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Thesis title – “ Model based approach to study the impact of climate 

change on cotton crop  ” 

 

By Anamika Shikha  

 

ABSTRACT 

The present work aims to make a detailed assessment of the vulnerability and 

adaptability of climate change on the cotton crop. Cotton is one of the principal 

commercial fiber crops. India is among the leading producer of cotton, the highest in 

terms of area under production. India's decadal average productivity is 522 kg/ha, 

whereas the world's average is 765 kg/ha with a gap of 243 kg/ha. Abiotic and biotic 

stresses like weather erraticism and pest infestations are the paramount reasons for the 

productivity loss.  This model-based study emphasizes the utilization of the crop 

simulation model to study the impact and reliability of climate model data for future 

projections. For the pest assessment, this study also highlights the application of remote 

sensing approach complementing weather-based statistical forewarning for taking 

effective Integrated Pest Management (IPM) measures. The cotton CROPGRO model 

incorporated under Decision Support System for Agro-technology Transfer (DSSAT) 

version 4.6 has been used in the study. The model input data taken from the field study 

were calibrated and validated with reasonable accuracy for the crop in the study region. 

In the first chapter, a brief review of the cotton crop is presented along with the valuable 

research carried out so far concerning crop modeling for cotton crops over various 

regions of India and the world. The chapter initially confers the historical existence and 

commercial significance of crop; further, it elaborates on the cotton physiology, 

conditions of growth, the impact of future climate on the crop yield, and physiology. It 

will then elucidate climate change and its future projections, climate model data, bias 

correction, and crop models. Then relevance and motivation behind selecting the topic 
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of research and the broad objectives are discussed. Finally, followed by a brief 

description of the study area and methodology applied to achieve the various 

objectives. In the second chapter, implications of increasing temperature and CO2 

concentrations on cotton yield and physiology are estimated over the Hisar region for 

the present climate with observation data both individually and taken together.  The 

sensitivity of three cotton cultivars sown on three different dates were analyzed in the 

DSSAT model for the rising temperature by 1°C and 50 ppm each.  In chapter three, 

the pest attack in the farm research area in Hisar is analyzed using LANDSAT images 

during 2013-18. After atmospheric corrections and cloud masking, the Vegetation 

indices(VIs) viz. NDVI and NDWI are calculated for the area of interest. The collected 

multi-temporal images are then composited in a time series plot. These indices were 

further analyzed along with the crop calendar and validated with the field observations. 

Further, after assessment of the predominant biotic and abiotic stresses for the present 

future predictions are studied. But before using any future projections from the climate 

models, these models are to be carefully evaluated with the historical predictions. And 

the biases found in the model are to be corrected with acceptable precision over the 

study region. Various GCMs and RCMs have been used for similar studies earlier. And 

it has been found that RCMs have an advantage over GCMs due to higher resolution, 

which could potentially add benefits of accuracy and considerable details to outputs 

over courser resolution GCMs. It also helps to evaluate the model data against 

observations and strengthen our confidence for future projections. In chapter four, 

regional climate model RegCM4.0 data are evaluated for baseline-derived weather and 

its bias-corrected values, both for temperature and precipitation, with observed for 

diverse agroclimatic zones of cotton. Here, comparative study of the cotton crop for 

Akola (central) and Hisar (northern) agroclimatic zone of cotton for the period 1971 – 

2005.  Further, in chapter five, using the same model data for future projections from 

the CORDEX-SA experiment (GFDL-ESM2M- RegCM4) for RCP4.5 and RCP8.5 

impact of climate on the cotton crop is studied for the study region. The model data 

was similarly bias-corrected using quantile mapping approach, and then both are 
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employed in the cotton-CROPGRO model under DSSAT-CSM(v4.6). The RCM 

projected daily weather from 1971 to 2005, 2006 to 2035, 2036 to 2065, and 2066 to 

2095 were average to represent projected climate centered at historical (1990), present 

(2020), and climate change scenario in the near future (2050) and far future (2080). 

The CO2 concentrations were taken as 353, 415, 486, and 531 for RCP4.5 and 353, 

415, 539, and 757 for RCP8.5, respectively. The crop model has been simulated for 

rainfed, irrigated, and potential conditions for three sowing dates. Finally, the 

significant results obtained from work are summarized with the main conclusions in 

the sixth chapter. 

The evaluation of cotton for the present climate with the observation data shows that 

for the cultivar Pancham-541, a rise in 1°C of temperature with 50ppm CO2 is 

beneficial, but further rise is harmful. Whereas for RCH-791 and SP-7007, productivity 

decreases gradually with increasing temperature and CO2. Generally, yield decreases 

with an increase in temperature (by 1°C), but no significant effect was observed with 

increasing CO₂ (50ppm) cumulatively for the Hisar region. The adverse effects of 

rising temperatures are moderated due to increased CO2 due to an increase in 

photosynthesis when considered together. Again for the physiological aspect of the 

crop, the leaf area index and evapotranspiration rate increase with increasing 

temperature and CO2 for all varieties in all sowing dates. Whereas, the harvest index 

and maturity dates decrease in general. Therefore, it can be concluded that increasing 

temperature at the present rate will be harmful for cotton productivity. Although this 

effect is abated with simultaneously rising CO2 but yet the adversity due to the global 

rise in temperature is partially mitigated.  

After analyzing the major abiotic constraint, the biotic constraints are examined. The 

DSSAT model is not able to forecast the pest attack. So statistical forecasts are 

prevalent in the study region along with remote sensing and GIS approach. In this 

study, vegetation indices has been evaluated after, along with the contemporary 

statistical approach. The NDVI and NDWI values are minimum for the years 2013, 
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2015, and 2018 compared to 2014, 2016, and 2017 respectively, reflecting the stress 

the crop was experiencing, which was corroborated as pest attack above Economic 

Threshold Level (ETL) as per field observations. The peak in the values is gained 

during September 2017, showing good plant health during the year. As per the field 

observations, in 2013 and 2015, the major threat was Cotton Leaf Curl Disease 

(CLCuD) transmitted through whitefly (Bemisia tabaci) and accompanied by other 

sucking pests like thrips, leafhopper, etc. And in the year 2018, the crop was majorly 

affected by the cotton leafhoppers Jassids. Thus it was found that the remote sensing 

approach is better reflective of crop health and stress. Therefore, for strengthening 

network programs monitoring the pest dynamics along with statistical forecasts, and 

this is needful. 

Further, for analyzing future conditions, forecasting climate model data has to be used. 

But before using the projections for the future climate, they are validated for the region 

for the historical period (1971–2005). The model data and its bias-corrected data are 

evaluated in comparison to observations. The RCM model used in the study shows wet 

biases with high rainfall intensity. The model also suggests night warming due to a 

significant decline in maximum temperature and minimal decline in minimum 

temperature leading to reduced diurnal temperature difference in both the locations. 

Overall regional climate model underestimates the temperature and overestimates 

rainfall. A remarkable feature observed was less number of intense warm (maximum 

temperature ≥ 45 °C and ≥ 40 °C) and high cold events (minimum temperature ≤5 °C 

and ≤ 3 °C) is captured in the model. It is highly biased for rainfall>0mm/day and 

<5mm/day, and moderately biased for rainfall >5mm/day, which is because of the 

drizzling effects of the RCM model as various studies signify. The bias-correcting 

approach using ‘Quantile Mapping’ showed excellent agreement annually, but failed 

to correct daily and seasonal variability since it’s a 'distribution-based method.' The 

MBE and RMSE values of weather data show considerable improvement when bias-

corrected. There are some limitations with the extreme weather, which could severely 

affect crop productivity and, therefore, be taken care of in future studies. Further, 
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utilizing these weather data as an input for crop model simulations for outputs such as 

dry yield, Leaf Area Index (LAI), and ball Number at maturity/m2 (NM), it was 

contemplated that with bias-corrected weather data they show excellent agreement with 

the corresponding observed weather than non-bias-corrected RCM model data for both 

regions. The percentage deviation has been reduced for bias-corrected variables. The I 

and RMSE values have also improved for the yields. The crop is performing better in 

the northern region for the present conditions with high potential and therefore has 

much scope of improvement with proper management strategies. Thus the study 

suggests the RCM outputs can be used explicitly for the analysis of the impact of 

climate change on crop productivity when complemented with reliable bias-correction 

techniques.  

For future impact studies, the model predicts spatial and temporal variability in the 

precipitation patterns at different cotton-growing regions, which could possibly affect 

crop productivity.  This approach also performed better in the arid Hisar region, which 

is irrigated, than the Akola region, which is rainfed. The detailed analysis of projections 

from the regional climate model for the study region for the temperature and rainfall 

variables signifies that the model predicts slightly increasing temperature from 1990 

till 2080 and from RCP4.5 to RCP8.5. It is rising at higher rates at Hisar(northern) than 

Akola(central) agroclimatic zone of cotton. An overall increase in the amount of 

rainfall is observed in the northern region and decreasing in the central region at 

RCP8.5. It increases till 2050 and further reduces in 2080. 

Crop model simulated outputs suggests, in Akola, the yields are higher for RCP8.5 than 

RCP4.5, whereas in Hisar, yields are lower in RCP8.5 than RCP4.5 for both model and 

bias-corrected data. The percent deviation of yield and LAI from the present(2020) 

signifies that future climate yields in the northern region (Hisar) are increasing for 2050 

and 2080 at RCP4.5 and declining for 2050 and 2080 at RCP8.5. In the central region 

(Akola), it increases in 2050 and then 2080 as per both models and its bias-corrected 

data.  
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In the hot and dry northern agroclimatic cotton zone, the increasing temperature is 

detrimental. In contrast, in the cooler and wetter central zone, increasing temperature 

is not a hindrance, and at the same time, increased CO2 is favoring the production. With 

temporal variability in the amount of precipitation and rising temperature, late sowing 

of the crop is favored. This can be due to various factors such as increased average 

precipitation during the cropping season, increase in CO2, when the temperature is 

rising slightly for both RCPs from the baseline. So there is a scope of better productivity 

in the northern region at RCP4.5 and in the central region at RCP8.5 with the changing 

climate when proper irrigation is provided. 

An adaptation measure such as alteration in sowing dates and irrigation and fertilizer 

scheduling will play a significant role. For cotton, late sowing is seen as beneficial to 

climate change. This delayed sowing owes its response due to the delayed onset of 

monsoon in the study region, where the rainfall intensity has increased during the 

cropping season. The growers and scientific communities have to about site-specific 

crop management and variability within the field for potential productivity with the 

changing climate. This can be done by modifying the sowing window, adopting stress-

resistant varieties, developing new-age cultivars, improvising management, and 

implying climate forecasts in cropping decisions. Selecting weather tolerant varieties 

and pest-resistant crops can also help in the adaptation and sustainability of the crop. 

To enhance cotton productivity, sowing the plant at an optimum period will be helpful. 

This study attempts to bring forward the impacts of regional climate change and its 

implications on cotton yield and physiology over the rainfed and irrigated cotton-

growing regions of India. An increase in temperature and precipitation is expected with 

climate change in the study region, with an enormous increase in CO2 concentrations. 

The shift in the seasonal pattern will also disturb the crop-calendar. The complexity in 

the growth and developmental stages of cotton makes it more challenging to study the 

vulnerability of the crop for climate change. The central region acclimated to be fit for 

cotton because it has an ample amount of rainfall and black soil. But this study suggests 
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that in the future climate, the rainfall in these regions is decreasing and increasing in 

the northern region. So the northern region can also be preferred for growing the crop, 

and it is also found that the alluvial soil in the Satluj-Ganga Plain is also suitable for 

cotton. 

Apart from these abiotic constraints, the major concern for cotton productivity is with 

the pest for which proper Integrated Pest Management (IPM) measures has to be taken, 

wherever it is grown. Coupling the pest attributes with the crop modeling to forecast or 

estimate the climate-induced impacts on crops and pest need of the hour for cotton crop.  

Similarly, understanding the quantum and characteristic of pest and diseases are 

essential for predicting the infestation and take timely measures. Forecasting the pest 

along with real-time monitoring with the remote sensing approach could help the 

farmers and policymakers for better pest management. 

The study embrace utilization of crop growth models for developing crop management 

strategies, yield forecasting, the sustainability of the crop, climate change impact 

assessment, economic analysis for bringing precision in agriculture. Uncertainty and 

variability in future climate may affect the growth and development of the crop.  Future 

research could apply these model-simulated data to study the impact of climate change 

on crop productivity explicitly.  This can also be complemented with more reliable 

model data and bias-correction techniques to complement the research. Understanding 

the ambiguous and unpredictable character of biases in climate models and bias-

correction approaches is essential in studying the impacts of future climate.  The 

development of physiology-linked economic models at the farm-level for decision-

making under climate change scenarios is important. 
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INTRODUCTION 

 

Cotton belongs to the family of Malvaceae and Tribe named Gossypieae. The Genus is 

Gossypium, which consists of about 50 species. Among them, four are cultivated, namely 

Gossypium arboreum, Gossypium herbaceum, Gossypium hirsutum, and Gossypium 

barbadense. The first two, known as old-world cotton and Asiatic cotton, are diploid (2n 

= 26) and are indigenous to Asia and Africa. The other two, also known as new world 

cotton or American cotton and upland cotton, are tetraploid (2n = 52) are confined to Egypt, 

Mexico, Central, and South America. The G. hirsutum is the predominant species and 

contributes almost 90% of global cotton production. The cotton fiber is a cellulosic 

polymer and hydrophobic in nature. Typically, the cotton fibres are composed of Cellulose 

(94%), Waxes (0.6%), Pectin (0.9%), Protein (1.3%), Mineral matters (1.2%), Organic 

compounds (0.8%), total Sugars (0.3%) and other substances (0.90%) (International Cotton 

Advisory Committee report, March 2017). 

1.1 ABOUT COTTON CROP AND ITS IMPLICATIONS DUE TO CHANGING 

CLIMATE AND THE CLIMATE AND CROP MODELS   

1.1.1 Cotton; Commercial Crop Of India 

The economy of an agro-based country like India is predominantly based upon the 

Agriculture Sector. This includes the production of edible crops for food security and cash 

crops as well for economic empowerment. Cotton is the world's most significant fiber crop, 

and the second most important oilseed crop (Freeland et al., 2006). It is a source of fiber, 

oil for human consumption, protein meal for livestock feed, and potentially fuel for diverse 

industries. The waste after ginning can also be used as fertilizer and cellulose as paper and 

cardboard (Freeland et al., 2006). Cotton accounts for approximately 75% of total fiber 

production in the textile industry, which almost contributes to 4 % of GDP and 17% export 

earnings for India (India, C. E. I., 2007; Sankaranarayanan et al., 2010). It is grown 

worldwide with India as the highest producer accounting for 26% of the total world's cotton 
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production and largest area under production as 38% to 41% as its share (International 

Cotton Advisory Committee report, March 2017). India also has the achieved highest 

acreage of cotton worldwide, with 9.5 million hectares and engaging around 5 to 5.5 

million farmers (Sankaranarayanan et al., 2010). Due to its economic relevance, it is our 

priority to study the vulnerability and adaptability measures. And with the changing world, 

increasing temperature, monsoon unpredictability, and erraticism linked with rising global 

warming in the Indian Subcontinent, there is now a dire need to study the impact of weather 

on crops as well. 

India was the leading cotton producer and second-largest cotton exporter in 2016-

17 (Press Information Bureau, Government of India, Ministry of Textiles dated 09-March, 

2017). But again, it slipped to the second position in 2018-19 as an estimated 27 million 

bales, which is 6.9 percent down from the preceding year. Harvested area fall marginally 

down as 1.6 percent from 2017-18, reduced monsoon rainfall and pest outbreak in the 

major crop-producing area like infestation by pink bollworm in Gujrat and Maharashtra 

truncated harvesting. (Cotton Outlook – USDA, 2019). Again in 2019-2020, India regained 

its position as per forecasts to come back as the leading cotton-growing country, surpassing 

China once again. It is projected to be 28.5 million bales, which is 10 percent above 2018-

19 (FAO cotton report, 2019). In India, cotton is grown in three discrete agro-ecological 

zones: The Northern zone (Punjab, Haryana, and Rajasthan), the Central zone (Gujarat, 

Maharashtra, and Madhya Pradesh), and the Southern zone (Andhra Pradesh, Tamil Nadu, 

and Karnataka) Orissa and others. And all the four cultivable species of cotton such as 

Gossypium Arboretum, G. Herbaceum (Asian cotton), G. Barbadense (Egyptian cotton), 

and G. hirsutum (American Upland cotton) can be grown here. The majority of hybrids 

like Bt cotton produced in India are Gossypium Hirsutum, which is around 88% cotton. 

With the adoption of genetically modified (GM) crops in India since 2002, the cotton 

production and the farmer's income doubled. But the wild variety was more tolerant 

towards drought, whereas production of the Bacillus thuringiensis (Bt) cotton hybrids are 

influenced by the weather, especially monsoon patterns in the rainfed regions. Therefore, 

climate change could affect the yield cropping pattern of the crop. And the concern is the 
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majority of the cotton is rainfed (approximately 62%). Also, there is a wide gap in the 

productivity of the crop where India (454.43 kgs/ha) ranks poorly when compared with 

USA (955 kgs/ha) and China (1764 Kgs/ha) (Ministry of textile, Cotton Updated by Fibre-

I, Section on 12.9.2019). 

1.1.2  Historical Existence Of Cotton  

The cotton history is as old as human civilization itself. From the period of 

domestication of the cotton plant by several ancient civilizations till present times, this 

particular plant and it's by-products have given many things to the humankind. One of the 

most important contributions is the fabric that is received from it. The transition of cotton 

usage and its products can vary from purely functional decorative use of it to the shift in 

the manufacture of textiles from a highly individualized and specialized cottage craft to a 

mechanized and large-scale operation. This outcome of many persons' creative genius from 

all walks of life has contributed to the evolution of the particular material. These changes 

are closely interlaced with events in other spheres of human history. The cotton plant and 

the various factors starting from its birth until the crop's harvest undergo different stages. 

Moreover, several other physiological and climatic factors are deeply involved in the full-

fledged growth of this particular crop. Therefore, the cotton plant, which comes under the 

category of cash crops, demands us to examine its economic value. 

There has been a discovery of shreds of evidence of cotton under various aspects 

of civilization. It is traced that a single plant and its usage and the products are deeply 

connected in our day to day lives of every individual. An attempt is made to highlight the 

perks and importance of cotton, which is an essential part of society and the economy and 

the natural environment it is grown. For the last many centuries and several different time 

periods, it has served various services and also different purposes to mankind. And on the 

other hand, humankind has exploited this particular crop in multiple ways. A sincere 

emphasis is put to draw a nexus between historical, economic, physiological aspects of the 

cotton plant as a crop. This overall understanding is essential to help manage a view about 

the future where steps could be taken to protect the crop and enhance its production. 
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Cotton fabric has been found in the excavations of Mohenjodaro and pre- Inca 

cultures in America. In 1929, archaeologists recovered fragments of cotton textiles in 

Mohenjodaro, dating between 3250-2750 BC. This indicates the use of it to a very old 

period and, most probably, one of the earliest pieces of evidence. At the Indian 

Subcontinent, the by-products of the cotton plant and its history of usage date back to the 

ancient period, and many more other examples are found. In another instance, the Vedic 

scriptures, composed between 1500-1200 BC, also allude to cotton spinning and weaving 

(Hagge, 2013). Continuing the culture of cotton production and its uses in the 16th- 18th 

Century during the Mughal Empire, cotton production in India increased, both in terms of 

raw cotton and cotton as textiles. They also introduced agricultural reforms along with a 

revenue system that was in favor of commercial crops such as cotton, indigo, etc. They 

also supported the crop by providing them with incentives for growing these crops. 

(Richards, 1995). 

The cotton industry has been highly dominated by India in the 18th Century and 

was taken over by the British. This industry faced challenges in the late 19th Century as it 

was not mechanized and due to American dominance for the export of raw cotton. India 

ceased to be a major exporter of cotton goods, becoming the major importer of British 

cotton textiles. During the 20th Century, when India's independence struggle began, 

Mahatma Gandhi believed that khadi i.e., cotton weaving, was closely tied to Indian 

sentiments for self-determination. Therefore, in the 1920s, he started the Khadi Movement. 

Again during World War II, shortages raised the demand for cotton cloths. 

Further, in the latter half of the 20th Century, a downturn in the European cotton 

industry led to the Indian cotton industry's resurgence. India began to mechanize and was 

able to compete in the world market (Logan, 1958). Cotton has also played a vital role in 

the freedom struggle of the country. One single crop has seen many faces of transition in 

the ongoing centuries. 

1.1.3 Cotton Physiology 
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The cotton plant belongs to the family Malvaceae and the genus Gossypium. They 

are either diploid species, e.g., G. arboreum and G. herbaceum, or tetraploid species, e.g., 

G. barbadense and G. hirsutum. It is an annual crop but has a xerophytic, woody perennial 

nature (Hearn, 1980). Among the major field crops, cotton possibly has the most complex 

structure. Also, it is susceptible to adverse environmental conditions (Oosterhuis, 1990). 

The stages of growth and development in the cotton plant are coinciding and overlapping 

upon each other. So its precise demarcation is not possible as in the case of other crops like 

wheat and rice. The growth stages consist of both vegetative and reproductive phases. After 

sowing, the vegetative phase starts, including seedling, emergence, and formation of the 

leaf. 

Further, the reproductive stage starts with squares formation, followed by flowers 

and then the ball. In combination with hormonal influences, the nutritional hypothesis plays 

a crucial role in relation to changes in growth patterns during the cotton ontogeny, with a 

negative correlation between vegetative and reproductive growth (Guinn, 1986). 

Vegetative and reproductive growth could continue indefinitely under favorable 

conditions. However, due to demand for the resource supply by the reproductive organs, 

the vegetative growth ceases, which is called 'cut-out’ as described by Hearn et al. (1994). 

After planting, seedlings can emerge within 5 to 7 days under favorable conditions. 

Vegetative growth and development takes around 40-45 days after emergence. This 

includes development of root, stem and leaves system. After the vegetative growth, 

reproductive growth starts. It actually starts with the appearance of first floral-bud on the 

lowest fruiting branch after 30-35 days of emergence, depending upon prevailing 

environmental conditions. This is followed by coming up of other floral-buds at regular 

intervals until flowering ceases. Flowering can cease after the ball formation starts or due 

to and stress. During the period of peak flowering, the vegetative growth is almost 

contemptibly small in amount. Some shedding of squares is probable to happen, even under 

the best management practices. 
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The cotton plant may shed off 40% to 50% of all its squares, which is further 

benefitted during its ball formation and maturity. Extensive shedding may occur due to 

stress, which can upset the plant's vegetative and reproductive balance, which may also 

affect the yields. The plants response to "cutout” as shedding of squares is to consume the 

produced carbohydrates in maturing the balls. Yields can also be reduced if cutout occurs 

too early. Squares may also shed off either because of insects damaging the plant or due to 

the poor growing conditions. Both flowering and seed formation keeps occurring in the 

same plant at different branches. During this phase, fertilization of the flowers occurs. The 

cotton blossom is a perfect flower. It contains both female parts and the male parts in the 

same flower. These fertilized flowers finally result into seeds. This process of the first 

flower to the first seed formation generally takes 18-24 days. After fertilization has 

occurred, the flower drops, and a small ball is formed. It starts typically after 65 days of 

sowing. It takes 30 to 35 days for its formation phase. In a plant, at the same time the square 

is formed, the flower is blooming and the balls. Not every ball that is formed makes it up 

till maturity. Initially, the process of ball development is slow during its formation. Later, 

the growth rate enhances and reaches a steady phase of growth. Balls that set late in the 

season often take a longer time duration to mature compared to that set early and in the 

middle of the fruiting season. Balls that set in time have enough time to develop, mature, 

and open to produce quality lint, with good yield. Balls that appeared late are generally 

smaller, not mature properly, and may not open. Thus the quality of lint and yield is 

typically low. 

After ball formation, four to five weeks are required for ball maturation. The first 

ball generally begins to open 100 to 110 days after cotton sowing. During this phase, the 

thickening of fiber occurs by the deposition of consecutive layers of cellulose in the inner 

walls. In this phase of ball maturation, fiber elongation can be impacted by numerous 

factors. The genetic code primarily controls the length and quality of the fiber. But, length 

could also be influenced by the environment. Stress during this period can cause fibers to 

be shorter than normal. Finally, after maturity, the crop is harvested for the final product. 

In general, the number of pickings is four (120, 140, 155, and 165 days after sowing) and 



Chapter I 

7 

 

varies according to labor availability. After the balls are matured, they are ready to be 

harvested. 

1.1.4 Conditions Of Growth 

Cotton is a deciduous plant, which is native to subtropical climates. To assure proper 

seed germination and crop emergence adequate soil temperature and moisture conditions 

are required at the time of planting (Oosterhuis, 2001). The production of cotton crop is 

directly influenced by temperature, photoperiod, total radiation, and precipitation. 

Processes leading to squaring, flowering and boll formation and maturation are 

temperature-dependent (Mauney, 1986). Minimum of 15ºC is required for germination, 

21ºC-27ºC for vegetative growth, and 27ºC-32ºC during the fruiting period (Waddle, 1984; 

Freeland et al., 2006).  

Since, germination is severely affected when the temperature fall below 14°C. 

Chilling injury is the damage brought about by near-freezing low temperatures in cotton 

plants at various growth stages. Chilling causes a disruption of metabolic activity leading 

to death of the plants. The stage of germination had been known to be important in 

determining the extent of injury (e.g., chilling of pre-emergence seedlings can cause delay 

in maturity). An optimum range of air temperatures for the process of photosynthesis is 

25°C to 45°C; this process may drop to zero at 55°C.  Cool nights are beneficial during 

fruiting period but extremes in temperature can result in delayed growth and aborted 

fruiting sites. 

The placement of the first flowering branch gives an excellent indication to 

photosensitivity. In photosensitive varieties this position is much lower. For appearance 

of first flower, under comparatively cool day time temperature (28°C) with a 12-hour day, 

an upland variety may take 60-70 days from planting, while the same variety under 

warmer conditions (33°C) may take about 45 days. Excessively high air temperatures can 

result in an increase in square shedding. For ball production and retention, the sequential 

temperature of 45ºC or more for two or three consecutive days may be defined as an upper 
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threshold, 16 ºC as a lower threshold, optimum as 27°C - 32°C and day time and night 

time temp range as 20°C - 24ºC. Mean temperature of 22°C - 27°C as optimum for the 

ball and fiber maturation. In general, rainfed cotton mature earlier than the irrigated ones. 

The absence of ball load on the plant, ball retention would be high in the range generally 

required for ball production irrespective of actual temperature and humidity experienced 

by the cotton plant. Ball retention is more dependent on fruit load on the plant rather than 

on temperature or relative humidity. An optimum day/night temperature of 27°C/22°C 

was suggested for optimum ball weight. Maximum temperatures greater than 38°C 

decreased yield considerably. If the daily mean temperature is below 20°C during the ball 

forming period, the fiber will stop thickening, and if it is below 15°C, the fiber will not 

elongate. For the elongation of fiber cells and thickening of secondary walls, the optimum 

temperature required was 25°C. With mean daily temperatures at 20°C - 25°C during ball 

development, 85% of seeds attain maturity while the percentage rapidly decreased at 

temperatures less than 25°C.   

Extreme high temperature can result in delayed growth and shedding of fruiting 

bodies. High night temperatures cause poor or no pollen shed due to pollen sterility in 

cotton. Plants grown at 32ºC night temperature inhibit fruit setting.  Temperatures below 

20ºC and above 40ºC might result in pollen sterility and incomplete fertilization. Suppose 

temperatures are high during the night when the first flowers are due to open. In that case, 

the absence of early balls allows vegetative development further, resulting in a tendency 

to rank growth, which is found in areas or seasons where the minimum temperature 

exceeds 24°C. High temperature is disadvantageous to photosynthesis and often enhances 

photorespiration intensity, thus leading to carbohydrates in short supply, causing the 

abscission of balls. Gross photosynthesis declines when the temperature exceeds 32°C. 

But the photorespiration increases with temperature continuously, thus net photosynthesis 

decreasing with increasing temperature. At 32°C - 34°C, photorespiration reaches 50 

percent of net photosynthesis. Too high or too low temperatures may affect the efficiency 

of plant protection chemicals. 
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Cotton is sensitive to day length. Early and mid-varieties of G. hirsutum can bud 

and blossom under normal conditions. However, late varieties of G. hirsutum and G. 

barbadense require short days. If the sunshine duration decreases appropriately, the first 

ball bearing branch's position will be lower, and the plant will be in compact conformation. 

But the output per plant will decrease. Cotton also requires plentiful light. The 

compensation point of irradiance for photosynthesis is 1000-2000 Lux, and the saturation 

point is 70000-80000 Lux. The intensity of photosynthesis has a close relation to 

irradiance. When irradiance ranges from 8000 to 70000 Lux, the photosynthesis increases 

with irradiance, and the peak appears at 70000 Lux. Over 80000 Lux, the intensity of 

photosynthesis will decrease. If irradiance is insufficient, photosynthesis will decrease, 

and the plants will put up excessive growth, thus leading to abscission of buds and balls. 

Physiologists recognized the high ability of the cotton crop to utilize solar energy. 

Light rarely limits the growth of cotton plants under field conditions. In the temperate 

zone itself, the intensity of sunlight at midday is estimated to be four to five times more 

than that needed for the cotton plant's optimum growth. High light intensities are required 

for proper vegetative development. Abundant sunshine is essential to obtain good quality 

produce during the period of ball maturation and harvesting. Four hours of sunshine per 

day seems to be crucial for ball retention. However, no direct influence between 

cloudiness and ball shedding had been established with certainty as several factors interact 

in the process. A relatively dry period and good sunshine of at least four hours per day at 

the end of the season after ball opening ensures the right seasonal conditions for ripening 

and freedom from ball diseases and pests. The shedding percentage of young balls 

increases due to cloudy days; the result often appears about a week later. 

If radiation is insufficient, photosynthesis will decrease, which may hamper the 

plants' vegetative growth, finally leading to buds' abscission. Light is essential for 

photosynthesis. During the late growth stage, the lower part of the plant accepts much less 

radiation and the photosynthates are in short supply, thus leading to the abscission of buds. 

Four hours of sunshine per day seems to be essential for ball retention; however, no direct 
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influence between cloudiness and ball shedding had been established with certainty as 

several factors interact in the process.  

  Cotton requires approximately 550 mm to 950 mm for water not to be a limiting factor 

for the yield evenly distributed during the cropping season (Doorenbos et al., 1984). 

Adequate soil moisture during sowing is necessary for the growth and development of 

crop. Cumulative rainfall of 75-100 mm required for sowing of cotton to have better 

germination and crop establishment. Rainfall of 25 mm/week after onset of rains is 

optimum sowing time for rainfed regions. 400 mm of well-distributed rains in July and 

August are conducive for vigorous and luxuriant growth. Incessant rains or a long spell of 

dry weather may prevent the sowing of the crop at the proper time, hinder seed 

germination, or retard crop growth. Delayed germination could possibly expose the seed 

to fungal infections. 

Heavy rainfall with intensity of more than 100 mm in 24 hours, cause flooding and 

waterlogging in cotton fields, damaging standing crop. Waterlogging is detrimental to 

growth of cotton crop due to poor aeration in the root zone. It has also been observed that 

the effect of waterlogging becomes evident after about a week's time when photosynthetic 

rates drastically decrease by about 86%. Heavy rains or excessive drought may cause 

heavy shedding of buds. Water deficit stress may result in stunted growth of plants due to 

reduced leaf area expansion. 

Excess rainfall and high relative humidity during flowering can lower the value of 

the lint index. Heavy rains during peak flowering and ball formation (300-400 mm in 

September or continuous rains in October) increase ball shedding, which in turn leads to 

delay in maturity. Rainfall not only increases soil moisture but destroys the process of 

pollination and fertilization of cotton plants, leading to the abscission of buds and balls. 

When rainfall occurred during the daytime, the abscission rate was 80-90%, but with 

nighttime rainfall, it was 40-70%; and on dry and sunny days, it was 20-40%. When 

rainfall was less than 1 mm, the abscission rate was 49.3%; and when rainfall was 1-6 mm 

and more than 10 mm, the abscission rate was 52.9% and 80.4% respectively. 
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Precipitation or humid weather conditions during later stages of cotton growth can 

promote the pests or insects attack and disease such as boll rot (Boyd et al., 2004). Water 

stress can manifest reductions in photosynthetic activity and increases in leaf senescence 

(Gerik et al., 1996), the stunned plant with reduced leaf (Pettigrew, 2004b). Drought stress 

can cause severe shedding of small squares, resulting in a decrease in flowering reduce 

fiber length (Pettigrew, 2004a). Hence, a combination of warm and dry weather conditions 

along with abundant sunshine and sufficient moisture during the bolls opening till the 

harvest will maximize yield and quality potential (Freeland et al., 2006). For attaining its 

potential productivity, it requires long frost-free days, warm-season with a mean annual 

temperature of over 16°C, plenty of sunshine, and a moderate rainfall usually from 450 to 

750 mm. Mono-cropping of cotton and heavy dependence on chemical fertilizers should 

be avoided in order to maintain the stability of cotton production. The cotton crop can be 

successfully cultivated on all soils (sandy loam, clay loam, loam, alluvial soils, black cotton 

soils, red sandy loams to loams, and lateritic soils) except the sandy, saline, and 

waterlogged soils. Cotton is semi-tolerant to salinity and sensitive to waterlogging and thus 

prefers well-drained soils. Cotton requires soil with excellent water-holding capacity, 

aeration, and good drainage since excessive moisture and waterlogging are detrimental to 

production. 

