

CONTEXT BASED

CASSANDRA QUERY LANGUAGE

Dissertation submitted to Jawaharlal Nehru University

in partial fulfillment of the requirements

for the award of the degree of

Master of Technology
In

Computer Science & Technology

Submitted

By

Shivendra Kumar Pandey

Under the Supervision

of

Prof. Parimala N.

School of Computer and Systems Sciences

Jawaharlal Nehru University

New Delhi -110067, India

July-2015

Page | iii

Declaration

I hereby declare that the dissertation work entitled “Context Based Cassandra Query

Language” in partial fulfillment of the requirements for the award of degree of “Master of

Technology” in “Computer Science & Technology” and submitted to the School of

Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi-110067, India is the

authentic record of my own work carried out during the time of Master of Technology under

the supervision of Prof. Parimala N.. This dissertation comprises only my own work. This

dissertation is less than 14,000 words in length, exclusive tables, figures and references. The

matter personified in the dissertation has not been submitted for the award of any other degree

or diploma.

 Shivendra Kumar Pandey

 M.Tech (2013-2015)

 School of Computer and Systems Sciences

 Jawaharlal Nehru University

 New Delhi-110067

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-110067

INDIA

Page | iv

Dedicated to

 My Loving Family, Friends and Teachers…

Page | v

Acknowledgements

I would like to gratefully acknowledge the enthusiastic supervision of Prof. Parimala N.

during this work. This work wouldn`t have been possible without her constant support,

valuable suggestions and comments during my whole tenure of this dissertation work. I must

surely say, she has given her best in providing me the infrastructure required, which led to the

successful completion of my dissertation. I would take this opportunity to thank her once again

for her esteemed support.

I would like to thank Council of Scientific and Industrial Research (CSIR) department for

providing me research fellowship.

I wish to thank my colleague Mr. Sudhakar and my seniors Mr. Ranjeet K. Ranjan, Mr.

Hariom Sinha, Mrs. Rancha, Mr. Gaurav Kumar for creating a homelike environment in

our lab to keep the stress away and special thanks to Mr. Amit Singh for his constant support

and suggestions. I would like to thank all my friends, for their valuable suggestions and

support. They have a special place in my heart.

My parents deserve special mention for their inseparable support and prayers. My Father, Mr.

Vijay Kumar Pandey, in the first place is the person who put the fundaments of my learning

character, showing me the joy of intellectual pursuit ever since I was a child. My Mother, Mrs.

Rekha Devi, is the one who sincerely raised me with her caring and gently love. I am also

grateful to my uncle Mr. Ashok Kumar Pandey, for his love, affection and encouragement.

Finally, I would like to thank the whole faculty members of our department for clarifying my

doubts throughout this work. Last but not least, thanks are due to the JNU administration for

creating such a secular and healthy environment amongst the students.

 Shivendra Kumar Pandey

Page | vi

Abstract

With the advancement of technology, the data generated by users are increasing exponentially.

The unstructured nature of data with the speed it is generated, demands a system that has very

high read/write throughput with failure tolerance property. This makes it difficult for

traditional database to manage such data.

A new type of non-relational database has come into existence and is known as NoSQL

database. NoSQL databases are distributed, non-relational databases designed for large-scale

data storage and for parallel data processing across a large number of commodity servers.

Cassandra is a NoSQL database that stores data in non-related tabular forms. Cassandra works

on “query at a time” and “query at a table” concept. In our daily life the queries of a user are

related to each other. If queries by a user are related, that is, the current query is related to the

previous query, then there is no support in Cassandra to state this. Cassandra runs each query

on the entire table because Cassandra has neither memory to remember the result of a previous

query, nor supports VIEW or JOIN on tables (or keyspace). Cassandra uses Big Table (of

Google) for data storage which has thousands of columns and millions of rows, so it is not

efficient to run the query on such a huge table, after knowing that the result of the previous

query is sufficient to answer our current query.

To solve such problems of Cassandra database, we implemented a new query language named

as “Context Based Cassandra Query Language”. CBCQL is internally mapped to CQL so it

has the same power as Cassandra, but provides additional functionality of querying on result of

previous query. In this dissertation, CBCQL is discussed in detail.

