
i

STRUCTURE BASED RELIABILITY ASSESSMENT OF

SOFTWARE USED IN REAL TIME APPLICATIONS

Dissertation submitted to Jawaharlal Nehru University

 in partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE AND TECHNOLOGY

by

ANJUSHI VERMA

Under the Supervision of

Dr.Tirthankar Gayen

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI –110067, INDIA

JULY 2015

ii

iii

DECLARATION

I hereby declare that the dissertation work entitled “Structure based Reliability

Assessment of Software used in Real Time Applications” submitted to the School of

Computer & Systems Sciences in partial fulfillment of the requirements for the award of

degree of “Master of Technology” in “Computer Science & Technology” in

Jawaharlal Nehru University, New Delhi-110067, India is the authentic record of my own

work carried out under the supervision of Dr. Tirthankar Gayen. This dissertation

comprises only my own work. This dissertation is less than 14,000 words in length,

exclusive tables, figures and references. The matter personified in the dissertation has not

been submitted for the award of any other degree or diploma.

Date: Anjushi Verma

iv

Dedicated to Almighty

God and

My Parents

v

Acknowledgement

First and foremost, I express my sincere thanks from the core of my heart to the Almighty

who has helped and provided me necessary enthusiasm and determination to complete

my dissertation. It is with his grace and benevolence that I have been bestowed with a

devoted and sincere supervisor and extremely supportive family.

I deeply express my gratitude to Dr. Tirthankar Gayen who has been a source of constant

inspiration, support and guidance during all stages of my research work by providing me

with valuable suggestions and feedback during the entire tenure. Working under his

guidance has been a great learning experience and his deep devotion and patience is

extremely exemplary. I would like to follow his footsteps in my further career and life.

I gratefully acknowledge my thanks to Dean of School of Computer & Systems Sciences

for providing the necessary infrastructure to pursue my research work and all the teachers

for their support and blessings.

Most importantly, none of this world would have been possible without the constant love,

patience and support of my family. My heartfelt gratitude for my parents Gaya Prasad

Verma and Nirmala Verma, my sister Priyanka Verma and brothers Pramod Kumar and

Shashank Verma who encouraged me to pursue my passion and be creative in my field of

interest and have always given me the necessary motivation, guidance and feedback

without which this work would have not been possible.

I acknowledge each one of those who directly or indirectly, have helped me during

the whole period, thus making it a well-rounded experience of learning.

 Ms. Anjushi Verma

vi

Abstract

Real time systems are those systems which must guarantee to response correctly within

strict time constraint or within deadline like satellite systems, traffic control systems, etc.

The severity of consequences resulting from the failure of these systems is usually is very

high. Hence, the reliability should be estimated accurately in order to minimize or avoid

the losses resulting from the failure of such systems. Failure of real time systems which

are used in real life applications can arise from both functional error as well as timing

bugs. Therefore, it is necessary to provide temporal correctness of embedded program

used in real time applications in addition to providing functional correctness. It has been

observed that many approaches do not consider dependency among components, timing

bugs, failure dependency and various execution scenarios possible for a given operational

profile in the presence of indefinite loops and other instance characteristics. Also, for real

time systems, many times it becomes a necessity for a given service to be delivered

within the specified time deadline, but many approaches do not explicitly take this issue

into consideration. Hence, a versatile and cost effective approach has been developed

which closely captures the behavior of the real time software application by considering

various aspects like the components dependencies, their failure dependencies (based on

the architecture of the system) for various execution scenarios with respect to a given

operational profile in the presence of timing bugs. It is expected to serve as an immensely

useful approach to the developers, integrators and quality assurers for assessing the

reliability of their real time applications.

vii

TABLE OF CONTENTS

Certificate…………………………………………………………………………………ii

Declaration………………………………………………………………………………..iii

Dedication…………………………………………………………………………..…….iv

Acknowledgement………………………………………………………………………...v

Abstract…………………………………………………………………………………...vi

Table of Contents………………………………………………………………………...vii

List of Figures………………………………………………………………………….....ix

List of Tables……………………………………………………………………………...x

List of Acronyms…………………………………………………………………………xi

1. INTRODUCTION…………………………………………………………....1

1.1. Software reliability assessment……………………………………………….4

 1.2. Motivation…………………………………………………………………….5

 1.3. Organization of the Thesis……………………………………………………6

2. OVERVIEW OF SOME SOFTWARE RELIABILITY MODELS…………..7

 2.1. Black Box Reliability Model…………………………………………………7

 2.1.1. Time between Failures Model……………………………………...7

 2.1.2. Failure Count Model………………………………………………..9

 2.1.3. Fault Seeding Model………………………………………………10

2.2 White Box Reliability Model…………………………………………….…..11

 2.2.1. State Based Model………………………………………………...11

 2.2.2. Additive Model……………………………………………………14

 2.2.3. Path Based Model…………………………………………………15

viii

3. RELATED WORK……………………………………………………………..19

3.1. Literature Survey……………………………………………………………19

3.2. Broad Observation…………………………………………………………..22

3.3. Objective ……………………………………………………………………23

4. STRUCTURE BASED SOFTWARE RELIABILITY ASSESSMENT FOR

REAL TIME APPLICATION…………………………………………………24

 4.1. Component Dependency Graph……………………………………………..24

4.2. Proposed Work………………………………………………………………26

4.3. Illustration…………………………………………………………………...29

 4.3.1. Calculation of reliability value for polynomial_series…………….33

 4.3.2. Calculation of reliability value for expression…………………….41

5. RESULTS AND DISCUSSION………………………………………………..45

5.1. Reliability values for various deadlines…………………………………..…45

5.2 Comparison with Yacoub et al. model……………………………………….46

6. CONCLUSION…………………………………………………………………49

7. REFERENCES………………………………………………………………….51

8. APPENDIX………………………………………………………………...……53

ix

List of Figures

1.1. The Bathtub Curve……………………………………………………………………3

1.2. Revised curve for software…………………………………………………………...4

4.1. Component Dependency Graph……………………………………………………..25

4.2. Level-0 CDG………………………………………………………………...………30

4.3. Level-1 CDG………………………………………………………………………...31

4.4. Level-2 CDG for polynomial_series……………………...…………………………32

4.5. Component Diagram for application………………………………………………..33

4.6. CFG for power……………………...……………………………………………….35

4.7. CFG for factorial……………………………………………………………………36

4.8. CFG for polynomial_series………………………………………………………….38

4.9. CDG for the execution scenario of polynomial_series…………………………..….39

4.10. CFG for expression………………………………………………………………...41

5.1. The obtained plot between deadline and reliability value for the considered

application…………………………………………………………………..………46

A.1. CFG for the test code of polynomial_series………………………………...………53

A.2. CFG for the test code of main………………………………………………...…….56

x

List of Tables

4.1. Reliability values of components used in polynomial_series…………...…………..38

4.2. Reliability of various execution scenario based on number of terms……………….40

4.3. Average reliability values of various components used in main………..…………..43

5.1. The deadline and reliability value for the considered application…………………..45

5.2. Comparison with Yacoub et al. model………………………………………………47

A.1. Glue code reliability values for different values of terms…………………………..55

xi

List of Acronyms

CDG Component Dependency Graph

CFG Control Flow Graph

COTS Commercial-Off the Shelf

DTMC Discrete Time Markov Chain

NHPP Non-Homogeneous Poisson Process

SMP Symmetric Multiprocessing

1 | P a g e

1. INTRODUCTION

In accordance with ANSI, the definition for software reliability is “The probability of

failure free software operation for a specified period of time in a specified environment”

[1]. It can also be stated as a probability of execution of software system without failure

within a specified time. Basic terminologies which are being used here are as follows:

 Error: A mistake (or a programmer mistake) that may lead to an incorrect

result.

 Fault: A term that means something imperfect or does not work as expected.

 Failure: When system is not able to perform its required function within

specified requirements.

Errors can cause fault but not all errors can lead to fault. When the faulty code is

executed it results into failure. It is not necessary that all the faults present may lead to

failure. There may be some faults which can lead to failure. The application of computer

software can be found in various fields. Application of software in safety critical system

makes the reliability as a more important attribute of software quality. In safety critical

system like real time system, there is a need of high reliability. Real time systems are

those systems which must guarantee to response correctly within strict time constraint or

within deadline like satellite systems, traffic control system etc. Real time system has

also been defined as [10]:

“A real time computer system is a computer system where the correctness of the system

behavior depends not only on the logical results of the computations, but also on the

physical time when these results are produced.”

Another definition of real time system is as [2]:

“Any information processing activity or system which has to respond to externally

generated input stimuli within a finite and specified delay”.

2 | P a g e

In these system generally, if any failure occurs, the severity of consequences resulting

from the failure is found to be very high. Thus, these systems require very high reliability

and it should be measured accurately. One of real life example of software failure was the

explosion of Ariane 5 [3], European rocket. Although, the much of software that was

used in Ariane 5 was also used in Ariane 4. In Ariane 4, there was no failure but failure

occurred in Ariane 5. After around 37 seconds of its launching, it veered off its path and

lost its control. It was because of software failure. The cause of software failure was the

conversion of 64 bit floating point to 16 bit signed integer. Because of overflow error,

software failed and there was a loss of around $500 million. This disintegration of Ariane

5 is perhaps commonly referred by people as one of the most expensive software bugs in

the history. Thus, the reliability value of these systems should be estimated accurately in

order to minimize or avoid these losses. Failure of embedded systems which are used in

real life applications can occur from both errors in function as well as timing bugs [17].

