

Parallel Algorithm for

Solution of Three Dimensional Hyperbolic Partial

Differential Equation

A Dissertation submitted to Jawaharlal Nehru University
in partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE & TECHNOLOGY

Submitted
by

KUNAL BHASHKAR

under the guidance of

Prof. C. P. KATTI

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI - 110067 (INDIA)
JULY 2015

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

Dedicated to my parents

ACKNOWLEDGEMENT

I wish to express my sincere appreciation to my honourable supervisor Prof. C.P Katti,
School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi for
his valuable guidance, enthusiasm and encouragement. He has been inspiration to me
and a great teacher. It was really unforgettable experience to work under his guidance. I
would like to express gratefulness towards him for developing me independent problem
solving approach. I would like to appreciate his interest in my queries and their practical
suggestions. It would have been really impossible to complete this dissertation without
his invaluable support and patience.

I express my heartfelt indebtedness to my friends and appreciate their help in all manners
they could. I wish to express my admiration to all of them for their love and being with
me through thick and thin.

At last, I would like to thank to my friends who formed part of my vision and taught me
the good things that really matters in life. I would like to share this moment of happiness
with them.

Kunal Bhashkar

ABSTRACT

In this thesis, we discussed the solution of three dimensional partial differential equations
(PDEs) using Finite Difference Method. The selected three-dimensional PDE to solve in
this thesis are of Hyperbolic type. Parallel Virtual Machine (PVM) is used in support of
the communication among all microprocessors of Parallel Computing System. PVM is
well known as a software system that enables a collection of heterogeneous computers to
be used as coherent and flexible concurrent computational resource. In Finite Difference
Method we get a Block Tridiagonal Matrix (BTM) in middle step. The Block Tridiagonal
systems of linear equations use in variety of scientific and engineering applications. My
Proposed Recursive doubling algorithm (RDA) is a well-known prefix computation
based numerical algorithm that requires complexity less than O(M3(N/P + log P)) work
to compute the solution of a Block Tridiagonal system with N block rows and block size
M on P processors. Here, we show that a Proposed RDA is sub-optimal when computing
solutions of Block Tridiagonal systems with multiple right hand sides and present a
novel algorithm, called the accelerated recursive doubling algorithm. To the best of our
knowledge, this algorithm has not been reported before in the literature. The parallel
implementation of a new explicit group iterative scheme is proposed for the solution of a
three dimensional second order partial differential equation. The Proposed explicit group
method is derived from the standard centred seven-point finite difference discretisation
formula. We utilize the new domain decomposition technique on this group scheme to
divide the tasks involved in solving the equation. The aim of this study is to describe the
development of the parallel group iterative scheme under Open MP programming
environment as a way to reduce the computational costs of the solution processes using
multiple core technologies. Numerical experiments are conducted together with their
detailed performance analysis. The results will be discussed in tabular format.

 TABLE OF CONTENT

 CERTIFICATE……………….……………………………………………………….…..……….….i

 DECLERATION…………………………………………………………………….......ii

 ACKNOWLEDGEMENT………………………………………………………….…..iv

 ABSTRACT…………………………………………………………………...………....v

 1 Introduction of Parallelism………………………………………………….page

 1.1 Introduction…………………………………………………………….…1

 1.2 Parallel Computing……………………………………………………….2

 1.3 Why Parallel Computing………………………………………………....2

 1.4 Application of Parallel Computing…………………………………….....3

 1.5 Benefits of using Parallel Computing………………………………….....3

 1.6 Parallel Architecture…………………………………………………...…4

 1.6.1 Flynn's Classification……………...…………………………….....4

 1.7 Coupling between Processing Elements……………………………….....7

 1.8 Mesh Connected Computers…………………………………………….10

 1.9 Hypercube Architecture………………………………………………....11

 2 Some Parallel Numerical Methods in Solving PDE's………………..…...…11

 2.1 Introduction………………………………………………………..........11

 2.2 Method to solve Partial Differential Equation……………………….....15

 2.2.1 Finite Difference Method……………………………………...…15

 2.3 Difference Scheme for Equations……………………………………....16

 2.4 Two Dimensional PDE Solver….…………………………………..…..20

 2.6 Parallel Performance Evaluation………………..……………………....24

 3 Proposed Algorithm to Solve Block Tridiagonal System……………….......28

 3.1 Parallel Scan……………………………………….…………………...28

 3.2 Recursive Doubling Algorithm For (M,N) System……………….…..29

 3.2.1 Numerical Formulation………………………………………….29

 3.2.2 Algorithmic Complexity………………………………………....31

 3.3 Proposed Accelerating Recursive Doubling Algorithm…………..….32

 3.3.1 Numerical Reformulation……………………………………....35

 3.3.2 Right Hand Side Independence Phase………………………….35

 3.3.3 Right Hand Side Dependence Phase…………………………...36

 3.4 Relative Speedup……………………...……………………………...39

 3.6 Results and discussion……………………...……………...………....40

 4 Proposed Parallel Algorithm for A New 3D Hyperbolic PDE Solver…….45

 4.1 Formulation of Methods……………………………………………....46

 4.2 Proposed Decomposition Technique……………………………….....48

 4.3 Numerical Experiments and Results…………………………………..51

 4.4 Experimental Results……………………………………………….…52

 5 Conclusion………………………………………………………………….....53

 References………………………………………………………………...…...54

 LIST OF TABLE

Table 3. 1 Proposed RDA for Block Tridiagonal System .. 30

Table 3. 2 Proposed Accelerated RDA .. 36

Table 4. 1 Proposed Algorithm for Explicit Group Method 50

Table 4. 2 Program for Implementation on Multicore Processor 50

 LIST OF FIGURE

Figure 1.1 Flow Chart for Explicit and Implicit Parallelism……………………….…1

Figure 1.2(a) Sequential Process………………………………..………………….…2

Figure1.2(b) Parallel Process……………………….………..………………...……...2

Figure 1. 3 Flynn’s classification of Computer Architecture………………….……...6

Figure 1.4 Classification of Loosely & Tightly Coupled System………………….…7

Figure 1.5 Mesh Connected Computers…………………………………………......10

Figure1.6 Hypercube Architecture…………………..……………………………...12

Figure2.1 Parallel Performance Evaluation ………..……………………….….…..27

Figure3.1 Parallel RDA on Tridiagonal System……….…….……………………...33

Figure 3.2 Parallel Performance of RDA …………….…………………………......34

Figure 3.3 Local and Non-local runtimes of RDA…….……………………..….......35

Figure 3.4 Relative Speedup…………………………….….…………………….....41

Figure 3.5 Strong Scaling Speedup…………………………….…………………...42

Figure 3.6 Relative Speedup of Proposed ARDA…………………….………….....44

Figure 4.1 Computational Molecule for Proposed EG Method……………….…....45

Figure 4.2 Proposed Explicit Method………………………………….…………...46

Introduction of Parallelism

1.1 INTRODUCTION

For using a parallel computers, we require a parallel environment where parallelism is
automatically oppressed. The operating system (OS) must also be extended to support
parallel processing. The OS must have a competency to manage resources behind parallelism.
Parallelism is divided into two categories.

 Implicit Parallelism In implicit parallelism, we approach a conventional language, such
as C, C++, FORTRAN or Pascal to write the source program. If a source program is coded
in a sequential manner is translated into parallel object code by parallelizing compiler. As
given below in Fig. 1.1a, this compiler must be able to detect parallelism and allocate
target machine resources.

 For implicit parallelism, success depends heavily on intelligence of parallelizing compiler.
This parallelizing technique requires less effort on the part of programmer.

 Explicit Parallelism It is a second approach requires more effort to the Developer to
develop a source programme using C, C++, FORTRAN, or Pascal like parallel languages.
In the user programs parallelism is specified in explicit way.

 Developer

Source code written in
sequential Processing
like C,C++,Fortran, or
Pascal

Parallelizing
compiler

Parallel object
code

 Developer

Source code written in
Concurrent processing
of C,C++,Fortran, or
Pascal

Concurrency
preserving compiler

Concurrent object job

Execution by
runtime system

Execution by
runtime system

(i) Implicit parallelism (ii) Explicit parallelism
Fig 1.1 Flow Chart

1

Chapter 1

1.2 PARALLEL COMPUTATION

 Definition: The Parallel Computing is simultaneous execution of the same task on multiple
processors in order to obtain faster results.

i.e Processing of multiple tasks simultaneously on multiprocessor system using divide and
conquer technique is called Parallel Computing.

1.3 WHY PARALLEL COMPUTING?

In general, software has been written for serial computation, to be run on a single computer
having a single Central Processing Unit (CPU), a problem is broken into discrete series of
instructions. Instructions are broken into one after another, only one instruction execute at
any moment of time.

In the simplest sense, parallel computing is the simultaneous use of multiple compute
resources to solve a computational problem. It is to be run on multiple CPUs and problem is
broken into discrete parts that can be solved concurrently. After that, each part is further
broken down in the series of instructions and instructions from each part are further execute
simultaneously on different CPUs.

 Problem

CPU

Sequential Process

Instructions

1I 2I 3I 4I 1-NI NI

 Problem

 Problem

 CPU

 CPU

Parallel Process

Fig 1.2 Sequential processing

Figure 1.3 Parallel Processing

2

Instructions

1.4 APPLICATION OF PARALLEL COMPUTING

 Finite element analysis of structural design involves a large system of algebraic
equations which have to be solved. Such computations these days demand
supercomputing power.

 Genetic engineers demand fast computers for studying molecular biology, artificial
synthesis of protein and for gel matching in the estimation of mutation rate of human
spices.

 Many areas as-pollution reduction through computational modelling, image
processing, and design of computational biologist follow the concept of parallel
computing.

 In Electrical Engineering, Circuit design, Microelectronics.
 Today commercial applications provide equal and opposite driving force in the

development of faster computer. These applications requires a large amount of data in
sophisticated ways. For example: Databases, Data mining, and Oil Exploration.

 Nuclear reactor safety analysis is another area demanding supercomputer facilities.
 Supercomputers are needed in diagnostic equipment such as computer assisted

tomographic scanners.
1.5 BENEFITS OF USING PARALLEL COMPUTING
 Save time and/or Memory: In theory, throwing more resources at task will shorten

it’s time to completion, with potential cost saving. Parallel clusters can be built from
cheap, commodity and component.

 Solve larger problem: Many problems are so large and/or complex that is impractical
or impossible to solve them on a single computer, especially given limited computer
memory. For example: Web search engines/databases processing millions of
transaction per second.

 Provide Concurrency: A single compute can only do one thing at a time.

3

1.6 PARALLEL ARCHITECTURE

1.6.1 Flynn’s Classification

Michael Flynn (1972) introduced a various computer architectures based on notion of
instruction and data streams. One can classify computers into four categories according to the
whether the instruction or data streams are single or multiple. A stream is defined as a sequence
of items-instructions or data which is operated by the processor.

 SISD: Single Instruction & Single Data Stream
 SIMD: Single Instruction & Multiple Data Stream
 MISD: Multiple Instruction & Single Data Stream
 MIMD: Multiple Instruction & Multiple Data Stream

 SISD: Single instruction & Single Data Stream is one of the conventional sequential
machines which is irrelevant whether pipelining is used to speed up the processing or not.
This type of machine is sometimes referred to as a scalar computer.

 SIMD: Single instruction stream & Multiple Data stream type of classification include all
machines with vector instructions and machines belonging to this class are often called
vector computers.

I/O

IS

IS
CU PU MU

DS

Figure 1.4 (a) SISD uniprocessor architecture

4

 MISD: Multiple Instruction Stream & Single Data Stream in which the same data stream
flows through the linear array of processors which is executing different instruction streams.

CU

IS
IS

1PE

nPE

1LM

nLM

DS

DS

DS

DS

Data Sets
loaded
from host

Program
loaded
from host

Figure 1.4 (b) SIMD architecture (with distributed memory)

MM MM MM

PU

PU

PU

CU

CU

CU

IS

IS

IS IS

IS

IS

DS

DS

Figure 1.4 (c) MISD architecture (the systolic array)

5

 MIMD: Multiple instruction stream over multiple data streams. Parallel computers are
reserved for MIMD machines. This include all form of multiprocessor configuration from
LAN (Local area network) and WAN (Wide area network) to the large arrays of
multiprocessors.