1.1.5 Impact Of Changing Climate On Cotton Crop 

Cotton belongs to the C3 plant and requires warm days and cool nights for optimum 

growth and development. The crop encounters various biotic and antibiotic stresses, which 

disturbs its physiology and productivity during its growth and development. Among abiotic 

factors, moisture deficit, temperature extremes, and salinity due to changing climate are 

significant threats and account for a 50% reduction in the yield worldwide (Boyer, 1982). 

With the changing environment as the number of extremes will be amplified, it can 

negatively affect the crop.  Studies indicate that the changing climate and environmental 

conditions will influence cotton productivity. These alterations can disturb the physiology 

of the crop.  The response may vary according to the developmental stage, the severity of 
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the impact, the climate of the location, and the cultivar's optimum range. The intricate 

pattern of the crop and indeterminate growth habit makes it more vulnerable towards stress 

(Loka and Oosterhuis, 2012; Reddey et al., 2005).   

The impact of climate change and frequency and severity of extremes are essential 

for crop productivity assessment (Rosenzweig and Parry, 1994; Houghton et al., 1996; 

Rosenzweig and Iglesias, 1998). With increased carbon and higher temperature, the 

metabolic rate of the cotton crop is enhanced in the future (Reddy et al., 2002). Increased 

CO2 has aggrieved the photosynthesis and abetted more squares, and then flowers, 

enhanced temperature above optimum has prompted ball abscission.  It can also affect plant 

fitness and flowering related events by regulating flowering time (Jagadish et al., 2016). 

Among the climate variables, fluctuating temperature and rainfall predominantly affects 

the cotton (Reddy et al., 2005). The growing period has also been reduced by 11 days in 

the projected future in the Mississippi Delta region (Reddy et al., 2002). Severe sucking 

pests and related diseases and the dominance of weeds are expected in cotton 

(Sankaranarayanan et al., 2010).   

Among the biotic effects, pests and diseases cause significant stress and yield 

reduction. Temperature and moisture have an impact on the host crop and the pathogen. 

So, the general increase in temperature induces increased ET and relative humidity, which 

favor the pest and associated disease (Rosenzweig and Hillel, 1998). Studies show 

increased biomass with increasing CO2 also favors pathogens. On the contrary, with 

increased CO2, host plants can also develop resistance due to physiological changes in the 

plant (Coakley et al., 1999). The pest populations in the cotton crop are also relatable with 

the weather variables. Studies indicate correlations of a different pest with the maximum 

and temperature, relative humidity, rainfall, etc. (Bishnoi et al., 1996; Janu et al., 2017). It 

is also found that increasing temperature also makes the crop vulnerable to pest attack, and 

in response, the crop may loose vegetative and fruiting bodies (ITC, 2011).   

The impact of climate change also depends upon the area where the crop is sown 

and its present environmental conditions and crop's optimum range for tolerance.  On the 

one hand, in arid and semi-arid cotton-growing regions where the temperature is near 
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optimum, an increase in temperature has been found inducing fruit shedding (Brown, 

2008). On the other hand, where the temperature is below the optimum range of tolerance, 

a slight rise is seen to be benefitting (Reddy et al., 1995). Apart from site-specific 

environmental conditions, the impact of stress could be dissimilar, conferring the cultivar's 

genetic constitution and is tolerance based on its enzymatic action conditions (Loveys et 

al., 2004; Reddy et al., 2005). 

With the changing climate, crop responses varies from region to region based upon 

their regional weather, soil type, plant type, etc. Studies indicate the projected high 

temperature is better for cotton crops in the colder region with longer growing seasons, 

whereas in the warmer regions, hasted growth and development could reduce yield and 

quality of the crop (Rosenzweig and Hillel, 1998). The impact of changing climate on 

simulated cotton was pernicious in hot and dry years and was anodyne in a cold and wet 

year (Reddy et al., 2002).  Among the three cotton growing zones changing climate have 

different implications, projected decreasing temperature and increasing precipitation in the 

northern zone can prolong the growth period and amplify the pest and disease 

susceptibility. Repercussions can be seen in sowing dates of the subsequent rabi crops. The 

central and southern zones region projected increasing temperature and decreasing rainfall 

with extremes in temperature and erratic distribution of rainfall characterized by recurring 

seasonal wet and dry spells. Therefore, escalated evapotranspiration demands may affect 

crop yield (Sankaranarayanan et al., 2010).   

With the changing climate, erratic rainfall occurs, which is found to be disastrous 

for the cotton crop even in the irrigated regime. The flowering and ball formation is most 

sensitive towards water stress, which affects the yield and the fiber quality of the crop 

(Loka and Oosterhuis, 2012; Lokhande and Reddy, 2014; Shikha et al., 2018). Under 

irrigated conditions, cotton yields increased significantly with changing climate driven at  

RCPs 2.6, 4.5, and 6.0 in the years 2050 and 2080 with low to moderate emission levels. 

But, at RCP 8.5 and under the highest emission scenario, the cotton yield increased in 2050 

but declined significantly in the year 2080. But under rainfed conditions, the yield declined 

in both 2050 and 2080 under all four RCP scenarios. However, the yield still increased 
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when enough rainfall was received to meet the water requirements of the crop, in about 

25% of the cases (Saseendran et al., 2016). The simulations show that change in 

meteorological parameters can influence crop productivity, which results from climate 

change. The increase in temperature would lead to reduced cotton yields in future 

scenarios. But while assessing with increased CO2, the effects of rising temperature and 

decreased water availability get ameliorated to increase the yield attributes, also termed as 

'CO2 fertilisation effect'. Therefore, with increasing temperature, providing irrigation 

amounts by almost 50 % would help the plant sustain and enhance productivity by 

maintaining adequate soil moisture levels (Williams et al., 2015). Studies also suggest with 

an increasing ET, the crop water demand surging and supplemental irrigation will be 

required in the future to reduce canopy temperature and reduce ball abscission (Reddy et 

al., 2002).  

1.1.6 Climate Change And Its Future Projections 

As per IPCC, Climate is average of weather conditions and the statistical description 

of the weather variables in terms of mean and variability for around 30 years over a region. 

Climate change in the present era is mostly influenced by anthropogenic changes in the 

atmospheric constituents and land-use patterns. Historical climatic information can be 

utilized to understand its intricacies and take advantage and divert ill effects of weather. 

Future climate change scenarios can also be assessed based on modeling to mitigate its ill 

effects. Although with the changing climate, the intensity and frequency of intermittent 

rainfalls with longer periods of dry and wet spells and extreme hot and cold days are 

threatening for the crops across the globe (Liebig et al., 2012). With this still evolving 

climate change scenarios, our soil, water, and other natural resources are also deteriorating 

(Gurdak et al., 2012). For most crops, elevated temperature and carbon dioxide affect 

biological processes like respiration, photosynthesis, plant growth, reproduction, water use, 

etc. (Murthy, 2002). Also, policymakers and resource managers require information for 

future climate scenarios to understand and anticipate the potential impact of changing 

climate on agriculture and food security. So in order to formulate the policies, reliable 
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climate projections are required. In addition, adaptation and development of response 

strategies strongly rely on regional effects. 

1.1.7 Climate Models 

Climate models are developed for understanding how the climate system works with 

the help of advanced computing systems. They work by resolving basic equations 

describing the energy, mass, momentum, and moisture at various grid points on, below, 

and above the surface (Sweeney, J. C. 2009). As defined by Sweeney (2009), GCMs are 

"Three-dimensional mathematical simulations of the processes that regulate the global 

climate system" and "Regional Climate Models (RCMs) are “To overcome the difficulties 

posed by coarse grid GCMs, RCMs with a higher resolution are constructed for smaller 

areas. These are driven at their boundaries by a parent GCM”. Several General Circulation 

Models (GCMs) and Regional Climate Models (RCMs) are utilized as a tool to obtain high-

resolution climate information. For regional climate, GCMs are statistically and 

dynamically downscaled to enhance resolution based on digital elevation models (DEMs), 

representing the realistic topography. These synoptic-scale GCM fields can be nested for 

high-level fidelity with associated mesoscale resolution field with the RCM simulations.  

In the nesting technique, the output from GCMs is utilized to drive time-varying lateral 

(vertical profile for temperature, wind, humidity) and surface (sea surface temperature and 

pressure) boundary conditions to capture the atmospheric conditions over the region of 

interest. GCMs can do a reasonable job simulating global values of surface air temperature 

and precipitation (Goudriaan, 1977). They are mostly utilized for estimating variables such 

as temperature precipitation etc. for climate change scenarios but could not resolve regional 

small spatial scales (Sørland et al., 2018).  

Although GCMs have so far produced reliable projections of changes in climate 

variability, such as alterations in the frequencies of drought and storms, etc. (Penning et 

al., 1974), which could significantly affect crop yields GCMs are the primary source of 

information on climate scenarios but still have the drawback of having high spatial 

resolution and inability to capture interannual variability which is rectified by RCM on 
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regional scales (Metzger et al., 2005; Khan et al., 2008). The resolution of GCMs is too 

coarse to provide precise climate information over a particular region; RCMs are 

commonly nested over there GCMs to produce detailed data for climate realizations. 

Ensembles of GCMs and RCMs simulations are available with internationally coordinated 

projects like CMIP5 (Taylor et al., 2012), CORDEX (Giorgi et al., 2009), etc. RCMs 

improve the small scale features compared to its driving GCMs (Sørland et al., 2018).  This 

improvement is not only the result of an added value of resolving large scale forcing over 

the complex terrain but due to better representation of underlying processes (Torma et al., 

2015).  

1.1.8 Bias Correction 

The model projections from GCMs and RCMs have some degree of biases. It is 

essential to assess the performance of the model and with the observed data to identify the 

underlying shortcomings or bias, their strength before using its future projections, which 

are subjected to statistical bias-correction (Piani et al., 2010). This post-processing process 

corrects the systemic bias for improving the utility of model projections for end-users 

(Maraun et al., 2010). These biases can be induced due to 'systematic model errors,' 

'boundary conditions' etc. Typically, preferences include innumerable wet days with low-

intensity precipitation and erroneous assumptions for extreme temperature (Ines and 

Hansen, 2006; Teutschbein and Seibert, 2012).  

Various methods to adjust the biases in RCM simulations include 'linear scaling, 

local intensity scaling, power transformation, variance scaling, distribution transfer 

approach as by probability mapping (Ines and Hansen, 2006), quantile mapping (Sun et al., 

2011), statistical downscaling (Piani et al., 2010) and histogram equalization (Rojas et al., 

2011).  This study 'Distribution mapping of precipitation and temperatures by quantile 

mapping' method is utilized to reduce uncertainty linked with model data. Studies indicate 

that these bias-corrected weather variables of RCM are better fitted with the observed 

values than the model output (Mall et al., 2017). The change in temperature in these zones 

https://iopscience.iop.org/article/10.1088/1748-9326/aacc77#erlaacc77bib62
https://iopscience.iop.org/article/10.1088/1748-9326/aacc77#erlaacc77bib29
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2014JD021732#jgrd51683-bib-0027
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is most likely periodic expected to increase in the near future and far future as per the 

model. 

The observations versus simulation and its bias-corrected version offer a 

comparatively viewpoint for credible information (Gudmundsson, 2014; Maraun, 2016). 

These models are trained and accustomed to understanding the process and simulating past, 

present, and future climatic conditions. Where these observations and simulation studies 

give a complementary prospect for any region (Gudmundsson et al., 2012; Gudmundsson, 

2014; Thrasher et al., 2014). 

1.1.9 Crop Simulation Model  

Since the last decade, crop simulation models have been extensively used in 

agriculture to simulate crop responses towards different abiotic factors. Now they are also 

focusing upon developing a model that helps in the study of biotic stress too, such as pest. 

Crop models help us to assist in the synthesis of research. It provides us in inferring the 

interaction of genetics of the plant, its physiological and environmental interactions. For 

the evaluation of agronomic management strategies, the organization of data is an 

important tool (Mubeen et al., 2013; Wajid et al., 2013; Boote et al., 2010; Hoogenboom 

et al., 2004; Jones et al., 2003).   

In this study, the DSSAT-CSM cropping system model: Version 4.6 is used. The 

Decision Support System for Agrotechnology Transfer- Cropping System Model 

(DSSAT-CSM), which includes the CROPGRO-Cotton model as an assemblage of 

independent programs that operate together. It aids in reducing the time, cost, and human 

resources required for analyzing the complexities and concluding for an alternative 

decision. This software helps users prepare the database and compare simulated results 

with observations to give them confidence in the model. This also assists in determining 

weather modifications are needed to improve accuracy or to achieve the potential yield. 

This way, it could be practically helpful for the cultivators to select the best management 

practice to raise production and productivity.   
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Parameters such as cultivar characteristics, maximum and minimum temperature, 

solar radiation, and crop management's factors are considered for crop growth models 

(Mahamood et al., 2003; Hoogenboom et al., 2011). The suite of crop simulation models 

encompassing the Decision Support System for Agrotechnology Transfer (DSSAT) 

includes the Cropping System Model (CSM)-CROPGRO-Cotton model (Jones et al., 2003; 

Hoogenboom et al., 2004). CROPGRO-Cotton is a recently developed crop model and 

consists of several parameters (Pathak et al., 2009). A study by Ortiz et al. (2009) states 

that the model simulates growth, development, and yield of cotton in correspondence to 

various factors like weather and soil conditions as well as management practices. Li et al. 

(2009) used the new semi-empirical model to simulate cotton leaf and concentration of ball 

nitrogen. They studied the direct indicator of nitrogen fertilizer and its effect on growth, 

development, and cottonseed. In terms of modifying weather simulation generators/or 

introducing a package to evaluate model performance for changing climate, the 

CROPGRO module under DSSAT can be used and was one of the first such package 

(Murthy, 2004).  

Climate model data serve as input for the hydrological and crop simulation models 

to analyze the effect of changing climate on the crop ((Rauff, 2015; Mall and Aggarwal, 

2002). These data are also applied as inputs in the crop simulation models to provide a 

more scientific approach for the study of climate change impact on cotton (Hebbar et al., 

2013; Saseendran et al., 2016; Mall et al., 2018). Several crop simulation models are being 

utilized along with field studies to examine the crop yield and climate sensitivity under 

different scenarios (Aggarwal et al., 2006) like General Large Area Model (GLAM) (Sanai 

& Chun, 2017), Decision Support System for Agro-technology Transfer (DSSAT) 

(Saseendran et al., 2016; Mall et al., 2017), InFoCrop (Aggarwal et al., 2005), AquaCrop 

(Pareek et al., 2017), etc. (Anwar et al., 2007; Ortiz et al., 2008; Singh et al. 2017; Mall et 

al. 2018).   

But the restraints while integrating these crop models are that the spatial scale is much 

smaller than those of the climate models (Hansen and Jones, 2000; Jagtap and Jones, 2002). 

So the weather data has to be downscaled as per the model requirements.  However, using 
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this process-based model such as DSSAT-CSM helps in analyzing some multifaceted 

relations (Dounias et al., 2002; Ortiz et al., 2009; Boote et al., 2010; Pathak et al., 2012; 

Thorp et al. 2014) by facilitating us for analyzing biotic and abiotic factors individually or 

in association with each other (White et al., 2005; Liu et al., 2010). Inputs from various 

and GCM are applied for the estimation of different crops like wheat (Pathak et al., 2003; 

Gourdji et al., 2013), rice (Kumar et al., 2013; Kumar and Aggarwal, 2014) cotton (Hebbar 

et al., 2013; Saseendran et al., 2016) and RCM models wheat and rice (Mall et al., 2018), 

etc.  

1.2 RELEVANCE AND MOTIVATION  

Due to the changing climate, agricultural productivity can be affected; therefore, it is 

a prerequisite to study its effect on the crop in the present and future climate in different 

regions. Studies indicate that the variability of our climate and especially the associated 

weather extremes, is currently one of the prime concerns for the general community 

(Murthy et al., 2002). Watson et al. (1998) have assessed various climate change scenarios 

according to which, increase in temperature in south Asia will range between 0.1–0.3 ºC 

and 0.4–2.0 ºC and CO2 concentrations will be between 397–416 ppm and 397–416 ppm 

for 2010 and 2070 respectively. The changing climate will have a negative effect on 

agriculture and food security in many countries. Similarly, in many other studies observed 

that a relative increase in CO2 concentrations at a higher rate and increase in temperatures 

at lower rates could be considered as an optimistic scenario since this is expected to favor 

crop growth. On the contrary, a high rate of increase in temperature and a low rate of 

increase in CO2 can be assumed as pessimistic because of adverse effects on crop growth 

(Reddy et al., 2005; Anapalli et al., 2016). This study emphasizes the vulnerability of cotton 

due to climate change in the central rainfed and northern irrigated agroclimatic zone for 

cotton. This study also outlines the effect of changing temperature and CO2 individually 

and together in the present climate to assess the crop response by modeling approach. 

Cotton, as a principal commercial crop, has economic relevance for the country.  

India is at the first place in production and acreage and contributes 26.75 % (345.82 lakh 
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bales and 38.13 % (118.81 lakh ha in 2015-2016 (Status of cotton report 2017). However, 

the average productivity is 522 kg/ha against the world average 765 kg/ha with a gap of 

243 kg/ha. The reasons for low productivity are weather aberrations, which includes excess 

or deficit rain in the present scenario and variability of rain and temperature for future crop. 

Also, pest and disease incidence, especially sucking pest, is major concern for the crop. In 

the era of changing climate, cotton is projected to face diverse abiotic and biotic changes. 

For estimating these earlier various studies are conducted based on field 

experiments. Now, this is complemented with computational methods such as modeling 

and remote sensing with an evolving era of digitization. Various agro-meteorological 

models have also been used, and optimal combinations of different parameters and 

meteorological derivatives have improvised to assess and predict the model outputs. These 

models have good potential for early crop yield assessment; the study of various type 

stresses at different phenological stages is necessary so that measures can be taken for its 

amelioration. All this give an insight into the productivity in advance. The model has an 

additional advantage of evaluating different permutations and combinations of 

management practices that could be evaluated through the model to find the most suitable 

for changing climate at different scenarios. The utilization of crop simulation models to 

study climate variability's impact provides a direct link between the field research with the 

models and meteorological variables that are concern forn the farmers and society.   

Since climate change deals with future issues, the use of General Circulation Models 

(GCMs) and Regional Climate Models (RCMs) provide a more scientific approach to study 

the impact of climate change on agricultural production and world food security. 

CROPGRO is one of the frirst packages incorporated under DSSAT  that modified the 

weather simulation generators and also introduced a package in the CSM to evaluate the 

performance of the model for climate change scenarios. The utilization of GCMs 

irrespective of the limitations are of the larger interest for the farming community of the 

world. The DSSAT modelers also find these GCMs to me for nearly accurate and, 

therefore, acceptable for weather generators in models. This can also help in finding 
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solutions to crop production under climate change conditions, especially in 

underdeveloped and developing countries (Rauff, 2015).  

The GCM projections in the Mississippi delta region exhibited a rise in  4°C in 

average temperature approximately and a decrease in the amount of precipitation during 

the cropping season. As per studies, the effect of climate change on cotton production was 

more drastic in a hot and dry year. They indicate that, if climate change occurs as projected, 

the production of fiber in the future will be compromised, and developing heat-cold-

tolerant cultivars will be necessary to sustain cotton production (Anapalli et al., 2016). 

Cultural practices vested as climate-smart agriculture, such as planting earlier, can be 

practiced to prevent the flowering in cotton during high temperatures that occur during mid 

to late summer. This study, based upon two different agrometeorological cotton growing 

zones, signifies which zone is favorable for future climate cotton production and with what 

measures. This study also emphasizes the importance of planting dates as climate-smart 

agriculture measures.  

General Circulatory Models (GCMs) have so far has produced projections for climate 

change and climate variability, with alterations in the frequencies of drought and storms, 

which could significantly affect crop yields (Penning et al., 1974). GCMs also does a 

reasonable job in simulating global surface air temperature and precipitation, but evaluate 

poorly at the regional scale (Goudriaan, 1977). General circulation models (GCMs) are 

used to study the variability in the climate projections, variable, and its magnitude of 

change on a regional basis (Mitchell et al., 1990). GCMs, provide us with data with a 

coarser resolution. So, Regional climate models (RCMs) could be preferably applied for 

regional scale data to study the impact on the crop, on a finer scale spatial data. RCMs are 

dynamically downscaled GCM outputs for regional scale (Sun et al. 2006). RCMs provide 

high-resolution data for regional scale with the influence of local heterogeneity compared 

to what can be obtained from GCMs. This study utilizes the RCM model output for the 

study, which is also bias corrected. In the study, the RCM model performance has been 

evaluated in the present climate for the study region. The bias corrected data has been 
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compared to the observations for the present climate to see how reliable the model is for 

future projections. Further, the future projections from the evaluated best performing model 

data have been used to analyze the productivity and suitability of the crop at different 

scenarios with different agricultural practices to find the site specific best management 

practices for the future climate. 

Apart from these abiotic constraints, there are some biotic constraints, also like the 

pest. Aphids, jassids, mites, bollworms, and whiteflies are major pests affecting the crop. 

So as to protect them, pesticides are widely used to such an extent that more than 50% of 

total production cost is attributed to pesticides alone (Sundaramurthy et al., 1998). Boyd et 

al. (2004) studied that humidity is a major contributor to pest and insect attacks, e.g., ball 

rot after ball opening.  Hence, it can be concluded that the most suitable conditions for 

maximizing the yield include warm, dry weather conditions, abundant sunlight, and 

availability of soil moisture since the period when the balls start opening through harvest. 

Whitefly (Bemisia tabaci) is an insurgence of this insect species that has been noticed in 

recent years in the cotton system in India, resulting in heavy losses. During Kharif-2015 in 

Punjab, the pest damaged over 75 percent of the crop. It was considered the major reason 

for the suicide of more than 12 farmers.  Haryana and farmers had suffered huge losses due 

to the white-fly attack (The Hindu, Oct 2016).  

Whitefly-transmitted geminiviruses are a major constraint to the production of 

agricultural and vegetable crops in the tropical regions and subtropical regions of the world 

(Morales et al., 2004). It causes physiological damage resulting in considerable economic 

loss. Recent studies suggest that disease incidence CLCuD and whitefly have some 

correlations with the temperature (Wang et al., 1996), rainfall, and planting dates 

accordingly (Umar et al., 2003; Farooq et al., 2011). Thus pests has been found to have 

correlations with the weather, so various regression equations are utilized for their 

prediction, and recently this is accompanied by the remote sensing approach for real-time 

screening. In this study, various regression equations utilized for prediction are mentioned, 

and with the application of remote sensing the difference between infested and non-infested 
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years are shown, which can help the growers to implement better pest management 

strategies on time for potential productivity.  

The maintenance of critical agro-ecosystem functions requires proactive responses 

through the strategic application of management practices that mitigate greenhouse gas 

(GHG) emissions and/or adapt to impacts from climate change. The effects of climate 

change help scientists recommend farmers and growers to make proper crop management 

considerations such as selecting crops, cultivars, sowing dates, and irrigation scheduling to 

minimize the risks. The productivity can be enhanced, and the adaptation of crop to climate 

change can be brought through the changes in cropping patterns, farming practices, and 

harnessing of new technologies that will help ease its effect apart from the use of chemical 

fertilizers insecticides. 

1.3 OBJECTIVES OF STUDY  

This model-based study focuses on the vulnerability and adaptability of cotton crop 

with climate change in diverse agroclimatic zones with varied agricultural practices. 

Initially, it evaluates the present-day climatology based on station data with variations in 

temperature and CO2 in the crop simulation model. Further, based upon the RCM projected 

data for the present climatology for the period 1970-2005 representing the present climate. 

Model data was bias corrected by the Quantile Mapping approach implemented with the 

help of ‘qmap' library written under R. Then for future climate for the period daily weather 

from 1971 to 2005, 2006 to 2035, 2036 to 2065, and 2066 to 2095 averaged to represent 

projected climate centered at historical (1990), present (2020) and climate change scenario 

at near future (2050) and far future (2080) for both RCP 4.5 and 8.5. The CO2 

concentrations are taken as 353, 415, 486, and 531 for RCP4.5 and 353, 415, 539, and 757 

for RCP8.5, respectively (Vuuren et al., 2011; Anapalli et al., 2016; Dua et al., 2018). For 

pest assessment, the conventional forecasting approach based on developed regression 

equations with weather variables is mentioned along with advanced technological 

estimation with remote sensing for real-time monitoring approach for the pest attack above 

ETL between infested and non-infested years are shown along with field validation. The 
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calibrated and validated and DSSAT model was utilized for simulating the impact on crop 

yield and physiology. The most widely used crop was considered for the study with three 

sowing dates and recommended packages and practices. The information about the impact 

on cotton at different climate scenarios could further contribute to the growers and 

scientific communities to have site-specific crop management and variability within the 

field for potential productivity with the changing climate. The study also focuses on the 

biotic stress, which is found to affect the productivity of cotton severely. The assessment 

of pest attack has been done by remote sensing for the year 2013-2018 to see the difference 

infestation status of the crop as per crop calendar. The study embrace utilization of climate 

models to study the vulnerability and adaptability of cotton crop in future climate change 

scenarios. And the application of crop growth models for developing site-specific crop 

management strategies, yield forecasting, and the sustainability of the crop, climate change 

impact assessment, and economic analysis for bringing precision in agriculture. Thus, 

broadly, the main objectives of this study are: 

1. Model-based approach to study the response of Bt-cotton towards elevated 

temperature and carbon dioxide in the semi-arid region of Hisar. 

2. Application of remote sensing for detection of stress in cotton induced by pest in 

Hisar.  

3. Evaluating the performance of regional climate model for cotton production in 

rainfed and irrigated regions using DSSAT  

4. Simulating the impacts of climate change on irrigated and rainfed cotton production 

in India. 

 

1.4 STUDY REGION 

The study region for Chapters II and III is Hisar (Figure 1.1), Haryana. Later, 

considering the fact that 58% of net cultivated area in India is rainfed and climate change 

will further exuberate the problems of rainfed agriculture (Turkhede et al., 2018), another 

location was added in chapter IV and V to assess the impact of climate change between the 
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diverse environment and management conditions in India. Hisar has dry semi-arid climatic 

conditions and alluvial soil; the cotton crop grown here is mostly irrigated, whereas Akola 

(Figure 1.2) is located in Vidarbha in the region of Maharashtra with a moist semi-arid 

climate and black soil where rainfed agriculture.  

Hisar, the westernmost district of Haryana, situated between 74°24' to76°18'E 

longitude and 28°54' to 29°59'N latitude at an elevation of 215.2 m. It is the westernmost 

district of Haryana, representative climatology of the northern irrigated cotton-growing 

region. It is basically a semi-arid region with a temperature range of 40°C to 44°C in 

summer months and between 4°C to 6°C in winter months. The annual average maximum 

temperature is 31.5°C, and the minimum temperature is 16.2°C and an average annual 

rainfall of approximately 450 mm, of which 75 to 80 percent of annual precipitation is 

received during the monsoon season (Shikha et al., 2018). Akola is located at latitude 

20°42’ North and longitude 77°07’ East. The climate is characterized as tropical savannah 

type, with medium and deep clayey black soil. It has hot summers and dryness throughout 

the year. The average annual rainfall is approximately 846.5 mm, and it rains mostly in 

monsoon, with July as the rainiest month. May is the hottest with 42.4 °C to 27.3°C and 

December is the coldest, 29.5°C to 12.4°C as average maximum and minimum temperature 

(Ghosh et al., 2014).  
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Figure 1.1 Area of study: Hisar, Haryana 
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Figure 1.2 Area of study: Akola, Maharashtra 

1.5 MODEL DESCRIPTION 

Crop models are used to imitate or simulate the behaviour of real crop grown on the 

field. In this study, DSSAT-CSM cropping system model: Version 4.6 has been used. It 

is software application program that comprises dynamic crop growth simulation models 

for over 40 crops. The DSSAT-CSM is an assemblage of independent programs that 

operate together, which also includes the CROPGRO-Cotton model for fiber crop.  It is 

capable of simulating the growth, development, yield and various other relevant 

parameters as a function of the soil-plant-atmosphere dynamics. It has a predefined input 
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and output data format that has been developed and embedded in a software package. The 

datasets for management can be taken as per the field experiments conducted, considered 

to be grown over a uniform area of land and under prescribed management systems. It 

allows users to ask “what if” questions by conducting virtual simulation experiments on a 

desktop computer in minutes which would consume a significant part of an agronomist’s 

career if conducted as real experiments. Changes and its effect could also be studied with 

the cropping system over time in soil, water, cultivars, carbon, and nitrogen that can take 

place. DSSAT also provides for evaluation of crop model outputs with experimental data, 

thus allowing users to calibrate and validate it (Hoogenboom et al., 2019) 

(https://DSSAT.net). It includes the following modules embedded for evaluation: 

 Weather module: To read and generate daily weather data using WGEN or 

SIMMETEO.  

 Soil module: Designed to read the soil properties as an input for the experiment.  

 Soil/plant/atmosphere module: To compute daily soil evaporation, transpiration, 

and finally compute ET based on the Penman-FAO method (Doorenbos and Pruitt, 

1977), LAI etc.  

 Template crop module (CROPGRO): To predict the growth of different crops 

such as cotton, soybean, chickpea, etc. from common source code (Boote et al., 

1998a).  

 Individual crop module interface (plant module): Similar to CROPGRO, it 

links plants growth dynamics with other DSSAT-CSM modules.  

 Management module: Includes input variables such as planting, applying 

nutrients, irrigating etc. specified as standard ‘experiment’ in input file (Hunt et 

al., 2001). It is then analysed with different years to see the impact of changing 

crop for different weather/year.  

 Pest module: As an input, in-field observations to analyse insect populations or 

disease severity for specified pest and diseases infesting development and yield of 

the crop. 

https://dssat.net/
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In the present study, the management practices are taken as per field experiments, which 

were based upon the prescribed package and practices for the respective area. Soil data are 

kept constant, with varying weather for analyzing the effects of changing weather and 

climate over the area. 

1.6 DATA COLLECTION 

The crop models require daily weather data, soil surface and profile information, and 

detailed crop management as input. Crop genetic information is defined in a crop species 

file that is provided by DSSAT and cultivar or variety information that should be provided 

by the user. 

1.6.1 Field Experiment Data for Crop Model  

For simulation of model three Bt-cotton crop varieties Pancham-541, RCH-791, SP-

7007 in Hisar region of Haryana and AK 081 in Akola, Maharastra which is cultivated 

widely during the Kharif season. The genetic coefficient for this variety is already 

developed and reported by Dr. Ram Niwas (Swami et al., 2016; Sagar et al., 2017). Their 

sowing dates are 10th May, 21st May, and 06th Jun which is widely practiced in this region. 

To achieve the objective, field experiment is conducted at AMFUs (Agromet Field units) 

at CCS University, Hisar and at Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, 

Maharashtra during Kharif season under the Forecasting Agricultural outputs using Space, 

Agrometeorology and Land-based observations (FASAL) project by IMD (India 

Meteorological Department).   

Daily agrometeorological observations are taken from the Agrometeorological 

Observatory under India Meteorological Department (IMD) situated near the experimental 

plots. Minimum weather data observed to be utilized for this study including daily 

maximum and minimum temperature, bright sunshine hours and rainfall were taken from 

here. There data was taken as baseline and observed datasets to compare with the model 

data and for bias corrections. Other management data such as nutrient, fertilizer and 
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irrigation applications, plant spacing sowing dates etc., soil data and genetic coefficients 

has been obtained by field experiments conducted. These data had been earlier calibrated 

and validated for the DSSAT model over the region, Hisar (Swami et al., 2016, Shikha et 

al., 2018) and Akola (Nath et al., 2018; ICAR-CRIDA, Annual Report, 2017-18).  

 Weather Module 

The weather module facilitates to read and generated daily weather data as per the model. 

It requires minimum data viz. daily weather data such as maximum and minimum 

temperatures, solar radiation and precipitation for the simulation.  

 Soil module 

These input files include various information about the chemical and physical description 

of the soil profile. Distinct information for each soil horizon, its organic matter in the soil 

at the beginning of the experiment, soil water content initially, nitrogen concentration and 

the pH for each layer of the soil profile are important inputs. Sand, silt, and clay content 

information were collected from the station Hisar, Haryana.  

 Crop data/cultivar module 

Crop cultivars for cotton are dominant varieties which include three Bt-cotton varieties 

grown by the cultivators of this region. Water and nitrogen management parameters 

considered in the model were as per agronomical recommendation widely 

accepted/practiced in these agro-climatic zones and field experiments conducted by 

AMFUs under FASAL scheme of IMD, India for different crops and cultivars. 

 Genetic coefficient module 

This input data includes crop genetic coefficients, crop-specific characteristics, which 

explain how the life cycle of a Cotton cultivar, responds to its environment.  

1.6.2 Climate Projections  

For the impact of climate change in the Chapter IV and V the climate projections are 

taken from RCM experiments coming from institutions participating in the coordinated 

experiment under CORDEX-SA project. The data is available on CORDEX-SA databases 
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maintained by Centre for Climate Change Research (CCCR), Indian Institute of Tropical 

Meteorology (IITM), Pune, India which is the coordinating institution of this project and 

the Earth System Grid Federation (ESGF). In this study the best performing RCM weather 

data was obtained from GFDL-ESM2M-RegCM4 experiment of COordinated Regional 

Climate Downscaling Experiment (CORDEX). The regional model RegCM4 forced with 

global model GFDL-ESM2M experiment data is considered in the present study as it 

captures the seasonal precipitation (Choudhary and Dimri, 2017) and air temperature (Garg 

et al., 2015) with highest combined mean skill.  

