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ABSTRACT 

In this thesis, we discussed the solution of three dimensional partial differential equations 
(PDEs) using Finite Difference Method. The selected three-dimensional PDE to solve in 
this thesis are of Hyperbolic type. Parallel Virtual Machine (PVM) is used in support of 
the communication among all microprocessors of Parallel Computing System. PVM is 
well known as a software system that enables a collection of heterogeneous computers to 
be used as coherent and flexible concurrent computational resource. In Finite Difference 
Method we get a Block Tridiagonal Matrix (BTM) in middle step. The Block Tridiagonal 
systems of linear equations use in variety of scientific and engineering applications. My 
Proposed Recursive doubling algorithm (RDA) is a well-known prefix computation 
based numerical algorithm that requires complexity less than O(M3(N/P + log P)) work 
to compute the solution of a Block Tridiagonal system with N block rows and block size 
M on P processors. Here, we show that a Proposed RDA is sub-optimal when computing 
solutions of Block Tridiagonal systems with multiple right hand sides and present a 
novel algorithm, called the accelerated recursive doubling algorithm. To the best of our 
knowledge, this algorithm has not been reported before in the literature. The parallel 
implementation of a new explicit group iterative scheme is proposed for the solution of a 
three dimensional second order partial differential equation. The Proposed explicit group 
method is derived from the standard centred seven-point finite difference discretisation 
formula. We utilize the new domain decomposition technique on this group scheme to 
divide the tasks involved in solving the equation. The aim of this study is to describe the 
development of the parallel group iterative scheme under Open MP programming 
environment as a way to reduce the computational costs of the solution processes using 
multiple core technologies. Numerical experiments are conducted together with their 
detailed performance analysis. The results will be discussed in tabular format. 
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Introduction of Parallelism 

 

1.1 INTRODUCTION 

For using a parallel computers, we require a parallel environment where parallelism is 
automatically oppressed. The operating system (OS) must also be extended to support 
parallel processing. The OS must have a competency to manage resources behind parallelism. 
Parallelism is divided into two categories. 

 Implicit Parallelism   In implicit parallelism, we approach a conventional language, such 
as C, C++, FORTRAN or Pascal to write the source program. If a source program is coded 
in a sequential manner is translated into parallel object code by parallelizing compiler. As 
given below in Fig. 1.1a, this compiler must be able to detect parallelism and allocate 
target machine resources. 

 For implicit parallelism, success depends heavily on intelligence of parallelizing compiler.     
This parallelizing technique requires less effort on the part of programmer. 

 Explicit Parallelism    It is a second approach requires more effort to the Developer to 
develop a source programme using C, C++, FORTRAN, or Pascal like parallel languages. 
In the user programs parallelism is specified in explicit way.    
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(i) Implicit parallelism (ii) Explicit parallelism 
Fig 1.1 Flow Chart  
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1.2 PARALLEL COMPUTATION 

 Definition: The Parallel Computing is simultaneous execution of the same task on multiple 
processors in order to obtain faster results. 

i.e Processing of multiple tasks simultaneously on multiprocessor system using divide and    
conquer technique is called Parallel Computing. 

1.3 WHY PARALLEL COMPUTING? 

In general, software has been written for serial computation, to be run on a single computer 
having a single Central Processing Unit (CPU), a problem is broken into discrete series of 
instructions. Instructions are broken into one after another, only one instruction execute at 
any moment of time. 

 

 

 

 

 

 

 

 

 

In the simplest sense, parallel computing is the simultaneous use of multiple compute   
resources to solve a computational problem. It is to be run on multiple CPUs and problem is 
broken into discrete parts that can be solved concurrently. After that, each part is further 
broken down in the series of instructions and instructions from each part are further execute 
simultaneously on different CPUs. 
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1.4 APPLICATION OF PARALLEL COMPUTING 
 

 Finite element analysis of structural design involves a large system of algebraic 
equations which have to be solved. Such computations these days demand 
supercomputing power. 

 Genetic engineers demand fast computers for studying molecular biology, artificial 
synthesis of protein and for gel matching in the estimation of mutation rate of human 
spices. 

 Many areas as-pollution reduction through computational modelling, image 
processing, and design of computational biologist follow the concept of parallel 
computing. 

 In Electrical Engineering, Circuit design, Microelectronics. 
 Today commercial applications provide equal and opposite driving force in the 

development of faster computer. These applications requires a large amount of data in 
sophisticated ways. For example: Databases, Data mining, and Oil Exploration. 

 Nuclear reactor safety analysis is another area demanding supercomputer facilities. 
 Supercomputers are needed in diagnostic equipment such as computer assisted 

tomographic scanners. 
1.5 BENEFITS OF USING PARALLEL COMPUTING 
 Save time and/or Memory: In theory, throwing more resources at task will shorten 

it’s time to completion, with potential cost saving. Parallel clusters can be built from 
cheap, commodity and component. 

 Solve larger problem: Many problems are so large and/or complex that is impractical 
or impossible to solve them on a single computer, especially given limited computer 
memory. For example: Web search engines/databases processing millions of 
transaction per second. 

 Provide Concurrency: A single compute can only do one thing at a time. 
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1.6 PARALLEL ARCHITECTURE 

1.6.1 Flynn’s Classification 

Michael Flynn (1972) introduced a various computer architectures based on notion of 
instruction and data streams. One can classify computers into four categories according to the 
whether the instruction or data streams are single or multiple. A stream is defined as a sequence 
of items-instructions or data which is operated by the processor.  

 SISD: Single Instruction & Single Data Stream 
 SIMD: Single Instruction & Multiple Data Stream 
 MISD: Multiple Instruction & Single Data Stream 
 MIMD: Multiple Instruction & Multiple Data Stream 

  

 SISD: Single instruction & Single Data Stream is one of the conventional sequential    
machines which is irrelevant whether pipelining is used to speed up the processing or not. 
This type of machine is sometimes referred to as a scalar computer. 

  

 

 

 

 

 

 

 

 SIMD: Single instruction stream & Multiple Data stream type of classification include all 
machines with vector instructions and machines belonging to this class are often called 
vector computers. 
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Figure 1.4 (a) SISD uniprocessor architecture 
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 MISD: Multiple Instruction Stream & Single Data Stream in which the same data stream 
flows through the linear array of processors which is executing different instruction streams.  
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 MIMD: Multiple instruction stream over multiple data streams. Parallel computers are 
reserved for MIMD machines. This include all form of multiprocessor configuration from 
LAN (Local area network) and WAN (Wide area network) to the large arrays of 
multiprocessors. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                     Fig 1.4 (d) MIMD architecture  

      Captions: 
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I/O= Input /Output 
Figure. 1.4 Flynn’s classification of computer architectures  
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In the above discussed machine models, the SIMD and MIMD models are more suitable for 
special purpose computations, and MIMD model is used for general purpose computations. For 
this reason, MIMD is most popular model. 

The various processors in MIMD machines are linked together. This link has been established 
in two ways which will be describe as below. 

