) 

1.6090 

0.0148±0.0005 
(101,10-3) 

1.5877 
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Pollution 
(60 Χ 15) 

0.1175±0.0498 
(10-1,10-2) 

0.0059 

0.1263±0.0495 
(103,10-3) 

0.0269 

0.1264±0.0495 
(101,10-3) 

0.0098 

0.1209±0.0497 
(105,10-2) 

0.0005 

0.1261±0.0494 
(103,10-3) 

0.0035 

0.1245±0.0489 
(102,10-3) 

0.0025 

NO2 
(500 Χ 7) 

0.1025±0.0189 
(105,10-1) 
0.5956 

0.1020±0.0097 
(10-1,10-1) 

0.2683 

0.1020±0.0097 
(10-1,10-3) 

0.2631 

0.1016±0.0126 
(10-5,10-3) 

0.0261 

0.1010±0.0170 
(10-5,10-3) 

0.0985 

0.1010±0.0170 
(10-4,10-3) 

0.0951 

Bodyfat 
(252 Χ 14) 

0.0504±0.0486 
(102,10-2) 

0.1075 

0.0234±0.0257 
(10-1,10-1) 

0.0737 

0.0235±0.0256 
(10-1,10-3) 

0.0725 

0.0257±0.0245 
(10-5,10-3) 

0.0041 

0.0257±0.0245 
(10-5,10-3) 

0.0069 

0.0257±0.0245 
(10-4,10-3) 

0.0132 

Balloon 
(2001 Χ 1) 

0.0552±0.0046 
(10-2,10-1) 

20.444 

0.0512±0.0061 
(100,10-3) 

17.161 

0.0512±0.0061 
(100,10-3) 

17.090 

0.0511±0.0057 
(101,10-2) 

1.2527 

0.0511±0.0057 
(101,10-2) 

10.010 

0.0511±0.0057 
(101,10-2) 

11.236 

Quake 
(2178 Χ 3) 

0.1792±0.0103 
(104,10-1) 

39.092 

0.1718±0.0091 
(10-5,10-1) 

12.358 

0.1718±0.0091 
(10-3,10-2) 

11.007 

0.1718±0.0091 
(10-1,10-3) 

1.3326 

0.1718±0.0091 
(10-1,10-3) 

7.6448 

0.1718±0.0091 
(10-2,10-3) 

5.2452 

Motorcycle 
(133 Χ 1) 

0.2909±0.0542 
(100,10-1) 

0.0163 

0.2224±0.0269 
(10-1,10-1) 

0.0185 

0.2212±0.0278 
(10-1,10-3) 

0.0187 

0.2211±0.0269 
(10-5,10-3) 

0.0011 

0.2202±0.0299 
(10-5,10-3) 

0.0033 

0.2202±0.0299 
(10-4,10-3) 

0.0033 

Demo 
(2048 Χ 4) 

0.1026±0.0110 
(100,10-1) 

33.092 

0.0997±0.0118 
(10-3,10-3) 

9.6141 

0.0997±0.0118 
(10-3,10-3) 

9.7527 

0.0997±0.0118 
(10-5,10-3) 

1.1899 

0.0997±0.0118 
(10-5,10-3) 

4.4432 

0.0997±0.0118 
(10-4,10-3) 

5.3983 

Sunspots 
(290 Χ 5) 

0.0940±0.0219 
(102,10-1) 

0.1323 

0.0882±0.0154 
(10-1,10-1) 

0.0852 

0.0881±0.0199 
(10-1,10-3) 

0.0829 

0.0881±0.0195 
(10-5,10-3) 

0.0075 

0.0879±0.0174 
(10-5,10-3) 

0.0204 

0.0879±0.0174 
(10-4,10-3) 

0.0255 

IBM 
(750 Χ 5) 

0.0272±0.0032 
(105,10-2) 

1.9445 

0.0270±0.0021 
(10-2,10-3) 

0.6950 

0.0270±0.0030 
(10-1,10-3) 

