
DISTRIBUTED QUERY PROCESSING USING

ARTIFICIAL IMMUNE SYSTEM

A dissertation submitted to the Jawaharlal Nehru University

in partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE AND TECHNOLOGY

BY

RUBY RANI

School Of Computer and Systems Sciences

Jawaharlal Nehru University

New Delhi-110067

JULY, 2015

Dedicated

To

My Family

i | P a g e

ii | P a g e

iii | P a g e

1. ACKNOWLEDGEMENT

Without the support, patience and guidance of the following people, this study would

not have been completed. I owe my gratitude to all those people who have made this

dissertation possible

My deepest gratitude is to my supervisor, Dr. T.V Vijay Kumar for the great guidance

in my dissertation. His patience and support helped me overcome many crisis situations

and finish this dissertation. His wisdom, knowledge and commitment to the highest

standards inspired and motivated me.

I would also like to thank Dean Prof. C.P Katti, SC&SS, JNU Delhi, for their support,

encouragement and providing a research oriented environment. I would like to express

my sincere thanks to SC & SS staff for providing all the needed resources and their

helpful nature.

I thank my lab mates Mr. Dilip Kumar, Mr. Biri Arun, Mr. Jay Prakash Soni, Mrs.

Neha Singh and sincere thanks to Ms. Monika Yadav for the stimulating discussions

and their moral support.

To my friends, thank you for listening, offering me advice, and supporting me through

this entire process. Special thanks to Mr. Ashish Kumar, Ms. Hema, Mr. Mahender

Kumar, Mr. Mayank, Ms. Nirmal and Mr. Sudhakar for the sleepless nights we

were working together before deadlines. The editing advice, general help and friendship

were all greatly appreciated and Robin Canteen, where most of my research-oriented

discussions have taken place.

Last but not the least, I would like to thank my family: my parents, for giving birth to

me at the first place, their priceless love and care, their spiritual support throughout my

life, their prayers.

Ruby Rani

iv | P a g e

2. ABSTRACT

The objective of distributed query processing is to generate efficient and optimized

distributed query plans. Optimization of distributed query plan is based on local

processing cost, and site to site cost. Among these, Site to site cost is the most major

cost dictating the query performance of a distributed database system. Thus, the aim is

to generate query plans that have a minimum site to site communication. One such GA

based distributed query plan generation (DQPG) algorithm that generates close query

plans for a distributed query has been in [VSV10] [VSV11]. This DQPG problem has

been addressed using a bioinspired technique artificial immune system (AIS) in this

dissertation. In this regard, two AIS based DQPG models DQPGAIS-I and DQPGAIS-II

are proposed that generates Top-K query Plans for a given distributed query. In

DQPGAIS-I, the mutation rate is computed by the product of fitness value and the

number of sites used in the query plan. On the other hand, generated clones of antibody

query plans in DQPGAIS-II are mutated with a constant rate using Roulette Wheel

selection. DQPGAIS-I and DQPGAIS-II use different measures to compute the number

of clones. Further, experimental based comparison of the two proposed models

DQPGAIS-I and DQPGAIS-II with DQPGGA showed that both the proposed models are

able to generate query plans having comparatively lower average QPC. The query plans,

so generated would lead to efficient processing of distributed queries.

v | P a g e

3. TABLE OF CONTENTS

DECLARATION……………………………………………………………………………….i

CERTIFICATE .. ii

ACKNOWLEDGEMENT .. iii

ABSTRACT .. iv

TABLE OF CONTENTS ... v

LIST OF FIGURES…………………………………...………..……………………………vii

LIST OF TABLES .. ix

LIST OF ABBREVIATIONS ... xi

LIST OF SYMBOLS ... xii

1 Introduction ... 1

1.1 Distributed Database Systems .. 4

1.1.1 Objectives of DDBMS ... 4

1.2 Distributed Query Processing .. 6

1.2.1 Phases in DQP.. 7

1.3 Distributed Query Processor .. 10

1.3.1 Type of Optimization ... 10

1.3.2 Use of Semi-joins ... 12

1.4 The DQPG ... 12

1.5 The Aim of dissertation ... 14

1.6 Outline of the Dissertation ... 15

2 Artificial Immune System ... 16

2.1 Nature Inspired Techniques ... 16

2.1.1 Nature inspired techniques categories ... 17

2.1.1.1 Evolutionary Algorithms .. 17

2.1.1.2 Physical Algorithms ... 18

2.1.1.3 Swarm Intelligence:.. 19

2.1.1.4 Bio-inspired Algorithms ... 19

vi | P a g e

2.2 Immune System ... 21

2.2.1 Biological Immune system .. 21

2.2.2 Response in the immune system .. 23

2.3 BIOLOGICAL INSPIRED AIS ... 23

2.3.1 The Bone Marrow Object .. 24

2.3.2 B cell objects .. 24

2.3.3 Antibodies .. 24

2.3.4 Antigen ... 24

2.3.5 Antibody/Antigen Discrimination ... 25

2.4 Clonal Selection ... 26

2.4.1 CLONALG .. 27

2.5 Related work .. 29

3 DQPG using AIS ... 32

3.1 DQPGAIS-I .. 32

3.1.1 The DQPGAIS -1 Algorithm ... 33

3.1.2 DQPGAIS-1 Example .. 36

3.2 DQPGAIS-II... 44

3.2.1 DQPGAIS-II Algorithm ... 45

3.2.2 DQPGAIS-II Example ... 46

3.3 Comparison of the Proposed models ... 55

3.4 Experimental results ... 56

3.4.1 DQPGAIS-I vs DQPGGA ... 56

3.4.2 DQPGAIS-II vs DQPGGA .. 60

4 CONCLUSION .. 65

References .. 66

Bibliography .. 74

vii | P a g e

LIST OF FIGURES

Figure 1. 1 Traditional File System [EN10] ... 1

Figure 1. 2 Database Management System [EN10] .. 2

Figure 1. 3 Centralized Database Systems [EN10] ... 3

Figure 1. 4 Distributed Database Systems [EN10] ... 4

Figure 1. 5 Distributed Query Optimization Processing [MHH09]. 7

Figure 2. 1 Classification of Nature-inspired Techniques [L06] 17

Figure 2. 2 Binding between Antigen and Antibody [HC96] 22

Figure 2. 3 B cell Stimulation Level Effect [HC96] .. 25

Figure 2.4 Clonal Selection, Proliferation, Affinity Maturation and memory cells

maintenance[LJ02] ... 27

Figure 2. 5 CLONALG Algorithm [LJ02] .. 28

Figure 3. 1 DQPGAIS-I algorithm .. 33

Figure 3.2 Roulette Wheel Selection algorithm [ATA12]. ... 34

Figure 3.3 Relation-site Matrix. .. 36

Figure 3.4 DQPGAIS-II algorithm. .. 45

Figure 3. 5 Top-4 query plans for clone generation with their probability. 48

Figure 3.6 Top 4 query plans for clone generation with their probability. 52

Figure 3.7 GA vs AIS for 12 Relations. .. 57

Figure 3.8 GA vs AIS for 16 Relations. .. 57

Figure 3.9 GA vs AIS for 20 Relations. .. 57

Figure 3.10 GA vs AIS for 24 Relations. .. 58

viii | P a g e

Figure 3.11 GA vs AIS for 28 Relations. .. 58

Figure 3. 12 GA vs AIS Top-k Query Plans for 12 Relations. 59

Figure 3. 13 GA vs AIS Top-k Query Plans for 16 Relations. 59

Figure 3. 14 GA vs AIS Top-k Query Plans for 20 Relations. 59

Figure 3. 15 GA vs AIS Top-k Query Plans for 24 Relations. 60

Figure 3. 16 GA vs AIS Top-k Query Plans for 28 Relations. 60

Figure 3. 17 GA vs AIS for 12 Relations. ... 61

Figure 3. 18 GA vs AIS for 16 Relations. ... 61

Figure 3. 19 GA vs AIS for 20 Relations. ... 62

Figure 3. 20 GA vs AIS for 24 Relations. ... 62

Figure 3. 21 GA vs AIS Top-k Query Plans for 12 Relations. 63

Figure 3. 22 GA vs AIS Top-k Query Plans for 16 Relations. 63

Figure 3. 23 GA vs AIS Top-k Query Plans for 20 Relations. 64

Figure 3. 24 GA vs AIS Top-k Query Plans for 24 Relations. 64

ix | P a g e

4. LIST OF TABLES

Table 1. 1 Relations along with their Sites.. 13

Table 1. 2 Valid Query Plans .. 13

Table 1. 3 Query Plans with QPC ... 14

Table 3.1 Query Plans population with QPC. ... 37

Table 3.2 Top-4 query plans. .. 37

Table 3.3 Sum of Fitness ... 37

Table 3.4 Clone computation using probability distribution. 38

Table 3. 5 Clones of Top-4 selected query plans. ... 38

Table 3. 6 Mutated Query Plans with their QPC... 39

Table 3.7 Combination of Mutated clones and existing population. 40

Table 3.8 Population for next generation. ... 40

Table 3.9 Selected Top-4 query plan for 2nd Generation. .. 40

Table 3.10 Z1 value computation using Roulette Wheel for 2nd Generation. 41

Table 3.11 Clone proportion computation of each query plan in ‘n’ in 2nd Generation.

.. 41

Table 3.12 Clones of Top-4 query plans in 2nd Generation. 42

Table 3.13 Mutated Query Plans with respective computed QPC in 2nd Generation.

.. 42

Table 3.14 Combination of Mutated clones and existing population. 43

Table 3.15 Population for next generation. ... 44

Table 3.16 Antibody Query Plans population with respective QPC. 47

Table 3.17 Top-4 query plans. .. 47

x | P a g e

Table 3.18 Sum of fitness using Roulette Wheel. ... 47

Table 3.19 Probability of each query plans. .. 47

Table 3.21 Clones of top-4 selected query plans based on its probability. 48

Table 3.22 Probability of selected query plan. .. 49

Table 3.23 Cumulative probability of best 4 query plans. .. 49

Table 3.24 Mutated clones with their fitness. ... 49

Table 3.25 Combination of Mutated clones and existing population. 50

Table 3.26 Population for next generation. ... 51

Table 3.27 Selected Top-4 query plan for 2nd Generation. .. 51

Table 3.28 Sum of fitness using Roulette Wheel. ... 51

Table 3.29 Clone computation Probability of top-4 query plan. 51

Table 3.30 Each query plans proportion based on fitness. .. 52

Table 3.31 Clones of top ‘n’ selected query plans based on its probability. 53

Table 3.32 Sum of Probability of selected query plans... 53

Table 3.33 Roulette Wheel for selected Query Plans for mutation. 53

Table 3.34 Mutated clones with their respective fitness. .. 54

Table 3.35 Combination of Mutated clones and existing population. 55

Table 3.36 Population for next generation. ... 55

xi | P a g e

5. LIST OF ABBREVIATIONS

ACID Atomicity, Consistency, Integrity, Durability

AIS Artificial Immune System

DBMS Database Management System

DDBMS Distributed Database Management System

DDBS Distributed Database System

DQP Distributed Query Processor

DQPG Distributed Query Plan Generation

GA Genetic Algorithm

LAN Local Area Network

MAN Metropolitan Area Network

QPC Query Processing Cost

QP Query Plan

QPN Query Plan Number

RDBMS Relational Database Management System

WAN Wide Area Network

xii | P a g e

6. LIST OF SYMBOLS

R Number of Relations used in Relation-Site Matrix

S Number of sites in Relation-Site Matrix

Si Number of times ith site used in a query plan

A Attribute in a Distributed Query

P Population Size

Ab Antibody

N Top Query Plans in DQPGAIS-I & DQPGAIS-II

n1 Top antibodies in CLONALG

N Number of Relations used in a Query Plan

Cn Total Number of Clones

RS Relation-Site Matrix

GP Maximum Number of Generations

Β Parameter used to compute number of clones

PQP Roulette Wheel Fitness function

Pm Mutation Rate

α

An

 A Constant used to calculate β

Antigens Population

1 | P a g e

CHAPTER 1

1. INTRODUCTION

Data is the basic necessity of computer science field to do various operations such as

computational operations, mathematical operations for some purpose. So, database is used

as a repository to store coherent, interrelated and similar kind of data to fulfill different

aspects [D95][EN10]. Database Management System is a computerized system, which

is used to manage database and to process user queries [D95]. DBMS provides an

environment that is most convenient and efficient to retrieve information and process it.

DBMS provides an abstract view of the database and does not provide the physical

structure of the database, as it is too complex to understand for users [D95][EN10].

Figure 1.1 Traditional File System [EN10].

2 | P a g e

Both Traditional file system and Database Management System have been shown in Figure

1.1 and Figure 1.2 respectively. In Traditional File System, data was accessed in a

sequential manner, and different copies of data were maintained. But, with time, data grew

exponentially. So, database properties such as data integration, data security, database

atomicity, consistency, and durability, etc. came into existence and these were difficult to

maintain. Thus, the traditional file system was not efficient to serve users’ request in an

efficient way. To fulfill these requirements, a DBMS was required to keep the data at a

place from where data would be accessible according to the requirements of users.

Figure 1.2 Database Management System [EN10].

In RDBMS, data were stored in the form of relations and constraints may be applied as

“keys”. In the 1980s, a query language known as “Structure Query Language” was

developed for RDBMS. The query language was composed of data definition, data

manipulation and data control language [E74] [OV91]. Later, in the 1980s and 1990s a

revolution came in the field of DBMS and various types of database management systems

3 | P a g e

were developed. Some of these are MySQL, Oracle, MS-Access, DB2, SQL Server,

RDBMS, dBase etc [OV91][OV11]. These were centralized database management

systems having central control. In central database, a single site was used to serve various

users requests in different forms depending on types of requests. The central mainframe,

as shown in Figure 1.3, was treated as a database server and clients used it from different

terminals of LAN, WAN, MAN [OV91].

Figure 1.3 Centralized Database Systems [EN10].

These kinds of systems were very helpful in managing the data at a single place as well as

security and integrity of data could be easily maintained. The most critical problem was

the failure of the centralized server resulting in the loss of that loss of the whole data stored

on the central server [OV91]. There was no alternative to retrieve the lost data, so this

caused the entire system to fail. This made the entire system less reliable. Even

communication cost for a remote terminal was very high and traffic over the network was

also increased. So, solution to these major problems were provided by a distributed

database management system, which is discussed in the next section [SG98][SL90].

4 | P a g e

1.1. DISTRIBUTED DATABASE SYSTEMS

Distributed database, which is shown in Figure 1.4, is a logically interrelated database

dispersed physically across the world on different nodes through a computer network.

Distributed database is administered centrally but gives local flexibility and customization.

In distributed database, there should be a central body that manages the communication

among database instances at different sites [OV91][SL90].

Figure 1.4 Distributed Database Systems [EN10].

1.1.1 Objectives of DDBMS

There are various objectives of DDBMS, whose main purpose is the ease of data access to

users at different nodes worldwide some of which are explained below.