 

1.7 COUPLING BETWEEN PROCESSING ELEMENTS 

The autonomy enjoyed by the PEs while cooperating with one another during problem solving 
determines degree of coupling between them. In this, each workstations works independently. 
If they want to cooperate they will exchange a message. Hence we can say that logically they 
are autonomous and physically they don’t share any memory and communication is via I/O 
channels. On the other hand, a tightly coupled parallel computer shares a common main 
memory. In Fig.1.5 (a) we summarize this discussion. 
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Figure. 1.5   Classification as loosely or tightly coupled system 
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 Tightly coupled systems: In tightly coupled system the processors share a global memory. 
In general, these systems consist of N processors connecting M memory banks through a 
communication network. Such systems has many processor in closed communication and 
sharing computer bus, clock, sometimes memory and peripheral devices. 

 

 

 

 

 

 

 

 

                     

 

 

 

 

 

 

 

 

 Loosely Coupled system: The computer networks used in these applications consists of a 
collection of processors that do not share memory or clock. Here each processor has its own 
local memory. In this arrangement processors communicate with one another through 
various communication lines like high speed buses or telephone lines. 
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Figure 1.5 (a) Tightly Coupled System 
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1.8 MESH CONNECTED COMPUTERS 

The Figure 1.6 shows the basic 2D mesh architecture. Each processor, other than the ones located 
on the boundary, has degree 4. The free links of the boundary processors can be used for 
input/output or to establish row and column wraparound connections to form the 2D torus. 
Here a kk  mesh has a diameter 2k-2 and bisection width k or k+1. A kk  torus has diameter 
k or k-1 and bisection width 2k or 2k+2. A kk   torus is sometimes referred as a k-ray 2- cube 
(2D “cube” of size k). The general form of this architecture is known as k-ary or q-cube (q-D 
cube of size k). In particular, for k=2, we get the class of 2-ary (or binary) q-cubes, also known 
as (binary) hypercube. Thus, 2D torus and binary hypercube represent the two extremes of the 
k-ary q-cube architecture; fixing q at 2 gives us the 2D torus architecture with fixed node degree 
and )p(  diameter, while fixing k at 2 gives us the binary hypercube with logarithmic node 
degree and )p log(  diameter. 
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Figure 1.6 Two dimensional Mesh Connected Computer  
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1.9 HYPERCUBE ARCHITECTURE 

There are n2 nodes in n-dimensional Boolean cube. There are two coordinate points in each 
direction. The node can be given addresses such that the addresses of adjacent nodes differ in 
precisely one bit. The Boolean cube is a recursive structure. An n-dimensional can extended to 
an (n+1) dimensional cube by connecting corresponding vertices of two n-dimensional cubes. 
One has highest order bit 0 and another has highest order bit 1. The recursive nature of Boolean 
cube is illustrated in Figure 1.7    

Here each node has n neighbours. The maximum distance between arbitrary pair of nodes is n 
and average distance is n/2. The number of nodes at distance k from node is 









k
n  . The total of 

Internode connection is 1-nn2 . There are n disjoint paths between any pair of processors. Of 
these paths k are of length k and n-k of length k+2. It is highly fault-tolerant. Its capacity is too 
good for considering rich connection. It is homogeneous graph without any special node. 

In hypercube, two processors are directly connected with communication link if and only if 
their Hamming distance is unity i.e their identity numbers differ in exactly one bit, where the 
Hamming distance between two processors is the number of bits in which their identity number 
differs. 

For a given N, the diameter of hypercube is being equal to Nlog2  , which is nothing but the 
number of dimensions. Most of the problem specific to the interconnection network scheme 
such as mesh, tree, ring etc. can be easily mapped to the hypercube provided the number of 
nodes, dimension matched. 
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Some Parallel Numerical Methods in Solving Partial Differential Equation 

 
2.1  INTRODUCTION 

It is lavishly clear that many important scientific problems are governed by partial differential 
equations according to [4-5]. The difficulty in obtaining exact solution arises from the 
governing partial differential equations and the complexities of the geometrical configuration 
of physical problems [10,11,12]. For example, imagine a metal rod insulated along its length 
with no heat can escape for its surface. If the temperature along the rod is not constant, then 
heat conduction takes place. In such situations, the numerical method is used to obtain the 
numerical solutions [2]. These partial differential equations may have boundary value problems 
as well as initial value problems. First, the PDEs will be written in matrix form to ease the 
work. Then, parallel algorithm for all types of the PDEs will be developed and run in parallel 
computing environment to provide the numerical solution. Finally, the speed of convergences 
of using the numerical methods will be compared. In general, the transient particle diffusion or 
heat conduction is Partial Differential Equations (PDE) of the parabolic type and Laplace’s 
equation for temperature, diffusion, electrostatic conduction is elliptic and wave equation or 
transport equation is the PDE of hyperbolic type [4,5,12]. The parabolic partial differential 
equations are normally used in such fields like molecular diffusion, heat transfer, nuclear 
reactor analysis, and fluid flow [1,6]. 
  Partial differential equations (PDEs) widely used as mathematical models for 
phenomena in all branches of engineering and science. 
 
A    Parabolic Equation 
 
  
                      (i)
             
 
where                                                     The PDE is said to be parabolic if det(Z) = 0 . The heat  
conduction equation and other diffusion equation are examples. The heat equation is as                                        
                       
                            is a constant. Initial boundary conditions are used to give  
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Where                            The PDE is said to be hyperbolic if det(Z) < 0 .The wave equation   is   
an example of a hyperbolic partial differential equation. The wave equation is as 
                                            
                                 ,   is constant. Initial-boundary conditions are used to give 
 
 
 
 
 
 
 
 
 
 
C   Elliptic Equation 
 
 

            (iii) 
   

 
where                           The PDE is said to be elliptic if Z is a positive definite matrix with  
det(Z) < 0 . Laplace’s equation and poisson’s equation are examples. The Laplace’s equation  
 
is                                   Boundary conditions are used to give the constraint u(x,y) on   .  
 
where                                                 .. 
 
 
D     Finite Difference Method 
 
Finite Difference Method is a classical and straightforward way to solve the partial difference 
equation [1,2] numerically. It consists of transforming the partial derivatives in difference 
equations over a small interval and the continuous domain of the state variables by a network 
or mesh of discrete points. The partial differential equation is converted into a set of finite 
difference equations so that it can be solved subject to the appropriated boundary conditions. 
Assuming that u is function of the independent variables x and y, then divided the x-y plan in 
mesh points equal to      
 
Evaluate u at point P by: 
                                                       (iv) 
              
The value of the second derivative at P could also be evaluated by: 
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2.2   METHOD TO SOLVE PARTIAL DIFFERENTIAL EQUATIONS 
      

The most common method to solve the Partial Differential Equations is the Finite Difference    
Method.  

2.2.1: Finite Difference Method: According to heat flow equation we know that 2

2

x
u

y
u








.    

Now let us assume that our region of interest is     0bxa  and h and k are the mesh 
sizes in the x and t directions. A simple difference replacement of derivatives at  the node (m,n) 
in given equation gives the difference equation as  

 
                        

                         (vi) 

 

 Here we put y=t. 

