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Notations and Abbreviations 

R : Real line 

nR : Euclidean space of dimension n  

x : Column vector in nR  

tx : Transpose of the vector x  

yx t : Inner product of the vectors x  and y  

yx  : x  is orthogonal to y  

|||| x : 2-norm of a vector x  

|||| Q : 2-norm of a matrix Q  

x : Vector x  with all negative components set to zero 
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 i , where i(.)  denotes 
thi  component  

0x : Each component of the vector x  is nonnegative 

)(xdiag : Diagonal matrix of order n  whose diagonal 

elements are the components of the vector x  

I : Identity matrix of appropriate size 

e : Column vector of ones of dimension m  

),( NMKK  : Kernel matrix K  of size m  with matrices 
nmRM   and 

 nRN  

 tnxfxff  ,...,1 : Gradient of real valued function f  of the variable
nt

n Rxxx  ),...,( 1 . 

 
njiji xxff

,...,1,
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 : Hessian matrix of f  

SVM: Support Vector Machine 

SVR: Support Vector Regression 

QPP: Quadratic Programming Problem 

 

 



 

ABSTRACT 

In this work, we have introduced an efficient approach to Twin Parametric Insensitive Support 

Vector Regression. The problem is solved via 1-norm and its dual is further solved by 

functional iterative method and by the Newton method thus leading to a convex optimization 

problem having a unique solution. The numerical results of the proposed method are 

compared with the Support Vector Regression and Twin Support Vector Regression on some 

real world datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 1 

Support Vector Machines for Regression 

1.1 Introduction 

Under the domain of classification or regression many important problems such as face 

detection (Osuna et al., 1997), gene selection (Guyon et al., 2002), gene prediction (Tong et 

al., 2005), bio medicine (Brown, Grundy, Lin, et al., 2000), drug discovery (Demiriz et al. 

2001), credit scoring (Malhotra & Malhotra, 2003), blind identification (Santamaria et al., 

2004), stock exchange prediction (Bao et al., 2005), optical character recognition (Mani & 

Voumard, 1996), text categorization (Joachims et al., 1998), time series forecasting ( 

Brockwell & Davis, 2002; Cao 2003), financial recognition ( Ince & Trafalis, 2002) and brain 

computer interface ( Ebrahini et al., 2003) lie. 

Machine learning methods such as Artificial Neural Networks (ANNs), determine a 

linear or nonlinear functional relationship between dependent and independent variables. The 

functional relationship is determined by training of input samples by different methods such as 

ANNs are trained with back propagation. These traditional learning methods are based on 

Empirical Risk Minimization (ERM) principle. ANNs may give better approximation 

capabilities but it suffers from slow convergence, presence of local minima, over-fitting and 

slow learning rate problems. Even the selection of the number of hidden layer neurons is a 

difficult task. 

Classification and Regression problems have been extensively solved by a machine 

learning method based on Statistical Learning Theory called Support Vector Machines (SVM) 



 

proposed by Vapnik (Cortes & Vapnik, 1995). SVM is based on principle of Structural Risk 

Minimization (SRM) (Cristianini & Shawe Taylor, 2000). Unlike ERM which minimizes the 

training error, SRM minimizes the upper bound on the generalization error thus have high 

prediction capabilities on unseen data.  

SVM formulation leads to a Quadratic Programming Problem (QPP) whose objective 

function is convex with linear inequality constraints having a unique solution (Cristianini & 

Shawe Taylor, 2000; Vapnik, 2000). Its computational complexity is       (Jayadeva et al., 

2007, Peng, 2010a) where m is number of training samples.  SVM is a widely used method 

because of a better generalization ability unique optimal solution. SVM was initially proposed 

for classification problems. It was later extended for regression estimation problems. 

In many fields of research such as tsunami alerts, bioinformatics, control theory, signal 

processing, meteorological prediction, information science and economics the estimation by 

regression is used. Like SVM, Support Vector Regression (SVR) also determines a regressor 

model with good generalization capabilities. The resulting model obtained can be used as a 

tool for analysis, prediction and simulation. 

1.2 Support vector regression 

 Support Vector Regression (SVR) aims at determining a linear regressor model for a 

given set of data points where the input data are either taken in the original form or taken into 

a higher dimensional feature space by using a kernel method. The linear regressor model is 

obtained by determining the functional relationship between the given set of inputs and their 

corresponding outputs. This relationship may either be linear or nonlinear, which can further 

be used to predict the output for any concealed or new data. 



 

 Throughout in this work all vectors are considered as column vectors. For any two 

vectors yx,  in nR , the inner product of the two vectors will be given by yx
t

 where t
x  is the 

transpose of vector. For a given vector t

nxxx ),...,,( 21x  in nR , the plus function x  is given 

as: },0max{)( ii xx
 

for ni ,...,2,1  and the step function *x  is given as: 1)( * ix  if 

0)(,0 *  iix x  if 0ix  and 5.0)( * ix  if 0ix . The 2-norm of a vector x  in nR  will be 

denoted by |||| x . e  is the column vector of one's of dimension m . I  is the identity matrix of 

appropriate size. For a matrix nmRA  , iA is the 
thi  row of A  which is a row vector in nR . 

For the two matrices 
nmRA  and knRB  , the kernel ),( BAK  maps knnm RR    into kmR  . 

1.2.1 Standard Linear Support Vector Regression 

 Under this, we will briefly illustrate standard 1-norm and 2- norm formulation for 

linear support vector regression problem. 