0.8688 

0.0269±0.0035 
(10-5,10-3) 

0.0736 

0.0269±0.0035 
(10-5,10-3) 

0.1471 

0.0269±0.0035 
(10-4,10-3) 

0.2760 

SNP500 
(750 Χ 5) 

0.0222±0.0029 
(100,10-3) 

1.5770 

0.0223±0.0029 
(10-1,10-3) 

0.8678 

0.0223±0.0029 
(10-1,10-3) 

0.8637 

0.0222±0.0033 
(10-5,10-1) 

0.0744 

0.0222±0.0033 
(10-5,10-1) 

0.1140 

0.0222±0.0033 
(10-4,10-1) 

0.1126 

Citigroup 
(750 Χ 5) 

0.0149±0.0013 
(104,10-2) 

1.6472 

0.0149±0.0013 
(10-1,10-3) 

0.9193 

0.0149±0.0013 
(10-1,10-3) 

0.9113 

0.0149±0.0013 
(10-3,10-1) 

0.0713 

0.0149±0.0013 
(10-2,10-1) 

0.0991 

0.0149±0.0013 
(101,10-1) 

0.0950 

Intel 
(750 Χ 5) 

0.0294±0.0042 
(102,10-2) 

1.5290 

0.0293±0.0049 
(10-1,10-1) 

0.8357 

0.0293±0.0049 
(10-1,10-3) 

0.8333 

0.0293±0.0049 
(10-5,10-3) 

0.0715 

0.0293±0.0049 
(10-5,10-3) 

0.1467 

0.0293±0.0049 
(10-4,10-3) 

0.2744 

Microsoft 
(750 Χ 5) 

0.0279±0.0050 
(102,10-3) 

1.5535 

0.0281±0.0029 
(10-1,10-3) 

0.8386 

0.0281±0.0029 
(10-1,10-3) 

0.8441 

0.0279±0.0047 
(10-5,10-3) 

0.0750 

0.0279±0.0047 
(10-5,10-3) 

0.1503 

0.0279±0.0047 
(10-4,10-3) 

0.2779 

RedHat  
(750 Χ 5) 

0.0254±0.0052 
(100,10-3) 

1.5655 

0.0255±0.0047 
(10-1,10-1) 

0.8445 

0.0255±0.0047 
(10-1,10-3) 

0.8315 

0.0254±0.0050 
(10-5,10-3) 

0.0716 

0.0254±0.0050 
(10-5,10-3) 

0.1503 

0.0254±0.0050 
(10-4,10-3) 

0.2800 
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Table 5.4: Average ranks of SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and GLTWSVR with linear kernel. 

Dataset SVR TSVR TWSVR FLTWSVR NLTWSVR GLTWSVR 

Hydraulic  actuator 6 4 5 2.5 1 2.5 

Gas furnace 6 5 4 1.5 1.5 3 

Pyrim 1 6 5 2 3.5 3.5 

Servo 6 3.5 1 3.5 3.5 3.5 

Triazines 6 1 5 3 3 3 

Wisconsin B.C. 1 2.5 2.5 5 5 5 

Boston 6 4.5 4.5 1.5 3 1.5 

Forest fires 6 1 2 3.5 3.5 5 

ConcreteCS 3 6 5 1 3 3 

Wine quality red 6 5 4 3 2 1 

Concrete Slump 6 3 5 1.5 4 1.5 

Auto price 4 5.5 5.5 1 3 2 

Flexible robotic  arm  6 5 2.5 2.5 2.5 2.5 

Pollution 1 5 6 2 4 3 

NO2  6 4.5 4.5 3 1.5 1.5 

Bodyfat 6 1 2 4 4 4 

Balloon 6 4.5 4.5 2 2 2 

Quake 6 3 3 3 3 3 

Motorcycle 6 5 4 3 1.5 1.5 

Demo 6 3 3 3 3 3 

Sunspots 6 5 3.5 3.5 1.5 1.5 

IBM 6 4.5 4.5 2 2 2 

Snp500 2.5 5.5 5.5 2.5 2.5 2.5 

Citigroup 3.5 3.5 3.5 3.5 3.5 3.5 

Intel 6 3 3 3 3 3 

Microsoft 2.5 5.5 5.5 2.5 2.5 2.5 

RedHat 2.5 5.5 5.5 2.5 2.5 2.5 

Average Rank 4.7777 4.0925 4.0370 2.6296 2.7777 2.6851 
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5.3.2 Numerical experiment using nonlinear regressors 

 In this sub-section, all the experiments are performed using the Gaussian kernel.  

