

AN ENERGY AWARE RESOURCE ALLOCATION

MODEL FOR CLOUD COMPUTING

Dissertation submitted to Jawaharlal Nehru University

in partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE AND TECHNOLOGY

SHAHADAT HUSSAIN

ENROLLMENT NO. 13/10/MT/024

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-110067

INDIA

2015

ACKNOWLEDGEMENT

First and foremost, I would like to thank and praise Allah almighty, the only One God, for

the opportunities and support I was given along the way. This work would not have been

possible otherwise.

I am very glad to express my sincere gratitude and thanks to my supervisor Dr. Zahid

Raza for his guidance. I would like to express special thanks to Dr. Zahid Raza for many

helpful discussions and his intellectual input to make dissertation work worthy. His

extensive and invaluable research experiences were very helpful in my dissertation and the

most important thing was the helping nature of him that contributes an important share in

fulfillment of this work. The methodology, philosophy and problem solving methods

learned by him have been very beneficial in this work and would be afterward.

I would like to express my thanks to Dean SC&SS JNU, Prof. Ramesh K. Agrawal and

previous Dean Prof. C. P. Katti in support to pursue my work in the School. Also my

thanks go to School administration and librarian of software library and main library for

supporting me, in whatever way they can, to make dissertation a success. Their support

has been a real emphasize in completing this dissertation.

I would like to accord my sincere thanks to Dr. Mohammad Shahid, Mr. Raza Abbas

Haidri, Ms Mehnaz Perveen, Mr. Mohammad Sajid, Mr. Taj Alam, Mr. Krishan Veer

Singh, Mr. Sumit Kumar, Mr. Dinesh Kumar, Mr. Rahul Singh, Mr. Vipin Kumar and Mr.

Waliullah for their valuable suggestions for my dissertation work.

My parents and family members have been my strength through the research. I especially

thank my father and mother for their patience, unconditional love and economical as well

as moral support for completing this dissertation. Finally I would like to express thanks to

each person & thing which is directly or indirectly related to my dissertation work.

Shahadat Hussain

Dedicated to

My parents Mr. Azimul Haque, Mrs. Shamsun Nesa

and great grandmother Mrs. Zainul Nesa

for their love, inspiration, support and heartfelt prayers.

Table of Contents

Abstract - i

List of Acronyms - iii

List of Figures - v

List of Tables - vi

Chapter 1: Introduction - 1

1.1 The Emergence of Cloud Computing - 2

1.1.1 Peer-to-Peer Network Computers - 2

1.1.2 Clusters Computers - 3

1.1.3 The Grid - 4

1.2 The Cloud - 4

1.2.1 Architecture - 6

1.2.2 Components - 6

1.2.2.1 End User - 7

1.2.2.2 Resource Allocator - 7

1.2.2.3 The Platform - 8

1.2.2.4 Physical Machines - 9

1.2.3 Service Models - 9

1.2.3.1 Software as a Service - 10

1.2.3.2 Platform as a Service - 10

1.2.3.3 Infrastructure as a Service - 11

1.2.4 Deployment Models - 11

1.2.4.1 Private Cloud - 11

1.2.4.2 Community Cloud - 11

1.2.4.3 Public Cloud - 12

1.2.4.4 Hybrid Cloud - 12

1.2.5 Technological Support - 12

1.2.5.1 Virtualization - 12

1.2.5.2 Virtual Machines - 13

1.2.5.3 Hypervisor - 13

1.3 Essential Characteristics of Cloud - 14

1.3.1 On-demand Self-service - 14

1.3.2 Broad Network Access - 15

1.3.3 Resource Pooling - 15

1.3.4 Rapid Elasticity - 15

1.3.5 Measured Service - 15

1.4 Major Challenges of Cloud Computing - 16

1.4.1 Data Security and Confidentiality - 16

1.4.2 Energy Consumption - 16

1.4.3 Performance - 17

1.4.4 Reliability and Availability - 17

1.4.5 Scalability and Elasticity of Resources - 17

1.4.6 Resource Management and Scheduling - 17

1.4.7 Interoperability and Portability - 18

Chapter 2: Task Scheduling in Cloud Computing - 19

2.1 Scheduling Objective - 19

2.2 Entities Coordination - 20

2.2.1 Coordination Mechanism - 20

2.2.2 Coordination Structure - 21

2.3 Scheduling –an NP Complete Problem - 21

2.3.1 Classes of Problems: P and NP - 21

2.3.2 P Classes of Problems - 21

2.3.3 NP Classes of Problems -22

2.3.3.1 NP Hard Problems - 22

2.3.3.2 NP Complete problems - 22

2.3.4 Dealing with NP Complete Problems - 23

2.3.4.1 Brute Force - 23

2.3.4.2 Approximation - 23

2.3.4.3 Heuristics and Average-Case Complexity - - - - - - - - - - 24

2.4 Scheduling Problem in Cloud - 24

2.4.1 Overview - 24

2.4.2 Scheduling Problem and Structure - 25

2.4.3 Task Scheduling Over Cloud - 25

2.4.4 Task Scheduling versus VM Scheduling - 26

2.5 A Classification of DAG Scheduling Algorithms - 27

2.5.1 DAG Scheduling Preliminaries - 28

2.5.1.1 Computing a t-level - 29

2.5.1.2 Computing a b-level - 29

2.5.1.3 Computing ALAP - 29

2.5.2 Brief Survey Over DAG Scheduling Algorithms - - - - - - - - - - - - - - 29

2.6 Scheduling Properties - 31

2.6.1 Time-based Requirements and Availability - - - - - - - - - - - - - - - - - - - 32

2.6.2 Support for Requirements - 32

2.6.3 Support for Allocation Constraints - 32

2.6.4 Multiple Consumers and Multiple Goods Expressiveness - - - - - - - 32

2.6.5 Trade of Resources - 33

Chapter 3: The Proposed Model - 34

3.1 The Scheduler - 34

3.1.1 Notation Used - 35

3.2 Heterogeneous Computing System - 36

3.3 Job Characteristics - 37

3.3.1 Data Structures and Parameters Used - 38

3.4 Prioritization of Job Modules - 39

3.5 QoS Parameter Addressed - 40

3.5.1 Energy - 40

3.5.2 Turnaround Time - 40

3.6 Energy Consumption Model - 41

3.7 The Proposed Algorithm - 42

3.8 Illustrative Example - 44

3.9 Simulation Results - 49

Chapter 4: Conclusion and Future Research Directions - 53

References - 55

 i

Abstract

Cloud computing is a simple notion that has appeared from heterogeneous distributed

computing where all computing infrastructure is provided by a service provider. The end-

users simply make use of the services accessible through the cloud computing paradigm

and pay in support of the used services. The cloud paradigm offers conceivable form of

services, such as computational resources for high performance computing applications,

web services, social networking, and telecommunications services. These services are

broadly classified as: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and

Infrastructure as-a-service (IaaS). SaaS is a kind of services where software hosted by the

service provider can be used by many users with only payment for the time it being used.

PaaS is a computing set-up that allows creation of application easily and quickly

underneath it without the complexity of buying and maintaining the required software. To

run any software including applications and operating systems, IaaS provides capabilities

to users which comprise processing powers, storage, network and other computing

resources.

The pricing models for different types of services differ from provider to provider.

Various criteria determine the quality and production cost of the service. The duration of

this service (makespan) and the consumed energy are two such important criteria. The

idea is to provide end-users with a more flexible service that takes into account the

duration of the service and the consumed energy. Applications, services and resources in

cloud environment belong to different organizations with different objectives. Task

scheduling is a key process in cloud computing infrastructures which can have much

impressed on system performance. In general scheduling of tasks problem is shown to be

an NP-Complete problem. Because of its key importance this problem has been

extensively studied and several algorithms have been proposed in literature for both

homogeneous and heterogeneous systems. Precedence-constrained parallel applications

are one of the most typical application models used in scientific and engineering fields.

Such applications can be deployed on homogeneous or heterogeneous systems (HCSs)

like cloud computing infrastructures. Most of the works reported in the literature propose

algorithms to minimize the completion time (makespan) with less focus on energy

 ii

consumption. Since the problem is NP-complete various approaches with various

constraints have been proposed. This work proposes a scheduling model with an

algorithm takes into account even energy consumption along with makespan of the task

submitted as DAG. The algorithm first considers the variation of energy consumption of

processors then selects the job module based on the highest upward rank and schedules it

to the processor which dissipates minimum computational energy in an insertion-based

approach. The method is based on Dynamic Voltage Scaling (DVS) enabled processors

that work in two modes i.e. static when doing no execution along with processing while

doing computation for the task and dynamically adjusts the voltage supply level to reduce

power consumption. However, this reduction is achieved at the expense of sacrificing

clock frequencies. Algorithm is evaluated on a variety of workloads and results shows

that it not only reduces the energy consumption, but also maintains a good quality of

scheduling too which is very important for the cloud paradigm.

 iii

List of Acronyms

ALAP As-Late-As-Possible

AWS Amazon Web Services

APN Arbitrary Processor Network

APIs Application Programming Interfaces

BNP Bounded Number of Processors

CMOS Complementary Metal Oxide Semiconductor

CP Critical Path

CRM Customer Relationships Management

DAG Directed Acyclic Graph

ECC Expected Computation Cost

ECE Expected Computational Energy

EFT Earliest Finish Time

EST Earliest Start Time

ETF Earliest Time First

HLF Highest Level First

HLFET Highest Level First with Estimated Times

HLFNET Highest Levels First with No Estimated Times

LP Longest Path

LPT Longest Processing Time

IaaS Infrastructure as a Service

NaaS Network as a Service

NIST National Institute of Standard and Technology

P2P Peer-to-Peer

PaaS Platform as a Service

QoS Quality of Service

RMS Resource Management System

RT Processor Ready Time

SaaS Software as a Service

SCFET Smallest Co-levels First with Estimated Times

 iv

SCFNET Smallest Co-levels First with No Estimated Times

SLA Service-Level Agreements

TAT Turnaround Time

TDB Task-Duplication Based

TSP Traveling Salesman Problem

UaaS Users as a Service

UNC Unbounded Number of Clusters

VMM Virtual Machine Monitor

VMs Virtual Machines

 v

List of Figures

Figure 1.1 Convergence of Various Advances Leading to the Advent

 of Cloud Computing 2

Figure 1.2 Cloud Computing Paradigm 5

Figure 1.3 The Reference Architecture of Cloud Computing 6

Figure 1.4 Global Cloud Exchange and Market Infrastructure for

 Trading Services 7

Figure 1.5 Cloud Service Models 9

Figure 1.6 Types of Hypervisors with Their Functional Characteristics 14

Figure 2.1 Euler Diagram for P, NP, NP-Complete and NP-Hard Set

 of Problems 23

Figure 2.2 Virtual Machine Provisioning on Physical Servers 26

Figure 2.3 A Partial Taxonomy of the Multiprocessor Scheduling Problems 27

Figure 3.1 A Sample Job Representation by Directed Acyclic Graph (DAG) 38

Figure 3.2 Processing and Idle Energy Dissipation 42

Figure 3.3 Schedules for the Job Considered In Illustrative Example 48

Figure 3.4 Analyses of Computational Energy Consumptions 50

Figure 3.5 Turnaround Times of Job Modules with Increase in

 Numbers of Modules in Job 50

Figure 3.6 Variation of Computational Energy with Increase in

 Number of Processors 51

 vi

List of Tables

Table 3.1 Expected Computation Cost Matrix 45

Table 3.2 Modules with Average Computation Cost 46

Table 3.3 Upward Rank of the Job Modules 46

Table 3.4 Parameters of Heterogeneous Processors 47

Table 3.5 Expected Computational Energy Matrix 47

 1

Chapter 1

Introduction

The complexity and size of computational world is increasing with a significant pace and

requires a computing model that can supports processing of large volumetric data with

the use of clusters of commodity computers. Organizations invest time, effort and

budgets to meet the ever changing business needs and scales up their IT infrastructure

such as software, hardware and other services. However, scaling up process are slow with

an on-premises IT infrastructure and optimal utilization of resources are unaccomplished.