Location transparency: The user working on a data need not to know the location of the

data. The requested query should be answered automatically if requested data is present at

various sites without the intervention of the user. In ideal case, a single query may fulfill

the request by joining data from different relations present on various sites as if the whole

data are present on a single site[OV91][OZ97][CP84].

5 | P a g e

Local Autonomy: A local site should administer itself, if central node fails. It should

provide the whole access of data to all local users and should manage data security at local

level. If local site fails, then recovery of data must be there [OZ97][CP84].

Replication Transparency: In distributed database system, replicated data is present

across various sites. Regardless of replicated data, design goal of DBMS says that the

developer should treat the whole data at a single node. It is also known as fragmentation

transparency. To guarantee it, data integrity is maintained, concurrency transparency and

failure transparency must be preserved [OV11][OZ97][CP84].

Failure Transparency: Each node in DDBMS can be affected by same failure, as in

centralized systems. An additional failure, known as communication links failure, occurs

in DDBMS. A system can be robust only in a situation, if it can detect the failure and

reconfigure the whole system so that the computation should be in process and can be

recovered with the recovery of a link. In failure transparency, either all the operations of

the transaction must complete or none is committed. The integrity of data is maintained by

commit protocol [OV11][CP84].

Concurrency Transparency: DDBMS should be designed in such a way that although a

distributed system runs many transactions in parallel, but it should appear that only one

transaction is in the process, and the result must come out to be the same, as it comes when

transactions run in a serial order. It means that there must not be any interference with the

other transactions running simultaneously [OV11] [OZ97].

Query Optimization: In distributed database systems, query response is collection of the

results from different sites based on the query complexity, availability of data at different

6 | P a g e

sites and how the data is distributed across the network. This whole process is unknown to

the user because of the location transparent property [CHF+10]. Processing of whole

relation is more difficult and time consuming, if only a small part of it is required. However,

if the query is processed based on replication and fragmentation; then it is easier and more

efficient [K00][MHH09].

Distributed Transaction Management: Distributed database transactions should be

managed correctly. For this purpose, there is a manager known as transaction manager that

manages the transaction logs before and after database changes. The transaction manager

also manages the concurrency control and integrity of data during concurrent execution of

the transactions [D95][EN10][OV91][OV11][OZ97].

Platform Independence: DDBMS works on different platforms such as on different

hardware platforms, on different operating systems and also supports variety of

communication networks [OV11].

1.2. DISTRIBUTED QUERY PROCESSING

In distributed database system, query processing may require responses from various sites,

which is different from query processing in the centralized system. The response from

different sites has to be assembled at a single site. The major decision to be taken in

distributed query processing is to formulate a query and intelligence of DDBMS to produce

an effective plan for query processing. This computation is done by a DBMS module,

known as query processor [YC84][MHH09]. Distributed query processing with different

phases is shown in Figure 1.5. Distributed Query Optimization involves the processing and

7 | P a g e

retrieval of data from participating sites dispersed physically [K00][XY10]. Objectives of

Distributed Query Optimization are described in section 1.4.

1.2.1. Phases in DQP

In DDBMS, distributed query processing takes place in four phases such as query

decomposition, data localization, global optimization and distributed execution. The task

for the first three phases is carried out by central control site with the help of schema

information of the global directory. In coordination with the central node, a particular node

performs the work of the fourth phase [SBM98][K00][WY91][YC84]. These phases are

discussed briefly as follows.

Figure 1.5 Distributed Query Optimization Processing [MHH09].

8 | P a g e

Query Decomposition: This phase translates the input calculus query into an algebraic

query with the help of information on global relations stored in global conceptual schema

[WY91][YC84]. Query decomposition takes place in four steps. The first step is

“Normalization”, in which query is translated into a normal form, which is more

appropriate for subsequent manipulations [K00]. All logical operators are arranged in an

order. After normalization, query is “analyzed” and incorrect queries are detected and

rejected by the semantic analyzer followed by parsing the correct queries to the next level

in simple form [K00]. Redundant queries can be generated when transformations are

applied to the query and removed in simplification step followed by conversion in algebraic

Query from. There can be various algebraic forms of a query, in which some are better than

others. So the best way to get a better algebraic form is to start with an initial query and

transform it suitably, to get a better algebraic query by applying suitable rules of

transformation [SBM98][ZHW05].

Data Localization: Data is stored on different sites using the fragment schema that

contains the information of data distributed over a network. In this layer, the fragments

used in a query are selected, and accordingly query transformation takes place which

consists of fragments. There are two steps to produce a query comprising of fragments.

The first step is to transform resultant of the first phase i.e. an algebraic query in relations,

into small query fragments. In the second step, fragmented query is simplified and

restructured to obtain an improved query [EN10][OV11] [SBM98].

Global Query Optimization: Global query optimization phase uses communication

operators and fragment characteristics to optimize the query. Many equivalent queries can

9 | P a g e

be obtained by permutation of relational operators in a query fragment. Communication

cost is a major factor of the cost function. Query optimization minimizes the cost function

by using a suitable ordering of relational operators in a fragment query. A pre-computation

of query fragment is required to find suitable ordering of relational operators. Ordering

computation of relational operators is done by fragment statistics and results cardinalities

is estimated by relational operators. So, the fragment allocation and fragment statistics are

useful in optimal decision making [ZHW05]. The sequence ordering of join operations is

also an important aspect of query optimization. The permutation of join operation orders

in the user query may lead to fast improvement. Semi-join operator optimizes distributed

join operator sequence. In normal join operation in DDBMS, entire Table has to be

transferred to a remote computer and Join operation is performed. Join operation involves

the transfer of many unrelated rows, which are eliminated by the Join operation. However,

communication cost is based on for the amount of data transferred. Semi join significantly

prevents unnecessary data transmission during execution of a distributed query, which

would result in reduced communication cost [CY93]. An optimized algebraic fragment

query with embedded communication operators in fragments is produced and is saved as

a distributed query execution plan[SBM98] [XY10][ZHW05].

Distributed Query Execution: Execution operation is performed by all the sites involved

in distributed fragment query. Sub-queries are executed at local sites by using local schema

of the local site. These queries execute in parallel at participating sites and produce

optimized result [SBM98] [ZHW05].

10 | P a g e

1.3. DISTRIBUTED QUERY PROCESSOR

The main purpose of distributed query processor is to convert a query into small queries

on fragmented relations in local data sources. Distributed query processors convert high-

level language query plans into low-level language query plans. The input language is

relational calculus, and the returned output query is in relational algebra form. Query

processor should do a correct mapping from an input language to the output language.

Query processing efficiency can vary from system to system [OV11].

1.3.1. Type of Optimization

The most important aspect of query optimization is to choose the best query plan from a

large search space of query execution plans. Query execution plan selected by exhaustive

search has a large optimization cost [MHH09][XY10][ZHW05]. To minimize the

optimization cost, some strategies using iterative improvement, and simulated annealing

has been proposed. These strategies try to find not the best, but, surely near optimal query

plans. An important way in DDBMS is to use semi-joins to reduce the volume of data

transfers between intermediate sites [OV11][CY93].

 Static query optimization, dynamic query optimization, and hybrid are the three types of

query optimization [ZHW05]. In static query plan, optimization is done at compilation

time. It reduces the overall query execution time. The other approach is dynamic query

plan optimization in which optimization is done in an execution phase, and it minimizes

the probability of bad query selection because the size of actual relation is known to the

user. However, query execution cost is high in this approach. So, it should be used only for

ad-hoc queries, not for repeated queries [XY10]. The third approach is a hybrid, a

11 | P a g e

combination of static and dynamic query optimization. Unless there is a large difference

between the actual size and estimated size of relations, uses static query optimization is

used [OV11]. The features of the distributed query processors are explained below.

Statistics: It is used by dynamic query optimizer to arrange the operators according to their

execution order. However, static query optimizer uses it to estimate the size of intermediate

relations. Database statistics can take different detailed phases and is maintained by

frequently updating it [OV11].

Decision Sites: In most DDBS, centralized decision model is used in which one site takes

all decisions as the choice of execution plan. Decision making could also be dispersed over

several sites to search the best query plan. In DDBMS model, single node has to keep local

information only [OV11].

Exploitation of Network Topology: In wide area network, the cost function has to be

restricted by data communication cost, a ruling factor [ZHW05]. On the basis of this

assumption, this problem can be divided into two problems: First, a selection of global

query plan based on the inter-site communication cost and second, a selection of local

query plans based on the local query processing algorithms. In local area network, only I/O

cost is involved, so, it can be used for parallel execution. In the client-server model, client

systems are operated by data shipping to perform database operators. So, the optimization

problem in such case is to decide which part of the problem has to be solved at client side

and which part at the server side [OV11].

Exploitation of Replicated Fragments: A distributed relation is divided into different

relation fragments and is replicated on local sites using localization process. This

12 | P a g e

replication is done to increase the reliability and better reading performance. It is

considered an independent optimization process by some algorithms and is implemented

in order to minimize the communication cost at run time [OV11][ESW78].

1.3.2. Use of Semi-joins

Semi-joins help in reducing the data to be communicated between the first and the second

site. There might be a situation when the join key attribute from the first site matches

completely with the second site [BC81]. In this case, the whole file will have to be sent for

the join and this will result in increasing data communication overhead instead of

decreasing it [CY92]. There are some joins, which are not helpful in minimizing the

communication overhead but help in to minimize the overall execution cost of the query.

These types of semi-joins are known as Gainful. Thus, these will reduce the distributed

join query processing communication cost [RM71][CY92].

1.4. THE DQPG

The distributed query plan generation problem discussed in [VSV11] is the main focus of

this dissertation. Based on the problem discussed in [VSV11], query plans are generated

based on the property of closeness. The property of closeness of a query plan is the number

of sites participating in a query plan and the concentration (number) of relations used by

the query, in the participating sites. Lesser the number of sites participating in the query

plan and greater the number (concentration) of relation in these sites, closer would be the

query plan. Inter-site communication in closer query plan would be less. So, the efficiency

of distributed query processing would become more efficient.

13 | P a g e

For example, consider relations R1, R2, R3, R4, R5 and R6 accessed by a user query. Let

us consider there are six sites in DDBS, namely S1, S2, S3, S4, S5 and S6. Relations and

their respective host sites are shown in the Table 1.1. Let us consider the following

relational query:

Select A1, A2, A3

From R1, R2, R3, R4, R5, R6

Where R1.A1=R2.A1 and R3.A2=R4.A2 and R5.A3=R6.A3.

Relation\ Site S1 S2 S3 S4 S5 S6

R1 0 1 1 1 1 1

R2 1 1 0 1 1 0

R3 1 0 1 0 1 0

R4 0 0 0 1 1 0

R5 0 1 1 1 1 0

R6 0 0 0 0 1 1

Table 1.1 Relations along with their Sites.

In Table 1.1, the presence of ‘1’ depicts the presence of relation in the corresponding site

and ‘0’ indicates otherwise. There are S sites and R relations. Few of the Query Plans are

shown below in Table 1.2.

Query

Plan

Relations

R1 R2 R3 R4 R5 R6

1 2 1 1 4 3 6

2 3 2 3 4 4 5

3 4 4 5 4 4 5

4 5 5 5 5 5 5

5 2 1 3 4 5 6

6 2 2 5 5 2 5

7 6 2 3 4 5 6

8 3 4 1 5 2 6

9 4 5 3 5 3 5

10 6 1 5 4 5 6

Table 1.2 Valid Query Plans.

14 | P a g e

These numbers of relation are commonly present in the DDBS. Exhaustive search is not a

good approach to pick a query plan with minimum communication cost, but the aim is to

produce close query plans with minimum cost. This cost of query plans can be computed

in terms of query proximity cost defined in [VSV11]. The computation method for QPC is

given below.

𝑄𝑃𝐶 = ∑
𝑆𝑖

𝑁

𝑆

𝑖=1

(1 −
𝑆𝑖

𝑁
)

Where, S: number of sites participated in the query

N: number of relations participated in the query

Si: number of times site i is used in the query

The value of QPC lies between 0 and 1. Lesser the value of QPC lesser would be the cost

of communication i.e. closer the query plan. QPC value of some of the query plans is given

in Table 1.3.

QPN Query Plan QPC

X1 [5,6,4,4,1,2] 0.7778

X2 [5,1,2,6,4,4] 0.7778

X3 [3,1,1,6,3,2] 0.7222

X4 [5,4,4,6,4,4] 0.5000

X5 [3,2,2,2,3,1] 0.6111

X6 [1,2,4,5,2,4] 0.7222

X7 [6,6,2,2,3,4] 0.7222

X8 [3,3,1,4,3,4] 0.6111

X9 [1,3,6,5,3,1] 0.7222

X10 [3,4,4,2,2,4] 0.6111

Table 1.3 Query Plans with QPC.

1.5. THE AIM OF DISSERTATION

The aim of this dissertation is to solve the problem of distributed query processing using

Artificial Immune System given by L.N. De Castro [LJ02]. This algorithm is used to

15 | P a g e

generate close query plans. This algorithm is inspired by the natural human immune

system[FPP86]. In AIS, antibodies represent the query plans, and fitness of these

antibodies is computed using QPC. This algorithm is used to solve the DQPG problem.

Further, the AIS based DQPG algorithm is compared with GA-based DQPG algorithm

[VSV10][VSV11].

1.6. OUTLINE OF THE DISSERTATION

This dissertation is organized in the following manner: The Distributed query plan

generation (DQPG) problem is described in Chapter 1. In chapter 2, Artificial Immune

System algorithm is discussed. Chapter 3 discusses the DQPG using AIS. The conclusion

is given in Chapter 4.

16 | P a g e

CHAPTER 2

2. ARTIFICIAL IMMUNE SYSTEM

In this chapter, nature-inspired techniques and its classifications are described briefly.

Among all these classifications, bio-inspired techniques are emphasized. Artificial Immune

System is explained in detail under bio-inspired techniques in the later section of this

chapter.

2.1. NATURE INSPIRED TECHNIQUES

Nature always has been a great source of inspiration for human beings. Nature provided

techniques tell a human that how to behave against various complex and dynamic problems

in real life. These techniques are known as Nature Inspired Techniques [FM08]. Nature

inspired techniques are based on the principle of self-organization, collective behavior and

complex systems [M94]. These techniques take an idea from nature and use that idea to

develop new techniques, algorithms, and some more computational applications [H75].

Nature Inspired techniques provide a novel and better and optimal solution to NP-hard

problems in an efficient manner [M94]. These techniques are used in various fields such

as engineering, physics, and economy management. Nature inspired techniques have

various branches such as evolutionary algorithms, swarm intelligence techniques, neural

networks, robotics, etc. The complexity of problems is increasing with the increase in the

size of computational systems. So, it is hard to predict and control these systems [H75].

17 | P a g e

There are many examples of nature-inspired techniques such as natural ant shows

collective behavior in ant colony optimization, Artificial bee colony has good exploration

and exploitation ability, Bacteria Foraging is helpful in searching and designing routing

algorithms, fish schooling is very advantageous in foraging, birds flocking is used for

visualizing tasks and also for optimization tasks, etc. [H75][HHC+97][MDP+13][M94].