Again to evaluate the performance of the LTWSVR algorithms (FLTWSVR, NLTWSVR, 

GLTWSVR) in comparison to SVR, TSVR and TWSVR; learning time, average RMSE  

and standard deviation are computed for each dataset and summarized in Table 5.5 along 

with optimal parameter value. For nonlinear case, one can observe from Table 5.5 that 

LTWSVR algorithms also spend least CPU time in comparison with other methods and 

has better generalization performance for most of the cases. 

 To analyze the performance of all the six algorithms over multiple datasets, we   

used Friedman test with post hoc test (Demsar, 2006) as we have done for the linear case. 

For this, we computed average ranks on RMSE values and are listed in Table 5.6. Under 

the null hypothesis that all the algorithms are identical, Friedman statistics can be 

computed as follows: 

9.8407
4
76)2222.31481.38512.29259.31666.46851.3(

76
2712 2

2222222










 





F  

2.0442
9.8407-527

9.840726





FF  

where FF  is distributed according to F distribution with )130,5(  degrees of freedom. 

The critical value of )130,5(F  is 2.2839 for the level of significance .05.0  Since FF  

is smaller than critical value ),2839.20442.2(   so there is no significant error between the 

algorithms. 

 Finally, numerical experiments performed for both linear and nonlinear cases 

validate that LTWSVR algorithms outperform the other three methods. 
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Figure 5.5: Result of comparison on Gas furnace dataset. Gaussian kernel was employed 

 

Figure 5.6: Prediction Error over the whole dataset by SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and 
GLTWSVR for the gas furnace dataset of Box-Jenkins. Gaussian kernel was employed.  
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Table 5.5:  Performance comparison of our proposed methods: FLTWSVR, NLTWSVR and GLTWSVR with SVR, TSVR and 
TWSVR. RMSE was used for comparison. Gaussian kernel was employed. Bold type shows the best result. 

Dataset 
(Train Size, Test Size) 

SVR 
 (C,μ,ɛ) 
Time 

TSVR 
 (C1=C2, μ, ɛ1= ɛ2) 

Time 

TWSVR 
 (C1=C2, μ, ɛ1= ɛ2) 

Time 

FLTWSVR 
 (C1=C2, μ, ɛ1= ɛ2) 

Time 

NLTWSVR 
 (C1=C2, μ, ɛ1= ɛ2) 

Time 

GLTWSVR 
 (C1=C2, μ, ɛ1= ɛ2) 

Time 

Hydraulic  actuator 
(1021 Χ 5) 

0.0127±0.0041 
(102,21,10-3) 

5.7962 

0.0125±0.0026 
(10-2,22,10-1) 

2.3039 

0.0126±0.0022 
(10-2,22,10-3) 

2.3074 

0.0123±0.0034 
(100,22,10-3) 

0.7374 

0.0121±0.0033 
(100,22,10-3) 

1.7106 

0.0123±0.0034 
(100,22,10-3) 

1.7332 

Gas furnace 
(293 Χ 6) 

0.0168±0.0042 
(103,2-5,10-2) 

0.1807 

0.0192±0.0055 
(10-1,2-1,10-1) 

0.1134 

0.0192±0.0055 
(10-1,2-1,10-3) 

0.1118 

0.0184±0.0033 
(105,2-2,10-3) 

0.0284 

0.0198±0.0058 
(100,2-1,10-3) 