 If we neglect the truncation error then we can write equation (vi) as  

   n
1-m

n
m

1n
m2

n
m

1n
m uu2u

h
kuu 





                 (vii)  

Here n
mu represents the value of u(x,t) at 

   X=a+mh,  t=nk 

 In schematic form eq’n (xv) can be written as  
    

                                             u=0 
 

 
 

Where r= 2h
k .The difference scheme is used to compute n

mu  line by line, starting from given 

data in the t-direction. Hence we can say that the order of accuracy of difference scheme or the 
truncation error of order ( 2hk  ). 

If we subtract (xiv) from (xv) then we can get 

   
 22n

1-m
n

1m
n
m

1n
m khk0r21             (viii)  

 Where )t,u(xu nm
n
m

n
m   and the effect of the round-off error is neglected. 

 

 

-1 

1-2r r r 

           
)h(0

h
txutxu2txu

k0
k

txutxu 2
2

n1,-mnm,n1,mnm,1nm, 



 

 

15 



2.3 DIFFERENCE SCHEME FOR EQUATIONS IN ONE SPACE DIMENSION         
WITH CONSTANT COEFFICIENTS OR SOLUTION OF PARABOLIC PARTIAL 
DIFFERENTIAL EQUATIONS: 

Consider an example heat flow equation 

   2

2

x
u

t
u








 

Here t and x are the initial and time space coordinates respectively, in the region 

       0tbxaR  

With initial and boundary conditions. 

The region R is replaced by a set of points kR which r the vertices of the grid of points (m,n) 
where x=a+mh,t=nk with Mh=b-a,M is an integer. The quantities k and h are the mesh sizes in 
the time and space directions respectively. The difference approximation at the nodal point 
(m,n) can be written as  

     n
m

2
x

1n
mt uruG                               (xvii) 

where )O(h)t,u(xh
x
u

h
kr 2

nm
2
x

2-
n

m
2

2

2 










              (xviii) 

here approximate value of u at ( nm t,x ) is denoted by  n
mu . 

In the implicit difference scheme it involves grid values at more then one grid points at time 
grid t=(n+1)k. Thus  implicit difference scheme becomes  

     1n
m

2
x

-12
x

1n
mt u)r(1uF                  (ix) 

Here   1nm
2
x

1-2
x

2-
n

m
2

2

t,xu)(1h
x
u










  +

12
1h

arbitraryh

4

2








 

 Example: Use the Schmidt scheme to determine the numerical solution of the  initial 
boundary value problem 

    
    
    

 

The Schmidt difference scheme is given by  

    n
1-m

n
m

n
1m

n
m

1n
m uu2uruu  
                                  

Where 
n
mu

is the approximate value of solution u(x,t) at nktmh,xx n0m  and 2h
kr  . If 

we choose 4
1h  and 6

1r  .The Difference scheme maybe written as 

    

    n
1-m

n
m

n
1m

n
m

1n
m uu4u

6
1uu  

                                      














0t0,t)u(1,t)u(0,
1xx,0sinu(x,0)

uu xxt
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Where m=1(1)3 and 0.n  The nodal points are shown below. By using the boundary 
conditions, we have 

 210n0u0u n
4

n
0  

   
 
 

                                    u(1,t)=0 

          
 
                      
 
        K 

 
Fig(i): Representation of nodal points  

 

Now we can obtain as, 

For  n=0,m=1,2,3; 
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 For n=1,m=1,2,3; 
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u(1,t)=0 

x-axis 

y-axis 

 

x-axis 0 
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      The solution u(x,t) is symmetric about the line x= 
2
1  

    NOTE: Similarly we have Difference Methods for Hyperbolic partial differential      
Equation and Elliptic Partial Differential Equation both. 

   Example of Difference Method for Elliptic Partial Differential Equation: 

 Solution Technique: 
 Elliptic equations in engineering are typically used to characterize    steady-state, boundary 

value problems. 
 For numerical solution of elliptic PDEs, the PDE is transformed into an algebraic 

difference equation. 
 Because of its simplicity and general relevance to most areas of engineering, we will use 

a heated plate as an example for solving elliptic PDEs. 

  Here equation as: 
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 Example : 
 
 
 
 
 
 
 
 
 
 
 

  

     

 Solution : 
 In addition, boundary conditions along the edges must be specified to obtain   a unique 

solution. 
 The simplest case is where the temperature at the boundary is set at a fixed value, Dirichlet 

boundary condition. 

        Now at point (1,1) the given Laplace Equation becomes: 

 
         
 
 
 
 

         Hence the final equations becomes: 
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We can write above equation in Matrix form as:   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
2.4   TWO-DIMENSIONAL PDE SOLVER  
 
A   Hyperbolic Partial Differential Equations 
 
Hyperbolic differential equations, includes the “wave equation” which is fundamental to the 
study of vibrating systems. It is instructive to outline the derivation of the simple wave equation 
in one dimension problem. 

The wave equation is given by the differential equation 
 
       

             (x) 
 
 
Subject to the boundary conditions 
 
 
 
         where   is constant. 
 
 
To set up the finite difference method, assume u=f(x) is the function of the independent 
variables x and t. Subdivide the x-plane into set of equal rectangles if sides . and kthx    
We introduce a time grid                      for n= 0,1,2,3,4..  and t is the time step size. We set  
      
     as the nth iterate of the pressure of the global point x. The time derivative  
 
in (4) are discretised by cantered second order finite difference, which gives the semi-discrete 
scheme:    
 
                                 (xi) 
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B   Two Dimensional Parabolic Equations 
 
A forward finite difference is used to approximate the time derivative. Consider the two-
dimensional of parabolic equations 
 
 
                            (xii) 
 
 
Applying the crank Nicolson scheme to the two-dimensional heat equation results in  
 
 
 
                     (xiii) 
 
 
This leads to the following finite difference equation  
   
   
 
 
 
 
 
 
 
 
where ji, and ijL are the generation and death rates, respectively. Under suitable regularity 
assumption one can expand N,P,Q, and R, use     and write the word 
equation above mathematically as: 
 
 
                     (xiv) 
 
 
With      and where the indices (i,j) have been substituted with the  
 
dependence of u and of all coefficients on the space variable. We can also write as 
 
          
                      (xv) 
 
Where, in two dimensions, W = (P, R). The general advection-diffusion model (xv) requires 
the specification of the drift, diffusion, proliferation, and death coefficient in the terms W, Q, 
     and L in particular of their dependence of the state variables. Based on central finite 
difference method, the discretization is shown as follow: 
 
Let           and applying the discretization to the right side, the equation  
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(xiv) becomes  
 
               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
C  Two Dimensional Elliptic Equation 
 
The two dimensional elliptic equation           can be further implemented to solve  
 
the large scale mathematical problem. Generally, finite-difference approximation to two 
dimensional elliptic equation is given by 
 
 
                             (xvi) 
 
 
 
 
                    (xvii) 
 
 
 
by multiplying each side with h2 , we have 
   
           
                   (xviii) 
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k
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 , then we will have the finite-difference approximation equation is as 
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The discretization of the mathematical model based on the finite-difference approximation to 
equation (28) can be written as,  
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                                 (xx) 
 
 
 
After applying the finite-difference approximation to equation (xx) is given by 
 
 
 
                     (xxi)             
 
 
 From equation (xxi) , it becomes  
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 where           If we bring the   terms to the right-hand side, it become  
 
  . Thus,  
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  By multiplying each side by h2 equation (35) becomes  
 
 
 
                   (xxiv) 
 
 
  The exact solution to the discretised problem obeys the equation 
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Thus, 
 
 
 
                                                                         
                  (xxvii) 
 
 
 
 
 
This equation cannot be solved explicit for fixed ji,r because there are five unknowns involved. 