The Climate data is derived from Coordinated Regional Climate Downscaling 

Experiment (CORDEX) South Asia: (RegCM4‐ GFDL) with the host GCM (GFDL‐

ESM2M) as Regional Climate Model (RCM). RCMs are forced over the GCM data to 

improve the data explicitly and increase the resolution from 0.44 to 0.11◦ spatially and 

daily variability of the precipitation (Giorgi et al., 2013). These daily weather data sets are 

obtained from Coordinated Regional Climate Downscaling Experiment over South Asia 

(CORDEX‐ SA) and CMIP5 database, which is developed and maintained by Earth 

System Grid Federation (ESGF) (https://esgf-data.dkrz.de/projects/esgf-dkrz). The spatial 

resolution varies from 50 to 200 km (Taylor et al., 2012) which is enough to simulate the 

physical process that dominates the atmospheric dynamics on a large scale although it 

cannot resolve subgrid processes therefore need to be parameterised (Giorgi et al., 2013; 

Rajczak and Schär, 2017).  

These data has been downloaded and extracted at the study region Hisar and Akola 

in the northern and central cotton-growing climate zones with the help of CDO (Climate 

Data Operator) in the format required for DSSAT. Minimum weather data required for the 

cropping model are daily maximum and minimum temperature, rainfall and sunshine 

duration. DSSAT generates site-specific weather data stochastically using built-in 

SIMMETEO software.   

In Chapter IV, 1971 to 2005 is considered for the study, since it is available as a 

historical database after which different scenarios are inlaid as RCP 2.6, 4.5, 6.0 and 8.5. 

The GFDL-ESM2M shows the highest skill in capturing the seasonal mean precipitation 

https://esgf-data.dkrz.de/projects/esgf-dkrz
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(Choudhary et al., 2018) and hence considered in the present study. Studies based on RCMs 

include CORDEX‐ SA (encompassing India) as a set of multiple RCM simulations under 

a common framework. These RCMs are driven by various GCMs from the Coupled Model 

Intercomparison Project Phase‐ 5 (CMIP5) (Taylor et al., 2012; Giorgi and Gutowski, 

2015).  

RegCM4 performs better in simulating the present climate over India and therefore 

it is preferable over the Indian Subcontinent (Gao and Giorigi, 2017). Still, conspicuous 

and systematic biases exist which attributes to limited process understanding in the dataset. 

To overcome this, post-processing is done by downscaling processes and bias-correction 

of the output. The underlying aim is to introduce statistical transformation so that the 

simulated model output distribution resembles the observation (Gudmundsson et al., 2012; 

Maraun 2016). In this study, the Quantile Mapping (QM) approach is used which calibrates 

the cumulative distribution function of model data for correction. It is implemented with 

the help of qmap library written for R statistical software (Gudmundsson et al., 2012; Zhao 

et al., 2017). Software packages based on R are developed and made available in public 

domain, which can be downloaded explicitly to downscale (https: 

//github.com/SantanderMetGroup/downscaleR, assessed on: 03rd Aug 2017).  

1.6.3 Remote Sensing Data and its Field Observations 

Satellite images from the LANDSAT 8 has been taken for the study. It was launched 

on 11th Feb 2013 by the National Aeronautics and Space Administration (NASA), which 

has 11 bands with a spatial resolution of 30 m, and 15 m for panchromatic band is 15-m. It 

has been upgraded from its previous Landsat satellite as the red, near-infrared, and 

shortwave infrared bands were narrowed. The radiation resolution was also increased to 16 

bits. The signal-to-noise ratio was refined. These advances revamped its ability for 

vegetation discriminations. The LANDSAT data are available in the public domain on 

http://earthexplorer.usgs.gov/ and has contributed a lot is research and development 

purposes. For assessing the stress in the crop and quantifying the crop health VIs such as 

NDVI and NDWI are mostly used. The LANDSAT data downloaded from the 04th May 

http://earthexplorer.usgs.gov/
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2013 to 16th Oct 2018 were obtained from the USGS Earth Explorer website. The data was 

combined with the high-resolution imagery from Google Earth™ taken for 5 sample points 

with coordinates 29.151562N -75.697045W, 29.151571N, -75.697218W, 29.151565N -

75.697223W, 29.151526N-75.697155W, 29.15156N-75.69716W in the research field of 

HAU, Hisar, Haryana, India. It was further processed and subset was created as per the 

Area of Interest (AOI). 

For validation filed observations were taken from the the study was conducted during 

the Kharif season of 2014 and 2015 on various cotton genotypes on the Research farm, 

Cotton Section of CCS Haryana Agricultural University, Hisar. The crops were grown 

unprotected with three replications. The plots consisted of 5 rows of 5 m each. Seeds of 23 

genotypes were sown by hand dibbling method on May 2014-15. Observations were taken 

for the sucking pests on five randomly selected plants recorded weekly from 23rd to 41st 

Standard Meteorological Weeks on three leaves each from top, middle and bottom. 

 

Figure 1.3 Area of field experiment and satellite data sampling point in Hisar farm field. 

1.7 METHODOLOGY 
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The methodology applied to achieve the different objectives of this work is described 

briefly in this section in this section and elaborately in related the chapters.  

1.7.1 Model-Based Approach to Study the Response of Bt-Cotton Towards Elevated 

Temperature and Carbon Dioxide in the Semi-Arid Region of Hisar 

To assess the vulnerability of cotton, it’s important to assess crop simulation model for 

the present data observed from the station. The calibrated and validated CROPGRO-cotton 

crop models under DSSAT vn.4.6 for different agro-climatic zones has been used for 

simulating the crop yields and physiology. With the changing climate temperature as well 

as CO2 is rising, whereas the precipitation pattern is erratic with spacial and temporal 

variability at regional scale. Rising temperature and CO2 is assessed separately and the 

together to assess the sensitivity of model. The climatology of thirty-five years daily 

weather data from IMD has been taken for Hisar station starting from 1981 to 2015 taken 

as normal. Seasonal simulations are carried out for that duration to assess present 

climatological impact of 35 years on the crop; Harvest index (HI) “Harvest index is defined 

as ratio of the reproductive yield with respect to total plant biomass”, Evapotranspiration 

(ET; mm) “It is the sum of crop transpiration and transpiration from crop adjacent soil and 

water surface” , Leaf Area Index (LAI; Maximum) “It is generally defined as leaf area of 

one side per unit ground area for broadleaf canopies” and Maturity date (MD) “Days of 

physiological maturity of the crop from the planting date” . 

To examine the impact of increasing temperature under changing climate; four 

different simulations are carried out taking Normal climatology, further by adding 1ºC, 2ºC 

and 3ºC to the climatological temperature value in the simulations. Similarly, another set 

of four simulations are made by increasing the CO2 by 50ppm, 100ppm and 150ppm 

respectively to estimate the impact of increasing CO2 on yield. Further, four new 

simulations are designed by changing the CO2 concentration and temperature together in 

order to examine impacts on the productivity. 
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1.7.2 Application of Remote Sensing for Detection of Stress in Cotton Induced by 

Pest in Hisar.  

The pest population and its relation with weather can also be assessed or forecasted 

from the empirical equations and models generated by statistical analysis based on the field 

observations. These generalised equations takes the meteorological parameters such as 

temperature, rainfall and humidity to forecast the frequency of pest. It can give a modest 

estimation about the different pest population. They are developed based upon the field 

experiments on the growing regions and then validating with its statistically significance. 

This can be complemented with remote sensing approach for real-time analysis and assess 

crop health. Many of the crop responds towards the stress are visually quantified with 

acceptable accuracy from reflected electromagnetic radiation from the plant canopies. 

Satellite images from the Landsat 8 has been taken and from that Vegetation indices (VIs) 

such as Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water 

Index (NDWI) are computed for the study region for 5 sample points. The multi-temporal 

LANDSAT images are then collected to composite a time series after cloud masking. These 

indices were further analysed with the crop calendar and validated with the field 

observations.   

1.7.3 Simulating the Impacts of Climate Change On Irrigated and Rainfed Cotton 

Crop: Part-I- Present. 

Analyzing the performance of model data in comparison to the actual observations 

and inspect the model biases and strengths is important before using their future 

projections. Thus validating the model and improving or bias-correcting the data aids in 

identifying the best performing model for the area of interest and strengthen the reliability 

for the model and its future projections. The minimum data required for crop simulation 

model as weather variable such as daily Maximum temperature (̊C), Minimum 

temperature(̊C), Solar radiation (MJ/m2), and Rainfall (mm2) are derived both from the 

station and derived from the model. The source data for the study is extracted and 

downscaled from the Regional Climate Model. These RegCM 4 outputs are availale in 
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NetCDF format and contains data on daily, monthly and yearly basis. The gridded data of 

the RCM are then extracted with the help of CDO for location. Since, the DSSAT crop 

model are required to have a particular supportable format.  

The period considered for the study is from 1971 to 2005, since it is available as a 

historical database after which different scenarios are inlaid as RCP 2.6, 4.5, 6.0 and 8.5. 

Weather data were taken from the nearest agromet station of IMD during the field trial and 

from GFDL-ESM2M-RegCM4 experiment of Co-ordinated Regional Climate 

Downscaling Experiment (CORDEX). Under World Climate Research Program for the 

domain CORDEX-SA. The GFDL-ESM2M shows the highest skill in capturing the 

seasonal mean precipitation (Choudhary et al., 2018) and hence considered in the present 

study. Studies based on RCMs include CORDEX‐ SA (encompassing India) as a set of 

multiple RCM simulations under a common framework. Although, RegCM4 performs 

better in simulating the present climate over India and therefore it is preferable over the 

Indian Subcontinent (Gao and Giorigi, 2017). Still, conspicuous and systematic biases exist 

which attributes to limited process understanding in the dataset. To overcome this, post-

processing is done by downscaling processes and bias-correction of the output. In this 

study, the Quatile Mapping (QM) approach is used which calibrates the cumulative 

distribution function of model data for correction. It is implemented with the help of qmap 

library written for R statistical software (Gudmundsson et al., 2012; Zhao et al., 2017). To 

analyse the sensitivity of crop model for different weather at different agroclimatic zones 

of cotton with different agricultural practices. The observed, RegCM and RegCM bias-

corrected weather output was used for simulation of cotton in rainfed, irrigated and 

potential conditions. In the DSSAT model, the genetic coefficient and the management 

data were taken as per recommended package and practices. Three planting dates chiefly 

practiced in the region was considered for the study in both the northern region, Hisar and 

the central region, Akola. Further details for the description of the model and experimental 

design are described in Chapter IV. 
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1.7.4 Simulating the Impacts of Climate Change on Irrigated and Rainfed Cotton 

Crop: Part-II- Future. 

Future climate change has been found to have critical implications on the agricultural 

productivity. Analysing the extremes and its impact on the crop is therefore very important. 

In this study an attempt is made to evaluate the future projections from the RCM model at 

two RCPs 4.5 and 8.5. The RCM projected daily weather from 1971 to 2005, 2006 to 2035, 

2036 to 2065 and 2066 to 2095 were average to represent projected climate centred at 

historical (1990), present (2020) and climate change scenario at near future (2050) and far 

future (2080) and CO2 concentration was also raised accordingly. Its impact on the cotton 

productivity is further evaluated with the crop model cotton-CROPGRO model under 

DSSAT-CSM v4.6. The crop growth model has been simulated for rainfed, irrigated, and 

potential conditions in both the regions for three sowing dates commonly practiced in these 

regions.   

1.8 Significance /Deliverables 

India presently is one of the major producer and exporter of the cotton crop. The cotton 

mostly cultivated in Indian land is Bt-cotton which is a Genetically Modified crop. With 

the introduction of Bt-cotton there has been revolutionary changes in its productivity. But 

unfortunately the cotton production is still facing challenges in enhancing the productivity 

due to biotic and abiotic stresses. Changing climate and the incidence of pests has put a 

question on the sustainability of the genetically modified crop. India has highest area of 

production for the cotton crop but there was a fall in cotton acreage in the year 2016 and 

thereafter and farmers are planning to switch on the alternatives. This is primarily because 

of cost of the GM seeds which fails to reap its benefit on the field.  

This study focuses upon the impact of climate change on the cotton crop in the 

present and future scenarios and its effect on the growth and yield of the crop. With the 

changing world, climatic trends, monsoon unpredictability and erraticism linked with 

rising global warming in the Indian Subcontinent there is now a dire need for the study of 
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impact of weather on crops as well. Despite the milestone achievement of highest 

production in 2018, the productivity has still not enhanced. This basically signifies that the 

country is not being able to achieve its potential productivity. Also the recent incidences 

of pests affecting the crop has prime concern which puts mark of interrogation on the 

effectiveness of Bt-cotton. The Bt-cotton, a genetically modified form of cotton crop as 

introduced in 2002 in India has brought to control the incidence of pest without the use of 

pesticide.   

Earlier, we have quantified the sensitivity of the crop for water stress at different 

growth stages for excess and deficit years to see the impact of rainfall. In the present study, 

we have evaluated the impact of changing temperature and CO2 on the crop for different 

planting dates.  To assess the impact in the future climate change scenarios, best performing 

in this region RCM4 data has been considered which was bias corrected by Quantile 

mapping approach. Crop simulations are based upon the calibrated and validated DSSAT 

model which is a used worldwide.  These models have good potential for early crop yield 

assessment, study of various type stresses at different phenological stages is necessary so 

that measures can be taken for its amelioration. They are calibrated and validated before 

the utilisation. They have a great significance for the purpose of research and improvement 

in the crop productivity on the field. 

This study also focuses on the difference in productivity between the irrigated and 

rainfed cropping patterns and its future implications. This is based upon the model studies. 

But the model has some limitations regarding the assessment of pest. So for that remote 

sensing and GIS technique has been utilised. Primarily, these biotic stress caused by the 

cotton pest has relation with the weather variables. Which used to be visualised by some 

regression equations. This study evaluates the impact of stress utilising vegetation indices 

such as NDVI and NDWI for six years showing plant health as per crop calendar. It has 

been derived from the LANDSAT data over the region downloaded from the earth 

explorer. The study is verified with the field observation over the experimental field. This 

ability could be further devised to check the real-time crop health and biotic stresses if any. 
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These studies will give an insight about the impacts of climate change on different growing 

regions with different management practices and its improvement for affirming profitable 

production. The study will also help the farmers to implement timely and effective IPM 

measures to prevent its damage from the pest attacks. Thus can help to understand the biotic 

and abiotic stress on the cotton crop and draw site-specific management strategies. 

The thesis consists of six chapters. In Chapter- I, a brief review of the cotton and its 

present status and important research carried out so far is presented. The unit has various 

subunits which emphasis the background or history of cotton, cotton physiology, seasonal 

requirements of cotton, stress in cotton, and a brief note about Bt-cotton. The motivation 

behind selecting the topic of research and the broad objectives of the work are discussed 

followed by a brief description of study area and methodology applied to achieve the 

various objectives are presented. Chapter-II presents the assessment of uncertainty and 

impact of changing climate on cotton crop using DSSAT model considering increasing 

temperature and CO2 individually and then combined. After considering the abiotic factors 

such as moisture in the previous study and the temperature and CO2 in Chapter III biotic 

factor i.e. effect of changing weather on the pest is considered. The relation of pest with 

weather variables has been represented is various studies with various regression equations 

developed in field studies. These equations are used for forecasting the pest populations 

and could be further analysed by using remote sensing techniques for early detection as the 

vegetation indices such as NDVI and NDWI falls below normal. This has been analysed 

parallel to the crop calendar to monitor the infestation. Then in Chapter IV again the abiotic 

variables are considered both from the observation station and the RCM4 model, to 

evaluate the performance the model before considering it for future studies or using its data 

of future projection in the cropping system model. This is done for three sowing dates as 

per recommended in these regions for both the rainfed and irrigated cotton crop in both the 

northern agroclimatic zone region at Hisar and central agroclimatic zone at Akola.  Further, 

in Chapter V the crop is evaluated in the same region for the same soil and cultivar for 

future climate. The climate projections from the RCM4 model has been utilised to assess 

the cotton physiology and yield in future climate at both RCP 4.5 and RCP 8.5 in the near 
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and far future. At the end, the important results obtained in Chapters II to IV are 

summarized with the main conclusions in Chapter VI. 

1.9 Limitations of the Study 

 These RCMs are computationally expensive are only justified when it significantly 

improves simulated data by its driving GCMs on regional scale (Sørland et al., 

2018). It is also said that ‘RCMs are merely producing uncertainty piled on top of 

uncertainty' (Kerr, 2011), and other studies state it as 'garbage in, garbage out' 

paradigm (Wilby and Dessai, 2010).  It is also argued that the biases of GCMs and 

RCMs are not dependent and therefore the ‘uncertainty would be increasing when 

the global data is translated into regional data also referred to as the cascade of 

uncertainty' (Wilby and Dessai, 2010). 

 The DSSAT model represents the crop physiology and yield but fail to represent 

the damages due to pests (Batchelor et al., 1993). In some studies, the model 

sometimes exaggerates the yield responses for rainfed regions than irrigated due to 

precipitation variations when compared with observed. Studies also suggest while 

simulating the model with weather from climate models the crop model has 

limitations regarding the representation of effects of floods/ extreme precipitation 

and extreme heat. 
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MODEL-BASED APPROACH TO STUDY THE RESPONSE OF BT-

COTTON TOWARDS ELEVATED TEMPERATURE AND CARBON 

DIOXIDE IN THE SEMI-ARID REGION OF HISAR 

 

ABSTRACT 

Cotton is one of the principal commercial fibre crop. India is highest in terms of agricultural 

land involve in cotton production but second highest in production. Decadal yield data 

reveals that its productivity is 243kg/ha lesser than the global average. Weather aberrations 

is one of the paramount reasons for the productivity loss. The present study aims at 

estimating the implications of increasing temperature and CO2 concentrations on cotton 

yield using a crop model DSSAT. Three different Bt-cotton varieties Pancham-541, RCH-

791 and SP-7007 are considered for the study with three sowing dates 10th May, 21thMay 

and 06th June. For Pancham-541 variety, rise in 1°C of temperature with 50ppm CO2 is 

beneficial, but further rise is harmful. Whereas for RCH-791 and SP-7007, productivity 

decreases gradually with increasing temperature and CO2. Generally, yield decreases with 

increase in temperature (by 1°C), but no significant effect observed with increasing CO₂  

(50ppm) cumulatively. The adverse effects of rising temperature is moderated due to 

increase of CO2 with the increase in photosynthesis when considered together. The leaf 

area index as well as evapotranspiration rate increases with increasing temperature and 

CO2 for all varieties in all sowing dates. Whereas, the harvest index and maturity dates 

decreases in general. Therefore, increasing temperature at the present rate will be harmful 

for the productivity of cotton with the changing climate. Although this effect is abated with 

simultaneously rising CO2 but yet the adversity due to global rise in temperature is partially 

mitigated. 

Key words: cotton, temperature, CO2, climate change 

2.1 INTRODUCTION 

The global crop productivity is under threat due to the climate change. It is one of the 

potent challenges in the 21st century. Chemical composition of the atmosphere has been 
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changing enormously with the beginning of industrial revolution due to anthropogenic 

activities. Burning of fossil fuel, vehicular emissions, and rapid deforestation resulted in 

an increase of atmospheric CO2 levels. The gradual increase in the concentrations of 

greenhouse gases and hence leads to global temperature rise. Understanding its severity 

and its impact on various ecosystems, there are international climate treaties to control the 

global temperature. The Earth Summit and now Paris agreement addressing the problem 

of climate change; which aims at keeping the global temperature rise below 2°C and further 

try to limits it within 1.5°C. 

Climate variability is one of the major factors, which influences the crop production 

even in high yielding and advanced technology regions (Kang et al., 2009). The impact of 

climate change on crop productivity has become a major area of scientific concern. Various 

studies are being conducted to assess the impact of climate change on crop productivity 

such as maize, wheat and rice (Howden et al., 1997; Hoogenboom, 2000; Gbetibouo et al., 

2005; Aggarwal et al., 2006a; Aggarwal et al., 2006b; Dhungana et al., 2006; Challinor et 

al., 2008), forests (Lexer et al., 2002), industry (Harle et al., 2007) and native landscape 

(Dockerty et al., 2005, Dockerty et al., 2006). Crop and climate models are widely used by 

the research community to study the crop productivity and soil water balance in the 

changing climate (Kang et al., 2009).  

   Response of plant towards the climatic factor such as temperature on yield varies 

amongst species based upon crop's cardinal temperature requirements. The increasing 

global temperature will affect the plant physiology, growth cycle, and development along 

with yield (Kang et al., 2009). Crop yield is reported to be sensitive to both temperature 

and precipitation (Krause et al., 1997; Popova et al., 2005). The increase in the yield under 

future warming scenario is attributed to the elevated CO2 concentration due enhanced 

photosynthesis which is termed as the 'fertilisation effect' that moderates the negative 

impacts of rising temperature as reported on rice yield in Kerala (Saseendran et al., 2000). 

It has also been found that with climate change, growing period will be reduced i.e. crop 

can mature earlier, therefore planting dates has to be advanced to improve the crop yield 

apart from introducing new resistant varieties (Cuculeanu et al., 2002). Temperature above 
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the normal optimum levels are termed as ‘heat stress’. It interferes with the normal 

homeostasis, growth retardation and even causes apoptosis (Mathur et al., 2014). Studies 

conducted to characterize energy use of cotton showed that latent heat flux was the major 

energy utilizing process which determines yield variation (Singh et al., 2008).  Bt cotton 

cultivars in the semi- arid region of Punjab showed negative correlation of seed yield with 

temperature in reproductive phase (Sahoo et al., 2000, Singh, 2008; Liyong et al., 2007).  

As sessile organism, plants are exposed to various abiotic and biotic factors, such as 

temperature, CO2 and precipitation which ultimately affect the yield.   

Cotton is grown across 80 countries all over the world with an average productivity 

of 765 kg/ha. India ranks first in total area of land under cotton production with an average 

productivity of 522 kg/ha   i.e. 23 percent of the world average. Where China ranks first in 

average production of cotton with an average productivity of 1352 kg/ha. (Status Paper of 

Indian Cotton report by Directorate of Cotton Development Government of India, Jan 

2017). The reasons for this gap of 243 kg/ha in the productivity can be attributed as weather 

aberrations. This includes temperature extremes, inadequate or excess rain with uneven 

distribution, incidence of pest attack, especially sucking pest. Optimum temperature 

required for cotton growth and development of ball and its retention is around 28 °C 

(Reddy et al., 1991) but can continue to better yield till temperatures up to 32 °C, which 

is a critical threshold temperature for its yield. (Schlenker et al., 2009).  

Increase in temperature above optimum i.e. the tolerable limit of the plant is found 

to negatively impact the yield of cotton due to increased ball abscission during flowering 

and smaller ball at maturity. Daily evaporative demand and crop water utilization are 

largely a function of the leaf area index and therefore yield of the crop. It is strongly 

influenced by the genetics and growing conditions (Reddy et al., 1997). Whereas increasing 

CO2 above the present level will improve crop productivity due to improved carbon 

exchange rates (Reddy et al., 2005). These finding are also documented in an report by 

National cotton council of America as Cotton Physiology Today (1999). As CO2 which 

helps to boost photosynthesis and therefore production also could not ameliorate the 

adverse effects of high temperature on some phenological phases like reproductive growth, 
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boll formation and maturity that affects the quality of fibre. It is reported that in future 

climates, the yield and quality of fiber will decrease if increasing CO2 is associated with 

increase in temperatures particularly in fields where present temperature are near to 

optimum for the crop (Reddy et al., 2005). Studies on the cotton crop of Stoneville region 

with future GCM projected data indicates, under rainfed conditions yield declined for 

all the RCP scenarios but under irrigated conditions yield declined only during extreme 

conditions. Yield partially increased with an increase in rainfall or supplementing the 

crop with water. As an adaptability measure planting crop earlier also somewhat 

compensated for yield losses (Anapalli et al., 2016). 

 Models such as Decision Support System for Agrotechnology Transfer (DSSAT) 

uses detailed location-specific data for physiological crop information, climate data, soil 

characteristics data etc.  (Islam et al., 2016). It generally assesses under plausible future 

climate change scenarios taking other factors such as management practice and crop variety 

constant (Islam et al., 2016). Latest DSSAT Version 4.6.1 (Jones et al., 2003) is developed 

to simulate the growth and yield on 31 crops. It is an assemblage of various crop models 

in Crop Environment Resource Synthesis such as CERES CROPGRO etc., where 

CROPGRO assesses fibre crop cotton (Thorp et al., 2014; Hoogenboom et al., 2015).  

Biophysical and socioeconomic factors are also studied with the combination of 

climate, crop, and economic models. It allows to estimate the difference in yields and other 

parameters with the changing climate. Historical data are utilized to analyze the climate of 

that location and field level experimental data are being used to calibrate and then validate 

the models for this structural framework. The set up can also be translated forward into 

looking at simulations for future scenarios. The Ministry of Agriculture use these modeling 

assessments in their FASAL and GKMS projects to improvise and assess the package and 

practices for the crop management and the crop production forecast. This is to help 

researchers, farmers and policy-makers to make strategies adapting climate change. The 

present study is based upon impact climate change on cotton crop using a DSSAT crop 

model. Specifically, it aims at finding the implications of increasing temperature and CO2 

individually and then combined to analyze the effect of climate change. 



Chapter II 

45 

 

 

2.2 CLIMATIC CONDITION OF THE STUDY AREA 

The study area considered for the present study is Hisar, Haryana, situated between 

74°24' to 76°18'E longitude and 28°54' to 29°59'N latitude at an elevation of 215.2 amsl'. 

The district lies in alluvial plains of the Yamuna, which is a sub-basin of Ganga River. Soil 

texture is gradually changing from light sandy (bhur) to firm loamy (rausli), thus light and 

highly permeable. Semi-arid climate of Hisar owes to its continental location and on the 

margin of south-west monsoon. It can be further classified as tropical steppe type of climate 

(Singh et al., 2014). Annual temperature ranges from 3.5 to 48°C, which specifies that it 

has hot dry summer and chilling cold winter. Most of its precipitation (77%) occurs through 

the south-west monsoon during JJAS. Else from October to April weather remains dry, 

except with the wake of western disturbances.  Occasional hailstorms also occur from 

February to April. Fog occurs during December and January. This region sometimes 

experiences thunderstorms during summer and post-monsoon (Singh et al., 2014).  

Cotton is a kharif crop sown in the month of May-June and harvested in Sep-Oct. 

The climatological analysis of temperature (1970 – 2008) over the study region illustrates 

that mean monthly daily range of temperature during the sowing period of cotton are 

31.5°C (May) and 26.0°C (June). Maximum and minimum temperatures during the 

cropping period are 40.2°C and 22.8°C, 39.8°C and 26.0°C, 36.2°C and 26.3°C, 34.8°C 

and 25.4°C, 34.8°C and 25.4°C, 34.8°C and 22.6°C, 33.5°C and 16.1°C in the month of 

May, June, July, August, September and October, respectively. Similarly, the cumulative 

rainfall during May, June, July, August, September, and October are 30.5, 56.1, 128.0, 

109.1, 59.4 and 10.1 (mm) respectively.  The bright sun shine hours during May, June, 

July, August, September, and October are 8.4, 6.7, 6.1, 7.1, 8.5, 8.8 (hrs.) respectively 

(Singh et al., 2014).    

2.3 METHODOLOGY 

2.3.1 Method for Raising Crop  
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For the present investigation on “impact of increasing temperature and CO2 on the 

cotton crop” agronomic practices was carried out in experimental field of Chaudhary 

Charan Singh Haryana Agricultural University (CCSHAU), Haryana during the year 2013-

14. Certified and delinted Bt-Cotton seeds for recommended varieties of Pancham-541, 

RCH-791, SP-7007 were sown during the Kharif season. Sowing was done by hand 

ploughing method, by keeping a distance of 60cm between the rows. All the management 

and agronomic practices were followed as per the recommended package of practices by 

the Haryana Agricultural University for growing the crop under irrigated conditions. The 

size and design of the experimental plot was 5.4m * 5.0m and split plot respectively.  

2.3.2 Model Description 

Crop models are used to imitate or simulate the behavior of real crop grown on the field. 

DSSAT-CSM Version 4.6.1 model has been employed for the present study. Decision 

Support System for Agrotechnology Transfer- Cropping System Model (DSSAT-CSM) 

suite includes the CROPGRO-cotton model for the simulation cropping systems based 

on cotton crop (Jones et al., 2003; Boote et al. 1998a). This model is utilized globally for 

about 40 crops (Jones et al., 2003). The DSSAT-CSM is a crop simulating model which 

contains the following components (Jones et al., 2003) 

1. Weather module: To read and generate daily weather data using WGEN or 

SIMMETEO. 

2. Soil module: Designed to read the soil properties as an input for the experiment. 

3. Soil/plant/atmosphere module: To compute daily soil evaporation, transpiration and 

finally compute ET based on Penman-FAO method (Doorenbos and Pruitt, 1977), 

LAI etc. 

4. Template crop module (CROPGRO): To predict growth of different crop such as 

cotton, soybean, chickpea etc. from a common source code (Boote et al. 1998a). 

5. Individual crop module interface (plant module): Similar to CROPGRO, it links 

plants growth dynamics with other DSSAT-CSM modules.  
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6. Management module: Includes input variables such as planting, applying nutrients, 

irrigating etc. specified as standard ‘experiment’ in input file (Hunt et al., 2001). It 

is then analysed with different years to see the impact of changing crop for different 

weather/year.  

7. Pest module: As an input in field observations to analyse insect populations or 

disease severity for specified pest and diseases infesting development and yield of 

the crop. 

In this experiment, the seasonal management practices and soil modules are kept the same 

for the entire simulation, while the changes in the weather module is considered during the 

period of entire model integration. 

2.3.3 Data for the Analysis 

Daily agrometeorological observations are taken from the Agrometeorological 

Observatory under India Meteorological Department (IMD) situated about 0.5 km away 

from the experimental plot. Weather data utilized for this study includes daily maximum 

and minimum temperature, bright sunshine hours and rainfall. Three sowing (planting) 

dates are considered in the study, such as 10th May, 21st May, and 06th June which are 

widely practiced. The genetic coefficient of the cotton crop is employed in the model, 

which has been adopted from Swami et al. (2016). The model has been calibrated and 

validated for these cultivars with the actual production for simulating cotton production 

under Hisar region (Shikha et al., 2018).  

2.3.4 Experimental Design 

The climatology of thirty-five years daily weather data from IMD has been taken 

for Hisar station starting from 1981 to 2015. Seasonal simulation has been carried out for 

that duration to assess the climatological impact of 35 years of data. The final output for 

yield, LAI, ET, MD are all 35 years mean for this duration. The experiment has been 

replicated thrice for minimizing errors. To examine the impact of increasing temperature 

under changing climate; four different simulations are carried out taking Normal 
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climatology, further by adding 1ºC, 2ºC and 3ºC to the climatological temperature value in 

the simulations. Similarly, another set of four simulations are made by increasing the CO2 

by 50ppm, 100ppm and 150ppm respectively to estimate the impact of increasing CO2 on 

yield. Further, four new simulations are designed by changing the CO2 concentration and 

temperature together in order to examine impacts on the productivity. It is important to 

mention that the increment of temperature and CO2 are done on the climatological data of 

the 35 years in the model to observe changes w.r.t. the present mean behavior.  Observed 

climatology has been taken as normal in the study, depicted as N. The climate change 

simulations for temperature are denoted as N+1°C, N+2°C and N+3°C. The experiments 

with change in CO2 concentration are represented as N for normal CO2, N+50 ppm, N+ 

100ppm and N+150ppm. Model simulates various phenological and physiological 

parameters such as anthesis date, harvest index, dry matter, maturity date etc. (Jones et al., 

2011). From these simulated output, four different physiological parameters are examined 

to assess the impact of the possible climate change. These parameters considered for this 

study are  

1. Evapotranspiration (ET; mm) (It is the sum of crop transpiration and 

transpiration from crop adjacent soil and water surface) (Shih et al., 1993) 

2. Leaf Area Index (LAI; Maximum) (It is generally defined as leaf area of one 

side per unit ground area for broadleaf canopies) (Myneni et al., 1997). 

3. Maturity date (MD) (Days of physiological maturity of the crop from the 

planting date) (Corbeels et al., 2016) 

4. Harvest index (HI) (Harvest index is defined as ratio of the reproductive yield 

with respect to total plant biomass) (Gur et at., 2010) 

2.4 RESULTS AND DISCUSSION 

 This section deals with the sensitivity in the yield and four different physiogical 

characters (ET, LAI, MD and HI) of the three different cotton varieties in response towards 

the change in temperature, CO2 concentration and combined at three different sowing 

dates. 
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2.4.1 Sensitivity of Yield Towards Change in Temperature 

The model simulation shows that Pancham- 541 sown on 6th June is most sensitive 

to changes in temperature (Figure 2.1a), as the decrease in yield is maximum for 3°C rise 

in temperature. However, it has a high optimum range of temperature for tolerance, which 

is evident from the rise in yield with a temperature rise of 1°C. Further rise in temperature 

reduces the crop yield for all sowing dates. Interestingly, the decline in production is more 

for the crop sown in June as compared to the one sown during May. The varieties like 

Pancham- 541, RCH-791 also shows a gradual reduction in yield with temperature rise 

(Figure 1b). RCH-791 also shows higher sensitivity (decreasing yield) towards increasing 

temperature for crop sown on 06th June as compared to the other sowing dates considered 

in the study. This indicates that the present day temperature is the critical temperature for 

the crop and it could not withstand any further increase in temperature. This is the reason 

for decrease in crop yield beyond the present climatological temperature value. The 

sensitivity of SP-7007 towards the rise in temperature is least as compared to the other two 

varieties (Figure 2.1c). Interestingly, the decrease in crop yield is least for N+3°C for the 

crop sown on 06th June than the earlier sowing dates. Therefore, the results indicates that 

the early sowing (during May) relatively reduces the impact of rising temperature as 

compared to the varieties sown late (during June) in the agricultural practices. Higher the 

temperature rise, more is the severity and its impact on the crop yield. 