A paradigm that provides computing over the internet is termed as cloud computing

where services are available on demand as pay-per-use basis. Cloud Computing provides

computing paradigms where computing occurs without much human interaction even

possible at remote locations. It comprises of both the system software and hardware in

the data centers that provide the services and delivery of applications as services over the

Internet. It facilitates computing resources for any need at a low cost just after a simple

connection to the cloud and gives the flexibility to the clients as when client demands or

business needs changes companies can easily and cost-efficiently scale up and scale

down the amount of resources needed. This helps the saving of capital expenditure for

additional on-premises infrastructure. Highly automated information technology services

like big data analysis, customer relationship management, self-serviced storage, self-

serviced networking and self-serviced computing etc. are provided by cloud. It an

enabling revolutionary business models with hardware and software capability getting

delivered virtually through devices which is dramatically changing the nature of

commerce and society in an effective, efficient and in a much cheaper way. Basically

three kinds of service are drawn by the clouds: Infrastructure as a Service (IaaS),

Software as a Service (SaaS) and Platform as a Service (PaaS) [1, 2]. With the uses of

cloud computing system interface software the cloud can be accessed simply as web

based services that host all the files and applications needed for job execution. Cloud

computing are deployed in different modes viz. Private cloud, Public cloud, Community

cloud and Hybrid cloud. The process of matching operation requirement to the offer of a

http://www.shabdkosh.com/translate/accomplish/accomplish-meaning-in-Hindi-English

 2

cloud service is relatively straight forward; a greater challenge arises when determining

which deployment mode to use.

1.1 Emergence of Cloud Computing

Roots of clouds computing can be tracked by observing the several technological

advancements in hardware (multi-core chips, virtualization technologies), system

management, distributed computing and internet technologies. The maturity of

technological advancements itself leads to the cloud computing. Some of those

advancements viz. peer to peer computing, cluster computing and grid computing are

discussed in the following sections [1].

Figure 1.1 Convergence of Various Advances Leading to the Advent of Cloud

 Computing [1].

1.1.1 Peer-to-Peer Network Computers

Peer-to-Peer (P2P) computing nodes agrees for peer nodes (computers) to share content

directly with one or more in a decentralized approach. In pure P2P computing, there is no

concept of clients or servers since all peer nodes are equal and concurrently be both

clients and servers. The objectives of P2P computing consist of cost sharing or

 3

decrement, resource aggregation and interoperability, enhanced scalability and reliability,

enlarged autonomy, anonymity or isolation, dynamism, and ad-hoc communication and

collaboration [3]. Peer-to-peer (P2P) network families are decentralized model where

each node is referred to as peer have equivalent capabilities and responsibility. At a

single instance of time, peers can play the role of server and client i.e. the peer can serve

the incoming request from other peers and at the same time initiate the requests on the

network. This differs from traditional client/server architectures, in which a client can

only send a request to a server which respond after some time. With an increase of

numbers of peers added to the networks, the performance of network improves. For the

completion of task at hand peers organizes themselves into ad-hoc groups where they

share bandwidth, collaborate and communicate with each other. Each peer can leave the

group at any time while new ones are joining the group and can perform uploading and

downloading simultaneously. Another capability of P2P network is in terms of fault-

tolerance where with the use of other peer a P2P application will continue when a peer

fails [3]. Examples include Napster, Skype and Gnutella etc.

1.1.2 Clusters Computers

Very often applications need more computing power than a sequential computer can

provide. One way of overcoming this limitation is to improve the operating speed of

processors and other components so that they can offer the power required by

computationally intensive applications.

There are many applications like modeling, simulation and analysis of complex systems

such as climate, galaxies, molecular structure, scientific and engineering applications etc.

that require high performance computing which is satisfied with the help of cluster

computing. In cluster, over a small geographical area various computers with similar kind

of operating system, software and hardware are linked together that provides alternative

to symmetric multiprocessing with high performance and availability. Characteristics of

applications which runs over the cluster includes applications having large run time, real

time constraints, large memory usages, high input/output usages and fault tolerance.

Unlike other computing paradigms cluster facilitates techniques where similar tasks that

are controlled and managed by software are performed by set of computing nodes.

http://www.sciencedirect.com/science/article/pii/S0167739X08001957#b5

 4

Installations of clusters are based on factors like less maintenance frequency routines,

resource consolidation and centralized management, easy scalability and fault tolerance.

The same concept as of cluster is followed by super computers that are usually expensive

and requires huge operational energy, except the fact that they are not locally inter

connected and are already merged into one box [4]. Cluster started taking off in 90‟s as

cluster of IBM, Sun, DEC workstations connected by 10Mb Ethernet LAN, HP clusters,

etc.

1.1.3 The Grid

Alternative to the traditional large parallel and distributed system a deployment model

where computers from various domains combine together to provide remote access to IT

assets while aggregating processing capability is called the grid system. The resource of

grid includes all elements of computing including hardware, software, applications and

networking devices. The pools of resources are managed by the Resource Management

System (RMS) which is central to the system and tackles the issues like scheduling of

processors, allocation of network bandwidth and disk storage management. CPU-

scavenging, cycle-scavenging cycle stealing or shared computing creates a grid from the

unused resources in a network of participants whether worldwide or internal to an

organization. Grids generally categorizes in two groups data grids and compute grids.

Data grid focuses on data location, data transfer, data access and critical aspects of

security on the other hand compute grid provide users with computational power for

solving tasks [5]. With grid, teams can come together to get better answers to difficult

questions, daunting problems yields immediate results, gain in accuracy and speed with

no significant cost increases translating into real competitive advantages in the

marketplace. Example includes NorduGrid, OurGrid, Sun Grid, Techila and Xgrid etc.

1.2 The Cloud

Cloud computing has been created as an umbrella term to explain a category of

sophisticated on-demand computing services initially offered by commercial providers,

such as Amazon, Google and Microsoft. It denotes a model on which a computing

infrastructure is viewed as a “cloud,” from which businesses and individuals access

https://en.wikipedia.org/wiki/NorduGrid
https://en.wikipedia.org/wiki/OurGrid
https://en.wikipedia.org/wiki/Sun_Grid
https://en.wikipedia.org/wiki/Techila_Grid
https://en.wikipedia.org/wiki/Xgrid

 5

applications from anywhere in the world on demand [3]. The main principle behind this

model is offering computing, storage and software “as a service.”

NIST defines cloud computing as: “Cloud computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service provider

interaction”[6].

Many practitioners in the commercial and academic spheres have attempted to define

exactly what “cloud computing” is and what unique characteristics it presents. A paper

published by Professors Rajkumar Buyya [3] have defined it as follows: “Cloud is a

parallel and distributed computing system consisting of a collection of inter-connected

and virtualized computers that are dynamically provisioned and presented as one or more

unified computing resources based on service-level agreements (SLA) established

through negotiation between the service provider and consumers

Figure 1.2 Cloud Computing Paradigm [7]

While there are countless other definitions, there seems to be common characteristics

between the most notable ones listed above, which a cloud should have: (i) pay-per-use

(no ongoing commitment, utility prices); (ii) elastic capacity and the illusion of infinite

resources; (iii) self-service interface and (iv) resources that are abstracted or virtualized.

 6

1.2.1 Architecture

Architecture of cloud computing is defined by many researchers and organization. It is

defined by NIST with description of five essential characteristics, three cloud service

models and four cloud deployment models [6].

Figure 1.3 The Reference Architecture of Cloud Computing [3].

Basically the core stack and management comprises the whole system. There are three

layers in the core stack viz. Resources, Platform and Application Physical hardware,

virtualized computing resources, networking resources and storage composed of

infrastructure layer or resource layer. Platform layer could be divided into many sub

layers and is the most complex part of the cloud system where task scheduling and/or

transaction dispatches are managed by a computing framework. Catching capability and

unlimited storage are provided by storage sub layer. Figure 1.3 presents the complete

overview of cloud computing architecture.

1.2.2 Components

A key aspect of cloud computing in the web application space is that the user is

abstracted away from the elastic resources and distributed communication which occurs

 7

within the cloud. This abstraction allows companies to dynamically expand, contract and

migrate their computation and storage tasks between various distributed nodes, without

the user experiencing any disruption. There are basically four main components involved

[8]. A brief description of these components is presented in the following sections.

Figure 1.4 Global Cloud Exchange and Market Infrastructure for Trading Services [3]

1.2.2.1 End user

End users or brokers acting on their behalf submit service requests from anywhere in the

world to the data center and cloud to be processed. End users are mainly devices that

interact with the system. Three categories of clients are there; thick clients e.g. a regular

computer that connects to the cloud using a web browser, thin clients e.g. computers

having display and with no internal hard drives and mobile device e.g. PDAs or smart

phones. In contrast to the traditional in-house infrastructure, where a company had full

control over end user devices, the new cloud computing era puts the choice of the device

into the hands of the user.

1.2.2.2 Resource Allocator

The Resource Allocator acts as the interface between the cloud service provider and

external user/brokers. It requires the interaction of the following mechanisms to support

 8

Service Level Agreement (SLA)-oriented resource management.

 Admission Control and Service Request Examiner: When a service request is first

 submitted, the Admission Control Service and Request Examiner mechanism

 deduce the submitted request for QoS necessities before deciding whether to

 accept or reject the request. Thus, it guarantees that there is no overloading of

 resources whereby many service requests cannot be fulfilled successfully due to

 limited resources available.

 Pricing: The Pricing mechanism decides how service requests are charged. For

 instance, requests can be charged based on submission time (peak/off-peak),

 pricing rates (fixed/changing) or availability of resources (supply/demand).

 Accounting: The Accounting mechanism maintains the actual usage of resources

 by requests so that the final cost can be computed and charged to the users. In

 addition, the maintained historical usage information can be utilized by the

 Service Request Examiner and Admission Control mechanism to improve

 resource allocation decisions.

 VM Monitor: The VM Monitor mechanism keeps track of the availability of VMs

 and their resource entitlements.

 Dispatcher: The Dispatcher mechanism starts the execution of accepted service

 requests on allocated VMs

 Service Request Monitor: The Service Request Monitor mechanism keeps track of

 the execution progress of service requests

1.2.2.3 The Platform

Platform in cloud computing is an application over which other applications are

launched. It usually comprises of programming languages such as Ajax (Asynchronous

JavaScript and XML). In cloud computing, the application is launched to another

application called the platform. The platform usually comes as the programming

language such as Ruby on Rails or Ajax. Cloud service users should opt the system with

 9

the set of programming languages that runs as the platform which they don‟t have

compatibility issues.

1.2.2.4 Physical Machines

The data center consists of multiple computing servers that provide resources to meet

service demands. It comprises of storage devices, servers, network bandwidth,

deployment software, platform virtualization and cloud management software.

1.2.3 Service Models

Cloud service models comprise all the cloud service offerings and can be categorize into

one or more. Generally three fundamental models are used; Software as a Service (SaaS),

Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) as the top levels of

taxonomy [6].