Page | vii

Table of Contents

Certificate ...Error! Bookmark not defined.i

Declaration ... iiii

Acknowledgements .. v

Abstract .. vii

Table of Contents ... viii

List of Figures ... ixx

List of Tables .. x

List of Abbreviations ... xii

1. Introduction ... 1

1.1 Cassandra .. 2

1.2 Cassandra Query Language ... 2

1.3 Motivation ... 2

1.4 Our Contribution ... 4

1.5 Dissertation Outline ... 5

2. Overview of Methodologies .. 6

2.1 NoSQL .. 6

2.1.1 Column-oriented database ... 8

2.1.2 Key-value stores ... 8

2.1.3 Document–oriented database ... 9

2.2 Cassandra Database ... 10

2.2.1 Comparing the Cassandra Data Model to the Relational Database 11

2.2.2 Column and Column Family in Cassandra Database ... 13

2.2.3 Super column and super column family ... 13

Page | viii

2.3 Cassandra Query Language ... 14

2.3.1 Data Types .. 14

2.4 Summary .. 15

3. Context Based Cassandra Query Language ... 16

3.1 Context .. 16

3.2 Querying in a Context ... 16

3.3 Context Based Cassandra Query Language (CBCQL) ... 17

3.3.1 Create Context .. 17

3.3.2 Add Table ... 18

3.3.3 Select .. 18

3.3.4 Save Context ... 19

3.3.5 Recall Context .. 19

3.3.6 Delete Context .. 19

3.4 State Diagram of CBCQL System .. 20

3.5 An Example of Querying in CBCQL .. 21

3.6 Mapping CBCQL to CQL ... 21

3.7 Architecture of CBCQL System ... 23

4. Experimental Setup and Results .. 25

4.1 Experimental Setup ... 25

4.2 Data Set for Experiment .. 26

4.3 Query Execution and Results .. 26

4.4 Summary ... 37

5. Conclusion & Future Work .. 38

References .. 39

Page | ix

List of Figures

Figure 2.1: Key problems-driving to NoSQL databases ... 7

Figure 2.2: Row and Column-oriented store of table .. 8

Figure 2.3: Key-value Store .. 9

Figure 2.4: Data in RDBMS table ... 12

Figure 2.5: Data in Cassandra table .. 12

Figure 2.6 Column and column family (Hewitt, 2010) .. 13

Figure 2.7: Super column and super column family (Hewitt, 2010) .. 14

Figure 3.1: State diagram of CBCQL system ... 20

Figure 3.2: Architecture of CBCQL ... 23

Figure 4.1: Output of “Create Context” query .. 27

Figure 4.2: Output of “add table” query .. 28

Figure 4.3: Output of query ... 29

Figure 4.4: Output of query. .. 30

Figure 4.5: Output of query ... 31

Figure 4.6: Output of query ... 32

Figure 4.7: Output of query ... 33

Figure 4.8: Output of query ... 34

Figure 4.9: Output of “Recall Context” query .. 35

Figure 4.10: Output of “Delete Context” query .. 36

Page | x

List of Tables

Table 2.1: RDBMS vs. CASSANDRA ... 11

Table 3.1: Mapping of CBCQL to CQL ... 22

Table 4.1: Experimental setup ... 25

Page | xi

List of Abbreviations

NoSQL Not only SQL.

SQL Structured Query Language

CQL Cassandra Query Language

CBCQL Context Based Cassandra Query Language

DBMS Database Management System

RDBMS Relational Database Management System

ACID Atomicity, Consistency , Isolation, Durability

BASE Basically Available, Soft State , Eventually Consistent

API Application Programming Interface

CPU Central Processing Unit

XML Extensible Markup Language

UML Unified Modeling Language

DDL Data Definition Language

DML Data Manipulation Language

Page | 1

Chapter 1

Introduction

The population of the world in 2014 was 7.2 Billion and out of them the internet users are 2.8

Billion, which is nearly 40 percent of the total population of the world and the number is

increasing day by day (Mohamed, Altrafi & Ismail, 2014). With the development of

technology and internet users, there is a need for a system that can manage data efficiently and

provide high performance (Gajendran, 2012). Relational databases are facing many challenges,

especially in scaling, concurrency and in providing write throughput (Zhang, 2013). To solve

these problems, a new type of non-relational database management system was developed.

This system is known as NoSQL.

NoSQL databases are highly scalable, non-relational databases and provide high read/write

throughput. They support Big Data and can run on a cheap commodity server. Big Data is a

heterogeneous mixture of structured and unstructured data (Duggal & Paul 2013). NoSQL is

an abbreviation of “Not only SQL” (Cattell, 2011; Moniruzzaman et al., 2013). They support

more than SQL. These databases are very popular in companies for their cost, performance,

and scalability.

NoSQL databases use many methods to store and retrieve data and, therefore, have as many

types of databases as per methods used for data access. In our world, we see data as a large

heterogeneous collection of structured and unstructured data (Agrawal et al., 2008). The main

idea behind NoSQL databases is that they can store and retrieve structured (any relational

database that has some schema), semi structured (XML or CSV file) and unstructured data

(pdf, doc, email) efficiently (Nance et al., 2013). They support distributed data storage and

distributed computing and therefore, do not have a single point of failure (Zaki et al., 2014).

In our work, among the NOSQL databases, we consider Cassandra.

 Introduction

Page | 2

1.1 Cassandra

Cassandra is a distributed, column oriented, NoSQL database with high scalability, high

availability and provides high performance with no single point of failure. Cassandra is the

best choice for the companies that need reliability, high availability and very fast performance.

Cassandra has very write throughput and good read throughput with flexible schema .

Cassandra uses BigTable‟s data model of Google for data storage and the data distribution

concept of Amazon Dynamo (Wang & Tang, 2012). Cassandra Query Language is used to

access Cassandra database.

1.2 Cassandra Query Language

Cassandra query language is the language for communicating with Cassandra database. We

interact with Cassandra database with the help of CQL shell, known as cqlsh. cqlsh can be

invoked from the command line of Windows or Linux. We can execute CQL command

through cqlsh utility. Cassandra uses BigTable for data storage. The syntax of CQL and SQL

are very similar, so understanding and working is easy for a developer with SQL background.

The significant difference between CQL and SQL is that CQL does not support JOIN

operations and sub queries.

1.3 Motivation

CQL is essentially 'query-at-a-time' language. That is, each query is executed, the result is

given to the user and has no bearing on the next query. We believe, that users tend to ask a

series of related queries which is dictated by a thought process. Consider an example. Suppose

a user wants to buy a flat or home and he wants to select the best suitable one. He/she will

execute a CQL query for finding the flats. A typical table in Cassandra has thousands of

columns and millions of rows. As a consequence, the result will also contain millions of rows.

In such a situation, it will be very difficult for the customer to select a flat or a home as per his

need in such a huge table. Since Cassandra does not have memory to remember the result of

the previous query, so every time user has to query the whole table. It will be very difficult for

him to understand the table and query for the most suitable flat. Suppose he queries for a best

 Introduction

Page | 3

suitable and economical flat, by putting conditions on one or many attributes that he can think

of at the moment. Even now, what if he gets a few hundreds of rows with a few columns? It is

definitely better than millions or billions of rows with thousands of columns as it was in

database table, but still very difficult to get the information for the best flat. Even if the user is

sure that the best suitable flat is in the result set, he cannot further query on it. Next time again,

he has to query the entire table and there is no guarantee that he will get only a few rows in

which he can decide easily.