 For a given training set                  in which       and     .    is the 

observed value corresponding to the input samples   .  Let        be the matrix 

representation of the input samples.   
  be the i

th
 row of the input matrix and               

be the vector of output values. In the linear SVR problem, the output   is estimated by a 

function      of the form             ,    (1.1) 

where      and      are attained by solving the following unconstrained minimization 

problem                
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Where   is the error loss function. The term 
 

 
            

 
    is the average loss and 

 

 
     

is the regularization term. The parameter  >0 is the trade-off between the regularization term 

and the error. There are certain generally used error loss functions. They are given as: 

  

 



 

 

Fig 1.1 Error loss functions 

Throughout the discussion we will be considering  -insensitive loss function (Vapnik, 1998). 

 By considering  -insensitive loss function in the above unconstrained minimization 

problem (1.2) can be illustrated as        

                
 

 
     

 

 
    

         
 
   ,    (1.3) 

where    
                   

            and   >0 and ε>0 are parameters. 

The unconstrained minimization problem can be given as a constrained quadratic optimization 

problem (Lee at al., 2005).  Problem (1.3) can be given as 

                       
 

 
                    (1.4) 

subject to              ,               

  ,    
     for                       

where                ,       
    

      
    are vectors of slack variables. 



 

 

Fig 1.2 Linear support vector regression 

This formulation has 2m non negative variables and 2m linear inequality constraints. So rather 

than solving this problem, it is proposed to solve its dual (Balasundram & Kapil, 2010). The 

dual to this problem (1.4) can be illustrated by introducing Lagrange multipliers and is 

formulated as:           
 

 

 
       

                                (1.5) 

subject to               and             , 

where           and                     ,                     are Lagrange 

multipliers. 

Thus for any input sample set the prediction      is given as    

                      . 

1.2.2 Standard Non-Linear Support Vector Regression 

 In non-linear regression the input sample set is mapped into a higher dimensional 

feature space. This is done by applying a kernel function. The kernel function        is 

defined on the input space. The support vector regression estimation is then obtained in this 

feature space. 



 

 

Fig 1.3 Mapping into a higher dimensional feature space. 

A few generally used kernel functions are: 

 

where 1,, d  and 2  are kernel parameters. 

Throughout this work we will consider the popular radial based kernel. 

 Let           be the kernel matrix obtained after applying kernel function. 

Then                              is the row vector in   ,        and the         

element of this kernel matrix is given as                   . 



 

 By applying the kernel trick (Cristianini & Shawe-Taylor, 2000; Vapnik, 2000) to the 

problem (1.5) we get: 

          
   

 

 
           

                  
 
   

 
                

 
    

            
 
    ,           (1.6) 

subject to               and             ,       

where                      ,                     are Lagrange multipliers and 

       is kernel function. 

 Using the solution of problem (1.6), for any input sample set, the regression 

estimation function      is obtained and can be illustrated as:   

                           
   . 

1.2.3 Linear 2-Norm Support Vector Regression 

The 2-norm formulation we consider the square of the 2-norm of the slack variables   and    

instead of 1-norm (Mangasarian & Musicant (2001); Musicant & Feinberg, 2004). Also, to the 

objective function of problem (1.4) we add the term  
  

 
 . Thus we obtain the following 

constrained minimization problem (Musicant & Feinberg, 2004): 

                       
 

 
         

 

 
    

    
 
   

       (1.7) 

subject to                    and                 
 
  for          , 

where      
   are slack variables and  , ε are input parameters. 

On introduction of Lagrange multipliers:   

                      and                     , 



 

we can obtain the Lagrangian function as: 

                   
 

 
         

 

 
    

    
 
   

                     
   

                      
   

     

By using the condition that at optimality the partial derivatives of L with respect to the primal 

variables will be zero; the dual problem is illustrated as (Musicant & Feinberg, 2004):

             
  

 

 
        

                   
 

  
   

      
     

                             (1.8) 

where              and             .      (1.9) 

Thus by substituting (1.9) into (1.1) the linear regression estimation function is  

                            

         
  

  
        . 

Let G be an augmented matrix defined as          . The above estimation function can be 

given as:                    . 

The dual problem (1.8) is written as: 

    
           

 

 
   

   
    

  
  

     
  
  

      (1.10) 

where     

 

 
        

     

 
    

  and    
  
  
   

    
       are block matrices. 

 



 

1.2.4 Non-Linear 2- Norm Support Vector Regression 

Since,           is defined as the kernel matrix obtained after applying kernel 

function.                              is the row vector in   ,        and         

element of this kernel matrix is                   . 

By replacing     by kernel matrix           , which is a positive semi-definite 

symmetric matrix, the nonlinear support vector regression problem in dual variable is 

formulated as 

   
           

 

 
   

   
    

  
  

     
  
  

          

where     
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       are block matrices. 

Thus the regression estimation function      is given as: 
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Chapter 2 

Twin Support Vectors Regression 

2.1  Introduction 

 Support vector machine (SVM) is an excellent kernel-based tool for binary data 

classification and regression. 

Recently, Jayadeva et al., (2007) have proposed a Twin Support Vector Machine (TSVM) 

classifier. TSVM is used for binary data classification and is in the spirit of Generalized Eigen 

value Proximal Support Vector Machine (GEPSVM) (Mangasarian & Wild, 2006). This 

formulation of TSVM is very similar to that of classical SVM. The only difference is that it 

aims at generating two nonparallel planes such that each plane is closer to one class and as far 

as possible from other class. 