 Fig 1.4 (d) MIMD architecture

 Captions:

CU

CU

CU

PU

PU

PU

 MM

 MM

 MM

CU= Control unit PU= Processing unit

MU= Memory unit MM= Memory Module

IS= Instruction Stream DS= Data Stream

PE= Processing Element LM= Local Memory

I/O= Input /Output
Figure. 1.4 Flynn’s classification of computer architectures

6

In the above discussed machine models, the SIMD and MIMD models are more suitable for
special purpose computations, and MIMD model is used for general purpose computations. For
this reason, MIMD is most popular model.

The various processors in MIMD machines are linked together. This link has been established
in two ways which will be describe as below.

1.7 COUPLING BETWEEN PROCESSING ELEMENTS

The autonomy enjoyed by the PEs while cooperating with one another during problem solving
determines degree of coupling between them. In this, each workstations works independently.
If they want to cooperate they will exchange a message. Hence we can say that logically they
are autonomous and physically they don’t share any memory and communication is via I/O
channels. On the other hand, a tightly coupled parallel computer shares a common main
memory. In Fig.1.5 (a) we summarize this discussion.

 Parallel Computer

Loosely Coupled Tightly Coupled

Processing Elements with
private memory communicate
via a network

Processing Elements with
private memory communicate
via a network

Compute independently and
cooperate by exchanging
message

Cooperate by sharing results
stored in common memory

Message passing Multicomputer Shared Memory Multiprocessor

Coupling

Physical
Connection

 Logical
Cooperation

Type of
Parallel
Computer

Figure. 1.5 Classification as loosely or tightly coupled system

7

 Tightly coupled systems: In tightly coupled system the processors share a global memory.
In general, these systems consist of N processors connecting M memory banks through a
communication network. Such systems has many processor in closed communication and
sharing computer bus, clock, sometimes memory and peripheral devices.

 Loosely Coupled system: The computer networks used in these applications consists of a
collection of processors that do not share memory or clock. Here each processor has its own
local memory. In this arrangement processors communicate with one another through
various communication lines like high speed buses or telephone lines.

 Interconnecting Network

1P

1M

2M

2P

nM

nP

Figure 1.5 (a) Tightly Coupled System

8

 Message Passing
Interconnection Network

M

P

M M

M

M

M M M

M

M

P P

P

P

P P P

P

P

M= Memory

P=Processor
Fig 1.5 (b) Loosely Coupled System

9

1.8 MESH CONNECTED COMPUTERS

The Figure 1.6 shows the basic 2D mesh architecture. Each processor, other than the ones located
on the boundary, has degree 4. The free links of the boundary processors can be used for
input/output or to establish row and column wraparound connections to form the 2D torus.
Here a kk  mesh has a diameter 2k-2 and bisection width k or k+1. A kk  torus has diameter
k or k-1 and bisection width 2k or 2k+2. A kk  torus is sometimes referred as a k-ray 2- cube
(2D “cube” of size k). The general form of this architecture is known as k-ary or q-cube (q-D
cube of size k). In particular, for k=2, we get the class of 2-ary (or binary) q-cubes, also known
as (binary) hypercube. Thus, 2D torus and binary hypercube represent the two extremes of the
k-ary q-cube architecture; fixing q at 2 gives us the 2D torus architecture with fixed node degree
and)p( diameter, while fixing k at 2 gives us the binary hypercube with logarithmic node
degree and)p log( diameter.

Row wrap-around link for torus

Co
lu

m
n

w
ra

p-
ar

ou
nd

 li
nk

 fo
r t

or
us

In
pu

t/
O

ut
pu

t v
ia

 b
ou

nd
ar

y
pr

oc
es

so
rs

Figure 1.6 Two dimensional Mesh Connected Computer

10

1.9 HYPERCUBE ARCHITECTURE

There are n2 nodes in n-dimensional Boolean cube. There are two coordinate points in each
direction. The node can be given addresses such that the addresses of adjacent nodes differ in
precisely one bit. The Boolean cube is a recursive structure. An n-dimensional can extended to
an (n+1) dimensional cube by connecting corresponding vertices of two n-dimensional cubes.
One has highest order bit 0 and another has highest order bit 1. The recursive nature of Boolean
cube is illustrated in Figure 1.7

Here each node has n neighbours. The maximum distance between arbitrary pair of nodes is n
and average distance is n/2. The number of nodes at distance k from node is









k
n . The total of

Internode connection is 1-nn2 . There are n disjoint paths between any pair of processors. Of
these paths k are of length k and n-k of length k+2. It is highly fault-tolerant. Its capacity is too
good for considering rich connection. It is homogeneous graph without any special node.

In hypercube, two processors are directly connected with communication link if and only if
their Hamming distance is unity i.e their identity numbers differ in exactly one bit, where the
Hamming distance between two processors is the number of bits in which their identity number
differs.

For a given N, the diameter of hypercube is being equal to Nlog2 , which is nothing but the
number of dimensions. Most of the problem specific to the interconnection network scheme
such as mesh, tree, ring etc. can be easily mapped to the hypercube provided the number of
nodes, dimension matched.

Figure (a) 0-D Hypercube Figure (b) 1-D Hypercube

0

1

Figure (c) 2-D Hypercube

00

01 11

10

11

Figure (d) 3-D Hypercube

000

100 110

101

001 011

111

010

Figure (e) 4-D Hypercube

0000
0100

0001

0101

0011

0001

0110

0010

1001

1100

1000

1101

1011

1001

1010

1110

Figure 1.7 Hypercube Architecture

12

Some Parallel Numerical Methods in Solving Partial Differential Equation

2.1 INTRODUCTION

It is lavishly clear that many important scientific problems are governed by partial differential
equations according to [4-5]. The difficulty in obtaining exact solution arises from the
governing partial differential equations and the complexities of the geometrical configuration
of physical problems [10,11,12]. For example, imagine a metal rod insulated along its length
with no heat can escape for its surface. If the temperature along the rod is not constant, then
heat conduction takes place. In such situations, the numerical method is used to obtain the
numerical solutions [2]. These partial differential equations may have boundary value problems
as well as initial value problems. First, the PDEs will be written in matrix form to ease the
work. Then, parallel algorithm for all types of the PDEs will be developed and run in parallel
computing environment to provide the numerical solution. Finally, the speed of convergences
of using the numerical methods will be compared. In general, the transient particle diffusion or
heat conduction is Partial Differential Equations (PDE) of the parabolic type and Laplace’s
equation for temperature, diffusion, electrostatic conduction is elliptic and wave equation or
transport equation is the PDE of hyperbolic type [4,5,12]. The parabolic partial differential
equations are normally used in such fields like molecular diffusion, heat transfer, nuclear
reactor analysis, and fluid flow [1,6].
 Partial differential equations (PDEs) widely used as mathematical models for
phenomena in all branches of engineering and science.

A Parabolic Equation

 (i)

where The PDE is said to be parabolic if det(Z) = 0 . The heat
conduction equation and other diffusion equation are examples. The heat equation is as

 is a constant. Initial boundary conditions are used to give

B Hyperbolic Equation

 (ii)

t)y,c(x,
y
u),,(b

x
u),,(b

y
u),,(a

x
u),,(a

t
u

212

2

22

2

1 

















 tyxtyxtyxtyx

0. ac4b and 0c, 0a 2 

 .,
X
U

T
U

2

2








0gu
y
uf

x
ue

t
ud

y
uc

yx
ub2

x
ua

t
u

2

22

2

2

2

2


















































. in holds y)x,u,uy,f(ux,ux x where
,for x (x)u(x,0)

0 t, for x t)g(x,t)u(x,

Chapter 2

13

Where The PDE is said to be hyperbolic if det(Z) < 0 .The wave equation is
an example of a hyperbolic partial differential equation. The wave equation is as

 ,  is constant. Initial-boundary conditions are used to give

C Elliptic Equation

 (iii)

where The PDE is said to be elliptic if Z is a positive definite matrix with
det(Z) < 0 . Laplace’s equation and poisson’s equation are examples. The Laplace’s equation

is Boundary conditions are used to give the constraint u(x,y) on  .

where ..

D Finite Difference Method

Finite Difference Method is a classical and straightforward way to solve the partial difference
equation [1,2] numerically. It consists of transforming the partial derivatives in difference
equations over a small interval and the continuous domain of the state variables by a network
or mesh of discrete points. The partial differential equation is converted into a set of finite
difference equations so that it can be solved subject to the appropriated boundary conditions.
Assuming that u is function of the independent variables x and y, then divided the x-y plan in
mesh points equal to

Evaluate u at point P by:
 (iv)

The value of the second derivative at P could also be evaluated by:

 (v)

0.ac4b2 

0
t
u1

x
u

2

2

2

2






































y
u,

x
uu,y,x,d

y
uy)c(x,

yx
uy)b(x,2

x
uy)a(x, 2

22

2

2

0.ac4b2 

.0
y

u
x

u
2

2

2

2









y)x,u,uy,f(ux,yux ux x 

k,y andh x  

ji,p ujk)u(ih,u 

















. in holds y)x,ut,f(ux,yux where
,for x (x)vy,0)(x,ut
,for x (x)vy,0)(x,u

0 t, for x t)y,g(x,t)y,(x,u

1

0






































































2
j1,-iji,j1,i

ji,
2

2

p
2

2

2
j1,-iji,j1,i

ji,
2

2

p
2

2

k
uu2u

y
u

y
u

h
uu2u

x
u

x
u

14

2.2 METHOD TO SOLVE PARTIAL DIFFERENTIAL EQUATIONS

The most common method to solve the Partial Differential Equations is the Finite Difference
Method.

2.2.1: Finite Difference Method: According to heat flow equation we know that 2

2

x
u

y
u








.

Now let us assume that our region of interest is     0bxa and h and k are the mesh
sizes in the x and t directions. A simple difference replacement of derivatives at the node (m,n)
in given equation gives the difference equation as

 (vi)

 Here we put y=t.

 If we neglect the truncation error then we can write equation (vi) as

  n
1-m

n
m

1n
m2

n
m

1n
m uu2u

h
kuu 





  (vii)

Here n
mu represents the value of u(x,t) at

 X=a+mh, t=nk

 In schematic form eq’n (xv) can be written as

 u=0

Where r= 2h
k .The difference scheme is used to compute n

mu line by line, starting from given

data in the t-direction. Hence we can say that the order of accuracy of difference scheme or the
truncation error of order (2hk ).

If we subtract (xiv) from (xv) then we can get

  
 22n

1-m
n

1m
n
m

1n
m khk0r21 (viii)

 Where)t,u(xu nm
n
m

n
m  and the effect of the round-off error is neglected.

-1

1-2r r r

           
)h(0

h
txutxu2txu

k0
k

txutxu 2
2

n1,-mnm,n1,mnm,1nm, 



 

15

2.3 DIFFERENCE SCHEME FOR EQUATIONS IN ONE SPACE DIMENSION
WITH CONSTANT COEFFICIENTS OR SOLUTION OF PARABOLIC PARTIAL
DIFFERENTIAL EQUATIONS:

Consider an example heat flow equation

 2

2

x
u

t
u








Here t and x are the initial and time space coordinates respectively, in the region

     0tbxaR

With initial and boundary conditions.

The region R is replaced by a set of points kR which r the vertices of the grid of points (m,n)
where x=a+mh,t=nk with Mh=b-a,M is an integer. The quantities k and h are the mesh sizes in
the time and space directions respectively. The difference approximation at the nodal point
(m,n) can be written as

   n
m

2
x

1n
mt uruG   (xvii)

where)O(h)t,u(xh
x
u

h
kr 2

nm
2
x

2-
n

m
2

2

2 










  (xviii)

here approximate value of u at (nm t,x) is denoted by n
mu .