0.0628 

0.0195±0.0050 
(100,2-1,10-3) 

0.0654 

Pyrim 
(74 Χ 26) 

0.0788±0.0534 
(100,2-3,10-2) 

0.0092 

0.0779±0.0579 
(10-5,2-2,10-3) 

0.0116 

0.0779±0.0579 
(101,2-2,10-1) 

0.0116 

0.0777±0.0511 
(100,2-2,10-2) 

0.0016 

0.0777±0.0511 
(100,2-2,10-2) 

0.0025 

0.0777±0.0511 
(100,2-2,10-2) 

0.0022 

Servo 
(167 Χ 4) 

0.0767±0.0530 
(102,2-1,10-3) 

0.0436 

0.0797±0.0417 
(103,20,10-3) 

0.0530 

0.0797±0.0417 
(105,20,10-3) 

0.0566 

0.0797±0.0271 
(104,2-1,10-3) 

0.0069 

0.0787±0.0378 
(104,20,10-3) 

0.0710 

0.0787±0.0378 
(104,20,10-3) 

0.1684 

Triazines 
(186 Χ 58) 

0.1685±0.0414 
(100,2-3,10-1) 

0.0539 

0.1678±0.0292 
(10-5,2-4,10-2) 

0.0420 

0.1678±0.0296 
(100,2-4,10-1) 

0.0421 

0.1679±0.0324 
(101,2-4,10-1) 

0.0091 

0.1679±0.0324 
(101,2-4,10-1) 

0.0170 

0.1679±0.0324 
(101,2-4,10-1) 

0.0172 

Wisconsin B.C. 
(194 Χ 34) 

0.1787±0.0563 
(100,2-4,10-1) 

0.0636 

0.1797±0.0546 
(10-1,2-5,10-3) 

0.0434 

0.1797±0.0546 
(10-1,2-5,10-3) 

0.0432 

0.1778±0.0551 
(10-5,2-5,10-3) 

0.0126 

0.1778±0.0551 
(10-5,2-5,10-3) 

0.0133 

0.1778±0.0551 
(10-5,2-5,10-3) 

0.0126 

Boston 
(506 Χ 13) 

0.0780±0.0257 
(102,2-5,10-2) 

0.7969 

0.0769±0.0168 
(10-1,2-3,10-3) 

0.3755 

0.0769±0.0168 
(10-1,2-3,10-3) 

0.3719 

0.0768±0.0201 
(100,2-3,10-3) 

0.1082 

0.0768±0.0201 
(100,2-3,10-3) 

0.2489 

0.0769±0.0154 
(100,2-3,10-3) 

0.2517 

Forest fires 
(517 Χ 12) 

0.0377±0.0479 
(10-5,2-5,10-3) 

0.8668 

0.0375±0.0470 
(10-1,2-5,10-1) 

0.4619 

0.0376±0.0469 
(10-1,2-5,10-3) 

0.4526 

0.0391±0.0463 
(10-5,2-5,10-3) 

0.1111 

0.0399±0.0455 
(10-5,2-5,10-3) 

0.1525 

0.0391±0.0463 
(10-5,2-5,10-3) 

0.1571 

ConcreteCS 
(1030 Χ 8) 

0.0792±0.0056 
(101,2-1,10-2) 

5.5429 

0.0869±0.0068 
(10-1,2-1,10-1) 

2.2415 

0.0868±0.0077 
(10-1,2-1,10-3) 

2.2340 

0.0788±0.0065 
(104,2-1,10-1) 

0.7944 

0.0865±0.0068 
(100,2-1,10-3) 

1.7631 

0.0865±0.0068 
(100,2-1,10-3) 

1.8199 

Wine quality red 
(1599 Χ 11) 

0.1278±0.0064 
(100,20,10-2) 

17.966 

0.1277±0.0083 
(10-1,2-3,10-3) 

6.9404 

0.1276±0.0071 
(10-1,2-3,10-3) 

6.8864 

0.1275±0.0080 
(10-5,2-3,10-3) 