Because of its low computational complexity (Jayadeva et al., 2007), TSVM becomes one 

of the generally used methods in machine learning. Motivated by the work of Jayadeva et al., 

(2007), Twin Support Vector Regression (TSVR) formulation was proposed by Peng (2010) 

for epsilon insensitive regression. Like TSVM, the new formulation TSVR determines two 

nonparallel, up and down- bound regressors by solving two quadratic programming problems 

of smaller size than the classical SVR. 

2.2  Linear Twin Support Vector Regression (TSVR) 

In this section, we formulate Twin Support Vector Regression (TSVR) proposed by 

Peng (2010) for epsilon insensitive regression.  As it was suggested in (Peng, 2010), the linear 



 

formulation leads to determining two functions, such that either of them approximate the ε-

insensitive up- and down-bounds of unknown regression function. 

and  .       (2.1)  

where  are the unknowns and            may or may not be 

parallel. 

TSVR determines the two bound functions by solving the following pair of QPPs: 

   
 

 
                 

 
                     

    

subject to                     and      (2.2) 

and 

    
 

 
                 

 
                     

    

subject to                     and      (2.3) 

where          are input parameters; are regularization parameters and 

. 

 

Fig 2.1 Twin support vector regression 



 

By introducing Lagrangian multipliers                  and for               

   where                                       , the Lagrangian functions corresponding 

to (2.2) and (2.3) will be given by 

                  

  
 

 
                 

 
                     

   

   
                        

    

            (2.4) 

and 

                  

  
 

 
                 

 
                     

   

   
                        

    

            (2.5) 

Applying the Karush-Kuhn-Tucker (KKT) necessary and sufficient optimality conditions 

(Mangasarian, 1994) for the problem (2.4) and (2.5) they become: 

                               (2.6) 

                               (2.7) 

                    (2.8) 

                              (2.9) 

  
                                           (2.10) 

  
                            (2.11) 

Since       we have                         (2.12) 

And 



 

                              (2.13) 

                              (2.14) 

                   (2.15) 

                             (2.16) 

  
                                 (2.17) 

  
                  (2.18) 

Since       we have              (2.19) 

 

By combining the first two equations ((2.6) and (2.7) we get 

   
 

  
                   

  

  
     

 

           (2.20) 

Similarly combining equations (2.13) and (2.14) we get 

   
 

  
                   

  

  
     

 

           (2.21) 

Introducing the notations 

                                   
    

                     

   
    

           (2.22) 

equations (2.20) and (2.21) can be rewritten as: 

                                           (2.23)  

 and                                             (2.24) 

 

Notice that it may be possible that the matrix      may be singular in some cases. However, 

the matrix      should always be positive semi definite. In order to overcome such case, we 

introduce a regularization term   , where   is very small positive number such as       , 



 

i.e. one may consider             instead of        . Thus, in such case, equations (2.23) 

and (2.24) become 

                           (2.25) 

                           (2.26) 

respectively. 

Substituting (2.22) and the KKT conditions in (2.2) and eliminating all the terms which are 

independent of    and    the dual of the pair of problems (2.1) and (2.2) as QPPs can be 

written as  

   
 

 
  
               

               
    

subject to                  (2.27) 

  and 

   
 

 
  
               

               
    

subject to                  (2.28) 

 

Solving the problems (2.27) and (2.28) for    and   the unknowns of the up and down-

bounds, i.e.  
  

  
        

  

  
  can be derived, satisfying the conditions 

 
  

  
                         (2.29) 

 
  

  
                         (2.30) 

TSVR uses the mean of its up- and down- bounds to determine its value, which is given by 

                    
  

  
                        (2.31) 



 

                    
  

  
                        (2.32) 

Finally, the regression estimation function is determined as: 

     
 

 
                               

      (2.33) 

 

2.3 Nonlinear Twin Support Vector Regression 

The non-linear up- and down-bounds of unknown regression function are  

                         and                     . 

The optimization problem is constructed as  

   
 

 
                        

 
                            

    

subject to                            and    (2.34)  

 and 

    
 

 
                        

 
                            

    

subject to                            and    (2.35) 

where          are input parameters; are regularization parameters and 

. 

By introducing Lagrangian multipliers                  and for               

   where                                       , the Lagrangian functions corresponding 

to (2.2) and (2.3) will be given by 
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           (2.37) 

Applying the Karush-Kuhn-Tucker (KKT) necessary and sufficient optimality conditions 

(Mangasarian, 1994) for the problem (2.36) they become: 

                                                (2.38) 

                                    (2.39) 

                   (2.40) 

                                       (2.41) 

  
                                            (2.42) 

  
                        (2.43) 

Since       we have               (2.44) 

Combining (2.39) and (2.40), we have 

  
         

  
                         

  

  
    

         

  
      (2.45) 

Similarly for (2.37), we have 



 

  
         

  
                          

  

  
    

         

  
      (2.46) 

Introducing the notations 

                                         
    

                     
    

  

equations (2.45) and (2.46) can be rewritten as: 

                                           (2.47)     

and                                              (2.48) 

Substituting the above notations and the KKT conditions in (2.34) and eliminating all the 

terms which are independent of    and    the dual of the pair of problems (2.34) and (2.35) as 

QPPs can be written as  

   
 

 
  
               

               
    

subject to                  (2.49)    

and 

   
 

 
  
               

               
    

subject to                  (2.50) 

 

Solving the problems (2.49) and (2.50) for    and   the unknowns of the down and up-

bounds, i.e.  
  

