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1.1 Introduction 

CHAPTER 1 

Introduction 

In centralized database, data is stored and maintained at a particular node. One of the key 

problems with the centralized database is the central point failure. This leads to poor 

reliability of the system. This along with other problems lead to distributed database 

systems. There are several other reasons why distributed database were developed [CP84]. 

The first one is organizational and economic reasons, as most of the organizations have a 

decentralized structure and they may wish to share their data. This can be suitably 

addressed by designing a distributed database system. Further, a need may arise to 

integrate existing databases, which may be autonomous and heterogeneous in nature. This 

problem is addressed by constructing a global schema as in case of federated or 

multidatabase systems [SL90]. Another reason is that the distributed database may support 

smooth incremental growth for database with minimal impact on the existing system. 

Also, the distributed database may result in reduction of the communication overhead by 

replicating data on different sites. Another important advantage of distributed database 



over centralized database is high reliability and availability thereby resulting in system 

being in operation despite of failure of any site in the network. In other words, it overcome 

the problem of central point failure. 

Distributed database can be defined as a collection of multiple, logically interrelated 

database distributed over a computer network [VSVlO] [CP84] [OV91]. These logically 

interrelated databases are managed by Distributed Database Management System 

(DDBMS) [VSVlO] [OV91]. A distributed database management system supports the 

creation and maintenance of distributed database. The DDBMS is of two type namely 

homogeneous and heterogeneous. The homogeneous DDBMS usually refers to a DDBMS 

with same DBMS at each site, even if the computers and the operating systems are not the 

same[CP84][L81]. A heterogeneous DDBMS may have many different types of DBMS 

being used across sites[CP84][L81]. 

One of the key issues in distributed databases is the processing of queries posed on it. The 

queries posed on a distributed database may require processing at different sites of a 

network. This referred to as distributed query processing is discussed next. 

1.2 Distributed Query Processing 

A query posed on a distributed database is decomposed and rewritten in a manner so that it 

can be processed against the component databases. The aim is that the query response time 

is minimum. To reduce this time and other query processing overheads, a query processing 

strategy exist that describes the way in which the query is processed. Several technique 

exist that can be used to process a query, most of them are based on shipping the data from 

one site to another or itself. To join operation is usually used to process such queries. 

The query processing architecture consists of components like parser, query rewrite, query 

optimization, code generation, query execution engine and supporting components such as 
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catalog Meta data and Base data [KOO]. The query processor takes as input the user query 

in SQL (or OQL etc.) and translates and optimizes the query to generate a executable 

query plan. The parser take the query and translate it into internal representation (e.g., a 

query graph [JW+90][ PH+92][KOO]. This parse can also be used for centralized database 

and distributed database. The Query rewrite transforms a query in order to carry out 

optimization. These transformations may include elimination of redundant predicates, 

simplifying expressions and the nested queries. One of the key goals of the query rewrite 

is to make query as much declarative as possible [KOO; PH+92], so that a poorly expressed 

query, though declarative, may force a typical plan optimizer to choose a sub-optimal 

executions plans. The major goal of query rewrite is therefore the transformation of 

procedural queries into equivalent and declarative queries. The query optimization phase 

is concerned with deciding which indices to be used to execute a query and which methods 

to be used to execute the operation. These operations may be joins, group by etc. If join 

operation is used then the order in which it should be performed so that result can be 

retrieved in the shortest time. By query optimizer it is also decided that how much 

memory is required to execute the query. Query optimizer decides the site in which the 

operation is to be executed. For this, query optimizer enumerates alternative plan so that 

best plan can be chosen. This best plan is chosen on the basis of some cost estimation 

model. Mostly all commercial query optimizer uses dynamic programming to enumerate 

plans efficiently[KOO]. The fourth phase is plan that defines the way in which to execute a 

query. It is seen that almost all the database systems represent a plan in the form of a tree. 

The nodes of the plan are operators, and every operator carries out one particular operation 

like join, group by etc. The nodes of a plan are annotated, indicating where the operator is 

to be carried out. In the tree, it is decided the site in which the join operation is 

performed[KOO]. The code generation phase is concerned with transforming the plan into 
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executable plan. In System R, for instance, this transformation involves the generation of 

an assembler-like code to evaluate expression and predicates efficiently [KOO][ L W79]. 

The Query Execution Engine provides generic implementations for every operator and are 

usually based on an iterator model [KOO][ G93] where operators are implemented as 

iterators and all iterators have the same interface. As a result, any two iterators can be 

plugged together and thus any plan can be executed. The catalog is used to store all the 

information regarding parser, query rewrite and query optimizer. It stores the schema of 

the database like definition of tables, views, user defined types, function, integrity 

constraints, partition schema etc. Catalog stores the physical information, which is the 

location of copies of partition of tables, and the information about indices and statistics 

which helps to calculate the cost of a plan. In distributed database catalog is replicated and 

stored at different sites so that the communication cost of data transfer from one site to 

another site is reduced. This can be dealt by distributed query optimization. 

1.3 Distributed Query Optimization 

In distributed query optimization, an optimizer has basically three components namely the 

search space, search strategy and the cost model [ AA005]. The search space is defined as 

the number of alternative plans for a user query. These plans are equivalent with respect to 

producing the same results. They differ on the execution order of the operation and the 

way they are implemented. The search strategy is concerned with exploring the search 

space to find the best execution plan. The cost model is used to predict the cost of each 

plan. The cost model consist different type of elements [VSV10][0V91] like the 

secondary storage cost, memory storage cost, computation cost, communication 

cost[VSVIO] [AA005] [ENOO]. 
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1.3.1 Search Space 

As we know that the search space is the set of all possible query execution plans. These 

query execution plans produce the same result. The number of ways in which the query 

plans can be generated is an NP hard problem because of the possibility of large number 

of ordering of joins [ AA005] [IK84]. The solution of the plan is described by a query tree 

for executing the join expression and every point of search has cost associated with it. The 

cost function maps the query tree to their respective costs. Tree can be a binary tree in 

which base relations form the leaves and joins operations works as inner nodes of a tree. 

The edge of tree reflects the flow of data in the tree. The join is commutative and 

associative in nature. As the number of relations increases, the number of query plan also 

increases in an exponential order [SMK97]. To search for a best query plans amongst 

every query execution plan is a time consuming task as number of relations required for 

processing a distributed query may be high. This in tum may lead higher cost. This can be 

addressed by generating plans that minimizes the cost [ AA005]. 