In the implicit difference scheme it involves grid values at more then one grid points at time
grid t=(n+1)k. Thus implicit difference scheme becomes

   1n
m

2
x

-12
x

1n
mt u)r(1uF    (ix)

Here  1nm
2
x

1-2
x

2-
n

m
2

2

t,xu)(1h
x
u










  +

12
1h

arbitraryh

4

2









 Example: Use the Schmidt scheme to determine the numerical solution of the initial
boundary value problem

The Schmidt difference scheme is given by

  n
1-m

n
m

n
1m

n
m

1n
m uu2uruu  


Where
n
mu

is the approximate value of solution u(x,t) at nktmh,xx n0m  and 2h
kr  . If

we choose 4
1h  and 6

1r  .The Difference scheme maybe written as

  n
1-m

n
m

n
1m

n
m

1n
m uu4u

6
1uu  
















0t0,t)u(1,t)u(0,
1xx,0sinu(x,0)

uu xxt

16

Where m=1(1)3 and 0.n  The nodal points are shown below. By using the boundary
conditions, we have

 210n0u0u n
4

n
0

 u(1,t)=0

 K

Fig(i): Representation of nodal points

Now we can obtain as,

For n=0,m=1,2,3;

 

6380711u
2

sin
4

sin40
6
1uu4u

6
1u

1
1

0
2

0
1

0
0

1
1









 






 

9023689u
4

3sin
2

sin4
4

sin
6
1uu4u

6
1u

1
2

0
3

0
2

0
1

1
2









 









 

6380711u
2

3sin4
2

sin
6
1uu4u

6
1u

1
3

0
4

0
3

0
2

1
3









 






 For n=1,m=1,2,3;

 

5757755u

902368963807114
6
1uu4u

6
1u

2
1

1
2

1
1

1
0

2
1





 

8142696u

6380711902368946380711
6
1uu4u

6
1u

2
2

1
3

1
2

1
1

2
2





 

5757755u

0638071149023689
6
1uu4u

6
1u

2
3

1
4

1
3

1
2

2
3





u(1,t)=0

x-axis

y-axis

x-axis 0

17

 The solution u(x,t) is symmetric about the line x= 
2
1

 NOTE: Similarly we have Difference Methods for Hyperbolic partial differential
Equation and Elliptic Partial Differential Equation both.

 Example of Difference Method for Elliptic Partial Differential Equation:

 Solution Technique:
 Elliptic equations in engineering are typically used to characterize steady-state, boundary

value problems.
 For numerical solution of elliptic PDEs, the PDE is transformed into an algebraic

difference equation.
 Because of its simplicity and general relevance to most areas of engineering, we will use

a heated plate as an example for solving elliptic PDEs.

 Here equation as:

x-axis

y-axis
m+1,n+1

m+1,0 0,0

0,n+1

i,j+1

i,j

i+1,j

i-1,j i-1,j-1

 

 



















































Equation Difference Laplace; 04

y ;
y

2
x
T

x ;
x

2

x
T

Equation Laplace, 0
y
T

x
T

1-ji,1ji,j1,iji,j1,i

2
2

1-ji,ji,1ji,
2

2

2
2

j1,iji,j1,i
2

2

2

2

2

2

18

 Example :

 Solution :
 In addition, boundary conditions along the edges must be specified to obtain a unique

solution.
 The simplest case is where the temperature at the boundary is set at a fixed value, Dirichlet

boundary condition.

 Now at point (1,1) the given Laplace Equation becomes:

 Hence the final equations becomes:














0
75

04

10

10

1110120121



































1504: (3,3)at
1004: (2,3)at

1754: (1,3)at
504: (3,2)at

04: (2,2)at
504:(3,1)at

754: (1,2)at
04:)1,2(at

754:)1,1(at

332331

33231321

231312

33322231

2332221221

313221

13122211

22111321

111221

19

We can write above equation in Matrix form as:

2.4 TWO-DIMENSIONAL PDE SOLVER

A Hyperbolic Partial Differential Equations

Hyperbolic differential equations, includes the “wave equation” which is fundamental to the
study of vibrating systems. It is instructive to outline the derivation of the simple wave equation
in one dimension problem.

The wave equation is given by the differential equation

 (x)

Subject to the boundary conditions

 where  is constant.

To set up the finite difference method, assume u=f(x) is the function of the independent
variables x and t. Subdivide the x-plane into set of equal rectangles if sides . and kthx  
We introduce a time grid for n= 0,1,2,3,4.. and t is the time step size. We set

 as the nth iterate of the pressure of the global point x. The time derivative

in (4) are discretised by cantered second order finite difference, which gives the semi-discrete
scheme:

 (xi)

    0 tL,x0 , 0tx,
x
utx,

t
u

2

2
2

2

2







 

L,x0 , f(x) u(x,0) conditions initial and 0 t, 0t)u(L, t)u(0, 

  Lx0 , g(x) x,0
t
u





tnt n 

)tp(x,)x(p n
n 

n22
1-n1n

2
2

1-nn1n

Pc
t2
PP

t
PP2P








 

























































































































150
100
175
50
0
50
75
0
75

T
T
T
T
T
T
T
T
T

401100000
100401100

000100410
141010000
010141010
014001000
000010141
000014101
000001014

33

32

31

23

22

21

13

12

11

20

B Two Dimensional Parabolic Equations

A forward finite difference is used to approximate the time derivative. Consider the two-
dimensional of parabolic equations

 (xii)

Applying the crank Nicolson scheme to the two-dimensional heat equation results in

 (xiii)

This leads to the following finite difference equation

where ji, and ijL are the generation and death rates, respectively. Under suitable regularity
assumption one can expand N,P,Q, and R, use and write the word
equation above mathematically as:

 (xiv)

With and where the indices (i,j) have been substituted with the

dependence of u and of all coefficients on the space variable. We can also write as

 (xv)

Where, in two dimensions, W = (P, R). The general advection-diffusion model (xv) requires
the specification of the drift, diffusion, proliferation, and death coefficient in the terms W, Q,
 and L in particular of their dependence of the state variables. Based on central finite
difference method, the discretization is shown as follow:

Let and applying the discretization to the right side, the equation

constant is c ,
y
u

x
uc

t
u

2

2

2

2














































 

2

(n)2

2

(n)2

2

1)(n2

2

1)(n2(n)1)(n

y
u

x
u

y
u

x
u

2
c

t
uu

ji,ji,ji, V)xu(t, (t) N 

Lu,
y
uQ

yx
uQ

xx
(Pu)-

t
u






































    ji,ji,ji V / t y,xt, 

    ,Lu uQ. Wu.
t
u





   
t

tNttN

t
u ijij









 
 

 

  (t)]NL-(t)NQQQQ-

)t(NQ)t(NQ

tNQ)t(NQ (t) NR-

(t)NP- (t) NRtNt[P (t) N

 tt N

ijijji,ij
1jj,

i
1-jj,

i
j

1ii,
j

1-ii,

1ji,
j1,j

i1-ji,
j1,-j

i

j1,i
j

i1,ij1,-i
j

i1,-iij
1jj,

i

ij
j

1ii,1-ji,
j1,-j

ij1,-i
j

i1,-iij

ij






















21

(xiv) becomes

C Two Dimensional Elliptic Equation

The two dimensional elliptic equation can be further implemented to solve

the large scale mathematical problem. Generally, finite-difference approximation to two
dimensional elliptic equation is given by

 (xvi)

 (xvii)

by multiplying each side with h2 , we have

 (xviii)

If we assume 2

2

k
h

 , then we will have the finite-difference approximation equation is as

follows

 (xix)

The discretization of the mathematical model based on the finite-difference approximation to
equation (28) can be written as,

0
y

r
x

r
2

2

2

2









   
ky ,h x where

0
y

rr2r
x

rr2r
2

1ji,ji,1-ji,
2

j1,iji,j1,-i











 

   
0

k
rr2r

h
rr2r

2
1ji,ji,1-ji,

2
j1,iji,j1,-i 




 

  0 rr2r
k
hrr2r 1ji,ji,1-ji,2

2

j1,iji,j1,-i  

 
10For

0 r r r 22rr 1ji,j1,iji,j1,-i1-ji,



 





   

         
         
         
 

         
        
      
 tNL

tNQt)NQQ(tNQ

tNQtNQQtNQ

tNRtNRtNPtNP

tNL

tNQtNQtNQtNQ

tNQtNQtNQtNQ

tNRtNRtNPtNP
t

tNttN

ijijji,

1ji,
j1,j

iij
1jj,

i
1-jj,

i1ji,
j1,j

i

j1,i
j

i1,iij
j

1ii,
j

1-ii,j1,-i
j

i1,-i

ij
1jj,

i1-ji,
j1,-j

iij
j

1ii,j1,-i
j

i1,-i

ijijji,

ij
1jj,

i1ji,
j1,j

iji,
1-jj,

i1ji,
j1,j

i

ij
j

1ii,j1,i
j

i1,iij
j

1-ii,j1,i
j

i1,i

ij
1jj,

i1-ji,
j1,-j

iij
j

1ji,j1,-i
j

i1,-i

ijij












































22

 (xx)

After applying the finite-difference approximation to equation (xx) is given by

 (xxi)

 From equation (xxi) , it becomes

 (xxii)

 where If we bring the terms to the right-hand side, it become

 . Thus,

 (xxiii)

 By multiplying each side by h2 equation (35) becomes

 (xxiv)

 The exact solution to the discretised problem obeys the equation

 (xxv)

 (xxvi)

    0rerk
y

r
x

r 2-
2

2

2

2


















   
    0rerk

y
rr2r

x
rr2r

ji,ji,
2-

2
1ji,ji,1ji,

2
j1,iji,j1,i 

















 

   
    0rerk

k
rr2r

h
rr2r

ji,ji,
2-

2
1ji,ji,1ji,

2
j1,iji,j1,i 













 

.k yh,x   ji,re

  0re ji, 

   
  0rk

k

rr2r

h

rr2r
ji,

2-
2

1ji,ji,1ji,
2

j1,iji,j1,i 



 

  0rkhrr2r
k
hrr2r ji,

2-2
1-ji,ji,1ji,2

2

j1,-iji,j1,i 







 

0r
k
hr

k
hrkh

k
h22rr 1-ji,2

2

1ji,2

2

ji,
2-2

2

2

j1,-ij1,i 


































 

1-ji,2

2

1ji,2

2

j1,-ij1,iji,
2-2

2

2

r
k
hr

k
hrrrkh

k
h22 



































 

23

Thus,

 (xxvii)

This equation cannot be solved explicit for fixed ji,r because there are five unknowns involved.

Thus, if the nth iterate is denoted n
ji,r .

2.5 PARALLEL PERFORMANCE EVALUATION

The performance of the parallel algorithm will be analyzed in terms of the time execution,
speedup, efficiency, effectiveness and temporal performance. The measurements are defined
as follows:

 Speedup: (i)

 Effectiveness: (ii)

 Temporal performance: (iii)

Here 1t is execution time for a single processor and pt is execution time for a p parallel
processor

Figure 1(a) shows that the execution time is decreasing with the increasing of the number of
processors. The reduction of execution time as number of processors increase can also be seen
in solving parabolic and hyperbolic problem. Figure 1(b) shows that the speedup increases
when the number of processors is added. It is because the distributed memory hierarchy reduces
the time consuming access to a cluster of workstations. The efficiency of a parallel program is
a measure of processor utilization. Figure 1(c) shows that the efficiency decreases with the
increasing of number of processors. As known, efficiency is the ratio of speedup with number
of processors. So, efficiency is a performance closely related to speedup. The effectiveness is
escalating with the increasing of the number of processors. The formula of the effectiveness is
depending on the speedup, when the speedup increases, the effectiveness will also increase.
Figure 1(e) shows that the temporal performance graph is proportional to the number of
processors increase. This is because the execution time is decreasing versus the number of
processors. It can be conclude that, from the aspect of execution time, speedup, efficiency,










































2-2
2

2

1ji,2

2

1ji,2

2

j1,-ij1,i

ji,

kh
k
h22

r
k
hr

k
hrr

r

 
p

1

t
tPS 

 
p

p

p t
E

Pt
S(P)PE 

 
p

1-
p t

1tPL 

24

effectiveness and temporal performance shows the performance of parallel algorithm is
improved by the increasing of the number of processors. Communication and execution times
is always affecting the performance of parallel computing. The Red Black Gauss Seidel which
is effective is found to be well suited for parallel implementation on PVM where data
decomposition is run synchronously and concurrently at every time level. The PVM system
has been used for applications such as molecular dynamics simulations, superconductivity
studies, distributed fractal computations, matrix algorithms, and in the classroom as the basis
for teaching concurrent computing.