  
         

  

  
 can be derived, satisfying the conditions 

 
  

  
                         (2.51) 

 
  

  
                         (2.52) 

TSVR uses the mean of its up- and down- bounds to determine its value, which is given by 



 

                                  
  

  
                                   

            (2.53) 

                                  
  

  
                              

           (2.54) 

Finally, the regression estimation function is determined as: 

     
 

 
                               

        

        
 

 
              

 

 
       

        
 

 
       . 

 

2.4 Twin Parametric Insensitive Support Vector Regression (TPISVR) 

 

Just like TSVR, TPISVR (Peng, 2012) also derives two nonparallel functions. These 

nonparallel lines around the given input sample is derived by solving two quadratic 

programming problems (QPP). It determines two linear functions           in feature space: 

        
                     

        (2.55) 

where      and    .       and       represents the insensitive function.       is the 

parametric insensitive down bound regression function and       is the parametric insensitive 

up-bound regression functions.  

Optimization of the parametric insensitive up- and down-bound regression functions is done  

by determining the given pair of QPPs: 

   
 

 
    

  
  
 
               

  
 
    



 

such that                          (2.56)    

where                is a vector of output values. And 

   
 

 
    

  
  
 
               

  
 
    

such that                          (2.57) 

where                is a vector of output values. 

The model complexity of the objective function of (2.56) is controlled by the first term.       

is made as smooth as possible by minimizing       . The second term 
  

 
          

     maximizes with penalty factor ν1 thus leading the function       to be as large as 

possible. The third term minimizes the sum of error variables. 

For optimizing the equations, the Lagrangian function for the problem is given as 

  
 

 
    

  
  

 
               

  

 
                                

           (2.58) 

the KKT necessary and sufficient optimality conditions for the problem are obtained as 

follows: 
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                        (2.62) 

                                 (2.63) 

                 (2.64) 
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Since    , we have 

    
  

 
          (2.65) 

Substituting the equation (2.59) into the Lagrangian function (2.58) and combining it 

with (2.60) and (2.65), we attain the dual QPP of (2.56), and is given as 

    
 

 
         

  
 
     

Such that      
  

 
              (2.66) 

After the optimization of (2.66), according to (2.59) we obtain the weight vector   . The bias 

term b 1 is given as 

   
 

     
                        (2.67) 

where     is the index set of samples satisfying α i (0,c1 / l ) , i=1,…, l  where l  is the size 

of training samples and | · |  is the cardinality of a set. 

Similarly, we obtain the dual QPP for (2.57), which is 

    
 

 
         

  
 
     

Such that      
  

 
              (2.68) 

Optimizing it we obtain the weight vector    and bias term b2 to be  

           
  

 
      

 

     
                       

where     is the index set of samples satisfying β i (0,c2 / l ) , i=1,…, l . 

Once (2.66) and (2.68) are optimized, the estimated regressor is thus constructed as follows: 
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Chapter 3 

Twin Parametric Insensitive Support Vector Regression in 1-norm via 

Unconstrained Convex Minimization 

Motivated by the work on the Twin Parametric Insensitive Support Vector Regression 

(TPISVR) by Peng (2012), we compare the computational results of the proposed method with 

SVR and TSVR in terms of performance on some real world data sets. 

The TPISVR problem is illustrated in the last chapter in section 2.4. The main goal of 

twin parametric insensitive support vector regression is in seeking parametric nonlinear 

regression functions by mapping the training samples from the input space to higher 

dimensional space. 

Consider the input set of examples {(xi, yi) |i=1, 2, . . . , m} where and its 

corresponding output being . Let the input be arranged in the form of a matrix 

whose row is denoted by and let be the output vector. It finds a pair of 

linear functions in feature space: 

        
                     

        (3.1)   

where      is the weight vector and     is the bias.       and       are the parametric 

insensitive down- and up-bound regression functions, respectively. For the given training data 

points      , the function      evaluates the parametric insensitive down-bound regression 

function, and the function      evaluates the insensitive up-bound function. 



 

By taking                        
  

  
          

  

  
 ;  

the 1-norm TPISVR can be formulated as:  

              
         

     

such that                          (3.2) 

and               
         

    

such that                          (3.3) 

and                      
         

 
  

 

Assume:                                           

Then the problem (3.2) becomes: 

         
              

               
     

such that                               (3.4) 

which can be written as: 

           
        

          
        

         
     

such that         
   
   
          ,                    (3.5)  

or  
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So the exterior penalty problem for the dual linear problem(3.2) is: 

   
              

 
   

                     

 
 

 
   

          
       

         
       

       

            
   

so that        
 

  
            

           

     
 

  
           

               (3.7) 

where      function is defined as                  is the implicit Lagrangian (Mangasarian 

and Musicant 2001; Smola and Scholkopf, 2002),               is vector of ones of 

dimension    . The implicit Lagrangian formulation (Mangasarian and Musicant 1999, 

2001) replaces the negativity constrained quadratic minimization problem by the equivalent 

unconstrained piecewise quadratic minimization of the implicit Lagrangian thus giving       .  