2.1.1. Nature inspired techniques categories

Nature inspired techniques have many applications in various fields. So, based on these

applications, Nature inspired techniques can be categorized as shown in Figure 2.1.

Figure 2.1 Classification of Nature-inspired Techniques [L06].

2.1.1.1. Evolutionary Algorithms

Evolutionary algorithms are inspired by the Darwin’s theory of survival of the fittest. These

population-based algorithms are the subset of Evolutionary computation [H75][G85].

18 | P a g e

Some evolutionary algorithms are Genetic algorithms, Genetic Programming,

Evolutionary Programming, etc. Among these Genetic algorithm has been discussed below

[FM08].

Genetic Algorithm: Genetic Algorithm was invented and developed by John Holland and

his colleagues in the 1960s [M90]. The main goal of the genetic algorithm was to

understand the adaptation of natural phenomenon in computer science fields [M90].

Genetic Algorithm is used to find the solution for complex problems or the problems

having no exact solution [ML94]. So, the genetic algorithm provides not best but

acceptable solution based on some requirements and restricted to some conditions.

According to Holland, Genetic Algorithm is a method that moves from one generation of

‘chromosomes population’ to next generation based on ‘natural selection’ together with the

genetic operators such as selection, mutation, crossover and inversion [M90].The selection

operator selects chromosomes; those can reproduce. Fitter chromosomes are likely to

produce fitter offsprings. Crossover operator exchanges two subparts of chromosomes

similar to the biological recombination operator between two organisms. Mutation operator

changes the allele values at some locations. The inversion operator reverses the previous

order of chromosomes arrangement. Mutated chromosomes are added into the initial

population. Then, the best chromosomes are selected from the whole population based on

their ‘Fitness’ [M90] [ML94][G98].

2.1.1.2. Physical Algorithms

Physical Algorithms are nature inspired and belong to meta-heuristic and computational

intelligence fields. These algorithms are based on physical phenomena such as music,

19 | P a g e

culture interplay, evolution and complex dynamic systems. These are stochastic

optimization algorithms based on local and global search techniques [FJY+13]. Some of

these algorithms are Harmony Search Algorithm, Simulated Annealing, and Memetic

Algorithm [VBS+11].

2.1.1.3. Swarm Intelligence:

A swarm is a homogenous collection of agents such as birds, animals; insects, fishes, etc.

are interacting with each other in their environment in decentralized manner doing some

intelligent task [M94]. Swarm Intelligence is the field of artificial intelligence that studies

the collective behavior and emergent behavior of self-organized, complex and

decentralized systems with social behavior [EMG99]. Some of the popular swarm based

techniques are Ant Colony Optimization, Particle Swarm Optimization, Artificial Bee

Colony, Firefly Algorithm and Cuckoo Search Algorithm, etc. [EMG99]

[MDP+13][M94].

2.1.1.4. Bio-inspired Algorithms

Bio-inspired Algorithms are based on bio-inspired computing [VBS+11]. These algorithms

are related to the fields of connectionism, social behavior, and emergence [H86]. It is very

much related to artificial intelligence, field of mathematics, self-organized, decentralized

behavior, nature adaptation and distributed are the intelligence derived by these algorithms

from the bio-inspired phenomenon. These algorithms are used to solve partition clustering

problem [FM08]. Some of the popular bio-inspired algorithms are described as given

below [MTM11][VBS+11].

20 | P a g e

Artificial Neural Network: This is a bio-inspired technique and a subfield of Artificial

Intelligence [H86]. It follows the principle of attention, perception and memory emerging

in memory. The main objective of this technique is to acquire knowledge from the

environment. This algorithm has the property of self-learning from experience, it gets from

the environment [H75][H86]. Experience reflects in neurons, and our memory learns from

experience [FM08] [H75].

Bacteria Foraging Optimization: This approach was introduced by Passino in 2002. This

algorithm imitates the foraging strategy of bacteria for finding food. It is based on two

types of movements. One is run, and another is a tumble. This algorithm provides good

results in dynamic and multimodal environments. It is based on four steps i.e. Chemotaxis,

Swarming, reproduction, elimination, and dispersal. Chemotaxis is a movement of bacteria.

Swarming represents a cell-to-cell signaling scheme of bacteria and then after some

iteration reproduction takes place. In elimination, first half of the bacteria is retained and

the second half dies. This technique has been successfully implemented on sensors in

wireless networks to enhance coverage and connectivity. This is also used in Clustering

[SAS+09].

Artificial Immune System: Artificial Immune System is a paradigm used to perform

pattern recognition. This technique was proposed by L.N. de Castro and J. Timmis in 2002

[LJ02]. It is a bio-inspired technique. It is used to solve the most complex computational

problems such as [LJ02][HC96]. Artificial Immune System algorithms use antibodies that

fully specify the solution to an optimization, learning, pattern recognition problem and NP

21 | P a g e

Class problem. Artificial Immune System has been used to solve the DQPG problem

discussed in Chapter 1. This technique has been explained in detail in the following section.

2.2. IMMUNE SYSTEM

In many areas of engineering, biological systems are used as a tremendous source of

inspiration. In this section, biological immune system has been discussed and based on

biological immune system artificial immune system is discussed later in this section.

2.2.1. Biological Immune system

The natural immune system is one of the most complex and intricate biological systems. It

is a distributed system, having no central controller [YZH+08]. The immune system

supports diversification i.e. it does not focus on global optima, instead, it produces

antibodies that can deal with different antigens. Natural Immune system is made up of cells,

molecules and organs, which have the capability to differentiate self-cells and non-self-

cells, but Lymphocytes are a particular interest of Artificial Immune Systems.

[A89][YZH+08]. Lymphocytes are also known as White Blood Cells. These are the

antigen detectors of the immune system [YZH+08]. Antigens are harmful elements to the

body. There are two types of lymphocytes such as T-cells and B-cells. These two types of

cells have an effective role in the immune system. B cells can recognize antigens in a free

solution like in the blood stream while T cells can recognize antigens if they are present in

other accessory cells. Unlike antigens, antibodies are useful to the body [HC96] [LJ02].

22 | P a g e

Figure 2.2 Binding between Antigen and Antibody [HC96]

One of the most important features of the immune system is the generation of millions of

antibodies from hundreds of antibodies. These antibodies are B-Cells in real and

collectively form an immune network [YZH+08]. These cells are generated in bone

marrow and ensure that once they are generated, they remain in the immune system only

until they are not required. When a B-cell encounters with an antigen, a response in the

immune system is elicited. As a result, antibody binds with the antigen, as shown in Figure

2.2 and the antigen is neutralized. If B-cell binds with an antigen with sufficient affinity,

the B-cell generates mutated clones and is added to the immune network. Diversity in the

immune system is maintained. This is because 5% least stimulated antigens die every day

and are replaced by an equal number of new antibodies produced by bone marrow, only, if

they have affinity to the cells already in it else they die [HC96][GR94].

23 | P a g e

2.2.2. Response in the immune system

There are two types of consideration on creation of an immune system memory [GR94].

The most widely accepted theory is that a ‘virgin’ B cell is stimulated by antigen and

produce memory cells and effector cells. The other less accepted theory states that the

immune network is dynamic in nature. This means that if something has been learned and

is not being used for a long time; it can be forgotten. Here the immune network theory

[HC96][GR94] has been chosen. The secondary response states that when the same

antigen attacks again, it can be recognized more rapidly and thus results in more number

of antibodies production. The secondary response can be elicited from an antigen that need

not to be exactly same but, should be similar to the original one that originates in the

memory. Thus, the immune system has a content addressable memory [HC96][GR94].

Artificial Immune System (AIS) mimics the genetic mechanism used to produce antibodies,

for antigen/antibody binding and its immune network theory used for its self-organization.

This is explained in detail in the next section [HC96] [LJ02].

2.3. BIOLOGICAL INSPIRED AIS

 AIS is inspired by Natural Immune System and implements learning technique. It is a

remarkable property of AIS, which is used to learn foreign agents. AIS can be defined as

“An abstract or metaphorical computational system developed using ideas, theories, and

components, extracted from the immune system” [LJ02]. The aim of AIS is to solve

complex engineering problems. For example pattern recognition, elimination, and

optimization [HC96][CZ99].

24 | P a g e

2.3.1. The Bone Marrow Object

The Bone Marrow Objects perform functions of bone marrow in the body. It decides where

an antigen is to be inserted with in the immune network. Along with this, it decides which

B cells have to die and which B cells have to proliferate in the immune network [HC96].

2.3.2. B cell objects

The B cell objects possess pattern matching mechanism that mimics the genetic

mechanisms in which new antibodies are formed in human immune system. These new

antibodies attempt to mirror genetic mechanism of gene selection, mutation, proliferation

and combine newly produced B cells to the initial population of B objects [HC96].

2.3.3. Antibodies

Antibodies bind to the infectious agents known as antigens and destroy these elements in

the body. In Artificial Immune System, the antibody contains a receptor on its surface.

Receptor represents a pattern with which the antibody binds with the antigen. When an

antigen is encountered with the antibody, a response is elicited. The elicited response is

used to calculate the match score i.e. the amount of affinity with which the antibody is

attached to the antigen. If match score is equal or above a threshold value, then the antibody

attaches to the antigen based on binding strength [HC96][LJ02].

2.3.4. Antigen

Antigens are the foreign agents to the body. These are harmful to the body. Antigens induce

a response to the body by binding with the antibodies present in the body. These are also

known as non-self-agents to the body. The Paratopes present on the surface of antigen also

25 | P a g e

known as epitopes. Epitopes are recognized by receptors present on the surface of the B

cells, known as antibodies [HC96][LJ02].

2.3.5. Antibody/Antigen Discrimination

Each antibody and antigen possess receptors and epitopes on their surface respectively.

Antibodies identify the antigen by complimentary pattern matching operation between the

receptor and epitopes [HC96]. The binding affinity depends on the closeness of matching

of the both. More the closeness between the antigen and antibody, stronger is the binding

between molecules and better is the identification. The stimulation level of B cells should

be equal to or greater than a threshold, as shown in Figure 2.3, only then the binding

between antigen and antibody can take place and B cell replicates and creates new B cells

and vice versa [LJ02][N93][SAL+94][SC92]. Antibodies can also recognize other

antibodies present in the body. In this case, receptor present on the antibodies acts as both

receptors on one antibody and epitopes on the other antigen. Self-antigens are recognized

by T-cells. An organ ‘thymus’ present in the immune system handles maturation of T cells.

During this maturation, the T cells recognize self-antigens, which are excluded from the

population of T cells.

Figure 2.3 B cell Stimulation Level Effect [HC96].

26 | P a g e

This process is known as negative selection [NG94][HC96][LJ02]. If a B cell recognizes

antigens with sufficient affinity, it proliferates and differentiates into the memory. This

process is known as clonal selection [LJ02][CZ00]. Network theory process is opposite to

the clonal selection theory, in which self-antigen is identified and might result in

suppression [LJ02]. The clonal selection is described in detail in this chapter.

2.4. CLONAL SELECTION

Clonal selection theory explains about immune system response mounted when an

antigenic pattern is identified by an antibody, a subpart of the B cell object. When a B cell

receptor recognizes an antigen, with an affinity greater than the threshold, then it is used to

proliferate [LJ02]. Antibodies are soluble form of B cell objects, which are released from

B cell surfaces to encounter against the foreign invaders. Antibodies are binded with

antigens followed by elimination of antigens by immune cells. Proliferation in clonal

selection is asexual. It is a mitotic process in which cells divide themselves without any

crossover operation. In reproduction phase, B cells clones undergo a process of

hypermutation [LJ02]. In this process, B cells with selective pressure produce new B cells

having great affinity with the antigens. The B cells with high affinities are kept as memory

cells with long life spans [LJ02][FPP86][GR94]. Clonal Selection process, which is

shown in Figure 2.4. There are some features of clonal selection; those are relevant to

computational point of view.

 An antigen selects many B cells for proliferation. Proliferation rate of each B cell

is directly proportional to its affinity with the selected antigen. The greater the

27 | P a g e

affinity of antibody with the antigen, the greater the proliferation rate and vice-

versa [LJ02].

 Whereas, mutation rate is inversely proportional to the affinity of antibody and

antigen such that greater the affinity lesser the mutation and vice-versa [LJ02].

Figure 2.4 Clonal Selection, Proliferation, Affinity Maturation and memory cells maintenance [LJ02].

2.4.1. CLONALG

Clonal selection process is described by an algorithm named as CLONALG. Initially,

CLONALG was proposed for pattern recognition. Later, it was used in multi-modal

optimization tasks [BV90]. It is given below in the Figure 2.5 [LJ02].

CLONALG has been explained below with the following considerations.

Population (P): (𝐴𝑏1, 𝐴𝑏2 ….𝐴𝑏𝑖) is the population of antibodies.

Individuals: Each antibody 𝐴𝑏𝑖 represents individuals in the population.

Affinity/Fitness: Binding strength between antibody and antigen is known as

affinity/fitness of each antibody.

28 | P a g e

Figure 2. 5 CLONALG Algorithm [LJ02].

No. of Generations (GP): Number of times antibodies are calculated based on their fitness

to find the optimum solution.

Objective Function: It is used to find the optimum solution to optimize individuals to keep

as memories.

Given: Initially population of antigens is provided as input to be recognized.

Step1: Population of antibodies P is initialized randomly. In which, 𝐴𝑏𝑖 represents an

antibody.

Given a set of patterns (Antigens) An = (An1, An2,… Ani) to be recognized.
Begin

1. Randomly initialize the population of individuals P = (𝐴𝑏1, 𝐴𝑏2 ….𝐴𝑏𝑖);

2. While (stopping criteria)

3. For each pattern of An

4. Present it to the population P and determine its affinity (match) with each

individual of the population P

5. Select n1 best individuals of the highest affinity from population P.

6. Generate copies of these individuals proportionally to affinity of these individuals to the

antigen.

7. Mutate all these copies with a rate proportional (inversely proportional) to their affinity

with the input pattern.

8. Add these mutated individuals to the population P.

9. Re-select n2 of these maturated (optimized) individuals to keep as memories of the system.

10. End for

11. End while

12. Repeat steps 3 to 12 until some stopping criteria is met. For example: minimum pattern

recognition or classification error or maximum number of generations.

End

29 | P a g e

Step2: An antigen is selected and encountered with each antibody in the population and

affinity between antigen and antibody is computed.

Step3: Based on their affinity n1 antibodies are selected for proliferation. The rate of

proliferation of each B cell is directly proportional to its affinity with the antigen.

Step4: After generation of progenies of each selected antibody, these progenies (clones)

are used for mutation, and mutation is inversely proportional to the affinity of the antigen

and antibody of B cell Objects.

Step5: All these mutated antibodies are added to the immune network i.e. to initial

population of B cell objects.

Step6: One generation ends here.

Step7: Choose top antibodies equals to the population P to make memory cells for future.

Step8: However, this whole algorithm runs until an optimized solution is achieved, or

certain criterion is met. For Example: minimum pattern recognition or classification error

or maximum number of generations.