Therefore, it is necessary to provide temporal correctness of the program used in real

time applications in addition to provide functional correctness.

Software reliability models can be basically divided into two types [22]:

 Probabilistic

 Deterministic

The fault removals and failure occurrences are considered as probabilistic events in

probabilistic type. The various execution paths for the control flow of a program, the

operands and operators used are all taken into consideration in deterministic models. The

models can be further divided into the following groups [22]:

 Failure rate

 Markov

 Non-homogeneous Poisson process

 Execution path

 Error seeding

 Input domain

3 | P a g e

 Reliability growth

 Program structure

 Curve fitting

 Bayesian and unified

In hardware, failures can occur because of deterioration in material, environmental

factors like aging, rusting etc. As time passes, hardware wears out and it gives an

increasing failure rate, as shown in Fig. 1.1.

Fig. 1.1: The Bathtub Curve [22]

In Fig.1.1, there are three phases: Burn in phase followed by Useful life phase and Wear

out phase. Initially, the failure rate is high in Burn in phase because of some initial

defects in the system but when these defects are removed, failure rate decreases and thus

reliability increases. In the Useful life phase, failure rate is constant. In the Wear out

phase, because of some environmental factors like aging, rusting etc. there may be decay

and deterioration of hardware resulting in the increase in failure rate.

In software, failure can be caused by design faults. When any incorrect input or incorrect

logic is used, software can cause failure. Fig.1.2 shows the revised curve for software in

accordance with some researchers.

4 | P a g e

Fig. 1.2:Revised curve for software

In this revised curve for software, there are three phases which are Burn-in, Useful Life

and Obsolescence phase. In Burn-in phase, initially failure rate is high but when testing

and debugging is done, defects are removed and failure rate decreases. In the useful life,

when upgrades are done in the software then there are chances of introducing new faults

which leads to hike in failure rate but in the no upgradation phase, the failure rate is

constant because no faults are introduced or removed in this phase. In the Obsolescence

phase, the failure rate remains constant.

1.1. Software reliability assessment

Software reliability assessment is an action of estimating the reliability of software. In

accordance with Yacoub [21], it can be estimated by two ways:

System level reliability

In it, the whole software system is considered as a single unit and then reliability is

calculated. Here unit testing is used. But, it may not be very suitable for component based

system as it ignores the compositional properties of components.

5 | P a g e

Component level reliability

In it, the reliability of individual component is calculated and then these individual

components’ reliability is used to calculate the whole system reliability. Here, integration

testing is used and may be more suitable for component based software systems.

Software reliability assessment is very important in real time system like air traffic

control systems, satellite systems, etc. In these systems even a small failure can lead to a

huge loss. Hence, these systems need to be highly reliable. Since, for real time systems,

besides other functional errors, the failure may occur due to timing bugs. Timing bugs

can be introduced because of task dependencies which can be caused by task priority,

task preferences, resource sharing, etc.[17]. Because of task dependencies, it may be

possible that delay in one task can cause delay in other dependent tasks. Therefore, it

becomes necessary to provide temporal correctness along with providing functional

correctness.

1.2. Motivation

In current time, there is a great need of estimating the reliability of real time safety

critical systems because any failure in these systems can lead to a huge loss. These

systems require high reliability, since, most of the systems are component based and their

attributes like reliability, performance, etc. depends not only on characteristics of

individual components but also with their behavior of interacting with each other.

Various models like failure count model, time between failure models etc. only focus on

observing the way in which the system behaves irrespective of the structure of the system

and therefore, these models have lot of uncertainties in measuring the reliability of the

system [16]. They treat the software as a black box and do not consider its structure and

architecture of the system i.e. they do not consider about the components (composing the

system), and their interconnections. These models are not suitable to find out the set of all

execution paths for estimating reliability because they do not consider the internal details

of the system. Thus, these black box models are not suitable for estimating the reliability

of large or complex component based system. So there is a requirement for those models

6 | P a g e

or techniques which are based on architecture and which also consider the behavior of the

system. Hence, the structure based approach is suitable, since it relates the system or

application reliability to the reliabilities of individual components and system structure.

1.3. Organization of the Thesis

An introduction to software reliability and the importance of its assessment for real time

systems has been taken into consideration in section 1. Section 2 presents the overview of

some software reliability assessment models. Section 3 presents a survey of related work

concerned with the structure based approaches considering various execution scenarios

and input domains (or operation profile) for software reliability assessment followed by

broad observation, identification of problems and finalization of the objective. Section 4

specifies the proposed approach for the software reliability assessment followed by

illustration. Section 5 discusses the results obtained after applying the approach to a

suitable application and makes a comparison with the results obtained from Yacoub et al.

[21] approach. Finally, section 6 concludes with the discussion of the outcome of

research, its advantages and limitations along with the guidelines for future

enhancements.

7 | P a g e

2. OVERVIEW OF SOME SOFTWARE RELIABILITY

ASSESSMENT MODELS

In accordance with Pai [9], various models were proposed to measure reliability of

software. It may be broadly classified as Black Box Reliability Model and White Box

Reliability Model.

2.1. Black Box Reliability Model

In this class of models, the architecture of software is not considered. It has no

knowledge of internal working of a system[19]. It requires only failure data. Based on the

failure data, it calculates failure rate and then estimates reliability. These models are not

suitable for large component based systems. The models which are based on Black Box

Reliability model are as follows:

2.1.1. Time between Failures Model

It focuses on time between failures. In it, the time between (i-1)th and ith failure follows a

distribution. Its parameters depend on number of faults remaining in a system during this

interval. The parameters used may be obtained based on values of time between failures.

The various models which are based on Time between Failures Model are as follows:

Jelinski and Moranda (De-Eutrophication Model)

This model is considered to be the foremost model for estimating software reliability

[16]. Assuming that the number of faults (which are all independent and equally likely)

present in the program causing failure is N. The hazard function Z(t) during (i-1)th and

ith failure is given as:

𝒁(𝒕𝒊) = 𝝓[𝑵 − (𝒊 − 𝟏)]

where

ϕ is a proportionality constant.

8 | P a g e

Modification of this model was done by Moranda where faults are removed only when

the fatal fault occur. For this model, the hazard function during the ith testing interval is:

𝒁(𝒕𝒊) = 𝑫𝒌𝒊−𝟏

where

D is the fault detection rate,

k is a constant.

Schick and Wolverton Model

In this model assumptions are same as in Jelinski and Moranda model except that the

hazard function is proportional to the current fault content as well as the time elapsed

since the last failure. So hazard function Z(ti) is [16]:

𝒁(𝒕𝒊) = {𝝓[𝑵 − (𝒊 − 𝟏)]}𝒕𝒊

where

N is the initial faults in the system,

ti is the cumulative time since the beginning of testing.

Goel and Okumoto Imperfect Debugging Model

All these above models assume that faults are removed with certainty when they got

detected but this may not so in reality. Hence, Goel and Okumoto [16] proposed a model

where the number of faults in a system is treated as Markov process. So the hazard

function Z(ti) during (i-1)th and ith failure is given as:

𝒁(𝒕𝒊) = 𝝓[𝑵 − 𝒑(𝒊 − 𝟏)]𝝀

where

N is the number of initial faults,

p corresponds to the probability of imperfect debugging,

λ corresponds to failure rate.

9 | P a g e

2.1.2. Failure Count Model

This model is based on counting the number of failures during testing intervals. Various

models have been proposed on this phenomenon which is as follows:

Goel-Okumoto Nonhomogeneous Poisson Process Model

Assuming N(t) as the cumulative number of failures which is observed by time t. Here

N(t) is modeled as Non-Homogeneous Poisson process. Based on it, following formula is

derived [14]:

𝑷{𝑵(𝒕) = 𝒚} =
(𝒎(𝒕))𝒚𝒆−𝒎(𝒕)

𝒚!
,y=0,1,2,….

where

𝒎(𝒕) = 𝒂(𝟏 − 𝒆−𝒃𝒕), 𝝀(𝒕) = 𝒎′(𝒕) = 𝒂𝒃𝒆−𝒎(𝒕)

where

m(t) corresponds to the expected number of failures observed by the time t,

λ(t) corresponds to the failure rate.

Musa Execution Time Model

In this model the assumptions are same as of Jelinski and Moranda model but the

difference is that the process which is modeled here is the number of failures in a given

testing intervals. Hazard function is given as [16]:

 𝒁(𝒕) = 𝝓 𝒇(𝑵 − 𝒏𝒄)

where

t corresponds to the execution time used during execution of program,

N corresponds to the number of faults,

nc corresponds to the number of faults corrected during interval (0,t),

Φ is a constant,

f corresponds to the linear execution frequency.