There are different type of search space are like left deep and right deep tree [ AA005]. In 

Left deep tree, the tree is consist of all queries where the inner relation is a base relation. 

There are n! Ways to allocate n base relations to the tree leaves [AA005]. Left deep tree 

provides much smaller space in which it can find the optimal solution [SA+ 79]. On the 

other hand, the right deep tree is concerned with a kind of tree in which the inner relation 

is base relation and it is right oriented. It is like left deep tree but in right orientation. Hash 

join being asymmetric is used to distinguish between left deep and right deep tree. It also 

known that hash based join is most efficient for equi-join [DG92]. Zigzag tree [ZZB93] is 

generally used in distributed and parallel databases. This tree is intermediate format 

between left deep tree and right deep tree. Zigzag tree gives better performance when there 
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is limited memory space and temporary relations are not staged to disk[ZZB93). Bushy 

tree is also a kind of search space in which search space allows join nodes where both 

operands are composite. There is no base relation involved in it and therefore the solution 

in search space are not restricted. So bushy tree includes left deep as well as other special 

tree shapes as subsets without having restriction of left or right shape [AA005] thereby 

resulting in the number of solution being higher than the cardinality of the left deep space. 

Bushy tree is more appropriate for exploiting independent parallelism [AA005]. It is also 

suitable for parallel machine if the relations are partitioned on disjoint homes where home 

is defined as a set of nodes stored at particular place [CYW96][KG99][SMK97). 

1.3.2 Search Strategy 

Search strategy is defines an enumeration strategy using an enumeration algorithm 

[AA005). It aims to find the plans in an efficient and cost effective manner. Dynamic 

programming forms the base in most of the search strategy. There are two approaches to 

solve the search strategy problem. First one is deterministic approach, which builds plans 

on base relations and join one or more relation at each step till complete plan is obtained. 

The partial plans that may not lead to optimal plans is pruned. This result in reduction in 

the optimization cost. The plan which is economical is retained till the complete 

construction of the plan. 

The next approach which is known as randomized strategy. In randomized strategy, focus 

is on finding the optimal solution around some particular point [IW87] [SG88). Though 

the randomized strategy does not guarantee optimal solution, it does not cost much for 

optimizating the plan in terms of memory and time consumption [LV+94). The 

randomized strategy starts with some randomly selected plan and then tries to find the 

neighbor plan and compare the cost of plan with neighbor plan. If the neighbor plans cost 
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is less than the starting plan then the neighbor plan is taken as a solution plan and again it 

starts with taking the neighbor plan. This goes on till it finds a plan which has no 

neighbour having less cost, for a pre-defined number of neighbours. The most important 

advantage of random strategy is that it has constant space overhead [KKOO]. 

Several deterministic optimizations algorithm and techniques exist of which dynamic 

programming is one of the key techniques. Dynamic programming works very well if all 

queries are in standard query language, moderately complex [KKOO]. Dynamic 

programming, however, does not work well for complex query plans. Dynamic 

programming works in bottom-up way [ AA005] by first generating the access plan for 

every table involved in the query. The access plan may consist of one or two operators 

resulting in different access plans for a table. Next, it considers all possible ways to join 

tables. These may be two way join plans by using the access plans of the tables as building 

blocks and calling the join plan function to build a join plan. This may further lead to three 

way join plans. Next, it generates the four way join plan by considering all combination of 

two way join plans and all combination of three way join plans with an access plan. In 

this way dynamic programming continues to produce five ways, six ways join plan and so 

on up to n-way join plans. Lastly, the n-way join plans are finalized by the finalize plan 

function in order to arrive at complete plans for the query [KKOO]. The dynamic 

programming discards or prunes inferior building blocks after every step using prune 

plane function. Dynamic programming enumerate the two way join plan by considering 

only those plans whose cost is economical to other alternative plans. For example, suppose 

there are two join plan A r:><J B and B r><J A. It will take either A r><l B or B r><l A whosever 

cost is cheaper. The plan with lesser cost is retained and considered as building block for 

three way plan, four way and so on up to n way join plan. Now on the basis of these 

cheaper cost join, dynamic programming would produce the three way join like 
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(c 1><1 B)1><1 A and(B 1><1 A)l><l C. Now again it looks for a plan with cheaper cost and 

in this way it goes on and finally finds the access plan with minimum cost. One important 

property of dynamic programming algorithm is that the query optimizer can be extended 

easily. Since in distributed database, table is replicated on different sites, extend the 

dynamic programming requires a little bit change like the access plan function must 

generate different access plans for every site at which the table is replicated [KKOO] 

[CS94] [CS96]. The join plan function must generate different join plans specifying that a 

join can be carried out at the site at which the outer table is produced, at the site at which 

the inner table is produced, and at all other interesting and participating sites. Here 

interesting site is defined as the site containing the query results. In this way dynamic 

programming can be used in distributed query optimization. The time complexity of the 

dynamic programming in distributed database system is 0 (s3*3°) and space complexity of 

dynamic programming in distributed database is O(s*2°+s3)[KKOO]. 

Another query optimization technique is greedy algorithm [P74] [S89] [SYT93]. It has 

three phases. Greedy algorithm also works in the bottom up way. This algorithm has the 

same access plan, join plan and finalize plan function in order to generate plans. Next, the 

greedy algorithm carries out a very simple and rigorous selection of the join order by using 

a plan evaluation function to select the next best join. The quality of plans produced by the 

greedy algorithm strongly depends on the plan evaluation function. Though this algorithm 

runs much faster than dynamic programming, it may produce worse plans [SMK97]. The 

time complexity of the greedy algorithms is O(n3
) in a centralized system and O(n3*s3

) in 

a distributed database system. The space complexity of the greedy algorithm is O(n) in a 

centralized system and O(n*s) in a distributed system [KKOO]. 

The early work in the field of iterative dynamic programming[SY98] where dynamic 

programming is applied iteratively [KKOO] [AA005]. It means dynamic programming is 
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applied many times in optimizing the query so that solution would be optimal. It is the 

combination of dynamic programming and greedy algorithm. The advantage of iterative 

dynamic programming is that it produces the best plans when dynamic programming is not 

viable due to its high complexity. Secondly variants of iterative dynamic programming are 

adaptive and produce where dynamic programming turns out to be not viable. Third, all 

iterative dynamic programming algorithm can be very easily integrated into an existing 

optimizer based on dynamic programming. The motive behind iterative dynamic 

programming is to find the optimal solution by combining the dynamic programming and 

greedy algorithm. 