Thus, if the nth iterate is denoted n
ji,r . 

 
 
2.5   PARALLEL PERFORMANCE EVALUATION 
 
The performance of the parallel algorithm will be analyzed in terms of the time execution, 
speedup, efficiency, effectiveness and temporal performance. The measurements are defined 
as follows: 
           

 Speedup:                                             (i) 
 
 
                                Effectiveness:                        (ii) 
 
 
 
              Temporal performance:        (iii) 
 
 
Here 1t  is execution time for a single processor and pt  is execution time for a p parallel 
processor 
 
 
Figure 1(a) shows that the execution time is decreasing with the increasing of the number of 
processors. The reduction of execution time as number of processors increase can also be seen 
in solving parabolic and hyperbolic problem. Figure 1(b) shows that the speedup increases 
when the number of processors is added. It is because the distributed memory hierarchy reduces 
the time consuming access to a cluster of workstations. The efficiency of a parallel program is 
a measure of processor utilization. Figure 1(c) shows that the efficiency decreases with the 
increasing of number of processors. As known, efficiency is the ratio of speedup with number 
of processors. So, efficiency is a performance closely related to speedup. The effectiveness is 
escalating with the increasing of the number of processors. The formula of the effectiveness is 
depending on the speedup, when the speedup increases, the effectiveness will also increase. 
Figure 1(e) shows that the temporal performance graph is proportional to the number of 
processors increase. This is because the execution time is decreasing versus the number of 
processors. It can be conclude that, from the aspect of execution time, speedup, efficiency, 
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effectiveness and temporal performance shows the performance of parallel algorithm is 
improved by the increasing of the number of processors. Communication and execution times 
is always affecting the performance of parallel computing. The Red Black Gauss Seidel which 
is effective is found to be well suited for parallel implementation on PVM where data 
decomposition is run synchronously and concurrently at every time level. The PVM system 
has been used for applications such as molecular dynamics simulations, superconductivity 
studies, distributed fractal computations, matrix algorithms, and in the classroom as the basis 
for teaching concurrent computing. 
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  Figure 2.1     Parallel Performance Evaluation (a) Execution Time (b) Speedup (c) Efficiency 
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Proposed Algorithm to solve Block Tridiagonal Systems 

 
Block Tridiagonal systems of linear equations arise in a wide variety of scientific and 
engineering applications. Recursive doubling algorithm is a well-known prefix computation 
based numerical algorithm that requires O(M3(N/P + log P)) work to compute the solution of a 
block Tridiagonal system with N block rows and block size M on P processors. In real-world 
applications, solutions of Tridiagonal systems are most often sought with multiple, often 
hundreds and thousands, of different right hand sides but with the same Tridiagonal matrix. 
Here, we show that a proposed recursive doubling algorithm is sub-optimal when computing 
solutions of block Tridiagonal systems with multiple right hand sides and present a novel 
algorithm, called the accelerated recursive doubling algorithm, that delivers O(R) improvement 
when solving block Tridiagonal systems with R distinct right hand sides.  

AZ = b is the form of block Tridiagonal system of equations which is represented by a matrix-
vector equation of the form in which the block Tridiagonal matrix A has N × N array of blocks 
where each block is an M × M array of numbers and the elements other than its three central 
block diagonals are each identically equal to zero. Vectors x and y are each of length NM. We 
will often refer to a block Tridiagonal system with N rows of M×M blocks simply as an (M,N) 
system. When M = 1, then the Tridiagonal system is called as a point Tridiagonal system. 
Here, we present a short review of this parallel primitive followed by a brief discussion of the 
theoretical complexity and empirical performance effects of directly applying the RDA, 
originally designed for point systems [27], to block Tridiagonal systems. 

 
3.1 PARALLEL SCAN 
 
Given N data items Z1,Z2, · · · ,ZN and a binary associative operator ʘ that operates on any two 
of these data items to produce another data item of the same type, a parallel  scan (prefix) 
computes the N partial scans  N21 s,....,s,s  defined by 
       si = Z1 ʘ Z2 ʘ Z3….. ʘ Zi                              (i) 
on P ≤ N processors. Denoting the complexity of the binary operation ʘ by κ, the complexity  
 
Of a parallel scan operation can be shown to be           in  
 
which a permutation network is used as the model of parallel computation.    In a permutation  
network, the cost of each round of communication is modelled as    and each  processor 
is allowed to send and receive at most one message during a communication step. Here, τ is the 
start-up cost for a communication step, μ is the transfer bandwidth of the communication 
network and  is the size of the largest message. Permutation networks closely model the 
behaviour of most multistage interconnection networks. The total scan Ns can be 
simultaneously computed on each processor along with the partial scans without incurring any 
additional communication overhead. Only the computation cost per processor is doubled. Thus, 

  





  P log  P log

P
N



Chapter 3 
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the total cost of a parallel scan operation that computes both the total scan  Ns  as well as the 

partial scans of N data items on P processors is also   





  P log  P log

P
N

 . 

3.2 RECURSIVE DOUBLING ALGORITHM (RDA) FOR (M, N) SYSTEM 
 
3.2.1 Numerical Formulation 
 
For a (M , N) block Tridiagonal system, let Li, Di and Ui denote the lower, main and upper 
diagonal blocks, respectively, in block row i, With IUL N1    and 0zz 1N0   at the 
boundaries, block row i (1 ≤ i ≤ N) can be written as: 
                         

      i
-1
i1-ii

-1
iii

-1
i1i bUzLU-zDU- z      (ii) 

 
Which can be rewritten as  
        Zi+1=BiZi                              (iii)
                      
 
where  
 

                                         Zi+1 = 
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i
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i
1-

i
12
i

i
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i

11
i

bU-  B
LU-  B
DU-  B

               (iv) 

 
The dimension of  iB  is (2M + 1) × (2M + 1). Recursive substitution of Zi yields: 

Zi+1 = BiZi = · · · = BiBi−1Bi−2 · · ·B1Z1 = siZ1      (v) 
 
where 
                            

    si =
















100
sss
sss

23
i

21
i

21
i

13
i

12
i

11
i

= BiBi−1Bi−2 · · ·B1   (vi)

   
Note that is is a partial prefix (matrix-matrix product) scan that can be computed in parallel 

using a parallel prefix scan using Eqn (i). Also, the dimensions of blocks 21
i

12
i

11
i s,s,s and 22

is  are 

M×M while those of 13
is  and 23

is  are M×1. To compute Zi locally using the partial scans is , Z1 
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has to be computed first and made locally available on each processor (see Eqn (v)). Z1 is 
computed on each processor using the boundary conditions 0z 1N0  z as follows:  
     
              1NZ  =    is

1Z                              (vii) 
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z
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This yields   1  0 Z  11 z    where 0 is a M×1 zero-vector. It follows from Eqn (vii) that the total 

prefix product Ns is needed on each processor to compute 1Z  locally. As put forth in Remark 
1, a parallel prefix matrix-matrix product computes both the partial as well as the total products 
on each processor, thus making Ns  available on each processor. Algorithm 1 is an outline of 
the RDA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 3.1:   Proposed RDA for Block Tridiagonal Systems 
 
(i) Assign 







P
N  block rows to each processor. 