The earlier studies indicates that the temperature significantly affected the crop 

phenology, leaf expansion, biomass production, internode elongation, and distribution of 

the assimilates to the different parts of the plant (Reddy et al., 1991; Reddy et al., 1996; 

Reddy et al., 1999) . Similar decline in yield with rise of temperature is reported (Jalotaa 

et al., 2009). They examined yield of Bt-cotton under semi-arid conditions and illustrated 

that the cotton seed yield declines from 4700kg/ha to 2300kg/ha with an increase in 

temperature from 28°C to 32°C and the reduction is high during sowing to flowering stage 

(Jalotaa et al., 2009). Similarly, the findings from this study shows that the simulated yield 
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for Pancham-541 sown on 10th May compared to normal climate has reduced to 

2737.54kg/ha from 2598.31kg/ha.  

 

Figure 2.1 Temperature sensitivity of cotton cultivars for three different sowing dates 10th 

May, 21thMay and 06th June for (a) Pancham-541 (b) RCH- 791 (c) SP- 7007. 
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The negative impact associated with rising temperature could be potentially due to 

reduction in vegetative growth period, increased fruit shedding due to enhanced 

temperature stress and loss of reproductive capacity because of reduced boll filling (Luo et 

al., 2014). Similar studies based on field experiments showed strong positive correlation 

of temperature with cotton seed, cotton lint, ball opening and negative correlation with leaf 

area index (Tripathi, 2005; Pouresia and Nabipour, 2007; Singh et al., 2008). 

Maximum temperature, minimum temperature and vapour pressure deficit showed 

a strong positive correlation with cotton seed, cotton lint and bolls per plant during boll 

opening stage, whereas morning and evening relative humidity showed negative 

correlation with seed cotton, cotton seed, cotton lint and bolls per plant during vegetative, 

flowering and boll opening stages. A negative correlation between air temperature and 

sunshine hours during seed development phase with leaf area index (Tripathi, 2005; 

Pouresia and Nabipour, 2007). Negative correlations between temperatures during two 

later phenophases and seed yield were due to higher temperatures during reproductive 

phase. Such results were also reported by various researchers (Sahoo et al., 2000; Singh, 

2005; Singh, 2010; Pouresia and Nabipour, 2007; and Liyong et al., 2007.          

2.4.2 Sensitivity of Yield Towards Change in CO2 

It is interesting here to observe that Pancham-541 sown on May is positively 

impacted by an increase in CO2 concentration in the atmosphere; while the opposite is 

found for cases with sowing date during June (Figure 2.2a). Surprisingly, the RCH-791 

variety shows exactly opposite behavior as compared to Pancham-541 (Figure 2.2b), where 

the increasing CO2 has decline the yield except for variety sown in June. The sensitivity of 

SP-7007 is reported to be least as compared to other two varieties considered in the study 

(Figure 2.2c). However, the yield increase (decrease) for the variety shown in June (May) 

with increase in CO2 concentration. The present analysis found that Pancham-541 (SP-

7007) variety is most (least) sensitive to increase in CO2. However, for RCH- 791 and SP-

7007 varieties, the increase in CO2 has negatively impacted to crop sown in May than the 

variety sown in June.  
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In cotton an increase in ball size is also evident due to elevated CO2 (Ruiz‐ Vera et 

al., 2018). Sowing dates also play greater role for the plan to increase productivity, the 

improvement in cotton yield for early-sown crop is around 10% higher as comparison to 

late sown crop. This may be due to the lower cutout/abortion rate of the fruit that results in 

holding greater number of bolls for the plant (Pettigrew et al., 2002). Further, the positive 

influence on the crop due to sowing dates can also be attributed to early emergence and 

therefore increase in reproductive period which results in earlier onset of first square and 

delayed last square (Bange et al., 2004).  

2.4.3 Sensitivity of Yield Towards Change in Combined Temperature and CO2 

 As discussed earlier, the Pancham-541 has a high optimum range of temperature 

tolerance with respect to present temperature climatology, which is reflected from the rise 

in yield with 1°C rise but subsequently yield decreases with temperature rise of 2°C and 

3°C. Similar finding are also observed from the combined rise of temperature and CO2 

(Figure 2.3a). The pattern is very close to the change in temperature but with a moderated 

effect. Similar declining yield is also observed for RCH-791variety (Figure 2.3b). For SP-

7007 variety, the crop sown during May shows a positive effect in terms of yield with an 

increase in 50ppm and 1°C rise in temperature, which further decreases with increase in 

the concentration of both (Figure 2.3c). The yield decreases with increasing temperature, 

which is partially but not totally moderated by increasing CO2. The crop still imitates the 

same behavior as increasing temperature but with lesser intensity. This moderation can be 

because of increasing CO2 concentrations called the fertilization effect and reported in 

other crops as well (Saseendran et al., 2000).  In general, rise in temperature and CO2 

negatively impacted the yield for all the planting dates. 

 Similar studies conducted for cotton crop, based upon field trials, showed that the 

vegetative growth is increased by increasing temperature and CO2 together (Reddy et al., 

2005). This could be because of the pretext that vegetative growth may require lesser time 

to support more fruit loads (Jalotaa et al., 2009). Therefore, reduced vegetative growth 

‘cutout’ may occur forthwith and consequently reduce potential of crop yield (Lawlor et 
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al., 2014; Pettigrew, et al., 2002). Further curtailment in time for ‘cutout’ can advance 

maturity, therefore decrease the yield (Bange et al., 2004b).  

 

Figure 2.2 Same as Figure 2.1, but for Carbon dioxide. 
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 It is also reported that higher vegetative growth is good to support yield of 

transgenic cotton with additional and early fruiting bodies (Constable et al., 2006). The 

effect of elevated CO2 masked the apparent high temperature injury that limited the growth 

of all plant organs, especially reproductive system (Reddy et al., 1991; Reddy et al., 1996; 

Reddy et al., 1999). Studies also indicate that bolling periods will be shorter under warming 

climate (Reddy et al., 1999; Luo et al., 2014). Therefore, the fibre quality is compromised 

and boll size are reduced despite potentially increased fruiting periods and more fruit. This 

reduction in yield may be due to cutout in vegetative phase or reduction in boll size in 

reproductive phase (Lawlor et al., 1991). 

In this section, the mean of the four major phenological parameters for the crop 

Such as Evapotranspiration (ET), Leaf Area Index (maximum) (LAI), Harvest Index (HI) 

and Maturity Date (MD) are analyzed. As discussed earlier, ET has positive correlation 

with LAI and HI with MD; they are plotted together (Ruiz‐ Vera et al., 2018; Reddy et al., 

2005; Anapalli et al., 2016, Reddy et al., 2005).   

A gradual increase in ET and LAI with increase in temperature is observed for 

Pancham-541 (Figure 2.4a) but interestingly, no significant change is observed under 

experiments with gradual increase of CO2 (Figure 2.4b). However, the ET and LAI both 

increases gradually with the rise of both temperature and CO2 rise from 1°C and 50ppm 

cumulatively to further higher values (Figure 2.4c). The simulation shows higher ET and 

LAI for the crop sown during June than that sown in May, with an increase in 1°C 

temperature and 50ppm CO2 concentrations cumulatively. For Pancham-541, the HI is 

higher for 1°C rise as compared to the present climatology for all sowing dates (Figure 

2.4d). The MD decreases slightly with increase in temperature and highest for the crop 

sown during June (Figure 2.4a). It also decreases slightly for combined increase of 

temperature and CO2 concentrations. Similar studies indicate that low temperatures and 

prolonged growing period are advantageous for cotton productivity (Reddy et al., 1999).  

It is observed that the HI is approximately same for all the sowing dates for Pancham-541 

variety for present temperature climatology and N+1°C. However, it decreases with further 

rise of temperature. 
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Figure 2.3 Same as Figure 2.1, but for Temperature and Carbon Dioxide combined. 
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Interestingly, the sowing dates also play a major role is deciding the productivity. 

For example, June (May) shows higher productivity for temperature rise of 2°C (3°C).  

Moreover, the HI as well as MD do not show any significant change for 50ppm increase in 

CO2 w.r.t. the climatological value. HI decrease faintly with further rise of in CO2 

concentration mostly for crop sown in June (Figure 2.4e). The crop under combined rise of 

temperature and CO2 concentrations mimics similar behaviour as with rising temperature 

but with less intensity for N+2°C and N+3°C along with 100ppm and 150ppm CO2 

concentrations (Figure 2.4f). However, for 2°C (3°C) temperature rise with 100ppm 

(150ppm) CO2, June (May) is showing better yield.  

For the cultivar RCH-791, ET and LAI shows similar response as Pancham-541. 

The increasing temperature leads to gradual increase in both ET and LAI (Figure 2.5a). 

But with increasing CO2 concentrations, there is no significant impact observed upon them 

(Figure 2.5b). The fertilization effect dominates under combined increase of temperature 

and CO2 leading to lesser impact (Figure 2.5c).  However, the HI and MD slightly increases 

with 1°C rise of temperature for crops sown in May; which further reduces under N+2°C 

and N+3°C. The crop sown in June shows gradual reduction in its yield with gradual 

temperature rise from 1°C to 3°C(Figure 2.5d). HI and MD are almost insensitive (shows 

no change) towards 50ppm increase of the CO2 concentrations; but there is a slight 

reduction in HI with further rise of CO2 w.r.t climatological value for the crop sown in 

May (Figure 2.5e). Again, the fertilization effect dominates for increasing CO2 together 

with temperature rise leading to a small change in the mean values (Figure 2.5f). The 

change of temperature, CO2 and combined has a little effect on MD which reduces by 1 – 

2 days; while the change is maximum for the crop sown during June (Figure 2.5d-e-f). HI 

(0.37 to 0.34) and MD (1- 2 days) is also least affected by these changes for this particular 

variety. This cultivar is found to be least affected and better performing in terms of yield 

with the changing climate. Similar studies indicated that early sowing increases the MD up 

to 1 – 2days while late sown crop reduces it by 0–3 days, which is comparable with the 

present finding (Luo et al., 2014). 
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The ET and LAI means, for the cultivar SP-7007, is gradually increasing with the 

cumulative increase in temperature by 1°C (Figure 2.6a). For all experiments, the crop 

sown on 06th June has the highest ET and LAI mean values among all the sowing dates. 

Like other two varieties, the increasing CO2 does not bring any significant change in the 

ET and LAI means (Figure 2.6b). Partial moderation in the increase in ET and LAI is 

observed for combined increase in temperature and CO2 concentration (Figure 2.6c).  The 

HI is almost insensitive to almost 1°C temperature rise and further decline slightly under 

N+2°C and the lowest is observed for late sown crop of 06th June (Figure 2.6d). This 

indicates that, this crop sown in May (early) provides better performance than sown in June 

(late) under future warming climate. Under 3°C rise in temperature, the yield has 

significantly reduced for the crops sown in May while the production is relatively higher 

for late sown crop on 06th June. Similar pattern is also observed for increase in CO2 

concentration (Figure 2.6e). But the maturity date is not much impacted with increasing 

temperature and CO₂  and both combined (Figure 2.6d-e-f). The HI mean slightly 

decreases with increase in CO₂  with lowest values for the crop sown on 06th June. Again, 

the increase in temperature and CO₂  combined mimic the similar behavior as with rise in 

temperature but the effect has been partially moderated (Figure 2.6f). 

It is observed from the present analysis that the increasing temperature has more 

impact on the ET and LAI as compared to the increasing CO2 in general. Pancham-

541variety is found to be most tolerant towards increasing temperature till 1°C temperature 

rise. The mean values are higher for ET and LAI for varieties sown late (06th June) for all 

the conditions. Combining the effect of temperature and CO2, the higher impact of the 

increasing temperature is moderated by increasing CO2 for all the cultivar with all sowing 

dates in the experiment. The cotton being a C3 plant is impacted by an increase in CO2, 

which influences the photosynthesis, yield and dry matter production substantially (Lawlor 

et al., 1991). In some crops such as maize, vegetative and reproductive growth can be 

accelerated by rising temperature whereas increasing CO2 concentrations has no apparent 

effect (Ruiz-Vera et al., 2018). Further, another study advocates an increase in productivity 

with doubling CO2 concentration which is related to the higher leaf area (Reddy et al., 
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2005). With increased incidences of heat stress, there is a rapid crop development and 

maturity if the management strategies are not adjusted (Luo et al., 2014).  

In general, higher Maturity Date (MD) are observed in crop sown on 06th June. 

This signifies that the crop sown late take more time to mature. As observed, crops sown 

in May are performing better under warming climate, which is also supported by earlier 

studies. Therefore, early planting is one good remedy to maintain a good yield for the future 

climate (Anapalli et al., 2016; Reddy et al., 2005). With increase of temperature, CO2 and 

both, the harvested yield and maturity period decreases. ET and LAI are found to directly 

(indirectly) proportional to HI (MD) for all three varieties considered for the study. Crop 

sown during May seems to better performing in terms of HI with increasing temperature 

and CO2 for Pancham-541 and RCH-791. But, the SP-7007 variety have least HI for the 

crop sown during June. The positive impacts of early sowing in productivity and 

development are related to early emergence and increase in reproductive period which 

results into earlier First Square and delayed last Effective Square (Anapalli et al., 2016; 

Reddy et al., 2005).  Some degree of loss of fruiting bodies (decrease in yield) due to rise 

of temperature can be compensated by greater resources like irrigation and nutrition 

(Constable et al., 2006).  
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Figure 2.4 Cotton variety Pancham- 541, physiological parameters taken combined for three sowing dates 10th May, 21thMay 

and 06th June (a) Evapotranspiration and Leaf Area Index (Maximum) with increasing temperature (b) Same as (a), but for 

increasing CO2 (c) Same as (a) but for temperature and CO2 (d) Harvest Index and Maturity date with increasing temperature 

(e) Same as (d), but for increasing CO2 (f) Same as (d), but for temperature and CO2. 
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Figure 2.5 Same as Figure 4 but for cotton variety RCH – 791. 
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Figure 2.6: Same as Figure 4 but for cotton variety SP- 7007. 
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Abbreviations used in the Figure 2.4 

TNP1 Evaluating temperature sensitivity with respect to(w.r.t) normal climate for Pancham-541 with sowing 

date(SD) 10th May 

TNP2 Evaluating temperature sensitivity w.r.t normal climate for Pancham-541 with SD 21st May 

TNP3 Evaluating temperature sensitivity w.r.t. normal climate for Pancham-541 with SD 06th June 

TN1P1 Evaluating temperature sensitivity for 1°C increase in Temperature w.r.t. to normal climate for Pancham-

541 with SD 10th May 

TN1P2 Evaluating temperature sensitivity for 1°C increase in Temperature w.r.t. to normal climate for Pancham-

541 with SD 21st May 

TN1P3 Evaluating temperature sensitivity for 1°C increase in Temperature w.r.t. to normal climate for Pancham-

541 with SD 06th June 

TN2P1 Evaluating temperature sensitivity for 2°C increase in Temperature w.r.t. to normal climate for Pancham-

541 with SD 10th May 

TN2P2 Evaluating temperature sensitivity for 2°C increase in Temperature w.r.t. to normal climate for Pancham-

541 with SD 21st May 
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TN2P3 Evaluating temperature sensitivity for 2°C increase in Temperature w.r.t. to normal climate for Pancham-

541 with SD 06th June 

TN3P1 Evaluating temperature sensitivity for 3°C increase in Temperature w.r.t. to normal climate for Pancham-

541 with SD 10th May 

TN3P2 Evaluating temperature sensitivity for 3°C increase in Temperature w.r.t. to normal climate for Pancham-

541 with SD 21st May 

TN3P3 Evaluating temperature sensitivity for 3°C increase in Temperature w.r.t. to normal climate for Pancham-

541 with SD 06th June 

CNP1 Evaluating CO2 sensitivity w.r.t. to normal climate for Pancham-541 with SD 10th May 

CNP2 Evaluating CO2 sensitivity w.r.t normal climate for Pancham-541 with SD 21st May 

CNP3 Evaluating CO2 sensitivity w.r.t. normal climate for Pancham-541 with SD 06th June 

CN1P1 Evaluating CO2 sensitivity for 50ppm increase in CO2 w.r.t. normal climate for Pancham-541 with SD 10th 

May 

CN1P2 Evaluating CO2 sensitivity for 50ppm increase in CO2 w.r.t. normal climate for Pancham-541 with SD 21st 

May 
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CN1P3 Evaluating CO2 sensitivity for 50ppm increase in CO2w.r.t. normal climate for Pancham-541 with SD 06th 

June 

CN2P1 Evaluating CO2 sensitivity for 100ppm increase in CO2 w.r.t. normal climate for Pancham-541 with SD 10th 

May 

CN2P2 Evaluating CO2 sensitivity for 100ppm increase in CO2 w.r.t. normal climate for Pancham-541 with SD 21st 

May 

CN2P3 Evaluating CO2 sensitivity for 100ppm increase in CO2 w.r.t. normal climate for Pancham-541 with SD 06th 

June 

CN3P1 Evaluating CO2 sensitivity for 150ppm increase in CO2 w.r.t. normal climate for Pancham-541 with SD 10th 

May 

CN3P2 Evaluating CO2 sensitivity for 150ppm increase in CO2 w.r.t. normal climate for Pancham-541 with SD 21st 

May 

CN3P3 Evaluating CO2 sensitivity for 150ppm increase in CO2 w.r.t. normal climate for Pancham-541 with SD 06th 

June 

TCNP1 Evaluating temperature and CO2 sensitivity w.r.t. normal climate for Pancham-541 with SD 10th May 

TCNP2 Evaluating temperature and CO2 sensitivity w.r.t normal climate for Pancham-541 with SD 21st May 



Chapter II 

65 

 

TCNP3 Evaluating temperature and CO2 sensitivity w.r.t. normal climate for Pancham-541 with SD 06th June 

TCN1P1 Evaluating temperature and CO2 sensitivity for 1°C+50ppm increase w.r.t. normal climate for Pancham-541 

with SD 10th May 

TCN1P2 Evaluating temperature and CO2 sensitivity for 1°C+50ppm increase w.r.t. normal climate for Pancham-541 

with SD 21st May 

TCN1P3 Evaluating temperature and CO2 sensitivity for 1°C+50ppm increase w.r.t. normal climate for Pancham-541 

with SD 06th June 

TCN2P1 Evaluating temperature and CO2 sensitivity for 2°C+100ppm increase w.r.t. normal climate for Pancham-

541 with SD 10th May 

TCN2P2 Evaluating temperature and CO2 sensitivity for 2°C+100ppm increase w.r.t. normal climate for Pancham-

541 with SD 21st May 

TCN2P3 Evaluating temperature and CO2 sensitivity for 2°C+100ppm increase w.r.t. normal climate for Pancham-

541 with SD 06th June 

TCN3P1 Evaluating temperature and CO2 sensitivity for 3°C+150ppm increase w.r.t. normal climate for Pancham-

541 with SD 10th May 

TCN3P2 Evaluating temperature and CO2 sensitivity for 3°C+150ppm increase w.r.t. normal climate for Pancham-

541 with SD 21st May 
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TCN3P3 Evaluating temperature and CO2 sensitivity for 3°C+150ppm increase w.r.t. normal climate for Pancham-

541 with SD 06th June 

Abbreviations used in the Figure 2.5 

TNR1 Evaluating temperature sensitivity with respect to(w.r.t) normal climate for RCH-791 with sowing date(SD) 

10th May 

TNR2 Evaluating temperature sensitivity w.r.t normal climate for RCH-791 with SD 21st May 

TNR3 Evaluating temperature sensitivity w.r.t. normal climate for RCH-791 with SD 06th June 

TN1R1 Evaluating temperature sensitivity for 1°C increase in Temperature w.r.t. to normal climate for RCH-791 

with SD 10th May 

TN1R2 Evaluating temperature sensitivity for 1°C increase in Temperature w.r.t. to normal climate for RCH-791 

with SD 21st May 

TN1R3 Evaluating temperature sensitivity for 1°C increase in Temperature w.r.t. to normal climate for RCH-791 

with SD 06th June 

TN2R1 Evaluating temperature sensitivity for 2°C increase in Temperature w.r.t. to normal climate for RCH-791 

with SD 10th May 
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TN2R2 Evaluating temperature sensitivity for 2°C increase in Temperature w.r.t. to normal climate for RCH-791 

with SD 21st May 

TN2R3 Evaluating temperature sensitivity for 2°C increase in Temperature w.r.t. to normal climate for RCH-791 

with SD 06th June 

TN3R1 Evaluating temperature sensitivity for 3°C increase in Temperature w.r.t. to normal climate for RCH-791 

with SD 10th May 

TN3R2 Evaluating temperature sensitivity for 3°C increase in Temperature w.r.t. to normal climate for RCH-791 

with SD 21st May 

TN3R3 Evaluating temperature sensitivity for 3°C increase in Temperature w.r.t. to normal climate for RCH-791 

with SD 06th June 

TNR1 Evaluating CO2 sensitivity w.r.t. to normal climate for RCH-791 with SD 10th May 

TNR2 Evaluating CO2 sensitivity w.r.t normal climate for RCH-791 with SD 21st May 

TNR3 Evaluating CO2 sensitivity w.r.t. normal climate for RCH-791 with SD 06th June 

CN1R1 Evaluating CO2 sensitivity for 50ppm increase in CO2 w.r.t. normal climate for RCH-791 with SD 10th May 

CN1R2 Evaluating CO2 sensitivity for 50ppm increase in CO2 w.r.t. normal climate for RCH-791 with SD 21st May 

CN1R3 Evaluating CO2 sensitivity for 50ppm increase in CO2w.r.t. normal climate for RCH-791 with SD 06th June 
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CN2R1 Evaluating CO2 sensitivity for 100ppm increase in CO2 w.r.t. normal climate for RCH-791 with SD 10th 

May 

CN2R2 Evaluating CO2 sensitivity for 100ppm increase in CO2 w.r.t. normal climate for RCH-791 with SD 21st 

May 

CN2R3 Evaluating CO2 sensitivity for 100ppm increase in CO2 w.r.t. normal climate for RCH-791 with SD 06th 

June 

CN3R1 Evaluating CO2 sensitivity for 150ppm increase in CO2 w.r.t. normal climate for RCH-791 with SD 10th 

May 

CN3R2 Evaluating CO2 sensitivity for 150ppm increase in CO2 w.r.t. normal climate for RCH-791 with SD 21st 

May 

CN3R3 Evaluating CO2 sensitivity for 150ppm increase in CO2 w.r.t. normal climate for RCH-791 with SD 06th 

June 

TCNR1 Evaluating temperature and CO2 sensitivity w.r.t. normal climate for RCH-791 with SD 10th May 

TCNR2 Evaluating temperature and CO2 sensitivity w.r.t normal climate for RCH-791 with SD 21st May 

TCNR3 Evaluating temperature and CO2 sensitivity w.r.t. normal climate for RCH-791 with SD 06th June 
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TCN1R1 Evaluating temperature and CO2 sensitivity for 1°C+50ppm increase w.r.t. normal climate for RCH-791 

with SD 10th May 

TCN1R2 Evaluating temperature and CO2 sensitivity for 1°C+50ppm increase w.r.t. normal climate for RCH-791 

with SD 21st May 

TCN1R3 Evaluating temperature and CO2 sensitivity for 1°C+50ppm increase w.r.t. normal climate for RCH-791 

with SD 06th June 

TCN2R1 Evaluating temperature and CO2 sensitivity for 2°C+100ppm increase w.r.t. normal climate for RCH-791 

with SD 10th May 

TCN2R2 Evaluating temperature and CO2 sensitivity for 2°C+100ppm increase w.r.t. normal climate for RCH-791 

with SD 21st May 

TCN2R3 Evaluating temperature and CO2 sensitivity for 2°C+100ppm increase w.r.t. normal climate for RCH-791 

with SD 06th June 

TCN3R1 Evaluating temperature and CO2 sensitivity for 3°C+150ppm increase w.r.t. normal climate for RCH-791 

with SD 10th May 

TCN3R2 Evaluating temperature and CO2 sensitivity for 3°C+150ppm increase w.r.t. normal climate for RCH-791 

with SD 21st May 
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TCN3R3 Evaluating temperature and CO2 sensitivity for 3°C+150ppm increase w.r.t. normal climate for RCH-791 

with SD 06th June 

 

 

Abbreviations used in the Figure 2.6 

TNS1 Evaluating temperature sensitivity with respect to(w.r.t) normal climate for SP-7007 with sowing date(SD) 

10th May 

TNS2 Evaluating temperature sensitivity w.r.t normal climate for SP-7007 with SD 21st May 

TNS3 Evaluating temperature sensitivity w.r.t. normal climate for SP-7007 with SD 06th June 

TN1S1 Evaluating temperature sensitivity for 1°C increase in Temperature w.r.t. to normal climate for SP-7007 

with SD 10th May 

TN1S2 Evaluating temperature sensitivity for 1°C increase in Temperature w.r.t. to normal climate for SP-7007 

with SD 21st May 

TN1S3 Evaluating temperature sensitivity for 1°C increase in Temperature w.r.t. to normal climate for SP-7007 

with SD 06th June 
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TN2S1 Evaluating temperature sensitivity for 2°C increase in Temperature w.r.t. to normal climate for SP-7007 

with SD 10th May 

TN2S2 Evaluating temperature sensitivity for 2°C increase in Temperature w.r.t. to normal climate for SP-7007 

with SD 21st May 

TN2S3 Evaluating temperature sensitivity for 2°C increase in Temperature w.r.t. to normal climate for SP-7007 

with SD 06th June 

TN3S1 Evaluating temperature sensitivity for 3°C increase in Temperature w.r.t. to normal climate for SP-7007 

with SD 10th May 

TN3S2 Evaluating temperature sensitivity for 3°C increase in Temperature w.r.t. to normal climate for SP-7007 

with SD 21st May 

TN3S3 Evaluating temperature sensitivity for 3°C increase in Temperature w.r.t. to normal climate for SP-7007 

with SD 06th June 

TNS1 Evaluating CO2 sensitivity w.r.t. to normal climate for SP-7007 with SD 10th May 

TNS2 Evaluating CO2 sensitivity w.r.t normal climate for SP-7007 with SD 21st May 

TNS3 Evaluating CO2 sensitivity w.r.t. normal climate for SP-7007 with SD 06th June 

CN1S1 Evaluating CO2 sensitivity for 50ppm increase in CO2 w.r.t. normal climate for SP-7007 with SD 10th May 
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CN1S2 Evaluating CO2 sensitivity for 50ppm increase in CO2 w.r.t. normal climate for SP-7007 with SD 21st May 

CN1S3 Evaluating CO2 sensitivity for 50ppm increase in CO2w.r.t. normal climate for SP-7007 with SD 06th June 

CN2S1 Evaluating CO2 sensitivity for 100ppm increase in CO2 w.r.t. normal climate for SP-7007 with SD 10th May 

CN2S2 Evaluating CO2 sensitivity for 100ppm increase in CO2 w.r.t. normal climate for SP-7007 with SD 21st May 

CN2S3 Evaluating CO2 sensitivity for 100ppm increase in CO2 w.r.t. normal climate for SP-7007 with SD 06th June 

CN3S1 Evaluating CO2 sensitivity for 150ppm increase in CO2 w.r.t. normal climate for SP-7007 with SD 10th May 

CN3S2 Evaluating CO2 sensitivity for 150ppm increase in CO2 w.r.t. normal climate for SP-7007 with SD 21st May 

CN3S3 Evaluating CO2 sensitivity for 150ppm increase in CO2 w.r.t. normal climate for SP-7007 with SD 06th June 

TCNS1 Evaluating temperature and CO2 sensitivity w.r.t. normal climate for SP-7007 with SD 10th May 

TCNS2 Evaluating temperature and CO2 sensitivity w.r.t normal climate for SP-7007 with SD 21st May 

TCNS3 Evaluating temperature and CO2 sensitivity w.r.t. normal climate for SP-7007 with SD 06th June 

TCN1S1 Evaluating temperature and CO2 sensitivity for 1°C+50ppm increase w.r.t. normal climate for SP-7007 with 

SD 10th May 

TCN1S2 Evaluating temperature and CO2 sensitivity for 1°C+50ppm increase w.r.t. normal climate for SP-7007 with 

SD 21st May 
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TCN1S3 Evaluating temperature and CO2 sensitivity for 1°C+50ppm increase w.r.t. normal climate for SP-7007 with 

SD 06th June 

TCN2S1 Evaluating temperature and CO2 sensitivity for 2°C+100ppm increase w.r.t. normal climate for SP-7007 

with SD 10th May 

TCN2S2 Evaluating temperature and CO2 sensitivity for 2°C+100ppm increase w.r.t. normal climate for SP-7007 

with SD 21st May 

TCN2S3 Evaluating temperature and CO2 sensitivity for 2°C+100ppm increase w.r.t. normal climate for SP-7007 

with SD 06th June 

TCN3S1 Evaluating temperature and CO2 sensitivity for 3°C+150ppm increase w.r.t. normal climate for SP-7007 

with SD 10th May 
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APPLICATION OF REMOTE SENSING FOR DETECTION OF STRESS 

IN COTTON INDUCED BY PEST IN HISAR 

Abstract 

Pest is cardinal threat for cotton crop productivity. This study emphasizes the application 

of remote sensing approach in complement with weather based statistical forewarning for 

taking effective Integrated Pest Management (IPM) measures. Forecasts based on 

meteorological parameters and crop phenology help to prepare pest weather calendar for 

predicting the pest attack in advance and this can be monitored with the remote sensing 

technique on real-time basis.  In this study pest infestation in the research field in Hisar is 

assessed with the help of LANDSAT images for the year 2013-18. Vegetation indices such 

as NDVI and NDWI is calculated for area of interest after cloud masking. The multi-

temporal LANDSAT images are then collected to composite a time series. These indices 

were further analysed with the crop calendar and validated with the field observations.  The 

NDVI and NDWI values is minimum for the year 2013, 2015 and 2018 in comparison to 

2014, 2016 and 2017 respectively, which is reflective of stress the crop was experiencing 

which was corroborated as pest attack above Economic Threshold Level (ETL) as per field 

observations. The peak in the values are gained during the September 2017 showing good 

plant health during the year. As observed in the year 2013 and 2015 the major threat was 

Cotton Leaf Curl Disease (CLCuD) transmitted through whitefly (Bemisia tabaci) and 

accompanied by other sucking pests like thrips, leafhopper etc. And in the year 2018 the 

crop was majorly affected by the cotton leafhoppers Jassids. Thus, for strengthening 

network programs monitoring the pest dynamics along with statistical forecasts and pest 

models is needful.   

Key words: Forewarning, Pest forecasting, Remote sensing, Vegetation indices, NDVI, 

NDWI 
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3.1 INTRODUCTION 

Pest has been a major challenge for entomologist in cotton crop. Worldwide more than 

1326 species of pest has been reported in cotton crop (Hargreaves, 1948). Among these 

insect pest is the major source of crop losses (Kumar et al., 2008). Bollworm was utmost 

cause of concern before the introduction of Bt cotton. But, even after revolutionary 

introduction and consequently enhancement of Bt cotton production, now sucking pest is 

burning issue.  Since its introduction there has been reduction in conventional insecticides 

and higher doses of nitrogenous fertilizers leading to enhanced quantum of amino in the 

plant system has made it more conducive for fast development and fertility of sucking pests 

(Jain and Bhargava, 2007). Cotton sucking insect pests which if found to be major threat 

in the present are whitefly (Bemisia tabaci Gennadius), aphid (Aphis gossypii Glover) 

leafhopper (Amrasca biguttula biguttula Ishida) and thrips (Thrips tabaci Lindemann). So 

as to protect them pesticides are widely used to such an extent that more than 50% of total 

production cost is attributed to pesticides alone (Sundaramurthy et al., 1998).  

Various field studies are being conducted to study the influence of pest on the crop. It 

has also been reported that the pest population is also influenced by abiotic factors such as 

temperature rainfall and relative humidity. When the number of pests grow above 

Economic Threshold Level (ETL) level it can cause huge devastation in the cropland. One 

such example is, huge loss in cotton productivity during the year 2014-15 is Hisar, 

northwest cotton growing belt due to attack of sucking pest, prominently whitefly (Weekly 

Advisory for Cotton Cultivation No. 18/2015) (Janu et al., 2017). And due to Jassids cotton 

leafhoppers also a sap sucking pest in the year 2018 (CAI, August 2018). The whitefly 

infestation and favourable weather conditions also triggered severe Cotton leaf curl virus 

(CLCuV) disease. The sucking pest population increases with advancement of vegetative 

stage and during the maximum leaf area index (Bishnoi et al., 1996). With the introduction 

of Bt-Hybrids over and above 90% of area the concern has shifted towards sucking pest. 

The meteorological parameters play a significant role in the development and build up on 

insect species. Among the major weather factors temperature and humidity are most 
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influential attribute (Janu et al., 2017).  Boyd et al. (2004) studied that humidity is a major 

contributor to pest and insect attacks, for e.g. ball rot after ball opening. The most suitable 

conditions for maximizing the yield include warm, dry weather conditions, abundant 

sunlight and availability of soil moisture since the period when the balls start opening 

through harvest. 