To explain the above example we have taken a dataset from (Sacramento_Homes_for_Sale,

2014) and did some modifications as per our need. The dataset contains fifteen columns. The

dataset is described in section 4.2 in detail.

Suppose a customer wants to buy a home. The sequence of his queries are:

Query1: Select price , baths , beds , city , area , parking_lot , placeid , rpayment

 , sq__ft , type ;

Query2: Select * WHERE type = „Residential „ ;

Query3: Select price , baths , beds , city , area , parking_lot , placeid , rpayment

 , sq__ft WHERE type = „Residential „ and beds = 3 ;

Query4: Select price , baths , beds , city , area , parking_lot , placeid , rpayment

 , sq__ft WHERE type = „Residential „ and beds = 3 and baths > 1 ;

Query5: Select city ,price , area , parking_lot , placeid , sq__ft WHERE type =

 „Residential „ and beds = 3 and baths > 1 and parking_lot='yes' ;

 Introduction

Page | 4

Query6: city ,price , area , parking_lot , placeid , sq__ft WHERE type =

 „Residential „ and beds = 3 and baths > 1 and parking_lot='yes' and

 city='SACRAMENTO' ;

Query7: Select area , price , placeid , sq__ft WHERE type = „Residential „ and

 beds = 3 and baths > 1 and parking_lot='yes' and city='SACRAMENTO'

 and area= 'open';

Query8: Select area , price , placeid , sq__ft WHERE type = „Residential „ and

 beds = 3 and baths > 1 and parking_lot='yes' and city='SACRAMENTO' and

 area= 'open' and price < 10000 ;

The above sequence of queries reflects the thought process of the user. In the first query user

selects the columns that are important to him. In subsequent queries, he specifies some

conditions to get the best suitable deal. It is clear from the queries that there is no need to

search the entire database every time; we have to just reduce the number of rows by putting

conditions on columns. But Cassandra does not support this functionality.

1.4 Our Contribution

 To handle such problems we propose a query language, known as Context Based Cassandra

Query Language “CBCQL”. CBCQL is implemented over and above CQL. As a result, it

supports CQL queries. In CBCQL a new concept, known as “Context” is introduced. Context

is used to remember the result of the previous query and provides the facility of querying on

the result of the previous query.

In CBCQL a query is similar to a CQL query, but the FROM clause is not present. The data to

be picked up is available in the context and thus, the FROM clause is done away with. Every

query is executed in the current context. It, in turn, updates the context which forms the

 Introduction

Page | 5

context for the subsequent query. In addition, constructs to save and restore context are also

defined. This additional functionality, allows the user to go back in the sequence of queries

and follow a different path for querying. CBCQL is explained in chapter 3 in detail.

The contributions of this dissertation are:

 Definition of a Context.

 Definition of CBCQL for Context based querying.

 Facility to save and recall the context.

 A GUI facility for specifying the queries.

1.5 Dissertation Outline

The layout of the dissertation is as follows:

Chapter 2, Overview of methodologies: This chapter includes a survey on different methods

and technology.

Chapter 3, Context Based Cassandra Query Language: In this chapter, the language

CBCQL, proposed by us, is explained. A comparison with CQL is also given. It is compared

to CQL and is discussed in detail.

 Chapter 4, Experimental Setup and Results: Our experiment and its results are shown

in this chapter.

Chapter 5, Conclusion. This chapter deals with a conclusion and future work.

Page | 6

Chapter 2

Overview of Methodologies

In this chapter an overview of the methodologies that are used in this dissertation is given.

First, an overview of NoSQL databases is given. Cassandra, the NoSQL database used here is

explained in more detail. The query language of Cassandra, CQL, which forms the basis of

Context Based CQL is considered next.

2.1 NoSQL

Most of the companies were facing two major issues: low latency access to high volume data

and continuous service availability in the unreliable environment (Duggal & Paul, 2013). So

they developed a system that has very high read/write throughput and can work properly even

some part of the system fails. This system is known as NoSQL database management system.

NoSQL is not a database. This term is used to differentiate non-relational databases from

relational databases. In NoSQL databases, data is stored in other than relational tables. Most of

NoSQL databases have very high read/write throughput and have no single point of failure

(Truong et al., 2009). NoSQL databases are compatible with structured, semi structured and

even unstructured data (Moniruzzaman et al., 2013; Cattell, 2011).

The NoSQL databases have many advantages over a relational database. The figure below

shows why people are going towards NoSQL database from relational databases:

 Overview of Methodologies

Page | 7

 Figure 2.1: Key problems-driving to NoSQL databases (source: Moniruzzaman et al., 2013)

As we know, RDBMS follows ACID properties, NoSQL follows BASE properties (Nance, C.

et al., 2013), and they are:

Basically Available: Uses replication to make more data available and uses sharding or

partitioning of the data among many different servers, so failures become partial. As a result,

we get a system that is always available even if some part of it fails (Strauch et al., 2011).

Soft state: Consistency is a hard requirement in relational databases. But NoSQL systems

allow data to be inconsistent for some period of time. Soft state means the state of the system

may change after some time even without any input. It happens because of eventual

consistency.

Eventually consistent: NoSQL databases does not guarantee the consistency as in a relational

database but they ensure that the system will be consistent at some future point in time.

 Overview of Methodologies

Page | 8

There are various categories of NoSQL databases on the basis of data storage methodologies.

NoSQL databases have been classified into three categories: Column-oriented database, Key-

value store and Document oriented database [(Strauch et al., 2011). We explain NoSQL

databases as per these three categories in brief next.