(ii) For each Local block row i , calculate -1
iU , 11

iB , 12
iB  and 13

iB  using Eqn (iv). 
(iii) Each processor computes the Local prefix matrix products N

P
s...,,s,s 21 in sequence 

manner.  
(iv) On each processor k, initialize the partial parallel prefix product (PPP) k

P
Nst




  and 

the Total product (TP) k

P
NsT




 . 

(v) Do a parallel scan on the matrices kt on processors 1 ≤ k ≤ P using matrix-matrix 
product as the binary, associative operator. 
(vi) For each Local block row i , compute is using the partial prefix product t computed 
in the previous step and locally available matrices. 
 
(vii) By scanning, assign TsN  (available) on each processor to calculate 1Z  using Eqn 
(vii). 
(viii) For each Local block row i, calculate iZ  using Eqn (v). 
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3.2.2 Algorithmic Complexity 
 
The algorithm executes in four stages, namely, (a) initialization (b) local serial prefix 
computation (c) non-local parallel prefix computation, and (d) finalization, as briefly described 
next. 

(a) Initialization: In steps (i) and (ii), the block Tridiagonal system is partitioned amongst 
P processors and the iB matrices are computed for the local block row indices. Based 
on Eqn (iii), this involves matrix inversion of one block-sized, matrix-matrix 
multiplications of two block sized and one block size matrix-vector multiplication for 
each block row index incurring a total computation cost of less than 








P
NM3O . 

(b) Local serial prefix computation: Computing the local prefix products on 






P
N  block 

rows incurs a total computation cost of less than 







P
NM3  in step (iii). 

(c) Parallel Prefix Computation: Each processor keeps track of two matrices, t and T. 
The matrix t stores the partial matrix prefix product while the matrix T stores the total 
matrix product. Both are initialized to the total prefix product as computed sequentially 
on each processor computed in the previous step. This is shown in Fig. 3.1 using an 
example with 12 block rows and 4 processors. The parallel prefix operation in step (v) 
has P log  stages. In each stage i, only the matrix T is exchanged between every pair of 
processors whose ranks vary in the bit position i . The matrix t is updated as t ← t ʘ T 
only if T is received from a lower ranked processor. locT  is always updated as locT ← 

locT  ʘ readT , where locT and readT are the local and received copies of T, respectively. 
Note that though matrix-matrix product is binary and associative, it is not commutative. 
As such, care should be exercised to preserve the order of matrix-matrix multiplication 
of Eqn (iv). In each step, at most two block-sized matrix-matrix products are computed 
incurring a cost of  3M . In addition, one block-sized matrix T is communicated 
between unique sender-receiver pairs in each of the P log stages for a total 

communication cost of   P log M2  .Therefore, the complexity of this nonlocal 

step is   P log MP log M 23   . 
 

(d) Finalization: The local portion of the final solution is recovered using steps (vi) 
through step (viii) as shown in Fig. 3.1. It involves an inversion of a block-sized matrix 
and a block sized matrix-matrix multiplication for each local block row for a total cost 
of 








P
NM3 . 

 Total cost: Summing up the costs of the four stages, the total runtime of Proposed RDA to 
compute the solutions of an (M, N) system with R different right hand sides on P processors 
is: 

            

                    





  P log MP logM

P
NMR.RT 233              (viii) 

    Which can be re-written as: 
                     PN,M,. R .cRT 1 f      (ix) 
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   Where 1c  is some positive constant and 

                                        P logM  P logM
P
NMPN,M, 233 f     (x) 

 
 Performance: Fig. 3.2 highlights the performance bottleneck of RDA-based block 
Tridiagonal solvers. The computing platform is described in Section V. The top curve of Fig. 
3.2(a), which plots the total runtime as the number of processors is doubled, illustrates its poor 
strong-scaling characteristics. To understand this poor scalability, it is convenient to split the 
computations in the RDA algorithm into two types local and nonlocal computations (see Fig. 
3.1). In the local computation phase, no inter-processor communications are involved. The 
non-local computation phase, on the other hand, is characterized by log P stages of 
communications akin to a parallel reduction operation. The ratio of time spent in the non-local 
phase to that spent in the local phase increases rapidly as the number of processors is increased 
for a fixed problem size, as shown in the lower curve of Fig. 3.2(a). This is because the non-
local phase scales as P logM3 and adding more processors yields no improvements in the 
parallel runtime of the non-local computation phase, despite near linear speed-up in the local 
phases of the RDA (see Fig. 3.2(b)). This imbalance between the time spent in the local and 
non-local phases get further magnified as P → N and the number of right-hand sides increase 
(see Fig. 3.3). One of the primary motivations of the new algorithm presented next is to reduce 
this imbalance. 

 
3.3 PROPOSED ACCELERATING RECURSIVE DOUBLING ALGORITHM 
 

The accelerated recursive doubling algorithm presented here is based on a mathematical 
formulation that separates the overall computations into two phases, one that is independent 
of the right hand side b, which we call the independent phase, and another that depends on it, 
which we call the dependent phase. This style of execution is similar to the forward-backward 
two-phase execution pattern of CRA. 
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Figure 3.1 Parallel Proposed RDA on a Tridiagonal system with 12 block rows on 4 processors. 
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Described in Section I. The algorithmic complexity of the right hand side independent phase 
of computations will be shown to be larger than the second phase.  
The proposed accelerated recursive doubling algorithm is presented next in three sub-parts. 
The first sub-part describes the numerical formulation of separating the original block 
Tridiagonal system of equations into the independent and dependent components. The second 
and third sub-parts describe the formulations of the independent and dependent phases, 
respectively. This new algorithm is ideal for computing solutions of block Tridiagonal systems 
with multiple right hand sides, especially for classes of problems for which it is 
computationally more efficient to use a recursive doubling algorithm than a cyclic reduction 
algorithm [15]. 
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number of right hand sides is increased. 
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3.3.1 Numerical Reformulation 
 
Based on Eqn (iv), it is apparent that the right hand side b enters the computation through the       

13
iB component of each matrix iB  Guided by this observation, we decompose each iB matrix   

as iB = iC + iF  
Where 
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   (xi)                  

 
Note that the non-zero components 11

iB , 12
iB and I of iB are matrices of dimensions M × M 

while the non-zero component 13
iB of iF is only an M×1 vector. The following two results, 

presented without proofs, can be easily shown to hold true: 
    
                              (xii) 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.3.2 Right Hand Side Independence Phase 
 
In order to divide the overall computations into a set of right hand side independent and a set 
of right hand side dependent computations, let a modified partial product be defined as: 
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Figure 3.3: Local and Non-local runtimes of RDA with varying number of right hand sides 
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Unlike the partial product is  defined in Eqn (vi), the modified partial product iQ does not 
depend on the right hand side. As such, when computing the solutions for R different right 
hand sides, the partial products iQ can be computed just once, stored and reused for each right 
hand side jb  for all 1 ≤ j ≤ R. 
 Complexity: The algorithm to compute the modified partial products is identical to steps (i) 
through (vi) of Algorithm 3.1.Therefore, the complexity of computing the modified partial 
products is  