Figure 1.5 Cloud Service Models [9]

Other than these, other service modules like network as a service (NaaS) or even users as

a service (UaaS) are used to name a few. The access ability of applications or services

that are hosted over the cloud can purchase by consumers on pay-per-use basis. Through

various client devices such as thin client interface like web browser or devices having

 10

programming interface cloud application and services are accessible. Migration to the

public cloud is expected to accelerate. While other deployment models – such as

managed hosting, hybrid hosting, and private clouds – are expected to grow as well,

public clouds will undoubtedly be the area of the most substantial growth. Organizations

that are better positioned to provide public cloud services are likely to benefit the most;

therefore, most new cloud service offerings target public clouds. While these models

open up new opportunities with potential benefits, they also present novel challenges that

should be considered when deciding upon a solution. Some common concerns in the field

are related to security, privacy, and availability of data. These service models are

introduce here describes some of the benefits and challenges, and examine relevant case

studies that highlight real-world scenarios, challenges and lessons learned. Figure 1.4

presents a formal view of cloud computing service model architecture with their

functional components.

1.2.3.1 Software as a Service (SaaS)

SaaS is a kind of services where software hosted by the service provider can be used by

many users with only payment for time it‟s being used. Some example service providers

are Google Apps, Customer Relationships Management (CRM) systems and Salesforce.

Some major characteristics of SaaS includes: Application Programming Interfaces (APIs)

which allows integration between different pieces of software, web access capability to

commercial software, centralized software management software, software delivered in

“one to many” model etc. Some example service providers are Google Apps, Customer

Relationships Management (CRM) system and Salesforce.

1.2.3.2 Platform as a Service (PaaS)

To design, build, test, deploy and update online custom applications a high-level

integrated environment is provided by PaaS. Capabilities like access to the platforms are

purchased by consumers to deploy their acquired or self developed applications over the

platform. PaaS is a computing set-up that allows creation of application easily and

quickly underneath it without the complexity of buying and maintaining the required

software. PaaS differs with SaaS as instead of software delivered over the cloud PaaS

 11

provides a platform for creation of software. Key examples include GAE, Microsoft

Azure etc.

1.2.3.3 Infrastructure as a Service (IaaS)

To run any software including applications and operating systems, IaaS provides

capabilities to users which comprise processing powers, storage, network and other

computing resources. Rather than purchasing clients instead buy resources as fully

outsourced service on demand. Some of the IaaS providers are, Flexiscale, GoGrid, Open

Stack, Eucalyptus and AWS.

1.2.4 Deployment Models

Organizations use cloud computing as per their requirements and accordingly they own

control over the environment. The way the cloud services are used varies from one

organization to the other. There is an aggressive growth in business for cloud adoption in

order to cut capital expenditure and efforts. On the other hand, cloud services brings

challenges for IT Management and security risks that can be more exorbitant for the

organization even considering the cost saving gained after shifting to cloud systems.

Therefore, before opting for various deployment models it is very important for

businesses to understand their requirements. Four cloud deployment models are

recommended by the National Institute of Standard and Technology [6].

1.2.4.1 Private Cloud

The cloud infrastructure is operated exclusive for a single organization and is very

customizable. Physical location of servers includes data center on-premises and can be

managed in any ways like a third party hosting, the organization itself or some

combination of the two. Example of private cloud providers include Nettricity, which

allows for the expansion of servers and storage space.

1.2.4.2 Community Cloud

The cloud infrastructure where services are provisioned exclusively for the use of specific

community or an organization having consumers with shared concerns. The infrastructure

 12

may be owned and operated by a particular community, a third party or one or more

community of an organization or some combination of them.

1.2.4.3 Public Cloud

That service provider is responsible for the management and administration of the

systems and services. The client is only responsible for the software and application that

are installed on the end-user system. Connections to cloud are usually made through the

Internet. Public cloud are managed and operated by third parties giving each individual

client an attractive pay-as-you-go model. A popular example of the same could be

Amazon Web Services (AWS).

1.2.4.4 Hybrid Cloud

The hybrid cloud infrastructure is a composition of two or more clouds (private,

community, or public) that remain unique entities but are bound together by standardized

or proprietary technology that enables data and application portability (e.g., cloud

bursting for load-balancing between clouds). Hybrid cloud is complex and expensive to

implement but offers the freedom to implement necessary organizational needs. With the

maturity of computing era hybrid cloud implementation is likely become common.

1.2.5 Technological Support

The ability to host different users over the same physical resources is called multitenancy

which takes cloud computing apart from earlier computing paradigms. In cloud, the

complexity of underlying hardware or software is hidden with the creation of an

intelligent abstraction layer supported by virtualization.

1.2.5.1 Virtualization

Virtualization is the key to cloud computing which enables sharing of different operating

system over the same hardware and increases the efficiency of resources. Virtualization

facilitates increased availability of resources, faster deployment of work load, resource

scaling and live migration of virtual machines over different servers [10]. Virtualization

technology can be leverage in many ways for example; User State Virtualization where

 13

the end user machine virtualization which stores business critical data, Application

Virtualization where line-of-business applications are deployed, managed or maintained

and OS Virtualization where a complete desktop experience to entire server virtualization

environment can be delivered.

1.2.5.2 Virtual Machines

An operating environment which represents real machine and can host or run operating

system using software is termed as virtual machines. In cloud with, background

consumers and dynamism, rent and pay for virtual machines enables cloud infrastructure

which is positioned in data centers to be shared among numerous users.

1.2.5.3 Hypervisor

A hypervisor or Virtual Machine Monitor (VMM) is a part of computer hardware,

firmware or software which runs and creates virtual machines. A computer over which

hypervisor creates one or more virtual machines is called host machine. Each virtual

machine is termed as a guest machine. Virtual operating platform for guest operating

system is facilitated by hypervisor which manages the execution of guest operating

system. There are two types of hypervisor in general [10]; Figure 1.5 presents the

architecture of different types of hypervisors.

Type 1 Hypervisor: Sits on the bare metal computer hardware like the CPU, memory, etc.

All the guest operating systems are a layer above the hypervisor. That means hypervisor

is the first layer over the hardware. Example Xen, Denali.

Type 2 Hypervisor: They run over a host operating system, not over the bare metal

hardware. The hypervisor is second layer over the hardware and the guest operating

systems run a layer over the hypervisor. Example includes VMware.

 14

Figure 1.6 Types of Hypervisors with Their Functional Characteristics

1.3 Essential Characteristics of Cloud

The popularity of the cloud is due to it being beneficial to a lot of services providers and

organization. Just being a Web based applications do not qualify it to be a cloud

application. The service around the application and application itself must demonstrate

certain individuality before they can be considered the right cloud implementation. The

NIST explanation of cloud computing outlines five key cloud characteristics: on-demand

self-service, broad network access, resource pooling, rapid elasticity, and measured

service. In order for the offering to be considered as true cloud offering all five of these

characteristics must be satisfied [1, 6, 11].

1.3.1 On-demand Self-service

This offers advantages for both the consumer and to provider of the services. There is an

automated process for resource request and fulfillment of the request. Without help of

any support staff or administrator, the customers can request and receive access to the

services manually. Implementing user self-services allows consumers to speedily procure

and access the services they wish for. Users have the control to change cloud capabilities,

such as network storage space and server time as needed. Usually, users are billed for

pay-for-what-you-use only.

 15

1.3.2 Broad Network Access

Accessing of business management solutions over cloud requires devices like office

computers, laptops, tablets and smart phones. Hence cloud services should be

implemented in such a way that they can be easily accessed. To connect to the application

or service, consumers should only be required to have a basic network connection. To use

the services a large amount of bandwidth must not be required. Mobility is particularly

attractive for businesses so that during on off-times or business hours, employees whether

they are at home or in the office can stay on projects, contracts and customers.

1.3.3 Resource Pooling

The computing resources by providers are pooled together to serve several customers

with a multi-tenant model, where active assignment of dissimilar physical and virtual

resources are taking place according to the users requirement. Location liberty is a sensed

here as the customer normally has no power or knowledge over the precise location of the

provided resources that contain network bandwidth, memory, processing and storage.

1.3.4 Rapid Elasticity

The ability of cloud environment to easily grow and satisfy user demand describes rapid

elasticity cloud of environment. Automated and on-demand based resources are

provisioned and released. An increased capacity of computing that is needed by cloud

environment for a short period of time called burst capacity is handled by cloud

efficiently with the help of rapid resource provisioning.

1.3.5 Measured Service

Cloud environment must have the ability to measure usage. Various matrix such as data

used, bandwidth used and time used can be the parameter to quantify the usage. Realistic

nature of the cloud allows customers only pay for what they use. Based on utilization

resource usage are measured, and reported (billed) in a transparent manner. For a

particular day when service is not used the consumer should not be charged.

 16

1.4 Major Challenges of Cloud Computing

Amid various possibilities with cloud systems a range of challenges are also associated

with it since users for its effective realization. Security issues posses serious threat to the

organizations data and application. Moreover, in cloud system a tradeoff between

communication, computation and integration must be considered. Business value brought

after transition to the cloud by organization are lucrative causing the organizations to

stepping into the cloud however thorough knowledge of challenges as well as advantages

must be acquired before moving to the environment [1, 2, 3, 11].

1.4.1 Data Security and Confidentiality

Security of data and application is the mainly debated issue in the field of cloud

computing which restricts the expansion of cloud to greater extent. Data can be

compromised at numerous data-lifecycle stages: during transfer to public cloud from the

internal company network, at public cloud during data is stored and during data backup

and restore processes. Moreover, in cloud computing the pooled computing resources and

the multi-tenancy model has introduced new security challenges that require novel

training to deals with.

1.4.2 Energy Consumption

The implementation of cloud computing enables penetrative applications from various

domain and provides computing as utility. On the other hand, this implementation brings

tremendous energy consumption along with associated concerns and costs. Idle power

wastage by servers when it runs at low utilization is one of the major causes of energy

inefficiency in data centers. A task scheduling algorithm is needed for minimizing energy

consumption in cloud servers, with the help of the task scheduling algorithm, the tasks

can be scheduled to a minimum number of servers by maintaining the task response time

constraints.

 17

1.4.3 Performance

Service level agreements and delivering the desired QoS defines any cloud providers

services. Most cloud provider covers infrastructure availability only and mentions

nothing about the performance. If performance-related necessities are required by

organization‟s applications, these requirements should be discussed with cloud providers

and ensured to be supported.

1.4.4 Reliability and Availability

Service reliability characterizes the ability of a system to provide acceptable service,

which means correct or accurate service delivered within an acceptable time. Service

reliability is essentially the portion of service requests that are successfully served (i.e.,

are not defective) within the maximum acceptable service latency. Cloud reliability is

broadly a function of four individual components: the reliability of software and

hardware, personnel reliability of provider, connection reliability to the subscribed

services and the consumer‟s own personnel reliability. Also disruption in services is a

major worry as consumers might need all their deposited information at anytime. More

risk of failure are there as compared to conventional services as there are more weak

points in the chain of elements required to access the cloud.

1.4.5 Scalability and Elasticity of Resources

The great advantage of scaling up or down resources to meet workload can lead to

service breakdown if it is not implemented properly. Since the cloud does not scale up

resources quickly enough a web application developer which hosts its service over the

cloud can see how the response time gradually increases with the increase in usage of the

applications. Also scaling must be limited by some threshold which stops the continuous

increase in the resources allocation that prevents the service denial by the cloud providers

when consumer‟s application malfunctions.

1.4.6 Resource Management and Scheduling

Resource management and scheduling is the critical function of any man-made system

that influences the three fundamental criteria for the assessment of a system viz.

 18

functionality, performance and cost. Based on their service-level agreements a cloud

system which comprises a set of interconnected and virtualized computers are

dynamically provisioned and presented as one or more unified computing resources.