We apply Newton’s method to this unconstrained minimization problem and shows that it 

terminates in a finite number of steps at the global minima. The gradient of         is: 

                         
                      

          

                         (3.8) 

In order to apply the Newton method, m×m Hessian matrix of second partial derivatives of  

       is required. Because its gradient         is not differentiable, therefore, it does not 

exist in ordinary sense. However a generalized hessian of       is defined as (Hiriart-Urruty 

et al., 1984; Facchinei, 1995; Mangasarian, 2001): 
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taking           the problem (3.10) is reduced to: 

          
     

   
        

   
    

                 
   

    
         

 
 

 
               

 
      

   

 
     

   

for  all                  (3.11) 

Similarly, considering problem (3.3) 

            
         

    

such that                    

taking                                           

we get           
              

               
    

such that                              (3.12) 

which can be written as: 
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or 

       
        

     
        

    
   

   
   
  
  

such that                              
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So the exterior penalty problem for the dual linear problem(3.3) is : 

   
        

        
   

                    
 

 
    

         
       

         
       

       

            
   

so that        
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where            function is defined as                  is the implicit Lagrangian 

(Mangasarian and Musicant 2001; Smola and Scholkopf, 2002),               is vector of 

ones of dimension    . 

The gradient of        is: 

                           
                      

   

                             (3.16) 

generalized hessian of        is defined as: 
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Since  

        

                   
                      

         

                  



 

     

   
          

                    
         

 

 
           

                     
         

 
 

 
                   

 
 
             

 
 

     

            
  

 
           

                      
         

 
 

     
   

 
 
                  

 
 

           

   
           

                      
         

 
 

 
               

 
      

   

 
     

   

        (3.18) 

taking           the problem (3.18) is reduced to: 



 

          
     

   
        

   
    

                 
   

    
         

 
 

 
     

   
           

   
 

 
      

   

 
     

   

for  all                  (3.19) 

The problems (3.11) and (3.19) are solved by functional iterative method as well as Newton’s 

method. 

Newton Iteration is given as: 

                    
         (3.20) 

For determining the piecewise quadratic minimization problem for an arbitrary positive 

definite Q applying simplified iteration (3.20) together with Armijo step size the Newton 

algorithm is applied. The Newton algorithm is given as: 

 

                                      : 

i. Stop if             
  
         

ii.                
  

  
            

 , 

where          
 

 
 
 

 
    is the Armijo step size such that: 

              
            

      

              
 

 
                                 



 

           
  
      

iii.        Goto (i). 

The Newton method is given as: 

        
 
     

     
    

 
           

 
            

 
     

     
    

 
           

 
  

for  all                  (3.21) 

Since      
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Chapter 4 

Numerical experiments 

In this chapter, we determine the performance of the proposed method by comparing it to SVR 

and TSVR on some real world data sets. For this purpose we consider some real world 

datasets- IBM, Google, Intel, Redhat, Santafe, Flexible robotic arm, pollution, Citigroup 

Sunspots, Boston housing, Gas furnace, Servo, Concrete Comparison Strength (CS), NO2, 

Hydraulic actuator. 

All the algorithms were implemented in MATLAB R2008b on Microsoft Windows7 

professional operating system with system configuration Intel(R) Core (TM) i5-3470 

processor (2.27 GHz) having 4GB of RAM. We used MOSEK optimization toolbox for 

MATLAB to realize the standard SVR. It is available at http://www.mosaik.com. For TSVR, 

we used the “quadprog” function in MATLAB for solving the quadratic programming 

problem. 

 At the first example, we examined the Box and Jenkins gas furnace data set (Box and 

Jenkins, 1976). It consists of 296 input-output pairs of samples of the form:             

where      is the input gas flow rate. Its corresponding output      is the CO2 concentration 

from the gas furnace. The output        is predicted based on 10 attributes taken to be of the 

form:                                                            

                 . This makes the total number of samples 290 where each sample is of 

the form            . For our experiment, we considered the first 100 samples for training 

and remaining for testing. 



 

The Boston housing, Servo and Concrete CS datasets from UCI repository (Murphy & Aha, 

1992); the financial time series datasets: Citigroup, RedHat, Google, Intel and IBM are taken 

from the website: http://finance.yahoo.com. In all the financial time series datasets, we 

considered 755 closing prices starting from 01-01-2006 to 31-12-2008. Since we used five 

previous values to predict the current value, we get in total 750 data samples. In our 

experiments the first 200 of them are taken for training and remaining 550 for testing. 

NO2 dataset published by Department for environment, food and rural affairs. It gives the 

concentration of nitrogen dioxide at background and roadside locations on the geografhic 

coverage of England and Wales. It is taken from http://data.gov.uk/dataset/air_quality_-

_nitrogen_dioxide_no2_concentrations/resource/30233b2d-a8b1-446e-9754-3c74599f2da7. 

Pollution dataset is taken from http://www.eea.europa.eu/themes/air/air-emissions-data. 

pollution dataset is compiled and maintained by European Environment Agency. The data is 

the amount of air pollutants emitted from different sources. These sources are anthropogenic. 

The commonly used and well known dataset sunspots is taken from 

http://www.bme.ogi.edu/~ericwan/data.html. It consist of 295 yearly readings from the year 

1700 to 1994. Since five previous values are used to predict its current value, we obtained in 

total 290 samples. In our proposed method we considered the first 100 samples for training 

and remaining 190 samples for testing.  