      
            
 
 
3.3.3. Dependent Phase on Right Hand Side 
 
Based on Eqn (iv) and Eqn (xi), it is clear that when the right hand side jb , then ii CB    
implying that ii Qs  for all 1 ≤ i ≤ N and the solution can be computed by executing the 

finalization steps (vii-viii) in Algorithm 3.1. When 0b j   contributions to the original partial 

sums is  that are missing from the modified partial sums iQ , due to their definitions (see Eqn 

(xi) and Eqn (xiv)), need to be consistently aggregated with iQ  to recover the original partial 

sums j
is , superscripted here on with the index  j to indicate that it is evaluated with respect to 

the right hand side jb . Let j
iE  denote this contribution on block row i from right hand side jb

.The proposed accelerated recursive doubling algorithm is guided by these observations and 
outlined in Algorithm 3.2 where  jii E,QA  denotes the aggregation function. If the complexity 

of computing the matrices j
iE  can be proven to be smaller than the complexity of computing 

the modified partial products iQ  the overall complexity of Algorithm 3.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Can be shown to be smaller than that of Algorithm 3.1. To prove the smaller complexity, it is 
necessary to establish the following: 
 Definitions of j

iE  and the function  jii E,QA . 

 Complexity of computing j
iE  and  jii E,QA . 

  





  P log MP logM

P
NM. 233   

Algorithm 3.2   Proposed Accelerated RDA 
 
(i) Calculate and store iQ  using steps (i)-(vi) of Algorithm 3.1. 
(ii) for all right hand side jb do 

(iii) Calculate j
iE  for each local block row i . 

(iv)  jii
j
i E,QAs   For each local block row i. 

(v) Calculate solution jx using Eqn (v). 
(vi) end for 
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 Correctness of the aggregation function  jii E,QA . 
 
Note (i): In the remainder of this section, the superscript j will be suppressed for ease of 
presentation with the understanding that all definitions and analyses hold true for each right 
hand side jb . 
 
 Definition: Let iE  be defined as follows: 
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                  (xiii) 

 
   Where                  
  
   and the aggregation function be defined as: 
    
                    (xiv) 
 
 Complexity: From the definitions above, it is clear that prior to computing the matrices iE , 
matrices iV and then iZ  need to be computed in that order. The steps to compute iE are the 
following: 

 
 
 
 
 
 
 
In analysing the complexity of computing iE , it is assumed that the modified partial products 

iQ and their inverses -1
iQ  have already been computed and stored during the preceding right 

hand side independent phase. 
 
Step i: By calculating iV  involves a block-sized matrix-matrix multiplication (see Eqn (xiii)) 
that requires complexity  3MO  work, it can be shown that iV can be computed using  2MO  
work as follows. Consider the following matrix-matrix product required to compute iV . 
 
 
 
 
 
 
                    (xv) 
 
 
Note that 13
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i Bq and 13

i
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i Bq  are both matrix-vector multiplications, each costing  2MO  and 
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(i): For each local block row i, calculate iV  using Eqn (xiii) 
       
(ii): Do a parallel scan to calculate iZ using Eqn (xiii)  
       
(iii): For each local block row i, calculate iE using Eqn (xiii). 
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structure of iD  defined through Eqn (xi), the computation of iV requires  2MO  computation, 

even if 1
iQ is dense, implying that the real cost of computing iV  for all local block rows is 

only 







P
NM 2O and not 








P
NM3O . 

Step ii: It is clear from step (i) that each iV can be implemented as a vector of length 2M + 1, 
as shown in Eqn (xv). Note that is a prefix sum as shown in Eqn (xiii). 
Since iZ  is a prefix sum over the vector forms of iV  (see Eqn (xv)), they can be computed 
using steps (i)-(vi) of the parallel scan algorithm as described in Algorithm 3.1 with appropriate 
modifications to reflect that the binary, associate operator is a vector addition of length 2M + 
1 and the message size that is communicated in the non-local phase is of size M. The complexity 
of this step is, therefore,   






  P log MP logM

P
NM  . 

Step iii:  In this step, each matrix-matrix multiplication jiZQ  is of the form: 
 
 
 
 
 
 
 
 
                   (xvi) 
 
 
Since 13

iZ and 23
iZ  are vectors with dimensions M ×1 and 33

iZ  is a number, each non-zero 

sub-matrix of the product jiZQ is a sum of three vectors of length M of which the first two are 
computed using a matrix-vector product of an M × M matrix with a vector of length M. This is 
shown in Eqn (xvi). Therefore, computation of the product jiZQ in Eqn (xvi) requires 







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P
NM 2  work when aggregated over all local block-rows. Since the aggregation function 

 jii E,QA  is a simple sum of two  2MO  sixed matrices, step (iv) of Algorithm 3.2 requires 
 2MO work. A matrix-vector multiplication that requires  2MO work computes the solution 

in step (v). Therefore, the cost of aggregating the contribution from R right hand sides is  
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3.3.4 Correctness: The correctness is proven using following lemma: 
    Lemma 1: For all N1  i  

         iii E Q  S                             (xvii) 
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Proof: The base case with i = 1 is trivially true from the definitions in Eqn (iv), Eqn (xii) and    
Eqn (xiii). Let the inductive hypothesis be true for i = k − 1. Then: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                           (xviii) 
 
 
 
 
 
 
3.3.5 Total Cost 
 
Step (i) of Algorithm 3.2 executes steps (i)-(vi) of Algorithm 3.1 

  





  P log MP logM

P
NM. 233   using work. Summing up the individual costs of 

steps (iii)-(v) of Algorithm 3.2, it follows that the work required to add the contribution from 
each right hand side to the modified partial products iQ is 

  





  P log MP logM

P
NM. 233  work. Therefore, the complexity of proposed ARDA 

to solve an (M,N) block Tridiagonal system with R right hand sides on P processors is: 
 
 
 
 
 
                    (xix) 
 
with positive constants 2c and 3c  and  f defined by Eqn (x). 
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3.4 RELATIVE SPEEDUP 
 
We define a performance metric, called relative speedup S(R), to compare the relative 
performances of the original and the accelerated algorithms. Using Eqn (ix) and Eqn (xix), the 
relative speedup of the Proposed ARDA with respect to the RDA for a (M, N) block Tridiagonal 

system with R right hand sides is defined as 
(R)T

T(R)  S(R) ' . It follows that:  

M/cR/c
1

RcMc
RMc

(R)T
T(R)  S(R) '

2
'
132

1
' 




              (xx) 

 
where 12

'
1 c / cc   and 13

'
2 c / cc  are positive constants. Therefore, as   

 
3.5 RESULTS 
 
To validate these results, both algorithms were implemented and executed on a Cray XT5 
machine with 2 twelve-core AMD MagnyCours 2.1 GHz processors per node and 32 GB of 
memory in each compute node. The nodes are connected via a high-bandwidth Cray Gemini 
interconnect. We study the performance improvements due to the new algorithm based on how 
the relative speedup and scalability vary with respect to the number of right hand sides and the 
block sixe. 