Dynamic and efficient allocation of resources are challenging in the cloud computing

environment where many alternative computers with varying capacities and capabilities

are available.

1.4.7 Interoperability and Portability

One of the major adoption barriers in cloud computing are interoperability and

portability. Cloud users must have the flexibility of migration in and out of the system

and switching to other clouds whenever they wish for without any vendor lock-in period.

Migration of applications among clouds is a tough task because of poor portability and

limited interoperability due to lack of availability of standardized APIs.

 19

Chapter 2

Task Scheduling in Cloud Computing

Scheduling a task on the cloud resources refers to the mapping of these tasks on the

computational resources of the cloud in order to meet the scheduling objectives. With

regards to the autonomy, scalability and performance of the system, the architecture of a

scheduling infrastructure is very significant. Distributed, centralized and decentralized

are the three main categories of the scheduling architecture. In distributed scheduling,

there are multiple lower-level entities and a central manager which is responsible for

assignment of individual task to low-level providers and managing the complete

execution of task. More over in centralized scheduling architecture, all scheduling

decisions for the tasks are made by a central controller. Here, the track of all available

resources in the system and maintaining all the information about the tasks are kept by

the scheduler [12-14]. In contrast, the limitations of distributed or centralized structures

with respect to autonomy, scalability, fault-tolerance and most importantly the adequacy

of resources in the cloud computing environment are wiped out by the decentralized

scheduler. It assumes the autonomy of each entity and has as its own control over the

resources that derives it to take policy based scheduling decisions [14-15]. Cloud

computing service providers‟ one of the goals is to use the resources efficiently and gain

maximum profit. This leads to task scheduling as a core and challenging issue in cloud

computing. This chapter presents different scheduling strategies and algorithms in cloud

computing.

2.1 Scheduling Objective

Based on some particular objectives, schedulers generate the mapping of tasks to

resources. To get optimization of a specific outcome scheduler makes use of a function

which takes into account the needed objectives. The normally used scheduling objectives

in a cloud computing environment are associated with the resource utilization and tasks

 20

completion time [14]. In order to satisfy the requirement of consumers, the schedulers use

a particular strategy for mapping the tasks to appropriate cloud resources.

2.2 Entities Coordination

Entities in the cloud are analyzed as autonomous units that have their own will in sharing

their capabilities and are able to perform some computations. The management of

interdependencies between the independent computational units that have no global

control is a big challenge with cloud system. Synchronization between different entities

controls the effectiveness of managing the interdependencies of entities in the cloud

environment. Consequences of lack in coordination bring overhead in communication

which decreases the system performance [13-14]. The process of coordination in the

cloud environment with respect to the resource management and scheduling of

application or services entails dynamic information exchange among a range of entities.

2.2.1 Coordination Mechanism

Problems linked with interdependencies are cut and resolved by coordination mechanism

which includes interaction protocols and a set of decision points for coordinated-control

that are bounded for to dealing with the interdependency problems. Interaction protocols

are the methods by which an entity cooperates with another entity through various

communication protocols. Efficient coordination between entities in the cloud involves a

plenty of negotiation policies and coordination mechanisms. The coordination

mechanisms in cloud computing environment are generally Market-based which views

the cloud environment like a virtual Marketplace where buying along with selling of

services, storage resources and computation are done by cost-effective entities that work

together with each other. Efficient resource allocation is facilitated by such coordination

mechanism where the resource provider that export its confined resources to contractor

works as a supervisor and decisions about admission control based on negotiated Service

Level Agreements are taken care by resource brokers.

 21

2.2.2 Coordination Structure

The pattern of communication and decision making which is required while resolving the

complexities related with interdependencies among entities is termed as coordination

structure. With the utilization of some specific communication devices interaction with

entities are coordinated. These devices are classified into two categories: One-to-one and

One-to-many. One-to-one interaction with the consumers and resource providers as per

Service Level Agreement is facilitated by these devices. On the other hand One-to-many

communication is simple but expensive as it broadcasts the number of messages over the

network that uses bandwidth of the network.

2.3 Scheduling –an NP Complete Problem

Finding an optimal schedule for a set of jobs is an NP-complete problem even in the

following two restricted cases: (1) only one time unit is required by all the jobs and (2)

only two processors resolving there and all jobs require one or two time units [16]. As an

effect the preemptive scheduling problem of all-purpose is also NP-complete. These

results are practically the same for proving that the scheduling problems stated are

intractable.

2.3.1 Class of Problems: P and NP

There are two families of problems P and NP that are very significant in field of

computer science. These families comprise the vastness of our practical computational

problems and have been essential to the theory of computation for years. Turing machine,

introduced by Alan Turing in 1936 is the standard computer model in computability

theory which describes the problems precisely. The classification of problems with

assumptions in categorization is presented in Figure 2.1.

2.3.2 P Class of Problems

Introduction to Algorithms by Thomas H. Cormen describes the classes as “The class P

consists of those decision problems that are solvable in polynomial time. More

specifically, they are problems that can be solved in time O (n
k
) for some constant k,

 22

where n is the size of the input to the problem.” [17]. So P is just the set of decision

problems for which polynomial-time algorithms exists and is also called a set of tractable

decision problems. Example includes testing whether a number is prime or not.

2.3.3 NP Class of Problems

The second class of decision problem where the notation NP stands for “non

deterministic polynomial time” has been described as “The class NP consists of those

problems that are verifiable in polynomial time. It means that if we were somehow given

a solution of the problem, the same can be verified in time polynomial in the size of the

input to the problem.” The definition of NP entails the idea of a non-deterministic

algorithm [17].

2.3.3.1 NP – Hard Problems

The decision problem Pi is NP-hard if every problem in NP is polynomial time reducible to

Pi. In very much relaxed way, it means that Pi is „as hard as‟ all the problems in NP. If Pi

can be solved in polynomial-time, then so can all problems in NP. Equivalently, if any

problem in NP is ever proved intractable, then Pi must also be intractable [17-18].

Example include traveling salesman problem (TSP).

2.3.3.2 NP - Complete Problems

A decision problem Pi is NP-complete if: it is NP-hard and it is also in the class NP itself.

The informal and relaxed description states that Pi is one of the hardest problems in NP. So

the NP-complete problems form a set of problems that may or may not be intractable but,

whether intractable or not, are all, in some sense, of equivalent complexity. Example

problem of finding an optimal schedule for a set of jobs onto a set of processors is NP-

complete [16].

 23

Figure 2.1 Euler Diagram for P, NP, NP-Complete and NP-Hard Set of Problems [19]

2.3.4 Dealing with NP Complete Problems

To address the NP-complete set of problems various approaches can be used. Some of

these are listed as follows.

2.3.4.1 Brute Force

Since when the concept of NP-completeness was first developed computers have now

acquired very much speed. Nowadays computers are much faster than long years back.

These days various moderate size problems can be solved without difficulty by the use of

some clever algorithms. For some small problem instances brute force search through all

possibilities is now possible. The NP-complete traveling salesperson problem asks for the

smallest distance tour through a set of specified cities. Using extensions of the cutting-

plane method we can now solve, in practice, traveling salespeople problems with more

than ten thousand cities [20].

2.3.4.2 Approximation

Although exact solution of NP-complete optimization problems cannot be obtained

however a good approximate answer often can be achieved. For example- Arora [21]

gives an efficient algorithm that digs in very close to the best possible path while

considering the traveling salesman problem which is an NP-complete problem.

 24

2.3.4.3 Heuristics and Average-Case Complexity

The center of attention in analysis of NP-completeness is how algorithms execute over

worst possible inputs. Though, the exact problems that arise into practice can be probably

much easier to solve. Various heuristics comes up from specific problems in their fields

employed by many computer scientists to solve NP-complete problems [22]. Role of

average-case complexity in areas of computer science is also significant in this case like

greedy algorithm for Independent Set which uses the strategy to always pick the vertex

which has fewest neighbors. This vertex is now in the independent set and all of it

neighbors can now never be in the independent set.

2.4 Scheduling Problem in Cloud

Cloud system as explained in earlier section is a decentralized computing environment

where distributed entities in the environment are intended to take the scheduling

decisions. The job is to be executed by the cloud services provider for the consumers.

Therefore, the controls and knowledge for scheduling criteria are distributed between two

major entities of cloud environments: Consumers and Providers [14].

2.4.1 Overview

Representation of requests within the cloud is viewed as the series of activities that are

necessary to complete a task called as workflow where tasks are piled according to data

flow, computational dependencies and service dependencies. Workflow is categorized as

data intensive when data centric necessities such as retrieval of large volume of data and

hefty storage space are high. Similarly, a workflow is categories as computation intensive

when task requires high amount of computation. Also various categories of workflow are

there based on different optimization parameters. Scheduling a workflow is a procedure

to discover the mapping of tasks within workflow to the appropriate resources so that the

execution can be completed with the fulfillment of objective functions, such as execution

energy minimization and execution time minimization. Present workflow scheduling

practices are non-coordinated and work independently while performing scheduling

related activities. This leads to mostly under-utilization of some valuable resources or

 25

over-utilization and a bottleneck on various others. Further, load sharing and utilization

problems of cloud system resources got worse because of lacking in coordination

mechanism during brokering process. Considering the dynamic resource behavior in the

cloud an optimized workflow execution can be obtained by cooperative decision making

while scheduling in an open environment.

2.4.2 Scheduling Problem and Structure

The entities (consumers and providers) in the cloud environment are accountable for their

own decision making and are mostly autonomous. In that scenario the scheduling

problems gains an additional attribute from the characteristics of the environment. That

means the whole knowledge about the problem is not widely spread and no entity in the

environment have the global vision about the problem. This problem in general termed

as distribution of knowledge problem. Two following definitions are introduced

accordingly [3, 14].

Definition 1: “A Distributed Scheduling Problem is characterized by the knowledge of

the problem is distributed among entities and no entity has a global view of the problem.”

Further, the decision making capabilities and autonomy of entities are also the required

characteristics in cloud environment. It means that entities are not controlled by any other

entity and are driven by its own objectives.

Definition 2: “A Decentralized Scheduling Problem is a Distributed Scheduling Problem

consisting of self-interested entities and is autonomous in their decision making.”

Distribution of control is an essential characteristic of decentralized scheduling problems

that means outside body such as other entities in the environment should not be involved

in entities policy making process. To achieve the respective objectives of entities self-

interested entities need to be cooperative with each other and cooperation must not

enforced by binding agreements from a third parties.

2.4.3 Task Scheduling Over Cloud

Cloud systems accept application requests generally in two ways that depends on to the

architecture of systems. In one scenario tasks are submitted by consumers dynamically to

the scheduler. These tasks are generally added in a queue and the schedulers take the

 26

tasks from this queue for scheduling to computing nodes which process the tasks after

completion of the current running task [14]. On the other hand in scheduling with broker

mechanism, clients put a message on the task queue to initiate a task. Each message

corresponds to a particular task. Task can contain additional parameters like the queue

name, countdown timer and much more. These arguments are parsed by the celery and

saved appropriately for each task. Tasks are assigned to worker nodes, as per the

scheduling algorithm followed. The broker then delivers the message to a worker.

Worker nodes listening to the queue, on receiving the task, adds the task to its own

queue, and executes it when its turn arrives. On task execution, results are published to

the configured result backend. And thus the customer should be in a position to retrieve

results from the result backend as and when required [3].

2.4.4 Task Scheduling versus VM Scheduling

Task scheduling is based on the requirement of a user who has a set of jobs to compute

and is a vital research topic in cloud computing. The consumers submit set of jobs to the

job scheduler which allocate them over to the resources available in the cloud.