10 | P a g e

Shooman Exponential Model

It is similar to Jelinski and Moranda model. Hazard function is given as[16]:

𝒁(𝒕) = 𝒌[
𝑵

𝑰
− 𝒏𝒄(𝝉)]

where

τ corresponds to the time to debug from the start of integrating system,

t corresponds to the operating time,

I corresponds to the total number of instruction,

k is a constant.

Generalised Poisson Model

This model [16] is a variation of the NHPP model of Goel and Okumoto. The mean value

function it assumes is as:

𝒎(𝒕𝒊) = 𝝓(𝑵 − 𝑴𝒊−𝟏)𝒕𝒊
𝜶

where

Mi corresponds to the total number of faults removed upto the (i-1)st debugging

interval,

Φ is a constant,

α is a constant used to rescale time ti.

2.1.3. Fault Seeding Model

In this model, a number of faults are seeded in the program. When testing is completed,

the number of indigenous faults and exposed seeded faults are counted. By using the

maximum likelihood estimation, software reliability is to be estimated. The model which

is based on Fault Seeding Model is as follows:

11 | P a g e

Mills Seeding Model

In this model [16], a number of known faults are seeded in the program to be tested and

then this program is tested for some amount of time. The original indigenous faults can

be estimated from number of indigenous and seeded faults uncovered during the testing.

2.2. White Box Reliability Model

In this model, whole architecture is known and it has access to source code. These are

suitable for estimating the reliability of component based system. Three different

approaches are recognized to combine the architecture of the software with the failure

behavior [12]:

 State based model: This model uses the control flow graph to represent software

architecture and transitions follow Markov process.

 Additive model: It does not consider the architecture of the application explicitly

so it is not commonly used.

 Path based model: It computes reliability of software considering various

possible execution paths existing in the program. The execution paths may be

determined by executing the application, or algorithmically.

2.2.1. State Based Model

The models which are based on State Based Model are as follows:

Gokhale et al.’s State Based Model

It describes the architecture using absorbing discrete time Markov Chain. This model

[18] either assumes that reliabilities of components are known or estimates it using

Software Reliability Growth Model. Here the control flows between components are

assumed to be a Markov process. Time dependent failure intensity λi(t) and cumulative

expected time spent in component per execution of application is given. So the reliability

of each component i is calculated as:

12 | P a g e

𝑹𝒊 = ∏ 𝒆− ∫ 𝝀𝒊
𝑽𝒊𝑻𝒊

𝟎 (𝒕)

𝒏

𝒊=𝟏

By using the components reliability, overall reliability is to be calculated as:

𝑹𝒔𝒚𝒔 = ∏ 𝑹𝒊

𝒏

𝒊=𝟏

Cheung’s State Based Model

This model [15] assumes that there is a single entry and exit node at which the execution

begins and terminates respectively. Cheung model is used which measures software

reliability considering components utilization and their reliabilities. The transitions

among the components is represented by an absorbing DTMC using transition probability

matrix P = [pij] where pij is transition probability from component i to component j. In a

control flow graph, two states F and C are added as the terminal states. C state represents

state of correct output and F state represents failure. For each node Ni, a directed edge

(Ni, F) is created having transition probability (1-Ri). It represents the occurrence of an

error in execution of node Ni. Here errors do not compensate each other so a failure in

node N will lead to an incorrect system output without considering the sequence of nodes

executed afterwards. It can be shown by the transition to terminal state F. The original

transition probability between node Ni and N is represented by Ripij, which shows node i

is executed properly and the transition occurs from node i to j. For exit node N, there is a

directed edge (Nn, C) which is used to show correct termination at the exit node with

transition probability Ri. Failure is represented as creating a directed edge with a

transition probability (1-Ri). Thus, from the initial state of Markov process the

probability of reaching the terminal state C is the reliability of a program. Let Ri is the

reliability of node Ni and pij is the transition probability from node Ni to Nj. Pij = 0 if

there is no edge between (Ni, Nj). The states of transition matrix is {C,F,N1,N2,N3…..Nn}

so the transition matrix P^ is represented as:

13 | P a g e

C F N1 N2 … Nj …. Nn

C 1 0 0 0 … 0 … 0

 F 0 1 0 0 … 0 … 0

 N1 0 1-R1 0 R1P12 … R1P1j … R1P1n

P^= … … … … …

 Ni 0 1-Ri 0 RiPi2 … RiPij … RiPin.

 … … … … …

 Nn-1 . 1-Rn-1 0 Rn-1P(n-1)2 Rn-1P(n-1)j.. Rn1P(n-1)n

 Nn Rn 1-Rn 0 0 … 0 … 0

Q is the matrix obtained from P^ after deleting all rows and columns corresponding to C

and F states.

 N1 N2 … Nj …. Nn

 N1 0 R1P12 … R1P1j … R1P1n

 . … … … … … …

 . … … … … … …

 . … … … … … …

Q= Ni 0 RiPi2 … RiPij … RiPin.

 . … … … … … …

 Nn-1 1-Rn-1 Rn-1P(n-1)2 … Rn-1P(n-1)j … Rn-1P(n-1)n

 Nn 0 0 … 0 … 0

So the reliability is calculated as:

R = P^n (N1, C)

S is a matrix such that:

S=1+Q1+Q2+Q3…+Qn

So, R=S(1,n) Rn

14 | P a g e

The reliability is calculated by adding the reliability value of all paths existing in the

control flow graph.

Littlewoods State Based Model

It is one of the earliest architecture based software reliability model [6]. Here there is an

assumption that irreducible SMP can describe the software architecture of continuously

running application. It consists of a finite number of states and transfer of control

between states is described by probability Pij=Pr{transfer of control from node i to node

j}. When module i is executed, failure is caused according to a Poisson process with

parameter λi.,Vij is probability of failure occurring when node i calls node j. Here the

failure rate of Poisson process is given by:

𝝀𝒔 = ∑ 𝒂𝒊𝝀𝒊
𝒊

+ ∑ 𝒃𝒊𝒋𝑽𝒊𝒋
𝒊𝒋

where,

𝒂𝒊 =
∏ ∑ 𝒑𝒊𝒋𝒎𝒊𝒋𝒋𝒊

∑ ∏ 𝒑𝒊𝒋𝒎𝒊𝒋𝒊𝒊

corresponds to the proportion of time spent in module i and

𝒃𝒊𝒋 =
∏ 𝒑𝒊𝒋𝒊

∑ ∏ ∑ 𝒑𝒊𝒋𝒎𝒊𝒋𝒋𝒊𝒊

is the frequency of transfer of control between i and j.

2.2.2. Additive Model

The model which is based on Additive Model is as follows:

Everett Model

It is also used for component based software system [26]. It estimates the reliability by

using the individual component’s reliability. Here extended execution time model is used

to analyze the reliability of each component whose parameters can be estimated from the

information on the way in which test cases stress each component and also from the

15 | P a g e

properties of software. There is a superimposition of components reliabilities for overall

system in the combined model.

2.2.3. Path Based Model

The models which are based on Path Based Model are as follows:

Shooman Model

It is one of the earliest models of path based approach. It estimates reliability by using the

frequencies of path with which different paths are run. Here the total number of failure in

N test runs is given by [12]:

𝒏𝒇 = ∑ 𝑵 𝒇𝒊𝒒𝒊

𝒎

𝒊=𝟏

where

 Nfi is the total number of frequency of execution of path i.

Thus the system probability of failure on any test run is given by

𝒒𝟎 = 𝒍𝒊𝒎
𝒏→∞

𝒏𝒇 𝑵⁄ = ∑ 𝑵 𝒇𝒊𝒒𝒊

𝒎

𝒊=𝟏

Input Domain Based Model

In this model, various test cases are generated from input distribution. Since there is a

difficulty while measuring the input distribution, so the input domain is partitioned into

the set of equivalence classes by the various models in this group. An equivalence class is

generally associated with a program path. Models which are based on this approach are

as follows:

16 | P a g e

Nelson Model

Here reliability of software is measured by executing the program for n inputs. These

inputs are randomly chosen from the input domain sets. If ne is the number of inputs that

resulted in execution failures, n is the number of inputs then reliability measured as:

𝑹 = 𝟏 − (
𝒏𝒆

𝒏
)

Here the reliability function remains constant but the estimate of its can be changed.

Gayen and Misra model

This model [23] is an improvement of Weiss model[20]. In Weiss model, there were no

guidelines for choosing test cases and finding the occurrence of operational error. But in

Gayen and Misra model, this problem is solved. Here input domain is divided into two

sub domains: Operational error sub domain and logical error sub domain. Weiss’ model

extends Nelson’s definition of “probability of successful execution R(P)” of program

with respect to a given specification(S) is given as:

𝑹(𝑷) = 𝟏 − ∑ 𝒑(𝒏) ∗ 𝒂(𝒏)

𝒏∈𝑵

Here p(n) is the probability that input n is submitted to p.