2.1.1 Column-oriented database

In column-oriented database, data is stored as sections of columns of data (Abadi et al., 2013),

rather than as rows of data. A column is essentially a table with a single field. A column can

store only one type of data. Data can be compressed in column-oriented store because of the

similarities of adjacent records so in a column oriented stores data can be stored in less space

(Abadi et al., 2006). A column family is the collection of these columns.

Fig 2.1 explains the difference between row-oriented store and column-oriented store of data.

Figure 2.2: Row and Column-oriented store of table

Example of column-oriented databases are HBase, Cassandra, Accumulo, Amazon SimpleDB.

2.1.2 Key-value stores

These databases allow us to store key/value pairs in the database and subsequently read these

values using the keys.

While storing or reading values by key, the system works extremely efficiently. So this

method provides the efficient performance and low cost of implementation and scaling.

http://hbase.apache.org/
http://cassandra.apache.org/
http://accumulo.apache.org/
http://aws.amazon.com/simpledb/

 Overview of Methodologies

Page | 9

Disadvantages of the key-value store are that they do not ensure data integrity and there is no

way to query from the content of value (McCreary et al., 2013). Applications control the data

integrity in the key-value store.

The key-value store is illustrated in Fig 2.2.

Figure 2.3: Key-value Store

Example of key-value stores are Amazon DynamoDB, Riak, Redis, LevelDB.

2.1.3 Document–oriented database

Document-oriented stores are designed to store, search, and manage document-oriented

information.The document is similar to a row or a record in RDBMS but are more flexible

than RDBMS. To store data in document-oriented store we encapsulate and encrypt them in

several standard document formats like XML, JSON, BSON, PDF, etc. (Abramova &

Bernardino, 2013).

Suppose we want to store the given information in a document:

Shivendra Pandey,

135 periyar hostel,

Key Value

1 placeid: 135110

price: 59222

beds: 3

2 placeid: 135110

price:68212

beds: 2

3 placeid:135104

price: 179580

beds:4

http://aws.amazon.com/dynamodb/
http://docs.basho.com/riak/latest/
http://redis.io/
https://code.google.com/p/leveldb/

 Overview of Methodologies

Page | 10

Jnu ,

New Delhi.

The document will be in pseudo XML format as

<contact>

 <first_name> Shivendra </firstname>

 <last_name> Pandey </last_name>

 <room_no> 135 </room_no>

 <hostel> periyar hostel </hostel>

 <university> Jnu </university>

 <city> New Delhi </city>

</contact>

Examples of document-oriented databases are MongoDB, Couchbase, CouchDB, RethinkDB.

In this dissertation, column oriented Cassandra database forms the basis. Cassandra database is

explained next.

2.2 Cassandra Database

Cassandra is a distributed database management system with peer-to-peer architecture.

Cassandra provides very high scalability and availability (Hewitt, 2010). There is no concept

of master node in Cassandra so there is no single point of failure. To handle increasing I/O

traffic, no ELT process or data movement is required. Cassandra automatically partitions and

replicates the data when a node is added to the cluster. Because of data replication, Cassandra

can work perfectly at some hardware failure. Cassandra provides tunable consistency.

Cassandra comes under AP part of CAP theorem (According to CAP theorem, only two

properties can be realized at a time from Consistency, Availability and Partition-tolerant). In

Cassandra if we increase availability, the consistency will decrease and if we decrease

availability, the consistency will increase (Lakshman & Malik, 2010).

http://www.mongodb.org/
http://www.couchbase.com/
http://couchdb.apache.org/
http://www.rethinkdb.com/

 Overview of Methodologies

Page | 11

2.2.1 Comparing the Cassandra Data Model to the Relational Database

The Cassandra data model is designed for distributed data on a very large scale. In a relational

database, data is stored in tables, and the tables are typically related to each other. Data in a

relational database, is usually normalized to reduce redundant entries, and tables are joined on

common keys, satisfying a given query. But in Cassandra, tables (or column family) are

independent (Hewitt, 2010). A table of Cassandra may be stored on one or more than one node

and may have more than one copy. Cassandra is different from a relational database in many

ways, but they have some similarities too. Some similarities and differences in terms of data

storage are given below in tables.

Table 2.1: RDBMS vs. CASSANDRA

 RDBMS CASSANDRA

1 Database Keyspace

2 Table Column Family

3 Primary Key Row Key

4 Column Name Column Name/Key

5 Column Value Column Value

 Overview of Methodologies

Page | 12

Data in RDBMS:

Id Name City State

1 Ram Allahabad UP

2 Shyam Basti

3 Sohan Muzaffarnagar UP

4 Mohan

5 Gita Varanasi

6 Sita

Figure 2.4: Data in RDBMS table

Data in Cassandra Database:

Id:1 Name: Ram City: Allahabad State: UP

Id:2 Name: Shyam City: Basti

Id:3 Name: Sohan City: Muzaffarnagar State: UP

Id:4 Name: Mohan

Id:5 Name: Gita City: Varanasi

Id:6 Name: Sita

Figure 2.5: Data in Cassandra table

 Overview of Methodologies

Page | 13

2.2.2 Column and Column Family in Cassandra Database

A Cassandra column contains three things: a name, a value and a timestamp (Hewitt, 2010).

The value of a Cassandra column can be of a data type defined in Cassandra or may be sub

column. The collection of columns is called column family in Cassandra and is very much

similar to the Bigtable system (Lakshman & Malik, 2010). Column family is like a table of

RDBMS. A row in Cassandra contains millions of columns, with their name, value and

timestamp. A row key typically has automatically generated names (Universally Unique

Identifier “UUID” or timestamp) (Hewitt, 2010). Figure 2.6 explains column and column

family of Cassandra.