The Boston dataset have the information of united state census service concerning housing in 

area of Boston mass. It has total 206 samples and 13 features from which first 200 were taken 

for training and remaining for testing.  

In our last example, we consider the Hydraulic actuator dataset (Gretton et al., 2001; Sjoberg 

et al., 1995). It consists of 1024 pair of samples of the form             where       is the 



 

input gas flow rate. Its corresponding output      is the oil pressure. The output      

        is predicted based on 5 attributes taken to be of the form:                   

                        . This makes the total number of samples becomes 1021 such 

that each sample is of the form            . For our experiment, we considered the first 511 

samples for training and the remaining samples for testing. 

For SVR ε= 0.01 

For TSVR ε1=ε2=ε=0.01, regularization parameter C1=C2=C and µ varies from { 2^-5, . . .  

,2^5} 

For TPISVR via 1-norm by functional iterative method C1=C2=C and varies from { 10^-4, . . . 

,10^4}, n and µ varies from { 2^-5, . . . ,2^5}  and   is given as (n*C), and ε1=ε2=ε={ 

0.001,0.01,0.1}. 

For TPISVR via 1-norm by Newton method µ and C1=C2=C and varies from { 10^-5, . . . 

,10^5}, n varies from 0.01 to 0.1 and   is given as (n*C), } and ε1=ε2=ε={ 0.001,0.01,0.1}. 

σ1=σ2=σ={ 10^-5,10^-6}. 

 

 

 

 

 

 

 

 



 

Table 4.1 Comparison of performance between the proposed method with SVR and TSVR. 

Data sets SVR 

RMSE 

(C, µ,ε) 

TSVR  

RMSE 

(C1=C2=C, µ, 

ε) 

TPISVR via 1-norm 

by functional iterative 

method (FTSVR) 

RMSE 

(n, C1=C2=C, µ, ε) 

TPISVR via 1-

norm by Newton 

method (NTSVR) 

RMSE 

(n, C1=C2=C, µ, ε, 

σ) 

Gas Furnace 

(293 Χ 6) 

0.0169 

(10^2,2^-4, 

10^-2) 

0.0200 

(10^-1,2^-1, 

10^-1) 

0.0319 

(10^3, 10^2, 2^1, 0.1) 

0.0178 

(0.1, 10^4, 2^-5, 

0.1, 10^-6) 

Boston 

Housing 

(506 Χ 13) 

0.0874  

(10^2,2^-

5,10^-2) 

0.0859 

(10^-1,2^-

3,10^-2) 

0.0773 

(10^5, 10^0, 2^-1, 

0.1) 

0.0754 

(0.09, 10^4, 2^-5, 

0.1, 10^-6) 

Servo  

(167 Χ 4) 

0.0779  

(10^2,2^-1, 

10^-3) 

0.0812 

(10^2,2^0, 

10^-1) 

0.0775 

(10^4, 10^2, 2^2, 

0.001) 

0.0606 

(0.01, 10^5, 2^0, 

0.1, 10^-6) 

ConcreteCS 

(1030 Χ 8) 

0.1016 

(10^1,2^-1, 

10^-2) 

0.1051 

(10^-1,2^-1, 

10^-1) 

0.1028 

(10^4, 10^3, 2^2, 0.1) 

0.0978 

(0.09, 10^3, 2^-4, 

0.01, 10^-5) 

NO2 

(500Χ 7) 

0.0976 

(10^0,2^0, 

10^-2) 

0.0974 

(10^-2,2^-1, 

10^-1) 

0.0888 

(10^3, 10^2, 2^1, 

0.01) 

0.0955 

(0.1, 10^4, 2^-4, 

0.1, 10^-6) 

Hydraulic 

Actuator 

(1021 Χ 5) 

0.0117 

(10^1, 2^1, 

10^-3) 

0.0124 

(10^-2, 2^-2, 

10^-1) 

0.0134 

(10^2, 10^1, 2^1, 0.1) 

0.0128 

(0.1, 10^4, 2^-2, 

0.1, 10^-6) 

Google  

(750 Χ 5) 

0.0218 

(10^2, 2^-5, 

10^-3) 

0.0220 

(10^-2, 2^-2, 

10^-1) 

0.0338 

(10^3, 10^-2, 2^-5, 

0.01) 

0.0219 

(0.08, 10^3, 2^-5, 

0.001, 10^-5) 

IBM 

(750 Χ 5) 

 

0.0241 

(10^2, 2^-5, 

10^-2) 

0.0241 

(10^-1, 2^-2, 

10^-1) 

0.0317 

(10^1, 10^2, 2^1, 0.1) 

0.0267 

(0.1, 10^4, 2^-3, 

0.1, 10^-5) 

Intel 

(750 Χ 5) 

 

0.0285 

(10^2, 2^-5, 

10^-3)  

0.0286 

(10^-2, 2^-1, 

10^-1) 

0.0317 

(10^3, 10^0, 2^1, 0.1) 

0.0291 

(0.08, 10^4, 2^-1, 

0.1, 10^-5) 

Redhat 

(750 Χ 5) 

0.0248 

(10^1, 2^-1, 

10^-3) 

0.0263 

(10^-1, 2^-5, 

10^-1) 

0.0309 

(10^4, 10^-1, 2^1, 

0.1) 

0.0311 

(0.08, 10^4, 2^-5, 

0.1, 10^-6) 

Sunsports 

(290 Χ 5) 