2.5226 

0.1274±0.0100 
(10-5,2-3,10-3) 

3.9555 

0.1273±0.0082 
(10-5,2-3,10-3) 

4.1435 

Concrete Slump 
(103 Χ 10) 

0.0232±0.0133 
(103,2-5,10-3) 

0.0174 

0.0366±0.0134 
(103,2-1,10-3) 

0.0220 

0.0367±0.0134 
(103,2-1,10-3) 

0.0268 

0.0224±0.0065 
(105,2-3,10-3) 

0.0023 

0.0357±0.0158 
(105,2-1,10-3) 

0.0077 

0.0357±0.0158 
(105,2-1,10-3) 

0.0081 

Auto price 
(159 Χ 15) 

0.0817±0.0277 
(101,2-4,10-2) 

0.0417 

0.0844±0.0241 
(102,2-5,10-1) 

0.0373 

0.0844±0.0241 
(101,2-5,10-3) 

0.0428 

0.0804±0.0189 
(102,2-5,10-3) 

0.0057 

0.0843±0.0261 
(105,2-5,10-3) 

0.0431 

0.0843±0.0261 
(105,2-5,10-3) 

0.0427 

Flexible robotic arm 
(1019 Χ 9) 

0.0143±0.0006 
(105,2-5,10-2) 

6.1946 

0.0248±0.0028 
(103,20,10-3) 

3.3086 

0.0249±0.0028 
(104,20,10-3) 

3.2703 

0.0152±0.0010 
(105,2-1,10-3) 

0.7808 

0.0246±0.0034 
(105,2-2,10-2) 

5.2768 

0.0241±0.0034 
(105,2-2,10-2) 

5.4293 
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Pollution 
(60 Χ 15) 

0.1085±0.0461 
(100,2-3,10-2) 

0.0085 

0.1113±0.0405 
(10-2,2-5,10-1) 

0.0316 

0.1111±0.0365 
(10-1,2-5,10-1) 

0.0102 

0.1113±0.0423 
(10-5,2-5,10-3) 

0.0007 

0.1113±0.0423 
(10-5,2-5,10-3) 

0.0008 

0.1113±0.0423 
(10-5,2-5,10-3) 

0.0008 

NO2 
(500 Χ 7) 

0.0979±0.0124 
(100,20,10-2) 

0.6977 

0.0972±0.0123 
(10-2,2-1,10-1) 

0.3521 

0.0972±0.0123 
(10-2,2-1,10-3) 

0.3294 

0.0972±0.0123 
(10-5,2-1,10-3) 

0.1039 

0.0972±0.0123 
(10-5,2-1,10-3) 

0.1716 

0.0972±0.0123 
(10-5,2-1,10-3) 

0.1713 

Bodyfat 
(252 Χ 14) 

0.0151±0.0228 
(102,2-5,10-3) 

0.1246 

0.0180±0.0215 
(10-1,2-4,10-1) 

0.0844 

0.0182±0.0215 
(10-1,2-4,10-3) 

0.0823 

0.0204±0.0203 
(10-5,2-4,10-3) 

0.0154 

0.0204±0.0203 
(10-5,2-4,10-3) 

0.0182 

0.0208±0.0204 
(10-5,2-4,10-3) 

0.0178 

Balloon 
(2001 Χ 1) 

0.0449±0.0025 
(100,20,10-1) 

33.170 

0.0452±0.0020 
(100,2-2,10-1) 

20.365 

0.0452±0.0020 
(100,2-2,10-3) 

20.224 

0.0448±0.0040 
(103,2-3,10-3) 

5.0500 

0.0448±0.0040 
(102,2-2,10-3) 

15.652 

0.0448±0.0040 
(102,2-2,10-3) 

16.023 

Quake 
(2178 Χ 3) 

0.1751±0.0161 
(104,2-1,10-1) 

55.230 

0.1718±0.0096 
(10-5,2-5,10-1) 