2.5. RELATED WORK

This section describes the work carried out related to the immune system in computer

science field. In discussion, AIS is being differentiated from other machine learning

techniques. In [GR94], Gilbert and Routen created a content addressable auto-associative

memory system, on the basis of immune network theory. The purpose for this system was

image recognition. This was not a stable model, because it was not able to remember

patterns. The system created by Gilbert and Route considers the immune system as a

30 | P a g e

connectionist model in which local nodes (B cells) interact to get new experiences or to

identify past situations. In their approach, they did not focus on B cells and antibodies but,

focused only on the parts those were important to present their interaction. However, in

[HC96] Hunt and Cooke focused on not only B cells and antibodies but, also on the genetic

algorithm mechanism by which these antibodies are produced.

[FJSP93], showed immune system evolution and operation using Genetic Algorithm.

[HC96] showed the same operation using computer program. It considered gene selection,

proliferation and mutation in production of antibody. Bersini and Varela in [BV90] applied

this approach in many engineering problems such as Travelling Salesman Problem,

Optimization of a control function for the cart-pole balancing problem, etc. In [EE95], it

was used the same approach to solve machine learning problems such as information

extraction and classification of data etc.

AIS is a system that provides unsupervised learning, which is noise tolerant and is self-

organized and that does not require any negative example. These kinds of systems are

combination of learning classifier systems and neural networks, based on information

retrieval and machine induction. So, these systems prove useful where neural networks and

learning classifier systems do not work separately [FPP86][H86][HC96]. For example,

neural networks are trained for specific examples, but AIS are inherently generalized

systems. Learning classifier systems find difficulty to separate global and local optimum

solutions, here AIS proves very helpful. There is a large number of applications of AIS

such as in machine learning, autonomous robotics navigation [LJ02][HC96]. AIS is used

in character recognition and data analysis. AIS is distributed, dynamic, robust, adaptive

31 | P a g e

and diverse in nature having various applications in computer network security. Clonal

Selection Algorithm is used as a conjunction with negative selection algorithm because of

its learning capabilities. Another application of clonal selection is to solve multi-modal

optimization tasks because it has the capacity to recognize a set of binary characters

presented in a Hamming shape-space. [LJ02][FPP86].

In this dissertation, AIS has been adapted to solve the DQPG problem discussed in chapter

1. DQPG using AIS is discussed in the next chapter.

32 | P a g e

CHAPTER 3

3. DQPG USING AIS

Distributed query plan generation is an intricate problem as discussed in Chapter 1. DQPG

was addressed using genetic algorithm in [VSV10][VSV10]. In this chapter, an attempt has

been made to solve DQPG problem using Artificial Immune System (AIS) described in

Chapter 2. AIS based DQPG algorithms are presented here to compute near optimal

distributed query plans for a given distributed query. There should be a mapping between

original algorithm and AIS. The population of antibodies are the query plans in DQPG.

Both antibodies and query plans terms have been used interchangeably. The fitness

function used in DQPG is treated as antigens. Using this fitness function, fitness of

antibody query plans are computed and query plans with good fitness are used to make

clones in DQPG. AIS is similar to the GA discussed in evolutionary techniques with one

difference of no crossover exists in AIS. AIS based DQPG algorithm is used to generate

distributed query plans based on the property of closeness [VSV10][VSV11]. In this

chapter, we propose two AIS based DQPG models DQPGAIS-I and DQPGAIS-II used to

generate distributed query plans incorporating the property of original algorithm

(CLONALG).

3.1. DQPGAIS-I

AIS given by [LN02], as discussed in Chapter 2, is being adapted corresponding to the

DQPG problem. DQPG algorithm based on AIS is shown in Figure 3.1. This model is

different from the original model in terms of two parameters have been explained in section

3.3 and section 3.4.

33 | P a g e

3.1.1 The DQPGAIS -1 Algorithm

Input: RS: Relation-Site matrix,

P: Size of antibodies population,

GP: Pre-specified number of generations,

R: Number of relations to be used in query plan,

S: Number of sites containing these relations in a query plan,

β: Clone rate,

n: Top query plans with least QPC value to be selected to compute clones,

Output: Top-k Query Plans

Method:

Step 1: QP = QueryPlan (RS, P)

Step 2: Compute fitness of each antibody query plan in QP

QPC = ∑
Si

N
(1 −

Si

N
)

M

i=1

Step 3:Repeat

 Step 3.1: Choose top ‘n’ antibody query plans with least QPC value.

 Step 3.2: Calculate total number of clones of selected top n query plans

using

 Cn = ∑
β ∗ P

i⁄

n

i=1

 Step 3.3: Compute clones for each selected query plan.

Clonei = Ci ∗ Cn

Where, Ci =
(Z−QPCi)

Z1
; Z1 = Z1 + (Z − QPCi) and Z =

(R−1)

R

 Step 3.4: Mutated Clones = Mutation (P, n, Cn, QPC, Cloned Query Plans);

 Step 3.5: Compute fitness of Mutated Clones using step2.

 Step 3.6: Population = P+ Mutated Clones;

 Step 3.7: P=Top P Query plans of Population

Until Generation=Gp;

Cn: Total number of clones; Clonei: Clones for ith selected query plan.

Figure 3. 1 DQPGAIS-I algorithm.

34 | P a g e

Roulette Wheel Selection Operator

In Roulette Wheel selection, individuals (Query Plans) are given a selection probability

𝑃𝑄𝑃 proportional to individual fitness [ATA12]. An algorithm which illustrate the

Roulette Wheel Selection is given in Figure 3.2.

𝑷𝑸𝑷 =
𝟏

𝑷 − 𝟏
(𝟏 −

𝑭𝒊𝒕𝒏𝒆𝒔𝒔𝒊

∑ 𝑭𝒊𝒕𝒏𝒆𝒔𝒔𝒋𝒋∈𝑷𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏

)

For all individuals of population
Sum= Sum + fitness of current individual
End For
For all population individuals
Probability = Sum of probabilities + (fitness / Sum)
Sum of Probabilities=+ Probability
End For
Number = Random between 0 and 1
For all population individuals
If Number > Probability but less than next Probability
Then you have been selected
End For

Figure 3.2 Roulette Wheel Selection algorithm [ATA12].

Step 1: First we initialize the population of antibodies query plan. Here we define the

method taking Relation-Site matrix and yields population of size P. This population

improves over the generations. Each query from population can be represented as 𝑄𝑃 =

{𝑿𝟏, 𝑿𝟐, 𝑿𝟑, 𝑿𝟒, 𝑿𝟓, 𝑿𝟔}.

Step 2: QPC of each antibody query plan is calculated using the fitness function. The Query

Plan with least QPC is the fittest Query Plan. This step correlates to the affinity between

antigen and antibodies.

Step 3: For each Generation, repeat the following steps.

Step 3.1: Select Top-k query plans based on their calculated fitness value.

35 | P a g e

Step 3.2: For given top-k query plans, calculate total clones based on their fitness using

 Cn = ∑ β ∗ P
i⁄n

i=1 [BS12].

Step 3.3: Using Roulette Wheel Fitness proportionate function, we wish to calculate clones

of each selected antibody query plan of total clones value. Where, 𝐶𝑙𝑜𝑛𝑒𝑖 ⍺ 𝐶𝑖 implies that

larger is the value of 𝐶𝑖, more number of clones will be generated for 𝑖𝑡ℎ query plan. Again

use roulette wheel selection function to compute clones of these selected ‘n’ query plans.

Step 3.4: Mutation is now applied on the generated clones based on their mutation rate.

Mutation rate is computed using QPC * Number of sites used in query plan and which is

inversely proportional to the fitness of the antibody query plan.

Step 3.5: Compute fitness of mutated query plans using step 2.

Step 3.6: Add mutated query plans in present population ‘P’ and sort them in ascending

order on the basis of QPC value.

Step 3.7: Choose best ‘P’ query plans from the combine population based on fitness value

for next generation.

Step 3 will be repeated until some stopping criterion is met. Some stopping criteria may

include maximum number of generation reached, optimum solution of the problem etc. and

returns Top-k Query Plans of high fitness. In DQPGAIS-1 algorithm, the stopping criterion

used is the maximum number of generations and the aim of this algorithm is to get Top-k

query plans from population of antibody query plans.

36 | P a g e

3.1.2. DQPGAIS-1 Example

The application of AIS based DQPG algorithm to solve distributed query plan generation

problem is exemplified. For this purpose, consider a distributed database system with six

sites namely, S1, S2, S3, S4, S5 and S6. Consider a distributed query accessing six relations

namely, R1, R2, R3, R4, R5 and R6.

Select A1, A2, A3

From R1, R2, R3, R4, R5, R6

Where R1.A1=R2.A1 and R3.A2=R4.A2 and R5.A3=R6.A3

Figure 3.3 Relation-site Matrix.

The relations used in the distributed query are accessed from the relation-site matrix, which

is shown in Figure 3.3. Relation-site matrix is the combination of the relations and sites,

where relations in matrix are the relations used in the distributed query and sites represents

where these relations are present. In the relation-site matrix, the value 1 and 0 in the cells

indicate the presence and absence of a relation respectively on the corresponding host sites.

Input: RS = 6 X 6; 𝐺𝑃 =2; R = 6; P =10; β = 0.99; S=6; n=0.4*P

Output: Top 4 query plans.

Step1: Generate Initial Population P =10 of antibodies using Relation-Site matrix as given

in Table 3.1.

Site S1 S2 S3 S4 S5 S6

Relations

R1 1 0 1 0 1 1

R2 0 0 1 0 1 0

R3 0 0 1 1 0 0

R4 1 0 1 0 1 1

R5 0 1 0 1 0 0

R6 1 1 0 0 0 1

37 | P a g e

QPN Query Plan QPC

X1 [5,6,4,4,1,2] 0.7778

X2 [5,1,2,6,4,4] 0.7778

X3 [3,1,1,6,3,2] 0.7222

X4 [5,4,4,6,4,4] 0.5000

X5 [3,2,2,2,3,1] 0.6111

X6 [1,2,4,5,2,4] 0.7222

X7 [6,6,2,2,3,4] 0.7222

X8 [3,3,1,4,3,4] 0.6111

X9 [1,3,6,5,3,1] 0.7222

X10 [3,4,4,2,2,4] 0.6111

Table 3.1 Query Plans population with QPC.

Step 2: Compute fitness of each query plan using QPC function as given in Table 3.1.

Step 3: For Generation =1, repeat the following steps:

Step 3.1: Top-4 query plans from Table 3.1 are given in Table 3.2

QPN Query Plans QPC

X4 [5,4,4,6,4,4] 0.5000

X5 [3,2,2,2,3,1] 0.6111

X8 [3,3,1,4,3,4] 0.6111

X10 [3,4,4,2,2,4] 0.6111

Table 3.2 Top-4 query plans.

Step 3.2: Use Table 3.2 to compute 𝐶𝑛. For this purpose, Let us consider α=0.9; β=0.99;

Such that 𝛽=α*β. Thus, 𝐶𝑛 = 19.

Step 3.3: For Top-4 query plans from Table 3.2. Compute Z i.e. 0.83 for R=6. Now

compute 𝑍1 using Z, as given in Table 3.3.

QPN QPC 𝒁 -𝑸𝑷𝑪𝒊

1 0.5000 0.3300

2 0.6111 0.2189

3 0.6111 0.2189

4 0.6111 0.2189

Total (𝒁𝟏) = 0.9867

Table 3.3 Sum of Fitness.

Using Z1, compute 𝐶𝑖 and 𝐶𝑙𝑜𝑛𝑒𝑖

𝑪𝒊 𝑪𝒍𝒐𝒏𝒆𝒊

0.3345 7

38 | P a g e

0.2219 4

0.2219 4

0.2219 4

Table 3.4 Clone computation using probability distribution.

Clones of Top-4 query plans are generated based on 𝐶𝑙𝑜𝑛𝑒𝑖 values, as given in Table 3.5.

QPN Clones of antibody Query

Plans

1 [5,4,4,6,4,4]

2 [5,4,4,6,4,4]

3 [5,4,4,6,4,4]

4 [5,4,4,6,4,4]

5 [5,4,4,6,4,4]

6 [5,4,4,6,4,4]

7 [5,4,4,6,4,4]

8 [3,2,2,2,3,1]

9 [3,2,2,2,3,1]

10 [3,2,2,2,3,1]

11 [3,2,2,2,3,1]

12 [3,3,1,4,3,4]

13 [3,3,1,4,3,4]

14 [3,3,1,4,3,4]

15 [3,3,1,4,3,4]

16 [3,4,4,2,2,4]

17 [3,4,4,2,2,4]

18 [3,4,4,2,2,4]

19 [3,4,4,2,2,4]

Table 3. 5 Clones of Top-4 selected query plans.

Step 3.4: Mutated query plans are given in Table 3.6.

QPN Query Plan Mutated Query Plan QPC

1 [5,4,4,6,4,4] [5,4,3,6,4,2] 0.778

2 [5,4,4,6,4,4] [5,1,2,6,4,4] 0.778

3 [5,4,4,6,4,4] [5,4,4,6,3,1] 0.778

4 [5,4,4,6,4,4] [1,4,4,2,4,4] 0.500

5 [5,4,4,6,4,4] [5,1,4,6,4,3] 0.778

6 [5,4,4,6,4,4] [5,4,5,6,2,4] 0.722

7 [5,4,4,6,4,4] [5,2,4,6,5,4] 0.722

8 [3,2,2,2,3,1] [3,2,1,4,3,1] 0.722

39 | P a g e

9 [3,2,2,2,3,1] [3,2,2,2,1,4] 0.667

10 [3,2,2,2,3,1] [3,1,2,2,4,1] 0.722

11 [3,2,2,2,3,1] [3,2,3,2,3,2] 0.500

12 [3,3,1,4,3,4] [1,2,1,4,3,4] 0.722

13 [3,3,1,4,3,4] [3,3,2,1,3,4] 0.667

14 [3,3,1,4,3,4] [3,3,1,4,5,6] 0.778

15 [3,3,1,4,3,4] [3,5,1,4,6,4] 0.778

16 [3,4,4,2,2,4] [3,3,4,2,1,4] 0.722

17 [3,4,4,2,2,4] [1,4,4,5,2,4] 0.667

18 [3,4,4,2,2,4] [3,4,6,2,1,4] 0.778

19 [3,4,4,2,2,4] [3,4,4,1,5,4] 0.667

Table 3. 6 Mutated Query Plans with their QPC.

Step 3.5: Compute fitness of mutated query plans as shown in Table 3.6.

Step 3.6: Add Mutated Clones to the existing population P, as shown below in Table 3.7.