The randomized strategy is concerned with random move in the search space [ AA005]. 

These moves are defined by certain rules. This move defines the edges between two 

solutions. For example, during random move one query plan is selected and the cost of 

selected query plan is computed by some cost function and then again random move is 

done to select the next query plan and the cost of both query plans is compared if the cost 

of second query is less then the second query plan is considered as optimal and again 

random move is performed. This process goes on till some stopping criteria are fulfilled or 

if there is no applicable move exists. Actually the second query plan selected is considered 

as a neighbor of the first one. The neighbor can be selected using the uphill move or 

downhill move depending on the cost function. If the cost of neighbor is lower, the 

neighbor is selected as per the downhill move[IK90]. If the cost of neighbor is higher, the 

neighbor is selected as per the uphill move [IK90]. 

1.4 Aim of the Dissertation 

In distributed database, the data is replicated on different sites and available for access for 

user queries. The user query posed on distributed database is processed at different sites. 
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The maJor query processing cost parameters are CPU, I/0 and communication cost 

[KYY82][0V91] of which communication cost ts key to query processmg. The 

communication cost is concerned with transferring the data from one site to another site 

[HY79]. The transmission of data alongwith the local query processing constitutes the 

distribution query processing strategy. This strategy is also referred to as distributed query 

processing [KOO] [YC84]. In distributed environment, most of the queries on the 

distributed relational database require access to relations from multiple sites for their 

processing. It is possible that a relation may be present on different sites. This may lead 

possibility of multiple query plans for a query. If the number of sites participating in 

answering the query increases than number of query plans also increases exponentially 

[IK90]. So the query optimizer need to explore the search space to determine the best 

query plans amongst all possible query plans. Further, the replication of data on different 

sites may further lead to increase in the possible query plans. This leads to large search 

space of query plans from which the best query plan is required to be generated. Optimal 

query plan selection is a combinatorial optimization problem [JK84] and is not feasible 

[IK90]. The dissertation aims to generate optimal query plans for a user query using 

iterative improvement and simulated annealing. The query plan generation discussed in 

this dissertation uses the query processing cost heuristic defined in [VSV 1 0] where query 

plans containing information in lesser number of sites are preferred over other query plans. 

Among the query plans involving same number of sites, the query plan having higher 

concentration of information is preferred over the other. The iterative improvement and 

simulated annealing algorithm is adapted to this query plan generation problem and used 

to generate optimal query plans. 
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1.5 Organization of the Dissertation 

The dissertation is organized as follows. The generation of optimal query processing plan 

using iterative improvement and simulated annealing is discussed in Chapter 2. Chapter 3 

is the conclusion. 
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CHAPTER 2 

Distributed Query Optimization 

The iterative improvement and simulated annealing are based on randomized strategy. 

These techniques have been used to provide solution to a distributed optimization 

problem. The distributed optimization problem dealt in this dissertation is concerned with 

generating optimal query processing plans for a given query. The heuristic defmed in 

[VSVlO] has been used based on which optimal query plans are generated. In [VSVlO], 

the query plan generation problem has been addressed using genetic algorithms. In this 

dissertation, iterative improvement and simulated annealing use the same heuristic to 

generate the optimal query plans for a given user query. The cost function based on the 

heuristic, defined in [VSVlO], is discussed next. 

2.1 Cost function 

As we know that data is distributed across the sites in the distributed form. When the user 

poses query in SQL then the data required to process the query need may reside at 

disparate sites. The efficiency of query processing depends on how close the required data 
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resides on the distributed sites [VSV 1 0]. As it is known that query processing will be more 

efficient when the required data is very close to each other i.e. it resides at the same site. 

On the other hand, if the data required to answer user query resides in disparate sites, then 

the query processing efficiency would be low as it would require joining data from each 

site to generate the result. The closeness is defined in terms of number of sites 

participating to answer the query. If the number of sites are less than query processing will 

be more efficient and if the number of sites participating is more than the query processing 

will be less efficient. To understand the closeness, which determines the efficiency of 

query, let us consider the relation and site matrix shown in Fig. 2.1. 

Relation Sites 
Rl 1 6 7 9 
R2 1 6 8 2 
R3 1 5 8 4 
R4 1 3 4 2 

Fig. 2.1 

From Fig. 2.1, it can be observed that relation Rl is on site 1, 6, 7 and 9. The relation R2 is 

on the sites 1, 6, 8, and 2. The relation R3 is on the sites 1, 5, 8 and 4. The relation R4 is 

on the sites 1, 3, 4 and 2. 

Suppose the user query UQ in SQL is as given below 

SELECT Rl.B, R2.C 

FROM R1, R2, R3, R4 

WHERE Rl.A= R3.A and R2.D= R4.D 

In the above query, it can be seen that there are four relations participating in the FROM 

clause. Suppose the query optimizer is required to generate a query plan that contains 

these relations are at the same time optimal. It can be seen that the relation R1 is on sites 1, 

6, 7 and 9, relation R2 is on the sites 1, 6, 8, and 2, relation R3 is on the sites 1, 5, 8 and 4 

and relation R4 is on the sites 1, 3, 4 and 2. The aim is to generate query plans that 

minimize the cost of query processing. 
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For a query, a query plan denotes the sites for the relations in the SQL query. For example, 

the query plan given below implies that for the user query given above, Rl is at site 6, R2 

is at site 8, R3 is at site 4 and R4 is at site 2. The query plan is considered valid if the sites 

given in the plan contain the corresponding relations. The query plan given below is a 

valid query plan for UQ. 

It can be seen from Fig. 2.1 that relation Rl is in four sites and relation R2 is in four site, 

relation R3 is in four site in the same way R4 is in four site. There are in all4*4*4*4=256 

valid query plans for UQ. If the number of sites containing the relations, which are in the 

From clause of SQL, increases than the number of valid plans would also increase. 

The aim is to generate optimal query plans among all possible query plans for UQ. Let us 

consider the valid query plans given in Fig. 2.2. 