Figure 2.6 Column and column family (Hewitt, 2010)

2.2.3 Super column and super column family

If we store sub-columns instead of values in a column of Cassandra database, then such

columns are called super column. We cannot store super columns, in a column of Cassandra

database. The row key in a super column family is similar to the row key in the column family

(Hewitt, 2010; Lakshman & Malik, 2009).

 Overview of Methodologies

Page | 14

Figure 2.7: Super column and super column family (Hewitt, 2010)

2.3 Cassandra Query Language

Cassandra query language is the language we use for accessing Cassandra database. The

syntax of the Cassandra query language is very much similar to the syntax of CQL, but some

of them have different functionality. The version of CQL used in this work is v3.1.7 (as this

was the latest version when we started our work, even though a later version of CQL, v3.2.0,

has been subsequently released). We now, give an overview of CQL v3.1.7. CQL supports

queries for all the three types of commands: DDL, DML and queries. The syntax of these

types are given below.

DDL: CREATE KEYSPACE, USE, ALTER KEYSPACE, DROP KEYSPACE

CREATE TABLE, ALTER TABLE, DROP TABLE, TRUNCATE, CREATE INDEX,

DROP INDEX.

DML: INSERT, UPDATE, DELETE, BATCH.

Queries: SELECT.

2.3.1 Data Types

CQL supports a rich set of data type to define data of columns in a column family. Data types

of CQL can be categorized in three types:

https://cassandra.apache.org/doc/cql3/CQL.html#createKeyspaceStmt
https://cassandra.apache.org/doc/cql3/CQL.html#useStmt
https://cassandra.apache.org/doc/cql3/CQL.html#alterKeyspaceStmt
https://cassandra.apache.org/doc/cql3/CQL.html#createTableStmt
https://cassandra.apache.org/doc/cql3/CQL.html#alterTableStmt
https://cassandra.apache.org/doc/cql3/CQL.html#dropTableStmt
https://cassandra.apache.org/doc/cql3/CQL.html#truncateStmt
https://cassandra.apache.org/doc/cql3/CQL.html#dropIndexStmt
https://cassandra.apache.org/doc/cql3/CQL.html#insertStmt
https://cassandra.apache.org/doc/cql3/CQL.html#updateStmt
https://cassandra.apache.org/doc/cql3/CQL.html#deleteStmt
https://cassandra.apache.org/doc/cql3/CQL.html#batchStmt

 Overview of Methodologies

Page | 15

 Native type.

 Collection type.

 String (used for custom types).

Some important native types are:

 Ascii (ASCII character string), bigint (64 bit signed integer), blob (arbitrary type), Boolean

(true or false), decimal (variable precision decimal), double (64 bit IEEE-754 floating point),

float (32-bit IEEE-754 floating point), int (32-bit signed int), varchar (UTF8 encoded string),

timestamp (used for conflict free timestamp).

Collection types are:

List (list<native-type>), Set (set<native-type>) and map (map<native-type, native-type>)

String: String is used for custom data types.

2.4 Summary

A lot of work has been done in the field of non-relational database. The term NoSQL was first

used in 1998 for a relational database that omitted the use of SQL (Strauch et al., 2011). But

now a day, the term NoSQL is used to differentiate non-relational databases from relational

databases.

NoSQL databases are providing high performance, but they have a lot of security issues. Till

now we have three (or four by Tudorica (Tudorica, 2011)) main types of NoSQL databases

(Strauch et al., 2011; Moniruzzaman et al., 2013).

Most of the NoSQL databases are non-relational, query-at-a-time and query-at-a-table. So the

concept of context can be used to improve performance, and make them user friendly. The

notion of context as defined here has been proposed earlier. However, none of these uses

Context within the framework of CQL. In (Parimala et al., 1989) context is defined for a

network query language and in (Parimala, 2002) a component based query language includes

the definition of a context. Stream based query language incorporated context in (Parimala &

Bhawna, 2012).

Page | 16

Chapter 3

Context Based Cassandra Query Language

In this chapter, we explain Context Based Cassandra Query Language. Section 3.1 explains

Context. Section 3.2 explains Querying in a Context. Section 3.3 explains CBCQL and its

syntax. In section 3.4 the mapping of CBCQL to CQL is shown. Section 3.5 explains the

Querying in the context with with an example on Sacramento_Homes_for_Sale dataset

(Sacramento_Homes_for_Sale. (n.d.). Retrieved December 10, 2014). In the last section the

architecture of CBCQL is discussed.

 3.1 Context

A context consists of the table of interest and the data corresponding to it. Since Cassandra

does not support JOIN operations on tables, it is not desirable for us to have more than one

table in a context. Initially, the context is null. It contains no table or data. After creating a

context the first command of the user, is to add a table. The table and the data in the table, now

define the context for the first query.

3.2 Querying in a Context

We have proposed a query language CBCQL for querying in a context. Every query executes

in the context. After the query is executed, the context is updated with the result of the query

and this form the context for the subsequent query. This process goes on till the context is

deleted, or the session is over.

It is possible that a user thinks that he may need the context in the future. In this case, he can

save the context with a name and later recall it when he needs it.

 Context Based Cassandra Query Language

Page | 17

3.3 Context Based Cassandra Query Language (CBCQL)

Context based Cassandra query language provides the facility of querying in a context. In

CBCQL, a user writes a query in CBCQL language, in the textArea of GUI provided by

CBCQL system and gets the result in the table of the GUI. The user also gets time of execution

of the query and the number of rows in the result in the textarea of GUI. The state diagram of

CBCQL is given in the figure 3.1. The CBCQL queries are mapped to CQL queries internally

and run on Cassandra database. The result of the CBCQL query is mapped back to the table of

CBCQL GUI. The architecture of CBCQL system is shown in figure 3.2.