0.0722 

(10^1, 2^-1, 

10^-2) 

0.0717 

(10^-1, 2^0, 

10^-1) 

0.0716 

(10^5, 10^-3, 2^1, 

0.01) 

0.0675 

(0.1, 10^4, 2^-1, 

0.1, 10^-6) 



 

Flexible 

robotic arm 

(1019 Χ 9) 

0.0157 

(10^2, 2^-1, 

10^-2) 

0.0262 

(10^2, 2^0, 

10^-1) 

0.05194 

(10^3,10^0,2^1,0.1) 

0.0177 

(0.1, 10^4, 2^-4, 

0.1, 10^-6) 

Pollution 

(60 Χ 15) 

0.1108 

(10^0, 2^-3, 

10^-2) 

0.1131 

(10^-2, 2^-5, 

10^-1) 

0.1022 

(10^3,10^4,2^-1,0.01) 

0.0920 

(0.02, 10^4, 2^-4, 

0.1, 10^-5) 

Citigroup 

(750 Χ 5) 

0.0139 

(10^1, 2^-2, 

10^-3) 

0.0142 

(10^0, 2^-2, 

10^-3) 

0.0229 

(10^5,10^-4,2^-5;0.1) 

0.0148 

(0.05, 10^3, 2^-2, 

0.1, 10^-5) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

The performance of the proposed methods is graphically demonstrated on servo, pollution and 

hydraulic actuator data sets for training and testing sets in Fig 4.1- Fig 4.3. 

Fig 4.1 Results of comparison on servo dataset 
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Fig 4.2 Results of comparison on pollution dataset 

 

 Fig 4.3 Results of comparison on hydraulic actuator dataset 
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Chapter 5 

Conclusion 

In this work, a novel regression is considered and further proposed to solve its dual 

optimization problem by functional iterative method and Newton method. Our proposed 

methods are implemented in MATLAB and it does not need any special optimization toolbox. 

Numerical experiments were carried-out and the results of the proposed method were 

compared with the results obtained using SVR and TSVR. It was observed that the proposed 

method shows competitive generalization performance from which we can conclude the 

effectiveness of the proposed methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

APPENDIX 1 

MATLAB code for the proposed methods 

 

For twin parametric insensitive support vector regression via 1-norm by functional 

iterative method 

function [RMSE,ytest0, time]=norm_peng4(train,test,nu,cv,mu,ep) 

 

   [no_input,no_col] = size(train); 

    x1 = train(:,1:no_col-1); 

    y1 = train(:,no_col); 

    [no_test,no_col] = size(test); 

    xtest = test(:,1:no_col-1); 

    ytest = test(:,no_col); 

    xtest0 = xtest; 

 

    mew = mu; 

    C1 = cv; 

    C2 = C1; 

    nu1 = nu *  C1;  

    nu2 = nu * C2 ; 

    ep1 = ep; 

    ep2 = ep1; 

 



 

    no_train=no_input; 

    tol = 0.0001; 

    itmax = 30;      

    tic 

     K=zeros(no_train,no_train); 

    for i=1:no_train 

        for j=1:no_train 

            nom = norm( x1(i,:) - x1(j,:) ); 

            K(i,j) = exp( -mew * nom * nom ) ; 

        end 

    end 

     

    [m,n] = size(K) 

    e = ones(m,1); 

    em1 = ones(m+1,1); 

    y = y1; 

     

    G = [K e]; 

    GT = G'; 

    GGT = G * GT; 

    I = speye(m); 

    invGGT = inv(I+GGT); 

     ter11 = 0.5 * C1 * e + nu1 *GGT * e - ep1 * y; 

    ter22 = 0.5 * C2 * e + nu2 *GGT * e + ep2 * y; 

     



 

    iter = 0; 

    z1 = zeros(m,1); 

    z1new = ones(m,1); 

 while( iter < itmax & norm (z1new - z1) > tol )      

        iter = iter + 1; 

        z1 = z1new; 

        zterm11 = GT * z1 - nu1 * GT * e; 

        rhs11 = 0.5 * G * ( abs( -zterm11 - em1 ) - abs( zterm11 - em1 ) ); 

        rs11 = 0.5 * ( abs(z1) - abs( z1 - C1 * e ) ); 

         

        z1new = invGGT * ( rhs11 + rs11 + ter11 ); 

        norm(z1new-z1) 

        end 

iter 

        

    iter = 0; 

    z2 = zeros(m,1); 

    z2new = ones(m,1); 

  

       while( iter < itmax & norm (z2new - z2) > tol )      

        iter = iter + 1; 

        z2 = z2new; 

        zterm22 = GT * z2 - nu2 * GT * e; 

        rhs22 = 0.5 * G * ( abs( -zterm22 - em1 ) - abs( zterm22 - em1 ) ); 

        rs22 = 0.5 * ( abs(z2) - abs( z2 - C2 * e ) ); 



 

         

        z2new = invGGT * ( rhs22 + rs22 + ter22 ); 

        norm(z2new-z2) 

        end 

iter 

 

    u11 = -GT * z1new + nu1 * GT * e - em1 ; 

    u12 =  GT * z1new - nu1 * GT * e - em1 ; 

        

    u1new = ( max( u11, 0 ) - max( u12, 0 ) ) / ep1 ; 

 

    u21 =   GT * z2new - nu2 * GT * e - em1 ; 

    u22 = - GT * z2new + nu2 * GT * e - em1 ; 