Query Plans 

QP1 I 1 1 I 1 I 1 I 

QP21 1 1 I 1 I 3 I 

QP3 I 1 1 I 4 I 4 I 

QP41 7 8 I 1 I 1 I 

QPSI 9 2 I 5 I 3 I 

Fig. 2.2 

QPl have all the four relations in the same site i.e. 1. This is the most optimal query plan 

as all the relations are in the same site. In QP2, the first three relations are in site 1 and 

relation 4 is site 3. It means there are two sites participating. Also in QP3, there are two 

sites participating where relation Rl and relation R2 are on site 1 and relation R3 and 

relation R4 is on site 4. So in QP2 and QP3 two sites are participating now the one which 

has higher concentration of relation among them would be considered optimal. QP2 will 

be considered as optimal because the concentration of relation on a site is more as 
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compared that of QP3, as in case of VQ2 site 1 is having three relation and whereas in 

VQ3 site 1 is having only two relation. So the concentration ofVQ2 is more than VQ3. 

This heuristic is defined by a cost function in [VSV 1 0]. The cost function is given below 

QPC =I Si (1- Si). 
i=l N N 

Where QPC is the Query Procesing Cost 

M is the number of sites accessed by the query plan 

Si is the number of times i1h site is used in the query plan 

N is the number of relation accessed by the query. 

The query processing cost is computed for the query plans given in Fig. 2.2. These are 

given in Fig. 2.3. 

Query Plans QPC 

QPl 
I I I I I I I 1 I 4/4(1-4/4)=0 

QP2 I I I 1 I I I 3 I 3/4( I-3/4)+ 114(1-1/4)=6/16 

QP3 II II 14141 
2/4( 1-2/4)+ 2/4(I-2/4)=8/I6 

QP4 I 7 I 8 II II I 2/4( I-2/4)+ 114(1-1/4)+ 114(1-I/4)= I 0/16 

QPS 
l9l2lsl3l 

I/4(1-114)+ 1/4( I-114)+ 114(1-1/4)+ I/4( I-114)= 12/16 

Fig. 2.3 

From Fig. 2.3, it is noted that QPI has the minimum QPC followed by QP2, QP3, QP4 

and QPS has the maximum QPC. The aim is to generate query plans with lower QPC. 

The iterative improvement and simulated annealing techniques are used to generate such 

optimal query plans. The iterative improvement technique is discussed in the next section 

followed by simulated annealing in the subsequent section. 
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2.2 Iterative Improvement 

The general iterative improvement algorithm, given in [IK90], is shown in Fig. 2.4. In the 

iterative improvement algorithm there are two loops. The inner loop has been used for 

local optimization. The Local optimization starts with a random state selected from search 

space and improves the solution by repeatedly accepting the downhill moves until it 

reaches a local minimum. The iterative improvement repeats these local optimization until 

the stopping condition is met. Once the stopping condition is met it returns the local 

minimum with minimum cost associated with state. For infinite time, there is a 

probability 1 that Iterative improvement would attain global minimum [IK90][NSS86]. 

Attaining the global minimum depends on the cost function and its neighbor function 

[IK90]. 

Procedure II () 
{ 

minS=S"' 
while not (stopping condition) do 
{ 

return (minS), 
} 

S=random state, 
while not (local minimum(S)) do 

{ 

} 

S'=random state in neighbors(S), 
lfcost(S') < cost(S) then S=S'; 

If cost(S) < cost(minS) then minS=S, 

Fig. 2.4 

This generic iterative improvement algorithm is adapted to query plan generation problem. 

The Iterative improvement algorithm for query plan generation is shown in Fig. 2.5. This 

algorithm takes site-relation matrix and relation participating in the FROM clause of the 

SQL query as input and produces optimal query plan as output. 
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Input: Site relation matrix and relations participating in from clause of SQL Query 

Output: Optimal plan with minimum cost. 

Method: 
minQP = IntMax 
WHILE not (Stopping condition) do 

QP= random query plan 
WHILE NOT (local minimum(QP)) do 

QP'= random query plan in neighbors(S) 
IF cost(QP') <Cost (QP) THEN QP= QP' 

END WHILE 
IFcost(QP) <Cost (minQP) then minS= QP 

END WHILE 
Return minQP. 

Fig. 2.5 

The stopping condition in the algorithm can be defined by either the Query Plan 

Constraint or the Time Constraint. The working of algorithm starts with taking random 

query plan for a user query. The inner while loop is used for local optimization, which 

starts with the random query plan and improves the solution by repeatedly accepting 

random downhill moves until it reaches a local minimum. This local optimization is 

repeated until the stopping condition is met. Here the stopping condition can be the query 

plan constraint, which is nothing but number of local optimization, or the time constraint, 

time allowed to find the local minima. When the stopping condition is met than minQP is 

returned which is the minimum cost of a valid query plan which would be the optimal 

plan. Next parameter in the iterative improvement is the local minimum of a plan QP. 

Here the local minimum is r-local minimum [IK90]. The r-local minimum is defined in 

terms of n randomly chosen neighbor of a query plan and tested with repetition, where n is 

the actual number of neighbors of QP. Actually r-local minimum can be defined in this 

way also where a random query plan is chosen from the search space and n neighbor of 

this query plan are found whose cost should not be less than that of the chosen query plan. 

During testing if neighbor's cost of the query plan is less than the chosen query plan then 

the neighbor query plan become the new query plan which will be further tested for local 

minima. The iterative improvement algorithm considers neighbor of a query plan in its 
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computation of the optimal query plan. The neighbor of a query plan is determined by 

changing atleast and atmost one site in the query plan by a valid site. For example the 

neighbor ofthe query plan QP4 [7, 8, 1, 1] is [7, 8, 5, 1] where site of the third relation is 

changed from 1 to 5. 

2.2.1 An Example 

Consider the relation/site matrix shown in Fig. 2.6. 

Relation Site 
Sl S2 S3 S4 S5 

Rl 1 1 0 0 1 
R2 1 0 1 1 0 
R3 1 1 0 0 1 
R4 0 0 0 1 1 
R5 0 1 1 0 0 

Fig. 2.6 

According to Fig. 2.6, relation R1 is at site Sl, S2 and S5, relation R2 is at site Sl, S3 and 

S4, relation R3 is at site S1, S2 and S5, relation R4 is at site S4, S5 and relation R5 is at 

site S2 and S3. Let the user query in SQL have Rl, R3 and R4 in the FROM clause. 