 There are six types of queries in CBCQL. To reduce the possibility of errors, we made the

syntaxes case insensitive (except the syntax “WHERE” used in select query).

 They are as follows:

 Create Context

 Add Table

 Select

 Save Context

 Recall Context

 Delete Context

In the syntax given below, the symbols “<” and “>” indicate that the user has to provide the

information.

3.3.1 Create Context

This is the first query. A context with a given context name will be created. Initially the

context is empty.

 Context Based Cassandra Query Language

Page | 18

The syntax is:

Create Context<context name>;

3.3.2 Add Table

Add Table<table_name>;

Add table will add a table in the context and will print the table using the GUI. Now user is

ready to query the table.

 3.3.3 Select

There are three cases in select statement:

 Select without WHERE:

Select<column_name1>,<column_name2>,<column_name3>……….;

 Select with the single condition in WHERE:

Select<column_name1>,<column_name2>…..WHERE <condition>;

 Select with multiple conditions in WHERE:

Select<column_name1>,<column_name2>…..WHERE <condition1> and

<condition2>…….;

 Context Based Cassandra Query Language

Page | 19

3.3.4 Save Context

In a context based query, if the user thinks that he may need the context in the future, he can

save it with the command „save context‟. It may be recalled that the context is continuously

updated. Thus, if the context in the intermediate sequence is deemed by the user as being

useful later, then the user can save the context and use it later. Notice that, in the absence of

this command, the sequence of queries which created this context have to be executed all over

again.

The syntax of saving context is:

Save Context as<context_name>;

3.3.5 Recall Context

When a user wants to query on a result, stored by save context command, he can recall it by

recall context command. The context will be updated by the context he recalled. The current

context which existed before the command is executed is lost.

The syntax is:

Recall Context<context_name>;

3.3.6 Delete Context

When a client realizes that a context has no more use, he can delete it by delete context

command.

The syntax is:

Delete context<context_name>;

 Context Based Cassandra Query Language

Page | 20

It is important to know that after deleting the current context, a client can query further only

after adding a new table or after recalling a saved context.

3.4 State Diagram of CBCQL System

The state diagram of CBCQL system is given below. When we create a context, it will go to

state p(0,0). Initially context is empty. When we add a table, it will go to state q(r1,c1), where

r1 is the number of rows in the table and c1 is the number of columns at state q. When we use

Select statement or Recall statement, it will go to state r(r2,c2). This is because, in both the

cases, the context is modified. If we delete our current context, the context will go to state

p(0,0) which has no records. Again, we have to add a table if we want to query further in a

context. The state diagram of CBCQL system is shown below.

Figure 3.1: State diagram of CBCQL system

q(r1,c1)

p(0,0)

 Context Based Cassandra Query Language

Page | 21

3.5 An Example of Querying in CBCQL

Let‟s see a sequence of queries, on a database for buying a home online in a context based

environment.

Query1: Select placeid , price , baths , beds , city, WHERE type=‟Residential‟ ;

Query2: Select placeid , price , baths , beds WHERE city=‟ SACRAMENTO‟ ;

Query3: Select placeid , price , baths WHERE beds=‟3‟ ;

Query4: Select placeid , price WHERE baths>2 ;

Query5: select placeid WHERE piece<10000 ;

In the above example, in query1 customer selects details of a home for residential type.

After the execution of query1, the context updates its table with the data of the result of

query1. In query2, we have no need to repeat the condition of query1 because our query will

run in the context, and all the records of context are already satisfying the condition of query1.

Same thing happens in query3, query4 and query5. We have no need to repeat the conditions

of previous queries as we have to do while executing query without context in Cassandra

database. It is clear from the example that in CBCQL, every time the query will run on a

subset of whole table of database and it is easy to use and understand the system.

So for such queries using CBCQL is best.

3.6 Mapping CBCQL to CQL

 When we execute a CBCQL query, it map to CQL query internally and then run on Cassandra

database. The result of query map back to the GUI of CBCQL. The mapping from CBCQL to

CQL is shown in the table below.

 Context Based Cassandra Query Language

Page | 22

Table 3.1: Mapping of CBCQL to CQL

1
 Two queries are invoked for Save Context query. The first is Create table and second is Insert into table.

S.No CBCQL Query CQL Query

1. Create Context<ccontext_name>; No mapping.

2. Add Table<table_name>; Select * from<Keyspace_name.ccontext_name>;

3. Select<column_name1>,<column

_name2>,<column_name3>….;

Select<column_name1>,<column_name2>……..

from <Keyspace_name.ccontext_name>;

4. Select<column_name1>,<column

_name2>...WHERE <condition>;

Select<column_name1>,<column_name2

>...from <Keyspace_name.ccontext_name>

WHERE <condition>;

5. Select<column_name1>,<column

_name2>…..WHERE<condition1

> and <condition2>…;

Select<column_name1>,<column_name2>……..

from <Keyspace_name.ccontext_name>

WHERE <condition1> and <condition2>…… ;

6. Save context as<scontext_name>; No direct mapping
1

7. Recall Context<scontext_name>; Select * from<keyspsce_name.scontext_name>;

8. Delete context <dcontext_name>; Drop table<keyspace_name.dcontext_name>;

 Context Based Cassandra Query Language

Page | 23

3.7 Architecture of CBCQL System

Figure 3.2: Architecture of CBCQL

The architecture of CBCQL system is shown in figure 3.2. The front end provides CBCQL

GUI for interaction. A user‟s query is expressed using the GUI. This query is passed to the

CBCQL system. Within the system, it is actually received by the CBCQL query engine.

CBCQL query engine stores some information on metadata store and accesses information

from metadata store and passes the CBCQL query with this information to query mapper.