 (a)

 (b)

53

34
26

19 18
22

11 9 7 5

23

12 11 8 6
0

10

20

30

40

50

60

4 8 1 2 1 6 2 0

EX
EC

UT
IO

N
TI

M
E

NO. OF PROCESSOR(P)

Elliptic Parabolic Hyperbolic

1.9 2.4 3.2
4.4 4.54.2

7.8
9

11.8
13.2

3.8
2.9

6.8
8.7

10

0
2
4
6
8

10
12
14

4 8 12 16 20

Sp
ee

d
up

No. of processor(p)

Elliptic Parabolic Hyperbolic

25

 (c)

 (d)

0.42
0.34 0.3 0.34 0.3

1 0.98
0.86 0.8 0.76

0.9
0.82

0.64 0.6 0.56

0

0.2

0.4

0.6

0.8

1

1.2

4 8 12 16 20

EF
FI

CI
EN

CY

NO. OF PROCESSOR(P)

Elliptic Parabolic Hyperbolic

0.008 0.01 0.014 0.016 0.014

0.044

0.09 0.092 0.096 0.094

0.038

0.064
0.05 0.056 0.058

0

0.02

0.04

0.06

0.08

0.1

0.12

4 8 12 16 20

EF
FE

CT
IV

NE
SS

NO. OF PROCESSOR(P)

Elliptic Parabolic Hyperbolic

26

. (e)

0.008 0.01 0.014 0.016 0.014

0.044

0.09 0.092 0.096 0.094

0.038

0.064
0.05 0.056 0.058

0

0.02

0.04

0.06

0.08

0.1

0.12

4 8 1 2 1 6 2 0

TE
M

PO
RA

L P
ER

FO
RM

AN
CE

NO. OF PROCESSOR(P)

Elliptic Parabolic Hyperbolic

 Figure 2.1 Parallel Performance Evaluation (a) Execution Time (b) Speedup (c) Efficiency

 (d) Effectiveness (e) Temporal Performance

27

Proposed Algorithm to solve Block Tridiagonal Systems

Block Tridiagonal systems of linear equations arise in a wide variety of scientific and
engineering applications. Recursive doubling algorithm is a well-known prefix computation
based numerical algorithm that requires O(M3(N/P + log P)) work to compute the solution of a
block Tridiagonal system with N block rows and block size M on P processors. In real-world
applications, solutions of Tridiagonal systems are most often sought with multiple, often
hundreds and thousands, of different right hand sides but with the same Tridiagonal matrix.
Here, we show that a proposed recursive doubling algorithm is sub-optimal when computing
solutions of block Tridiagonal systems with multiple right hand sides and present a novel
algorithm, called the accelerated recursive doubling algorithm, that delivers O(R) improvement
when solving block Tridiagonal systems with R distinct right hand sides.

AZ = b is the form of block Tridiagonal system of equations which is represented by a matrix-
vector equation of the form in which the block Tridiagonal matrix A has N × N array of blocks
where each block is an M × M array of numbers and the elements other than its three central
block diagonals are each identically equal to zero. Vectors x and y are each of length NM. We
will often refer to a block Tridiagonal system with N rows of M×M blocks simply as an (M,N)
system. When M = 1, then the Tridiagonal system is called as a point Tridiagonal system.
Here, we present a short review of this parallel primitive followed by a brief discussion of the
theoretical complexity and empirical performance effects of directly applying the RDA,
originally designed for point systems [27], to block Tridiagonal systems.

3.1 PARALLEL SCAN

Given N data items Z1,Z2, · · · ,ZN and a binary associative operator ʘ that operates on any two
of these data items to produce another data item of the same type, a parallel scan (prefix)
computes the N partial scans N21 s,....,s,s defined by
 si = Z1 ʘ Z2 ʘ Z3….. ʘ Zi (i)
on P ≤ N processors. Denoting the complexity of the binary operation ʘ by κ, the complexity

Of a parallel scan operation can be shown to be in

which a permutation network is used as the model of parallel computation. In a permutation
network, the cost of each round of communication is modelled as   and each processor
is allowed to send and receive at most one message during a communication step. Here, τ is the
start-up cost for a communication step, μ is the transfer bandwidth of the communication
network and  is the size of the largest message. Permutation networks closely model the
behaviour of most multistage interconnection networks. The total scan Ns can be
simultaneously computed on each processor along with the partial scans without incurring any
additional communication overhead. Only the computation cost per processor is doubled. Thus,

  





  P log P log

P
N



Chapter 3

28

the total cost of a parallel scan operation that computes both the total scan Ns as well as the

partial scans of N data items on P processors is also   





  P log P log

P
N

 .

3.2 RECURSIVE DOUBLING ALGORITHM (RDA) FOR (M, N) SYSTEM

3.2.1 Numerical Formulation

For a (M , N) block Tridiagonal system, let Li, Di and Ui denote the lower, main and upper
diagonal blocks, respectively, in block row i, With IUL N1  and 0zz 1N0   at the
boundaries, block row i (1 ≤ i ≤ N) can be written as:

 i
-1
i1-ii

-1
iii

-1
i1i bUzLU-zDU- z  (ii)

Which can be rewritten as
 Zi+1=BiZi (iii)

where

 Zi+1 =















 

1
i

1i

z
z

 , Bi =

















100
00I

BBB 13
i

12
i

11
i

and













i
1-

i
13
i

i
1-

i
12
i

i
-1
i

11
i

bU- B
LU- B
DU- B

 (iv)

The dimension of iB is (2M + 1) × (2M + 1). Recursive substitution of Zi yields:

Zi+1 = BiZi = · · · = BiBi−1Bi−2 · · ·B1Z1 = siZ1 (v)

where

 si =
















100
sss
sss

23
i

21
i

21
i

13
i

12
i

11
i

= BiBi−1Bi−2 · · ·B1 (vi)

Note that is is a partial prefix (matrix-matrix product) scan that can be computed in parallel

using a parallel prefix scan using Eqn (i). Also, the dimensions of blocks 21
i

12
i

11
i s,s,s and 22

is are

M×M while those of 13
is and 23

is are M×1. To compute Zi locally using the partial scans is , Z1

29

has to be computed first and made locally available on each processor (see Eqn (v)). Z1 is
computed on each processor using the boundary conditions 0z 1N0  z as follows:

 1NZ  = is

1Z (vii)





















































1100
sss
sss

1
0

1
23
N

22
N

21
N

13
N

12
N

11
N1

z
z

z
z

N

N

13
N

1-11
N1

13
0

12
1

11
1

s][s- 

 

z

szszsz NNNN (vii)

This yields  1 0 Z 11 z where 0 is a M×1 zero-vector. It follows from Eqn (vii) that the total

prefix product Ns is needed on each processor to compute 1Z locally. As put forth in Remark
1, a parallel prefix matrix-matrix product computes both the partial as well as the total products
on each processor, thus making Ns available on each processor. Algorithm 1 is an outline of
the RDA.

Algorithm 3.1: Proposed RDA for Block Tridiagonal Systems

(i) Assign







P
N block rows to each processor.

(ii) For each Local block row i , calculate -1
iU , 11

iB , 12
iB and 13

iB using Eqn (iv).
(iii) Each processor computes the Local prefix matrix products N

P
s...,,s,s 21 in sequence

manner.
(iv) On each processor k, initialize the partial parallel prefix product (PPP) k

P
Nst




 and

the Total product (TP) k

P
NsT




 .

(v) Do a parallel scan on the matrices kt on processors 1 ≤ k ≤ P using matrix-matrix
product as the binary, associative operator.
(vi) For each Local block row i , compute is using the partial prefix product t computed
in the previous step and locally available matrices.

(vii) By scanning, assign TsN  (available) on each processor to calculate 1Z using Eqn
(vii).
(viii) For each Local block row i, calculate iZ using Eqn (v).

30

3.2.2 Algorithmic Complexity

The algorithm executes in four stages, namely, (a) initialization (b) local serial prefix
computation (c) non-local parallel prefix computation, and (d) finalization, as briefly described
next.

(a) Initialization: In steps (i) and (ii), the block Tridiagonal system is partitioned amongst
P processors and the iB matrices are computed for the local block row indices. Based
on Eqn (iii), this involves matrix inversion of one block-sized, matrix-matrix
multiplications of two block sized and one block size matrix-vector multiplication for
each block row index incurring a total computation cost of less than 








P
NM3O .

(b) Local serial prefix computation: Computing the local prefix products on






P
N block

rows incurs a total computation cost of less than 







P
NM3 in step (iii).

(c) Parallel Prefix Computation: Each processor keeps track of two matrices, t and T.
The matrix t stores the partial matrix prefix product while the matrix T stores the total
matrix product. Both are initialized to the total prefix product as computed sequentially
on each processor computed in the previous step. This is shown in Fig. 3.1 using an
example with 12 block rows and 4 processors. The parallel prefix operation in step (v)
has P log stages. In each stage i, only the matrix T is exchanged between every pair of
processors whose ranks vary in the bit position i . The matrix t is updated as t ← t ʘ T
only if T is received from a lower ranked processor. locT is always updated as locT ←

locT ʘ readT , where locT and readT are the local and received copies of T, respectively.
Note that though matrix-matrix product is binary and associative, it is not commutative.
As such, care should be exercised to preserve the order of matrix-matrix multiplication
of Eqn (iv). In each step, at most two block-sized matrix-matrix products are computed
incurring a cost of  3M . In addition, one block-sized matrix T is communicated
between unique sender-receiver pairs in each of the P log stages for a total

communication cost of   P log M2  .Therefore, the complexity of this nonlocal

step is   P log MP log M 23   .

(d) Finalization: The local portion of the final solution is recovered using steps (vi)
through step (viii) as shown in Fig. 3.1. It involves an inversion of a block-sized matrix
and a block sized matrix-matrix multiplication for each local block row for a total cost
of 








P
NM3 .

 Total cost: Summing up the costs of the four stages, the total runtime of Proposed RDA to
compute the solutions of an (M, N) system with R different right hand sides on P processors
is:

     





  P log MP logM

P
NMR.RT 233  (viii)

 Which can be re-written as:
     PN,M,. R .cRT 1 f (ix)

31

 Where 1c is some positive constant and

   P logM P logM
P
NMPN,M, 233 f (x)

 Performance: Fig. 3.2 highlights the performance bottleneck of RDA-based block
Tridiagonal solvers. The computing platform is described in Section V. The top curve of Fig.
3.2(a), which plots the total runtime as the number of processors is doubled, illustrates its poor
strong-scaling characteristics. To understand this poor scalability, it is convenient to split the
computations in the RDA algorithm into two types local and nonlocal computations (see Fig.
3.1). In the local computation phase, no inter-processor communications are involved. The
non-local computation phase, on the other hand, is characterized by log P stages of
communications akin to a parallel reduction operation. The ratio of time spent in the non-local
phase to that spent in the local phase increases rapidly as the number of processors is increased
for a fixed problem size, as shown in the lower curve of Fig. 3.2(a). This is because the non-
local phase scales as P logM3 and adding more processors yields no improvements in the
parallel runtime of the non-local computation phase, despite near linear speed-up in the local
phases of the RDA (see Fig. 3.2(b)). This imbalance between the time spent in the local and
non-local phases get further magnified as P → N and the number of right-hand sides increase
(see Fig. 3.3). One of the primary motivations of the new algorithm presented next is to reduce
this imbalance.