2.2.1.1 Optimal Query Plan Generation with Query Plan Constraint 

Let the input parameters be 

1. The stopping condition is number of query plans: 5. 

2. For r-local minimum the value of n neighbor is taken n=20. 

3. The initial value of minQP= oo. 

Now iterative improvement start with initial value of minQP= oo. The stopping condition 

is 5 query plans i.e. 5 times r-local minimum condition should be satisfied. Let the random 

valid query plan QP chosen be as given below: 

I Rl I R3 I R41 
I 1 I 1 I 4 I 
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Here R1 is at site 1, R3 is at site 1 and R4 is at site 4. This can be seen from the 

relation/site table. The cost of the query plan can be computed using the cost function as 

follows 

Here Number of sites accessed i.e. M=2. 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S 1 is used is 2 and number of times site S4 is used is 1 

Then 

QPC= }(1-l)+~(~-~)=0.444 

The cost of the chosen random query plan QP is 0.444. 

Next, there is WHILE loop in which there is a condition for finding r-local minimum, 

which is taken as n=20 neighbor of query plan QP, whose cost of all20 query plans should 

be greater than QP. Let us consider a neighbor query plan of QP as given below. The 

neighbor query plan has site for relation R4 changed from 4 to 5. 

Here 

Number of sites accessed i.e. M=2. 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S 1 is used is 2 and number of times site S5 is used is 1. 

Then 

The cost of new valid neighbor query plan QP' is 0.444. Since the cost of QP' is not less 

than that of QP, so QP remains as the minimum cost query plan. The r-local minimum is 
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not found yet, so again there is need to find the neighbor of QP. Let another neighbor 

query plan ofQP be as given below where site for relation R3 is changed from 1 to 4. 

Here 

Then 

Number of sites accessed i.e. M=3 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S 1 is used is 1, the number of times site S4 is used is 1 and 

number of times site S2 is used is 1 

The cost of QP' is 0.666, which is not less than that of QP and therefore QP remains as the 

minimum cost query plan. QP is still not the local minima and therefore another neighbor 

ofQP is found and is given below where the site for relation Rl is changed from 1 to 2. 

Here 

Then 

Number of sites accessed i.e. M=3 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S 1 is used is 1, the number of times site S4 is used is 1 and 

the number of times site S2 is used is 1 
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The cost of QP' is 0.666. This cost is not less than that of QP and therefore QP remains as 

the minimum cost query plan. This will continue in the similar way till we find query plan 

QP whose 20 randomly generated neighboring query plans have cost not less then QP i.e. 

the corresponding QP is identified as the local minima. In similar manner local minimas 

are identified till the algorithm identifies 5 local minimas. Among them, the query plan 

with minimal cost value is considered the optimal query plan. The following optimal 

query plan can be generated by the iterative improvement algorithm. 

The above query plan has cost 0 and is the minimal cost that any query plan can achieve 

for a given user query. 

2.2.1.2 Optimal Query Plan Generation with Time Constraint 

. Let the input parameters be 

1. The stopping condition is time = 2 seconds 

2. For r-local minimum the value of n neighbor is taken n=20. 

3. The initial value ofminQP= oo. 

Let the randomly generated query plan QP be as given below 

Here 

Number of sites accessed i.e. M=3 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S 1 is used is 1, the number of times site SS is used is 1 and 

the number of times site S4 is used is 1 



Then 

QPC= ~(1-~)+~(1-~)+~(1-~) =0.666 

The QPC of query plan QP is 0.666. 

The next step is to find the neighbor query plan for QP. Let the neighbor query plan QP' 

for QP is as given below where the site for relation Rl is changed from 1 to 5. 

Here 

Number of sites accessed i.e. M=2 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S5 is used is 2 and number of times site S4 is used is 1 

Then 

QPC= l(l-l)+~(l-~) =0.444 

The QPC ofQP' is 0.444. Since the cost ofQP' is lower than that ofQP, QP' becomes the 

new QP. The stopping condition of 2 seconds does not hold true and therefore neighbor 

query plan QP' of QP is found. Let that be as given below 

Here 

Number of sites accessed i.e. M=3 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S5 is used is 1 , number of times site S2 is used is 1 

and number of times site S4 is used is 1. 
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Then 

The QPC of QP' is 0.666. Since the cost of QP' is not less than that of QP and therefore 

QP remains as the minimum cost query plan. Since the stopping condition is not met yet, 

the neighbor ofQP i.e. QP' is determined and let that be as given below 

Here 

Then 

Number of sites accessed i.e. M=3 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S2 is used is 1, number of times site S5 is used is 1 and 

number of times site S4 is used is 1. 

The QPC of QP' is 0.666, which is not less than that of QP and therefore QP remains as 

the minimum cost query plan. The stopping condition is not met and therefore neighbor of 

QP i.e. QP' is determined and is as given below 

Here 

Number of sites accessed i.e. M=3 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S5 is used is 1, number of times site S 1 is used is 1 and the 

number of times site S4 is used is 1 
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Then 

The QPC of QP' is 0.666, which is not less than the cost of QP and therefore QP remains 

as the minimum cost query plan. This continues till the stopping condition of 2 seconds is 

met. If the algorithm is able to find local minima, the corresponding query plan becomes 

the minimal query plan for the user query. For example, the algorithm may generate the 

query plan as given below which has QPC as 0. This query plan can be considered an 

optimal query plan for the user query. 

Actually the iterative improvement is dependent on the random generation of the query 

plans and therefore may not guarantee optimal query plan always. In the above example 

time constraint is the main factor to generate the optimal query plan. If the time is longer 

then there is a possibility to generate the optimal query plan. 

The problem with the iterative improvement is that it gets stuck in the high cost local 

minima. Due to this problem, iterative improvement may not give better results always. To 

address this problem, simulated annealing is used. Query plan generation using Simulated 

Annealing is discussed next. 

2.3 Simulated Annealing 

The general simulated annealing algorithm, given m [IK90], is shown in Fig. 2.7. 

Simulated annealing accepts uphill moves with some probability. It tries to avoid the 

problem of being caught in local minima. In simulated annealing algorithm the inner loop 

has been used to control the probability of accepting the uphill moves. It also does the 

24 



local optimization. The probability is controlled by the parameter temperature which is 

fixed for each stage in the inner loop. Here stage is defined as inner loop of simulated 

annealing. For each stage, temperature is reduced by reduction function. In each stage 

uphill moves is determined by temperature and the difference of the cost of new state and 

the original state. The inner loop stops when it reaches equilibrium. The temperature is 

reduced by some reducing function. The outer loop is stopped when the state is considered 

as frozen. In simulated annealing algorithm it is considered that it will attain the global 

minimum of state when the temperature is approaching zero [IK90][RV85]. The overall 

performance of the simulated annealing is dependent on the cost function and the neighbor 

function used in it [IK90]. 