CBCQL System

MetaData

Store

 Context Based Cassandra Query Language

Page | 24

Query mapper maps the CBCQL query to CQL query and passes to Cassandra database. There

may be one, more than one, or no CQL query for a single CBCQL query.

 The mapped CQL query runs on Cassandra database. The result of the query is passed to the

CBCQL engine through query mapper. The CBCQL query engine stores some information

from result to metadata store and sends the result to the GUI. Now the user will see the result

from GUI and query on it. The system is designed in such a way that the query of the user will

run only in its Context.

All these processes are hidden from the user. The user will only query through the GUI and

will see his result in the table of the GUI.

Page | 25

Chapter 4

Experimental Setup and Results

In this section, we will describe the system on which we did the experiment. Section 4.1

describes the experimental setup and in section 4.2, the overview of the dataset is given.

Section 4.3 contains queries and their results that we have executed and the last section 4.4 is a

summary of our experimental setup and results.

4.1 Experimental Setup

Table 4.1: Experimental setup

S.No Hardware/Software Model/Version

1. CPU Intel(R) Xeon(R) 2.27GHz.

2. RAM 16 GB DDR3.

3. Operating System Ubuntu 14.04 LTS 64 bit

4. Cassandra 2.1.5

5. cqlsh 5.0.1

6. Eclipse Luna 4.4.1

7. Java 1.7.0_79

 Experimental Setup and Results

Page | 26

4.2 Data Set for Experiment

 We have taken the dataset from (Sacramento_Homes_for_Sale. (n.d.). Retrieved December

10, 2014.) and did some modifications as per our need. In our dataset, there are fifteen

attributes, and one thousand five hundred three rows, for describing the homes for sale. These

attributes are price, baths, beds, city, area, other_services, parking_lot, placeID, Rpayment,

sq__ft, state, street, type, url, and zip. A user can find a desired home by putting conditions on

these attributes.

4.3 Query Execution and Results

We created a GUI by using Java Swing. In the first part of the GUI, there is a text area, for

writing query followed by a dynamic table that is created for showing the results of the

queries. Next, in the third part we have shown the query execution time and the messages. The

number of rows, we get from the execution of a query is printed in the textArea field of our

GUI. In the last part, there are three buttons. Execute button is for executing the query. The

Clear button clears the text area that is used for the query. The Exit button closes the GUI.

The example of chapter1 is executed in CBCQL using the implemented system. The queries

and their results are shown below:

 Experimental Setup and Results

Page | 27

Query 1: Create Context abc ;

Figure 4.1: Output of “Create Context” query

This query creates the context “abc”. Initially, the context is empty.

 Experimental Setup and Results

Page | 28

Query 2: Add Table Data3 ;

Figure 4.2: Output of “add table” query

This query has added the table in the context. Table Data3 is our data set. In our dataset, we

have taken fifteen attributes to describe a home. The client will put conditions on these

attributes to get the most suitable deal for him.

 Experimental Setup and Results

Page | 29

Query3: Select price, baths , beds , city , area , parking_lot , placeid , rpayment ,

 sq__ft , type ;

Figure 4.3: Output of query

In this query, the client selects some relevant attributes to him and leaves the remaining.

 Experimental Setup and Results

Page | 30

Query4: Select * WHERE type=‟Residential‟ ;

Figure 4.4: Output of query.

This query selects all records for home of type residential.

 Experimental Setup and Results

Page | 31

Query5: Select price , baths , beds , city , area , parking_lot , placeid , rpayment ,

 sq__ft WHERE beds = 3 and baths > 1 ;

Figure 4.5: Output of query

This query selects the record for a home with three bedrooms and at least two bathrooms.

 Experimental Setup and Results

Page | 32

Query6: Save context as pqr ;

Figure 4.6: Output of query

Context is being saved in this query. The essential requirement of the client was a home for

residential purpose with three bedrooms and at least two bathrooms. The result of this query is

fulfilling all these conditions. Since, in context based querying, we cannot backtrack so it‟s

better to save context and when we need, recall the context.

 Experimental Setup and Results

Page | 33

Query7: Select city , price , area , parking_lot , placeid , sq__ft WHERE

parking_lot='yes' and city='SACRAMENTO' ;

Figure 4.7: Output of query

The result of this query retrieves the detail of home with three bedrooms and at least two

bathrooms for a resident in Sacramento city.

 Experimental Setup and Results

Page | 34

Query8: Select area , price , placeid , sq__ft WHERE area=‟open‟ and price < 10000 ;

Figure 4.8: Output of query

This query displays the detail of all homes, fulfilling all the above conditions and in less than

10000, with an open area.

 Experimental Setup and Results

Page | 35

Query9: Recall Context pqr ;

Figure 4.9: Output of “Recall Context” query

If the client does not find a better deal, he can recall the context and search with some other

conditions as in another city or different price. Now the subsequent query will run on the

recalled context.

 Experimental Setup and Results

Page | 36

Query10: Delete Context pqr ;

Figure 4.10: Output of “Delete Context” query

This query deleted the context pqr. If pqr was our current context, then we cannot query

further in the context before adding a table in the context, or recalling a context.

 Experimental Setup and Results

Page | 37

4.4 Summary

In this chapter an example was demonstrated to show the working of our CBCQL system. We

have shown the queries and screenshot of the results. The sequence of queries reflect the

thought process of the user. In some queries there was only one condition to narrow down the

result and in some other cases more than one. For example, we combined multiple conditions

at some places because they are logically related and are considered together in our daily life,

as number of bedrooms and bathrooms.