𝒂(𝒏) = 𝟎 𝑖𝑓 𝑃(𝑛) = 𝑆(𝑛)
= 𝟏, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

T is a set of test cases and pT(t) is a degree of representativeness to T. Suppose T is

obtained by selecting inputs randomly according to distribution p, then T shows

operational profile so, pT(t)=1/|T|. Therefore generalized logical reliability is:

𝑹𝒍𝒐𝒈 = 𝟏 − 𝟏/|𝑻| (∑ 𝒅𝜶(𝑺𝑷, 𝑷, 𝒕)/𝜶(𝒕)

𝒕∈𝑻

)

where

dα(Sp ,P, t) shows α discrepancy between S(p) and P at t.

17 | P a g e

In this model, the overall reliability is calculated as the product of operational reliability

and logical reliability.

𝑹 = 𝑹𝒐𝒑 ∗ 𝑹𝒍𝒐𝒈

Operational reliability is calculated by finding the probability of non-occurrence of

operational error.

Ramamurthy and Bastani Model

It gives a measurement of the conditional probability for a program to be correct for all

possible inputs assuming that it to be correct for a given set of inputs. In accordance with

this model [3],

P {the program is correct for all points in [a, a + V | it is correct for the test cases having

successive distances xj, where j = 1, …, n - 1}

= 𝒆−𝝀𝒗 ∏ [
𝟐

𝟏 + 𝒆−𝝀𝒙𝒋
]

𝒏−𝟏

𝒋=𝟏

where

 λ is a parameter deduced from the complexity of the source code.

Krishnamurthy and Mathur’s Path Based Model

In this model, it is assumed that reliabilities of components are known in advance. The

reliability is calculated by averaging the path reliabilities over all the test cases run on

software whose reliability is to be estimated. Path reliability is calculated from the

sequence of components involved in a particular path when the set of test cases are

executed. If each path has reliability Rp and T is set of test cases then overall system

reliability Rsys is defined as [12]:

𝑹𝒔𝒚𝒔 =
∑ 𝑹𝒑𝒑∈𝒑𝒂𝒕𝒉(𝒑)

|𝑻|

Thus by finding the set of execution paths in a software system, path reliability is to be

calculated which is used in estimating the overall system reliability.

18 | P a g e

Yacoub’s Scenario Based Reliability Assessment Model

Yacoub [21] introduced a reliability model named as Scenario Based Reliability

Analysis. It is a path based approach which is based on execution scenarios. An algorithm

is proposed to analyze the reliability of a component based system using components,

interface and link reliabilities. Using scenarios, a component dependency graph is

constructed. Based on it, an algorithm is given. This algorithm describes that breadth

expansion of a path gives logical OR i.e. reliability is calculated as a sum of all

components reliability on the same level along with a transition probability. The depth of

each path represents the components arranged in series which represents the logical AND

and it is the multiplication of reliabilities. The main problem is that it does not consider

the failure dependency between components.

Since, most of the systems are component based and their attributes like reliability,

performance, etc. not only depends on characteristics of individual components but also

on their behavior of interacting with each other. Various models like failure count model,

time between failure models etc. only focus on observing how the system behaves instead

of considering the structure of the system. As a result, these models may have lot of

uncertainties in measuring the reliability of the system [16]. They treat the software as a

black box and do not consider its structure and architecture of the system. In other words

these approaches do not consider the components composing the system, their

interconnections etc. These models may fail to obtain the set of all execution paths for

estimating reliability because they do not consider the internal structure of the system.

Thus, these black box models may not be suitable for estimating the reliability of large

component based system. So there is a need of those models or techniques which are

based on architecture and which considers the behavior of the system based on various

execution instances. Hence, the structure based approach is suitable since it relates the

system or application reliability value to the reliability values of individual components

and system structure. The next section outlines the existing work concerned with various

approaches based on the structure, execution scenarios considering various input

domain/operational profile for estimating the reliability of component based software.

19 | P a g e

3. RELATED WORK

Since, most of the real time applications are component based and their attributes like

reliability, performance, etc. not only depends on characteristics of individual

components but also on their behavior of interacting with each other. Various models like

failure count model, time between failure models etc. only focus on observing how the

system behaves instead of considering the structure of the system. As a result, these

models have lots of uncertainties in measuring the reliability of the system [16]. They

treat the software as a black box and do not consider its structure and architecture of the

system. In other words these approaches do not consider the components composing the

system, their interconnections etc. These models may fail to obtain the set of all

execution paths for estimating reliability because they do not consider the internal

structure of the system. Thus, these black box models may not be suitable for estimating

the reliability of large or complex component based system. So there is a requirement of

those models or techniques which are based on architecture and which considers the

behavior of the system based on various execution instances. Thus, a survey of various

approaches based on the structure, execution scenario considering various input

domain/operational profile for estimating the reliability of component based software was

performed.

3.1. Literature Survey

From the survey, the various approaches which were found based on the structure,

execution scenario considering various input domain/operational profile for assessing the

reliability of component are outlined as follows:

According to Biswas et al. [17], in embedded programs used in real time applications,

various execution dependencies exist because of task priority, task precedence etc.

Failure of these programs can occur from both errors in function as well as timing bugs.

Therefore it is necessary to provide temporal correctness of embedded program used in

real time applications in addition to provide functional correctness.

20 | P a g e

Gayen [22] analyzed the shortcomings in the conventional failure rate based models and

proposed an error based model for predicting the minimum reliability of software. It is

given that in the useful life of software, when there are no upgrades, various authors have

contradicting opinions. Some researchers say that reliability depends upon time but some

other researchers say that it is time independent. According to Gayen, if the software is

not modified, the reliability will not change with time. However the reliability can be

changed based on the changes in the operating environment. He proposed an error based

reliability model for predicting the minimum reliability of software and showed that the

reliability value varies with the number of errors debugged.

Yacoub et al. [21] made execution scenario based reliability analysis to propose a path

based approach. The algorithm analyzes the reliability of a component based system

using components, interface and link reliabilities. Using scenarios, a component

dependency graph is constructed. Based on it, an algorithm is given. This algorithm

describes that breadth expansion of a path gives logical OR. The depth of each path

represents the components which are arranged in series which represents the logical

AND. The main problem is that it does not consider the failure dependency between

components.

According to Goel [4], various software reliability growth models were proposed like

Time Between Failure model, Failure Count model etc.. But these models are not suitable

for all type of system because of various assumptions. Some of the models assume that

all faults in program contribute equally to reliability of software which is not realistic

because occurrence frequencies of different types of faults may be different. These

models assume that all failures are independent, it can be corrected in negligible time and

debugging is done perfectly which is not realistic.

Singh et al. [5] proposed a model for component based system to measure the reliability

through path propagation probability, component usage ratio and component impact

factor. Component architecture graph is constructed to find out the set of all execution

paths. The study assumes that individual component reliability is known in advance.

Here, the component impact factor determines the impact of each component on the

21 | P a g e

reliability of a system. The component whose impact factor is high, the effect of it will be

more on reliability. Component usage ratio is calculated to find the ratio of total

component execution time over the total software system execution time. It does not give

the exact value of usage ratio. It varies with the varying set of input data which was the

main drawback of this approach.

According to Gayen et al. [24], a unique method was proposed which is based on the

execution scenario analysis for COTS component based software application. In it,

maximum and minimum reliability values are computed from the execution scenarios.

The reliability bounds although provides us the range of reliabilities values irrespective of

any operational profile yet for practioners, it becomes sometimes necessary to use the

exact reliability values for a specified operation (i.e.using a specific operation profile

concerned with the given operation.) Again sometimes it becomes difficult to obtain the

exact operation profile for a given operation.

Gayen et al. [23] has given reliability assessment of elementary COTS software

component. Sometimes it becomes very difficult to select test cases to execute all

possible executable paths of the program so a new approach was developed. In it, input

domain is divided into operational error sub domain and logical error sub domain and

errors are identified. From control flow graph, test cases are selected and these are

executed to obtain the alpha discrepancy between the program and its specification.

Reliability was calculated by multiplying the probability of non-occurrence of operational

error and the probability of logical correctness. Here, the timing bugs for real time

systems were not taken into consideration.

Cheung [15] introduced a model that measures a reliability of a service which is to be

provided to a user community. The reliability of service is dependent on the reliability of

the components and user profile. So user oriented software reliability is to be used to

measure the reliability with respect to a user environment.

Weiss [20] introduced a tolerance function which measures the acceptable level of

correctness. Alpha discrepancy is used to calculate the tolerance function between the

22 | P a g e

given specifications and program. By using these parameters, reliability is to be

estimated. Here it becomes very difficult to find out the test cases and operational error

because there is no guideline for selecting it.

Goswami et al. [25] proposed a method to measure the reliability of component based

software system. In it, it is given that the component whose execution time is more,

contribute more on the reliability of a software system than the component having less

execution time. It measures the reliability by considering individual component

reliability, component usage ratio etc. It does not consider the dependency among

components. According to Hsu et al. [8], an adaptive framework is used to use path

testing into assessment of reliability of a modular software system. The overall system

reliability is calculated by doing summation of all the individual path reliability. Here

also a sensitivity analysis is used to find out those components which are more important

than others. In it, dependency among faults was not considered.

Xiaoguang et al. [14] proposed a general method for estimating reliability of component

based software system. In it a general model-component probability transition diagram is

used which enables the reliability tracing through the component based software process.