Procedure SA() 
{ 

S=So. 
T=To. 
minS=S, 
WHILE NOT (frozen) do 
{ 

WHILE NOT (equilibrium) DO 

S'=random state in neighbors(S), 
11C=cost (S') ~cost (S), 
IF (11C :S 0) THEN S= S' 

-6c 

IF (i1C 2: 0) THENS= S' with probability e 7 

IF cost (S) <cost (minS) THEN minS=S, 
} 
T=reduce (T) 

} 
RETURN (minS), 

} 

Fig. 2.7 

This generic simulated annealing algorithm is adapted to query plan generation problem. 

The simulated annealing algorithm for query plan generation is shown in Fig. 2.8. This 

algorithm takes site-relation matrix, relation participating in the FROM clause of the SQL 

query and the reduction factor as input and produces optimal query plan as output. 
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Input: Site relation matrix, relations participating in from clause of SQL Query, reduction factor 

Output: Optimal plan with minimum cost. 

Method: 
QP=QP0 

T=To 
minQP=QP. 
WHILE NOT (stopping condition) DO 

WHILE NOT (inner stopping condition) DO 
QP'=random query plan in neighbor ofQP. 
c=cost(QP')-cost(QP) 
IF (c:SO) THEN QP=QP' 

-c 

IF (c>O) THEN QP=QP' with probability e 7 

IF cost(QP) <cost (minQP) THEN minQP=QP. 
END WHILE 

T= reduce the value ofT by some defined function. 
END WHILE 
RETURN minQP 

Fig. 2.8 

As discussed above that problem with the iterative improvement gets stuck in the local 

minimum of the search space. This is due to the fact that iterative improvement performs 

only downhill moves and thus gets stuck at the local minimum of the search space. This 

problem has been addressed by simulated annealing, which also performs uphill moves 

with some probability. The probability depends on the temperature. The temperature is 

used here to avoid the circumstances of being caught in the local minimum of the search 

space. 

In the algorithm given in Fig. 2.8, there are two while loops. The inner while loop 

is used for stage, which is used to accept uphill moves with some probability. This 

probability is dependent on the temperature of the stage, which is dependent on the cost of 

the query plan. The stage is a kind of situation in which once downhill move has reached 

and it has stuck in the local minimum than it is required to take it out from that point. That 

is the reason why concept of uphill moves is taken from the simulated annealing with 

some probability. The probability e 7 is constituted by two factor c and T. The c is the 

difference of the cost of the query plan QP and its neighbor query plan QP'. 
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The parameter specific to this algorithm for finding the optimal query plan are as follows: 

1. The initial state QP0 which is randomly selected query plan 

2. The temperature T=To, which is a function of Cost where say To=2000*cost(QPo). i.e. 

2000 times the initial cost of the randomly chosen query plan. 

3. The outer loop stopping condition that is also known as frozen condition is 

T> 1 AND rninQP is unchanged at least in 10 stages. 

4. The inner loop condition is 8x(no of relation participating in from clause of SQL 

query posed -1) x (no of relation participating in from clause ofSQL query posed-2). 

5. The next state is randomly selected neighbor of query plan. 

6. The temperature reduction is- Temperature new= 0.95* Temperature old. 

This algorithm will be explained with two stopping condition namely the query plan 

constraint, which is nothing but number of local optimization, or the time constraint, time 

allowed to find the local minima. 

2.3.1 An Example 

Consider the relation/site matrix shown in Fig. 2.9 

Relation Site 
Sl S2 S3 S4 S5 

Rl 1 1 0 0 1 
R2 1 0 1 1 0 
R3 1 1 0 0 1 
R4 0 0 0 1 1 
R5 0 1 1 0 0 

Fig. 2.9 

According to Fig. 2.9, relation Rl is at site Sl, S2 and S5, relation R2 is at site Sl, S3 and 

S4, relation R3 is at site Sl, S2 and S5, relation R4 is at site S4, S5 and relation R5 is at 

site S2 and S3. Let the user query in SQL have Rl, R3 and R4 in the FROM clause. 
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2.3.1.1 Optimal Query Plan Generation with Query Plan Constraint 

The input to the algorithm is the site relation matrix and the relation in the FROM clause 

of the query. The stopping condition is number of query plans: 10, The number of 

neighbors for r-local minimum i.e. n=20 and the reduction factor is 0.95 of the old 

temperature. As per the Site Relation table, shown in Fig. 2.9, relation R1 is at site S1, S2 

and S5. Relation R2 is at site Sl, S3 and S4. Relation R3 is at site S1, S2 and S5. Relation 

R4 is at site S4, S5. Relation R5 is at site S2 and S3. Let us consider a SQL query with 

relation R1, R3 and R4 in its FROM clause. Let the random query plan QP generated be 

as given below 

Here 

Then 

Number of sites accessed i.e. M=3 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S 1 is used is 1, the number of times site S5 is used is 1 and 

the number of times site S4 is used is 1. 

QPC= ~(1-~ )+~(~-~ )+~(1-~) =0.666 

Let To= 2000*cost(QP)=2000*0.666= 1332.0 

T=T 0, minQP = QP 

If the outer loop terminating condition is 

T> 1 AND minQP is unchanged in at least 10 stages. 

If the inner loop terminating condition is 

8x(no of relation participating in from clause of SQL query posed -1)x(no of 

relation participating in from clause of SQL query posed-2). 
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For the example the inner loop would execute 8*(3-1)*(3-2) =8*2*1=16 times to achieve 

the equilibrium. The inner loop starts by selecting a random neighbor query plan for QP. 

Let the neighbor query plan QP' of QP be as given below 

Here 

Number of sites accessed i.e. M=2 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S5 is used is 2 and number of times site S4 is used is 1. 

Then 

QPC= ~(~-~)+~(~-~) =0.444 

The cost difference of query plan QP' and QP is 

C=0.444-0.666=-0.22. 

Since the cost is less than equal to the zero, QP= QP' 

Now, cost(QP) is less than cost(minQP) therefore minQP=QP 

Now the inner loop would execute 16-1=15 times. Let the next randomly generated 

neighbor query plan QP' of QP be as given below 

Here 

Then 

Number of sites accessed i.e. M=3 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S5 is used is 1, number of times site S3 is used is 1 and the 

number of times site S4 is used is 1. 
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The QPC ofQP' is 0.666 and the cost difference is 

C=0.666-0.444=0.222 

Since the difference of the cost is greater then zero, there is a need to find the probability 

so that the decision can be made to replace QP by QP' 

d = (cost(QP)-cost(QP'))*2000/T = (0.666-0.444)*2000/1332.0= 0.33 

prob = e·d = 2.71"0
·
33 = 0.718948 

On the basis of this probability, it is found that QP= QP'. 