 
3.5.1 Relative speedup 
 
Fig. 3.4 (a) shows the speed-up S(R) (see Eqn (xx)) when solving for a block Tridiagonal system 
with block-sixe M =256 and number of block rows N = 128 with changing number of right 
hand sides using P = 128 processors. The relative speedup grows rapidly with increasing 
number of right hand sides. This can be understood from the observation that as the number of 
right hand sides increase, the time spent in the local computing phases (see Fig. 3.1) remains 
nearly the same in both the RDA and Proposed ARDA algorithms (since the granularity N/P 
remains the same) while the net gain in the time spent in the non-local phase keeps adding with 
increasing number of right hand sides. This is shown in Fig. 3.4 (b). Compare this with Fig. 
3.3. The dramatic reduction in the runtimes of the non-local phase of the new algorithm is a 
result of two important modifications to the RDA, namely: 
 
 The binary, associative operator in the non-local phase executed for each right hand side in 
the RDA is a matrix-matrix product that requires  2MO  work while it is a vector addition that 
requires O(M) in the Proposed ARDA. 
 
 The message sixes exchanged reduces from  2MO in the RDA to O(M) in the Proposed 
ARDA.  

 
3.5.2 Scalability 
 
Strong-scaling results are presented in Fig.3.5. As the number of processors increase, the 
amount of computations in the local phases, which scales as ∼ 

P
N  in both algorithms, decreases 

and becomes comparable. As such, the runtime difference between the two algorithms is 
influenced primarily by the computations in the non-local phase, which scales as ∼ P logRM3

O(R).  S(R) , M   
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in the RDA and ∼ RM log P in the Proposed ARDA for R right hand sides, an improvement 
that only gets magnified with increasing block sixe as seen in Fig. 3.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 3.6 shows the effect of changing the granularity and the block sixe on the relative 

speedup       for different numbers of right hand sides on P = 32. Consider a column group in 
any one of the plots, say, the column group for R = 32 of Fig.3.6 (a). As the block sixe, M, is 
doubled, the relative speedup, S(R), increases to a maximum and then starts decreasing. This 
behaviour holds true for all column groups in Fig. 3.6 and can be understood from the fact 
that as the block size increases for fixed N, P and R, the time spent in the local phase of the 
computation which scales as ∼ 3M in both algorithms dominates and offsets the runtime gains 
from the non-local computations. 
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Now, consider the column group for R = 32 for all three granularities shown in Fig. 3.6. Clearly, 
the relative speedup increases as the granularity 

P
N → 1 in all cases. This is the strong-scaling 

effect shown in Fig. 3.5. To summarize, the effect of granularity is that it controls the ratio of 
time spent in the local and non-local phases in both algorithms. When the time spent in the 
local phase 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dominates (large granularity), the new algorithm performs at least as well as the original   
algorithm and the relative speedup tends to unity. On the other hand, when the granularity of 
the problem tends to unity, the time spent within the non-local phase increases. The larger the 
time spent in the non-local phase, the greater the relative speedup and the new algorithm 
delivers vastly superior performance (compare Fig. 3.3 and Fig. 3.4(b)).  
It is very important to understand that the relative speedup defined in Eqn (xx) is valid even 
for P = 1. However, for computational problems of relevance to today’s breed of large-scale 
computing, both N and P are typically very large. For such problems, the relative speedup 
S(R) delivered by the new accelerated algorithm proposed is significant.  
Numerical solutions obtained by both algorithms mutually agreed in all cases, though not 
every solution was stable. A detailed investigation of the numerical stabilities of the two 
algorithms is outside the scope of this study, which is focussed exclusively on their parallel 
runtime performance and scalability issues. To make RDA and Proposed ARDA numerically 
stable for the same classes of Tridiagonal matrices for which cyclic reduction algorithms are 
stable,  
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an LU-decomposition of the matrix A is computed and the resulting equation Ax = LUx = b is 
computed in two steps [29]. In the first step, the system Ly = b is solved, where y = Ux. In the 
second, the system Ux = y is solved. Each of these steps can be cast into the same prefix 
computation based algorithm as the one presented here. As a result, these pre-processing steps 
do not add to the overall complexity of either the original (RDA) or the Proposed ARDA 
algorithms presented in this chapter. However, it can change the overall constant in both.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6 (c) Granularity N/P=4 
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A Proposed Parallel Algorithm for solution of 3D Hyperbolic PDE  

 
Consider the 3D second order hyperbolic equations defined  
 
in the region          of the following form as 
 

 

              (i) 

 

Where      . 

The initial condition consist of   

            (ii) 

and the boundary conditions consist of  

 

            (iii) 

 

 
This equation is commonly encountered in physics and engineering mathematics such as 
vibration of structures and signal analysis. In recent years, various numerical schemes have 
been developed for solving one, two and three dimensional hyperbolic equation [30-39]. The 
scheme is proven to require lesser execution time than the others explicit group methods [40]. 
As an extension to these works, Kew and Ali [41, 42] presented the utilization of domain 
decomposition techniques on explicit group methods and parallelized it using OpenMP 
programming environment. The method is unconditionally stable and applicable to singular 
problem. In this chapter, we present a new explicit group relaxation method derived from the 
standard seven-point difference approximation for the solution of (i). This explicit group 
method is developed using small fixed size group strategy which require lesser execution times 
than the classic point iterative method. The method is then parallelized using OpenMP 
environment with the utilization of domain decomposition technique. In the next section, a 
brief overview will be given on the formulation of explicit group method for the three 
dimensional telegraph equations. The parallelization using domain decomposition technique 
under OpenMP programming environment will be discussed in Section 3. Section 4 presented 
the numerical experiments and the results. Finally, concluding remarks are given in Section 5. 
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4.1 METHOD FORMULATION 

In solving problem (i) using finite difference approximations, we let the spatial domain,    

be discretised uniformly in x-,y- and z- directions with mesh size    

where n is an arbitrary positive integer. The grid points are given by , 

      Where m=1,2,3….. and  k>0 be the time steps. Let m
lj,i,U  be the 

exact solution of the different equation and m
lj,i,u be the computed solution of the approximation 

method at the grid point (1) can be approximated by various finite difference schemes. One 
commonly formula is the standard seven point difference approximation 

 

      

            (iv) 

 

 

 Where  

 
 
The iterations for this standard centred seven-point difference scheme are generated at any time 
level on all grid point using (2) until convergence is achieved before proceeding to the next 
time level. The process continues until the desired time level is reached. Consider the standard 
seven-point formula (ii) which was derived from the centred finite difference discretisation. 
The mesh points are grouped in cubes of eight points (Fig. 4.1) and applying (ii) to each of 
these points will produce the (8x8) systems of equations in the form 
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This matrix (3) can be inverted to produce an eight points explicit group (EG) equation 
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Where  

 

The iterations are generated on these groups of eight mesh points and it is treated explicitly    
similar to the way where the single point is treated in the point iterative method. Similarly, 
the process is repeated until the desired time level is achieved. 
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Figure 1: Computational molecule for Explicit Group 
method 
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4.2 PROPOSED DECOMPOSITION TECHNIQUE   
 