Nautiyal et al. [13] proposed an approach for measuring the reliability of component

based software architectures. The proposed approach considers the reliability of

components and paths to calculate overall system reliability, depending on usage time of

components and executions paths.

3.2. Broad Observation

From the survey, it was found that there are various assumptions which are made in black

box models like failures are independent, perfect debugging and failure can be corrected

in a negligible time [16]. These assumptions are not realistic as most of the software does

not follow these assumptions. Since component/system execution time depends on

various instance characteristics like input data, execution scenario, loops (indefinite) etc.

and hence it varies with various instances of execution of the program [5]. Therefore, it

becomes very difficult to obtain the exact usage ratio for component usage ratio.

23 | P a g e

Dependency among the components has not been considered in many approaches [21].

The reliability bounds although provides us with the range of reliability values

irrespective of any operational profile yet for practioners, it becomes sometimes

necessary to use the exact reliability values for a specified operation (i.e. using a specific

operation profile concerned with the given operation. Again, sometimes it becomes

difficult to obtain the exact operation profile for a given operation [13].

Although, several software reliability models were proposed to measure the reliability of

a system, again in many of these models timing bugs are not considered which an

important issue of real time applications.

3.3. Objective

From the survey, it has been observed that many approaches do not consider dependency

among the components, timing bugs and failure dependency for various execution

scenarios possible for a given operational profile considering various instance

characteristics. Many assumptions are also not realistic in the sense that the actual

software behaves differently from what has been assumed or taken into consideration in

the existing Black box reliability models. Considering these aspects, the main objective is

to develop a structure based reliability assessment approach by considering the

components dependencies, their failure dependencies based on the architecture of the

system for various execution scenarios with respect to a given operational profile in the

presence of timing bugs.

24 | P a g e

4. STRUCTURE BASED RELIABILITY ASSESSMENT

APPROACH

With the increasing reuse of components in large complex software, the focus would be

on estimating the reliability of component based software system. Complex software

consists of various components and these components can be reused in any software thus

it reduces time and cost. Real time application also consists of various components. But

Black box models are not suitable for large component based software as they do not

consider the components and their interactions [2]. Therefore the White box structure

based models were proposed which consider the architecture of the system (For example,

the structure of components, their interconnections etc.) Based on the architecture of the

system, these models find out the set of execution paths in the software system to

estimate reliability. Here for estimating reliability of whole application, reliability of

individual components involved in a system, is calculated.

So, reliability of the application is:

Rapp = f(RC1,RC2,RC3,…..RCn)

where RC1,RC2,RC3,…..RCn are the reliability values of first, second, third, ...nth

components respectively.

4.1. Component Dependency Graph

Architecture of a software can be represented using component dependency graph.

Component dependency graph is constructed among the components.

According to S. Yacoub [21], it is defined as:

It consists of (N,E,S,T)

where

E corresponds to the set of edges in graph: E={e},

N corresponds to the set of nodes in graph: N={n},

S corresponds to the start node,

T corresponds to the terminating node.

25 | P a g e

N node is defined as a tuple <Ci, RCi, ECi>,

where

RCi corresponds to the individual component reliability,

Ci corresponds to the individual component,

ECi corresponds to the individual component execution time.

<C1,RC1,EC1>

<C4,RC4,EC4>

<C3,RC3,EC3>
<C2,RC2,EC2>

<T12,RT12,PT12>

<T24,RT24,PT24>

<T13,RT13,PT13>

<T43,RT43,PT43>

<T34,RT34,PT34>

T

S

Fig 4.1: Component Dependency Graph[21]

26 | P a g e

A directed edge is defined as tuple <Tij, RTij, PTij>

where,

RTij corresponds to the transition reliability from node ni to nj,

Tij corresponds to the transition name from node ni to nj,

PTij corresponds to the transition probability from node ni to nj.

From the component dependency graph, various parameters are calculated. Breadth

expansion of the graph gives a logical OR of reliability and depth expansion gives logical

AND of reliability.

4.2. Proposed Work

Reliability assessment plays an important role in real time applications as in these

applications, severe of consequences resulting from failure is very high. Therefore an

approach for estimating the reliability of real time application considering the

dependencies among components, failure dependency and various execution scenarios

with respect to a given operational profile in the presence of timing and functional bugs is

proposed. Here, a function is considered as a component. A function may invoke other

sub functions which are known as subcomponents. In this approach, a function or a

composite component is decomposed into subcomponents until elementary component (a

function which do not invoke any other user defined function) is obtained. Since, here it

is concerned with the reliability assessment of the real time application and not the

system, hence the operating environment/system is considered to be idle. Hence, the

system functions used over here are considered to be fully reliable.

A program may consist of various functions and sub functions. Each function is assumed

as a component in CDG. CDG is constructed at different level. Here bottom up approach

is used to estimate the reliability of application by calculating the reliability of each

execution scenario. The proposed algorithm find_Rel provides the average reliability

value of the application by using structure based reliability assessment for real-time

application.

27 | P a g e

Algorithm: find_Rel(level, component)

{

Step 1:if component is elementary

{

if(level = = 1)

return elem_Rel(component)*p(Tji<=deadline);

else

return elem_Rel(component);

 }

Step 2:Decompose the given composite component into subcomponents and construct

CDG.

Step 2.1: Repeat for all component i in CDG,

{

Rel[i]=find_Rel(level+1,i)

}

Step 2.2: Repeat for each execution scenario j,

{

Step 2.2.1: Repeat for all component i present in the execution scenario j,

{

if (level!= 1)

R[i]=Rel[i];

else

R[i]=Rel[i]*p(Tji<=deadline);

}

Step 2.2.2: if component k comes before i in the execution scenario,

P[i|k]=R[i]*Pi,k;

else

 P[i|k] = 1;

28 | P a g e

When k=C (i.e where C corresponds to a conceptual ideal component assumed

to be present in the execution scenario before the first component of the

execution scenario) Pi,k=1;

Since components dependency is also considered so transition probability

among components is to be calculated. It is represented as Pi,k which is the

transition probability from component i to k.

P[i|k]corresponds to the conditional probability of proper execution of the

execution scenario upto component i, assuming that the execution scenario upto

component k has executed properly.

Step 2.2.3:Move to the last node executed in CDG and find out its reliability

value in accordance with Markov model recursively by using the relation

P[i] = P[i | iprev]*P[iprev] ;

P[iprev]=1 when i corresponds to the first component used in the execution

scenario j.

where

iprev corresponds to the previous component in the execution scenario

before i,

Pi,k corresponds to the transition probability from component i to

component k,

P[i] corresponds to the probability of proper execution of the execution

scenario upto component i.

Step 2.2.4: RelScenario[j]=P[ilast]* Relglue;

where

Relglue corresponds to the reliability value of the glue code used in the

execution scenario j,

ilast corresponds to the last component of the execution scenario j.

}

29 | P a g e

Step 2.3: Find the average reliability value comp_Rel=

∑ 𝑝(𝑜𝑐𝑐 𝑜𝑓 𝑠𝑐𝑒𝑎𝑛𝑟𝑖𝑜 𝑗)∀𝑠𝑐𝑒𝑎𝑛𝑟𝑖𝑜 𝑗 ∗ 𝑅𝑒𝑙𝑠𝑐𝑒𝑎𝑛𝑟𝑖𝑜[𝑗];

Step 3: return comp_Rel;

}

Algorithm elem_Rel(component) returns the reliability value of elementary component

by using the method proposed in Gayen and Misra model [23] (discussed under section

2.2.3).

4.3. Illustration

A simple application which calculates either the roots of a quadratic

equation or the value of a polynomial depending upon the users choice within a deadline

of 6 units of time where 1 unit=1 CPU clock cycle. The input domains considered for this

application are as follows:

Range for ‘terms’=0 to 6

Range for ‘x’=1 to 10

Range for ‘a’=1 to 23,000

Range for ‘b’=1 to 45,000

Range for ‘c’= 1 to 23,000

Here, it is considered that the inputs are provided randomly from the input domain and in

accordance with Weiss [20], if the test suite T is constructed by choosing inputs

randomly in accordance with the distribution p (like using a random number generator),

then T represents an operational profile, and theoretically may then be treated as a

uniformly distributed set.

Therefore, each input in the input domain has equally likely chances of occurrence.Since,

here reliability assessment was done for component based system, so if a component is

not able to deliver its service or perform its task within the application’s deadline, further

components are not considered for estimating reliability, since the application fails. If all

the components are performing their task within the specified deadline then there would

30 | P a g e

be less chance of failure and hence the reliability value would be high. Using the

proposed approach the reliability value of each component is evaluated and further, these

obtained reliability values are used to obtain the reliability value of the entire application.

The application was run 1000 times to note the number of times the tasks are getting

completed within deadline for inputs taken randomly from the input domain. The data

obtained from it is used to calculate the probability of completion of task within the

deadline.

For a program which consists of various functions and sub functions are as:

main, polynomial_series, expression, power ,factorial.

In Level-0 CDG, main represented as C0.

Fig. 4.2:Level-0 CDG

In Level-1 CDG, main function is explored and the CDG is constructed accordingly. It

consists of two functions, one called polynomial_series is used for evaluating the series

for the values of x and n provided as input.