The whitefly is a prominent pest for cotton (Brown and Bird, 1992) which caused 

devastation of crop during the year 2014-2015 in the Punjab and Haryana region. And it 

was also found that whitefly was significantly correlated with maximum temperature and 

rainfall whereas it is positively correlated with relative humidity (Janu et al., 2017). It is a 

sap sucking pest, highly polyphagous and serious cause of heavy loss. It has potential to 

reduce the phloem sap resulting in loss of plant vigour (Byrne et al., 1990). It infects the 

plant in two ways, either by reducing the vitality of plant of affecting the cell sap or by 

interfering the normal photosynthesis with the growth of sooty mold on honeydew 

extracted by it. These mold affects the quality of the fibre and leave a pale patches the 

leaves. These pale patches and obtrusion is plant health can be traced in reflectance as well. 

It is often accompanied by Cotton leaf curl virus (CLCuV) disease, causing upward curling 

of leaves and thickening of veins and enations (minute foliar outgrowth) pronounced at the 

lower surface of the leaves. It turns it into abnormally dark green which seems opaque 

beneath the surface (Watkins, 1981). This is transmitted through the white fly (ELNur, 

1967). It also has significant impact on the yield and physiological components like stunted 

plant, reduced number of balls and ball weight (Tanveer and Mirza, 1996; Brown, 2001).  

Some pests supply sufficient stress to the plant altering their physical structure and 

photosynthesis. Which distorts the reflectance signal and consequently detected by remote 

sensing (Moran et al., 1997). Remote sensing techniques the for detecting the pest activity 

are usually based upon the detection of damage caused by the pest rather than the actual 

organism (Riley, 1989).  Likewise, the type of damage caused by the deposits of sooty 

mold from the honeydew producing pests resulting in defoliation and colour changes is 

detectable (Payne et al., 1971; Harris et al., 1976). 
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The different response of vegetation attributes for spectral regions have been 

articulated to various arithmetic formulae also known as vegetation Indices (VI). They 

deduce the multispectral responses to single numbers to signify characteristics such as 

biomass, leaf area index, stress etc. They have been found functionally and quantitatively 

related to canopy temperature, chlorophyll content other pigment availability etc. These 

VIs have also been utilised for assessing the crop health and have potential to monitor pests 

and diseases (Ray et al., 2010). Some of the widely used VIs are normalized difference 

vegetation index (NDVI), normalized difference water index (NDWI), enhanced 

vegetation index (EVI) etc.  

The present study aims to analyse the crop health with the remote sensing approach. 

The field observations validate the stress during the study period due to the pest infestation. 

The behaviour of the pest are also correlated with the meteorological variables in the for 

pest forewarning.   Conventionally to analyse and forecast the yield and pest attack on the 

crop was based upon field experiments and statistical correlation. But this now supplement 

with crop simulation modeling and remote sensing approach. These complementary 

approach for the study along with ground based validation has helped researchers is yield 

forecasting and can also play vital role in early detection of severity, quantum and 

distribution of pest incidence in the crop. Future research could apply these methods 

explicitly to study the impact of climate on pest. Which can also be complemented with 

more reliable data and various pest models and remote sensing techniques to complement 

the research. 

3.1.1 Complementary Approaches for Pest Assessment 

3.1.1.1 Statistical 

The pest population and its relation with weather can also be assessed or forecasted from 

the empirical equations generated by statistical analysis based on the field observations. 

These generalised equations takes the meteorological parameters such as temperature, 

rainfall and humidity to forecast the frequency of pest. It can give a modest estimation 

about the different pest population. They are developed based upon the field experiments 
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on the growing regions and then validating with it’s statistically significance (Bishnoi et 

al., 1996).  Regression analysis are done and relationships are developed to forecast the 

pest population of Aphids, Jassids, leafhopper and whitefly population build-up with 

weather variables (Janu et al., 2017). Below there are mentioned some of the equations to 

interpret the weather correlation with the major pests in the study region Hisar as studied 

by Bishnoi et al. (1996). 

𝐽𝑎𝑠𝑠𝑖𝑑 𝑃𝑜𝑝. =
1

0.0019(T mean−30)²+0457
            (R²=0.97)  

 𝑊ℎ𝑖𝑡𝑒𝑓𝑙𝑦 𝑃𝑜𝑝. = −71.86 + 5.633Tmean − 0.1042Tmean²     (R²=0.98) 

Heliothis Pop. = −9.24 +
300.8

Tmean
                (R²=0.77) 

 𝑃𝑖𝑛𝑘 𝐵𝑜𝑙𝑙𝑤𝑜𝑟𝑚 =
1

0.2494+ 0.0369(𝑇𝑚𝑒𝑎𝑛)2       (R²=0.77) 

3.1.1.2 Remote sensing 

Many of the crop responses towards the stress are difficult to visually quantify with 

acceptable accuracy and speed and the same responses can be observed for reflected 

electromagnetic radiation from the plant canopies and assesses by GIS and remote sensing 

techniques.  This was used to quantify the crop health and nowadays are utilised to quantify 

and early detection of pests to take timely and precise Integrated Pest Management (IPM) 

measures (Ray et al., 2011). Since the pest affects the plant health thus can be calibrated 

with the help of vegetation indices to a certain degree. Studies are conducted for the 

behaviour of these indices with the biotic and abiotic stress on the crop (Pinter et al., 2003; 

Prabhakar, 2011; Wojtowicz et al., 2016). The most commonly preferred are NDVI and 

NDWI, which has been selected for the study.  

3.2 MATERIALS AND METHODS 

3.2.1 Study Region  
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The study has been conducted at Hisar, Haryana which come under northern cotton 

crop growing region of India (Figure 3.1). The area lies in alluvial plains of the Yamuna, a 

sub-basin of Ganga River system. The climate here is semi- arid due its continental 

location. The majority of rainfall occurs during the south-west monsoon in JJAS. Summers 

are hot and dry and winters are chilling cold with an annual range in temperature of 3.5°C 

to 48°C. From October to April the weather remains dry, except with the wake of western 

disturbances (Singh et al., 2014). Cotton here is sown in May-June during the Kharif 

season. Aphids, jassids, mites, bollworms, and whiteflies are major pests affecting the crop. 

Presently cotton genotypes has been reported with resistant to CLCuV (Burewala strain) 

which attacks late sown crop. As it is reported that sowing date has significant effect on 

the yield and its physiological components (Iqbal and Khan, 2010). So the only option 

available presently to minimize loss is management strategies like early sowing. 

 

Figure 3.2 Area of field experiment and satellite data sampling point in Hisar farm field. 
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3.2.2 Field Observations 

The study was conducted during the Kharif season of 2014 and 2015 on various cotton 

genotypes on the Research farm, Cotton Section of CCS Haryana Agricultural University, 

Hisar. The crops were grown unprotected with three replications. The plots consisted of 5 

rows of 5 m each. Seeds of 23 genotypes were sown by hand dibbling method on May 

2014-15. Observations were taken for the sucking pests on five randomly selected plants 

recorded weekly from 23rd to 41st Standard Meteorological Weeks on three leaves each 

from top, middle and bottom. 

3.2.3 Collection of Spectral Data 

Satellite images from the Landsat 8 has been taken for the study. It was launched on 

11th Feb 2013 by the National Aeronautics and Space Administration (NASA), which has 

11 bands with spacial resolution of 30 m and 15 m for panchromatic band is 15-m. It has 

been upgraded from its previous Landsat satellite as the red, near-infrared, and shortwave 

infrared bands were narrowed. The radiation resolution was also increased to 16 bits. The 

signal-to-noise ratio was refined. These advances revamped its ability for vegetation 

discriminations. The LANDSAT data are available in the public domain on 

http://earthexplorer.usgs.gov/ and has contributed a lot is research and development 

purposes. 

3.2.4 Computation of Vegetation Indices 

Vegetation indices are the mathematical transformations which are designed to 

evaluate the spectral contribution of vegetation and other multispectral observations. For 

assessing the stress in the crop and quantifying the crop health VIs such as NDVI and 

NDWI are mostly used. The LANDSAT data downloaded from the 04 May 2013 to 16 

October 2018 were obtained from the USGS Earth Explorer website. The data was 

combined with the high-resolution imagery from Google Earth™ taken for 5 sample points 

with coordinates 29.151562N -75.697045W, 29.151571N, -75.697218W, 29.151565N -

75.697223W, 29.151526N-75.697155W, 29.15156N-75.69716W in the research field of 

http://earthexplorer.usgs.gov/
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HAU, Hisar, Haryana, India. It was further processed and subset was created as per the 

Area of Interest (AOI), followed by pre-processing. Further, atmospheric corrections and 

cloud masking was done using procedure described in USGS website and atmospheric 

effects was removed for better representation and calculation. VIs are calculated using 

raster calculator in ArcGIS. These Vegetation indices derived using the equations given in 

Table 3.1. Multi-temporal LANDSAT images are then collected to composite a time series. 

These indices were further analysed with the crop calendar.  The procedure is well depicted 

the flowchart given in Figure 3.2.  

Table 3.1 Calculation of vegetation indices namely NDVI and NDWI from LANDSAT 

data 

Index Computation Application Reference 

NDVI 

(Normalized 

Difference 

Vegetation 

Index) 

NDVI= (ρ
n
 - ρ

r
)/ (ρ

n
 + ρ

r
) 

(ρ
 (0.86 μm) 

- ρ
r
)/ (ρ

 (0.66 μm)
 + ρ

 (0.66 μm)
) 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷 

𝑁𝐼𝑅 + 𝑅𝐸𝐷 
 

Determine the 

condition, 

developmental 

stages and 

biomass of 

cultivated plants 

and to forecasts 

their yields. 

Rouse et al. 

(1973); 

Tucker et al. 

(1986) 

NDWI 

(Normalized 

Difference 

Water Index) 

NDVI= (ρ
n
 - ρ

s
)/ (ρ

n
 + ρ

s
) 

(ρ
(0.86 μm)

 - ρ
(1.24 μm)

)/( ρ
(1.24 μm)

 + ρ
(0.86 

μm)
) 

𝑁𝐷𝑊𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅 

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

Estimation of 

plant water 

content in 

canopies 

Gao et al. 

(1996); 

Zarco-Tejada 

et al. (2003) 
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Figure 3.3 Flowchart for the computation of vegetation indices from the LANDSAT data 

and LAI from the crop model DSSAT. 
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3.3 RESULTS  

The composite time-series of the vegetation indices study region are plotted to 

determine the crop health for kahrif season from 2013 to 2018 (Figure 3.3). The crop sown 

in the study site was cotton for the experimental purposes.  The temporal pattern for NDVI 

and NDWI values portrayed together with the crop growth curve for each season with 

average in Figure 3.3a and with summation values of the sampling site in Figure 3.3b for 

better representation. These are the average five sample points of the farm field from where 

the field observations are collected for monthly (Figure 3.3) and annual (Figure 3.4) 

cropping season. The whole crop growing seasons for 6 years are analysed to see the overall 

impact of pest during the outbreak and its response captured remote sensing and crop 

model. 

The annual average NDWI value during the cropping (Kharif) season was above 0.3 

every year with minimum values for 2013 and 2015 showing the occurrence stress in crop 

which was corroborated as pest attack as per field observations. The sum of NDVI and 

NDWI values as shown in (Figure 3.3b) is minimum for the year 2013, 2015 and 2018 in 

comparison to 2014, 2016 and 2017 respectively, which is reflective of stress the crop was 

experiencing. The peak in the values are gained during the September 2017 showing good 

plant health during the year. The field studies are conducted on the Research farm of 

department of Agricultural Meteorology, CCS HAU, Hisar Haryana on various cultivars 

of cotton suggest invasion of pest on the field above the economic threshold levels. In the 

year 2013 and 2015 the major threat was Cotton Leaf Curl Disease (CLCuD) transmitted 

through whitefly (Bemisia tabaci) crop in the year 2018 which was also affected by the 

cotton leafhoppers Jassids above ETL. In 2015 again the whitefly population was again 

found to be increasing above the ETL levels in the field accompanied by other sucking 

pests like thrips (Thrips tabaci Lindeman), leafhopper (Amrasca bigutulla bigutulla) etc. 

Negative NDVI during May and some part of June signifies cropping to emergence period 

of the crop. As it is also found in many similar studies that late sowing of cotton in these 

regions makes it vulnerable for pest attack. Again in the year 2014 the incidence was stable 

and below ETL in comparison to 2013 and 2015.  These infestation is also reported in the 
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survey of nearby fields as reported by Weekly Advisory for Cotton Cultivation, ICAR-

Central Institute for Cotton Research.  

The value of NDVI ranges from -1 to 0, higher value signifies high Near Infrared 

(NIR) reflectance and dense greenery or healthy vegetation. In the Figure 3.3b for 

summation of NVDI, we observe value rises after emergence and is maximum for the mid-

season flowering stage in 2014, whereas for the other years the maximum NDVI was 

observed during the ball forming and maturation period. This can be due to the complex 

and intricate development stages of cotton which is intersecting each other. Maximum 

NDVI was observed for the year 2017 the followed by 2016 and 2014, which is observed 

productive in terms of plant health.  The maximum pest infestation is observed from the 

24th to 41st standard meteorological week (SMW), with a peak around 30th week depending 

upon the pest as shown in Table 3.2. Whereas in Figure 3.3a for mean NDVI we find 

minimum for the year 2015 which concludes the maximum crop damage during this year 

which is also validate with the field observations, and the reason for stress as pest outbreak. 

The NDVI and NDWI values also supported by the field data shows falling NDVI and 

NDWI values for the year 2013 and 2015 where the pest infestation was above ETL.  

Further, as per reports and sample surveys in the study regions for the year 2016-18 reports 

the infestation of Jassids also a sap sucking pest in the year 2018 above ETL (CAI, August 

2018), which can also be observed in the NDVI and NDWI values. 

The study indicates that the NDWI and NDVI calculated using LANDSAT 8 data 

and the field observations has very strong resemblance with the pest infestation in the study 

region. The stress in cotton crop caused by the pest attack are clearly visible in derived 

NDWI and NDVI outputs. Thus, these vegetation indices can be used as an indicator to 

perceive the threshold for zoning the outbreaks. Also, when the crops are affected above 

the ETL they can be identified and therefore forecasted by modelling approaches.  

 



Chapter III 

85 

 

 

Figure 4.3a. Average of NDVI and NDWI of the five sampling sites. 

 

Figure 5.3b Summation of NDVI and NDWI of the five sampling sites. 

M
a
y

Ju
n

Ju
l

A
u

g

O
c
t

M
a
y

Ju
n

Ju
l

A
u

g

S
e
p

O
c
t

M
a
y

Ju
n

Ju
l

A
u

g

S
e
p

O
c
t

M
a
y

Ju
n

Ju
l

A
u

g

S
e
p

O
c
t

M
a
y

Ju
n

Ju
l

A
u

g

S
e
p

O
c
t

M
a
y

Ju
n

Ju
l

A
u

g

S
e
p

O
c
t

2013 2014 2015 2016 2017 2018

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8Average of NDWI Average of NDVI

M
a
y

Ju
n

Ju
l

A
u

g

O
c
t

M
a
y

Ju
n

Ju
l

A
u

g

S
e
p

O
c
t

M
a
y

Ju
n

Ju
l

A
u

g

S
e
p

O
c
t

M
a
y

Ju
n

Ju
l

A
u

g

S
e
p

O
c
t

M
a
y

Ju
n

Ju
l

A
u

g

S
e
p

O
c
t

M
a
y

Ju
n

Ju
l

A
u

g

S
e
p

O
c
t

2013 2014 2015 2016 2017 2018
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5Sum of NDWI Sum of NDVI



Chapter III 

86 

 

  

Figure 3.4 Annual average of (a) mean NDVI and (b) mean NDWI for the five sampling 

sites within the experimental field. 

Table 3.2 Population dynamics of Sucking Pests in cotton sown in May 2014-2015 as 

observed between 23 to 41 Standard Meteorological Week (SMW) 

Pest Year First Appearance 

 (SMW) 

Peak 

(SMW) 

Declined till 

(SMW) 

White fly 2014 24 34 41 

2015 23 31 41 

Thrips 2014 24 33 41 

2015 23 29 41 

Leaf hopper 2014 27 31 41 

2015 27 33 41 
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3.4 DISCUSSION 

Although the utility of satellite remote sensing techniques for the pest and disease 

detection has been suggested long ago (Cline, 1970), but its utility is still inadequate 

quantitatively in spite of immense potential in controlling the disease (Ray et al., 2011).  

Tucker (1979) introduced NDVI which most frequently used to characterize vegetation 

quality from the space and could be used for assessing the crop health and crop growth and 

development. Gao (1996) proposed an index related to liquid water content called NDWI 

to monitor changes in water content in the leaves using NIR and SWIR.  

Statistical evaluation helps to assess the crop health by forecasting its population with 

relation to with weather variables and in the real-time basis by remote sensing. It has been 

found very successful in evaluating the abiotic stresses like temperature CO2 and water 

availably (Shikha et al., 2018) and recently they are updated to capture the biotic stress as 

well with various pest models and induction of pest module in crop models like DSSAT 

(Ortiz et al., 2009; Hoogenboom et al., 2010). Monitoring the crop stress by remote sensing 

approach widely carried out at various parts of the world (Yang et al., 2011). They are also 

utilized for early detection of the pests (Ray et al., 2011). Studies in various parts of India 

on other crops such as wheat, rice, potato etc. (Panigrahy et al., 2001; Singh et al., 2002; 

Arora et al., 2004), is based on utilization of the satellite remote sensing technique has been 

demonstrated for crop area estimation, assessment of pest and diseases detection.  

Cotton is grown as a monocrop in the various parts of the country like Hisar, Akola, 

Sirsa etc. The succulent leaves, bright and attractive flowers, floral nectars, large number 

of fruiting bodies available most of the time during the growing season exhibit that cotton 

is specifically designed by nature and thus attracts whole range of pest and disease. Among 

145 insect pests affecting cotton major sucking pests are jassids, aphids, whitefly and thrips 

(Janu et al., 2017). The pest attack during the cropping season on the study area is also 

correlated with the weather variables such as maximum and minimum temperature, relative 

humidity etc. for the year 2013 (Swami et al., 2017) 2014 (Janu et al., 2017) 2015 (Janu et 

al., 2018). 
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These insect pests have been reported 57.9 percent reduction in yield (Sharma, 1998), 

thus need lot of attention for enhancing productivity. It is also reported that weather and 

sowing window have significant role in the pest population (Bishnoi et al., 1996). As 

reported in various studies, temperature and humidity favors the pest and diseases. There 

are various studies to assess correlations between the weather factors such as maximum 

and minimum temperature, precipitation and relative humidity with pests on the study 

region (Janu et al., 2017, Swami et al., 2017). The Gemini virus CLCuV carried by the 

whitefly vector affects the plants as stunted growth, less number of balls, reduction in ball 

size and deterioration in fiber quality in upland cotton (Tanveer and Mirza, 1996). 

For the assessment of pest population and its correlation with weather attributes various 

field experiments are conducted.  Swami et al. (2017) studied the leaf curl disease (CLCuD) 

transmitted by whitefly (Bemisica tabaci) in Bt-cotton cultivars of highly cotton productive 

area in North India. The study site selected for experiment/investigation was Research farm 

of department of Agricultural Meteorology CCS HAU, Hisar during 2013. Correlation 

analysis reveals that per cent CLCuD incidence and whitefly population shows a significant 

negative correlation with temperature maximum and minimum and rainfall while 

positively correlated with relative humidity morning and evening and sunshine hours. The 

significant observation using the study is that the maximum incidence of CLCuD occurs 

due to variations in minimum temperature. Janu et al. (2017) explore the population 

dynamics and the impact of abiotic factors like maximum temperature, minimum 

temperature, morning relative humidity, evening relative humidity, average weed speed, 

sunshine hours and rainfall on the population of thrips, (Thrips tabaci Lindeman) for 

twenty Bt cotton genotypes at Research Farm, Cotton Section, Department of Genetics and 

Plant Breeding, CCS Haryana Agricultural University, Hisar during kharif 2014 and 2015. 

The results revealed that the impact on the fluctuation of thrips population increases with 

the addition of the influence of weather parameters in both the years. He further utilized 

standard meteorological week weather data for studying the dynamics of thrips, Thrips 

tabaci Lindemann along with their correlation with abiotic factors. The correlation results 

indicated that during 1st season all the weather parameters were non-significantly 
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correlated with the thrips population whereas, during 2nd season maximum temperature 

correlated significantly negative with thrips population while minimum temperature, 

morning and evening relative humidity correlated significantly positive (Janu et al., 

2017b). Janu et al. (2017c) also quantified the whitefly dynamics on Bt Cotton with 

prevailed weather conditions using the regression (linear, multiple and stepwise) analysis 

in SPSS Software. The simple regression results indicated higher incidence of whitefly 

with positive correlation with morning relative humidity (RHm) during 2014 and 2015 

whereas multiple regression shows that weather factors exerted 64.90 % in 2014 and 

79.50% in 2015 influence on whitefly disease incidence in Bt Cotton and finally stepwise 

regression again indicated that morning relative humidity (RHm) exerted (37.70 and 28.90 

per cent) more influence on whitefly population. 

Applying modern technologies along with conventional assessment techniques for 

yield forecasting and pest detection can be applied in various fields.  They are found 

beneficial in bringing precision in agriculture. Remote sensing can also be used for crop 

classification, examining the crop health and crop viability. Nowadays is also used 

successfully for monitoring and mapping stress, quality of crop, crop growth and 

developmental phases, nutrient deficiencies and predicting and detecting the pest and 

diseases (Riley, 1989; Neteler et al., 2011; Gooshbor et al., 2016).  
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EVALUATING THE PERFORMANCE OF REGIONAL CLIMATE 

MODEL FOR COTTON PRODUCTION IN RAINFED AND IRRIGATED 

REGIONS USING DSSAT 

 

ABSTRACT  

High resolution RCMs have potential to improve outputs of courser resolution GCMs. To 

identify suitable RCMs for area of interest, historical simulations are evaluated against 

corresponding observations. Successful representations, increase confidence for using 

future simulations. Present study evaluates RegCM4.0 historical simulations having 

baseline-derived information and its bias corrected data. Here, comparative study of the 

cotton crop for Akola (central) and Hisar (northern) agroclimatic zone of cotton for the 

period 1971–2005 is presented. RCM shows wet biases with high rainfall intensity. The 

model also evinces night warming due to a significant (minimal) decline in maximum 

(minimum) temperature leading to reduced diurnal temperature difference in both the 

locations. Overall model underestimate temperature and overestimate rainfall. In addition, 

strikingly low number of intense warm and cold events are simulated. Model is highly 

biased for rainfalls >0mm/day and <5mm/day; and moderately biased for rainfall 

>5mm/day. The bias-correction using quantile mapping approach shows excellent 

agreement annually, but drastically failed to correct variability as it is a ‘distribution-based 

method'. Also, this approach worked well in the arid Hisar region than rainfed Akola 

region. Further, utilising these data in Decision Support System for Agro-technology 

Transfer (DSSAT) simulated output for cotton yields, Leaf Area Index (LAI) and ball 

Number at maturity/m2 (NM) with bias-corrected RCM outputs shows good agreement 

with corresponding observation than non-bias-corrected RCM outputs in both regions. The 

study suggests the RCM outputs can be used explicitly for the study of the impact of 

climate change on crop productivity when complemented with reliable bias-correction 

techniques. 

Keywords: Climate change, cotton, RegCM4, Bias-correction, Quantile mapping, 

DSSAT, irrigated, rainfed 
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4.1 INTRODUCTION 

Agricultural productivity is threatened due to climate change (IPCC AR5, 2014). So 

mitigation and adaptation strategies have to be applied for the crops as per changing 

climate. Therefore, the understanding of the inlying processes by which it is affected is 

important for the researchers and policymakers (Nelsona and Shively, 2013). In the light 

of which extensive researches are done both in the field experiments and modeling (Reddy 

et al., 2005, Saseendran et al., 2016; Ozturk et al., 2017). Projected changes in temperature, 

rainfall and carbon dioxides affect the agroecosystem and its processes. Understanding the 

impact of a regional warming trend on the phenological and growth stages of the crop may 

assist in optimizing the management practices and therefore increasing the productivity of 

the crop.  

To assess the impact of climate change upon the crop, having reliable climate data is 

essential. Climatic projections from various global climate models (GCMs) and regional 

climate models (RCMs) still have significant errors and biases. While GCMs are the 

primary source of information on climate scenarios, but still have the drawback of having 

coarse special resolution and inability to capture inter-annual variability which is rectified 

by downscaling with RCMs on regional scales (Metzger et al., 2005). GCMs can also be 

used with various downscaling approaches (Thomas et al. 2008) for these purposes. These 

GCMs and RCMs data can be further bias-corrected by various methodologies viz., Linear 

Scaling, Delta change approach, Quantile Mapping (QM), etc. (Qian et al., 2016). These 

models help in understanding the processes while simulating the past, present and future 

climate. These observations versus simulations and their bias-corrected version offer a 

comparatively viewpoint for credible information (Gudmundsson, 2014; Maraun, 2016). 

These climate models’ outputs serve as an input for the hydrological and crop simulation 

models. A number of crop simulation models are being utilized along with field studies to 

examine the crop yield and climate sensitivity under different scenarios (Aggarwal et al., 

2006) like General Large Area Model (GLAM) (Sanai and Chun, 2017), Decision Support 

System for Agro-technology Transfer (DSSAT) (Saseendran et al., 2016; Mall et al., 2017), 
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InFoCrop (Aggarwal et al., 2005), AquaCrop (Pareek et al., 2017) etc. (Anwar et al., 2007; 

Ortiz et al., 2008; Singh et al., 2017; Mall et al., 2018). But the restraints while integrating 

these crop models are that the spatial scale is much smaller than those of the climate models 

(Hansen and Jones, 2000). So the weather inputs have to be downscaled as per the model 

requirements. However, using this process-based model such as DSSAT-CSM helps in 

analyzing some multifaceted relations (Boote et al., 2010; Pathak et al., 2012; Thorp et al., 

2014) by analyzing biotic and abiotic factors individually or in association with each other 

(White et al., 2005; Liu et al., 2010). 

The growth and developmental rates of crops are accelerating with an increasing 

warming trend in the majority of the crops. This is due to the increase in biomass and 

reduction in maturity date (Menzel et al., 2006; Xiao et al., 2014; Ahmad et al., 2017). 

Crop yield, Leaf area index (LAI), evapotranspiration (ET) and various other phenological 

processes are also affected by weather conditions, variety assortments, sowing dates, 

nutrient availability and other management practices (Beamish et al., 2016; Ahmad et al., 

2017).  

Inputs from various and GCMs and RCMs are applied for the yield estimation of 

different crops like wheat (Pathak et al., 2003; Gourdji et al., 2013; Mall et al., 2018), rice 

(Kumar et al., 2013; (Kumar and Aggarwal, 2014; Mall et al., 2018), cotton (Hebbar et al., 

2013; Saseendran et al., 2016). Cotton belongs to the C3 plant and requires warm days and 

cool nights for optimum growth and development. At high-temperature regime cotton loses 

its reproductive capacity more than its biomass production (Sankaranarayanan et al., 2010). 

The daily weather datasets required for the model are obtained from Coordinated Regional 

Climate Downscaling Experiment over South Asia (CORDEX‐ SA) and Coupled Model 

Intercomparison Project 5 (CMIP5) database, which are developed and maintained by 

Earth System Grid Federation (ESGF) (https://esgf-data.dkrz.de/projects/esgf-dkrz). The 

spatial resolution varies from 50 to 200 km (Taylor et al., 2012) which is enough to simulate 

the physical processes that dominate the atmospheric dynamics on a large scale although 

it cannot resolve subgrid processes; therefore, need to be parameterized (Giorgi et al., 2013; 

Rajczak and Schär, 2017). RCMs are forced over with the GCMs data to improve the data 
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explicitly and increase the spatial resolution (Giorgi et al., 2013). The regional climate 

model (RegCM4) forced with the outputs from global model GFDL-ESM2M experiment 

data is considered in the present study as it captures the seasonal precipitation (Choudhary 

and Dimri, 2018) and air temperature (Garg et al., 2015) with highest combined mean skill. 

Reddy et al. (1992) reported that the effect of elevated temperature on cotton depends upon 

the genetic constitution like Gossypium barbadense is more sensitive than G. hirsutum. 

Among abiotic stresses, 60% yield loss is recorded in cotton as compared to 30% in other 

crops like cereals (Dason, 1996). Saseendran et al. (2016) using cotton model within 

RZWQM2 showed that until the mid-21st-century yield is found to be increased in low to 

moderate emission levels and declined in high emissions levels but further it declined 

significantly at all levels in irrigated conditions. Although in rainfed conditions yield 

declined in all emission scenarios. However, when the water requirements are met the yield 

increased in 25% of cases; while, Hebbar et al. (2007) using InfoCrop model implied that 

with an increase by 3.95°C (3.20°C) in mean temperature yield declined by 477 kg/ha (268 

kg/ha). As due to high temperature, crop duration and ball retention and ball weight 

reduced. Reddy et al. (2005) suggested that an increase in cotton crop productivity depends 

upon the regional climate as well. So for places with lower mean temperature, an increase 

in temperature will be beneficial and regions having a temperature close to 40°C will be 

deleterious (ICAC, 2009). Heavy rain is pernicious for germination in the regions of black 

soil due to poor aeration quality (Raj and Dasan, 1975). Studies indicate that this 

perturbance on the crop phenology can be truncated by adopting new cultivars with higher 

growing degree days and by making few changes in management practices such as a 

different planting window or adding more nutrients at required time (Liu e al., 2006; Singh 

et al., 2007; Anwar et al., 2015; Shikha et al., 2017). 

This present work aims to analyze the performance of RegCM4 model data and its bias-

corrected data during the historical period (1971–2005) in comparison with the observed 

for the sensitivity analysis of the models of different regions. Weather parameters such as 

sunshine duration, maximum and minimum temperature, temperature extremes, rainfall, 

number of rainy days, extremes in rainfall, rainfall intensity are taken for the study. 
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Comparison of model performance and its bias-correctbias-corrected weather variables is 

introduced in the crop simulation models for the northern semi-arid region (Hisar) and 

central rainfed region (Akola) cotton-growing regions in India. Further sensitivity analysis 

of the DSSAT cropping model for evaluating the potential, irrigated, and rainfed conditions 

on cotton crop over the northern semi-arid region and rainfed region. The following section 

2 deals with the data and methodology adopted for the study. Section 3 illustrates the results 

and discussion under the subsections regional climatic study with observation, model and 

bias-corrected weather data, then extremes in climate and crop simulation. Finally followed 

by the summary and conclusions of the study in section 4. 

4.2 DATA AND METHODOLOGY 

4.2.1 Study Area and its Climatic Conditions  

In India, all four species of cotton are grown in three zones namely Northern zone, 

Central zone, and South zone. The northern zone is mostly irrigated; therefore, the 

increasing trend in rainfall has less influence, also decreasing temperature has prolonged 

the vegetative growth and thus crop duration. Central and South zones are mostly rainfed 

with expected increasing temperature and erratic rainfall which leads to a shortening of 

growth period of the crop (Sankaranarayanan et al., 2010). The northern zone includes 

Haryana, Punjab, and Rajasthan, Central zone includes Madhya Pradesh, Maharashtra, and 

Gujarat and southern zone comprising Karnataka, Andhra Pradesh, and Tamil Nadu. For 

this study, two regions with different climatic conditions and soil types are selected where 

the availability of water is different. This is further stimulated by crop model with different 

sources of weather data for cotton productivity. The selected sites for cultivation are Akola 

from Maharashtra region with rainfed agricultural practices and Hisar from Haryana with 

irrigated agricultural practices.  

4.2.2 Crop Management Data And Crop Simulation 

For the present study, the Decision Support System for Agrotechnology Transfer-

Cropping System Model (DSSAT-CSM) Version 4.6.1 crop model has been used. DSSAT-
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CSM is a set of various dynamic crop simulation models taken together like CERES, 

CROPGRO for over 40 crops (Shikha et al., 2018). The DSSAT-CSM is structured 

employing modular approach. Model input includes experimental details file and genotype 

data file under the crop management module, weather data file in weather module and soil 

data file in soil module (Hoogenboom et at., 2019). The model has in-built tool called 

GBuild, which displays graphs of simulated and observed data and are also able to compute 

statistical graphic interface. 

Climate and soil data for Akola has been collected from Agromet observatory, Dr. 

Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra. Similarly, Climate and soil 

data for Hisar is collected from Agromet observatory, Chaudhary Charan Singh Haryana 

Agricultural University (CCSHAU), Hisar, Haryana. Field experiment was carried out for 

the management data for the model in both the regions. These are taken from of northern 

and central agroclimatic zone for cotton respectively. Approved package and practices for 

the irrigation and fertilizers were applied in the field experiments which was taken as an 

input in the model in the management model. Crop management inputs employed in the 

model like genetic coefficients, planting dates, sowing depth and space, seed number 

application strategy of irrigation and fertiliser, etc. are also taken as per the field experiment 

conducted.  Soil input parameters include soil texture and thickness, soil pH, bulk density, 

soil organic carbon, hydraulic conductivity, soil’s water holding capacity, the slope of the 

field, etc. The cotton CROPGRO model under DSSAT was simulated for the study which 

was calibrated and validated using data from field experiment with reasonable accuracy for 

the cotton production in both the regions Hisar (Swami et al., 2016, Shikha et al., 2018) 

and Akola (Nath et al., 2018; ICAR-CRIDA, Annual Report, 2017-18) region.  