Virtual machines (VM) provisioning on the other hand is the procedure of creating VM

instances over the host machine of cloud provider that matches the configurations

(software environment), critical characteristics (storage, memory) and requirements

(availability zone) of the provider [3, 10].

Figure 2.2 Virtual Machine Provisioning on Physical Servers [23]

 27

2.5 Classification of DAG Scheduling Algorithms

A parallel program can be represented by a node and edge weighted directed acyclic

graph (DAG), in which the node weights represent task computation costs and the edge

weights represent data dependencies as well as the communication costs between tasks.

At the highest level scheduling problem are divided into two classes, depending upon the

structure of the task graph whether is of special structure like tree or an arbitrary

structure. Majority of the algorithms presume the graph to be a kind of special structure

such as a forks-join, tree etc. Moreover parallel programs come in diversity with their

structures usually, and as such a lot of current algorithms are intended to deal with the

arbitrary graphs. These algorithms can be divided further into two classes based on

uniformity and randomness in computation cost of the tasks group [13, 15, 24].

Figure 2.3 A Partial Taxonomy of the Multiprocessor Scheduling Problems [24].

 28

A typical taxonomy of the task scheduling algorithms on multiprocessor environment is

presented in Figure 2.2. Scheduling algorithms which regards the inter-task

communication assumes the accessibility of an unrestricted number of processors and are

called the UNC (unbounded number of clusters) scheduling algorithms, whereas other

algorithms that assumes fixed number of processors and are called BNP (bounded

number of processors) scheduling algorithms. The processors are supposed to be totally

linked in both classes of algorithms and require no attention to routing strategies or in

contention linking used for communication. UNC algorithms employ technique which is

also known as clustering where every module is considered as a cluster at the start of

scheduling process. In the later steps, two clusters are combined if the combining results

decrease in the time of completion and combining process goes on until the clusters

allows it. Conversely, the BNP algorithms do not require any such post processing step.

With the most general mode in consideration, there has been a design of few algorithms

like APN (arbitrary processor network) scheduling algorithms which in addition to

scheduling the modules also schedules messages over the link for network

communication. The TDB (Task-Duplication Based) scheduling algorithms schedule

tasks over processors with replication which decreases the scheduling lengths and also

assumes the accessibility of boundless number of processors. The motivation behind the

TDB scheduling algorithms is to diminish the communication overhead through

redundant allocation of various to a number of processors [24].

2.5.1 DAG Scheduling Preliminaries

The majority of scheduling algorithms are relying upon the so-called list scheduling

methods [24]. The fundamentals of the list scheduling is to make a scheduling sequence

of modules (an ordered list of modules for scheduling) and then execute the following

two steps repeatedly until all the modules in the graph are scheduled: (1) Take out first

module from the scheduling sequence and (2) Assign the module to a processor that

posses earliest start-time. Priorities of modules can be determined by various methods

like, as HLF (Highest Level First) Coffman [25]; LP (Longest Path) Coffman [25]; LPT

(Longest Processing Time) Friesen [26]; and CP (Critical Path) Graham [27].

 29

In recent times numerous scheduling algorithms based over dynamic list scheduling

approach have been recommended [24] where after each allocation of module priorities

of unscheduled modules are recomputed using the algorithms. Potentially better

schedules are generated using this approach however the time complexity of the

scheduling algorithms are increase by dynamic approach. For assignment of priorities of

job modules the two commonly used traits are the b-level (bottom level) and t-level (top

level). In addition with these some of the algorithms employ an attribute called As-Late-

As-Possible (ALAP) start-time. A brief description of these algorithms is presented in the

following sections [24].

2.5.1.1 Computing a t-level

The length of longest path from an entry module to a module mi (excluding mi) is termed

as t-level (top level) of the module mi. There may exist more than one longest path that

constitutes a single t-level. Sum of all modules and edge weights down the path

comprises the length of a path.

2.5.1.2 Computing a b-level

A key structure in directed acyclic graph (DAG) called critical path (CP) which is

sequence of tasks where each task dependent on the next and prevents an earlier finish.

The b-level (bottom level) of a module is restricted from above by the length of a CP. In

the scheduling process, the t-level of a node varies while the b-level is usually a constant,

until the node has been scheduled.

2.5.1.3 Computing ALAP

An attribute described as As-Late-As-Possible (ALAP) start time is utilized by many

DAG [24]. Without any further increase in schedule length ALAP start-time quantifies by

how far the start time of module can be postponed without increasing the schedule length.

2.5.2 Brief Survey over DAG Scheduling Algorithms

Starting with description of some former scheduling algorithms that works over restricted

DAG models to the various algorithms that get rid of all simplifying assumptions a brief

 30

surveys over DAG scheduling algorithms that are reported in literature are presented

here. The discussion comprises description of various classes of known algorithms.

Scheduling DAGs with Restricted Structures: Early scheduling algorithm designs were

based over simplifying postulation regarding the DAG as well as processor network

model [28]. For example, the modules in the DAG were presumed to be of unit

computation cost with no communication overhead. In this regard a polynomial-time

algorithm for in-tree structured DAGs was proposed by Hu [29] which creates best

possible schedules with unit computations and with no communication however the

numerals of the processors p was assumed to be restricted. The critical step in the

algorithm is a module labeling procedure that partitions the task graph into many levels

and during scheduling practices tasks of same level is allocate to the available processors.

Scheduling Arbitrary DAG without Communication: This includes random structured

DAGs having arbitrary computational costs and zero communication overhead. Adam

[24] carried out a broad simulation examination over the performance of various level-

based list scheduling heuristics which strongly suggest the proof that the CP (critical

path) based algorithms have near-optimal solution. The examined heuristics includes

HLFET (Highest Level First with Estimated Times); HLFNET (Highest Levels First with

No Estimated Times); Random (nodes in the DAG are assigned priorities randomly);

SCFET (Smallest Co-levels First with Estimated Times) and SCFNET (Smallest Co-

levels First with No Estimated Times). One more study carried out by Kohler [30] over

the above heuristics implies the concept that with the increase in the number of

processors the performance of the critical path based algorithms improves.

Pappadimitrou and Yannakakis [31] proposes a linear time algorithm which computes

most favorable solution for scheduling a unit computational interval-ordered DAG to

various processors. In an interval-ordered DAG, two modules are precedence-related if

and only if the modules can be mapped to non-overlapping distance over the real line.

Using the property a list can be constructed by taking the number of successors of a

module as priority. The best possible schedule can be obtained in O (v +e) where v and e

are number of vertices and edges respectively of the DAG. However the removal of

constraints for example unit computational tasks makes the problem NP-complete.

 31

The foremost clustering algorithm that is not a list scheduling algorithms is the Sarkar‟s

algorithm [32]. Primarily it arranges the edges of the DAG in decreasing order of their

weights. Afterward at every clustering step the edges are visited in the ordered list as they

appear in the list and zeroed if there is no increment in the parallel time. The computation

of the parallel time has to be done at all clustering step topologically passing through the

scheduled DAG. The complexity of algorithm is O (e (v + e)) as there are e such

traversals.

The HLFET (Highest Level First with Estimated Times) is again a list scheduling

algorithm that initially calculates the static b-level for every module and after that builds

a ready list in non ascending order of static b-level. Then repetitively it schedules the

entry module in the ready list to a processor which facilitates the earliest start time and

updates the list with the new ready modules. The algorithm works with O (v
2
) time

complexity.

ETF (Earliest Time First) focuses over keeping the processors busy and can be

considered as a model closed load balancing scheme. Priorities of unmapped tasks ready

for execution are computed at each scheduling step; with the help of tentative mapping of

given task to all the processors the task priority which is simply the earliest start time of

tasks are determined. The task with the lowest priority is selected and mapped to the

processor assign corresponding to this priority. Statically, computed priorities can be

used for breaking the ties. The algorithm works with the time complexity of is O (v
2
p)

where v and p are number of modules and processors respectively. Since the heuristics is

not based over critical path the most important ready task is not mapped first always. As

a result the reduction of partial schedule length at every scheduling step may not be

achieved. Since start-time of a node over all the processors is used exhaustively for the

calculation of earliest start time of a node it is also a BNP algorithm [24].

2.6 Scheduling Properties

In the cloud environment resources are put up for sale in the marketplace and customers

are required to have capability to portray their preference [3, 10, 14]. Based over the

characteristic of the cloud infrastructure various properties are identified to facilitate a

plenty of bidding language design. The sufficiency in bidding language is acknowledged

 32

according to the properties as well as necessities of the cloud entities (consumers and

providers) and the kind of the scheduling solution.

2.6.1 Time-based Requirements and Availability

Clients have time-based necessities for execution of tasks. Execution of tasks after the

time limit is not preferred and may have no significance. Therefore the bidding language

is to allow the consumers to convey their choice over time related constraint for their

tasks. Start time and End time are the two variables that generally describe the time range

of prerequisites.

2.6.2 Support for Requirements

When the request is being executed the specific requirements of consumers towards

computational resources (operating system, memory and speed etc.), services and storage

resources (storing capacity) must be satisfied. The bidding language should encourage

consumers to convey the choice as per the necessities as well as its support for providers

to portray the reserve values on the resources capability.

2.6.3 Support for Allocation Constraints

Workflow of tasks supplied by consumers in cloud environment requires an accurate

execution of sequence that means the logic of the workflow must be represented by the

execution which obeys the allocation constraints.

2.6.4 Multiple Consumers and Multiple Goods Expressiveness

The cloud environment supports several consumers that demands to make use of multiple

utilities that are offered by various providers. In cloud environment multiple service

providers make public their resources through a middleware which consists a global

directory and is also provide supports to multiple consumers request while discovering

the resources. A market system is to consume those services as well as set up a market

structure which allows various buyers to consume a range of utilities owned by various

providers. A bidding language is needed to facilitate the expressiveness for such market

structure.

 33

2.6.5 Trade of Resources

In cloud environment role played by entities are not similar always. A computation

provider turns into a consumer while it needs use of some definite service from a

different provider. Also, for the execution of their services a service provider may require

additional computational resource owned by some other individuals or group. Trades

among entities allow flexibility for entities to make full utilization of their resources and

at the same time get hold over the necessary resources within a definite budget. A bidding

language should facilitate the expressiveness of consumers and providers of the resources

to do business.

 34

Chapter 3

The Proposed Model

The model under consideration is a task scheduling strategy which supports execution of

computationally intensive dependent modules over a diverse set of interconnected

processors. Hereafter, we use the terms task and module interchangeably in the chapter.

The algorithm considers energy consumption differences by various algorithms and

introduces an energy efficient strategy for allocation of job modules to processors. The

pseudo code of the proposed energy-aware algorithm (alloc_energy) is presented in

section 3.7. The proposed algorithm takes two inputs viz. a computationally intensive job

which comprises set of dependent modules, a heterogeneous interconnected computing

system and returns schedule with turnaround time with energy consumption as output.

The overall functioning of the model comprises two phases: phase I computes rank of the

modules in order to produce priority list of modules whereas phase II selects the

appropriate processor based on expected computational energy (ECE) metric. The model

works as a static scheduler where information regarding all the computing resources as

well as all the tasks in the job is assumed to be available by the time the job is scheduled.

Jobs are submitted and the scheduler evaluates the suitability of job modules which

results in an improvement in the energy consumption by the processors. The chapter

starts with presentation of the scheduler, the notation, equations and data structures used,

job characteristics for the design of scheduling model. Later, the energy aware scheduling

algorithm is presented followed by the illustrative example, simulation results and their

analysis.