        

    u2new = ( max( u21, 0 ) - max( u22, 0 ) ) / ep2 ; 

    

    time=toc; 

  ktest = zeros( no_test, no_train );  

     for k=1:no_test 

        for i=1:no_train 

            nom = norm( x1(i,:) - xtest0(k,:) ); 

            ktest(k,i) = ktest(k,i) + exp( -mew * nom * nom ) ; 

        end 

     end 

    e1 = ones(no_test,1); 



 

     

    ytest0 = [ktest e1] * ( u1new +u2new ) * 0.5; 

 

    RMSE = sqrt( norm(ytest-ytest0)* norm(ytest-ytest0) /no_test ) 

end 

 

For twin parametric insensitive support vector regression via 1-norm using Newton 

method 

function [RMSE,ytest0, time]=norm_pengnew4(train,test,nu,cv,mu,ep,sig) 

 

   [no_input,no_col] = size(train); 

    x1 = train(:,1:no_col-1); 

    y1 = train(:,no_col); 

    [no_test,no_col] = size(test); 

    xtest = test(:,1:no_col-1); 

    ytest = test(:,no_col); 

    xtest0 = xtest; 

    mew = mu; 

    C1 = cv; 

    C2 = C1; 

   sigma1=sig; 

    nu1 = nu *  C1;  

    nu2 = nu * C2 ; 

    ep1 = ep; 

    ep2 = ep1; 

 



 

    no_train=no_input; 

    tol = 0.0001; 

    itmax = 30;  

     

    tic 

     K=zeros(no_train,no_train); 

    for i=1:no_train 

        for j=1:no_train 

            nom = norm( x1(i,:) - x1(j,:) ); 

            K(i,j) = exp( -mew * nom * nom ) ; 

        end 

    end 

 

    [m,n] = size(K); 

    e = ones(m,1); 

    em1 = ones(m+1,1); 

    y = y1; 

     

    G = [K e]; 

    GT = G'; 

    I = speye(m); 

     

    iter = 0; 

    z1 = ones(m,1); 

    delphi = ones(m,1) ; 

    delta = ones(m,1); 

    del11 = zeros(m+1,1); 



 

    del12 = zeros(m+1,1); 

    del13 = zeros(m,1); 

    del14 = zeros(m,1);     

    hessian = zeros(m,m); 

     

       while( iter < itmax & norm (delphi) > tol )      

        iter = iter + 1; 

         

        zterm11 = GT * z1 - nu1 * GT * e; 

        del11 = max( zterm11 - em1, 0 ); 

        del12 = max( -zterm11 - em1, 0 ); 

        del13 = max( z1 - C1 * e, 0 ) ; 

        del14 = max( -z1, 0 ) ; 

         

        delphi = ep1 * y + G * ( del11 - del12 ) + del13 - del14; 

        hessian = G *( diag( sign(del11) ) + diag( sign(del12) ) )* GT + diag( sign(del13) ) + 

diag( sign(del14) ) ; 

         

        delta = ( hessian + sigma1 * I ) \ delphi ; 

        z1 = z1 - delta; 

        norm(delphi); 

        end 

iter 

        

    iter = 0; 

    z2 = ones(m,1); 

    delphi = 1; 



 

    delta = zeros(m,1); 

    del11 = zeros(m+1,1); 

    del12 = zeros(m+1,1); 

    del13 = zeros(m,1); 

    del14 = zeros(m,1);     

    hessian = zeros(m,m); 

     

       while( iter < itmax & norm (delphi) > tol )      

        iter = iter + 1; 

         

        zterm22 = GT * z2 - nu2 * GT * e; 

        del11 = max( zterm22 - em1, 0 ); 

        del12 = max( -zterm22 - em1, 0 ); 

        del13 = max( z2 - C2 * e, 0 ) ; 

        del14 = max( -z2, 0 ) ; 

         

        delphi = - ep2 * y + G * ( del11 - del12 ) + del13 - del14; 

        hessian = G *( diag( sign(del11) ) + diag( sign(del12) ) )* GT + diag( sign(del13) ) + 

diag( sign(del14) ) ; 

         

        delta = ( hessian + sigma1 * I ) \ delphi ; 

        z2 = z2 - delta; 

        norm(delphi); 

        end 

iter 

 

    u11 = -GT * z1 + nu1 * GT * e - em1 ; 



 

    u12 =  GT * z1 - nu1 * GT * e - em1 ; 

        

    u1new = ( max( u11, 0 ) - max( u12, 0 ) ) / ep1 ; 

 

    u21 =   GT * z2 - nu2 * GT * e - em1 ; 

    u22 = - GT * z2 + nu2 * GT * e - em1 ; 

        

    u2new = ( max( u21, 0 ) - max( u22, 0 ) ) / ep2 ;     

    time=toc; 

  ktest = zeros( no_test, no_train );  

     for k=1:no_test 

        for i=1:no_train 

            nom = norm( x1(i,:) - xtest0(k,:) ); 

            ktest(k,i) = ktest(k,i) + exp( -mew * nom * nom ) ; 

        end 

     end 

    e1 = ones(no_test,1); 

     

    ytest0 = [ktest e1] * ( u1new +u2new ) * 0.5; 

 

    RMSE = sqrt( norm(ytest-ytest0)* norm(ytest-ytest0) /no_test ) 

end 
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