3.3 PROPOSED ACCELERATING RECURSIVE DOUBLING ALGORITHM

The accelerated recursive doubling algorithm presented here is based on a mathematical
formulation that separates the overall computations into two phases, one that is independent
of the right hand side b, which we call the independent phase, and another that depends on it,
which we call the dependent phase. This style of execution is similar to the forward-backward
two-phase execution pattern of CRA.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

123
1
3

12
1
2

1
1
1

BBB s
BB s

B s







P1 P2 P3 P4

456
2
3

45
2
2

4
2
1

BBB s
BB s

B s







456
3
3

45
3
2

4
3
1

BBB s
BB s

B s







456
4
3

45
4
2

4
4
1

BBB s
BB s

B s







Local

32

1
3s t 

1
3s T 

2
3s t 

2
3s T 

3
3s t 

1
3s t 

1
3s T  1

3s T 

1
3s t 

1
3

2
3ss T  1

3
2
3ss T  1

3
2
3ss T  1

3
2
3ss T 

1
3

2
3

3
3

4
3 ssss T  1

3
2
3

3
3

4
3 ssss T  1

3
2
3

3
3

4
3 ssss T  1

3
2
3

3
3

4
3 ssss T 

1
3s t 

1
3s t 

1
3s t 

1
3s t 

1
3s t 

1
3s t 

1
3s t 

T T T T

T T T T

N
on-Local

321

112

13

B,B,B
B...BT

B...B t




1S 2S 3S

11

122

3

B S
BBS

 tS






4S 5S 6S
7S 8S 9S

10S 11S 12S

321

112

13

B,B,B
B...BT

B...B t




11

122

3

B S
BBS

 tS






321

112

13

B,B,B
B...BT

B...B t




11

122

3

B S
BBS

 tS






321

112

13

B,B,B
B...BT

B...B t




11

122

3

B S
BBS

 tS






Local

Figure 3.1 Parallel Proposed RDA on a Tridiagonal system with 12 block rows on 4 processors.

33

Described in Section I. The algorithmic complexity of the right hand side independent phase
of computations will be shown to be larger than the second phase.
The proposed accelerated recursive doubling algorithm is presented next in three sub-parts.
The first sub-part describes the numerical formulation of separating the original block
Tridiagonal system of equations into the independent and dependent components. The second
and third sub-parts describe the formulations of the independent and dependent phases,
respectively. This new algorithm is ideal for computing solutions of block Tridiagonal systems
with multiple right hand sides, especially for classes of problems for which it is
computationally more efficient to use a recursive doubling algorithm than a cyclic reduction
algorithm [15].

25.1

21.8 21.3

2.8

7
9.9

0

5

10

15

20

25

30

3 2 6 4 1 2 8

NO. OF PROCESSOR(P)

RDA: (M=256,N=128,R=32)

Total time(in sec)

Non-local to local runtime
ratio

Figure 3.2 (a): Strong scaling behaviour of RDA is plotted in the orange (top) curve. The
corresponding ratios of non-local to local runtimes are plotted in the blue (bottom) curve.

0.0

5.0

10.0

15.0

20.0

25.0

32 64 128

6.5
2.7 2.1

18.5 19.0 20.4

Cl
oc

k
Ti

m
e(

in
 se

c)

Number of Processor(P)

RDA:M=256,N=128,R=32

Figure 3.2 (b): Time spent in the local and non-local phases of the RDA when the
number of right hand sides is increased.

34

3.3.1 Numerical Reformulation

Based on Eqn (iv), it is apparent that the right hand side b enters the computation through the

13
iB component of each matrix iB Guided by this observation, we decompose each iB matrix

as iB = iC + iF
Where

 Ci =
















100
00I
0BB 12

i
11
i

 and Fi =
















000
000

B00 13
i

 (xi)

Note that the non-zero components 11

iB , 12
iB and I of iB are matrices of dimensions M × M

while the non-zero component 13
iB of iF is only an M×1 vector. The following two results,

presented without proofs, can be easily shown to hold true:

 (xii)

3.3.2 Right Hand Side Independence Phase

In order to divide the overall computations into a set of right hand side independent and a set
of right hand side dependent computations, let a modified partial product be defined as:

11-ii C...CCiQ (xii)











N ji, 1 , 0 FF

Nji,1 , F CF

ji

iji

0

5

10

15

20

25

0.1 0.2 0.4 0.9
2.4

4.9
10.1

20.4

C
lo

ck
 T

im
e(

in
 se

c)

No. of right hand sides(R)

RDA: M=256,N=128,P=128

Figure 3.3: Local and Non-local runtimes of RDA with varying number of right hand sides

35

Unlike the partial product is defined in Eqn (vi), the modified partial product iQ does not
depend on the right hand side. As such, when computing the solutions for R different right
hand sides, the partial products iQ can be computed just once, stored and reused for each right
hand side jb for all 1 ≤ j ≤ R.
 Complexity: The algorithm to compute the modified partial products is identical to steps (i)
through (vi) of Algorithm 3.1.Therefore, the complexity of computing the modified partial
products is

3.3.3. Dependent Phase on Right Hand Side

Based on Eqn (iv) and Eqn (xi), it is clear that when the right hand side jb , then ii CB 
implying that ii Qs  for all 1 ≤ i ≤ N and the solution can be computed by executing the

finalization steps (vii-viii) in Algorithm 3.1. When 0b j  contributions to the original partial

sums is that are missing from the modified partial sums iQ , due to their definitions (see Eqn

(xi) and Eqn (xiv)), need to be consistently aggregated with iQ to recover the original partial

sums j
is , superscripted here on with the index j to indicate that it is evaluated with respect to

the right hand side jb . Let j
iE denote this contribution on block row i from right hand side jb

.The proposed accelerated recursive doubling algorithm is guided by these observations and
outlined in Algorithm 3.2 where  jii E,QA denotes the aggregation function. If the complexity

of computing the matrices j
iE can be proven to be smaller than the complexity of computing

the modified partial products iQ the overall complexity of Algorithm 3.2.

Can be shown to be smaller than that of Algorithm 3.1. To prove the smaller complexity, it is
necessary to establish the following:
 Definitions of j

iE and the function  jii E,QA .

 Complexity of computing j
iE and  jii E,QA .

  





  P log MP logM

P
NM. 233 

Algorithm 3.2 Proposed Accelerated RDA

(i) Calculate and store iQ using steps (i)-(vi) of Algorithm 3.1.
(ii) for all right hand side jb do

(iii) Calculate j
iE for each local block row i .

(iv)  jii
j
i E,QAs  For each local block row i.

(v) Calculate solution jx using Eqn (v).
(vi) end for

36

 Correctness of the aggregation function  jii E,QA .

Note (i): In the remainder of this section, the superscript j will be suppressed for ease of
presentation with the understanding that all definitions and analyses hold true for each right
hand side jb .

 Definition: Let iE be defined as follows:









 2,FQ

1,F
 E

i1i

1
i iZ

i

i

 (xiii)

 Where

 and the aggregation function be defined as:

 (xiv)

 Complexity: From the definitions above, it is clear that prior to computing the matrices iE ,
matrices iV and then iZ need to be computed in that order. The steps to compute iE are the
following:

In analysing the complexity of computing iE , it is assumed that the modified partial products

iQ and their inverses -1
iQ have already been computed and stored during the preceding right

hand side independent phase.

Step i: By calculating iV involves a block-sized matrix-matrix multiplication (see Eqn (xiii))
that requires complexity  3MO work, it can be shown that iV can be computed using  2MO
work as follows. Consider the following matrix-matrix product required to compute iV .

 (xv)

Note that 13

i
11
i Bq and 13

i
21
i Bq are both matrix-vector multiplications, each costing  2MO and

13
i

11
i Bq is a vector-vector multiplication that costs O(M) computations. Thus, due to the block

i
1-

ii

1-i3211

FQ V and
V.....VVV



iZ

 iiii E Q)E,A(Q 






































































13
i

31
i

13
i

21
i

13
i

11
i

13
i

31
i

13
i

21
i

13
i

11
i

13
i

33
i

32
i

31
i

23
i

22
i

21
i

13
i

12
i

11
i

i
1-

ii

Bq
Bq
Bq

Bq00
Bq00
Bq00

000
000

B00

qqq
qqq
qqq

 FQ V

(i): For each local block row i, calculate iV using Eqn (xiii)

(ii): Do a parallel scan to calculate iZ using Eqn (xiii)

(iii): For each local block row i, calculate iE using Eqn (xiii).

37

structure of iD defined through Eqn (xi), the computation of iV requires  2MO computation,

even if 1
iQ is dense, implying that the real cost of computing iV for all local block rows is

only 







P
NM 2O and not 








P
NM3O .

Step ii: It is clear from step (i) that each iV can be implemented as a vector of length 2M + 1,
as shown in Eqn (xv). Note that is a prefix sum as shown in Eqn (xiii).
Since iZ is a prefix sum over the vector forms of iV (see Eqn (xv)), they can be computed
using steps (i)-(vi) of the parallel scan algorithm as described in Algorithm 3.1 with appropriate
modifications to reflect that the binary, associate operator is a vector addition of length 2M +
1 and the message size that is communicated in the non-local phase is of size M. The complexity
of this step is, therefore,   






  P log MP logM

P
NM  .

Step iii: In this step, each matrix-matrix multiplication jiZQ is of the form:

 (xvi)

Since 13

iZ and 23
iZ are vectors with dimensions M ×1 and 33

iZ is a number, each non-zero

sub-matrix of the product jiZQ is a sum of three vectors of length M of which the first two are
computed using a matrix-vector product of an M × M matrix with a vector of length M. This is
shown in Eqn (xvi). Therefore, computation of the product jiZQ in Eqn (xvi) requires









P
NM 2 work when aggregated over all local block-rows. Since the aggregation function

 jii E,QA is a simple sum of two  2MO sixed matrices, step (iv) of Algorithm 3.2 requires
 2MO work. A matrix-vector multiplication that requires  2MO work computes the solution

in step (v). Therefore, the cost of aggregating the contribution from R right hand sides is

   





  P log MP logM

P
NMR. 2 

3.3.4 Correctness: The correctness is proven using following lemma:
 Lemma 1: For all N1  i

 iii E Q S  (xvii)

























































33
j

33
i

23
j

32
i

13
j

31
i

33
j

23
i

23
j

22
i

13
j

21
i

33
j

13
i

23
j

12
i

13
j

11
i

33
j

23
j

13
j

33
i

32
i

31
i

23
i

22
i

21
i

13
i

12
i

11
i

ji

ZqZqZq00
ZqZqZq00
ZqZqZq00

Z00
Z00
Z00

qqq
qqq
qqq

 Q Z

38

Proof: The base case with i = 1 is trivially true from the definitions in Eqn (iv), Eqn (xii) and
Eqn (xiii). Let the inductive hypothesis be true for i = k − 1. Then:

 (xviii)

3.3.5 Total Cost

Step (i) of Algorithm 3.2 executes steps (i)-(vi) of Algorithm 3.1

  





  P log MP logM

P
NM. 233  using work. Summing up the individual costs of

steps (iii)-(v) of Algorithm 3.2, it follows that the work required to add the contribution from
each right hand side to the modified partial products iQ is

  





  P log MP logM

P
NM. 233  work. Therefore, the complexity of proposed ARDA

to solve an (M,N) block Tridiagonal system with R right hand sides on P processors is:

 (xix)

with positive constants 2c and 3c and f defined by Eqn (x).