The formula is as :

1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
… +

𝑥𝑛

𝑛!

S

<C0,R0>

T

31 | P a g e

where

‘x’ and ‘n’ are finite values.

and the other called expression is used to return the value of the expression for the values

of a, b and c provided as input. The returned value is used to calculate real roots of the

quadratic equations.

Fig.4.3:Level-1 CDG

where

C00 represents polynomial_series,

C01 represents expression,

S is the start node,

T is the terminal node.

S

<C00,RC00> <C01,RC01>

T

2 4

2

b ac

32 | P a g e

Level-2 CDG

In this level, the components of Level-1 CDG are explored. Component

polynomial_series contains various subcomponents like power and factorial.

Fig.4.4: Level-2 CDG for polynomial_series

where

C000 represents power,

C001 represents factorial,

T01 represents transition name from C000 to C001,

RT01 represents transition reliability from C000 to C001.

SS

T

<C000,R000>

<C001,RC001>

<T01,RT01>

33 | P a g e

Component diagram for the above explained example application is shown in Fig. 4.5.

In this component diagram,C0 is requesting service from C00 and C01. C00 is requesting

service from C000, C001.

where

C0 corresponds to the main,

C00 corresponds to the polynomial_series,

C01 corresponds to the expression,

C000 corresponds to the power,

C001 corresponds to the factorial.

Reliability of elementary components are calculated by using the algorithm elem_Rel.

4.3.1. Calculation of reliability value for polynomial_series

For the polynomial_series

1 +
𝑥

1!
+

𝑥2

2!
+

𝑥3

3!
… +

𝑥𝑛

𝑛!

‘terms’ is taken as ‘int’ type and ‘x’ is taken as ‘long int’ so the range for ‘int’ and ‘long

int’ is:

int: -32,768 to 32,767

long int: 2,147,483,648 to 2,147,483,647

Valid output for power and factorial should be within the range of integer.

cC0

 C01

C00

C000

C001

Fig.4.5: Component Diagram for application

34 | P a g e

Based on these ranges, the probability of operational correctness is calculated using the

proposed approach.

Calculation of probability of operational correctness for elementary components

For power component:

Range for ‘terms’=0 to 6

Range for ‘x’=1 to 10

So total number with in this range=70

When ‘term’= 5-6 and ‘x’=8-10, it will give overflow error.

Thus,

Range of integer data causing overflow error for ‘terms’=5-6

Range of integer data causing overflow error for ‘x’=8-10

Total number of times power will give overflow error= 6

Probability of occurrence of data giving overflow error=6/70=0.086

Probability of occurrence of data not giving overflow error =1-0.086=0.914

Probability of operational correctness of power is 0.914

For factorial component:

Range for ‘terms’=0 to 6

Range of integer data causing overflow error for ‘terms’=0

Probability of occurrence of data giving overflow error =0

Probability of occurrence of data not giving overflow error=1-0=0

Probability of operational correctness for factorial=1.

35 | P a g e

Calculation of probability of logical correctness for elementary components

Calculation of probability of logical correctness for power is as follows:

Source code for power CFG for power

double power(int num, int pow)

{

1. int i=1;

2. double sum=1.0;

3. while(i<=pow)

{

4. sum=sum*num;

5. i++;

}

6. return sum;

}

There are 2 linearly independent paths.

1-2-3-6

1-2-3-4-5-3-6

Range of ‘terms’=0 to 6

Range of ‘x’=1 to 10

There are 2 test cases obtained to cover these two linearly independent paths which are

as:

When terms= -99 and x=6 (path will be covered as 1-2-3-6):

Expected output=1

Obtained output=1

So difference=| Expected output- Obtained output|=0

When terms =5 and x=7 (path will be covered as 1-2-3-4-5-3-6):

Expected output=2401

1

2

3

4

5

6

Fig. 4.6: CFG for power

36 | P a g e

Obtained output=2401

So difference=| Expected output- Obtained output|=|2401-2401|=0

Considering the tolerance allowed i.e α= 0.9

Rlog = 1- 1/2{(0+0)/ 0.9} =1- 0

 = 1

It will give power in integer and there will be no precision error in any case while

calculating power so logical correctness of power is 1.

Calculation of probability of logical correctness for factorial is as follows:

Source code for factorial CFG for factorial

double factorial(int terms)

 {

1. int i;

2. double f=1;

for (a i=1; b i<=terms; c i++)

3. f=f*i;

4. return(f);

}

There are 2 linearly independent paths. These are as:

1-2-a-b-4

1-2-a-b-3-c-b-4

1

2

a

b

3

4

cc

Fig. 4.7: CFG for factorial

37 | P a g e

Range of ‘terms’=0 to 6

Range of ‘x’=1 to 10

There are 2 test cases obtained from the path based testing which are as:

When terms =5 and x=7 (path will be covered as 1-2-a-b-3-c-b-4):

Expected output=24

Obtained output=24

So difference=| Expected output- Obtained output|=|24-24|=0

When terms =-2 and x=77 (path will be covered as 1-2-a-b-4):

Expected output=1

Obtained output=1

So difference=| Expected output- Obtained output|=0

Considering the tolerance allowed i.e α= 0.9

Rlog = 1- 1/2{(0+0)/ 0.9} =1- 0

 = 1

Hence, the probability of logical correctness obtained for the factorial function is 1.

38 | P a g e

Source Code for polynomial_series CFG for polynomial_series

double polynomial_series (int terms,long x)

{

1. int i;

2. double pow,fact, division,add=0.0;

 for(a i=0; b i<terms; c i++)

 {

3. pow = power(x,i);

4. fact = factorial(i);

5. division=pow/fact;

6. add=add+division;

 }

7. return add;

}

The calculation details of the glue code reliability values for the

glue code used in the polynomial_series is present in Appendix A.1.

Table 4.1 Reliability values of components used in polynomial_series

Component Operational correctness Logical correctness Total reliability

power 0.914 1 0.914

factorial 1 1 1

1

2

a

b

3

4

c

5

6

7

Fig. 4.8: CFG for polynomial_series

39 | P a g e

CDG for the polynomial_series is shown in Fig. 4.9:

Fig.4.9: CDG for the polynomial_series

where

C000 represents power function,

C001 represents factorial function,

RC000 represents Reliability of the power function,

RC001 represents Reliability of the factorial function,

S corresponds to the start node,

T corresponds to the terminal node.

Reliability of execution scenario for polynomial_series using conditional probability

matrix at level 2.

The Conditional Probability Matrix used at level 2 is

 C C000 C001

 C000 0.914 0 1

 C001 0 1 0

SS

T

<C000,RC000>

<C001,RC001>

<T01,RT01>

t

Fig.A.2: CFG

for the test code

of main

t

 <T12,RT12>

For terms = 0

For terms > 1

40 | P a g e

Here C corresponds to a conceptual ideal component assumed to be present in the

execution scenario before the first component of the execution scenario.

where

C000 represents power component,

C001 represents factorial component.

Table 4.2 Reliability of various execution scenario based on number of terms:

Execution

scenario
Terms

(Reliability of execution scenario*

glue code reliability of that scenario)

Total

Reliability

1st 0 1 1

2nd 1 (0.914*1)1 0.914

3rd 2 (0.914*1)2 0.835

4th 3 (0.914*1)3 0.764

5th 4 (0.914*0.3)4 0.006

6th 5 (0.914*0.3)5 0.002

7th 6 (0.914*0.3)6 0.000

Total average reliability of polynomial_series

= (∑(𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 s𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝒌 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙_𝑠𝑒𝑟𝑖𝑒𝑠)

6

𝑘=0

∗ 𝑝(𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝒌 𝑜𝑓 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙_𝑠𝑒𝑟𝑖𝑒𝑠))

∗ 𝑝(𝑡𝑎𝑠𝑘 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒)

Total average reliability of polynomial_series

=(1*0.143+0.914*0.143+0.835*0.143+0.764*0.143+0.006*0.143+0.002*0.143+0.000*

 0.143)*0.509

= 0.503*0.509 = 0.256

41 | P a g e

4.3.2. Calculation of reliability value for expression

Since expression is an elementary component so algorithm elem_Rel is used to calculate

its reliability.

Calculation of the probability of operational correctness of expression

For expression component:

Range for ‘b’ is 1-45,000

Range for ‘a’ is 1-23,000

Range for ‘c’ is 1-23,000

Out of range data for ‘a’, ‘b’, ‘c’=0

Probability of occurrence of data within range=1-0=1

So probability of operational correctness for expression is 1.

Calculation of probability of logical correctness for expression

Calculation of probability of logical correctness for expression component is as follows:

Source code for expression CFG for expression

double expression(long int b,long int a,long int c)

{

1. long int sub,square,mul;

2. double division;

3. square=b*b;

4. mul=4*a*c;

5. sub=square-mul;

6. division=sub/2;

7. return division;

}

1

3

3

2

36

5

4

37

Fig.4.10: CFG for expression

42 | P a g e

There will be 1 linearly independent path:

1-2-3-4-5-6-7

Based on it, 1 test case is used to cover it.