3.1 The Scheduler

The scheduler system comprises an application, a targeted computing environment and

performance criteria for scheduling. The application or job is represented by a directed

acyclic graph (DAG) or task graph as G = (V, E), where V is set of v job modules (m1,

m2, m3, …, mn) that are the logical unit comprising of instructions and E is set of e edges

 35

between the modules. These modules can be independent or dependent from other

modules of the same job. Independent modules can be executed without any delay but

dependent modules have to wait for their parents to initialize their execution. Each node

of the DAG is labeled by the module number which is used as an identification number

module and each edge is labeled by the communication cost (expected communication

cost) between modules. For a given task graph a module without any parent is termed as

entry module mentry and module without child is called as exit module mexit. The primary

goal of a scheduler is to run the submitted job and this aim must be achieve at the end.

Modules runs over various processors facilitated by computing environment that are the

nodes actually executing the application or job. The target computing environment is

assumed as it consist of a set of p heterogeneous interconnected processors where all the

inter processor communication are assumed to be performed without contention. When a

job is submitted to the scheduler it creates a list of modules from the given task graph

according to their priorities in non increasing order. Following that it selects the ready

module with highest priority from the list and assigns it to the suitable processor that

minimizes the processing energy of the module. The processing energy of the job is

calculated as the sum of individual computational energy of job modules. The type of

scheduling algorithm under the study is recursive and static as the scheduler has all the

information about task precedence, parallelism in modules and architecture of processors

inter-connectivity a priory. The proposed scheduler is designed to minimize the execution

energy of the job submitted for execution and generates a schedule based on the

algorithm. The priority mechanism and parameters for evaluation of processing energy of

modules are explained in the upcoming sections of this chapter.

3.1.1 Notation Used

The following notations are used in the model:

 G : Directed Acyclic Graph (DAG) or job

 V : Set of Vertices of in the Directed Acyclic Graph

 n : Number of vertices in the Directed Acyclic Graph

 E : Set of Edges in the Directed Acyclic Graph

 mi : i
th

 Module of the Job G

 36

 eij : Communication Messages and Precedence Constraints Between Modules mi

 and mj.

 mentry : First Module of the Job

 mexit : Exit Module of the Job

 Eg: Number of Edges in the Directed Acyclic Graph

 Cij : Communication Cost Between Module mi and Module mj

 p : Total Number of Processors

 pk : A Processor From the Set of Processors p Whose Identification Number is k

 fx : Operating Frequency of Processor px

 ranku: Upward Rank of the Job Module

 vx : Voltage Required to Sustain the Frequency of Processor px

 cx : Capacitance of the Processor px.

 ρi : Power Dissipated by the Processor pi

 Wij : Expected Computation Cost to Compute Module mi on the Processor pj

 𝒘 𝒊 : Average Computation Cost of Module mi

 Estatic : Ii is the Energy Dissipated While Processor is Sitting Idle

 Eprocessing: It is the amount of energy consumed when the processor is specifically

 processing the modules

 Etotal: Total Computational Energy for the Submitted Job

3.2 Heterogeneous Computing System

The proposed algorithm assumes the target computing environment is a set p of

interconnected heterogeneous processors and is represented by p = {px : 1 ≤ x ≤ N }.

Each processor is represented by a vector (fx, vx, cx) where fx represents the operating

frequency of the processor px, vx is voltage required to sustain the frequency of processor

px and cx is the capacitance of the processor px which is decided at the processor

manufacturing time. Heterogeneity of processors means the processors have different

speeds, operating voltage and processing capabilities. Each processor is composed of a

local memory unit and do not share memory of other processors so the communication

relies solely on message-passing. The algorithm assumes the processors in consideration

 37

are operating in two states. That means either they are processing a job module or sitting

idle. Depending upon the state of operation they draw two different voltages from the

power supply and correspondingly operate with two clock frequencies. Power consumed

by the processors depends on their state of operations details of which is described in

detail in section 3.6 of this chapter.

3.3 Job Characteristics

A job is assume to be in the form of directed acyclic graph (DAG) G= (V, E), where V is

set of v nodes and E is a set of e directed edges. A node in the DAG corresponds to a

module (m1, m2, m3, …, mn) which a set of instructions that must be executed

sequentially without preemption over a single processor. The weight of a module mi is

called the computation cost over a particular processor and is denoted by wi . ECC is a

V×p Expected Computation Cost matrix in which the entry ECC(i, j) denotes the

estimated execution time to compute module mi on processor pj. We presume every

module of a parallel program can execute at any processor although the completion times

on different processors may be different. The edges in the DAG which is denoted by eij

correspond to the communication messages and precedence constraints between the

modules mi and mj. The weight of an edge between two modules mi and mj is called the

communication cost of the edge and is denoted by Cij. The source module of an edge is

called the parent while the sink module is called the child. A module with no parent is

called an entry module and a module with no child is called an exit module. The

precedence constraints of a DAG indicate that a module cannot start execution before it

gathers all of the messages from its parent modules. The communication cost between

two modules assigned to the same processor is assumed to be zero while over different

processor it is non zero. A sample job with the above considerations is presented in

Figure 3.1

 38

Figure 3.1: A Sample Job Representation by Directed Acyclic Graph (DAG).

3.3.1 Data Structures and Parameters Used

The proposed scheduler considers the following data structure:

 Graph[n][n]: A matrix of size n×n where n is number of modules in the job. Graph[i][j]

represents communication cost from module mi to module mj which is equivalent to Cij.

Since a DAG has no self loop or cycle therefore the value of Graph[i][i] will always be

equal to zero.

 Module Node: The Module Node contains information about a Module number and

Level of module.

 ECC[n][p]: A matrix of size n×p where n represents the number of modules in the job

and p represents the total number of processors. The entry ECC[i][j] represents the

expected computation cost of module mi over the processor pj.

 39

 ranku[mi]: It is an one-dimensional array where entry rank[mi] represents a

 numeric value for module mi that corresponds to the upper rank for the module.

 ECE[n][p]: A matrix of size n×p where n represents the number of modules in

 the job and p represents the total number of processors. The entry ECE[i][j]

 represents the expected computation energy of module mi over the processor pj.

 Succ(mi): An array containing list of all immediate successor modules of module

 mi.

In order to achieve efficient schedule of a job G on heterogeneous processors, it is

required to define the following basic parameters:

 Processor Ready Time (RTi): It is the time duration for which processor pi is

 available for execution.

 Earliest Start Time (ESTi): It is defined as starting time of module mi on the

 processor where it can be started as early as possible. It can be written as

 E𝑺𝑻𝒊 = 𝟎, If the number of immediate parents are zero.

 𝑬𝑺𝑻𝒊 =
𝑚𝑎𝑥

𝒎𝟏 < 𝑗 < 𝒎𝒌
 𝑬𝑭𝑻𝒋 + 𝒄𝒋𝒊 , If number of parents are k. - - - (1)

 Where k (>0) represents number of immediate parents [34].

 Earliest Finish Time (EFTi): Earliest finish time of the scheduled module mi over the

 processor pj is defined as the sum of EST and Computation Time Wij of the module. It

 can be written as [33].

 𝑬𝑭𝑻𝒊 = 𝑬𝑺𝑻𝒊 + 𝑾𝒊𝒋 - - - - - - - - -- - - - - - -- (2)

 Turnaround Time (TATj): It is defined as the total time taken between the

 submission of the job for execution and return of the completion output to the user

 which is calculated as [33]

𝐓𝐀𝐓𝒊 = 𝒎𝒂𝒙(𝐄𝐅𝐓𝒎𝒆𝒙𝒊𝒕
) - (3)

3.4 Prioritization of Job Modules

Job modules are sequenced in the algorithms by their scheduling priorities that are based

on upward rank which is computed recursively by traversing the directed acyclic graph

 40

 (DAG) upward beginning from the exit module. Before scheduling each module mi is

labeled with the average computation cost 𝒘 𝒊 which is defined as:

𝒘 𝒊 =
𝒘𝒊𝒋

𝒑

𝑝

𝑗=1
 - (4)

For the exit module mexit the upward rank value is equal to:

ranku mexit = w exit - (5)

The upward rank of a module (mi) other than exit modules is recursively defined as:

ranku 𝒎𝒊 = 𝒘 𝒊 +
𝑚𝑎𝑥

𝒎𝒋 𝑠𝑢𝑐𝑐 𝒎𝒊
 𝒄𝒊𝒋 + ranku 𝒎𝒋 - - - - - - - - (6)

Where 𝒄𝒊𝒋 is the average communication cost of edge (i, j), succ(mi) is the set of

immediate successors of task mi and 𝒘 𝒊 is the average computation cost of module mi.

Modules are sorted in non decreasing order based on their ranku value. Tie-breaking is

done randomly. The non increasing order of ranku values presents a topological order of

modules which is a linear order that preserves precedence constraints.

3.5 QoS Parameters Addressed

In the proposed model a new algorithm called alloc_energy is designed for job

scheduling in distributed environments such as cloud computing infrastructures.

3.5.1 Energy

The algorithm exploits the heterogeneity in of cloud resources in order to find a solution

which reduces the computational energy consumption for a job. Furthermore, it suggests

the two states working of processors as static and processing states where least amount of

energy dissipates in static while processing state dissipates considerably higher amount of

energy. The model utilizes the two states working of processors which results in saving

of computational energy for the job.

3.5.2 Turnaround Time

Since the job under consideration are dependent set of modules, execution starts and end

with two specific modules called as entry module and exit module respectively. The

 41

algorithm evaluates the turnaround time of the submitted job which is the total time taken

between the submission of the job and return of the completion output.

3.6 Energy Consumption Model

The energy consumed by processor while executing a job denoted by Etotal is composed

of static energy Estatic that is energy dissipated while processor is sitting idle and

processing energy Eprocessing which is the amount of energy consumed when the processor

is specifically processing the job modules. Proposed model assumes the static energy

consumption is of least concern since the power dissipated while processing the job

module is the most significant factor for the energy consumption [34]. A typical scenario

of consumption of processing energy and static idle energy has been presented in Figure

3.2. The power dissipation while processing a job module ρprocessing with a CMOS

(Complementary Metal Oxide Semiconductor) based microprocessor is computed as

𝝆𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈(𝒊) = 𝒂𝒊 ∗ 𝒄𝒊 ∗ 𝒗𝒊
𝟐 ∗ 𝒇𝒊 - (7)

For a processor pi which is executing the job the parameters ɑi, ci, vi and fi are the number

of switches per clock cycle, the total capacitance load, the voltage supplied during

execution and the operating frequency respectively. The parameters ai and ci are device

related constants and depend upon device capacity. Thus, the energy consumed by a

processor pi while processing module mk is computed as:

𝑬𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈 = 𝝆𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈 ∗𝑾𝒊𝒌 - - - - - - - - - - - - - - - - -- - - -- - - - -- - - - - (8)

Here Wik is the computation cost of module mi on the processor pk. In the job execution

period, we assume that the processors operate at the highest level of supply voltage and at

highest frequency. However they scale down their voltage and frequency to lowest

supply voltage and lowest operational frequency during idle period. The power consumed

while the processor is not executing any job module and is sitting idle is called the static

power ρstatic which is fixed for a processor. Thus the total energy consumed in the idle

period by a processor Estatic can be computed as:

𝑬𝒔𝒕𝒂𝒕𝒊𝒄 = 𝝆𝒔𝒕𝒂𝒕𝒊𝒄(𝒊)
𝒑
𝒊=𝟏 ∗ 𝒕𝒊 - (9)

Where ti and 𝝆𝒔𝒕𝒂𝒕𝒊𝒄(𝒊) are the idle time and power dissipation respectively of processor

pi while sitting idle.