 

4.2.3 Climate Model Output And The Bias-Corrected Data 

The minimum data required as weather variable for input in the DSSAT model are 

daily Maximum temperature (̊C), Minimum temperature (̊C), Solar radiation (MJ/m2), and 

Rainfall (mm2). Few optional inputs are Relative humidity (%) and Wind speed (km/hr). 
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Apart from this model also requires the latitude, longitude and the elevation information of 

the site. The source data for the study is extracted and downscaled from the Regional 

Climate Model. These RegCM 4 outputs are available in NetCDF format and contains data 

on daily, monthly and yearly basis. The gridded data of the RCM are then extracted with 

the help of CDO for location. Since, the DSSAT crop model are required to have a 

particular supportable format.  

The period considered for the study is from 1971 to 2005, since it is available as a 

historical database after which different scenarios are inlaid as RCP 2.6, 4.5, 6.0 and 8.5. 

Weather data taken during the field trial and long-term weather data were obtained from 

GFDL-ESM2M-RegCM4 experiment of Coordinated Regional Climate Downscaling 

Experiment (CORDEX), a World Climate Research Program for the domain CORDEX-

SA. The GFDL-ESM2M shows the highest skill in capturing the seasonal mean 

precipitation (Choudhary et al., 2018) and hence considered in the present study. Studies 

based on RCMs include CORDEX‐ SA (encompassing India) as a set of multiple RCM 

simulations under a common framework. These RCMs are driven by various GCMs from 

the Coupled Model Intercomparison Project Phase‐ 5 (CMIP5) (Taylor et al., 2012; Giorgi 

and Gutowski, 2015).  

RegCM4 performs better in simulating the present climate over India and therefore it 

is preferable over the Indian subcontinent (Gao and Giorigi, 2017). Still, conspicuous and 

systematic biases exist which attributes to limited process understanding in the dataset. To 

overcome this, post-processing is done by downscaling processes and bias-correction of 

the output. The underlying aim is to introduce statistical transformation so that the 

simulated model output distribution resembles the observation (Gudmundsson et al., 2012; 

Maraun, 2016). In this study, the Quatile Mapping (QM) approach is used which calibrates 

the cumulative distribution function of model data for correction. It is implemented with 

the help of qmap library written for R statistical software (Gudmundsson et al., 2012; Zhao 

et al., 2017). Software packages based on R are developed and are made available in public 

domain, which can be specifically downloaded used to downscale (https: 

//github.com/SantanderMetGroup/downscaleR, assessed on: 03 August 2017).  
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4.2.4  Experimental Outline 

Detailed analysis and inter-comparison are done for the climate of the region based 

on the observations, model and bias-corrected data for the year 1971-2005. This is to 

evaluate how close the model predicts the data and how efficiently the extremes are 

captured in with the model at different regions.  

To evaluate the impact of climate change on the cotton crop, weather data derived 

from RegCM4.0 were incorporated in the weather module of DSSAT vn.4.6. The observed, 

RegCM and RegCM bias-corrected weather output was used for simulation of the cotton 

rainfed, irrigated and potential conditions mentioned below. The genetic coefficient and 

the management data was constant for the simulation. Three planting dates chiefly 

practiced in the region was considered for the study viz. 10th May (EPn), 21st May (MPn) 

and 06th Jun (LPn) in the northern region, Hisar and 20th Jun (EPc), 06th Jul (MPc) and 21st 

Jul (LPc) in the central region, Akola.  

Three seasonal simulations were done for three sowing dates with three rainfed, 

irrigated and potential conditions (3* 3=9 treatments) in Hisar irrigated region and three 

sowing dates with rainfed, potential conditions (3* 2=6 treatments) in Akola rainfed region. 

The simulated output dry yield (Kg/ha), leaf area index (LAI) and ball number at maturity 

was derived to assess the phenology and impact of different climate.  

Hisar: 

1. Potential run assuming no water and nitrogen stress. 

2. Irrigated cotton with the recommended application of 5-6 times every 20 days from 

the 60th day of planting and nutrients such as (N: P: K in the ratio 70:24:24) 

3. Rainfed productivity applying no irrigation with the same nutrient levels.  

Akola: 

1. Potential run assuming no water and nitrogen stress. 

2. Rainfed productivity applying no irrigation with nutrients such as (N: P: K in the 

ratio 60:30:30) as per recommended practices in the form of single super phosphate, 

potassium chloride, and urea. 
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4.2.5 Estimation Of Biases and Correction in Weather Data 

4.2.5.1 Mean bias error 

For the estimation of biases in RCM climate data, the average of observed has been 

deduced from the average of forecast or simulated. Bias estimation of RCM climate output 

was done by comparing its mean and standard deviation for the annual with observed 

climate (Willmot, 1981; Chai and Draxler, 2014). 

𝑀𝐵𝐸 =
1

𝑛
∑(𝑆 − 𝑂)

𝑛

𝑖=1

 

4.2.5.2 Root mean square error (RMSE) is utilized to measure the errors in a model 

predicting the data as, how spread the data is around the line of best fit. Its spread is 

between 0 to 1 and close to 0 indicates better performance. S and O are simulated and 

observed (Chai and Draxler, 2014). 

𝑅𝑀𝑆𝐸 =  √∑
(𝑆 − 𝑂)2

𝑛

𝑛

𝑖=1

 

4.2.6 Estimation of Biases and Correction in Simulated Yield 

4.2.6.1 Percentage deviation (D%) 

The goodness of fit statistics used to calculate the discrepancy between observed, model 

and bias-corrected was used.  This is done by comparing the mean and standard deviation 

of the simulated versus expected. Si and Oi are simulated and observed yield. The 

magnitude of D% close to zero shows good agreement them (Araya et al., 2015). 

𝐷% = (
𝑆𝑖 − 𝑂𝑖

𝑂𝑖
) × 100 

4.2.6.2 Index of agreement (I)  

Sm and Om are the means for simulated and observed yield. It varies from 0 and 1 and 

where 1 shows perfect match value close to 1 shows better agreement (Willmot, 2012). 

𝐼 = 1 −  
∑ (𝑆𝑖 − 𝑂𝑖)2𝑛

𝑖=1

∑ (|𝑆𝑖 − 𝑂𝑚| + |𝑂𝑖 − 𝑂𝑚|)2𝑛
𝑖=1
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4.2.6.3 Root mean square error (RMSE) for the yield  

𝑅𝑀𝑆𝐸 =  √∑
(𝑆𝑖 − 𝑂𝑖)2

𝑛

𝑛

𝑖=1

 

4.3 RESULTS  

4.3.1 Regional Climatic Study with Observation, Model and Bias-Corrected Weather 

Data 

The RCM highly underestimates the average maximum temperature and slightly 

underestimates the average minimum temperature annually. Whereas it highly 

overestimates the sunshine duration and slightly overestimates the annual precipitation. 

Bias-correction satisfactorily improves the annual rainfall of RCM data to complement 

with the observed data precipitation (Figure 4.1a-h).  

Rainfall indicates large heterogeneity in the distribution and intensity as per the 

model output. RCM shows wet bias in the annual precipitation in both the regions 

particularly over the northern region. The annual mean precipitation for 35 years during 

1971 - 2005 as per observations are 451 ± 161 and 779 ± 202 mm and the model data shows 

548 ± 128 and 889 ± 183 mm for Hisar and Akola region respectively. While, bias-

corrected annual precipitation are 437 ± 112 mm and 764 ± 184 mm respectively, which is 

close to the actual observed value (Figure 4.1a-b). These results indicate that although the 

model overestimated rainfall intensity (collective of the amount of rainfall and rainy days); 

however, after bias-correction of model output the distribution was normalized. 

The annual maximum temperature ranges from 31.4 ± 0.67°C and 34.1 ± 0.53°C as 

per observation, 26.1 ± 0.78°C and 28.8°C ± 0.68°C as per model for Hisar and Akola 

respectively. This reveals that the speculations as per simulations are lower than the actual 

with an approximation of 4-5°C. When bias-corrected the values came up to 31.4 ± 0.75 

and 34.12 ± 0.75, which is very close to the actual observations (Figure 4.1c-d). Again 

annual minimum temperature ranges from 16.2 ± 0.59°C and 19.4± 0.68°C as per 

observation and 15.8 ± 0.73 and 19.1 ± 0.6 as per model. Here also the speculations as per 
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simulations are approximately 1 - 2°C lower than actual. And the bias-corrected values are 

16.18 ± 0.72 and 19.42 ± 0.81 which is also very close to the actual observations (Figure 

4.1e-f). This indicates the bias-correction techniques work appreciably good for the 

temperature. 

Sunshine duration is another important factor in plants for photosynthesis. RCM here 

shows the enhanced duration of sunshine with approximately similar variability in both the 

regions. The model estimates 9.8 ± 0.05 and 9.8 ± 0.06, but the actual is 7.72 ± 0.51 and 

7.75 ± 0.74 hours which indicates an overestimation of approximately 2 hours at both the 

regions with almost similar conditions. This gap is minimized with bias-correcting the data 

where the average sunshine duration for the period is 7.78 ± 0.12 and 7.82 ± 0.17 for the 

Hisar and Akola region respectively (Figure 4.1g-h). Apparently, this is also very close to 

the actual duration of sunshine (hour). 

A remarkable feature worth mentioning is that while the RCM model manifests a 

considerable decline in maximum temperature and trivial decline in minimum temperature 

as compared to observation (Figure 4.1). Hence it is observed that the diurnal temperature 

is found decreasing and the model shows night warming. This is evident in both the cotton-

growing regions. But this phenomenon is more prominent in the northern zone than in the 

central zone. So, it's apparent that the northern zone is more susceptible in comparison to 

central zone.  The model overestimates the count of rainy days in both the regions i.e., they 

show a considerably high number of rainy days which is ˃ 0 and ˂1 mm (Table 4.1). This 

is due to the ‘drizzling effect' as shown by these models. This has been considerably 

corrected with the bias-correction.  
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Figure 4.1 Comparison between observed (O), RCM/RegCM 4.0 (M) and RCM Bias 

corrected (B) sum of precipitation, maximum temperature, minimum temperature and 

sunshine duration during the period 1971 to 2005 for Hisar (a, c, e, g) and Akola (b, d, f, 

h) respectively. 
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Table 4.1 Comparison between observed (O), RCM/RegCM 4.0(M) and RCM Bias 

corrected (B) count of rainy days (CRD) for the period 1971 to 2005 for Hisar(h) and 

Akola(a). 

  CRD (> 0 mm) CRD (> 5 mm) CRD (> 10 mm) 

Years Oh Oa Mh Ma Bh Ba Oh Oa Mh Ma Bh Ba Oh Oa Mh Ma Bh Ba 

1971 44 60 302 298 41 48 22 24 19 32 18 29 13 16 7 16 7 15 

1972 31 44 310 281 41 57 17 30 26 46 24 41 9 23 11 26 11 26 

1973 29 68 338 284 24 62 17 33 15 44 13 42 13 24 8 26 8 24 

1974 27 51 309 231 54 63 14 24 32 53 30 50 9 17 20 25 17 24 

1975 37 63 340 243 43 69 22 34 24 63 22 57 16 21 13 38 11 35 

1976 53 54 327 234 46 45 29 33 26 35 26 32 22 23 19 24 17 23 

1977 53 65 300 216 39 62 29 40 21 55 20 48 19 25 15 32 13 32 

1978 48 70 319 249 37 44 24 43 25 33 24 31 17 27 16 19 14 16 

1979 39 67 327 241 39 57 17 36 20 46 19 42 12 24 13 28 9 28 

1980 39 54 343 274 32 65 19 31 18 50 18 42 7 19 10 27 9 25 

1981 51 63 321 232 44 50 24 38 27 34 25 31 14 27 18 18 18 18 

1982 49 53 310 270 55 43 17 21 28 34 27 31 13 15 15 21 13 20 

1983 57 57 324 264 49 56 26 46 32 43 31 40 17 31 22 25 20 23 

1984 37 43 305 263 38 61 13 24 21 51 20 47 10 19 13 32 12 29 

1985 51 38 305 297 48 66 13 23 27 50 24 47 8 21 14 27 13 27 

1986 41 49 302 239 50 71 20 24 35 58 35 52 13 21 25 31 24 28 

1987 31 56 313 281 38 51 10 34 19 38 18 36 4 20 12 16 11 16 

1988 50 70 311 320 47 52 24 42 32 45 30 36 18 34 22 20 20 18 

1989 33 56 309 299 45 78 12 29 34 59 33 52 6 20 21 23 19 21 

1990 42 67 317 296 34 72 19 34 19 59 17 49 13 26 8 33 8 31 

1991 34 38 337 252 51 59 16 21 26 45 26 39 13 12 15 29 13 28 

1992 47 50 297 234 29 56 23 31 18 42 18 38 12 25 15 26 12 25 

1993 44 58 298 269 39 48 18 36 25 35 25 27 8 28 14 14 11 12 

1994 45 69 291 269 68 81 23 42 43 70 40 67 16 26 22 44 18 40 

1995 46 55 294 230 38 60 23 28 28 47 27 41 20 14 11 28 10 26 

1996 44 59 316 248 30 56 22 35 21 47 21 43 12 18 11 25 10 22 

1997 61 68 322 246 34 44 32 35 20 34 19 32 20 24 15 20 11 18 

1998 48 64 337 274 37 47 28 36 23 38 22 35 19 23 12 22 10 22 

1999 27 69 325 269 42 56 13 32 31 47 31 44 9 25 18 27 17 24 

2000 20 45 311 282 33 59 13 20 24 45 23 40 4 15 16 26 16 24 

2001 41 55 334 282 51 64 28 30 30 48 29 44 18 19 16 23 15 22 

2002 25 53 305 262 29 38 11 26 18 29 17 24 5 20 11 13 10 13 

2003 37 58 292 287 37 60 25 20 23 40 22 37 20 11 16 19 13 16 

2004 32 63 334 270 29 73 13 23 17 60 16 55 9 12 11 35 10 34 

2005 43 67 343 292 40 45 25 38 22 40 21 37 17 25 16 25 16 24 

Grand 

Total 
1436 

20

19 

1106

8 
9278 

14

31 

201

8 

70

1 

109

6 

86

9 

15

95 

83

1 

143

8 

45

5 

75

0 

52

1 

88

3 

46

6 

82

9 
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4.3.2 Extremes in Climate 

Further detailed analysis upon the model output is done to visualize if it captures the 

weather extremes. This is important since the agricultural crops like cotton has a certain 

threshold temperature up to which it can sustain. Rainy days for the northern and central 

(Table 4.1) region, as captured by the model are; when the rainfall is above 0 mm and 

below 1mm (11068 and 9278), which is not the actual case as observed data reveals (1436 

and 2019) respectively. This resembles the ‘drizzling effect’ of the model as discussed 

earlier. But it is also noticed that the model performs better when it comes to capturing the 

extremes in rainfall above 5mm and 10mm. The model also speculates 869 and 1595 days 

with more than 5mm rainfall which is 831 and 1438 days with bias-correction, where the 

observation was 701 and 1096 respectively. In the same way, 521 and 883 days of rainfall 

more than 10 mm which is 466 and 829 with bias-correction approach, it was observed 455 

and 750 days.  

Number of days with maximum temperature as observed ≥ 40ºC (Northern -1639 and 

central - 2285) (Table 4.2 and 4.3) was remarkably higher than the model (Northern -152 

and central - 20) and for ≥ 45ºC also was higher in actual (Northern -120 and central -172) 

then model (Northern -2 and central - 0). Bias-correction though satisfactorily corrected 

the errors and the count went up to (Northern -1712 and central - 1368) and (Northern -140 

and central - 50). Similarly, observed number of days with minimum temperature ≤ 5ºC 

(Northern - 1677 and central -59 days) is lower than the model (Northern -1810 and central 

-111) and bias-corrected (Northern -1732 and central - 321). And for ≤ 3ºC model estimated 

values (Northern -1104 and central -26) were higher than the observed (Northern -819 and 

10) and when bias-corrected (Northern -1032 and central -125) values reduced in northern 

and escalated in the central region.  

It can also be observed that the number of rainy days for the period 1971-2005 was 

higher in the central region (2019) than the northern (1436) region. And considerably high 

in the model (Northern - 11068 and central - 9278) when compared with the observed and 

bias-corrected (Northern -1431 and central - 2018). This implies, bias-corrected data shows 

good agreement with the observed. However, when extremes in temperature are concerned 
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the model is not able to represent the maximum and minimum temperatures. The model 

underestimates temperature ≥ 40ºC and ≥ 45ºC in both the regions. It slightly overestimated 

minimum temperature ≤ 5ºC and ≤ 3ºC in the northern and overestimated in the central 

region. It can also be noted that the bias-correction approach although performs well for 

minimum temperature in Hisar but not in Akola. Further, Table 4.4 signifies that the model 

depicts the observation nicely but with some biases. These biases are remarkably corrected 

by the QM approach in this study. The Mean Bias Error (MBE) and Root mean squared 

error (RMSE) are lower for the bias-corrected data in comparison to the model in both the 

regions. 

Finally, In Table 4.4, it is observed that the mean bias error (MBE) and Root mean 

squared error (RMSE) values have improved considerably with bias-correction. Since, the 

quantile mapping approach is equates the cumulative distribution function. So to capture 

extremes the downscaling approach or bias-correction techniques still needs to be refined 

for daily variables. 
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Table 4.2 Same as Table 4.1 but for extremes in maximum temperatures (≥40°C and 

≥45°C) and minimum (≤5°C and ≤3°C) temperatures 

Year

s 

Max Temp ≥40°C Max Temp ≥45°C Min Temp≤5°C Min Temp≤3°C 

Hisa

r 

 

C-O  C-M  C-B  C-O  C-M  C-B  C-O C-M  C-B   C-O C-M  C-B   

1971 32 1 48 0 0 1 47 63 59 18 27 24 

1972 54 0 50 1 0 0 48 73 69 31 52 51 

1973 59 6 73 0 0 5 59 49 49 34 18 17 

1974 50 4 35 1 0 4 75 65 64 49 44 41 

1975 47 1 40 0 0 1 67 46 40 29 21 20 

1976 43 0 27 1 0 0 42 57 49 22 24 23 

1977 33 1 58 4 0 1 45 69 65 20 55 52 

1978 51 5 39 14 2 5 53 68 65 26 43 39 

1979 52 3 48 7 0 3 34 27 25 10 13 12 

1980 57 11 69 2 0 10 48 73 73 26 50 46 

1981 57 9 53 8 0 7 38 58 54 7 23 20 

1982 33 0 27 0 0 0 41 67 63 7 48 47 

1983 22 0 21 0 0 0 48 56 56 23 38 37 

1984 56 5 55 9 0 5 61 50 50 43 30 27 

1985 57 2 47 1 0 2 36 46 43 13 17 15 

1986 34 0 20 2 0 0 54 60 60 36 48 47 

1987 66 2 33 2 0 2 37 66 65 8 49 44 

1988 54 11 58 10 0 10 41 43 42 12 25 24 

1989 43 1 40 4 0 1 53 27 27 31 16 13 

1990 45 0 57 0 0 0 34 39 35 8 15 11 

1991 46 0 49 0 0 0 41 60 58 18 38 34 

1992 30 8 67 1 0 7 42 41 37 12 22 21 

1993 56 6 31 7 0 6 36 66 64 25 38 35 

1994 46 5 65 9 0 5 43 74 70 17 47 45 

1995 55 1 37 11 0 1 39 74 74 8 48 45 

1996 34 15 80 2 0 13 66 37 35 39 30 27 

1997 26 10 46 0 0 8 57 21 20 39 15 14 

1998 50 7 51 10 0 7 31 56 56 16 44 42 

1999 62 3 35 2 0 3 37 46 44 14 31 30 

2000 58 0 40 1 0 0 60 43 40 32 25 23 

2001 30 2 42 2 0 2 51 32 30 34 16 14 

2002 74 14 83 5 0 13 47 33 32 24 20 20 

2003 47 10 54 2 0 10 58 65 63 34 46 46 

2004 42 5 70 0 0 4 39 43 40 11 21 20 

2005 38 4 64 2 0 4 69 17 16 43 7 6 

Gran

d 

Total 1639 152 1712 120 2 140 1677 1810 1732 819 1104 1032 
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Table 4.3 Same as Table 4.2 but for Akola 

Years Max Temp ≥40°C Max Temp ≥45°C Min Temp≤5°C Min Temp≤3°C 

Akola C-O  C-M  C-B  C-O  C-M  C-B  C-O 

 

C-M  C-B   C-O C-M  C-B   

1971 47 0 38 0 0 2 0 0 0 0 0 0 

1972 90 0 29 3 0 0 0 2 10 0 0 2 

1973 81 0 49 20 0 2 0 0 2 0 0 0 

1974 53 2 37 0 0 3 2 19 33 0 3 20 

1975 69 0 27 0 0 0 3 0 1 0 0 0 

1976 57 0 39 0 0 0 0 7 13 0 4 7 

1977 75 0 22 0 0 0 1 20 32 0 8 20 

1978 56 0 47 7 0 0 1 9 25 1 2 10 

1979 72 0 33 9 0 0 0 2 3 0 0 2 

1980 66 0 18 7 0 0 0 10 26 0 0 12 

1981 72 2 53 3 0 4 1 0 7 0 0 1 

1982 60 0 26 0 0 0 0 1 3 0 0 1 

1983 77 0 36 7 0 1 2 9 26 1 3 9 

1984 71 3 77 11 0 12 1 1 8 0 0 2 

1985 78 0 44 5 0 2 0 0 3 0 0 0 

1986 70 1 32 3 0 1 0 2 9 0 0 3 

1987 57 0 48 0 0 0 1 0 5 0 0 1 

1988 76 1 72 13 0 2 0 2 10 0 0 2 

1989 56 0 13 12 0 0 1 0 0 0 0 0 

1990 39 0 17 2 0 0 0 0 0 0 0 0 

1991 66 0 10 10 0 0 4 0 4 3 0 0 

1992 87 0 54 6 0 0 13 2 12 2 0 2 

1993 62 0 37 8 0 0 13 5 9 1 2 5 

1994 73 0 27 5 0 1 9 4 12 2 1 4 

1995 59 0 30 8 0 0 4 1 6 0 0 3 

1996 87 3 70 6 0 8 0 5 12 0 3 5 

1997 42 0 34 0 0 0 0 0 3 0 0 0 

1998 71 2 61 10 0 5 0 4 13 0 0 5 

1999 54 0 46 1 0 0 3 2 7 0 0 3 

2000 50 0 52 3 0 2 0 0 1 0 0 0 

2001 47 0 24 3 0 0 0 0 2 0 0 0 

2002 66 6 83 5 0 9 0 0 0 0 0 0 

2003 64 0 45 2 0 3 0 3 11 0 0 3 

2004 68 0 17 0 0 1 0 1 4 0 0 2 

2005 67 0 21 3 0 2 0 0 9 0 0 1 

Grand Total 2285 20 1368 172 0 60 59 111 321 10 26 125 
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4.3.3 Crop simulation 

The deviation of simulated yield, Leaf Area Index (LAI) and Number at maturity/m2 

(NM) are higher for the model derived weather data then the bias-corrected data in general 

when compared with observations (Figure 4.2). Similarly, in Table 4.5, we observe the 

overall percentage deviation is higher for the model data than the bias-corrected data in 

both the regions. Also, the overall Index of agreement and RMSE values has improved for 

the yields with bias-corrected data. This can be also be related to the correction in values 

and improvement in data quality for the study (Table 4.5). The simulated yield output as 

plotted graphilcally by G-build supported by the model DSSAT are shown in Figure 4.3 

and 4.4.  The model simulated potential output without water and nitrogen stress shows 

maximum productivity in terms of yield, LAI and NM (Figure 4.3).  The variability is 

highest in for the model weather as the rainfed and irrigated yield LAI and NM are least in 

contrary to potential production. Although when bias-corrected data were used the 

variables was found close to the observation. Also, the potential yield in the northern 

irrigated region for LPn is the maximum for both observation and bias-corrected approach, 

whereas it has decreased slightly for model data. As per observed wearther, the high yield 

in irrigated EPn shows that early sowing was favourable here. And the yield could increase 

for late sowing for irrigated cotton in the northern region. This is not captured when the 

crop model is simulated with model data, whereas as after bias-correction this is 

comparatively depicted better. The yield gap is highest in the model data but the bias-

corrected data outputs are closer to the observations. Irrigation strategy is seen best suited 

for the crop sown in June, this can be for the preventing moisture stress during the ball 

formation and maturation stage which is most susceptible. 
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Table 4.4 Mean bias error (MBE) and Root mean squared error (RMSE) of weather data 

for RCM model and its bias corrected values during the period 1971 to 2005 for Hisar and 

Akola 

Annual values for Region Hisar Akola 

MEAN BIAS ERROR  

(Average Forecast- Average Observed)  Model Bias Corrected Model Bias Corrected 

Rainfall (mm) 0.267 -0.037 0.3 -0.04 

Bright Sunshine (hr) 2.089 0.057 2.061 0.057 

Minimum Temperature(°C) -0.397 -0.013 -0.255 0.053 

Maximum Temperature(°C) -5.423 -0.003 -5.31 -0.017 

Root mean squared error (RMSE)  Model Bias Corrected Model Bias Corrected 

Rainfall (mm) 0.0451 0.0063 0.0507 0.0068 

Bright Sunshine (hr) 0.3531 0.0096 0.3484 0.0096 

Minimum Temperature(°C) 0.0671 0.0022 0.0431 0.009 

Maximum Temperature(°C) 0.9167 0.0005 0.8976 0.0029 

 

 

 

 

 

 

 

 

 



Chapter IV 

109 

 

Table 4.5 Percentage of Harvested yield deviation (D%), index of agreement (I), and root 

mean squared error (RMSE) of the RCM model and its bias corrected values from the 

observed weather variables as simulated by DSSAT4.6 during the period 1971 to 2005 for 

different treatments in both Hisar and Akola 

Sl. No. Hisar Deviation %  Index of 

Agreement  

Root mean square 

error  

 Treatment Model B Corr. Model B 

Corr. 

Model B Corr. 

1 10-May_Rainfed -5.26 -10.73 0.99 0.96 68.06 138.92 

2 10-May_Irrigated -10.01 2.2 0.97 1 128.91 28.32 

3 10-May_Potential 59.65 0.08 0.57 1 1123.37 1.54 

4 21-May_Rainfed -4.73 -8.98 0.99 0.96 63.11 119.77 

5 21-May_Irrigated -9.42 2.04 0.95 1 127.51 27.63 

6 21-May_Potential 51.24 -5.95 0.71 0.98 1041.57 121 

7 06-Jun_Rainfed -2.36 -6.67 0.99 0.97 32.49 91.77 

8 06-Jun_Irrigated -10.17 -0.29 0.87 1 147.68 4.28 

9 06-Jun_Potential 37.88 -14.84 0.85 0.89 857.83 336.2 

 Average of all conditions 11.87 -4.79 0.77 0.95 398.95 96.6 

Sl. No. Akola Deviation %  Index of 

Agreement 

Root mean square 

error 

  Treatment Model B Corr. Model B 

Corr. 

Model B Corr. 

1 20-Jun_Rainfed 32.01 25.45 0 0 253.97 201.91 

2 20-Jun_Potential 112.4 22.81 0.09 0.34 982.91 199.4 

3 06-Jul_Rainfed 26.83 23.55 0 0 204.37 179.43 

4 06-Jul_Potential 95.96 8.63 0.31 0.91 905.98 81.46 

5 21-Jul_Rainfed 14.7 20.36 0 0 109.2 151.26 

6 21-Jul_Potential 74.01 -1.53 0.47 1 731.6 15.12 

 Average of all conditions 59.32 16.55 0.28 0.52 531.34 138.1 
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Figure 4.2 Box plot for crop phenologies based on observed (O) weather variables for (Oa) Harvested Yield (Kg/ha) (Ob) LAI, 

maximum and (Oc) Number at maturity/ m² in Hisar for the period 1971 to 2005 with nine field treatments. (Ma, Mb, Mc) are same as 

(Oa, Ob, Oc) but from RCM model (M). (Ba, Bb, Bc) are same as (Oa, Ob, Oc) but RCM Bias corrected (B) 

(Oa) 

(Ma) 

(Ba) 

(Ob) (Oc) 

(Mb) (Mc) 

(Bb) (Bc) 
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Figure 4.3 Same as Figure 4.3, but in Akola for the period 1971 to 2005 with six field treatments  

(Oa) 

(Ma) 

(Ba) 

(Ob) 
(Oc) 

(Mb) (Mc) 

(Bb) (Bc) 
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Similarly, in the central rainfed region we observe that the potential yield, LAI and NM 

are slightly higher than the rain-fed cotton (Figure 4.4).The mean yield of the crop sown 

LPc is lower than that sown in LPc and MPc, indicating that early sown crop is favoured 

in this region. All these variables are much intensified with the same trend for model 

weather data. The variability among the rainfed and potential productivity also higher for 

model data in central region also. Late sown cotton has highest variability for rainfed cotton 

which shows the requirement proper strategy to enhance productivity. For bias-corrected 

data the crop simulated outputs are closer to observation but the rainfed cotton is higher 

than potential, which is not the case as oservation. The yield, LAI and number (ball) at 

maturity variability are higher in rainfed conditions than in potential. This can be attributed 

to variability in the monsoon trend which shows up in yield and physiology. 

4.4 DISCUSSION 

Climate change may have serious impacts on agriculture and food security. The use 

of climate models pertinent for assessments of future changes. Agro-ecosystem models 

often use the GCM projections. However some aspects of cliamte change is still uncertain 

at regional scale. So adequate downscaling is crutial at reginal scales. Dynamically 

downscaled RCMs are therefore pre-eminent is such studies (Yano et al., 2007). 

The RCM of International Centre for Theoretical Physics (ICTP) has been 

successfully used for the study of the Indian summer monsoon (Dash et al., 2015; 

Maharana and Dimri, 2014; 2016; Pattnayak et al., 2018). And similar studies over the 

Indian subcontinent found an overestimation of rainfall in the western ghats, northeast 

India and Peninsular region and underestimation in the central India and over Rajasthan 

(Dash et al., 2013; Pattnayak et al., 2013; Pattnayak et al., 2018).  

As per the RCM projections diurnal temperature is found decreasing and therefore 

the model shows night warming. But this phenomenon is more prominent in the northern 

zone than in the central zone. So, it's apparent that the northern zone is more susceptible in 

comparison to central zone (Pattnayak et al., 2013a; Pattnayak et al., 2013b; Chaudhary et 

al., 2017).  
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Apart from improving the regional scale predictions, RCMs has its own paramererization 

physics such as convection, assumption of planetary boundry, land surface scheme etc. 

Which supplement uncertanities in the projections and makes is necessary to study the 

dicrepencies and improve biasess (Chaudhary et al., 2017). A prevailing frailty in the 

dynamic RCM models is, it overestimates the number of rainy days with a little amount of 

precipitation (Teutschbein and Seibert, 2012). This is due to small-sized raster cells in 

combination with convection of moist air and as the air gets saturated at a certain height 

when temperature decreases for rising air, rainfall is induced in that area within the RCM, 

referred to as process 'drizzle-effect' (Dai, 2006). He also pointed out that in actual 

conditions this phenomenon could not occur due to atmospheric instabilities. So this bias 

has to be removed before applications.  

Studies indicate that RCM outputs may have certain statistical mismatch from the 

meteorological observations also known as bias. Therefore, for its application purposes, 

various bias-correction methods have been developed which transform the algorithms to 

statistically match with the observations (Gudmundsson et al., 2012; Teutschbein and 

Seibert, 2012; Maraun, 2016). The most preffered are distribution‐ wise techniques where 

the fuction for corrections are derived from simulated and observed distibutions (Turco et 

al., 2017). One such approach, the quantile mapping approach equates the cumulative 

distribution function. It is proven to be superior to local intensity scaling and linear scaling, 

so recommend to assess the impact in agriculature (Mall et al., 2018) and on catchment 

hydrology (Willkofer et al., 2018). But the drawback with thi is it poorly represents the 

extremes. So to capture extremes the downscaling approach or bias-correction techniques 

still needs to be refined for daily variables applicable in agriculture (Casanueva et al., 

2018). 

So we can utilize the model simulated data for future projections of the crop yield 

and growth at different regions and assess the suitability of the crop growing region. 

Studies have been conducted incorporating different GCMs (Hebbar et al., 2012; 

Saseendran et al., 2016) and RCMs (Mall et al., 2018) data at various places. And this is 

done for variety of crops like rice (Auffhammer et al., 2014; Kumar et al., 2013), wheat 
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(Chattaraj et al., 2014; Saxena et al., 2014; Mall et al., 2018), maize (Araya et al., 2015) 

etc. in different regions of the world. Based on these outputs management practices can 

also be strategized as per the changing climate. Like on irrigation measures, sowing dates, 

nutrient availability, etc. 

Cotton is a warm-season crop. Air temperatures are required throughout the growing 

season but are most critical at the time of planting. Throughout the growing season, it needs 

a mean annual temperature of over 16°C. The temperature favourable to growth and 

development is 25 to 30°C (Oosterhuis et al., 1999; Stewart et al., 2009). An increase in 

atmospheric CO2, also increased the photosynthetic rate and further delayed cutout by 10 

days, by providing more sugars (Mauney et al., 1978). For water not to be a limiting factor 

in terms of yield, cotton needs between 550 mm and 950 mm during the season in a 

consistent and regular pattern (FAO, Rome, 1977). Cotton also requires plentiful light. The 

position of the first boll bearing branch will be lower if the duration of sunshine properly 

decreases also the plant will be in compact conformation and also the output per plant will 

decrease (Mauney, 1986; Stewart et al., 2009). Cotton crop has been found susceptible to 

increasing temperature changes (Reddy et al., 2002; Reddy et al., 2005; Saseendran et al., 

2016). Moisture availability is also an important factor for crop growth and productivity. 