Range for ‘b’ is = 1 to 45000

Range for ‘a’ is=1 to 23000

Range for ‘c’ is=1 to 23000

Considering these range, test case can be (b, a, c)=(5000,800,544)

Then,

Expected Output = 11629600

Obtained Output is =11629600

|Difference| =| Expected Output- Obtained output| =11629600-11629600|= 0

Considering the tolerance allowed i.e α= 0.9

Rlog = 1- 1/1{(0)/ 0.9} =1- 0

 = 1

So reliability of elementary component (i.e. expression) is = probability of operational

correctness for expression * probability of logical correctness for expression

=1*1=1

Since expression is a component at level 1 so the probability of task completed within

deadline is also multiplied with its reliability value (in accordance with the proposed

approach).

Total average reliability of expression is = Reliability of expression * p(task will be

completed within deadline)

=1*0.491=0.491

43 | P a g e

Table 4.3 Average reliability values of various components used in main

Component Reliability value

polynomial_series 0.256

expression 0.491

Source Code for main

void main()

{

1. int i,terms,k;

2. double d,root1,root2,fact,pow,sum=0.0;

3. long int,x,b,a,c;

4. printf("Enter 1 for polynomial series or 2 for expression");

5. scanf("%d",&k);

6. if(k==1)

{

7. printf("Enter terms and x values");

8. scanf("%d%ld",&terms,&x);

9. sum=polynomial_series(terms,x);

10. printf("\n\n Sum of the series is :\n %f",sum);

}

11. else if(k==2)

{

12. printf("Enter values for b ,a and c");

13. scanf("%ld%ld%ld",&b,&a,&c);

14. d=expression(b,a,c);

15. printf("\n Expression value is %f", d);

16. if(d<0)

17. printf("\n Roots are not real");

18. else {

19. root1 = (-b + sqrt(2*d))/(2*a);

20. root2 = (-b - sqrt(2*d))/(2*a);

21. printf("\n Real roots are %f, %f",root1,root2);}

}

22. return 0;

44 | P a g e

}

The glue code reliability value obtained for scenario 1 and for scenario 2 of main are

found to be 1 (Calculation details are present in Appendix A.2).

Average reliability of execution scenario1 for Main (including glue code)

= Average reliability of execution scenario1 for Main * Glue code reliability for

execution scenario 1 of Main

= 0.256*1=0.256

 Average reliability of execution scenario 2 for Main (including glue code)

= Average reliability of execution scenario 2 for Main * Glue code reliability for

execution scenario 2 of Main

=0.491*1=0.491

Average reliability of main = Average reliability of Execution Scenario1 for Main

(including glue code) * p(occ. of Scenario 1 in main)*Average Reliability of Scenario 2

for Main (including glue code) * p(occ. of Scenario 2 in main)

= 0.256*0.5+0.491*0.5=0.128+0.246=0.374

Hence the average reliability of the application is found to be 0.374.

The next section discusses the results obtained from the proposed approach and compares

it with the results obtained from Yacoub et al. [21] approach.

45 | P a g e

5. RESULTS AND DISCUSSION

Failures in real time systems can arise from both functional errors as well as timing bugs.

Hence, it is necessary to ensure both temporal correctness of programs used in real time

applications in addition to provide functional correctness. Since, reliability value varies

with the values of deadlines, hence reliability values of the application are computed for

various deadline values for the same application (considered in section 4.3) which

calculates either the roots of a quadratic equation or the value of the polynomial

depending upon the user’s choice.

5.1 Reliability values for various deadlines

Based on deadline value, the corresponding reliability value (shown in table 5.1) is

obtained.

Table 5.1 The deadline and reliability value for the considered application

S.No. Deadline Reliability

1 1 0.174

2 2 0.367

3 3 0.37

4 4 0.372

5 5 0.374

6 6 0.374

7 7 0.374

46 | P a g e

The plot obtained between deadline and reliability value for the considered application is

shown in Fig 5.1.

Fig. 5.1:The obtained plot between deadline and reliability value for the considered

application.

From the plot it is found that when the deadline increases the reliability value initially

increases drastically and then gradually until it reaches a value beyond which there is no

increase in the reliability value with the increase in deadline.

5.2. Comparison with Yacoub et al. model

For real time applications, although very few work has been done, yet none of them is

concerned with the development of a reliability assessment approach by considering the

components dependencies, their failure dependencies based on the architecture of the

system for various execution scenarios with respect to a given operational profile in the

presence of timing bugs. Timing bugs are an important issue in real time systems, but is

not handled explicitly by any of the existing approaches for reliability assessment. As for

real time systems, many times it becomes a necessity for a given service to be delivered

within the specified time deadline. Although, Yacoub et al.[21] model do not consider the

deadline, yet it is taken into consideration for comparison as it does the assessment by

0.174

0.367 0.37 0.372 0.374 0.374 0.374

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7

R
e

lia
b

ili
ty

Deadline

Deadline v/s Reliability

Reliability

47 | P a g e

considering the components dependencies, their failure dependencies based on the

architecture of the system for various execution scenarios with respect to a given

operational profile.

Here, once again the same application (considered in section 4.3) which calculates either

the roots of a quadratic equation or the value of the polynomial depending upon the

user’s choice is taken into consideration. The reliability values for different scenarios are

calculated using Yacoub et al. [21]. It is assumed that for a given/specified average

execution time the number of iterations in the loop of the CDG for polynomial_series

function is 4. The average reliability value obtained for the polynomial_series in

accordance with Yacoub et al. is 0.338. Hence the average reliability value of the

composite component C00 according to the model is 0.338. Reliability value of

elementary component C01 is 1. Thus, the average reliability value of the application

obtained from Yacoub et al. is 0.669. This value is greater than the average reliability

value of the proposed approach (where deadline has been taken into consideration).

Table 5.2 Comparison with Yacoub et al. model

Approach Avg. reliability

Proposed approach 0.374

Yacoub et.al. 0.669

Hence, it can be seen that the proposed approach takes into account several factors

explicitly for real time applications like timing bugs, etc. Moreover, in many of the

component based approaches (with the exception of few) it is assumed that the reliability

values of the elementary components are either known or taken from elsewhere (like

third party vendors, etc.); since there is no guideline to obtain the reliability values of the

elementary components. The proposed approach is not only able to provide the average

reliability value for the given application, but is also able to obtain the reliability values

for various components (both elementary and composite), without using the values

provided by the third party vendors.

48 | P a g e

The next section concludes with the discussion on the advantages and limitations of the

existing approach and provides guidelines for future enhancements.

49 | P a g e

6. CONCLUSION

Real time systems are those systems which must guarantee to response correctly within

strict time constraint or within deadline like satellite systems, traffic control systems, etc.

The severity of consequences resulting from the failure of these systems is usually is very

high. Hence, the reliability should be estimated accurately in order to minimize or avoid

the losses resulting from the failure of such systems. Failure of real time systems which

are used in real life applications can arise from both functional error as well as timing

bugs. Therefore, it is necessary to provide temporal correctness of embedded program

used in real time applications in addition to providing functional correctness. It has been

observed that many approaches do not consider dependency among components, timing

bugs, failure dependency and various execution scenarios possible for a given operational

profile in the presence of indefinite loops and other instance characteristics. Also, for real

time systems, many times it becomes a necessity for a given service to be delivered

within the specified time deadline, but many approaches do not explicitly take this issue

into consideration.

The proposed algorithm which considers the components dependencies, their failure

dependencies (based on the architecture of the system) for various execution scenarios

with respect to a given operational profile in the presence of timing bugs, provides a

versatile and cost effective approach for the reliability assessment of real time software

applications. The developers and integrators can readily use this approach to assess the

reliability of their applications without relying on the reliability values provided by other

third party quality assurers or testers for any component. As, there can be several issues

like the third party vendors may be biased, the testing environment may not be the same

as the operational environment, etc. Hence, it is difficult to ensure that the reliability

values obtained from these third party vendors are correct and effective for the given

application. Therefore, the proposed approach serves to be easy and cost effective.

Currently, the limitation of this work is that it takes a considerable amount of time to do

the assessment manually even for small input domains. Hence, work can be done in

future to automate the process of the reliability assessment using the proposed approach

50 | P a g e

so that results can be obtained without much effort and time. Thus, considering various

aspects it can be said that the proposed approach closely captures the behavior of the real

time software application as it considers various aspects like the components

dependencies, their failure dependencies (based on the architecture of the system) for

various execution scenarios with respect to a given operational profile in the presence of

timing bugs. Therefore, it serves to be a useful approach for the reliability assessment of

real time applications.

51 | P a g e

REFERENCES

[1] http://users.ece.cmu.edu/~koopman/des_s99/sw_reliability

[2] http://universe.bits-pilani.ac.in/uploads/rts-intro-slides.pdf

[3] https://www.ima.umn.edu/~arnold/disasters/ariane5rep.html

[4] A. L. Goel.“An analysis of competing software reliability models”, IEEE Transactions on

Software Engineering, vol.6,pp.501-502,1980.

[5] A.P.Singh and P.Tomar.“A new model for reliability estimation of component based

software”, Advance Computing Conference, 2013, pp.1431-1436.