Further, cost(QP) i.e. 0.666 is not less than cost(minQP) i.e. 0.444, therefore minQP value 

would be retained. 

Now the inner loop would execute 15-1=14 times. Let the next randomly generated 

neighbor be as given below 

Here 

Number of sites accessed i.e. M=2 

Number ofre1ation accessed by the query plan i.e. N=3 

Number of times site SS is used is 2 and number of times site S2 is used is 1 

Then 

QPC= %(1-%)+1(1-l) =0.444 

The cost difference c=0.444-0.666= -0.222. 

Since cost difference is less than 0, QP= QP' 
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Now cost(QP) is same as cost(minQP), so minQP is retained. Now the inner loop has to 

execute 14-1 = 13 times. Suppose, the inner loop further runs for 13 neighbor query plans 

and it is found that the minQP is 

Let a random query plan for finding the another local minima is as given below 

Here 

Then 

Number of sites accessed i.e. M=3 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S 1 is used is 1, number of times site S2 is used is 1 and the 

number of times site S4 is used is 1. 

QPC= 1(1-1)+±(1-l) + 1(1-±)=0.666 

The cost(QP)=0.666. The value ofT= T*Reduction Factor 

= 1332.0*0.95= 1265.40. 

Again inner loop will execute 16 times as in the case discussed above 

Let us consider a random query plan as given below 

Here 

Number of sites accessed i.e. M=3 

Number of relation accessed by the query plan i.e N=3 

Number of times site S5 is used is 1, number of times site S2 is used is 1 and the 

number of times site S4 is used is 1. 
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Then 

QPC= l(l-l)+l(l-l) + l(l-l)=0.666 

The cost difference c=cost(QP')-cost(QP) 

=0.666-0.666=0.000 

Therefore, QP=QP' and minQP remains unchanged. In the next iteration, let the random 

neighbor query plan QP' be as given below 

Here 

Number of sites accessed i.e. M=2 

Number ofre1ation accessed by the query plan i.e. N=3 

Number of times site S5 is used is 2 and number of times site S4 is used is 1 

Then 

QPC= 1(1-l)+l(l-~) =0.444 

The cost difference c=cost(QP')-cost(QP) 

=0.444-0.666= -0.22. 

Since cost difference is less than 0, QP=QP'. 

Now cost(QP) <cost (minQP) and therefore minQP=QP. 

In the next iteration, consider a neighbor query plan QP' given below 

Here 

Number of sites accessed i.e. M= 1 

Number ofre1ation accessed by the query plan i.e. N=3 

Number of times site S5 is used is 3. 

32 



Then 

QPC= l(~-l)=o.ooo 

The cost difference c=cost(QP')-cost(QP) 

=0.000-0.444= -0.444 

Thus, QP=QP' 

Now cost (QP) < cost (minQP) so minQP=QP. 

In the next iteration, let the randomly generated neighbor plan be as given below 

Here 

Number of sites accessed i.e. M=2 

Number of relation accessed by the query plan i.e. N=3 

Number of times site SS is used is 2, number of times site S 1 is used is I 

Then 

QPC= ~(1- ~ )+l(l-l )= 0.444 

The cost difference c=cost(QP')-cost(QP) 

=0 .444-0.000=0.444. 

Since the difference of the cost is greater then zero, there is a need to find the probability 

so that the decision can be made whether to accept QP' as QP. 

d = (cost(QP)-cost(QP'))*2000/T = (0.444 -0.000)*2000/1332.0= 0.70 

prob = e-d = 2. 7 r0 70=0.4966 

Based on the probability, suppose QP' as QP is not accepted. 
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The difference of the cost and temperature decides QP. In the above example it is seen that 

QP is same as it was before and the same is applied to the minQP. Again, it would start 

with the selection of the neighbor query plan of QP and their cost is compared. In the 

similar manner as above the computations are performed. Finally say for this particular 

example, the following optimal query plan is achieved 

2.3.1.1 Optimal Query Plan Generation with Time Constraint 

The input to the algorithm is the site relation matrix, shown in Fig. 2.9, and the relation in 

the FROM clause of the query. The stopping condition is time = 2 seconds, the number of 

neighbors for r-local minimum i.e. n=20 and the reduction factor is 0.95 of the old 

temperature. Let us consider a SQL query with relation Rl, R3 and R4 in its FROM 

clause. Let the random query plan QP generated be as given below 

Here 

Then 

Number of sites accessed i.e. M=3 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S 1 is used is 1, number of times site S5 is used is 1 and the 

number of times site S4 is used is 1 

QPC= l(1-l )+1(1-l )+1(1-l) =0.666 

Then T = 2000*cost(QP)=2000*0.666=1332.0 

minQP =QP 
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Let us consider a neighbor query plan as given below 

Here 

Number of sites accessed i.e. M=2 

Number of relation accessed by the query plan i.e. N=3 

Number of times site SS is used is 2 and number of times site S4 is used is 1 

Then 

QPC= }(1-})+~(1-~) =0.444 

The cost difference c=cost(QP')-cost(QP) 

=0 .444-0. 666=-0 .22. 

Since the difference in the cost is less than or equal to zero, QP=QP'. 

Now cost (QP) <cost (minQP) so rninQP=QP. 

In the next iteration, let the neighbor query be as given below 

Here 

Then 

Number of sites accessed i.e. M=3 

Number of relation accessed by the query plan i.e. N=3 

Number of times site SS is used is 1, number of times site S2 is used is 1 and the 

number of times site S4 is used is I. 

QPC= ~(1-~)+~(~-~) + ~(1-~)=0.666 

The cost difference c=cost(QP')-cost(QP) 

=0.666-0.444=0.222 
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Since the difference of the cost is greater then zero, there is a need to find the probability 

so that the decision can be made whether to accept QP' as QP. 

d = (cost(QP)-cost(QP'))*2000/T = (0.666-0.444)*2000/1332.0= 0.33 

prob = e-ct = 2.7r0
·
33=0.718948 

Based on the probability, suppose QP' is accepted as QP 

Now cost(QP) i.e. 0.666 is not less than cost( minQP) i.e. 0.444, so minQP would remain 

unchanged. 