)FQ(FFC)F (Q Q

}hypothesis inductive the{using
EFF)FQ(CQ

EFQF EC QC
)E)(QF(C SB S

1-k21-kk1-kkk2kk

1-kkk1-k21-kkk

1-kk1-kk1-kk1-kk

1-k1-kkk1-kkk












kk

k

ZZ

Z

)PN,M,(
M
Rc)PN,M,(c

P) M)log (P log M
P
NR.O(M

P))logM (P logM
P
NO(M)R(T

32

2

233'

ff 









lemma. theproveshich w
(xii)}Eqn {using E Q

(xii)}equation {using]FF.... FFF[F E Q
]FC....FC...CFC....C[F E Q

]FQ...FQFQ[QF E Q

QF E Q
ZQF FC FCE Q

(xiii)}Eqn {using ZQF FCFQQE Q

(xii)}Eqn {using ZQFFCVQ-)FZ(Q Q

kk

2-kk2k1kkk

2-k
1-

1-k231-k121-kkkk

2-k
1-

2-k2
1-
21

1
11-kkkk

21-kkkk

2-k1-kk1-kk1-kkkk

2-k1-kk1-kk1-k
1-

1-kkkk

2-k1-kk1-kk1-kkk1-kkk

















kZ

3.4 RELATIVE SPEEDUP

We define a performance metric, called relative speedup S(R), to compare the relative
performances of the original and the accelerated algorithms. Using Eqn (ix) and Eqn (xix), the
relative speedup of the Proposed ARDA with respect to the RDA for a (M, N) block Tridiagonal

system with R right hand sides is defined as
(R)T

T(R) S(R) ' . It follows that:

M/cR/c
1

RcMc
RMc

(R)T
T(R) S(R) '

2
'
132

1
' 




 (xx)

where 12

'
1 c / cc  and 13

'
2 c / cc  are positive constants. Therefore, as

3.5 RESULTS

To validate these results, both algorithms were implemented and executed on a Cray XT5
machine with 2 twelve-core AMD MagnyCours 2.1 GHz processors per node and 32 GB of
memory in each compute node. The nodes are connected via a high-bandwidth Cray Gemini
interconnect. We study the performance improvements due to the new algorithm based on how
the relative speedup and scalability vary with respect to the number of right hand sides and the
block sixe.

3.5.1 Relative speedup

Fig. 3.4 (a) shows the speed-up S(R) (see Eqn (xx)) when solving for a block Tridiagonal system
with block-sixe M =256 and number of block rows N = 128 with changing number of right
hand sides using P = 128 processors. The relative speedup grows rapidly with increasing
number of right hand sides. This can be understood from the observation that as the number of
right hand sides increase, the time spent in the local computing phases (see Fig. 3.1) remains
nearly the same in both the RDA and Proposed ARDA algorithms (since the granularity N/P
remains the same) while the net gain in the time spent in the non-local phase keeps adding with
increasing number of right hand sides. This is shown in Fig. 3.4 (b). Compare this with Fig.
3.3. The dramatic reduction in the runtimes of the non-local phase of the new algorithm is a
result of two important modifications to the RDA, namely:

 The binary, associative operator in the non-local phase executed for each right hand side in
the RDA is a matrix-matrix product that requires  2MO work while it is a vector addition that
requires O(M) in the Proposed ARDA.

 The message sixes exchanged reduces from  2MO in the RDA to O(M) in the Proposed
ARDA.

3.5.2 Scalability

Strong-scaling results are presented in Fig.3.5. As the number of processors increase, the
amount of computations in the local phases, which scales as ∼

P
N in both algorithms, decreases

and becomes comparable. As such, the runtime difference between the two algorithms is
influenced primarily by the computations in the non-local phase, which scales as ∼ P logRM3

O(R). S(R) , M 

40

in the RDA and ∼ RM log P in the Proposed ARDA for R right hand sides, an improvement
that only gets magnified with increasing block sixe as seen in Fig. 3.5.

 Figure 3.6 shows the effect of changing the granularity and the block sixe on the relative

speedup for different numbers of right hand sides on P = 32. Consider a column group in
any one of the plots, say, the column group for R = 32 of Fig.3.6 (a). As the block sixe, M, is
doubled, the relative speedup, S(R), increases to a maximum and then starts decreasing. This
behaviour holds true for all column groups in Fig. 3.6 and can be understood from the fact
that as the block size increases for fixed N, P and R, the time spent in the local phase of the
computation which scales as ∼ 3M in both algorithms dominates and offsets the runtime gains
from the non-local computations.

2.7

5.3

8.4

17.6

0
2
4
6
8

10
12
14
16
18
20

4 8 1 6 3 2

RE
LA

TI
VE

 SP
EE

D
UP

,S
(R

)

NO. OF RIGHT HAND SIDES (R)

M=256,N=128,P=128

12.4

14.9
16.3

11.6
13.3 13

8.4

11.3

8

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0

3 2 6 4 1 2 8

RE
LA

TI
VE

 SP
EE

D
UP

,S
(R

)

NO. OF PROCESSOR (P)

STRONG SCALING(N=128,R=32)
M=64 M=128 M=256

Figure 3.4 (a) Relative speedup

Figure 3.5 Strong scaling speedup with N=128 and R=32 for three different block
sizes.

41

Now, consider the column group for R = 32 for all three granularities shown in Fig. 3.6. Clearly,
the relative speedup increases as the granularity

P
N → 1 in all cases. This is the strong-scaling

effect shown in Fig. 3.5. To summarize, the effect of granularity is that it controls the ratio of
time spent in the local and non-local phases in both algorithms. When the time spent in the
local phase

Dominates (large granularity), the new algorithm performs at least as well as the original
algorithm and the relative speedup tends to unity. On the other hand, when the granularity of
the problem tends to unity, the time spent within the non-local phase increases. The larger the
time spent in the non-local phase, the greater the relative speedup and the new algorithm
delivers vastly superior performance (compare Fig. 3.3 and Fig. 3.4(b)).
It is very important to understand that the relative speedup defined in Eqn (xx) is valid even
for P = 1. However, for computational problems of relevance to today’s breed of large-scale
computing, both N and P are typically very large. For such problems, the relative speedup
S(R) delivered by the new accelerated algorithm proposed is significant.
Numerical solutions obtained by both algorithms mutually agreed in all cases, though not
every solution was stable. A detailed investigation of the numerical stabilities of the two
algorithms is outside the scope of this study, which is focussed exclusively on their parallel
runtime performance and scalability issues. To make RDA and Proposed ARDA numerically
stable for the same classes of Tridiagonal matrices for which cyclic reduction algorithms are
stable,

Local
Non-Local

0

0.2

0.4

0.6

0.8

1

4 8 16 32

0.2 0.2
0.3

0.4

0.7 0.7

1

0.8

Cl
oc

k
Ti

m
e(

in
 se

c)

No. of right hand sides(R)

ARDA: M=256,N=128,P=128

Figure 3.4 (b) Local and non-local computation

42

0

2

4

6

8

10

12

14

16

4 8 16 32

R
el

at
iv

e
Sp

ee
dU

p,
S(

R
)

No. of right hand sides(R)

Block rows per rank, N/P=1

M=64

M=128

M=256

M=512

(a) Granularity N/P=1

Figure 3.6 (b) Granularity N/P=2

0

2

4

6

8

10

12

4 8 16 32

Re
la

tiv
e

Sp
ee

dU
p,

S(
R)

No. of right hand sides(R)

Block rows per rank, N/P=2

M=64 M=128 M=256 M=512

Figure 3.6 (a) Granularity N/P=1

43

an LU-decomposition of the matrix A is computed and the resulting equation Ax = LUx = b is
computed in two steps [29]. In the first step, the system Ly = b is solved, where y = Ux. In the
second, the system Ux = y is solved. Each of these steps can be cast into the same prefix
computation based algorithm as the one presented here. As a result, these pre-processing steps
do not add to the overall complexity of either the original (RDA) or the Proposed ARDA
algorithms presented in this chapter. However, it can change the overall constant in both.

Figure 3.6 (c) Granularity N/P=4

0

2

4

6

8

10

12

4 8 16 32

1.8

3.9
2.6

8

2

4

6.2

11.4

1.8

3.8

6.4

12

1.6 2.2

4.8

8.2

Re
la

tiv
e

Sp
ee

dU
p,

S(
R)

No. of right hand sides(R)

Block rows per rank, N/P=4

M=64 M=128 M=256 M=512

Figure 3.6 Relative speedup of ARDA with respect to the RDA with varying M,N and R on P=32

44

44

A Proposed Parallel Algorithm for solution of 3D Hyperbolic PDE

Consider the 3D second order hyperbolic equations defined

in the region of the following form as

 (i)

Where .

The initial condition consist of

 (ii)

and the boundary conditions consist of

 (iii)

This equation is commonly encountered in physics and engineering mathematics such as
vibration of structures and signal analysis. In recent years, various numerical schemes have
been developed for solving one, two and three dimensional hyperbolic equation [30-39]. The
scheme is proven to require lesser execution time than the others explicit group methods [40].
As an extension to these works, Kew and Ali [41, 42] presented the utilization of domain
decomposition techniques on explicit group methods and parallelized it using OpenMP
programming environment. The method is unconditionally stable and applicable to singular
problem. In this chapter, we present a new explicit group relaxation method derived from the
standard seven-point difference approximation for the solution of (i). This explicit group
method is developed using small fixed size group strategy which require lesser execution times
than the classic point iterative method. The method is then parallelized using OpenMP
environment with the utilization of domain decomposition technique. In the next section, a
brief overview will be given on the formulation of explicit group method for the three
dimensional telegraph equations. The parallelization using domain decomposition technique
under OpenMP programming environment will be discussed in Section 3. Section 4 presented
the numerical experiments and the results. Finally, concluding remarks are given in Section 5.

  0t1,0  x,y,zx,y,z,t

 x,y,z,tF
z
U

y
U

x
U U

t
U2

t
U

2

2

2

2

2

2
2

2

2























    0 0,  x,y,tx,y,t 

       x,y,zx,y,z,x,y,zx,y,z, 211 f 0 U; f 0U 

       
       
       












x,y,t,tx,y,x,y,t,tx,y,
x,z,t,z,tx,x,z,t,z,tx,
y,z,t,y,z,ty,z,t,y,z,t

65

43

21

g 1 U; g 0U
g 1 U; g 0U
g 1 U; g 0U

Chapter 4

45

4.1 METHOD FORMULATION

In solving problem (i) using finite difference approximations, we let the spatial domain, 

be discretised uniformly in x-,y- and z- directions with mesh size

where n is an arbitrary positive integer. The grid points are given by ,

 Where m=1,2,3….. and k>0 be the time steps. Let m
lj,i,U be the

exact solution of the different equation and m
lj,i,u be the computed solution of the approximation

method at the grid point (1) can be approximated by various finite difference schemes. One
commonly formula is the standard seven point difference approximation

 (iv)

 Where

The iterations for this standard centred seven-point difference scheme are generated at any time
level on all grid point using (2) until convergence is achieved before proceeding to the next
time level. The process continues until the desired time level is reached. Consider the standard
seven-point formula (ii) which was derived from the centred finite difference discretisation.
The mesh points are grouped in cubes of eight points (Fig. 4.1) and applying (ii) to each of
these points will produce the (8x8) systems of equations in the form

 (v)

n
1zyxh 

   mklh,jh,ih, t,z,y,x miii 

       
  
        
   

2
1ml,j,i,

2
1-ml,j,i,ml,j,i,

m1,-lj,i,m1,lj,i,ml,1,-ji,ml,1,ji,ml,j,1,-iml,j,1,i

1m1,-lj,i,1m1,lj,i,

1ml,1,-ji,1ml,j,i,1ml,j,i,1ml,j,1,-i1ml,j,1,i

Ftu1u2
b-r32

uu2
ruu2

ruu2
r

uu2
r

uu2
ru2

ba3r1 uu2
r

















a

22
2

2
tb ;t a ; h

tr  






































































































































1l,ji,

1l1,j1,i

1lj,1,i

1lj,i,

l1,ji,

l1,j1,i

lj,1,i

lj,i,

1m1,l1,ji,

1m1,l1,j1,i

1m1,lj,1,i

1m1,lj,i,

1ml,1,ji,

1ml,1,j1,i

1ml,j,1,i

1ml,j,i,

1222

2122

2122

2212

2122

2212

2212

2221

rhs
rhs
rhs
rhs
rhs

rhs
rhs
rhs

u
u
u
u
u

u
u
u

kk0k-k-000
k-kk00k-00
0k-kk-00k-0
k-0k-k000k-
k-000kk-0k-
0k-00k-kk0
00k-00k-kk-
000k-k-0k-k