Most domain decomposition methods (DDM) have been developed for solving elliptic [43, 44] 
parabolic [45, 46] and hyperbolic problems [41, 42]. They have been considered as very 
efficient methods for solving partial differential equations on parallel computers [46]. They can 
be classified into two classes; overlapping and non-overlapping methods with respect to the 
decomposition of the domain. In [41, 42], Kew and Ali have demonstrated the use of DDM for 
the explicit group methods by using the overlapping subdomain and Schwarz alternating 
procedure (SAP). This SAP operates between two overlapping sub-domains; solving the 
Dirichlet problem on one sub-domain in each iteration by taking the boundary conditions based 
on the most recent solution obtained from the other sub-domain. The details of the SAP can be 
obtained in [47]. In order to implement this domain decomposition algorithm, ordering 
strategies need to be considered for each finite difference discretization scheme due to the 
shared boundaries between sub-domains [41, 42]. The solution domain is decomposed into 
blocks as shown in Fig. 4.2. Referring to Fig. 4.2, when the point 1 in 1 Ω is computing, points 
2 – 7 at the same time level needs to be used if (3) is used. However, points 1 – 6 are from 
subdomain 1 Ω while point 7 is from sub-domain 2 Ω . In the case of parallelization, the sub-
domains 1 Ω and 2 Ω are computed concurrently. There is a possibility that the solutions at the 
points 7 is updating on the respective sub-domains when the point 1 are being computed. This 
may cause inaccuracy in the numerical results. Thus, we need to organize the ordering 
strategies to prevent any conflict on the usage of points among sub-domains. With this in mind, 
a red black group ordering strategy is introduced to this EG scheme. The algorithm of this 
scheme is presented in Algorithm 4.1. The same concept of proposed domain decomposition 
ordering strategy can also be implemented for the standard centred seven-point scheme. 
Algorithm 4.2 presents the syntax of implementing the program on multiple-core processor. It 
is observed that Steps (vii) – (xiv) in Algorithm 4.1 is the most expensive part of the algorithm 
and therefore stands to gain the most advantage from the parallelization process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.2 Proposed Explicit group scheme method 
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TABLE 4.1 
ALGORITHM 4.1: Algorithm for Proposed Explicit Group Method  

 
 

(i) Choose an initial guess s to the solution 
(ii) For each time step: 

a. Firstly set a boundary condition 
b. Up to convergence level, do(in global): 
c. Recognize the boundaries values of subdomain 
d. Up to convergence level , do(in global): 

(iii) For each subdomain: 
a. Solve at the black group points 
b. End do 

(iv)  For each subdomain: 
a. Solve the red group points 
b. End do 

(v) Check the local convergence test 
a. End do 

(vi)  Check the local convergence test 
a. End do 

TABLE 4.2 

ALGORITHM 4.2. Line of Code for Implementing the Program on Multicore 
Processor 

#include<omp.h> 

void main() 

{     int num_threads; 

omp_set_num_threads(omp_num_procs()); 

#pragma omp parallel for 

{ 

compute the points in each sub-domain 
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4.3 NUMERICAL EXPERIMENTS AND RESULTS 

In order to demonstrate the viability of the proposed method in solving the three dimensional 
second order hyperbolic equation (i), experiments were carried out on a quad core i7 CPU 2.0 
GHz, 4GB of RAM with Window 7 operating system using Microsoft Visual Studio 2010. This 
experiment is to solve the hyperbolic problem (i) with the analytical solution [34] 
 

                      (vii) 

                     (viii) 

The boundary and initial conditions can be obtained from the analytical solution. The proposed 
group method is a three level scheme. The starting values of u(x, y, z) at the first time level 
need to be obtained before any computation starts. The values may be obtained using the Taylor 
series expansion 
 

                       (ix) 

 
Where u and t , u are known explicitly at t = 0 .The values of relaxation factor for the various 
mesh sizes are set equal to 1.0. The convergence criteria used throughout the experiment was 
the l∞ norm with the local and global error tolerances were set equal to 610  and 710  , 
respectively. Throughout the computation, the values of α =10.0 and β = 5.0 . The RMS errors 
are tabulated at T = 2 for a fixed λ =k / h=3.2 for several mesh sizes of 16, 32, 64 and 128 and 
are listed in Table 4.3. The speedup is used to measure the performance of the parallel 
algorithms compared to the corresponding sequential algorithms. The speedup formula used is 
in the form of  
    
 

 

 

It can be observed that the computational results obtained from Proposed explicit group 
method(EG) maintained the same degree of accuracies with the standard point method. The 
Proposed EG method requires lesser computing times compared to point method due to its 
lower computational complexity. As shown in Table III, the execution times of the parallel EG 
can be saved up to about 34% compared to the sequential EG and 39% for the standard centred 
seven-point method for the mesh size of 128. The percentages vary for difference schemes.  
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4.4 EXPERIMENTAL RESULTS:                                            
   
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.3:  

 Non Parallel (1 Thread)  Parallel (4 Thread) 
 ℎିଵ Iter RMS Error Elapsed 

Time 
 Iter RMS 

Error 
Elapsed 

Time 
Speed-

up 
          

Standard 
Point 
Method 

16 44      6.55E-04  0.226   44 6.55E-04  0.221 1.023 
32    66      3.17E-04  5.573   66 3.17E-04 4.683 1.19 
64    87      1.58E-04 155.341   87 1.57E-04 118.445 1.312 

128    99      8.34E-05 4536.632   99 8.35E-05 2771.018 1.637 
          
Explicit 
Group 
Method 

16    25      6.56E-04  0.141   25 6.56E-04 0.137 1.029 
32    37      3.16E-04  2.95   32 3.16E-04 2.615 1.128 
64    49      1.55E-04 77.821   49 1.55E-04 62.095 1.253 

128    55      7.97E-05 1988.437   55 7.96E-05 1312.725 1.515 
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CONCLUSION

 
Solving block Tridiagonal linear systems with multiple right hand sides R arise in a wide range 
of scientific applications. In this thesis, we presented a parallel, accelerated recursive doubling 
algorithm that delivers O(R) speedup improvement over the original recursive doubling 
algorithm. Since the number of different right hand sides is typically very large, this speedup 
translates to significant overall performance improvements in practice. The numerical 
formulation, its algorithmic complexity as well as the performance advantage of the new 
algorithm are discussed in detail. Numerical stability of both algorithms in the context of block 
Tridiagonal systems is the subject of ongoing investigation. To our knowledge, the proposed 
accelerated recursive doubling algorithm, has not been reported before in the literature. In this 
thesis, the parallel implementation of a new explicit group relaxation method, derived from the 
standard focused seven-point difference formula has been presented in solving the 3D telegraph 
equations. The parallel implementation utilizes the proposed domain decomposition technique 
on the discretized solution domain using OpenMP programming environment. For comparison 
purposes, we also include the RMS error and the execution timings of the point-wise scheme; 
the standard centred seven-point method. It can also be observed that the parallel algorithms 
manage to save up approximately 33% of the computational costs compared to their sequential 
algorithms. The explicit group relaxation method is able to take advantage from parallelism 
implemented on multi-core technology environment. Research on other explicit group method 
of the same class like the Explicit Decoupled Group and its variants are under investigation 
and will be reported soon. 
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