 42

Figure 3.2 Processing and Idle Energy Dissipation

The total energy consumed during processing the job module is computed as

𝐄𝐩𝐫𝐨𝐜𝐞𝐬𝐬𝐢𝐧𝐠_𝐭𝐨𝐭𝐚𝐥 = (𝐑𝐓𝒊 − 𝒕𝒊) ∗ 𝝆𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈𝑖

𝑝
𝒊=1 - - - - - - - - - - - - - - - - (10)

Where (RTi - ti) is the total time during which processor pi was executing the job modules

with the utilization of 𝝆𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈𝑖
 power of processor.

Therefore, the total of computation for the entire job is given as

𝑬𝒕𝒐𝒕𝒂𝒍 = 𝑬𝒔𝒕𝒂𝒕𝒊𝒄 + 𝑬𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈 - (11)

3.7 Proposed Algorithm

The proposed model aims to minimize the computational energy and evaluates

turnaround time for the job bounded for the execution. To realize it the job is submitted

in the desired format as explained in section 3.3. Thereafter, the scheduler works

according to the following mechanism which is described below in the following steps

 Static Energy

Turnaround Time

Time

p2 p3 p4 Processors p1

 43

Pseudo code for the proposed algorithm

alloc_energy ()

{
Evaluate the mean value of computation cost 𝑤 𝑖 of all the job modules
Construct a list of modules in reversed topological order i.e. RevTopoList

{

for each module mi in RevTopoList do

if module is exit module

 ranku of exit module = 𝑤 𝑖

endif

max = 0

for each child my of module mi do

if Ciy + ranku (my) > max then

max = Ciy + ranku (my)

endif

endfor

ranku (mi) = 𝑤 𝑖 + max

endfor

}

Sort the modules of scheduling list in non increasing order of their ranku value

{

while there is unscheduled module in the list do

Select the first module mi from the list for scheduling

for each processor pk in the processor- set (pk  p) do

Calculate expected computation energy matrix ECE (mi, pk)

Assign module mi to the processor pk that has minimum value in the

ECE matrix for module mi

endfor

endwhile

}

Turnaround time of the job is calculated as per equation (3)

{

for each processor px  p

Static energy is evaluated using equation (9)

Processing energy is evaluated using equation (10)

endfor

}

Total energy for the entire job is calculated as sum of static and processing energy using

equation (11)

}

 44

 In the first step modules of the entire job are leveled with average computation cost

𝒘 𝒊 which is calculated based on the equation (4) and list of modules in the reverse

topological order are generated.

 In second step ranku value for all modules are evaluated by taking in account the

mean computation cost of module and communication cost from each child of the

module. The detailed description for the upward rank evaluation has been provided

in section 3.4.

 In third step the modules are sorted with their rank value in non increasing order and

a list is generated.

 Following step starts with first modules mi in the list. The algorithm searches for an

appropriate idle time slot for module mi onto the processor pj which results in

offering minimum computational energy, at the time when all input data of mi sent

by mi„s immediate predecessors modules have arrived at processor pj. The search

continues until finding th e first idle time slot that is capable of holding the

computational cost of module mi. The module is removed from the list and the

process is repeated until all the modules in the list get scheduled. The expected

computational energy of modules for all processors is evaluated using equation (10)

and is provided in ECE matrix.

 Later when all modules get allocated on to the processors, turnaround time is

evaluated and presented as one of the outputs of the algorithm which is equal to total

time taken between the submission of the job and earliest finish time of exit module.

 In the last step static and processing energy for all the processors are computed

seperately by using equations (9) and (10). Total computational energy for entire job

computed as summation of all static and processing energy dissipated using

equation (11) and presented as output of the algorithm.

3.8 Illustrative Example

To better understand the model, an example is illustrated in this section so that the basic

working of the model can be understood. The parameters have been scaled down for a

 45

better illustration of the working of the model but the model is competent to work with

any data values. The example considers a scenario where four heterogeneous processors

are fully interconnected and are available for execution. The schedule for each module

allocated on a processor can be represented as pn [ESTi, mi, EFTi] using EST and EFT

values of that module. Initially, all processors are considered to be idle. Since the job

bounded for computation is represented in the form of DAG, let us assume the job

presented in Figure 3.1 as a sample job for execution. The job comprises of nine modules

m1, m2, m3, … m9 that are represented by a circle having an entry for module number.

The edges connecting various modules represent the Communication Cost (Cij) between

modules. The expected computation cost matrix (ECC) for the job is given in the Table

3.1 of which each entry ECC(i,j) denotes expected computation cost of module mi over

processor pj (in milliseconds).

Table 3.1

Expected Computation Cost Matrix

Modules p1 p2 p3 p4

m1 9 12 16 11

m2 15 11 13 9

m3 14 10 9 12

m4 12 14 7 16

m5 13 9 10 14

m6 14 11 16 8

m7 8 16 11 13

m8 10 8 12 14

m9 16 12 9 14

As per described in algorithm in section 3.4, we first evaluate the mean value of the

expected computation cost 𝒘 𝒊 for each module by the help of equation (4). Modules with

their 𝒘 𝒊 value are listed in the Table 3.2.

 46

Table 3.2

Modules 𝑤 𝑖

m1 12.00

m2 12.00

m3 11.25

m4 12.25

m5 11.50

m6 12.25

m7 12.00

m8 11.00

m9 12.75

With the utilization of 𝒘 𝒊 and Cij values in equation (5) and (6) the upward rank values

for each module calculated and is presented as Table 3.3

Table 3.3

Upward Rank of the Job Modules

Modules m1 m2 m3 m4 m5 m6 m7 m8 m9

ranku 109.25 82.25 80.50 85.25 59.25 60.00 38.75 36.75 12.75

After the calculation of ranku values, priorities are assigned to each module. The highest

priority is given to the module which has highest value for ranku. The modules are

ordered as per their ranku value in non increasing order. Hence, the final priority list of

modules is presented as

m1 m4 m2 m3 m6 m5 m7 m8 m9

Let us assume there are four heterogeneous hypothetical processors that are fully

interconnected and all inter processor communications between them are assumed to be

performed without contention. The proposed algorithms assume computation and

 47

communications are overlapped with each other. Since processors are under

consideration are available with two state of operation the power dissipated by them

differs accordingly. Depends on their state of operations, typical parameters of four

processors under consideration are described in Table 3.4

Table 3.4

Parameters of Heterogeneous Processors

Processo

rs

𝝆𝒔𝒕𝒂𝒕𝒊𝒄 c(×1

0
-10

Farad

)

v(Volt

s)

f(GH

z)

𝝆𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈(W

att)

p1 65.2 254 1.44 2.58 135.88

p2 37.2 278 1.30 2.28 107.11

p3 50.0 266 1.52 2.64 162.24

p4 77.0 292 1.36 2.32 125.30

The algorithm considers the power dissipated by processors while sitting idle is 𝝆𝒔𝒕𝒂𝒕𝒊𝒄

that is fixed and the corresponding value for each processor is given in the Table 3.4. The

power dissipated by the processors during the execution of job modules is termed as

𝝆𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈 which is calculated by the use of equation (7).

Table 3.5

Expected Computational Energy Matrix

Modules p1 p2 p3 p4

m1 1.2229 1.2853 2.5958 1.3783

m2 2.0382 1.1782 2.1091 1.1277

m3 1.9023 1.0711 1.4601 1.5036

m4 1.6305 1.4995 1.1356 2.0048

m5 1.7664 0.9639 1.6224 1.7542

m6 1.9023 1.1782 2.5958 1.0024

m7 1.0870 1.7137 1.7846 1.6289

 48

m8 1.3588 0.8568 1.9468 1.7542

m9 2.1740 1.2853 1.4601 1.7542

The Expected Computational Energy Matrix ECE[n][p] has been presented in Table 3.4.

Entries ECE(i, j) of matrix represents the energy consumed by processors while

executing the module the value of which are provided by calculation based on equation

(8). The final schedule for modules is generated according to the entries of Table 3.5. The

search for an appropriate idle time slot of a module mi on a processor pj starts at time

equal to ESTi of mi on pj. That means the time when all input data of mi sent by mi‟s

immediate predecessor modules have arrived on processor pj. The search continues until

finding the first idle time slot that is capable of holding the computation cost of module

mi. The final schedule for the job considered in our example is given in Figure 3.3

Schedule for the DAG Given in Figure 3.1

 0 - 15 15 - 30 30 - 45 45 - 60 60 - 75 75 - 90 90 - 105

p1

p2

p3

p4

 Figure 3.3 Schedule fort The Job Considered In Illustrative Example

After all the modules of the job is scheduled the turnaround time of the job is calculated

using the equation (3). In this algorithm the turnaround time of job is simply EFT

(Earliest Finish Time) of the exit module mexit. Therefore the turnaround time for the

entire job is given as

TATj = 96.00 milliseconds.

The idle time and processing time for each processor during the job execution are

summarized as

10

15

12

11

8

14

m1(0-9) m7(62-70)

m3(21-31) m5(44-53) m8(58-66) m9(84-96)

m4(19-26)

m2(24-33) m6(39-47)

11

9

13

 49

Processors p1 p2 p3 p4

Idle Time (ti) 79 57 89 79

Processing Time (TAT-ti) 17 39 7 17

The total energy consumption Etotal accounts for both the energy required to execute the

assigned modules, and the energy that each processor consumes while sitting idle which

is calculated by th help of equations (9), (10) and(11). The split of static and processing

energy by each processor are shown in tabular form given below as

Processors p1 p2 p3 p4

Static Energy (Joule) 5.1508 2.1204 4.4500 6.0830

Processing Energy (Joule) 2.3099 4.1771 1.1356 2.1301

The summation of static energy dissipated by all the processors while executing the job

is found to be

Estatiic = 17.8042 Joule.

Similarly, the energy consumed by all the processors while processong the job is

calculated which is equal to

Eprocessing = 09.7527 Joule.

The total energy dissipated while execution of the entire job is summation of static and

processing energy consumed by the processors which is equal to

Etotal = Estatic + Eprocessing = 27.5569 Joule.

3.9 Simulation Results

To evaluate the performance of the proposed model in terms of energy consumption and

schedule length rigorous simulation runs were conducted. Simulation runs were carried

out on Intel Core i7-3770, 3.4 GHz, 6.0 GB RAM machine running under Windows 7

Professional 64-bit Operating System. The programming language of choice was

MATLAB R2013a (Version 8.1). The experiments use large number of random DAG

with characteristics described in section 3.3. The study started with analyzing the model‟s

performance by randomly varying the job attributes like the number of modules in the job

 50

and their computation and communication requirements. While observing total

computational energy (Etotal) and turnaround time for the job (TATj) the model was

simulated with different consideration taking into account for example running a job with

different number of modules over fixed number of processors and running a single job

over different number of processors. The same job is then simulated using the scheduling

strategy of round-robin and the Etotal observed is then compared with the Etotal obtained

with the proposed model. The results are summarized as Figure 3.4. It can be observed

that the scheduling strategy based on proposed algorithm always results in less Etotal.