QPN Query Plan QPC

1 [5,4,3,6,4,2] 0.7778

2 [5,1,2,6,4,4] 0.7778

3 [5,4,4,6,3,1] 0.7778

4 [1,4,4,2,4,4] 0.5000

5 [5,1,4,6,4,3] 0.7778

6 [5,4,5,6,2,4] 0.7222

7 [5,2,4,6,5,4] 0.7222

8 [3,2,1,4,3,1] 0.7222

9 [3,2,2,2,1,4] 0.6667

10 [3,1,2,2,4,1] 0.7222

11 [3,2,3,2,3,2] 0.5000

12 [1,2,1,4,3,4] 0.7222

13 [3,3,2,1,3,4] 0.6667

14 [3,3,1,4,5,6] 0.7778

15 [3,5,1,4,6,4] 0.7778

16 [3,3,4,2,1,4] 0.7222

17 [1,4,4,5,2,4] 0.6667

40 | P a g e

18 [3,4,6,2,1,4] 0.7778

19 [3,4,4,1,5,4] 0.6667

20 [5,6,4,4,1,2] 0.7778

21 [5,1,2,6,4,4] 0.7778

22 [3,1,1,6,3,2] 0.7222

23 [5,4,4,6,4,4] 0.5000

24 [3,2,2,2,3,1] 0.6111

25 [1,2,4,5,2,4] 0.7222

26 [6,6,2,2,3,4] 0.7222

27 [3,3,1,4,3,4] 0.6111

28 [1,3,6,5,3,1] 0.7222

29 [3,4,4,2,2,4] 0.6111

Table 3.7 Combination of Mutated clones and existing population.

Step 3.7: From Table 3.7 choose best P=10 query plans, as shown in Table 3.8.

QPN Query Plan QPC

X1 [1,4,4,2,4,4] 0.5000

X2 [3,2,3,2,3,2] 0.5000

X3 [5,4,4,6,4,4] 0.5000

X4 [3,2,2,2,3,1] 0.6111

X5 [3,3,1,4,3,4] 0.6111

X6 [3,4,4,2,2,4] 0.6111

X7 [3,2,2,2,1,4] 0.6667

X8 [3,3,2,1,3,4] 0.6667

X9 [1,4,4,5,2,4] 0.6667

X10 [3,4,4,1,5,4] 0.6667

Table 3.8 Population for next generation.

For Generation=2

Step 3.1: Top-4 plans from Table 3.8 are shown in Table 3.9.

QPN Query Plan QPC

X1 [1,4,4,2,4,4] 0.5000

X2 [3,2,3,2,3,2] 0.5000

X3 [5,4,4,6,4,4] 0.5000

X4 [3,2,2,2,3,1] 0.6111

Table 3.9 Selected Top-4 query plan for 2nd Generation.

41 | P a g e

Step 3.2: Use Table 3.9 to compute 𝐶𝑛. For this purpose, Suppose α=0.9 and β=0.99.

Where 𝛽 can be given by𝛽=α*β.Thus, 𝐶𝑛 = 19.

Step 3.3: For Top-4 query plans from Table 3.9. Compute Z i.e. 0.83 for R=6. Now, use

Z to compute 𝑍1 as shown in Table 3.10.

QPN QPC 𝒁 -𝑸𝑷𝑪𝒊

1 0.5000 0.3300

2 0.5000 0.3300

3 0.5000 0.3300

4 0.6111 0.2189

Total (Z1) = 1.2189

Table 3.10 Z1 value computation using Roulette Wheel for 2nd Generation.

Use Z1, to compute 𝐶𝑖 and 𝐶𝑙𝑜𝑛𝑒𝑖

𝑪𝒊 𝑪𝒍𝒐𝒏𝒆𝒊

0.2707 5

0.2707 5

0.2707 5

0.1800 4

Table 3.11 Clone proportion computation of Top-4 in 2nd Generation.

Clones of Top-4 query plans are generated based on 𝐶𝑙𝑜𝑛𝑒𝑖 values as given in Table 3.12.

QPN Selected Query

Plans Clones

1 [1,4,4,2,4,4]

2 [1,4,4,2,4,4]

3 [1,4,4,2,4,4]

4 [1,4,4,2,4,4]

5 [1,4,4,2,4,4]

6 [3,2,3,2,3,2]

7 [3,2,3,2,3,2]

8 [3,2,3,2,3,2]

9 [3,2,3,2,3,2]

42 | P a g e

Table 3.12 Clones of Top-4 query plans in 2nd Generation.

Step 3.4: Mutated query plans of Table 3.12 are shown in Table 3.13.

QPN Query Plan Mutated Query

Plan

QPC

1 [1,4,4,2,4,4] [3,4,4,2,4,5] 0.6667

2 [1,4,4,2,4,4] [1,4,6,2,4,5] 0.7778

3 [1,4,4,2,4,4] [5,4,4,3,4,4] 0.5000

4 [1,4,4,2,4,4] [1,3,5,2,4,4] 0.7778

5 [1,4,4,2,4,4] [1,4,4,2,6,5] 0.7778

6 [3,2,3,2,3,2] [1,2,3,1,3,2] 0.6667

7 [3,2,3,2,3,2] [3,2,4,5,3,2] 0.7222

8 [3,2,3,2,3,2] [1,2,4,2,3,2] 0.6667

9 [3,2,3,2,3,2] [5,2,3,2,6,2] 0.6667

10 [3,2,3,2,3,2] [5,2,3,2,1,2] 0.6667

11 [5,4,4,6,4,4] [5,3,4,6,5,4] 0.7222

12 [5,4,4,6,4,4] [5,5,6,6,4,4] 0.6667

13 [5,4,4,6,4,4] [5,4,4,1,2,4] 0.6667

14 [5,4,4,6,4,4] [6,4,5,6,4,4] 0.6111

15 [5,4,4,6,4,4] [5,4,4,1,5,4] 0.6111

16 [3,2,2,2,3,1] [1,2,3,2,3,1] 0.6667

17 [3,2,2,2,3,1] [3,2,3,2,3,5] 0.6111

18 [3,2,2,2,3,1] [4,2,2,6,3,1] 0.7778

19 [3,2,2,2,3,1] [3,2,2,1,3,6] 0.7222

Table 3.13 Mutated Query Plans with respective computed QPC in 2nd Generation.

Step 3.5: Compute fitness of mutated query plans are shown in Table 3.13.

10 [3,2,3,2,3,2]

11 [5,4,4,6,4,4]

12 [5,4,4,6,4,4]

13 [5,4,4,6,4,4]

14 [5,4,4,6,4,4]

15 [5,4,4,6,4,4]

16 [3,2,2,2,3,1]

17 [3,2,2,2,3,1]

18 [3,2,2,2,3,1]

19 [3,2,2,2,3,1]

43 | P a g e

Step 3.6: Add Mutated Clones to the existing population P as shown in Table 3.14.

QPN Query Plan QPC

1 [3,4,4,2,4,5] 0.6667

2 [1,4,6,2,4,5] 0.7778

3 [5,4,4,3,4,4] 0.5000

4 [1,3,5,2,4,4] 0.7778

5 [1,4,4,2,6,5] 0.7778

6 [1,2,3,1,3,2] 0.6667

7 [3,2,4,5,3,2] 0.7222

8 [1,2,4,2,3,2] 0.6667

9 [5,2,3,2,6,2] 0.6667

10 [5,2,3,2,1,2] 0.6667

11 [5,3,4,6,5,4] 0.7222

12 [5,5,6,6,4,4] 0.6667

13 [5,4,4,1,2,4] 0.6667

14 [6,4,5,6,4,4] 0.6111

15 [5,4,4,1,5,4] 0.6111

16 [1,2,3,2,3,1] 0.6667

17 [3,2,3,2,3,5] 0.6111

18 [4,2,2,6,3,1] 0.7778

19 [3,2,2,1,3,6] 0.7222

20 [5,4,4,5,4,4] 0.444

21 [5,4,1,6,4,4] 0.611

22 [5,4,4,3,4,2] 0.611

23 [5,4,4,1,4,4] 0.500

24 [5,4,4,5,4,4] 0.444

25 [5,1,4,6,4,4] 0.611

26 [3,1,2,2,3,2] 0.611

27 [3,2,1,2,3,2] 0.667

28 [5,2,4,6,4,4] 0.667

29 [5,4,1,3,4,4] 0.667

Table 3.14 Combination of Mutated clones and existing population.

Step 3.7: From Table 3.14 choose best P=10 query plans as shown in Table 3.15.

44 | P a g e

QPN Query Plan QPC

X1 [5,4,4,5,4,4] 0.4444

X2 [5,4,4,5,4,4] 0.4444

X3 [5,4,4,3,4,4] 0.5000

X4 [5,4,4,1,4,4] 0.5000

X5 [6,4,5,6,4,4] 0.6111

X6 [5,4,4,1,5,4] 0.6111

X7 [3,2,3,2,3,5] 0.6111

X8 [5,4,1,6,4,4] 0.6111

X9 [5,4,4,3,4,2] 0.6111

X10 [5,4,1,6,4,4] 0.6111

Table 3.15 Population for next generation.

The above steps are repeated for a pre-specified number of generations. Thereafter, the

Top-4 query plans are produced as output.

3.2. DQPGAIS-II

Another adaptation of AIS has been used to address the DQPG problem. This adaptation,

referred to as DQPGAIS-II is given in Figure 3.4.

45 | P a g e

3.2.1. DQPGAIS-II Algorithm

Input: RS: Relation-Site matrix,
P: Size of antibodies population,
𝑃𝑚: Probability of mutation,
𝐺𝑃: Pre-specified number of generations,
R: Number of relations to be used in query plan,
S: Number of sites is containing these relations,
β: Clone rate,
n: Top query plans with least QPC value to be selected for clone computation
Output: Top-k Query Plans
Method:
Step 1: QP = QueryPlan (RS, P)
Step 2: Compute fitness of each antibody query plan in QP

𝑸𝑷𝑪 = ∑
𝑺𝒊

𝑵
(𝟏 −

𝑺𝒊

𝑵
)

𝑴

𝒊=𝟏

Step 3: Repeat
 Step 3.1: Choose top ‘n’ antibody query plans with least QPC value.
 Step 3.2: Calculate total number of clones of selected top n query plans

using

 𝑪𝒏 = 𝑪𝒏 + (
(𝜷 ∗ 𝑷)

𝒊
)

 Step 3.3: Compute number of clones for each selected query plan.

𝑪𝒊 =
(𝒁 − 𝑸𝑷𝑪𝒊)

𝒁𝟏

 Where, 𝒁𝟏 = 𝒁𝟏 + (𝒁 − 𝑸𝑷𝑪𝒊); 𝒁 =
(𝑹−𝟏)

𝑹
;

Step 3.4: Mutated Clones = Mutation (P, Pm, n, Cn, QPC, Cloned Query Plans);
 Step 3.5: Compute fitness of mutated clones using step 2.

 Step 3.6: Population = P+ Mutated Clones;
 Step 3.7: P=Top ‘P’ Query plans of Population
Until Generation=Gp;

Figure 3.4 DQPGAIS-II algorithm.

Steps 1, 2, 3, 3.1 and 3.2 are same as in DQPGAIS-I discussed in section 3.1.1.

46 | P a g e

Step 3.3: Based on 𝐶𝑖 =
(𝑍−𝑄𝑃𝐶𝑖)

𝑍1
, a roulette wheel is constructed using it to compute

clones of each selected antibody query plan. Randomly generate number of clones of each

selected 𝑖𝑡ℎ query plan equals to the number of calculated clones is explained with

example in section 3.2.2.

Step 3.4: In DQPGAIS-II, the mutation rate is taken as constant and query plans are mutated

using Roulette Wheel. It is based on the concept of algorithm proposed in [LJ02], of inverse

relation between fitness and mutation of antibodies.

Step 3.5, 3.6 and 3.7 are the same as discussed in section 3.3.1.

The step 3 given in Figure 3.3 will be repeated for a pre-specified number of generations.

Thereafter, the Top-k query plans are produced as output.

3.2.2. DQPGAIS-II Example

Input: RS = 6 X 6; 𝐺𝑃 =2; R = 6; P =10; β = 0.99; S=6; n=0.4*P

Output: Top-4 query plans.

Step1: Generate 10 antibody query plans from RS matrix as shown in Table 3.16.

Step 2: Compute fitness of each antibody query plans as given in Table 3.16.

QPN Query Plan QPC

X1 [5,6,4,4,1,2] 0.7778

X2 [5,1,2,6,4,4] 0.7778

X3 [3,1,1,6,3,2] 0.7222

X4 [5,4,4,6,4,4] 0.5000

X5 [3,2,2,2,3,1] 0.6111

X6 [1,2,4,5,2,4] 0.7222

X7 [6,6,2,2,3,4] 0.7222

47 | P a g e

X8 [3,3,1,4,3,4] 0.6111

X9 [1,3,6,5,3,1] 0.7222

X10 [3,4,4,2,2,4] 0.6111

Table 3.16 Antibody Query Plans population with respective QPC.

Step 3: For Generation=1, repeat the following steps:

Step 3.1: Choose Top-4 query plans from population P as shown in Table 3.17.

QPN Query Plans QPC

X4 [5,4,4,6,4,4] 0.5000

X5 [3,2,2,2,3,1] 0.6111

X8 [3,3,1,4,3,4] 0.6111

X10 [3,4,4,2,2,4] 0.6111

Table 3.17 Top-4 query plans.

Step3.2: Compute total number of clones. For α=0.9, β=0.99, where 𝛽=α*β, 𝐶𝑛 =19.

Step3.3: For Top-4 query plans from Table 3.17. Compute Z i.e. 0.83 for R=6. Compute

𝑍1 using Z as given in Table 3.18.

QPN QPC 𝒁 -𝑸𝑷𝑪𝒊

1 0.5000 0.3300

2 0.6111 0.2189

3 0.6111 0.2189

4 0.6111 0.2189

Total (𝒁𝟏) = 0.9867

Table 3.18 Sum of fitness using Roulette Wheel.

Compute 𝑪𝒊using Z1 as shown in Table 3.19.

𝑪𝒊 0.3345 0.2219 0.2219 0.2219

Table 3.19 Probability of each query plans.

48 | P a g e

Using Roulette Wheel, as shown in Figure 3.5 and Table 3.20, clones of antibody query

plans are generated, as given in Table 3.21.

Figure 3. 5 Top-4 query plans for clone generation with their probability.

0.2219 0.4438 0.6657 1.0000

Table 3.20 Cumulative Probability.

Random number Clones of selected query plans

0.8147 [5,4,4,6,4,4]

0.9058 [5,4,4,6,4,4]

0.1270 [3,4,4,2,2,4]

0.9134 [5,4,4,6,4,4]

0.6324 [3,2,2,2,3,1]

0.0975 [3,4,4,2,2,4]

0.2785 [3,4,4,2,2,4]

0.5469 [3,3,1,4,3,4]

0.9575 [5,4,4,6,4,4]

0.9649 [5,4,4,6,4,4]

0.1576 [3,4,4,2,2,4]

0.9706 [5,4,4,6,4,4]

0.6787 [3,2,2,2,3,1]

0.7577 [3,2,2,2,3,1]

0.7431 [3,2,2,2,3,1]

0.3922 [3,3,1,4,3,4]

0.6555 [3,2,2,2,3,1]

0.1712 [3,4,4,2,2,4]

0.7060 [3,2,2,2,3,1]

Table 3.20 Clones of top-4 selected query plans based on its probability.