[6] B. Littlewood. “Software reliability model for modular program structure”,IEEE Transaction.

 Reliability, vol.28, pp.241-246 ,1979.

[7] C.J. Hsu and C.Y. Huang. “An adaptive reliability analysis using path testing for complex

component-based software systems”, IEEE Transactions on Reliability,vol. 60, pp.158-

170,2011.

[8] C.Huang and M.R.Lyu. “A unified scheme of some nonhomogenous poisson process models

 for software reliability estimation”, IEEE transactions on Software Engineering, vol. 29,

 pp.261-269,2003.

[9] G. Pai. “A Survey of Software Reliability Models”, arXiv preprint arXiv,2013,pp.1304-4539.

[10]H.Kopetz.Real-Time Systems, Design Principles for Distributed Embedded Applications.

Springer Science & Business Media, 2011.

[11] H.Pham, M.Pham.“Software Reliability Models for Critical Applications”, Idaho National

 Engineering Laboratory EG&G Idaho, 1991.

[12] K.G. Popstojanova ,K.S. Trivedi.“Architecture-based approach to reliability assessment of

 software systems”, Performance Evaluation,vol.45, pp.179-204,2001.

[13] L.Nautiyal, Dr. N. Gupta and Dr. S.C.Dimri. “A new path based reliability approach for

estimation of reliability of Component Based Software Development”, International Journal

of Computer Science Engineering,vol.1,pp.295-299,2013.

[14] M.Xiaoguang, D.Yongjin. “A General Model for Component-Based Software Reliability”,

Proceedings of the 29th EUROMICRO Conference,2003, pp. 395-398.

[15] R. C. Cheung.“A user-oriented software reliability model”, IEEE Transactions on Software

Engineering,vol.6, pp.118-125,1980.

52 | P a g e

[16] R.Mohd.,M. Nazir.“ Software Reliability Growth Models: Overview and Applications”,

Journal of Emerging Trends in Computing and Information Sciences, vol.3,pp.1309-

1320,2012.

[17] S.Biswas, R.Mall and M.Satpathy. “Task dependency analysis for regression test selection

of embedded programs.” Embedded Systems Letters, IEEE ,vol.4 ,pp.117-120 ,2011.

[18] S. Gokhale. “Accurate Reliability Prediction based on Software Structure”, Proc. of IASTED

Conference on Software Engineering and Applications,2003,pp.23-25.

[19] S. Gokhale, W.E. Wong, K. Trivedi and J.R. Horgan.“An analytical approach to architecture

based software reliability prediction”, Proceedings of the Third International Computer

Performance and Dependability Symposium,1998, pp.13-22.

[20] S N. Weiss. “An Extended Domain-Based Model of Software Reliability”,IEEE

Transactions on Software Engineering, vol. 14, pp.1512-1524,1988.

[21] S.Yacoub.“Scenario Based Reliability Analysis of Component Based Software”, IEEE

Transactions on Reliability, vol.53, pp. 22-31,2004.

[22] T. Gayen.“Analysis and proposition of error based model to predict the minimum reliability

of software”,International Conference on Education Technology and Computer, 2009,

pp.40-44.

[23] T.Gayen and R.B.Misra. “Reliability Assessment of Elementary COTS Software Component”,

International Journal of Recent Trends in Engineering, vol.1, pp.196-200,2009.

 [24] T.Gayen and R.B.Misra.“Reliability bounds prediction of COTS component based software

application”, International Journal of Computer Science and Network Security,vol.8,

pp.219-228,2008.

[25] V. Goswami and Y.B. Acharya. “Method for Reliability Estimation of COTS Components

based Software Systems”, Proceedings of 20th International Symposium on Software

Reliability Engineering, ISSRE, 2009,pp.123-129.

[26] W. Everett.“Software component reliability analysis”, Proceedings of the Symposium on

Application-specific Systems and Software Engineering Technology, 1999, pp. 204-211.

53 | P a g e

APPENDIX

A.1 Test code for polynomial_series CFG for the test code of polynomial_series

double polynomial_series_Test (int terms,long x)

{

1. int i;

2. double pow,fact,division,add=0.0;

3. long int power[20]={1,7,49,343,2401,16807};

4. long int factorial[20]={1,1,2,6,24,120};

for(a i=0; b i<terms; c i++)

{

5. pow = power[i];

6. fact = factorial[i];

7. division=pow/fact;

8. add=add+division;

}

9. return add;

}

Calculation of the probability of operational correctness for glue code in

polynomial_series

Range for ‘terms’= 0 to 6

Range for ‘x’=1 to 10

For terms = 0, the glue code inside the loop is not executed.

For terms = 1,2,3 there is no overflow error, hence the probability of operational

correctness = 1.

For terms = 4,5,6 there is overflow error when x = 1,2,4,5,7,8,10.

3

4

a

b

5

6

c

7

8

9

1

2

Fig.A.1:CFG for the test code of polynomial_series

54 | P a g e

Therefore, the probability of occurrence of overflow errors = 7/10 = 0.7

The probability of non-occurrence of overflow errors = 1- 0.7 = 0.3

Hence, the probability of operational correctness = 0.3

Calculation of the probability of logical correctness for glue code in

polynomial_series

In CFG, there are 2 linearly independent paths which are as:

1-2-a-b-7

1-2-a-b-3-4-5-6-c-b-7

Thus there are 2 test cases used to cover all linearly independent paths. These are as:

When terms= -99 and x=6, path is covered as 1-2-a-b-7:

Expected output=0

Obtained output=0

So difference=| Expected output- Obtained output|=0

When terms =5 and x=7, path is covered as 1-2-a-b-3-4-5-6-c-b-7:

Expected output = 189.708

Obtained output = 189.708

|Difference |= |189.708-189.708|=0

Considering the tolerance allowed i.e α= 0.9

Rlog= 1- 1/2{(0+0)/ 0.9} =1-0=1

Hence, the probability of logical correctness obtained for the glue code present in

polynomial_series is 1.

55 | P a g e

Table A.1 Glue code reliability values for different values of terms

A.2 Test code for main

void main_Test()

{

1. int i,terms,k;

2. double d, root1,root2,sum=0.0;

3. long int fact,pow,x,b,a,c;

4. printf("Enter 1 for polynomial series or 2 for expression");

5. scanf("%d",&k);

6. if(k==1)

{

7. printf("Enter terms and x values");

8. scanf("%d%ld",&terms,&x);

9. sum=189.708;

10. printf("\n\n Sum of the series is :\n %f",sum);

}

11. else if(k==2){

12. printf("Enter values for b ,a and c");

13. scanf("%ld%ld%ld",&b,&a,&c);

14. d=11629600;

15. printf("\n Expression value is %f",d);

16. if(d<0)

17. printf("\n Roots are not real");

18. else {

19. root1 = (-b + sqrt(2*d))/(2*a);

20. root2 = (-b - sqrt(2*d))/(2*a);

21. printf("\n Real roots are %f, %f",root1,root2);}

Terms Glue code reliability

1 1

2 1

3 1

4 0.3

5 0.3

6 0.3

56 | P a g e

 }

22. return 0;

}

CFG for the test code of main

2

3

12

4

6

11

5

7

15

13

14

16

17

8

10

9

18

19

22

20

21

1

Fig.A.2: CFG for the test code of main

57 | P a g e

Calculation of the probability of operational correctness for main

The test code for main is found to execute without any operational error. Hence, the

probability of operational correctness is found to be 1.

Calculation of the probability of logical correctness for main

Since in main there are 2 scenarios.

Using path based testing, there exists 3 paths so 3 test cases are used to cover it.

The test case taken for Scenario 1 is (5,7) and for Scenario 2 is (200,250,400)and

(5000,800,544)

The logical correctness is as:

When ‘k’= 1, path will be covered as 1-2-3-4-5-6-7-8-9-10-22so test case for this

path is (terms, x) = (5, 7).

Scenario 1 will be covered.

 Expected output=189.708

 Obtained output=189.708

 So difference=| Expected output- Obtained output|=0

 When ‘k’=2, and d<0 path will be covered as 1-2-3-4-5-6-11-12-13-14-15-16-17-22)

 so test case for covering this path is (b, a, c) = (200,250,400).

 Scenario 2 will be covered.

 Expected value = Roots are not real

 Obtained value=Roots are not real

 Difference=|Expected value-Obtained value|= 0

 When ‘k’=2, and d>=0 path will be covered as 1-2-3-4-5-6-11-12-13-14-15-16-

18-19-20-21-22) so test case for covering this path is (b, a, c) = (5000,800,544).

 Scenario 2 will be covered.

 For root 1,

58 | P a g e

 Expected value = -0.11

 Obtained value=-0.11

 Difference=Expected value-Obtained value= -0.11+0.11=0

 For root 2,

 Expected value =-6.14

 Obtained value=-6.14

Difference=Expected value-Obtained value=-6.14+6.14=0

So total difference =0

Considering the tolerance allowed i.e α= 0.9

Rlog = 1- 1/3{(0+0+0)/ 0.9} =1

 = 1

Hence the reliability of the glue code in main is found to be 1*1 = 1.