16.964 

0.1718±0.0097 
(10-2,2-5,10-3) 

15.641 

0.1718±0.0096 
(10-1,2-5,10-3) 

6.1877 

0.1718±0.0096 
(10-1,2-5,10-3) 

12.030 

0.1718±0.0096 
(10-1,2-5,10-3) 

12.441 

Motorcycle 
(133 Χ 1) 

0.1143±0.0246 
(102,25,10-3) 

0.0254 

0.1104±0.0224 
(100,25,10-1) 

0.0249 

0.1096±0.0222 
(100,25,10-2) 

0.0313 

0.1095±0.0217 
(101,25,10-3) 

0.0042 

0.1092±0.0189 
(101,25,10-3) 

0.0097 

0.1092±0.0189 
(101,25,10-3) 

0.0100 

Demo 
(2048 Χ 4) 

0.0885±0.0108 
(100,24,10-2) 

42.370 

0.0873±0.0110 
(10-2,21,10-1) 

13.610 

0.0873±0.0110 
(10-2,21,10-2) 

13.846 

0.0873±0.0082 
(10-1,21,10-3) 

5.2906 

0.0873±0.0082 
(10-1,21,10-3) 

10.403 

0.0873±0.0082 
(10-1,21,10-3) 

10.719 

Sunspots  
(290 Χ 5) 

0.0727±0.0100 
(101,2-1,10-2) 

0.1722 

0.0715±0.0124 
(10-1,20,10-1) 

0.1037 

0.0710±0.0076 
(10-2,21,10-2) 

0.0998 

0.0708±0.0090 
(101,21,10-1) 

0.0300 

0.0707±0.0104 
(101,21,10-1) 

0.0526 

0.0707±0.0104 
(101,21,10-1) 

0.0568 

IBM 
(750 Χ 5) 

0.0272±0.0025 
(102,2-5,10-2) 

2.2962 

0.0270±0.0023 
(10-1,2-2,10-1) 

1.0976 

0.0270±0.0023 
(10-1,2-2,10-3) 

1.0781 

0.0269±0.0038 
(10-1,2-2,10-3) 

0.3064 

0.0267±0.0038 
(10-1 ,2-2,10-3) 

0.6273 

0.0267±0.0038 
(10-1,2-2,10-3) 

0.6545 

SNP500 
(750 Χ 5) 

0.0220±0.0033 
(101,2-5,10-3) 

2.3142 

0.0231±0.0052 
(100,2-5,10-1) 

1.3837 

0.0221±0.0049 
(100,2-1,10-2) 

1.2905 

0.0224±0.0051 
(105,2-5,10-3) 

0.3321 

0.0229±0.0052 
(101,2-5,10-3) 

0.8775 

0.0229±0.0052 
(101,2-5,10-3) 

0.9510 

Citigroup 
(750 Χ 5) 

0.0147±0.0024 
(101,2-2,10-3) 

2.2938 

0.0149±0.0029 
(100,2-2,10-3) 

1.2793 

0.0149±0.0026 
(10-1,2-2,10-3) 

1.1395 

0.0149±0.0028 
(104,2-4,10-3) 

0.3368 

0.0149±0.0026 
(101,2-2,10-3) 

0.9140 

0.0149±0.0026 
(101,2-2,10-3) 

0.9269 

Intel 
(750 Χ 5) 

0.0292±0.0044 
(103,2-5,10-3) 

2.3469 

0.0290±0.0042 
(10-2,2-1,10-1) 

0.9380 

0.0290±0.0042 
(10-2,2-1,10-3) 

0.9223 

0.0290±0.0042 
(10-1,2-1,10-3) 

0.3077 

0.0290±0.0042 
(10-1,2-1,10-3) 

0.6279 

0.0290±0.0042 
(10-1,2-1,10-3) 

0.6471 

Microsoft 
(750 Χ 5) 

0.0277±0.0056 
(102,2-5,10-3) 

2.2596 

0.0283±0.0059 
(100,2-5,10-3) 