Page | 38

Chapter 5

Conclusion & Future Work

In this dissertation, we have proposed a new query language named as Context Based

Cassandra Query Language. The purpose of this language is to provide a mechanism by which

a user can ask a sequence of related queries. As a result, an easy way of querying with simpler

queries and dictated by the thought process was provided.

 The user has to specify only SELECT and WHERE clause in the context. The context is

designed in such a way that it fetches result from the context and updates the context with the

result. Once a condition was expressed in a query within a context, there was no need to repeat

the condition in the subsequent queries. We provided the facility of saving a context and

recalling it, so backtracking is also easy for the user while querying.

CBCQL has the same power as Cassandra with additional functionality because it is built over

and above Cassandra. For using CBCQL we have provided a GUI which is very easy to use

and simple to understand. CBCQL has a very simple and case insensitive syntax, so the

possibility of errors is reduced.

Cassandra is a new database and there is a major difference in terms of power and

functionality in every new version of Cassandra. Even with low support of Java for Cassandra

database the system was fully implemented with the desired results.

In this dissertation, we implemented CBCQL for native data types of CQL. In future CBCQL

can be implemented for collection data types and string data types (custom data types) of CQL.

Page | 39

References

Abadi, D., Boncz, P., Harizopoulos, S., Idreos, S., & Madden, S. (2013). The design and

implementation of modern column-oriented database systems. Now.

Abramova, V., & Bernardino, J. (2013). NoSQL databases: MongoDB vs. Cassandra. In

Proceedings of the International C* Conference on Computer Science and Software

Engineering. ACM, 14-22.

Agrawal, R., Ailamaki, A., Bernstein, P. A., Brewer, E. A., Carey, M. J., Chaudhuri, S., ...

& Weikum, G. (2008). The Claremont report on database research. ACM Sigmod Record,

37(3), 9-19.

Cattell, R. (2011). Scalable SQL and NoSQL data stores. ACM SIGMOD Record, 39(4),

12-27.

Duggal, P. S., & Paul, S. (2013). Big Data Analysis: Challenges and Solutions. In

International Conference on Cloud, Big Data and Trust, 13-15.

Eckerstorfer, F. (2011). Performance of NoSQL Databases.

Gajendran, S. K. (2012). A survey on nosql databases. Technical report.

Hewitt, E. (2010). Cassandra: the definitive guide. " O'Reilly Media, Inc.".

Kumar, R., Parashar, B. B., Gupta, S., Sharma, Y., & Gupta, N. Apache Hadoop, NoSQL

and NewSQL Solutions of Big Data. International Journal of Advance Foundation and

Research in Science & Engineering (IJAFRSE), 1(6), 28-36.

Lakshman, A., & Malik, P. (2009). Cassandra: structured storage system on a p2p network.

In Proceedings of the 28th ACM symposium on Principles of distributed computing ACM,

5-5.

 References

Page | 40

Lakshman, A., & Malik, P. (2010). Cassandra: a decentralized structured storage system.

ACM SIGOPS Operating Systems Review, 44(2), 35-40.

Leavitt, N. (2010). Will NoSQL databases live up to their promise?. Computer, 43(2), 12-

14.

McCreary, D., & Kelly, A. (2013). Making sense of NoSQL. Greenwich, Conn.: Manning

Publications

Mohamed, M. A., Altrafi, O. G., & Ismail, M. O. (2014). Relational vs. NoSQL Databases:

A Survey. International Journal of Computer and Information Technology.

Mohapatra, S., Rekha, K. S., & Mohanty, S. (2013). A Comparison of Four Popular

Heuristics for Load Balancing of Virtual Machines in Cloud Computing. International

Journal of Computer Applications, 68(6), 33-38.

Moniruzzaman, A. B. M., & Hossain, S. A. (2013). Nosql database: New era of databases

for big data analytics-classification, characteristics and comparison. arXiv preprint

arXiv:1307.0191.

Nance, C., Losser, T., Iype, R., & Harmon, G. (2013). Nosql vs rdbms-why there is room

for both. In Proceedings of the Southern Association for Information Systems Conference,

111-116.

Parimala, N. (2002). Explicit operation specification for component databases. The

Computer Journal, 45(2), 202-212.

Parimala, N., & Bhawna, S. (2012). Continuous multiple olap queries for data

streams. International Journal of Cooperative Information Systems, 21(02), 141-164.

Parimala, N., Prakash, N., Rao, B. L. N., & Bolloju, N. (1989). A Query Facility to a

network DBMS. The Computer Journal, 32(1), 55-62.

 References

Page | 41

Sacramento_Homes_for_Sale.(2014, December 10). Retrieved from

Sacramento_Homes_for_Sale website: http://

samplecsvs.s3.amazonaws.com/Sacramento_Homes_for_Sale.csv

Strauch, C., Sites, U. L. S., & Kriha, W. (2011). NoSQL databases. Lecture Notes,

Stuttgart Media University.

Truong, H. L., & Dustdar, S. (2009). A survey on context-aware web service

systems. International Journal of Web Information Systems, 5(1), 5-31.

Tudorica, B. G., & Bucur, C. (2011). A comparison between several NoSQL databases

with comments and notes. In Roedunet International Conference (RoEduNet), 2011 10th

IEEE, 1-5.

Wang, G., & Tang, J. (2012). The nosql principles and basic application of cassandra

model. In Computer Science & Service System (CSSS), 2012 International Conference on

IEEE, 1332-1335.

Zaki, A. K. (2014). NoSQL Databases: New Millennium Database for Big Data, Big

Users, Cloud Computing and Its Security Challenges. International Journal of Research in

Engineering and Technology (IJRET), 3(15), 403-409.

Zhang, D. (2013). Inconsistencies in big data. In Cognitive Informatics & Cognitive

Computing (ICCI* CC), 2013 12th IEEE International Conference on IEEE, 61-67.