In the next iteration, let the neighbor query plan be as given below 

Here 

Number of sites accessed i.e. M=2 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S5 is used is 2 and number of times site S2 is used is 1. 

Then 

QPC= %(1-%)+1(1-l) =0.444 

The cost difference c=cost(QP')-cost(QP) 

=0.444-0.666= -0.222. 

Since the cost difference is less than 0, QP=QP' 

Now cost(QP) i.e. 0.444 is same as cost(minQP) i.e. 0.444, minQP remains unchanged. 

This continues till the inner loop is executed in all 16 times and let on its completion the 

minQP is 
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Let a random query plan for finding the another local minima is as given below 

Here 

Then 

Number of sites accessed i.e. M=3 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S 1 is used is 1, number of times site S2 is used is 1 and the 

number of times site S4 is used is 1 

QPC= ~(1-~)+~(1-~) + ~(~-~)=0.666 

The cost(QP)=0.666. 

Lets the random neighbor query plan QP' of QP be as given below 

Here 

Then 

Number of sites accessed i.e. M=3 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S5 is used is 1, number of times site S2 is used is 1 and the 

number of times site S4 is used is 1 

QPC= ~(~-~)+~(1-~) + ~(~-~)=0.666 

The cost difference c=cost(QP')-cost(QP) 

=0. 666-0. 666=0. 000 
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Since the difference of the cost is less then or equal to zero, QP=QP' and minQP remains 

unchanged. In the next iteration, let us consider a neighbor query plan QP' ofQP. 

Here 

Number of sites accessed i.e. M=2 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S5 is used is 2 and the number of times site S4 is used is l 

Then 

QPC= l(1-l)+l(1-l) =0.444 

The cost difference c=cost(QP')-cost(QP) 

=0.444-0.666= -0.222 

Since the cost difference is less than zero, QP=QP'. 

Now cost (QP) i.e. 0.444 is less that cost (minQP) i.e. 0.666 and therefore minQP=QP. 

Let the neighbor query plan QP' of QP be as given below 

Here 

Then 

I R5
1 

I ~3 1 ~4 1 

Number of sites accessed i.e. M= 1 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S5 is used is 3 

QPC= ~(1- ~) =0.000 

The cost difference c=cost(QP')-cost(QP) 

=0.000-0.222= -0.222 
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Since the cost is less then or equal to the zero, QP=QP' 

Now cost (QP) is less than cost (minQP) i.e. 0.222 and therefore minQP=QP 

Let the next neighbor query plan be as given below 

Here 

Then 

Number of sites accessed i.e. M=2 

Number of relation accessed by the query plan i.e. N=3 

Number of times site S5 is used is 2 

Number of times site S 1 is used is 1. 

QPC= l(1-l )+~(1-~ )= 0.444 

The cost difference c=cost(QP')-cost(QP) 

=0 .444-0. 000=0 .444. 

Since the difference of the cost is greater then zero, there is a need to find the probability 

so that the decision can be made whether to accept the QP' as QP 

d = (cost(QP)-cost(QP'))*2000/T = 0.444 -0.000)*2000/1332.0= 0.70 

prob = e·d = 2.7r0
·
70=0.4966 

On the basis of this probability, QP' is accepted as QP 

Now, cost(QP) i.e. 0.444 is not less than cost (minQP) i.e. 0, minQP remains unchanged 

In the similar manner, QP' and minQP are computed. Finally, say the optimal query plan 

generated is as given below 
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The simulated annealing in comparison to the iterative improvement algorithm is likely to 

generate better query plans as it performs uphill moves with some probability along with 

the downhill moves. This enables it not to get stuck in the local minima. Also it enables 

exploring the entire search space for local minimas. 

In order to study the quality of query plans generated by Iterative Improvement and 

Simulated Annealing, these algorithms were implemented in C++ programming language. 

The results based on the experiments are discussed next. 

2.4 Experimental Results 

Iterative Improvement and Simulated annealing are compared on two parameters namely 

the number of query plans generated and the average QPC achieved by these generated 

query plans. These comparisons are made by varying the time from 1 to 9 seconds with the 

step of 1 second. The experiments are performed for a use query in SQL containing four 

relations, six relations, eight relations and ten relations given there were 20 relations and 

20 sites. The graphs for four relations, six relations, eight relations and ten relations on 

parameters number of query plans generated and the average QPC are shown in Fig 2.10-

2.11, Fig. 2.12-2.13, Fig. 2.14-2.15 and Fig. 2.16-2.17 respectively. 

The results of these experiments show that iterative improvement is able to generate 

significantly large number of query plans in comparison to simulated annealing. This 

implies that the number of local-minimas attained is more in the case of iterative 

improvement. Further, the simulated annealing, in comparison to iterative improvement, is 

able to generate better query plans. This may be due to the fact that simulated annealing 

explores the search space with both down-hill and up-hill moves thereby able to generate 

query plans with lesser value of QPC. 
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CHAPTER 3 

Conclusion 

A query posed over a distributed database may get processed against disparate data 

sources distributed over a network. Each of these sources may contain data relevant to the 

query. The aim of distributed database system is to provide efficient query processing 

strategy for the given query. In distributed database scenario, multiple copies of the same 

data may reside at different sources. As a result, there can be multiple query strategy for a 

given query and finding an optimal query processing strategy is a combinatorial 

optimization problem. In this dissertation, an approach is presented that is able generate 

optimal query processing plans for a given user query. The approach uses iterative 

improvement and simulated annealing algorithms to determine optimal query plans for a 

given query. The approach uses the cost heuristic defined in [VSVlO]. 

First, the iterative improvement algorithm is used to determine the optimal query plans. 

The algorithm finds query plans as per r-local minimas from which the query plan with 

minimum cost is considered optimal query plan. The problem with the iterative 

improvement is that it performs only downhill moves and thus gets stuck at the local 

minimum of the search space. Due to this problem, iterative improvement may not give 
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better results always. To address this problem, simulated annealing was used to generate 

optimal query plans. The simulated annealing performs uphill moves with some 

probability along with the downhill moves thereby avoiding getting stuck at the local 

minima. As a result, it generates better query plans for a given query. 

Further, the experimental based comparison of iterative improvement and simulated 

annealing shows that though iterative improvement is able to generate more query plans 

per unit time, simulated annealing is able to generate better quality query plans. 
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