49 | P a g e

Step3.4: For mutation, Roulette Wheel as given in Figure 3.22, is used to determine the

amount of mutation to be carried out in an antibody query plan as shown in Figure 3.24.

QPC Probability

0.5000/2.3333 0.2143

0.6111/2.3333 0.2619

0.6111/2.3333 0.2619

0.6111/2.3333 0.2619

Sum 1.0000

Table 3.21 Probability of selected query plan.

0.2143 0.4762 0.7381 1.000

Table 3.22 Cumulative probability of best 4 query plans.

QPN Random

Number

Query Plan Mutated

Query Plan

QPC

1 0.0318 [5,4,4,6,4,4] [5,4,4,6,4,4] 0.500

2 0.2769 [3,2,2,2,3,1] [3,2,2,2,3,2] 0.444

3 0.0462 [5,4,4,6,4,4] [5,4,4,3,4,4] 0.500

4 0.0971 [5,4,4,6,4,4] [5,4,2,6,4,4] 0.667

5 0.8235 [3,4,4,2,2,4] [3,4,4,2,2,4] 0.611

6 0.6948 [3,3,1,4,3,4] [3,5,1,4,3,4] 0.778

7 0.3171 [3,2,2,2,3,1] [3,4,2,2,3,1] 0.778

8 0.9502 [3,4,4,2,2,4] [3,4,4,2,6,4] 0.667

9 0.0344 [5,4,4,6,4,4] [5,2,4,6,4,4] 0.667

10 0.4387 [3,2,2,2,3,1] [3,1,2,2,3,1] 0.667

11 0.3816 [3,2,2,2,3,1] [3,2,2,4,3,1] 0.778

12 0.7655 [3,4,4,2,2,4] [3,3,4,2,2,4] 0.667

13 0.7952 [3,4,4,2,2,4] [3,4,6,2,2,4] 0.778

14 0.1869 [5,4,4,6,4,4] [5,4,4,5,4,4] 0.444

15 0.4898 [3,3,1,4,3,4] [3,2,1,4,3,4] 0.778

16 0.4456 [3,2,2,2,3,1] [3,1,2,2,3,1] 0.667

17 0.6463 [3,3,1,4,3,4] [3,1,1,4,3,4] 0.667

18 0.7094 [3,3,1,4,3,4] [3,2,1,4,3,4] 0.778

19 0.7547 [3,4,4,2,2,4] [3,1,4,2,2,4] 0.778

Table 3.23 Mutated clones with their fitness.

50 | P a g e

Step3.5: Calculate fitness of mutated query plans as shown in Table 3.24.

Step3.6: Add mutated clones to the existing population P as shown in Table 3.25.

QPN Query Plan QPC

1 [5,4,4,6,4,4] 0.500

2 [3,2,2,2,3,2] 0.444

3 [5,4,4,3,4,4] 0.500

4 [5,4,2,6,4,4] 0.667

5 [3,4,4,2,2,4] 0.611

6 [3,5,1,4,3,4] 0.778

7 [3,4,2,2,3,1] 0.778

8 [3,4,4,2,6,4] 0.667

9 [5,2,4,6,4,4] 0.667

10 [3,1,2,2,3,1] 0.667

11 [3,2,2,4,3,1] 0.778

12 [3,3,4,2,2,4] 0.667

13 [3,4,6,2,2,4] 0.778

14 [5,4,4,5,4,4] 0.444

15 [3,2,1,4,3,4] 0.778

16 [3,1,2,2,3,1] 0.667

17 [3,1,1,4,3,4] 0.667

18 [3,2,1,4,3,4] 0.778

19 [3,1,4,2,2,4] 0.778

20 [5,6,4,4,1,2] 0.778

21 [5,1,2,6,4,4] 0.778

22 [3,1,1,6,3,2] 0.722

23 [5,4,4,6,4,4] 0.500

24 [3,2,2,2,3,1] 0.611

25 [1,2,4,5,2,4] 0.722

26 [6,6,2,2,3,4] 0.722

27 [3,3,1,4,3,4] 0.611

28 [1,3,6,5,3,1] 0.722

29 [3,4,4,2,2,4] 0.611

Table 3.24 Combination of Mutated clones and existing population.

Step 3.7: Choose top ‘P’ antibody query plans for new population from Table 3.25. The

new population for next generation is shown below in Table 3.26.

51 | P a g e

QPN Query Plan QPC

X1 [5,4,4,6,4,4] 0.500

X2 [3,2,2,2,3,2] 0.444

X3 [5,4,4,3,4,4] 0.500

X4 [5,4,4,5,4,4] 0.444

X5 [5,4,4,6,4,4] 0.500

X6 [3,4,4,2,2,4] 0.611

X7 [3,2,2,2,3,1] 0.611

X8 [3,3,1,4,3,4] 0.611

X9 [3,4,4,2,2,4] 0.611

X10 [5,4,2,6,4,4] 0.667

Table 3.25 Population for next generation.

For Generation=2, repeat the following steps:

Step3.1: Select top-4 query plans are shown below in Table 3.27.

QPN Query Plan QPC

X2 [3,2,2,2,3,2] 0.444

X4 [5,4,4,5,4,4] 0.444

X1 [5,4,4,6,4,4] 0.500

X3 [5,4,4,3,4,4] 0.500

Table 3.26 Selected Top-4 query plan for 2nd Generation.

Step3.2: Compute total number of clones. For α=0.9, β=0.99 where 𝛽=α*β, 𝐶𝑛 =19.

Step3.3: For top four query plans from Table 3.27. Compute Z i.e. 0.83 for R=6. Now

compute 𝑍1 using Z as shown in Table 3.28.

QPN QPC (𝒁 − 𝑸𝑷𝑪𝒊)

1 0.444 0.386

2 0.444 0.386

3 0.500 0.330

4 0.500 0.330

Total (Z1) = 1.432

 Table 3.27 Sum of fitness using Roulette Wheel.

Compute 𝑪𝒊using Z1 as shown in Table 3.29.

𝑪𝒊 0.27 0.27 0.23 0.23

Table 3.28 Clone computation Probability of top-4 query plan.

52 | P a g e

Roulette Wheel of Top-4 query plans for clones computation has been shown in Figure 3.5.

Figure 3.6 Top 4 query plans for clone generation with their probability.

Calculate probability of each selected antibody query plan to generate clones using

Roulette Wheel is shown in Table 3.30.

0.27 0.54 0.77 1.00

Table 3.29 Each query plans proportion based on fitness.

Generate random numbers equal to the total number of clones and use roulette wheel to

compute clones of chosen antibody query plans as shown in Table 3.31.

Random

number

Clones of selected

antibodies

0.9595 [5,4,4,3,4,4]

0.6557 [5,4,4,6,4,4]

0.0357 [3,2,2,2,3,2]

0.8491 [5,4,4,3,4,4]

0.9340 [5,4,4,3,4,4]

0.6787 [5,4,4,6,4,4]

0.7577 [5,4,4,6,4,4]

0.7431 [5,4,4,6,4,4]

0.3922 [5,4,4,5,4,4]

0.6555 [5,4,4,6,4,4]

0.1712 [3,2,2,2,3,2]

0.7060 [5,4,4,6,4,4]

0.0318 [3,2,2,2,3,2]

0.2769 [5,4,4,5,4,4]

53 | P a g e

0.0462 [3,2,2,2,3,2]

0.0971 [3,2,2,2,3,2]

0.8235 [5,4,4,3,4,4]

0.6948 [5,4,4,6,4,4]

0.3171 [5,4,4,5,4,4]

Table 3.30 Clones of top ‘n’ selected query plans based on its probability.

Step3.4: Table 3.32 and Table 3.33 show Mutated clones using roulette wheel algorithm.

Table 3.31 Sum of Probability of selected query plans.

0.235 0.470 0.735 1.000

Table 3.32 Roulette Wheel for selected Query Plans for mutation.

Step 3.5: Computed fitness of mutated clones using step 2 are shown in Table 3.34.

QPN Random

Number

Query Plan Mutated Query

Plan

QPC

1 0.9502 [5,4,4,3,4,4] [5,4,4,6,4,4] 0.500

2 0.0344 [3,2,2,2,3,2] [3,2,2,2,3,2] 0.444

3 0.4387 [5,4,4,5,4,4] [5,4,4,6,4,4] 0.500

4 0.3816 [5,4,4,5,4,4] [5,4,2,5,4,4] 0.611

5 0.7655 [5,4,4,3,4,4] [3,4,4,3,4,4] 0.444

6 0.7952 [5,4,4,3,4,4] [5,4,1,3,4,4] 0.667

7 0.1869 [3,2,2,2,3,2] [3,4,2,2,3,2] 0.611

8 0.4898 [5,4,4,6,4,4] [3,4,4,6,4,4] 0.500

9 0.4456 [5,4,4,5,4,4] [5,2,4,5,4,4] 0.611

10 0.6463 [5,4,4,6,4,4] [5,4,4,5,4,4] 0.444

11 0.7094 [5,4,4,6,4,4] [5,4,1,6,4,4] 0.611

QPC Probability

0.444/1.888 0.235

0.444/1.888 0.235

0.500/1.888 0.265

0.500/1.888 0.265

Sum 1.0000

54 | P a g e

12 0.7547 [5,4,4,3,4,4] [5,4,4,3,4,2] 0.611

13 0.2760 [5,4,4,5,4,4] [5,4,4,1,4,4] 0.500

14 0.6797 [5,4,4,6,4,4] [5,4,4,5,4,4] 0.444

15 0.6551 [5,4,4,6,4,4] [5,1,4,6,4,4] 0.611

16 0.1626 [3,2,2,2,3,2] [3,1,2,2,3,2] 0.611

17 0.1190 [3,2,2,2,3,2] [3,2,1,2,3,2] 0.667

18 0.4984 [5,4,4,6,4,4] [5,2,4,6,4,4] 0.667

19 0.9597 [5,4,4,3,4,4] [5,4,1,3,4,4] 0.667

Table 3.33 Mutated clones with their respective fitness.

Step 3.6: Add mutated clones 𝐶𝑛 to the existing population P as given in Table 3.35.

QPN Query Plan QPC

1 [5,4,4,6,4,4] 0.500

2 [3,2,2,2,3,2] 0.444

3 [5,4,4,3,4,4] 0.500

4 [5,4,4,5,4,4] 0.444

5 [5,4,4,6,4,4] 0.500

6 [3,4,4,2,2,4] 0.611

7 [3,2,2,2,3,1] 0.611

8 [3,3,1,4,3,4] 0.611

9 [3,4,4,2,2,4] 0.611

10 [5,4,2,6,4,4] 0.667

11 [5,4,4,6,4,4] 0.500

12 [3,2,2,2,3,2] 0.444

13 [5,4,4,6,4,4] 0.500

14 [5,4,2,5,4,4] 0.611

15 [3,4,4,3,4,4] 0.444

16 [5,4,1,3,4,4] 0.667

17 [3,4,2,2,3,2] 0.611

18 [3,4,4,6,4,4] 0.500

19 [5,2,4,5,4,4] 0.611

20 [5,4,4,5,4,4] 0.444

55 | P a g e

21 [5,4,1,6,4,4] 0.611

22 [5,4,4,3,4,2] 0.611

23 [5,4,4,1,4,4] 0.500

24 [5,4,4,5,4,4] 0.444

25 [5,1,4,6,4,4] 0.611

26 [3,1,2,2,3,2] 0.611

27 [3,2,1,2,3,2] 0.667

28 [5,2,4,6,4,4] 0.667

Table 3.34 Combination of Mutated clones and existing population.

Step 3.7: Choose Top P=10 antibody query plans for new population from Table 3.35. The

new population for next generation is shown below in Table 3.36.

QPN (New) Query Plan QPC

X1 [5,4,4,6,4,4] 0.500

X2 [3,2,2,2,3,2] 0.444

X3 [5,4,4,3,4,4] 0.500

X4 [5,4,4,5,4,4] 0.444

X5 [5,4,4,6,4,4] 0.500

X6 [3,4,4,2,2,4] 0.611

X7 [3,2,2,2,3,1] 0.611

X8 [3,3,1,4,3,4] 0.611

X9 [3,4,4,2,2,4] 0.611

X10 [5,4,2,6,4,4] 0.667

Table 3.35 Population for next generation.

The above steps are repeated for a pre-specified number of generations. Thereafter, the

Top-k query plans are produced as output.

3.3. COMPARISON OF THE PROPOSED MODELS

The proposed models DQPGAIS-I and DQPGAIS-II are variants of algorithm CLONALG

[LJ02]. These two models give similar output, top-k query plans, but in different ways.

The basic difference between the two models are in the parameters given below.

56 | P a g e

Mutation: Mutation is inversely proportional to the fitness of antibodies. The purpose of

inverse relation between fitness of antibody query plan and mutation is that higher the

fitness of the query plan, lesser would be the changes in the query plan. Thus, a query plan

with higher fitness would be better to be passed to the next generation and vice versa. In

DQPGAIS-I, mutation rate is calculated by product of fitness value and the number of sites

used in the query plan. On the other hand, generated clones of antibodies in DQPGAIS-II

are mutated with a constant rate using Roulette Wheel selection.

Clone Generation: DQPGAIS-I and DQPGAIS-II use different measures to compute the

number of clones. The clones are thereafter selected using Roulette Wheel Selection.

3.4. EXPERIMENTAL RESULTS

GA based DQPG algorithm (DQPGGA) given in [VSV10][VSV11], DQPGAIS-I and

DQPGAIS-II are implemented using MATLAB R2009a. Comparison of DQPG-I with

DQPGGA is discussed next.

3.4.1. DQPGAIS-I vs DQPGGA

First, graphs showing Average QPC of Top-10 query plans over 400 generations were

plotted for 12, 16, 20, 24 and 28 relations and are shown in Figure 3.7, Figure 3.8, Figure

3.9, Figure 3.10 and Figure 3.11 respectively. The parameters considered to plot the graphs

are mutation rate (0.05) and crossover (0.8) for GA, clone rate (0.99, 0.98) and best query

plans for clone generation from the whole population (0.4, 0.6) in case of DQPGAIS-I. It is

observed from the graphs that DQPGAIS-I gives better results over DQPGGA. As the number

of generation increases, query plans with lower Average QPC is produced.

57 | P a g e

Figure 3.7 GA vs AIS for 12 Relations.

Figure 3.8 GA vs AIS for 16 Relations.

Figure 3.9 GA vs AIS for 20 Relations.

58 | P a g e

Figure 3.10 GA vs AIS for 24 Relations.

Figure 3.11 GA vs AIS for 28 Relations.

Next, graphs showing Average QPC vs Top-K query plans produced by DQPGAIS-I and

DQPGGA, after 400 generations for 12, 16, 20 and 2 relations are plotted and are shown in

Figure 3.12, Figure 3.13, Figure 3.14 and Figure 3.15 respectively. It can be observed from

the graphs that DQPGAIS-I. in comparison to DQPGGA, is able to generate query plans

having comparatively lower Average QPC.