Figure 3.4 Analysis of Computational Energy Consumptions

For the above experiments, the TATj generated for each job has also been determined

and plotted against increase in the job modules as shown in Figure 3.5

10 30 50 70 90 110 130 150

Total Computational

Energy by Proposed Model
133.8 291.5 449.4 724.7 856.1 1024.6 1267.9 1305.5

Total Computational

Energy by Round-robin

Model
234.1 539.8 813.6 1200.9 1603.2 1843.9 2067.5 2572.4

0

500

1000

1500

2000

2500

3000

T
o

ta
l

C
o

m
p

u
ta

ti
o

n
a

l
E

n
er

g
y Analysis of Computational Energies

 Jobs with Increasing Number of Modules

 51

Figure 3.5 Turnaround Time of Job Modules with Increase in Numbers of Modules in Job

The next set of experiments intended to observe the effect of the change in Etotal for the

same job with varying number of processors. In this case, keeping the number of modules

and their computation cost same. Since the increase in number of processors creates more

idle time slots which leads to more static energy consumption in addition with

computational energy thus larger value of Etotal. The results obtained have been presented

in Figure 3.6

Figure 3.6 Variation of Computational Energy with Increase in Number of Processors

Observations

0

500

1000

1500

2000

2500

0 20 40 60 80 100 120 140 160

T
u

rn
a

ro
u

n
d

 T
im

e
fo

r
th

e
J

o
b

Increasing Number of Job Modules

Turnaround Time for the Job with varying Modules

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80 100 120 140T
o

ta
l

C
o

m
p

u
ta

ti
o

n
a

l
E

n
er

g
y

Increasing Number of Processors

Computational Energy Variation with Number of Processors

 52

 The allocation of modules gets affected by the two factors considered for allocation viz.

computational energy of module on to a processor, time to finish execution of the

previous workload on to a processor.

 The proposed model allocates modules on to the processor which consume minimum

computational energy among all while taking care the dependency of module.

 For a fixed number of processors, total computational energy increases with increase in

modules of the job as processors have to execute large number of modules.

 Processors may have two working states i.e. idle and processing states. The energy

consumption rate is different under different modes.

 The total computational energy increases with the increase in number of processors for

the same job becouse idle time of processors increases hence static energy.

 Execution of a job on the distributed systems incurs a substantial communication cost

which results in increase in turnaround time with increase in number of modules in the

job.

Many experiments were conducted to study the behavior of the model but the results obtained

were observed to be along the same line as reported in this work.

 53

Chapter 4

Conclusion and Future Research Direction

Scheduling mechanism is an important issue in case of computing and is very much

necessary to improve the server and resource utilization also to increases the performance

of the computer. In this work, issue of allocating dependent job modules onto

heterogeneous processors is addressed with an objective of minimization of

computational energy. Here the allocation scheme considers both energy consumption

and communication overhead between the processors. To facilitate the presentation of the

algorithm appropriate mathematical modeling was presented to describe a computational

system framework, parallel job modules with precedence constraints and energy

consumption. The simulation experiments have been conducted to study the effectiveness

of the model in terms of energy consumption and turnaround time using a large set of

randomly generated DAGs. The experiments results show that the model based on

proposed algorithm always results in saving significant computational energy.

Efficient scheduling of job modules represented by DAG is vital to maximize the benefits

of execution. The DAG structure frequently occurs in many regular and irregular

applications. However finding an optimal schedule without violating precedence

constraints among job modules is known to be an NP-Complete problem. Consequently,

various category of heuristic algorithm such as list-scheduling, clustering and task

duplication-based algorithms have been developed in literature. The list-scheduling

algorithm provides better scheduling with minimum overhead while clustering and task

duplication-based algorithms reduce the communication cost thereby minimizing the

schedule length. Further genetic approach is also applied to job scheduling in order to

generate better schedule than heuristic algorithm.

In this work, the model is list-based heuristic algorithm which has been developed for

completely connected heterogeneous processors. Priority of the job modules is assigned

based on a parameter called upper rank which is evaluated by taking into account the size

of data received from predecessor modules and average computation cost of modules.

 54

The algorithm schedule job modules based on their priority while adopting insertion

based policy. Modules are scheduled on suitable processor which dissipates minimum

computational energy thus results in reducing the total computational energy for the job.

The algorithm developed in this work can be further extended in many aspects as follows:

 A comparative study of all proposed model with established peers.

 The developed algorithm assumes much idealized model of the target system

 where processors are fully connected and all communications are performed

 concurrently without contention. Hence the developed algorithm can be extended

 to arbitrarily connected processors by considering the communication while

 scheduling the task.

 The algorithm can be extended to include energy consumption of components

 such as communication channels.

 The algorithm developed in this work can be extended to dynamic scheduling

 environment so that limitations of static scheduling can be overcome.

 As the number of processors increases, the likelihood of processors and link

 failure also increases. Hence scheduling with fault tolerance becomes an

 important issue. The developed algorithm may extend to include fault tolerance

 feature.

 55

References

1 Buyya, Broberg, Goscinski “Cloud Computing Principles and paradigms”, John

 Wiley & Sons, 2011.

2 Hwang, Kai, Fox, Geoffary C. and Dongarra, Jack J, “ Distributed and Cloud

Computing: From Parallel Processing to the Internet of Things”, Morgan

Kauffman, 2013.

3 Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) “Cloud computing

and emerging IT platforms: vision, hype, and reality for delivering computing as

the fifth utility.“ Futur Gener Comput Syst 25(6):599-616.

4 Buyya, R. (1999), editor. “High Performance Cluster Computing: Architectures

and Systems.” Prentice Hall - PTR, NJ, USA, 1999.

5 Parashar, M. and Lee, C. (2005). “Grid Computing - Introduction and Overview.”

Proceedings of the IEEE, Special Issue on Grid Computing. IEEE Press, 93 (3)

March.

6 Mell P, Grance T: “The NIST definition of Cloud Computing.” Gaithersburg,

MD: NIST, Special Publication 800–145; 2011.

7 http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/1_Introduction.html

8 Mark Wallis, Frans Henskens , Michael Hannaford, “Expanding the Cloud: A

Component-Based Architecture to Application Deployment on the Internet,”

Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster,

Cloud and Grid Computing, p.569-570, May 17-20, 2010.

9 https://toyinogunmefun.wordpress.com/2011/06/16/effective-data-protection-for-

cloud-computing-and-its-relevance-in-the-nigeria-economy.

10 A. J. Younge, R. Henschel, J. T. Brown, G. von Laszewski, J. Qiu, and G. C. Fox,

"Analysis of virtualization technologies for high performance computing

environments," International Conference on Cloud Computing, 2011.

11 Marinescu, Dan C., “Cloud Computing: Theory and Practice”, Morgan Kauffman,

2013.

12 Banino C, Beaumont O, Carter L, Ferrante J, Legrand A, Robert Y. “Scheduling

http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/1_Introduction.html
https://toyinogunmefun.wordpress.com/2011/06/16/effective-data-protection-for-

 56

strategies for master–lave tasking on heterogeneous processor platforms.” IEEE

Transactions on Parallel and Distributed Systems 2004; 15(4):319–330.

13 M. Shahid, Z Raza, M Sajid. “Level based Batch scheduling strategy with idle

slot reduction under DAG constraints for computational grid,” Journal of Systems

and Software, 2015

14 S. K. Panda and P. K. Jana, “An Efficient Task Scheduling Algorithm for

Heterogeneous Multi-cloud Environment”, 3rd IEEE International Conference on

Advances in Computing, Communications and Informatics, pp. 1204-1209, 2014.

15 M. Shahid and Z. Raza, “Level based batch Scheduling Strategies for

Computational Grid,” Int. J. Grid and Utility Computing, Inderscience

publisher,Vol. 5, No. 2, pp 135-148, 2014.

16 Ullman JD (1975) “NP-complete scheduling problems.” J Comput Syst Sci

10(3):384–393.

17 T. Cormen, C. Leiserson, R. Rivest, and C. Stein, “Introduction to Algorithms,”

2nd edition, McGraw Hill, New York, 2001.

18 J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker. “Complexity of machine

scheduling problems,” Ann Discrete Math, 1 (1977), pp. 343–362.

19 https://en.wikipedia.org/wiki/NP-complete#/media/File:P_np_np-complete _np-hard.svg

20 D. Applegate, R. Bixby, V. Chvatal, W. “Cook On the solution of traveling

salesman problems,” Documenta Math. ICM (1998), pp. 645–656.

21 Sanjeev Arora, “Polynomial time approximation schemes for Euclidean traveling

salesman and other geometric problems,” Journal of the ACM (JACM), v.45 n.5,

p.753-782, Sept. 1998.

22 Lance Fortnow, “The status of the P versus NP problem,” Communications of the

ACM, v.52 n.9, September 2009.

23 https://www.vmware.com/products/vsphere/features/drs-dpm

24 Yu-Kwong Kwok , Ishfaq Ahmad, “Static Scheduling Algorithms for Allocating

Directed Task Graphs to Multiprocessors,” ACM Computing Surveys (CSUR),

v.31 n.4, p.406-471, Dec. 1999.

https://scholar.google.co.in/scholar?oi=bibs&cluster=1093869614297960183&btnI=1&hl=en
https://scholar.google.co.in/scholar?oi=bibs&cluster=1093869614297960183&btnI=1&hl=en
https://scholar.google.co.in/scholar?oi=bibs&cluster=1093869614297960183&btnI=1&hl=en
https://en.wikipedia.org/wiki/NP-complete#/media/File:P_np_np-complete _np
http://dl.acm.org/citation.cfm?id=290180&CFID=695393525&CFTOKEN=53060886
http://dl.acm.org/citation.cfm?id=290180&CFID=695393525&CFTOKEN=53060886
http://dl.acm.org/citation.cfm?id=290180&CFID=695393525&CFTOKEN=53060886
http://dl.acm.org/citation.cfm?id=1562186&CFID=695393525&CFTOKEN=53060886
http://dl.acm.org/citation.cfm?id=1562186&CFID=695393525&CFTOKEN=53060886
http://dl.acm.org/citation.cfm?id=344618&CFID=695393525&CFTOKEN=53060886
http://dl.acm.org/citation.cfm?id=344618&CFID=695393525&CFTOKEN=53060886
http://dl.acm.org/citation.cfm?id=344618&CFID=695393525&CFTOKEN=53060886

 57

25 J. Bruno, E.G. Coffman, and R. Sethi, “Scheduling Independent Tasks to Reduce

Mean Finishing Time,” Communications of the ACM, vol. 17, no. 7, July 1974,

pp. 382-387.

26 D.K. Friesen, “Tighter Bounds for LPT Scheduling on Uniform Processors,”

SIAM Journal on Computing, vol. 16, no. 3, June 1987, pp. 554-560.

27 R.L. Graham, “Bounds for Certain Multiprocessing Anomalies,” Bell System

Technical Journal, 45, 1966, pp. 1563-1581.

28 H. Gabow, “An Almost Linear Algorithm for Two-Processor Scheduling,”

Journal of the ACM, 29, 3, 1982, pp. 766-780.

29 T.C. Hu, “Parallel Sequencing and Assembly Line Problems,” Operations

Research, vol. 19, no. 6, Nov. 1961, pp. 841-848.

30 W.H. Kohler, “A Preliminary Evaluation of the Critical Path Method for

Scheduling Tasks on Multiprocessor Systems,” IEEE Transactions on Computers,

Dec. 1975, pp. 1235- 1238.

31 D.S. Johnson, C.H. Papadimitriou and M. Yannakakis, “How Easy Is Local

Search?,” Journal of Computer and System Sciences, vol. 37, no. 1, Aug. 1988,

pp. 79-100.

32 V. Sarkar, “Partitioning and Scheduling Parallel Programs for Multiprocessors,”

MIT Press, Cambridge, MA, 1989.

33 Topcuoglu H, Hariri S, Wu M-Y. “Performance-effective and low-complexity

task scheduling for heterogeneous computing.” IEEE Transactions on Parallel

and Distributed Systems 2002; 13(3):260–274.

34 A. Chandrakasan et al, "Low power CMOS digital design," IEEE Journal of Solid

State Circuits, pp. 473-484, April 1992.