 1-a k ; 2
b-3r-2k; 2

rk ; 2
bar31k where 4321 

46

2
1m1,l1,ji,

2
1m1,l1,ji,4

m1,l1,ji,3m2,l1,ji,ml,1,ji,m1,l2,ji,

m1,lj,i,m1,l1,j1,im1,l1,j1,-i1m2,l1,ji,1m1,l2,ji,1m1,l1,j1,-i21l1,ji,

2
1m1,l1,j1,i

2
1m1,l1,j1,i4

m1,l1,j1,i3m2,l1,j1,iml,1,j1,im1,l2,j1,i

m1,lj,1,im1,l1,j2,im1,l1,ji,1m2,l1,j1,i1m1,l2,j1,i1m1,l1,j2,i21l1,j1,i

2
1m1,lj,1,i

2

1m1,lj,1,i4m1,lj,1,i3m2,lj,1,im1,l1,j1,im1,l,1j1,i

ml,j,1,im1,lj,2,im1,lj,i,1m2,lj,1,i1m1,l1,-j1,i1m1,lj,2,i2l1,j1,i

2
1m1,lj,i,

2
1m1,lj,i,4m1,lj,i,3m2,lj,i,ml,j,i,m1,l1,ji,

m1,l1,-ji,m1,lj,1,im1,lj,1,-i1m2,lj,i,1m1,l1,-ji,1m1,lj,1,-i21lj,i,

2
1ml,1,ji,

2
1ml,1,ji,4ml,1,ji,3m1,l1,ji,m1,l1,ji,ml,2,ji,

ml,j,i,ml,1,j1,iml,1,j1,-i1m1,-l1,ji,1ml,2,ji,1ml,1,j1,i2l1,j1,i

2
1ml,1,j1,i

2

1ml,1,j1,i4ml,1,j1,i3m1,l1,j1,im1,l1,j1,iml,2,j1,i

ml,j,1,iml,1,j2,iml,1,ji,1m1,-l1,j1,i1ml,2,j1,i1ml,1,j2,i2l1,j1,i

2
1ml,j,1,i

2
1ml,j,1,i4ml,j,1,i3m1,lj,1,iml,1,j1,i

ml,1,-j1,iml,j,2,iml,j,i,1m1,-lj,1,i1ml,1,-j1,i1ml,j,2,i2lj,1,i

2
1ml,j,i,

2
1-ml,j,i,4ml,j,i,3m1,lj,i,ml,1,ji,

ml,1,-ji,ml,j,1,iml,j,1,-i1m1,-lj,i,1ml,1,-ji,1ml,j,1,-i2lj,i,

Ftuk

uk)uuu
uuuuuu(krhs

Ftuk

uk)uuu
uuuuuu(krhs

Ft

ukuk)uuu
uuuuuu(krhs

Ftukuk)uuu

uuuuuu(krhs

Ftukuk)uuu

uuuuuu(krhs

Ft

ukuk)uuu
uuuuuu(krhs

Ftukuk)uu

uuuuuu(krhs

Ftukuk)uu

uuuuuu(krhs

















































































47

This matrix (3) can be inverted to produce an eight points explicit group (EG) equation

 (vi)

Where

The iterations are generated on these groups of eight mesh points and it is treated explicitly
similar to the way where the single point is treated in the point iterative method. Similarly,
the process is repeated until the desired time level is achieved.

































































































































1l1,ji,

1l1,j1,i

1lj,1,i

1lj,i,

l1,ji,

l1,j1,i

lj,1,i

lj,i,

12322143

21233234

32124323

23213432

23431232

32342123

43233212

34322321

1m1,l1,ji,

1m1,l1,j1,i

1m1,lj,1,i

1m1,lj,i,

1ml,1,ji,

1ml,1,j1,i

1ml,j,1,i

1ml,j,i,

rhs
rhs
rhs
rhs
rhs

rhs
rhs
rhs

mmmmmmmm
mmmmmmmm
mmmmmmmm
mmmmmmmm
mmmmmmmm
mmmmmmmm
mmmmmmmm
mmmmmmmm

u
u
u
u
u

u
u
u

A

 
3
241

2
23

3
22

2
12

2
11

3
11

4
2

2
1

2
2

4
1

k*6m;k*k*2m;k*3k*km;k*k*7km
k*9k*k*10k1/A





Figure 1: Computational molecule for Explicit Group
method

48

4.2 PROPOSED DECOMPOSITION TECHNIQUE

Most domain decomposition methods (DDM) have been developed for solving elliptic [43, 44]
parabolic [45, 46] and hyperbolic problems [41, 42]. They have been considered as very
efficient methods for solving partial differential equations on parallel computers [46]. They can
be classified into two classes; overlapping and non-overlapping methods with respect to the
decomposition of the domain. In [41, 42], Kew and Ali have demonstrated the use of DDM for
the explicit group methods by using the overlapping subdomain and Schwarz alternating
procedure (SAP). This SAP operates between two overlapping sub-domains; solving the
Dirichlet problem on one sub-domain in each iteration by taking the boundary conditions based
on the most recent solution obtained from the other sub-domain. The details of the SAP can be
obtained in [47]. In order to implement this domain decomposition algorithm, ordering
strategies need to be considered for each finite difference discretization scheme due to the
shared boundaries between sub-domains [41, 42]. The solution domain is decomposed into
blocks as shown in Fig. 4.2. Referring to Fig. 4.2, when the point 1 in 1 Ω is computing, points
2 – 7 at the same time level needs to be used if (3) is used. However, points 1 – 6 are from
subdomain 1 Ω while point 7 is from sub-domain 2 Ω . In the case of parallelization, the sub-
domains 1 Ω and 2 Ω are computed concurrently. There is a possibility that the solutions at the
points 7 is updating on the respective sub-domains when the point 1 are being computed. This
may cause inaccuracy in the numerical results. Thus, we need to organize the ordering
strategies to prevent any conflict on the usage of points among sub-domains. With this in mind,
a red black group ordering strategy is introduced to this EG scheme. The algorithm of this
scheme is presented in Algorithm 4.1. The same concept of proposed domain decomposition
ordering strategy can also be implemented for the standard centred seven-point scheme.
Algorithm 4.2 presents the syntax of implementing the program on multiple-core processor. It
is observed that Steps (vii) – (xiv) in Algorithm 4.1 is the most expensive part of the algorithm
and therefore stands to gain the most advantage from the parallelization process.

Figure 4.2 Proposed Explicit group scheme method

49

TABLE 4.1
ALGORITHM 4.1: Algorithm for Proposed Explicit Group Method

(i) Choose an initial guess s to the solution
(ii) For each time step:

a. Firstly set a boundary condition
b. Up to convergence level, do(in global):
c. Recognize the boundaries values of subdomain
d. Up to convergence level , do(in global):

(iii) For each subdomain:
a. Solve at the black group points
b. End do

(iv) For each subdomain:
a. Solve the red group points
b. End do

(v) Check the local convergence test
a. End do

(vi) Check the local convergence test
a. End do

TABLE 4.2

ALGORITHM 4.2. Line of Code for Implementing the Program on Multicore
Processor

#include<omp.h>

void main()

{ int num_threads;

omp_set_num_threads(omp_num_procs());

#pragma omp parallel for

{

compute the points in each sub-domain

50

4.3 NUMERICAL EXPERIMENTS AND RESULTS

In order to demonstrate the viability of the proposed method in solving the three dimensional
second order hyperbolic equation (i), experiments were carried out on a quad core i7 CPU 2.0
GHz, 4GB of RAM with Window 7 operating system using Microsoft Visual Studio 2010. This
experiment is to solve the hyperbolic problem (i) with the analytical solution [34]

 (vii)

 (viii)

The boundary and initial conditions can be obtained from the analytical solution. The proposed
group method is a three level scheme. The starting values of u(x, y, z) at the first time level
need to be obtained before any computation starts. The values may be obtained using the Taylor
series expansion

 (ix)

Where u and t , u are known explicitly at t = 0 .The values of relaxation factor for the various
mesh sizes are set equal to 1.0. The convergence criteria used throughout the experiment was
the l∞ norm with the local and global error tolerances were set equal to 610 and 710 ,
respectively. Throughout the computation, the values of α =10.0 and β = 5.0 . The RMS errors
are tabulated at T = 2 for a fixed λ =k / h=3.2 for several mesh sizes of 16, 32, 64 and 128 and
are listed in Table 4.3. The speedup is used to measure the performance of the parallel
algorithms compared to the corresponding sequential algorithms. The speedup formula used is
in the form of

It can be observed that the computational results obtained from Proposed explicit group
method(EG) maintained the same degree of accuracies with the standard point method. The
Proposed EG method requires lesser computing times compared to point method due to its
lower computational complexity. As shown in Table III, the execution times of the parallel EG
can be saved up to about 34% compared to the sequential EG and 39% for the standard centred
seven-point method for the mesh size of 128. The percentages vary for difference schemes.

   
      zyx

zyx
sinhsinhsinhtexp22tz,y,x,f

sinhsinhsinhtexptz,y,x,u
2 





      30
lj,i,tt

20
lj,i,t

0
lj,i,

1
lj,i, kO uu2

ku ukuu 

) threads(T4 using timeExecution
) thread(tsingle afor timeExecution

 speedup
4

1

51

4.4 EXPERIMENTAL RESULTS:

Table 4.3:

 Non Parallel (1 Thread) Parallel (4 Thread)
 ℎିଵ Iter RMS Error Elapsed

Time
 Iter RMS

Error
Elapsed

Time
Speed-

up

Standard
Point
Method

16 44 6.55E-04 0.226 44 6.55E-04 0.221 1.023
32 66 3.17E-04 5.573 66 3.17E-04 4.683 1.19
64 87 1.58E-04 155.341 87 1.57E-04 118.445 1.312

128 99 8.34E-05 4536.632 99 8.35E-05 2771.018 1.637

Explicit
Group
Method

16 25 6.56E-04 0.141 25 6.56E-04 0.137 1.029
32 37 3.16E-04 2.95 32 3.16E-04 2.615 1.128
64 49 1.55E-04 77.821 49 1.55E-04 62.095 1.253

128 55 7.97E-05 1988.437 55 7.96E-05 1312.725 1.515

52

CONCLUSION

Solving block Tridiagonal linear systems with multiple right hand sides R arise in a wide range
of scientific applications. In this thesis, we presented a parallel, accelerated recursive doubling
algorithm that delivers O(R) speedup improvement over the original recursive doubling
algorithm. Since the number of different right hand sides is typically very large, this speedup
translates to significant overall performance improvements in practice. The numerical
formulation, its algorithmic complexity as well as the performance advantage of the new
algorithm are discussed in detail. Numerical stability of both algorithms in the context of block
Tridiagonal systems is the subject of ongoing investigation. To our knowledge, the proposed
accelerated recursive doubling algorithm, has not been reported before in the literature. In this
thesis, the parallel implementation of a new explicit group relaxation method, derived from the
standard focused seven-point difference formula has been presented in solving the 3D telegraph
equations. The parallel implementation utilizes the proposed domain decomposition technique
on the discretized solution domain using OpenMP programming environment. For comparison
purposes, we also include the RMS error and the execution timings of the point-wise scheme;
the standard centred seven-point method. It can also be observed that the parallel algorithms
manage to save up approximately 33% of the computational costs compared to their sequential
algorithms. The explicit group relaxation method is able to take advantage from parallelism
implemented on multi-core technology environment. Research on other explicit group method
of the same class like the Explicit Decoupled Group and its variants are under investigation
and will be reported soon.

53

Chapter 5

REFERENCES

[1] Nakamura, Shoichiro , “Applied Numerical Methods In C”, United State of America PTR Prentice Hall Inc,
1993,

[2] Smith G.D, Numerical Solution of Partial Differential Equations, Oxford Universities Press, 1965.

[3] Bhat B, Rama, Chakraverty, Snehasnish, United Kingdom Numerical Analysis in Engineering, Alpha Science
International Ltd, 2004.

[4] Norma Alias, Md. Rajibul Islam, Nur Syazana Rosly “A Dynamic PDE Solver for Breasts’ Cancerous Cell
Visualization on Distributed Parallel Computing Systems”, in Proc. The 8th International Conference on
Advances in Computer Science and Engineering (ACSE 2009), Phuket, Thailand, Mar. 16-18, 2009.

[5] Evans D.J, Sukon K.S, “The Alternating Group Explicit (AGE) Iterative Method for Variable coefficient
Parabolic Equations”, Intern. J. Computer Math. Vol 59, pp 107-121. 1995.