59 | P a g e

 Figure 3.12 GA vs AIS Top-k Query Plans for 12 Relations.

Figure 3.13 GA vs AIS Top-k Query Plans for 16 Relations.

Figure 3.14 GA vs AIS Top-k Query Plans for 20 Relations.

60 | P a g e

Figure 3.15 GA vs AIS Top-k Query Plans for 24 Relations.

Figure 3.16 GA vs AIS Top-k Query Plans for 28 Relations.

Next, experimental comparisons of DQPGAIS-II and DQPGGA are carried out and is

discussed next.

3.4.2. DQPGAIS-II vs DQPGGA

First, graphs showing Average QPC of Top-k query plans over 400 generations were

plotted for 12, 16, 20, and 24 relations and are shown in Figure 3.17, Figure 3.18, Figure

3.19, and Figure 3.20 respectively. The graphs were plotted for mutation rate (0.05) and

crossover (0.8) for GA. The parameters considered for DQPGAIS-II are clone generation

61 | P a g e

(0.4, 0.6), best query plans of whole population used in clone generation (0.99, 0.98) and

mutation rate (0.05, 0.01). It is observed from the graphs that DQPGAIS-II gives better

results over DQPGGA. As the number of generation increases, query plans with lower

Average QPC is produced.

Figure 3.17 GA vs AIS for 12 Relations.

Figure 3.18 GA vs AIS for 16 Relations.

62 | P a g e

Figure 3.19 GA vs AIS for 20 Relations.

Figure 3.20 GA vs AIS for 24 Relations.

Next, graphs showing Average QPC vs Top-K query plans produced by DQPGAIS-II and

DQPGGA, after 400 generations for 12, 16, 20 and 24 relations are plotted and are shown

in Figure 3.21, Figure 3.22, Figure 3.23 and Figure 3.24 respectively. It can be observed

from the graphs that DQPGAIS-II, in comparison to DQPGGA, is able to generate query

plans having comparatively lower Average QPC.

63 | P a g e

Figure 3.21 GA vs AIS Top-k Query Plans for 12 Relations.

Figure 3.22 GA vs AIS Top-k Query Plans for 16 Relations.

64 | P a g e

Figure 3.23 GA vs AIS Top-k Query Plans for 20 Relations.

Figure 3.24 GA vs AIS Top-k Query Plans for 24 Relations.

65 | P a g e

CHAPTER 4

4. CONCLUSION

In this dissertation, an attempt has been made to address the DQPG problem given in

[VSV10, VSV11]. In this regard, two AIS based DQPG models DQPGAIS-I and DQPGAIS-

II are proposed that generates Top-K query Plans for a given distributed query. In

DQPGAIS-I, mutation rate is computed by product of fitness value and the number of sites

used in the query plan. On the other hand, generated clones of antibody query plans in

DQPGAIS-II are mutated with a constant rate using Roulette Wheel selection. DQPGAIS-I

and DQPGAIS-II use different measures to compute the number of clones. Further,

experimental based comparison of the two proposed models DQPGAIS-I and DQPGAIS-II

with DQPGGA showed that both the proposed models are able to generate query plans

having comparatively lower average QPC. The query plans, so generated would lead to

efficient processing of distributed queries.

66 | P a g e

5. REFERENCES

[A89] Alan S.Perelson. Immune network theory. Immunological Reviews,(10):5‐36, 1989.

[AN87] Ada, G. L. & Nossal, G. J. V. (1987), “The Clonal Selection Theory”, Scientific

American, 257(2), pp. 50-57.

[ATA12] O.Abdoun, C.Tajani, J.Abouchabaka ‘Analyzing the performance of mutation

operators to solve the traveling salesman problem’Int. J.Emerg. Sci., 2 (1) (2012), pp. 61-

77

[BC81] BERNSTEIN, P.A, AND CHIU, DW, “Using semi-joins to solve relational

queries,” J ACM28, 1 (Jan.1981), 25--40.

[BS12] S. Binitha, S.Siva Sathya, “A survey of bio inspired optimization algorithms,”

Int. J. Soft Comput. Eng. (IJSCE), 2231-2307, 2 (2) (2012).

[BV90] H. Bersini and F. Varela 1990. Hints for adaptive problem solving gleaned from

immune networks. Proceedings of the First Conference on Parallel Problem Solving from

Nature, 343–354.

[CHF+10] Bin Chen, Fengru Huang, Yu Fang, Zhou Huang, and Hui Lin. An approach

for heterogeneous and loosely coupled geospatial data distributed computing. Computers

and Geosciences, 36(7):839 - 847, 2010.

[CP84] Stefano Ceri and Giuseppe Pelagatti. Distributed Databases: Principles and

systems. McGraw-Hill Book Company, 1984. 25.

67 | P a g e

[CT94] C.J. Gibert and T. W. Routen. Associative memory in an immune-based system.

In Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94),

pages 852–857, Seattle, July 31-August 4 1994.

[CY92] Chen, M. S., and Yu, P. S., Interleaving a join sequence with semi joins in

distributed query processing. IEEE Transaction on Parallel and distributed System 5, pp

611-621, 1992.

[CY93] Chen, M. S., and Yu, P. S., Combining joining and semi join operations for

distributed query processing. IEEE Transaction on knowledge and Data Engineering 5, pp

534-534, 1993.

[CZ99] De Castro, L. N. & Von Zuben, F. J. (1999), “Artificial Immune Systems: Part I –

Basic Theory and Applications”, Technical Report – RT DCA 01/99, p. 95.

[CZ00] De Castro, L. N. & Von Zuben, F. J. (2000), “The Clonal Selection Algorithm with

Engineering Applications”, GECCO’00 – Workshop Proceedings, pp. 36-37.

[D95] C.J. Date, “An Introduction to Database Systems, Addison Wesley,” Reading MA,

1995.

[E74] CODD, E.F. Recent investigations in relational data base systems. Proc. IFIP

Congress 1974, North-Holland Pub. Co., Amsterdam, pp. 1017-1021.

[EE95] John E. Hunt and Ennise E. Cooke. An adaptive, distributed learning system, based

on the immune system. In Proceedings of the IEEE International Conference on Systems,

Man and Cybernatics, pages 2494‐2499, 1995.

[EMG99] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural

to Artificial System. Oxford University Press, New York, 1999.

68 | P a g e

[EN10] Elmasari, Navathe, Fundamental of Database system, sixth edition, Pearson

Education, Inc. 2010.

[ESW78] Robert Epstein , Michael Stonebraker , Eugene Wong, Distributed query

processing in a relational data base system, Proceedings of the 1978 ACM SIGMOD

international conference on management of data, May 31-June 02, 1978, Austin,

Texas [doi>10.1145/509252.509292].

[FJY+13] Fister, I.J., Yang, X-S., Fister, I., Brest, J., Fister, D. (2013e). ‘A brief review

of nature-inspired algorithms for optimization’. Electrotechnical Review. 80, 3, 116-122

[FM08] Floreano, D., Mattiusi, C., Bio-Inspired Artificial Intelligence: Theories, Methods

and Technologies, MIT Press, 2008.

[FPP86] J. D. Farmer, N. H. Packard and A. S. Perelson 1986. ‘The immune system,

adaptation and machine learning’. Physica, 22D, 187–204.

[G85] Grefenstette, j.J., Proceedings of 1st International Conference on Genetic Algorithms

and their application, Hillsdale, NJ: Lawrence Erlbaum, pp. 160-168, 1985.

[G98] M. Gregory, “Genetic algorithm optimization of distributed database queries,” in

Proc. ICEC, 1998, pp. 271–276.

[GR94] C. J. Gilbert and T. W. Routen 1994. Associative memory in an immune-based

system. Proceedings of AAAI’94, 2, 852–857.

[H75] Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, MIT Press.

[H86] G. W. Hoffmann 1986. A neural network model based on the analogy with the

immune system. Journal of Theoretical Biology, 122, 33–67.

[HC96] Hunt, J. E. & Cooke, D. E. (1996), “Learning Using an Artificial Immune System”,

Journal of Network and Computer Applications, 19, pp. 189-212.

http://dl.acm.org/citation.cfm?id=509292&CFID=523727942&CFTOKEN=78113307
http://dl.acm.org/citation.cfm?id=509292&CFID=523727942&CFTOKEN=78113307
http://dl.acm.org/citation.cfm?id=509292&CFID=523727942&CFTOKEN=78113307
http://dl.acm.org/citation.cfm?id=509292&CFID=523727942&CFTOKEN=78113307
http://doi.acm.org/10.1145/509252.509292

69 | P a g e

[HHC+9] Husbands, P., Harvey, I., Cliff, D., Miller, G., “Artificial Evolution: A new path

for artificial intelligence”, Brain and Cognition-34, pp. 130-159, 1997.

[K00] D. KOSSMAN, “The state of the art in distributed query processing”., ACM Comput.

Surv. 32, 4 (Dec. 2000). 422–46.

[L06] L.N. Decastro, “Fundamentals of Natural Computing: Basic Concepts, Algorithms,

and Applications”, Chapman and Hall/CRC, 2006.

[LJ02] L.N. Decastro and J. Timmis, “Artificial Immune Systems: A Novel Paradigm to

Pattern Recognition,” University of Paisley, UK, pp. 67-84, 2002.

[M94] M. Millonas. Swarms, Phase Transitions, and Collective Intelligence. Addison-

Wesley Publishing Company, Reading (1994).

[M99] M. Melanie, ‘An Introduction to Genetic Algorithms’, Massachusetts: MIT Press,

1999.

[MDP+1] Mishra, A. K., Das M.N., Panda, T.C., Swarm Intelligence Optimization:

Editorial Survey, International Journal of Emerging Technology and Advanced

Engineering, 2013.

[MHH] B.M. Monjurul Alom, Frans Henskens and Michael Hannaford, “Query processing

and optimization in Distributed Database System,” International Journal of Computer

Science and Network Security (IJCSNS)., Sep2009.

[ML94] Srinivas. M and Patnaik. L, "Adaptive probabilities of crossover and mutation in

genetic algorithms," IEEE Transactions on System, Man and Cybernetics, vol.24, no.4,

pp.656–667, 1994

70 | P a g e

[MTM11] Mishra, K.K., Tiwari, S., Misra, A.K.: A bio inspired algorithm for solving

optimization problems. In: 2011 2nd International Conference on Computer and

Communication Technology (ICCCT), September 15-17, pp. 653–659 (2011).

[N93] Nossal, G. J. V. (1993), “The Molecular and Cellular Basis of Affinity Maturation

in the Antibody Response”, Cell, 68, pp. 1-2.

[NG94] Nossal, G. J. V. (1994), “Negative Selection of Lymphocytes”, Cell, 76, pp. 229-

239.

[OV91] Ozsu, M.T., Valduriez, P., Distributed Database system: where are we now? IEEE

Computer, Vol. 4, No. 8, pp68-78, August 1991.

[OV11] Ozsu, M.T., Valduriez, P., Principles Distributed Databased System, Third Edition,

Springer, 2011.

[OZ97] Ozsoyoglu, Z.M., and Zhou, N., Distributed query processing in Broadcasting

local area network. In Proc. 20th Hawaii Int. Conf. on system Sciences, pp 419-429, 1987

[PC91] Phlilips, A.B., Chiu, D.W., Using Semi-joins to solve Relational Queries, Journal

of the Associated for computing machinery, vo. 28, pp.25-40, 1991.

[RM71] S. Rho, S. T. March, “Optimizing join queries: A genetic algorithm Approach”.

Annals of Operations Research, 71, 199–228.

[R90] Richard G. Weinand. Somatic mutation, affinity maturation and antibody repertoire:

A computer Model.Journal of Theoretical Biology, 143(3)343‐382, 1990.

[R12] Ray, C., Distributed Database System, Pearson education India, 2012.

[SAL+94] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri. Self-Nonself

Discrimination in a Computer. In Proceedings of IEEE Symposium on Research in

Security and Privacy, pages202‐212, Oakland, CA, 16–18 May 1994.

71 | P a g e

[SAS+09] Das, S., Biswas, A., Dasgupta, S., Abraham, A. (2009). Bacterial Foraging

Optimization Algorithm: Theoretical Foundations, Analysis, and Applications, Volume

203/2009 of Studies in Computational Intelligence. Springer Berlin/Heidelberg, 23-55.

[SBRA93] S. Forrest, B. Javornik, R. Smith, and A.S. Perelson. Using genetic algorithms

to explore pattern recognition in the immune system. Evolutionary Computation, 1(3):191–

211, 1993.

[SBM98] S. Salza , G. Barone and T. Morzy “A distributed algorithm for global query

optimization in multi database systems”, International Conference on Advances in

Database and Information Systems, pp.95 -106 1998.

[SC92] P. E. Seiden and F. Celada 1992. A model for simulating cognate recognition and

response in the immune system. Journal of Theoretical Biology, 158, 329–357.

[SC10] Sevinc E, Cosar A, “An Evolutionary Genetic Algorithm for Optimization of

Distributed Database Queries”, The Computer journal, 2010.

[SG98] Arun Swami , Anoop Gupta, Optimization of large join queries, Proceedings of the

1988 ACM SIGMOD international conference on Management of data, p.8-17, June 01-

03, 1988, Chicago, Illinois, United States [doi>10.1145/50202.50203].

[SL90] Amit P. Sheth , James A. Larson, Federated database systems for managing

distributed, heterogeneous, and autonomous databases, ACM Computing Surveys (CSUR),

v.22 n.3, p.183-236, Sept. 1990 [doi>10.1145/96602.96604].

[TT90] Gomer Thomas , Glenn R. Thompson , Chin-Wan Chung , Edward Barkmeyer ,

Fred Carter , Marjorie Templeton , Stephen Fox , Berl Hartman, Heterogeneous distributed

database systems for production use, ACM Computing Surveys (CSUR), v.22 n.3, p.237-

266, Sept. 1990.

http://dl.acm.org/citation.cfm?id=50203&CFID=688135259&CFTOKEN=30832623
http://dl.acm.org/citation.cfm?id=50203&CFID=688135259&CFTOKEN=30832623
http://dl.acm.org/citation.cfm?id=50203&CFID=688135259&CFTOKEN=30832623
http://doi.acm.org/10.1145/50202.50203

72 | P a g e

[UD05] U. Aickelin, D. Dasgupta Artificial immune systems tutorial. Burke, G. Kendall

(Eds.), Search methodologies—introductory tutorials in optimization and decision support

techniques, Kluwer (2005), pp. 375–399.

[VBS+11] Chifu, V.R. , Pop, C.B. , Salomie, I. , Dinsoreanu, M. , Niculici, A.N. , Suia,

D. S. (2011). ‘Bio-inspired methods for selecting the optimal web service composition:

bees or cuckoos intelligence?’. International Journal of Business Intelligence and Data

Mining. 6, 4, 321-344.