Some variety of cotton requires water mostly during the ball growth and maturity phase 

and some during the peak flowering stage (Pettigrew et al., 2004; Loka et al., 2011; Loka, 

2012; Shikha et al., 2018). Moreover, water-deficit stress affects nutrient supply to the 

reproductive organs, which inhibits the development of reproductive structures causing 

fruit abortion (McLaughlin and Boyer, 2004).  

Cotton in India is grown in three diverse agro-climatic zones. Predominetly in central 

region as rainfed crop in black soil or vertisols, in the northern region cotton is grown in 

alluvial soil with irrigation. In the southern region in the red soil and vertisols for both 

rainfed and irrigated cotton. The northern region has highest Mean Seed Cotton Yield 

kg/ha) and highest potential yield for cotton. Productivity is found to improve by using Bt-

cotton at suitable planting window. This is its effect on microclimate on the plant growth 

stage and reproductive bodies. Studies indicate early sowing was proved beneficial in the 
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northern region (Kumar et al., 2014; Shikha et al., 2018) and central region (Hebbar et al., 

2002). However, it was found yield reduction for rainfed cotton for late sown crop. 

Whereas irrigated cotton is benefitted. But when planting dates are advanced the crop water 

denamnd increase which raise irrigation requirements (Anapalli et al., 2016). Therefore, 

with proper irrigation late sown can be benefitted. Irrigation strategy is seen best suited for 

the crop sown in June, as the rainfed crop yield in May is observed higher than that of 

irrigated. This can be because of the high water requirement in the early flowering period 

(Turner et al., 1986; Pettigrew et al., 2004), when meiosis is taking place (Loka et al., 2011) 

fulfilled by monsoon and ball development and maturity by irrigation. Although all stages 

are sensitive to drought, but mostly the ball development are found to be the most water-

sensitive stage (Shikha et al., 2018).  

The leaf area tends to be decreasing with late sowing whereas the yield is increasing, 

which can be because of increase in nutrients during the reproductive phase of the crop 

(Guinn, 1979) and also due to cutout which favours the yield (Mauney, 1986; Stewart et 

al., 2009). On one hand adequate moisture availability delays cutout, on the other hand 

drought fastens it considerably (Hearn, 1975). Drought year and excess years have its effect 

on crop productivity as crops, as discussed in various studies (Shikha et al., 2018). The 

moisture deficit stress effects also depend on factors like duration and severity of drought 

and growth stage and genotype (Kramer and Boyer, 1995). Studies indicate cotton yields 

in the U.S. has exhibit year-to-year variability depending on the weather conditions 

(USDA, 2015), which may be related to plant genetic diversity and the physiological 

responses towards environmental stresses (Robertson, 2001). 

Thus for the predicting the cotton production for future climate change it is important 

to know the behaviour of the crop for historical period.  Also for precise projections, bias-

correcting the model outputs are important. These data then has to be fed in the calibrated 

and validated crop models for assessment to authenticate the credibility of future 

projections and its impact on the crop in different conditions.  
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SIMULATING THE IMPACTS OF CLIMATE CHANGE ON 

IRRIGATED AND RAINFED COTTON PRODUCTION IN INDIA 

 

ABSTRACT 

Predicting the impacts of future climate on the food and fiber production are essential for 

devising suitable adaptations strategy. This study aims to study the impact of climate on 

cotton crop change using RCM data from CORDEX-SA experiment (GFDL-ESM2M- 

RegCM4) at RCP4.5 and RCP8.5. The model data was bias-corrected using quantile 

mapping approach and then both are employed in the cotton-CROPGRO model under 

DSSAT-CSM (v4.6). The study region Hisar (northern) and Akola (central) agro-

ecological zones for cotton. The RCM projected daily weather from 1971-2005 (1990), 

2006-2035 (2020), 2036-2065 (2050) and 2066-2095 (2080) were taken. The crop model 

has been simulated for rainfed, irrigated, and potential conditions for three sowing dates. 

The model predicts slightly increasing temperature from 1990 till 2080 and from RCP4.5 

to RCP8.5. It is rising at higher rates at Hisar than Akola. An overall increase in amount of 

rainfall is observed in the northern region and decreasing in the central region at RCP8.5. 

It increases till 2050 and further reduces in 2080. In Akola, the yields are higher for RCP8.5 

than RCP4.5, whereas in Hisar yields are lower in RCP8.5 than RCP4.5 for both model 

and bias-corrected data. Late sown crops with proper irrigation strategies are found 

beneficial in both regions. In the hot and dry northern agroclimatic cotton zone increasing 

temperature is detrimental, whereas in the cooler and wetter central zone increasing 

temperature is not a hindrance and at the same time increased CO2 is favouring the 

production. The study embrace utilization of RCMs to study the vulnerability of crop with 

climate change. 

Keywords: climate change; cotton; impacts; RegCM4; DSSAT; Bias correction; Quantile 

mapping 

 

4.4 INTRODUCTION 
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Climate models predict an increase in global average temperature for future climate 

change. With increasing temperature comes higher evapotranspiration rates, potentially 

contributing to the duration and intensity droughts (IPCC, AR5, 2014). These changes will 

also have immediate effects on precipitation (Loo et al., 2015) and agricultural productivity 

(Anapalli et al., 2016). Frequent shifts in monsoon are predicted with increasing 

temperature in the late 21st century and early 22nd century (Schewe and Levermann, 2012). 

With changing climate there is a shift in the hydrological regime by intra and inter-seasonal 

precipitation patterns and crop water regime may also be affected (O’Brien, 2000). The 

increasing temperature could arouse the loss of soil moisture and elevate irrigation 

demands. This can be a challenge where mostly rainfed agriculture is practiced. Changes 

are likely not to be uniform everywhere and can increase in the future with intensified 

active and break cycles (Turner, 2013). Besides that, individual locations can also be 

benefitted due to changes at a regional scale, whereas for other locations it can be 

unfavorable. As reported by the International Food Policy Research Institute (IFPRI) Food 

Policy Report (2010), climate change will also alter the planting dates at some locations, 

shifting the sowing dates. These shifts in cropping patterns and sowing windows are also 

location-specific as per regional change in climatology (Bhatti et al., 2016). Such location-

specific differences in climate change scenarios necessitate the study of its impact on 

agriculture to strategize proper mitigation and adaptation measures for sustained 

productivity.   

Among various crops produced in India, cotton is a major commercial crop often 

termed as white gold. It is grown for fiber, oil and animal feed, therefore an integral part 

of commerce. Cotton is a warm-season crop, which requires plenty of sunshine, long frost-

free period and rainfall between 450 to 750mm. For vegetative growth, the minimum 

temperature required is 21- 27°C, and during the fruiting period 27-32°C. For the 

development and maturation of the ball, the optimum temperature has to be between 27-

32°C. The maximum capacity of the crop is to tolerate temperatures as high as 43°C with 

proper water availability (FAO, 1984; Reddy et al., 2005). When the temperature goes 

above 38°C the balls are damaged and therefore the yields are reduced. For the 
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development of good quality boll and fiber, it requires warm days and cool nights with 

large diurnal variations at the fruiting period (Freeland et al., 2006). The fiber stop 

thickening if the daily mean temperature is below 20°C during the period of ball formation 

and below 15°C, the fiber stops to elongate. Moisture deficit stress promotes stunted 

growth in cotton with reduced leaf area expansion (McMichael and Hesketh, 1982; Turner 

et al., 1986; Gerik et al., 1996). The increasing temperature could accelerate ball abscission 

and reduce its size affecting the cotton yield. Whereas increasing CO2 could promote 

vegetative and reproductive growth by improving carbon exchange rates and the number 

of reproductive organs (balls) (Reddy et al., 2005).  

Studies based on climate models can also help to assess the site-specific adaptive 

potential and mitigation measures in future climate. Although, GCMs are the primary 

source of information and have so far able to produce reliable projections of climate 

variables and help in projecting in the frequencies of droughts (Penning et al., 1974) which 

could significantly affect crop yields. Still, they have drawbacks such as high spatial 

resolution and inability to capture interannual variability on regional scales (Metzger et al., 

2005). Therefore, GCMs are statistically and dynamically downscaled to enhance the 

resolution at a regional scale. Ensembles of GCMs and RCMs are available under 

internationally coordinated projects like CMIP5 (Taylor et al., 2012) and CORDEX (Giorgi 

et al., 2009). The dynamically downscaled RCMs are found to improve the small scale 

features compared to its driving GCMs and therefore are more reliable (Sørland et al., 

2018). Still, these climate projections are often associated with some systemic model errors 

or biases often conveyed by the GCMs. Bias-corrections are frequently used to improve 

the RCM projections to match with the observed (Qian et al., 2016). Therefore, besides 

using GCM data to drive crop models, RCM data can also be used. Large variations are 

estimated in sorghum yields using ten RCMs in crop model, but after applying bias-

correction to RCM outputs, promising results were obtained (Oettli et al., 2011).   

Some model-based studies based on GCM projections on cotton crops indicate that the 

projected high temperature is better for cotton crops in the colder region with longer 

growing seasons, whereas in the warmer regions hasted growth and development could 
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reduce yield and quality of the crop (Rosenzweig and Hillel, 1998). Thus in future climates, 

the cotton yield and quality may decrease where the present temperature is near optimum. 

A study by Sankaranarayanan et al. (2010) over India reveals that projected decreasing 

temperature and increasing precipitation in the northern zone can prolong the growth 

period and amplify the pest and disease susceptibility and repercussions can be seen in 

sowing dates of the subsequent rabi crops. In the central and southern zones region 

projected increasing temperature and decreasing rainfall with extremes in temperature and 

erratic distribution of rainfall characterized by recurring seasonal wet and dry spells could 

affect the cotton yield. Another study by Hebbar et al. (2013) using GCM projections in 

the INFOCROP model for three agro-ecological zones of cotton in India shows changing 

climate has different implications at different locations. The productivity in northern India 

may decline marginally while in the central and southern India it may increase or remain 

the same as the present. Thus, the impact of changing climate on simulated cotton was 

detrimental for the hot and dry region and beneficial for the comparatively cold and wet 

region. In a study by Anapalli et al. (2016) over Mississippi Delta region, USA using 

spatially downscaled and bias-corrected ensemble of multiple GCMs at four 

Representative Concentration Pathways (RCP) in cotton RZWQM2 model for irrigated and 

rainfed practices observed that yield increased in irrigated conditions under low to 

moderate emissions and declined during high emissions, whereas during rainfed conditions 

yield declined in all four conditions. However, planting six weeks earlier partially 

compensated for yield losses and supplemental irrigation upto 10cm compensated for all 

yield losses. So rainfed systems are considered more vulnerable than irrigated for climate 

change. But the irrigated regions are also effected as observed is studies on cotton crops in 

the northern cotton-growing region, Hisar (Shikha et al., 2018). 

This study aims to study the vulnerability of rainfed and irrigated cotton crop during 

climate change scenarios as projected by RCM for RCP4.5 and 8.5 both for near future and 

far future with the present as the baseline in the central and northern cotton-growing region 

of India, wherein the central zone mostly rainfed agriculture is practiced and in the northern 

zone irrigated agriculture is practiced.  We also investigated different agricultural 
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conditions like rainfed, irrigated and potential and three sowing dates on both the regions 

to assess the adaptability of cotton for future climates. The results can be useful for 

understanding the uncertainties with climate change and strategize associated mitigation 

measures.    

4.5 DATA AND METHODOLOGY 

4.5.1 Study Area 

Two locations have been selected in the northern and central cotton growing zones 

where mostly irrigated and rainfed agriculture are practiced respectively. Hisar the 

westernmost district of Haryana representative climatology of the northern irrigated cotton-

growing region. It is a semi-arid region with the average temperature range between 40°C 

to 44°C in summer months and between 4°C to 6°C in winter months. The annual average 

maximum and minimum temperature are 31.5°C and 16.2°C respectively; while the 

average annual rainfall is approximately 450 mm of which 75 to 80 percent is received 

during monsoon season (Shikha et al., 2018). Akola climate is characterized by hot summer 

and dryness throughout the year. The average annual rainfall is approximately 846.5 mm 

and it rains mostly in monsoon with July as the rainiest month. May is hottest with 

maximum temperature ranging from 27.3°C to 42.4 °C and December is coldest with 

minimum temperature ranging from 12.4°C to 29.5°C (Ghosh et al., 2014). 

4.5.2 Model Description 

Crop models are utilized to imitate the behavior of real field crops as grown. It aids to 

reduce the time, cost and human resources required for analyzing the complexities and 

concluding for an alternative decision. This software helps users to prepare the database 

and compare simulated results with observations to give them the confidence in the model. 

This also assists to determine weather modifications are needed to improve accuracy or to 

achieve the potential yield. It is capable of simulating the growth, development, yield and 

various other relevant parameters as a function of the soil-plant-atmosphere dynamics. In 

the present study, DSSAT-CSM: Version 4.6 has been employed. The Decision Support 

System for Agrotechnology Transfer- Cropping System Model (DSSAT-CSM), which 



Chapter V 

121 

 

includes the CROPGRO-Cotton model as an assemblage of independent programs that 

operate together. Apart from CERES it also CSM-CROPGRO model for simulating cotton 

cropping system (Pathak et al., 2007). It has a predefined input and output data format that 

has been developed and embedded in a software package. Changes and its effect could also 

be studied with the cropping system over time in soil, water, cultivars, carbon, and nitrogen 

that can take place. DSSAT also provides for the evaluation of crop model outputs with 

experimental data, thus allowing users to calibrate and validate it (Hoogenboom et al., 

2019). 

4.5.3 Data 

4.5.3.1 Management and soil data 

The crop models require daily weather data, soil surface and profile information, and 

detailed crop management as input. Crop genetic information is defined in a crop species 

file that is provided by DSSAT and cultivar or a variety of information that should be 

provided by the user. To achieve the objective, field experiment is conducted at AMFUs 

(Agromet Field units) at CCS University, Hisar and at Dr. Panjabrao Deshmukh Krishi 

Vidyapeeth, Akola, Maharashtra during Kharif season under the Forecasting Agricultural 

outputs using Space, Agrometeorology and Land-based observations (FASAL) project by 

IMD (India Meteorological Department). The variety analyzed in this study is RCH-791 in 

Hisar and AK 081 in Akola, Maharastra which is cultivated widely during the Kharif 

season. Other management data such as nutrient, fertilizer and irrigation applications, plant 

spacing sowing dates etc., soil data and genetic coefficients has been obtained by field 

experiments conducted. These data had been earlier calibrated and validated for the 

DSSAT model over the region, Hisar (Swami et al., 2016, Shikha et al., 2018) and Akola 

(Nath et al., 2018; ICAR-CRIDA, Annual Report, 2017-18). 

4.5.3.2 Weather data 

The Climate data has been derived from the Coordinated Regional Climate 

Downscaling Experiment (CORDEX) South Asia. The forcings from the host GCM 
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(GFDL‐ ESM2M) as is dynamically downscaled using a Regional Climate Model 

(RegCM4) and the combination is termed as RegCM4‐ GFDL. This data has been 

considered for the present study as is best performing RCM in the Indian subcontinent 

(Chaudhary et al., 2018). These daily weather data sets are obtained from Coordinated 

Regional Climate Downscaling Experiment over South Asia (CORDEX‐ SA) and CMIP5 

database, which is developed and maintained by Earth System Grid Federation (ESGF) 

(https://esgf-data.dkrz.de/projects/esgf-dkrz). These data have been extracted at the study 

region production with the help of CDO (Climate Data Operator). The study area includes. 

Hisar and Akola lying in the northern and central agro-ecological zones of cotton. This is 

to extract the weather data in the required format as desired as input in the cropping model, 

which requires the minimum dataset as daily maximum and minimum temperature(°C), 

rainfall(mm) and sunshine duration/ solar radiation (MJ m2). DSSAT generates site-

specific weather data stochastically using built-in SIMMETEO software.  

Although the models provide reliable data but still some biases exist on a regional 

scale. So it is important to assess the performance of the models against real observations 

to identify the underlying biases, strengths or shortcomings before using them for future 

projections. In this study, the Quantile Mapping (QM) approach is used which calibrates 

the cumulative distribution function of model data for correction. It is implemented with 

the help of 'qmap' library written for R statistical software (Gudmundsson et al., 2012; Zhao 

et al., 2017). Daily agrometeorological observations taken from the Agrometeorological 

Observatory under India Meteorological Department (IMD) situated near the experimental 

fields were used for bias corrections of the climate projections. 

4.5.3.3 Experimental design 

In order to examine the impact of climate change, time series analysis for temperature 

and precipitation variables is done for a period of 30 years. The weather data includes both 

model and its bias-corrected datasets with RCP scenarios RCP4.5 and RCP8.5. In this 

procedure, the RCM projected daily weather from 1971 to 2005, 2006 to 2035, 2036 to 

2065 and 2066 to 2095 were average to represent projected climate centered at historical 

https://esgf-data.dkrz.de/projects/esgf-dkrz
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(1990), present (2020) and climate change scenario at near future (2050) and far future 

(2080). The CO2 concentrations as 353, 415, 486 and 531 for RCP4.5 and 353, 415, 539 

and 757 for RCP8.5 respectively (Vuuren et al., 2011; Anapalli et al., 2016; Dua et al., 

2018). Model data was bias corrected by the Quantile Mapping approach implemented with 

the help of ‘qmap’ library written under R developed and are made available in the public 

domain, which can be specifically downloaded used to downscale (https: 

//github.com/SantanderMetGroup/downscaleR, assessed on: 03 August 2017). These data 

were incorporated in the weather module of the DSSAT vn4.6. Management and soil 

modules were the same as per the field trials. Three planting dates considered as 10th May 

(D1) 21st May (D2) and 06th Jun (D3) for the northern region and 20th Jun (D1), 06th Jul 

(D2) and 21st Jul (D3) for the central region. The crop growth model has been simulated 

for rainfed, irrigated and potential conditions in both the regions. Keeping the genetic 

coefficient, management strategy, soil as constant, the sensitivity of the crops was analyzed 

for different weather scenarios and sowing dates. Thus creating nine types of treatments 

region for all climatic conditions mentioned above. Dry yield (Kg/ha) and leaf area index 

(LAI) are derived as an output.  

4.6 RESULTS 

4.6.1 Climate Model Outputs 

4.6.1.1 Maximum temperature  

The monthly average maximum temperature for Hisar region during 1990 is 26.05°C 

and 31.44°C, 2020 is 27.51°C and 33.03°C, 2050 is 28.23°C and 33.58°C, 2080 is 28.55°C 

and 33.87°C in 4.5 RCP scenario for the model and after bias correction respectively (Table 

5.1). Whereas, in RCP8.5 for 1990, 2020, 2050 and 2080 the annual average for the model 

is 26.05°C, 27.68°C, 28.68°C and 30.13°C and for bias-corrected is 31.47°C, 32.53°C, 

34.01°C and 35.41°C respectively.  Thus we can observe increasing maximum temperature 

from 1990 to 2020 and then in 2050 and 2080 in both model and bias-corrected values for 

this region. There is only a slight difference between RCP4.5 and RCP8.5 observed in the 

study. Further analyzing the deviation of climate variables from present 2020 as projected 
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by model and its bias-corrected values, for 2050 it could be 0.72 and 0.55 at RCP4.5 and 

1.00 and 1.47 at RCP8.5. And for 2080, 1.04 and 0.85 as per model and 2.44 and 2.87 as 

per bias-corrected values for RCP4.5 and RCP8.5 respectively. Same is the case with 

percentage deviation (%Dev) which is lower in RCP4.5 than RCP8.5. This shows that in 

RCP8.5 the deviation can be higher than what is projected in present in comparison to the 

present and this deviation is more prominent in 2080 than 2050 i.e. in the far future. 

 Similarly, the monthly average for Akola region (Table 5.2) as per model projections 

are 28.82°C, 30.71°C, 31.33°C and 31.58°C at RCP4.5 and its bias-corrected values are 

26.22°C,35.62°C, 36.76°C and 37.00°C for HPNF (1990, 2020, 2050, 2080). And at 

RCP8.5 model projected 28.82°C, 30.74°C, 31.33°C and 31.58°C, and 26.22°C, 36.11°C, 

36.77°C and 37.04°C during HPNF. The deviation from the present is slighter when 

compared with the northern Hisar region. But the striking feature which can be observed 

here is in Akola there is negligible difference in the RCP4.5 and RCP8.5 scenarios. Thus 

the deviation in RCP8.5 from the present is observed lower than RCP4.5 when compared 

with Hisar climate. So with the changing climate, the rise in maximum temperature is more 

prominent in the Hisar than in Akola.  

The observed maximum for the Hisar region is 31.49°C so the model highly 

underestimates the maximum temperature and bias-correction performs well in this region. 

Similarly, the model in the Akola also highly underestimates the maximum temperature 

which is observed to be 34.12°C. And bias correction performed well for this region as 

well except for the historical data. This is for both the RCPs with slightly higher values for 

the RCP8.5 than 4.5 and increasing temperature from 1990 to 2080. 
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Table 5.1 Monthly average maximum temperature as projected by model and bias-

corrected data for RCP 4.5 and RCP 8.5 and during 1990(historical), 2020(present), 

2050(near future), 2080(far future) at Hisar 

Maximum Temperature 

 Hisar model 4.5 Hisar bias corrected 4.5 

Months Historical Present 

Near 

Future 

Far 

Future Historical Present 

Near 

Future 

Far 

Future 

Jan 15.33 16.26 17.68 18.25 21.15 22.77 23.36 23.98 

Feb 17.74 19.49 20.01 21.19 23.47 25.28 25.73 26.81 

Mar 23.30 24.10 25.82 26.08 28.82 30.57 31.24 31.44 

Apr 27.96 30.03 31.10 31.48 33.31 35.73 36.31 36.64 

May 32.64 33.05 34.18 35.08 37.81 39.19 39.31 40.09 

Jun 34.59 36.26 36.71 36.71 39.68 41.39 41.70 41.68 

Jul 33.80 35.85 36.55 35.42 38.92 40.71 41.57 40.54 

Aug 32.03 33.77 33.81 33.44 37.22 38.46 38.89 38.63 

Sep 30.55 32.04 31.60 32.36 35.80 37.22 36.98 37.59 

Oct 26.76 28.79 28.74 28.86 32.15 33.10 34.16 34.19 

Nov 21.57 22.81 23.99 23.87 27.16 28.14 29.52 29.47 

Dec 16.29 17.63 18.52 19.79 21.73 23.73 24.14 25.39 

Average 26.05 27.51 28.23 28.55 31.44 33.03 33.58 33.87 

Deviation   0.72 1.04   0.55 0.85 

%Dev   2.62 3.77   1.67 2.56 

RMSE   0.72 1.04   0.55 0.85 

 Hisar model 8.5 Hisar bias corrected 8.5 

Months Historical Present 

Near 

Future 

Far 

Future Historical Present 

Near 

Future 

Far 

Future 

Jan 15.33 16.96 18.68 20.18 21.15 22.28 24.46 25.48 

Feb 17.74 19.41 21.23 22.70 23.47 24.61 26.74 28.12 

Mar 23.30 25.03 26.22 27.70 28.82 30.12 31.64 33.13 

Apr 27.96 30.41 30.79 33.21 33.31 35.32 36.05 38.43 

May 32.64 33.92 34.82 36.35 37.81 38.70 39.75 41.46 

Jun 34.59 36.44 36.80 37.91 39.68 40.93 41.83 42.87 

Jul 33.80 35.64 35.48 36.69 38.92 40.19 40.55 41.74 

Aug 32.03 33.40 34.00 35.20 37.22 38.01 39.24 40.26 

Sep 30.55 32.21 32.67 33.68 35.80 36.73 38.02 38.82 

Oct 26.76 27.92 29.03 30.08 32.15 32.62 34.32 35.33 

Nov 21.57 22.71 24.68 26.31 27.16 27.64 30.10 31.79 

Dec 16.29 18.17 19.82 21.52 22.08 23.26 25.40 27.46 

Average 26.05 27.68 28.68 30.13 31.47 32.53 34.01 35.41 

Deviation   1.00 2.44   1.47 2.87 

%Dev   3.61 8.83   4.53 8.83 

RMSE   1.00 2.44   1.47 2.87 
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Table 5.2 Same as Table 5.1for Akola 

Maximum Temperature 

 Akola model 4.5 Akola bias corrected 4.5 

Months Historical Present 

Near 

Future 

Far 

Future Historical Present 

Near 

Future 

Far 

Future 

Jan 22.54 26.15 26.39 26.81 21.03 30.70 31.46 32.11 

Feb 25.63 27.28 28.78 29.08 15.28 31.82 34.04 34.28 

Mar 29.60 31.01 32.69 32.76 16.37 35.80 38.23 38.25 

Apr 32.82 34.70 35.20 35.74 18.51 39.77 40.94 41.38 

May 34.14 35.61 36.45 36.88 28.34 40.85 42.30 42.55 

Jun 32.80 34.55 35.09 35.41 33.60 39.89 40.68 40.98 

Jul 30.51 31.38 32.00 32.12 34.01 36.45 37.49 37.62 

Aug 28.95 30.42 31.02 30.54 33.28 35.29 36.43 35.90 

Sep 28.49 30.26 30.43 30.68 33.47 35.14 35.85 36.06 

Oct 28.50 30.23 30.12 30.54 29.65 35.14 35.38 35.88 

Nov 27.49 29.96 30.67 30.85 26.28 34.92 36.01 36.30 

Dec 24.41 26.97 27.14 27.51 24.78 31.68 32.28 32.63 

Average 28.82 30.71 31.33 31.58 26.22 35.62 36.76 37.00 

Deviation   0.62 0.87   1.14 1.38 

%Dev   2.02 2.82   3.19 3.86 

RMSE   0.62 0.87   1.14 1.38 

 Akola model 8.5 Akola bias corrected 8.5 

Months Historical Present 

Near 

Future 

Far 

Future Historical Present 

Near 

Future 

Far 

Future 

Jan 22.54 26.06 26.43 26.83 21.03 31.22 31.57 32.07 

Feb 25.63 27.24 28.78 29.18 15.28 32.33 34.09 34.49 

Mar 29.60 31.03 32.74 32.74 16.37 36.44 38.17 38.32 

Apr 32.82 34.87 35.19 35.77 18.51 40.33 40.85 41.44 

May 34.14 35.67 36.45 36.83 28.34 41.29 42.25 42.75 

Jun 32.80 34.61 35.05 35.41 33.60 40.34 40.71 41.07 

Jul 30.51 31.41 32.11 32.16 34.01 36.76 37.62 37.61 

Aug 28.95 30.42 30.95 30.55 33.28 35.78 36.44 35.77 

Sep 28.49 30.31 30.46 30.71 33.47 35.63 35.82 36.05 

Oct 28.50 30.30 30.16 30.44 29.65 35.66 35.47 35.88 

Nov 27.49 29.95 30.53 30.87 26.28 35.31 35.97 36.34 

Dec 24.41 27.05 27.15 27.42 24.78 32.21 32.26 32.64 

Average 28.82 30.74 31.33 31.58 26.22 36.11 36.77 37.04 

Deviation   0.59 0.83   0.66 0.93 

%Dev   1.92 2.71   1.83 2.57 

RMSE   0.59 0.83   0.66 0.93 
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4.6.1.2 Minimum temperature 

The annual average minimum temperature of Hisar is 15.77°C and 16.12°C (1990), 

17.26°C and 17.91°C (2020), 18.08°C and 18.45°C (2050), 18.50°C and 18.89°C (2080) 

at RCP4.5 and 15.77°C and 16.22°C (1990), 17.50°C and 17.40°C (2020), 18.76°C and 

19.12°C (2050), 20.34°C and 20.75°C (2080) in RCP8.5 for model and bias-corrected 

respectively (Table 5.3). In Akola region, it is 19.10°C and 19.32°C (1990), 20.96°C and 

21.47°C (2020), 21.63°C and 22.31°C (2050), 22.01°C and 22.74°C (2080) at RCP4.5 and 

19.10°C and 19.32°C (1990), 20.95°C and 20.97°C (2020), 21.67°C and 20.97°C (2050), 

22.00°C and 22.26°C (2080) at RCP8.5 for model and bias-corrected respectively (Table 

4). The annual average as observed over Hisar is 16.20°C and Akola is 19.36°C as per 

observed climatology, which is closer to the model assessment. Thus the model slightly 

underestimates the minimum temperature in both and the bias correction region performs 

very well for minimum temperature in both the region. With the changing climate, the 

model predicts slightly increasing minimum temperature from historical to far future and 

from RCP4.5 to RCP8.5. The deviation is higher in the Hisar region than the Akola region. 

Thus there is a possibility of increasing temperature at a higher rate in the northern than 

the central cotton-growing region. 
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Table 5.3 Monthly average minimum temperature as projected by model and bias-corrected 

data for RCP 4.5 and RCP 8.5 and during 1990(historical), 2020(present), 2050(near 

future), 2080(far future) at Hisar 

Minimum Temperature 

 Hisar model 4.5 Hisar bias corrected 4.5 

Months Historical Present 

Near 

Future 

Far 

Future Historical Present 

Near 

Future 

Far 

Future 

Jan 3.91 5.03 6.80 7.44 4.27 6.33 7.10 7.57 

Feb 4.87 6.62 7.28 8.28 5.16 7.03 7.55 8.57 

Mar 10.06 10.95 12.36 12.86 10.34 12.18 12.60 13.24 

Apr 15.71 17.60 18.31 19.06 16.06 18.54 18.65 19.37 

May 21.56 22.43 23.28 23.99 21.98 23.84 23.83 24.43 

Jun 25.00 26.56 26.94 27.19 25.46 27.33 27.35 27.62 

Jul 25.86 27.59 28.22 27.40 26.33 27.83 28.78 27.84 

Aug 24.52 26.18 26.11 26.03 24.98 26.17 26.58 26.63 

Sep 22.31 23.74 24.17 24.40 22.75 24.36 24.57 24.88 

Oct 17.55 19.64 20.13 20.31 17.92 19.67 20.57 20.94 

Nov 11.76 13.26 14.41 14.77 12.06 13.26 14.75 15.02 

Dec 6.09 7.56 8.92 10.31 6.07 8.41 9.07 10.59 

Average 15.77 17.26 18.08 18.50 16.12 17.91 18.45 18.89 

Deviation   0.81 1.24   0.54 0.98 

%Dev   4.72 7.19   3.00 5.48 

RMSE   0.81 1.24   0.54 0.98 

 Hisar model 8.5 Hisar bias corrected 8.5 

Months Historical Present 

Near 

Future 

Far 

Future Historical Present 

Near 

Future 

Far 

Future 

Jan 3.91 6.08 7.89 9.62 4.63 5.90 8.16 9.68 

Feb 4.87 6.38 8.90 9.96 5.37 6.37 9.13 10.24 

Mar 10.06 11.61 13.18 14.37 10.35 11.62 13.35 14.74 

Apr 15.71 18.04 18.42 21.10 16.06 18.07 18.86 21.49 

May 21.56 23.22 23.91 25.87 21.98 23.35 24.33 26.35 

Jun 25.00 26.73 27.29 28.85 25.46 26.83 27.75 29.37 

Jul 25.86 27.38 27.56 28.75 26.33 27.34 28.06 29.36 

Aug 24.52 25.75 26.62 27.79 24.98 25.68 27.07 28.22 

Sep 22.31 23.98 24.85 26.02 22.75 23.86 25.22 26.33 

Oct 17.55 19.41 20.75 21.98 17.92 19.12 21.11 22.53 

Nov 11.76 13.18 15.31 17.42 12.06 12.76 15.70 17.75 

Dec 6.09 8.23 10.49 12.40 6.73 7.90 10.73 12.97 

Average 15.77 17.50 18.76 20.34 16.22 17.40 19.12 20.75 

Deviation   1.27 2.84   1.72 3.36 

%Dev   7.23 16.26   9.91 19.29 

RMSE   1.27 2.84   1.72 3.36 
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Table 5.4. Same as Table 5.3 for Akola 

Minimum Temperature 

 Akola model 4.5 Akola bias corrected 4.5 

Months Historical Present 

Near 

Future 

Far 

Future Historical Present 

Near 

Future 

Far 

Future 

Jan 10.97 14.20 14.55 15.30 12.90 13.70 14.01 14.80 

Feb 13.32 14.95 16.90 16.61 16.05 14.43 16.78 16.38 

Mar 17.55 18.85 20.60 20.70 20.11 18.99 21.16 21.20 

Apr 21.62 23.60 24.04 24.77 23.40 24.65 25.05 25.96 

May 24.45 26.07 26.65 27.17 24.74 27.34 28.09 28.87 

Jun 24.61 26.34 26.84 27.10 23.38 27.64 28.37 28.77 

Jul 23.54 24.76 25.30 25.43 21.04 26.00 26.72 26.86 

Aug 22.34 23.95 24.37 24.32 19.45 24.88 25.53 25.47 

Sep 21.38 23.00 23.37 23.80 18.98 23.88 24.43 24.83 

Oct 19.26 20.99 21.37 21.83 18.99 21.55 21.91 22.46 

Nov 16.78 19.00 19.69 20.24 17.96 19.18 20.09 20.60 

Dec 13.37 15.80 15.95 16.89 14.81 15.46 15.54 16.66 

Average 19.10 20.96 21.63 22.01 19.32 21.47 22.31 22.74 

Deviation   0.68 1.05   0.83 1.26 

%Dev   3.22 5.03   3.87 5.89 

RMSE   0.68 1.05   0.83 1.26 

 Akola model 8.5 Akola bias corrected 8.5 

Months Historical Present 

Near 

Future 

Far 

Future Historical Present 

Near 

Future 

Far 

Future 

Jan 10.97 14.33 14.52 15.41 12.90 13.16 13.73 14.64 

Feb 13.32 14.99 16.95 16.69 16.05 13.89 16.12 15.71 

Mar 17.55 18.77 20.69 20.66 20.11 18.32 20.54 20.40 

Apr 21.62 23.68 23.99 24.63 23.40 23.99 24.48 25.05 

May 24.45 25.98 26.69 27.12 24.74 26.91 27.63 28.26 

Jun 24.61 26.29 26.79 27.12 23.38 27.23 27.87 28.34 

Jul 23.54 24.70 25.28 25.42 21.04 25.47 26.22 26.43 

Aug 22.34 23.79 24.35 24.36 19.45 24.42 24.97 24.92 

Sep 21.38 23.01 23.59 23.71 18.98 23.45 24.10 24.43 

Oct 19.26 21.03 21.44 21.89 18.99 21.18 21.54 22.20 

Nov 16.78 18.96 19.80 20.10 17.96 18.76 19.69 20.21 

Dec 13.37 15.89 16.00 16.89 14.81 14.87 15.15 16.53 

Average 19.10 20.95 21.67 22.00 19.32 20.97 21.84 22.26 

Deviation   0.72 1.05   0.87 1.29 

%Dev   3.44 5.01   4.13 6.14 

RMSE   0.72 1.05   0.87 1.29 
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4.6.1.3 Precipitation 

The annual average precipitation for Hisar as per model projections are 1.496 and 

1.496 (1990), 1.921 and 2.058(2020), 1.981 and 2.103(2050), 1.973 and 2.052 (2080) and 

its bias-corrected values as 1.19 and 1.19(1990), 1.723 and 1.242(2020), 1.687 and 1.791 

(2050), 1.692 and 1.750 (2080) at RCP4.5 and RCP8.5 respectively (Table 5.5). The 

average precipitation in Hisar is increasing from 1990 till 2050 then it declines in 2080 in 

both the RCPs as per model projections. Whereas, when bias-corrected, at RCP4.5 it 

increases till 2020 and then falls for 2050 and 2080 and at RCP8.5 it increases till 2050 

and falls for 2080. The model predicts more rainfall 1.54 then its observed 1.24 mm which 

suggests that the model is wet. Bias- correction has performed better in this region bringing 

it near the observation. With the changing climate, the model suggests there will be an 

increase in the amount of precipitation till the near future and it may decline further in the 

far future. This characteristic is depicted with the amount of precipitation during the 

cropping season too.       