1.3622 

0.0283±0.0059 
(100,2-5,10-3) 

1.3571 

0.0284±0.0060 
(102,2-5,10-3) 

0.3321 

0.0285±0.0059 
(101,2-5,10-3) 

0.8755 

0.0286±0.0052 
(101,2-5,10-3) 

0.9003 

 RedHat 
(750 Χ 5) 

0.0256±0.0070 
(101,2-1,10-3) 

2.3019 

0.0259±0.0075 
(10-1,2-5,10-1) 

1.0486 

0.0258±0.0052 
(10-1,2-5,10-3) 

1.0335 

0.0256±0.0078 
(100,2-4,10-3) 

0.3116 

0.0256±0.0078 
(100,2-4,10-3) 

0.7525 

0.0256±0.0078 
(100,2-4,10-3) 

0.7725 
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Table 5.6: Average ranks of SVR, TSVR, TWSVR, FLTWSVR, NLTWSVR and GLTWSVR with Gaussian kernel. 

Dataset SVR TSVR TWSVR FLTWSVR NLTWSVR GLTWSVR 

Hydraulic  actuator  6 4 5 2.5 1 2.5 

Gas furnace  1 3.5 3.5 2 6 5 

Pyrim  6 4.5 4.5 2 2 2 

Servo  1 5 5 5 2.5 2.5 

Triazines  6 1.5 1.5 4 4 4 

Wisconsin B.C.  4 5.5 5.5 2 2 2 

Boston  6 4 4 1.5 1.5 4 

Forest fires  3 1 2 4.5 6 4.5 

ConcreteCS  2 6 5 1 3.5 3.5 

Wine quality red  6 5 4 3 2 1 

Concrete Slump  2 5 6 1 3.5 3.5 

Auto price  2 5.5 5.5 1 3.5 3.5 

Flexible robotic  arm   1 5 6 2 4 3 

Pollution  1 4.5 2 4.5 4.5 4.5 

NO2  6 3 3 3 3 3 

Bodyfat  1 2 3 4.5 4.5 6 

Balloon  4 5.5 5.5 2 2 2 

Quake  6 3 3 3 3 3 

Motorcycle  6 5 4 3 1.5 1.5 

Demo  6 3 3 3 3 3 

Sunspots  6 5 4 3 1.5 1.5 

IBM  6 4.5 4.5 3 1.5 1.5 

SNP500  1 6 2 3 4.5 4.5 

Citigroup  1 4 4 4 4 4 

Intel  6 3 3 3 3 3 

Microsoft  1 2.5 2.5 4 5 6 

Redhat  2.5 6 5 2.5 2.5 2.5 

Average Rank 3.6851 4.1666 3.9259 2.8518 3.1481 3.2222 
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Chapter 6 
 
Conclusion and Future Research 
 

6.1 Conclusion 

 A new iterative Lagrangian twin support vector regression based on twin support 

vector machine (LTWSVR) for the twin support vector machine based regression 

(TWSVR) is proposed. This leads to the minimization problem having strongly convex 

objective functions with non-negativity constraints. LTWSVR requires at the outset the 

inverse of a matrix but this can be expressed as matrix subtraction of identity matrix by a 

scalar multiple of the inverse of a positive semi-definite matrix. Further it is proposed to 

solve this problem by simple iterative methods: functional iterative method (FLTWSVR), 

Newton method (NLTWSVR) and Generalized derivative approach (GLTWSVR). Our 

formulation has the advantage that it does not need any optimization tools of linear or 

quadratic programming solvers. Numerical experiments were performed on a number of 

interesting synthetic and real-world benchmark datasets. The results obtained show similar 

or better generalization performance with smaller computation time in comparison with 

SVR, TSVR and TWSVR.  

6.2 Future Research 

 Future work will include the study of implicit Lagrangian formulation 

(Mangasarian and Solodov, 1993) for the dual TWSVR problem and its applications. 

There is also a room for study of smoothing approach for solving Lagrangian TWSVR. 
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