 [VSV10] Vijay Kumar, T. V., Singh, V., & Verma, A. K. (2010). Generating distributed

query processing plans using genetic algorithm. In DSDE 2010 - International Conference

on Data Storage and Data Engineering (pp. 173–177).

 [VSV11] Vijay Kumar, T.V., Singh, V., Verma, A.K.: Distributed Query Processing Plans

Generation using Genetic Algorithm. International Journal of Computer Theory and

Engineering 3(1), 38–45 (2011).

[WY91] Eugene Wong, Karel Youssefi, Decomposition—a strategy for query processing,

ACM Transactions on Database Systems (TODS), vol.1 no.3, p.223-241, Sept. 1976 [doi:

10.1145/320473.320479].

[XY10] M. Xifeng, F.Yuanyuan, “Distributed Database System Query Optimization

Algorithm Research”, IEEE Intl. Conf. on Computer Science and Information

Technology”, Vol.8, pp 657- 660, 2010.

[YC84] Yu C.T , Chang C.C., “Distributed query processing,” ACM Computing Surveys,

vol. 16, pp 399-433, 1984.

http://dl.acm.org/citation.cfm?id=320479&CFID=688135259&CFTOKEN=30832623
http://dl.acm.org/citation.cfm?id=320479&CFID=688135259&CFTOKEN=30832623
http://doi.acm.org/10.1145/320473.320479

73 | P a g e

[YZH+0] Y. Zhu, Z. Tang, H. Dai, S. Gao. Cooperation artificial immune system with

application to travelling salesman problem. ICIC Express Letters, 2 (2) (2008), pp. 143–

148.

[ZHW05] Zhu, Q. and P.-Å. Larson. (1996). Global Query Processing and Optimization

in the CORDS Multidatabase System. In Proc. of 9th Int’l Conf. on Paral and Distr. Comp.

Syst., pp 640–648.

74 | P a g e

6. BIBLIOGRAPHY

1. Alan S. Perelson. Immune network theory. Immunological Reviews,(10):5‐36,

1989.

2. Ada, G. L. & Nossal, G. J. V. (1987), “The Clonal Selection Theory”, Scientific

American, 257(2), pp. 50-57.

3. BERNSTEIN, P.A, AND CHIU, DW, “Using semi-joins to solve relational queries,”

J ACM28, 1 (Jan.1981), 25--40.

4. H. Bersini and F. Varela 1990. Hints for adaptive problem solving gleaned from

immune networks. Proceedings of the First Conference on Parallel Problem

Solving from Nature, 343–354.

5. Bin Chen, Fengru Huang, Yu Fang, Zhou Huang, and Hui Lin. An approach for

heterogeneous and loosely coupled geospatial data distributed computing.

Computers and Geosciences, 36(7):839 - 847, 2010.

6. Stefano Ceri and Giuseppe Pelagatti. Distributed Databases: Principles and systems.

McGraw-Hill Book Company, 1984. 25.

7. C.J. Gibert and T. W. Routen. Associative memory in an immune-based system. In

Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94),

pages 852–857, Seattle, July 31-August 4 1994.

8. Chen, M. S., and Yu, P. S., Interleaving a join sequence with semi joins in

distributed query processing. IEEE Transaction on Parallel and distributed System

5, pp 611-621, 1992.

75 | P a g e

9. Chen, M. S., and Yu, P. S., Combining joining and semi join operations for

distributed query processing. IEEE Transaction on knowledge and Data

Engineering 5, pp 534-534, 1993.

10. De Castro, L. N. & Von Zuben, F. J. (1999), “Artificial Immune Systems: Part I –

Basic Theory and Applications”, Technical Report – RT DCA 01/99, p. 95.

11. De Castro, L. N. & Von Zuben, F. J. (2000), “The Clonal Selection Algorithm with

Engineering Applications”, GECCO’00 – Workshop Proceedings, pp. 36-37.

12. C.J. Date, “An Introduction to Database Systems, Addison Wesley,” Reading MA,

1995.

13. CODD, E.F. Recent investigations in relational data base systems. Proc. IFIP

Congress 1974, North-Holland Pub. Co., Amsterdam, pp. 1017-1021.

14. John E. Hunt and Ennise E. Cooke. An adaptive, distributed learning system, based

on the immune system. In Proceedings of the IEEE International Conference on

Systems, Man and Cybernatics, pages 2494‐2499, 1995.

15. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to

Artificial System. Oxford University Press, New York, 1999.

16. Elmasari, Navathe, Fundamental of Database system, sixth edition, Pearson

Education, Inc. 2010.

17. Robert Epstein , Michael Stonebraker , Eugene Wong, Distributed query processing

in a relational data base system, Proceedings of the 1978 ACM SIGMOD

international conference on management of data, May 31-June 02, 1978, Austin,

Texas [doi>10.1145/509252.509292].

http://dl.acm.org/citation.cfm?id=509292&CFID=523727942&CFTOKEN=78113307
http://dl.acm.org/citation.cfm?id=509292&CFID=523727942&CFTOKEN=78113307
http://dl.acm.org/citation.cfm?id=509292&CFID=523727942&CFTOKEN=78113307
http://dl.acm.org/citation.cfm?id=509292&CFID=523727942&CFTOKEN=78113307
http://doi.acm.org/10.1145/509252.509292

76 | P a g e

18. Fister, I.J., Yang, X-S., Fister, I., Brest, J., Fister, D. (2013e). ‘A brief review of

nature-inspired algorithms for optimization’. Electrotechnical Review. 80, 3, 116-

122.

19. Floreano, D., Mattiusi, C., Bio-Inspired Artificial Intelligence: Theories, Methods

and Technologies, MIT Press, 2008.

20. J. D. Farmer, N. H. Packard and A. S. Perelson 1986. ‘The immune system,

adaptation and machine learning’. Physica, 22D, 187–204.

21. Grefenstette, J., Proceedings of 1st International Conference on Genetic Algorithms

and their application, Hillsdale, NJ: Lawrence Erlbaum, pp. 160-168, 1985.

22. M. Gregory, “Genetic algorithm optimization of distributed database queries,” in

Proc. ICEC, 1998, pp. 271–276.

23. C. J. Gilbert and T. W. Routen 1994. Associative memory in an immune-based

system. Proceedings of AAAI’94, 2, 852–857.

24. Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, MIT Press.

25. G. W. Hoffmann 1986. A neural network model based on the analogy with the

immune system. Journal of Theoretical Biology, 122, 33–67.

26. Hunt, J. E. & Cooke, D. E. (1996), “Learning Using an Artificial Immune System”,

Journal of Network and Computer Applications, 19, pp. 189-212.

27. Husbands, P., Harvey, I., Cliff, D., Miller, G., “Artificial Evolution: A new path for

artificial intelligence”, Brain and Cognition-34, pp. 130-159, 1997.

28. D. KOSSMAN, “The state of the art in distributed query processing”., ACM

Comput. Surv. 32, 4 (Dec. 2000). 422–46.

77 | P a g e

29. L.N. Decastro and J. Timmis, “Artificial Immune Systems: A Novel Paradigm to

Pattern Recognition”, University of Paisley, UK, pp. 67-84, 2002.

30. M. Millonas. Swarms, Phase Transitions, and Collective Intelligence. Addison-

Wesley Publishing Company, Reading (1994).

31. M. Melanie, ‘An Introduction to Genetic Algorithms’, Massachusetts: MIT Press,

1999.

32. Mishra, A. K., Das M.N., Panda, T.C., Swarm Intelligence Optimization: Editorial

Survey, International Journal of Emerging Technology and Advanced Engineering,

2013.

33. B.M. Monjurul Alom, Frans Henskens and Michael Hannaford, “Query processing

and optimization in Distributed Database System,” International Journal of

Computer Science and Network Security (IJCSNS)., Sep2009.

34. Srinivas. M and Patnaik. L, "Adaptive probabilities of crossover and mutation in

genetic algorithms," IEEE Transactions on System, Man and Cybernetics, vol.24,

no.4, pp.656–667, 1994.

35. Mishra, K.K., Tiwari, S., Misra, A.K.: A bio inspired algorithm for solving

optimization problems. In: 2011 2nd International Conference on Computer and

Communication Technology (ICCCT), September 15-17, pp. 653–659 (2011).

36. Nossal, G. J. V. (1993), “The Molecular and Cellular Basis of Affinity Maturation

in the Antibody Response”, Cell, 68, pp. 1-2.

37. Nossal, G. J. V. (1994), “Negative Selection of Lymphocytes”, Cell, 76, pp. 229-

239.

78 | P a g e

38. Ozsu, M.T., Valduriez, P., Distributed Database system: where are we now? IEEE

Computer, Vol. 4, No. 8, pp68-78, August 1991.

39. Ozsu, M.T., Valduriez, P., Principles Distributed Databased System, Third Edition,

Springer, 2011.

40. Ozsoyoglu, Z.M., and Zhou, N., Distributed query processing in Broadcasting local

area network. In Proc. 20th Hawaii Int. Conf. on system Sciences, pp 419-429, 1987

41. Phlilips, A.B., Chiu, D.W., Using Semi-joins to solve Relational Queries, Journal

of the Associated for computing machinery, vo. 28, pp.25-40, 1991.

42. S. Rho, S. T. March, “Optimizing join queries: A genetic algorithm Approach”.

Annals of Operations Research, 71, 199–228.

43. Richard G. Weinand.Somatic mutation, affinity maturation and antibody repertoire:

A computer Model.Journal of Theoretical Biology, 143(3)343‐382, 1990.

44. Ray, C., Distributed Database System, Pearson education India, 2012.

45. S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri. Self-Nonself Discrimination

in a Computer. In Proceedings of IEEE Symposium on Research in Security and

Privacy, pages202‐212, Oakland, CA, 16–18 May 1994.

46. Das, S., Biswas, A., Dasgupta, S., Abraham, A. (2009). Bacterial Foraging

Optimization Algorithm: Theoretical Foundations, Analysis, and Applications,

Volume 203/2009 of Studies in Computational Intelligence. Springer

Berlin/Heidelberg, 23-55

47. S. Forrest, B. Javornik, R. Smith, and A.S. Perelson. Using genetic algorithms to

explore pattern recognition in the immune system. Evolutionary Computation,

1(3):191–211, 1993.

79 | P a g e

48. S. Salza , G. Barone and T. Morzy “A distributed algorithm for global query

optimization in multi database systems”, International Conference on Advances in

Database and Information Systems, pp.95 -106 1998

49. P. E. Seiden and F. Celada 1992. A model for simulating cognate recognition and

response in the immune system. Journal of Theoretical Biology, 158, 329–357.

50. Sevinc E, Cosar A, “An Evolutionary Genetic Algorithm for Optimization of

Distributed Database Queries”, The Computer journal, 2010.

51. Arun Swami , Anoop Gupta, Optimization of large join queries, Proceedings of the

1988 ACM SIGMOD international conference on Management of data, p.8-17,

June 01-03, 1988, Chicago, Illinois, United States [doi>10.1145/50202.50203].

52. Amit P. Sheth , James A. Larson, Federated database systems for managing

distributed, heterogeneous, and autonomous databases, ACM Computing Surveys

(CSUR), v.22 n.3, p.183-236, Sept. 1990 [doi>10.1145/96602.96604].

53. Gomer Thomas , Glenn R. Thompson , Chin-Wan Chung , Edward Barkmeyer ,

Fred Carter , Marjorie Templeton , Stephen Fox , Berl Hartman, Heterogeneous

distributed database systems for production use, ACM Computing Surveys (CSUR),

v.22 n.3, p.237-266, Sept. 1990.

54. U. Aickelin, D. Dasgupta Artificial immune systems tutorial. Burke, G. Kendall

(Eds.), Search methodologies—introductory tutorials in optimization and decision

support techniques, Kluwer (2005), pp. 375–399.

55. Chifu, V.R. , Pop, C.B. , Salomie, I. , Dinsoreanu, M. , Niculici, A.N. , Suia, D.S.

(2011). ‘Bio-inspired methods for selecting the optimal web service composition:

http://dl.acm.org/citation.cfm?id=50203&CFID=688135259&CFTOKEN=30832623
http://dl.acm.org/citation.cfm?id=50203&CFID=688135259&CFTOKEN=30832623
http://dl.acm.org/citation.cfm?id=50203&CFID=688135259&CFTOKEN=30832623
http://doi.acm.org/10.1145/50202.50203

80 | P a g e

bees or cuckoos intelligence?’. International Journal of Business Intelligence and

Data Mining. 6, 4, 321-344.

56. Vijay Kumar, T.V., Singh, V., Verma, A.K.: Distributed Query Processing Plans

Generation using Genetic Algorithm. International Journal of Computer Theory

and Engineering 3(1), 38–45 (2011).

57. Eugene Wong , Karel Youssefi, Decomposition—a strategy for query processing,

ACM Transactions on Database Systems (TODS), vol.1 no.3, p.223-241, Sept.

1976 [doi: 10.1145/320473.320479].

http://dl.acm.org/citation.cfm?id=320479&CFID=688135259&CFTOKEN=30832623
http://dl.acm.org/citation.cfm?id=320479&CFID=688135259&CFTOKEN=30832623
http://dl.acm.org/citation.cfm?id=320479&CFID=688135259&CFTOKEN=30832623
http://doi.acm.org/10.1145/320473.320479

	1. Acknowledgement
	2. ABSTRACT
	3. Table of Contents
	4. List of Tables
	5. List of Abbreviations
	6. List of Symbols
	1. Introduction
	1.1. Distributed Database Systems
	1.1.1 Objectives of DDBMS

	1.2. Distributed Query Processing
	1.2.1. Phases in DQP

	1.3. Distributed Query Processor
	1.3.1. Type of Optimization
	1.3.2. Use of Semi-joins

	1.4. The DQPG
	1.5. The Aim of dissertation
	1.6. Outline of the Dissertation

	2. Artificial Immune System
	2.1. Nature Inspired Techniques
	2.1.1. Nature inspired techniques categories
	2.1.1.1. Evolutionary Algorithms
	2.1.1.2. Physical Algorithms
	2.1.1.3. Swarm Intelligence:
	2.1.1.4. Bio-inspired Algorithms

	2.2. Immune System
	2.2.1. Biological Immune system
	2.2.2. Response in the immune system

	2.3. BIOLOGICAL INSPIRED AIS
	2.3.1. The Bone Marrow Object
	2.3.2. B cell objects
	2.3.3. Antibodies
	2.3.4. Antigen
	2.3.5. Antibody/Antigen Discrimination

	2.4. Clonal Selection
	2.4.1. CLONALG

	2.5. Related work

	3. DQPG using AIS
	3.1. DQPGAIS-I
	3.1.1 The DQPGAIS -1 Algorithm
	3.1.2. DQPGAIS-1 Example

	3.2. DQPGAIS-II
	3.2.1. DQPGAIS-II Algorithm
	3.2.2. DQPGAIS-II Example

	3.3. Comparison of the Proposed models
	3.4. Experimental results
	3.4.1. DQPGAIS-I vs DQPGGA
	3.4.2. DQPGAIS-II vs DQPGGA

	4. CONCLUSION
	5. References
	6. Bibliography