[6] Smith, G.D, United Kingdom, “Numerical Solution of Partial Differential Equations: Finite Difference
Methods”, Oxford Universities Press, 1985.

[7] Zhang Y. , Cohen J. , and Owens J. D. , “Fast Tridiagonal Solvers on the GPU”, in Procs. of the ACM
Symposium on Principles and Practice of Parallel Programming, vol. 45, no. 5, pp. 127–136, 2010.

[8] Hirschman S. P. ,Perumalla K. S. , Lynch V. E. , and Sanchez R. , “BCYCLIC: A Parallel Block Tridiagonal
Matrix Cyclic Solver”, Journal of Computational Physics, vol. 229, pp. 6392–6404, 2010.

[9] Hirshman S. P. , Sanchez R. , and Cook C. R. , “SIESTA: A Scalable Iterative Equilibrium Solver for Toroidal
Applications”, Physics of Plasmas, vol. 18, p. 062504, 2011.

[10] Alias, N., Sahimi, M.S., and Abdullah, A.R., “The AGEB Algorithm for Solving the Heat Equation in Two
Space Dimensions and Its Parallelization on a Distributed Memory Machine”, Proceedings of the 10th European
PVM/ MPI User’s Group Meeting: Recent Advances In Parallel Virtual Machine and Message Passing Interface,
Vol. 7, pp. 214–221, 2003.

[11] Alias N. , Sahimi M.S. , Abdullah A.R. , “Parallel Strategies for the Iterative Alternating Decomposition
Explicit Interpolation-Conjugate Gradient Method In solving Heat Conductor Equation on a Distributed Parallel
Computer Systems”, Proceedings of the 3rd International Conference on Numerical Analysis in Engineering. 3:
31-38. 2003.

[12] Norma Alias, Rosdiana Shahril, Md. Rajibul Islam, Noriza Satam, Roziha Darwis, “3D parallel algorithm
parabolic equation for simulation of the laser glass cutting using parallel computing platform”, The Pacific Rim
Applications and Grid Middleware Assembly (PRAGMA15), Penang, Malaysia. Oct 21-24, 2008.

[13] Seal S. K. , Perumalla K. P., and Hirshman S. P. , “Scaling the SIESTA Magneto hydro dynamics Equilibrium
Code”, Concurrency and Computation: Practice and Experience, vol. 25, no. 15, pp. 2207–2223, 2013.

[14] Leighton F. T. , “An Introduction to Parallel Algorithms and Architectures: Arrays, Trees and Hypercube”,
Morgan Kaufmann Publishers, 1992.

[15] Seal S. K. , Perumalla K. P. , and Hirshman S. P. , “Revisiting Parallel Cyclic Reduction and Parallel Prefix-
based Algorithms for Block Tridiagonal Systems of Equations”, Journal of Parallel and Distributed Computing,
vol. 73, pp. 273–280, 2013.

[16] Harris M. , Sengupta S., and Owens J. D. , “GPU Gems 3. Addison-Wesley Professional”, ch. Parallel Prefix
Sum (Scan) with CUDA, 2007.

[17] Thomas L. H. , “Elliptic Problems In Linear Difference Equations Over A Network ,” Watson Sci. Comput.
Lab. Rep., Columbia University, 1949.

54

[18] Hockney R. W. , “A Fast Direct Solution Of Poisson’s Equation Using Fourier Analysis”, Journal of the
ACM, vol. 12, no. 1, pp. 95–113, 1965.

[19] Heller D. , “Some Aspects Of The Cyclic Reduction Algorithm For Tridiagonal Linear System”, SIAM
Journal of Numerical Analysis, vol. 13, no. 4, pp. 484–496, 1976.

[20] Stone H. S. , “An Efficient Parallel Algorithm For The Solution Of A Tridiagonal Linear System of
Equations”, Journal of the ACM, vol. 20, no. 1, pp. 27–38, 1973.

[21] Wang H. H. , “A Parallel Method For Tridiagonal Equations”, ACM Trans. on Mathematical Software, vol.
7, no. 2, pp. 170–183, 1981.

[22] Sun X. H. , Zhang H. , and Ni L. M. , “Efficient Tridiagonal Solvers on Multicomputer”, IEEE Trans. on
Computers, vol. 41, no. 3, pp. 286–296, 1992.

[23] Sun X. H. and Zhang W. , “A Parallel Two-level Hybrid Method for Tridiagonal Systems and its Application
to Fast Poisson Solvers”, IEEE Trans. on Parallel and Distributed Systems, vol. 15, no. 2, pp. 97–106, 2004.

[24] Bini D. A. and Meini B. , “The Cyclic Reduction Algorithm: From Poisson Equation To Stochastic Processes
And Beyond”, Numerical Algorithms, vol. 51, no. 1, pp. 23–60, 2008.

[25] Zhang Y. , Cohen J. , and Owens J. D. , “Fast Tridiagonal Solvers on the GPU”, in Procs. of Principles and
Practice of Parallel Programming, 2010.

[26] Sengupta S. , Harris M. , Zhang Y. , and Owens J. D. , “Scan primitives for GPU computing”, in Procs. of
the ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, pp. 97–106, 2007.

[27] Egecioglu O. , Koc C. K. , and Laub A. J. , “A Recursive Doubling Algorithm for Solution of Tridiagonal
Systems on Hypercubes Multiprocessors”, Journal of Computational and Applied Mathematics, vol. 27, pp. 95 –
108, 1989.

[28] Grama A. ,Gupta A. , Karypis G. , and Kumar V. , “Introduction to Parallel Computing”, Addison Wesley,
2003.

[29] Kincaid D. and Cheney W. , “Numerical Analysis: Mathematics of Scientific Computing”, Brooks/Cole
Publishing Company, 1996.

[30] Ali N.H.M. and Kew L.M. , “New explicit group iterative methods in the solution of two dimensional
hyperbolic equations”, Journal of Computational Physics 231, pp.6953–6968.

[31] Mohanty R.K. , “New unconditionally stable difference scheme for the solution of multi-dimensional
telegraphic equations”, International Journal of Computer Mathematics 86 (12), pp.2061–2071,2009.

[32] Dehghan M. , Shokri A. , “A mesh less method for numerical solution of a linear hyperbolic equation with
variable coefficients in two space dimensions”, Numerical Methods for Partial Differential Equations 25, pp.494–
506, 2008.

[33] Gao F. , Chi C. , “Unconditionally stable difference schemes for a one space-dimensional linear hyperbolic
equation”, Applied Mathematics and Computation 187, pp.1272–1276, 2007.

[34] Mohanty R.K. , “An operator splitting technique for an unconditionally stable difference method for a linear
three space dimensional hyperbolic equation with variable coefficients”, Applied Mathematics and Computation
162, pp.549–557, 2005.

[35] Mohanty R.K. , “An operator splitting method for an unconditionally stable difference scheme for a linear
hyperbolic equation with variable coefficients in two space dimensions”, Applied Mathematics and Computation
152, pp.799–806, 2004.

55

[36] Mohanty R.K. , “An unconditionally stable difference scheme for the one-space-dimensional linear
hyperbolic equation”, Applied Mathematics Letters 17, pp.101–105, 2004.

[37] Mohanty R.K. , Jain M.K. , Arora U. , “An unconditionally stable ADI method for the linear hyperbolic
equation in three space dimensions”, International Journal of Computer Mathematics 79, pp.133–142, 2002.

[38] Evans D.J. , “UK Group Explicit Methods for the Numerical Solution of Partial Differential Equations”,
Loughborough University of Technology, Gordon and Breach Science Publisher, The Netherlands, 1997.

[39] Evans D.J. , “Group explicit methods for the numerical solution of first-order hyperbolic problems in one
dependent variable”, International Journal of Computer Mathematics 56 (3), pp.245–252, 1995.

[40] Kew L.M. , Ali N.H.M. , “Explicit group iterative methods for the solution of telegraph equations”, in: The
2010 International Conference of Applied and Engineering Mathematics World Congress on Engineering 2010 ,
London, UK, Lecture Notes In Engineering and Computer Science, pp. 1770–1775, 30 Jun–2 July, 2010.

[41] Kew L.M. , Ali N.H.M. , “Parallel Explicit Group Domain Decomposition Methods for the Telegraph
Equation”, in: International Conference on Applied Mathematics and Engineering Mathematics , World Academy
of Science, Engineering and Technology 60, Phuket, Thailand, 21-23 December 2011.

[42] Kew L.M. , Ali N.H.M. , “OpenMP Technology In the Parallelization Of New Hyperbolic Group Solver,”
in: 12th WSEAS International Conference on Applied Computer Science (WSEAS 2012), Singapore, Latest
Advances in Information Science and Applications, pp. 136-141, 11-13 May 2012.

[43] Dryja M. , and Widlund O.B. , “Some Domain Decomposition Algorithms for Elliptic Problems”, in: L.
Hayes, D. Kincaid (Eds.), Iterative Methods for Large Linear Systems, Academic Press, San Diego, CA. 1989.

[44] Cai X.-C. , and Widlund O.B. , “Domain Decomposition Algorithms for Indefinite Elliptic Problems”, SIAM
J. Sci. Statist., pp. 243–258, 1992.

[45] Dawson C.N. , Du Q. , and Dupont T.F. ,“A Finite Difference Domain Decomposition Algorithm for
Numerical Solution of the Heat Equation”, Mathematics of Computation, 57(195) , pp. 63-71, 1991.

[46] Jun, Y. and Mai, T.Z., “IPIC Domain Decomposition Algorithm for Parabolic Problems”, Applied
Mathematics and Computation, 177, pp. 352-364, 2006.

[47] Saad, Y. “ Iterative Methods for Sparse Linear Systems”, 2nd Edition. pp. 382-421.

[48] P. Amodio, and L. Brugnano. "Parallel factorizations and parallel solvers for tridiagonal linear
systems." Linear algebra and its applications vol 172 1992, pp 347-364.

[49] R. W. Hockney, and J. W. Eastwood. "Computer simulation using particles, 1988." Hilger, Bristol.

[50] Roger W Hockney., and Chris R. Jesshope. “Parallel Computers 2: architecture, programming and
algorithms” Vol. 2. CRC Press, pp 1988.

[51] Nathan Mattor, Timothy J. Williams, and Dennis W. Hewett. "Algorithm for solving tridiagonal matrix
problems in parallel." Parallel Computing, vol 21, no. 11, pp 1769-1782, 1995.

[52] Wang H. H. "A parallel method for tridiagonal equations", ACM Transactions on Mathematical Software
(TOMS) 7, vol 2 ,pp 170-183, 1981.

[53] Press William H. , Flannery Brian P. , Teukolsky Saul A. , and Vetterling William T. “Numerical Recipes:
The art of scientific computing”, Vol. 2. London: Cambridge University Press, 1987.

[54] Conte S. D, “A stable implicit finite difference approximation to a fourth order parabolic equation”, J.
Assoc.Comp. Mach.,vol 4, 18– 23, 1957.

[55] Fairweather G. and Gourlay A. R. “Some stable difference approximations to a fourth order parabolic
partial differential equations”, Maths. Comput., vol 2, pp. 1–11, 1967.

56

[56] Mohanty R. K. , “A fourth order finite difference method for the general one dimensional nonlinear
biharmonic problems of first kind”, J. Comp. Appl. Math., pp. 114, 275–290, 2000.

[57] Mohanty R.K. , “An implicit high accuracy variable mesh scheme for 1-D nonlinear singular parabolic
partial differential equations”, Appl. Math. Comput. , pp. 186, 219–229, 2007.

[58] Jain M. K. ,Jain R. K. , and Mohanty R. K. , “Fourth order deference method for three dimensional elliptic
equations with non-linear first derivative terms”, Numerical Methods of Partial Diff Eqn 8 , 575–591, 1992.

[59] Krishnaiah U. A. , Manohar R. P. and Stephenson J.W. , “Fourth order finite difference methods for three
dimensional general linear elliptic problems with variable coefficients”, Numerical Methods Partial Diff Eqn 3
, 229–240, 1987

57