In Akola region, the model projected 2.437 and 2.437(1990), 1.505 and 2.336(2020), 

1.704 and 2.238(2050), 1.578 and 1.842(2080) and its bias-corrected values are 2.434 and 

2.434(1990), 1.794 and 1.990 (2020), 1.789 and 1.881(2050), 1.756 and 1.472(2080) at 

RCP4.5 and RCP8.5 respectively (Table 5.6). Although, the amount of rainfall in the 

central rainfed region is presently more than the northern region. But the model predicts 

decreasing precipitation from 1990 to 2080 in this region. The model is found to be 

overestimating rainfall amount as 2.437 whereas 2.13 is observed here. Bias correction 

slightly reduces the amount to 2.434 which is closer to the observed values. Thus predicts 

very less precipitation from 2020 to 2080 at RCP4.5 than RCP8.5. 
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Table 5.5 Monthly average precipitation as projected by model and bias-corrected data for 

RCP 4.5 and RCP 8.5 and during 1990 (historical), 2020 (present), 2050 (near future), 2080 

(far future) at Hisar 

Precipitation  

 Hisar model 4.5 Hisar bias corrected 4.5 

Months Historical Present 

Near 

Future 

Far 

Future Historical Present 

Near 

Future 

Far 

Future 

Jan 0.38 1.03 0.88 0.80 0.29 0.92 0.76 0.63 

Feb 0.23 0.79 0.82 0.67 0.17 0.63 0.85 0.60 

Mar 0.51 0.85 0.71 0.88 0.40 0.79 0.73 0.94 

Apr 0.70 1.24 0.90 1.17 0.52 1.19 0.84 1.08 

May 0.80 1.57 1.57 1.47 0.58 1.13 1.32 1.31 

Jun 2.12 2.37 2.05 2.78 1.67 1.92 1.68 2.20 

Jul 4.34 3.22 3.47 3.60 3.58 3.32 2.83 3.01 

Aug 3.26 3.73 4.19 4.04 2.63 3.45 3.50 3.44 

Sep 2.20 2.79 3.39 2.77 1.75 2.64 2.95 2.34 

Oct 1.73 2.51 2.66 2.64 1.39 2.48 2.30 2.30 

Nov 0.83 1.68 1.59 1.58 0.65 1.15 1.17 1.39 

Dec 0.84 1.26 1.52 1.28 0.66 1.04 1.30 1.07 

Average 1.496 1.921 1.981 1.973 1.192 1.723 1.687 1.692 

Deviation   0.060 0.052   -0.037 -0.031 

%Dev   3.082 2.778   -2.081 -1.694 

RMSE   0.060 0.052   0.037 0.031 

 Hisar model 8.5 Hisar bias corrected 8.5 

Months Historical Present 

Near 

Future 

Far 

Future Historical Present 

Near 

Future 

Far 

Future 

Jan 0.38 1.02 1.02 0.80 0.29 0.42 0.98 0.61 

Feb 0.23 0.84 0.95 0.57 0.17 0.15 0.87 0.67 

Mar 0.51 0.87 0.90 0.81 0.40 0.30 0.84 0.74 

Apr 0.70 1.31 1.08 1.00 0.52 0.59 0.89 0.89 

May 0.80 1.48 1.38 1.50 0.58 0.76 1.16 1.28 

Jun 2.12 2.29 2.32 2.64 1.67 1.50 1.90 2.06 

Jul 4.34 3.83 3.91 4.25 3.58 2.83 3.27 3.60 

Aug 3.26 4.12 4.57 3.52 2.63 2.93 3.76 3.03 

Sep 2.20 3.18 3.24 3.57 1.75 2.17 2.86 3.02 

Oct 1.73 3.10 2.76 3.17 1.39 1.98 2.28 2.57 

Nov 0.83 1.38 1.67 1.61 0.65 0.75 1.47 1.35 

Dec 0.84 1.29 1.45 1.19 0.67 0.53 1.21 1.18 

Average 1.496 2.058 2.103 2.052 1.193 1.242 1.791 1.750 

Deviation   0.045 -0.007   0.549 0.508 

%Dev   2.185 -0.324   44.131 40.845 

RMSE   0.045 0.007   0.549 0.508 
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Table 5.6 Same as Table 5.5 for Akola. 

Precipitation  

 Akola model 4.5 Akola bias corrected 4.5 

Months Historical Present 

Near 

Future 

Far 

Future Historical Present 

Near 

Future 

Far 

Future 

Jan 0.78 0.46 0.30 0.30 0.00 0.38 0.25 0.25 

Feb 0.29 0.35 0.33 0.32 0.00 0.24 0.26 0.25 

Mar 0.67 0.47 0.45 0.38 0.15 0.35 0.34 0.38 

Apr 1.09 0.91 1.03 0.94 2.27 0.74 0.98 0.71 

May 1.91 1.56 1.60 1.30 12.45 1.22 1.35 1.06 

Jun 4.67 3.54 3.12 3.04 11.29 3.24 3.13 2.95 

Jul 7.03 2.42 4.16 3.40 2.76 5.78 5.36 5.25 

Aug 5.98 3.35 2.79 3.95 0.21 5.12 3.93 5.16 

Sep 3.54 3.08 3.93 2.52 0.00 2.90 3.65 2.69 

Oct 1.16 0.89 1.24 1.00 0.00 0.69 0.87 0.77 

Nov 1.18 0.55 0.75 0.57 0.00 0.42 0.71 0.66 

Dec 0.82 0.48 0.74 1.21 0.08 0.40 0.63 0.94 

Average 2.437 1.505 1.704 1.578 2.434 1.794 1.789 1.756 

Deviation   0.199 0.072   -0.002 -0.035 

%Dev   13.214 4.817   -0.128 -1.959 

RMSE   0.199 0.072   0.002 0.035 

 Akola model 8.5 Akola bias corrected 8.5 

Months Historical Present 

Near 

Future 

Far 

Future Historical Present 

Near 

Future 

Far 

Future 

Jan 0.78 0.40 0.49 0.26 0.00 0.31 0.40 0.14 

Feb 0.29 0.37 0.35 0.37 0.00 0.29 0.29 0.26 

Mar 0.67 0.44 0.40 0.48 0.15 0.34 0.30 0.36 

Apr 1.09 1.01 0.87 1.11 2.27 0.82 0.68 0.89 

May 1.91 1.95 1.64 1.90 12.45 1.55 1.30 1.48 

Jun 4.67 4.03 4.31 3.76 11.29 3.47 3.64 3.09 

Jul 7.03 6.77 5.89 5.28 2.76 6.06 5.17 4.57 

Aug 5.98 5.93 5.93 3.97 0.21 5.25 5.16 3.29 

Sep 3.54 3.79 3.60 2.43 0.00 3.10 2.88 1.73 

Oct 1.16 1.62 1.95 1.70 0.00 1.23 1.56 1.27 

Nov 1.18 0.97 0.87 0.36 0.00 0.82 0.74 0.23 

Dec 0.82 0.76 0.55 0.47 0.08 0.64 0.45 0.35 

Average 2.437 2.336 2.238 1.842 2.434 1.990 1.881 1.472 

Deviation   -0.098 -0.494   -0.109 -0.518 

%Dev   -4.191 -21.151   -5.484 -26.026 

RMSE   0.098 0.494   0.109 0.518 
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Therefore, the model slightly overestimates the rainfall in these regions, where the bias-

correction method is found very reliable for historical conditions. The amount of rainfall 

is increasing in the northern region whereas decreasing in the central region at RCP8.5. 

The amount of rainfall during the cropping season is also decreasing but higher than the 

non-cropping season this could be due to monsoon variability. Whereas, the spatial 

variability can also be observed as the rainfall amount is increasing in the northern irrigated 

region and decreasing in the central rainfed region. The combined effect of increasing 

temperature and decreasing annual rainfall during the cropping season in the central rainfed 

region from 1990 to 2080 can also have a negative influence over the crop productivity in 

these regions. So it is observed that there will be spacial and temporal variability in the 

rainfall patterns in both the regions, which can affect crop productivity. 

4.6.2 Crop Simulation Outputs 

The sensitivity of cotton productivity is analyzed in the study with the changing 

climate. In the central region (Figure 5.1a&b) the yield increased from 2020 to 2050 and 

then 2080 for model data in both the RCPs for all sowing dates. But, for D1 the rainfed and 

irrigated practices show negligible variations. The weather is cooler in comparison to the 

northern cotton-growing region so the increasing temperature is not much affecting the 

yield, whereas increasing CO2 in also favoring the crop.  For bias-corrected data, there is a 

slight difference in yield (Figure1c&d) between the rainfed and irrigated practices. This 

can be because of better water availability as the model is wet and underestimate maximum 

temperature. As mentioned earlier the bias-corrected is a better representative of the 

weather data since the bias-correction method is found performing better. While 

considering the bias-corrected value, we observe in both the RCPs irrigated conditions has 

better productivity than rainfed with changing climate. The yield increased 4% to 5.3% at 

RCP4.5 and 13.3% to 37.7% in 2050 and 2080 respectively from the present as per model 

data. The yield for bias-corrected data increased 14.7% to 5.8% at RCP4.5 and 16.2% and 

44.3% at RCP8.5. Similarly, the LAI increased by 3.1% to 9.6% at RCP4.5 and 16.2% to 

40% in 2050 and 2080 respectively as per model data (Figure 1e&f). And for bias-corrected 

data increased 16.7% to 16.7% at RCP4.5 and 18.8% and 45.1% at RCP8.5 (Figure 
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5.1g&h). The yield is increasing with late sowing and irrigated is performing better than 

the rainfed. Therefore, in this region, late sowing with proper irrigation strategy can be 

beneficial. The relationship of crop yield and LAI if not simple and varies with crop to crop 

and with developmental stages. However, this study suggests that the higher LAI of cotton 

produced a higher yield. Thus LAI plots show a similar tendency as yield. An increasing 

yield signifies that changing climate and with late sowing is beneficial if the Akola region. 

In the northern region (Figure 5.2a&b), the dry yield for the model projected data is higher 

for 1990 then 2020 in both the RCPs and increases with the changing climate in 2050 and 

2080. There is a slight variation in yield with irrigated higher than the rainfed practices and 

slighter variation between the two RCPs. The yield for the model projected weather data 

in higher than its bias-corrected values (Figure 5.2c&d). This could be again due to the wet 

bias of the model in this region underestimation of maximum temperature. The yield 

increased 12.5% to 23.3% at RCP4.5 and 3.7% to 2.7% in 2050 and 2080 respectively from 

2020 as per model data. The yield for bias-corrected data increased by 10.1% to 18.1% at 

RCP4.5 and declined by 4.7% and 7.6% at RCP8.5. Similarly, the LAI increased 9.7% to 

22.0% at RCP4.5 and 4.5% to 16.3% in 2050 and 2080 respectively as per model data. And 

for bias-corrected data increased 10.5% to 19.3% at RCP4.5 (Figure 5.2e&f) and declined 

6.6% and 18.1% at RCP8.5 (Figure 5.2g&h). Again for both RCPs late crop shows better 

yield. Rainfed and irrigated crops show better yield in RCP4.5 than RCP8.5 in all sowing 

dates with model data. On the contrary for bias-corrected data, there is a reduction in yield 

from 2020 to 2050 and further, it increases in 2080. An almost similar trend is followed by 

LAI as well. Late sowing is found beneficial in future climate as per model projections as 

well as with the bias-corrected data for both the regions. This can be because the crop is 

able the escape the harsh summer season with the rising temperature. It has to be balanced 

as such is also prevented from the frost days of winter to prevent damage. Thus sowing 

dates are to be carefully strategized here. 
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Figure 5.1 Simulated dry yield (Kg/ha) for historical (1990), present (2020), near future (2050) and far future (2080) for rainfed irrigated and 

potential productivity for three sowing dates in Akola (central) cotton producing region. 
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Figure 5.2 Same as Figure 5.1 for Hisar (northern) cotton producing region.  
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In the box plot of percent deviation of yields (Figure 5.3a&b) and LAI (Figure 5.3c&d) for 

Akola and Hisar are different at different RCPs from baseline 2020 to 2050 and 2080.  As 

in Akola, the yields are higher for RCP8.5 than RCP4.5, whereas in Hisar yields are lower 

in RCP8.5 than RCP4.5 for both model and bias-corrected data. In Akola (central) at 

RCP4.5, the highest positive deviation is for bias-corrected data in 2050, whereas for 

RCP8.5 2080 climate production has much variability with positive deviation than 2050 

(Figure 5.3a&c). The LAI also follows similar deviations as yield. Whereas in the Hisar 

(northern) region for the bias-corrected RCP8.5 climate maximum variability with negative 

deviation is observed for both yield (Figure 5.3b&d) and LAI. The yield is also higher in 

the far future more prominently in RCP 4.5. For model and bias-corrected data in RCP4.5 

positive deviations are higher for 2080 than 2050, so in Hisar, the crop yield improves in 

RCP4.5. Which is not the case in RCP8.5, where if falls for both 2050 and 2080. With a 

maximum decline in yield and LAI for RCP8.5 in 2080. The reason can be, the crop has 

achieved maximum tolerance for the temperature at RCP4.5 in the hot and dry northern 

cotton-growing region and further increase even with increasing CO2 is detrimental. 

Whereas in the central region which is cooler and wetter increasing temperature is not a 

hindrance and at the same time increased CO2 is favoring the production.   

In the (Figure 5.4) percentage deviation in yields from the baseline 2020 to 2050 and 

2080 is plotted for three different sowing dates practiced widely in Akola and Hisar region 

for rained, irrigated and potential conditions. The deviation for potential productivity 

positive in both the regions higher values in RCP8.5 than RCP4.5 in Akola and RCP4.5 

than RCP8.5 in Hisar. The sowing date D1 is most favored as per model data and D2 as 

per bias-corrected data in rainfed condition and D2 in irrigated conditions (Figure 5.4a&b). 

Whereas D1 has higher yield potential in RCP4.5 (Figure4c). At RCP8.5, 2080 has a higher 

positive deviation than 2050. In rainfed condition, D1 and irrigated condition D2 is 

beneficial in 2080 at RCP8.5 (Figure 5.4d&e). Again the D1 has higher yield potential in 

RCP8.5 (Figure 5.4f). Therefore, irrigation strategy has played a beneficial role for D2, 

whereas not it has not much impacted other sowing dates, especially for the late sown crop. 
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In the northern region at RCP4.5 in rainfed conditions yield is higher in D2 as per model 

data and D1 as per bias-corrected data for both 2050 and 2080, whereas late sown crop has 

a higher positive deviation in irrigated conditions (Figure 5.4g&h). And the yield for 

potential conditions are higher in D2 in both 2050 and 2080 (Figure4i). Again at RCP8.5 

yield is better for D1 with a slight positive deviation as per model data and least negative 

deviation as per bias-corrected data in rainfed and irrigated conditions (Figure 5.4j&k). 

The difference is deviation is negligible for potential productivity among the sowing dates 

(Figure 5.4l).  In this study generally, the late sowing D3 is found beneficial with the 

climate change scenarios in both the regions. And the percentage change from the present 

is higher for D1 and D2 with model and its bias-corrected data in Akola and D2 and D1 

with model and its bias-corrected data respectively in Hisar. So with the changing climate 

positive variation is also higher for the early sown crop from the present.             

As per climate observations, during RCP 8.5 there is a slight rise in temperature in 

this region with increased rainfall and CO2. This could suitable for the crop in the central 

region. Therefore, the yield has increased to a larger extent. This signifies the suitably of 

crop in this region at the RCP8.5 emission scenario here. Whereas in the northern region 

the temperature slightly rises form present in RCP4.5 and then RCP8.5 and the 

precipitation increases till RCP4.5 and then reduces in RCP8.5. Thus the crop could stand 

an increase in temperature till RCP4.5 and increased CO2 and precipitation also benefitted 

the productivity. But, beyond that at RCP8.5 the plant could not tolerate increased 

temperatures with reduced precipitation. So, productivity increased in RCP4.5 and 

declined in RCP8.5.  Therefore, in the future at RCP4.5 northern regions and RCP8.5 

central regions can facilitate cotton production with proper management strategy.  
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Figure 5.3 Box-plot for percentage deviation in yields and LAI from the present to near future (NF) and far future (FF) for the three sowing dates in 

different climatic conditions in both RCP4.5 and RCP8.5 both for model (M) its bias-corrected (B) climate data. 
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Figure 5.4. Percentage deviation of yields from the 2020 present to near future 2050 (NF) and far future 2080 (FF) both for model (M) and bias-corrected (B) climate 

data for three sowing dates in Akola region as 20th Jun (D1), 06th Jul (D2) and 21st Jul (D3) and in Hisar region as 10th May (D1) 21st May (D2) and 06th Jun 

(D3).    
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4.7 DISCUSSIONS 

Climate change is projected to have a significant impact on agricultural productivity. 

So for the assessment of vulnerability and adaptability various GCM and RCM projections 

are used. Where RCMs has the potential to improve the representation of the climate 

information and therefore more useful than the GCMs (Zacharias et al., 2015). Various 

studies are conducted based on GCMs projections to assess the impact of cotton with 

climate change. The climate data was extracted from a regional model RegCM4 forced 

with global model GFDL-ESM2M which captures seasonal precipitation (Choudhary et 

al., 2018) and temperature (Garg et al., 2015) best combined mean skill. Significant dry 

bias is observed over a greater part of India which appears to be more pronounced in central 

India and wet bias in parts of northern India (Mall et al., 2018). These biases can be induced 

due to 'systematic model errors', 'boundary conditions' etc. So, before applying it in 

hydrological modeling and crop modeling, these biases has to be reduced with some 

statistical transformations and then calibrated with the observation data. Typically, biases 

include innumerable wet days with low-intensity precipitation and erroneous assumptions 

for extreme temperature (Ines and Hansen, 2006; Teutschbein and Seibert, 2012). Various 

methods to adjust the biases in RCM simulations include 'linear scaling, local intensity 

scaling, power transformation, variance scaling, distribution transfer approach as by 

probability mapping (Ines and Hansen, 2006), quantile mapping (Sun et al., 2011), 

statistical downscaling (Piani et al., 2010) and histogram equalization (Rojas et al., 2011).  

In this study 'Distribution mapping of precipitation and temperatures by quantile mapping' 

method is utilized to reduce uncertainty linked with model data The change in temperature 

in these zones is most likely periodic that is expected to increase in the near future and far 

future as per model. The increase in temperature is not well depicted at different RCP 

scenarios with the model and exhibits cool bias (Rana et al., 2018). 

Climate variability will affect the crop yields by causing climatic stress during the 

growth stages of the plant life cycle. Crop growth models are able to capture the climatic 

stress for crops such as cotton (Hebbar et al., 2008; Anapalli et al., 2016) as a credible 

prediction too. This also helps to strategize the mitigation and adaptation measures. Studies 
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indicate that increased temperature in future scenarios could adversely affect the yields. 

However, elevated CO2 during the projected climate change could partially compensate for 

yield reduction due to the fertilization effect (Hebbar et al., 2008; Anapalli et al., 2016). 

The enhancement in photosynthetic responses in the crop is due to increased CO2 

concentration in future emission scenarios and this effect is found more pronounced in C3 

plants such as cotton than other C4 plants (Leaky et al., 2009).  Availability of moisture 

also plays a vital role in productivity for cotton even with the availability of irrigated water 

during the excess and deficit year (Shikha et al., 2018). Also, all the cotton-growing regions 

are not likely to be affected by some degree as projected by climate models, neither the 

crop physiology is affected in a similar pattern.   

In a study by Anapallai et al. (2016) over the Mississippi Delta region (USA) with 

climate projections based on an ensemble of multiple GCMs (Global Climate 

Models/General Circulation Models) at all RCP scenarios and crop growing model ‘CSM-

CROPGRO-cotton v4.6 module within RZWQM2 model’. It was observed that under 

irrigated conditions yield increased in RCP 2.6, 4.5, and 6.0 for the years 2050 and 2080 

and RCP 8.5 2050 but reduced in RCP 8.5 in 2080. Under rainfed conditions, yield declined 

for all RCP scenarios in both the years 2050 and 2080. Although the rainfed crop is found 

most vulnerable towards seasonal variations. However, after some extent irrigation is also 

found incompetent when yield and fiber properties of cotton are concerned and throughout 

the experiment the response of fiber quality and strength to irrigation was inconsistent 

(Pettigrew, 2004b; Karademir et al., 2011). Similar studies in the cotton-growing regions 

of India by Hebbar et al. (2013) using GCM projections in the INFOCROP cropping model 

suggested that with climate change and increased temperature and rainfall, cotton 

productivity is favored in southern and central zones which is comparatively cooler. And 

in the northern zone where the cotton is grown at relatively higher temperatures, the yield 

declined due to climate-induced high temperatures. This study also corroborates with this 

study stating that in the future climate, the Hisar (northern) region if favored at RCP4.5 

and detrimental at RCP8.5 for the cotton. Whereas in the Akola (central) region with a 

relatively cooler climate the productivity is favored at RCP 8.5 than 4.5.   
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A projected increase in temperature and erratic behavior of precipitation with climate 

change will shift the seasonal regime are impeding the crop-calendar (Bhatti et al., 2016). 

The response of crops such as wheat (Sultana et al., 2009), rice (Mall et al., 2018), cotton 

(Hebbar et al., 2008; Gwimbi, 2009; Shikha et al., 2019) etc. towards elevated temperature 

and CO2 will also be affected. Precipitation is the limiting factor that plays a vital role by 

changing or altering the crop water requirements. As an adaptive measure changing the 

planting time of wheat (rabi crop) showed a decrease in crop water requirements for an 

early sown crop, whereas for cotton (Kharif crop) late sowing was found beneficial due to 

reduced crop water requirement when compared with baseline data (Bhatti et al., 2018) 

that corroborates with this study. In the semi-arid zones of wheat and cotton cropping 

systems of Pakistan yield is higher for the late sown crops than the earlier ones (Sultana et 

al., 2009). Studies also indicated improvement in fiber quality (i.e. micronaire) with 

delayed sowing if future (Luo et al., 2016). Similarly, other crops such as rice and wheat 

delay in sowing by 15-21 days can be a mitigation option for the rise in temperature by 

5.1°C in the Punjab region (Jalota et al., 2013). In some studies, it is also evident that early 

planting (six weeks earlier than the normal/ historical average) was beneficial for irrigated 

cotton and in climate change scenarios. It helped to boost the yield compensate for loss for 

irrigated crops and partially for the rainfed crop (Anapallai et al., 2016). 

The physiological complexity of the cotton crop makes scheduling of the irrigation and 

nutrients also too difficult to assess in comparison to other field crops (Loka and 

Oosterhuis, 2010; Singh et al., 2014; Shikha et al., 2017). Hybrid cotton is a nutrient 

exhaustive and long duration crop (Nehra et al., 2004). Erratic rainfall is a primary 

constraint for the management of nutrients in rainfed crops affecting the physiological 

growth during both the vegetative and reproductive phases (Blaise, 2006).  It has a 

remarkable ability to produce 'repeated flushes fruiting parts' which helps in compensating 

early-season damage due to stress (Singh et al., 2014). Temperature controls the rate of 

plant growth, flowering, ball maturation and developmental events in cotton (Baker, 1965) 

Temperature stress above optimum can induce ball abscission, reduced ball size and yield 

(Reddy et al., 2005). With elevated CO2 it was observed that carbon exchange rates, 
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reproductive bodies improved (Reddy et al., 2005) and increased plant height and leaf 

number, reduced square and ball shedding and delayed leaf senescence occurred (Singh et 

al., 2014). In the regions where the present temperature is optimum, the doubling of CO2 

also could not efficiently ameliorate the effect of high temperature (Reddy et al., 2005). 

When cotton plants are grown under moisture deficit conditions, infestations can be seen 

in leaf photosynthesis as it gets reduced with the combination of stomatal and nonstomatal 

limitations (Turner et al., 1986; Pettigrew, 2004a). Lint yield is generally reduced because 

of reduced boll production, primarily because of fewer flowers but also because of 

increased boll abortions when the stress is extreme and when it occurs during reproductive 

growth (Pettigrew, 2004b). Some studies suggest, as in most plants, leaf water potential is 

reduced under drought conditions, but cotton has the ability to osmotically adjust and 

maintain a higher leaf turgor potential (Nepomuceno et al., 1998; Karademir et al., 2011). 
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CONCLUSIONS 

 

The objective of this study is to analyze the impact of climate change on cotton crop. 

An increase in temperature and precipitation is expected with climate change with an 

enormous increase in CO2 concentrations. Although with changing climate, weather almost 

remains similar to the average. But the intensity and frequency of intermittent precipitation 

varies with longer periods of dry spells and extreme hot and cold days. Which is threatening 

for the crop productivity across the globe (Liebig et al., 2012). With this still evolving 

climate change scenarios, our soil, water and other natural resources are deteriorating 

(Gurdak et al., 2012). Elevated temperature and carbon dioxide affects the biological 

processes like respiration, photosynthesis, plant growth, reproduction, water use etc 

(Murthy, 2002). The shift in the seasonal pattern will also disturb the crop-calendar. 

The economy of an agro based country like India is predominantly based upon the 

agriculture sector. This includes the production of edible crops for food security and 

commercial crop as well for economic empowerment. India has highest cotton production 

and also at the first place in terms of acreage in 2015-2016 (Status of cotton report 2017). 

However, the average productivity in India is 522 kg/ha with a gap of 243 kg/ha which is 

lower than the world average 765 kg/ha. The reasons behind this was observed as abiotic 

stress due to weather aberrations and biotic stress due to pest infestation. The incidence of 

pest and disease specially sucking pest is major concern nowadays after the introduction 

of Bt-cotton.  

Cotton is world's most important fibre crop and second most important oil seed crop 

(Freeland et al., 2006). It is a source of fibre, oil for human consumption, protein meal for 

livestock feed and potentially a fuel for diverse industries. The waste after ginning can also 

be used as fertilizer and cellulose as paper and cardboard (Freeland et al., 2006). Cotton is 

a fibre crop and the oldest among the commercial crops of global significance. It belongs 

to Gossypium genus of family Malvaceae. It is warm season crop and grown worldwide 
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with narrow temperature range. The plant is unique because it’s a perennial plant with an 

indeterminate growth habit and has perhaps the most complex structure of any major field 

crop. Due to its complex growth habit is extremely sensitivity to adverse environmental 

conditions. Better understanding of cotton physiology and its response towards changing 

environment is significant for the commercial production of the crop. The combination of 

warm and dry weather conditions along with abundant sunshine and sufficient moisture 

during the bolls opening till the harvest will maximize yield and quality potential (Freeland 

et al., 2006). Therefore, for attaining its potential productivity, it requires long frost-free 

days, warm season with ambient temperature, plenty of sunshine, and a moderate rainfall 

usually from 450 to 750 mm. 

Along with experimental field studies, crop and climate are also widely used for 

research purposes to study the crop productivity and soil water balance with the changing 

climate. Modeling studies nowadays are essential for the effect of elevated CO2, increasing 

temperature, both together water balance and nutrition with the crop simulation models as 

they give good overview about the crop development which is further designed for the tests 

and the predictions (Schlenker et al., 2009). It helps in assimilating field experiment based 

knowledge for computation. It benefits scientific communities for interdisciplinary 

research to solve problems at the farm level. It gives us cost-benefit approach for 

experimentation of different management strategies (Jones el al., 2003; Hoogenboom et 

al., 2015).  

 Field studies conducted for cotton crop, showed that the vegetative growth is 

increased by increasing temperature and CO2 together (Reddy et al., 2005). This could be 

because of the pretext that vegetative growth may require lesser time to support more fruit 

loads (Jalotaa et al., 2009). Therefore, reduced vegetative growth ‘cutout’ may occur 

forthwith and consequently reduce potential of crop yield (Lawlor et al., 2014; Pettigrew, 

et al., 2002). Further curtailment in time for ‘cutout’ can advance maturity, therefore 

decrease the yield (Bange et al., 2004b). It is also reported that higher vegetative growth is 

good to support yield of transgenic cotton with additional and early fruiting bodies 

(Constable et al., 2006). The effect of elevated CO2 masked the apparent high temperature 
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injury that limited the growth of all plant organs, especially reproductive system (Reddy et 

al., 1991; Reddy et al., 1996; Reddy et al., 1999). Studies also indicate that bolling periods 

will be shorter under warming climate (Reddy et al., 1999; Luo et al., 2014). Therefore, 

the fibre quality is compromised and boll size are reduced despite potentially increased 

fruiting periods and more fruit. This reduction in yield may be due to cut out in vegetative 

phase or reduction in boll size in reproductive phase (Lawlor et al., 1991). 

  In this study, while estimating the implications of increasing temperature and CO2 

concentrations on cotton yield using a crop model DSSAT. Three different Bt-cotton 

varieties Pancham-541, RCH-791 and SP-7007 are considered with three sowing dates 10th 

May, 21thMay and 06th June. The modeling output suggests that increasing temperature and 

CO2 has a major role to play in the cotton productivity. Increase in temperature negatively 

impacted the crop productivity in general, but this effect was moderated by increasing CO2. 

For Pancham-541 increasing 1°C of temperature and 50ppm CO2 was beneficial but further 

2°C and 3°C is harmful, which was not the case with RCH and SP varieties. For SP-7007, 

increase in temperature without an increase in CO2 is harmful but when increasing 1°C 

combined with 50ppm and 2°C with 100ppm are beneficial but further 3°C with 150ppm 

are harmful.   

The ET rate and LAI has been increasing with increasing temperature and CO2 for 

all the varieties for all the sowing dates. Whereas, Harvest index and maturity period were 

decreasing in general for all temperatures above optimum. This reduces the number of 

retained bolls, boll-cellulose filling during maturation period and its rate of filling thus 

affecting the size of the boll under ambient and elevated CO2. Elevated CO2 helps to 

increase the total biomass chiefly due to increased photosynthesis simulated and increased 

boll weights because of increased branching, leaf area and increased fruiting sites every 

branch. It is observed from the study that with 1°C rise in temperature and corresponding 

CO2, the yield of Pancham-541 and SP-7007 has increased, when sown in May. Therefore, 

early planting of these two crop varieties can be recommended in near future. Further SP-

7007 variety is found to be least sensitive to the increase in temperature by 2°C. Thus, it is 

concluded that the increasing temperature at the present rate will be harmful for the 
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productivity of cotton under changing climate; particularly over a semi-arid region like 

Hisar for all three varieties. Therefore, productivity of cotton will reduce in future where 

the temperature is near optimum for the existing variety. The present study suggests 

necessary management practices such as using heat tolerant cultivars and changing the 

sowing time (early) will be needed in future to overcome the climatic constraints. 

These modeling studies can also be applied to analyse the influence of weather on 

crop performance. The model takes care of the interaction of crop in a complex way for 

soil and management interactions to assess its vulnerability and adaptability. Thus, the 

study helps in understanding the uncertainty in crop production with the changing climate 

and associated economic risks. Presently, attempts are made by the government for 

providing farmers with management strategies through extension services using the crop 

models. Further our objective is to integrate the study with future climate data from the 

climate models to analyse the vulnerability of crop with the changing climate. Which will 

be a move towards sustainable agriculture by the means of Climate-Smart-Agriculture 

(CSA). 

But before we analyse the future climate in this study we tried to examine the biotic 

stress due to stress. These pests can reduce the yield upto 57.9 % in cotton field (Sharma, 

1998). The meteorological parameters and sowing window have been reported to have 

significant influence in the pest population (Bishnoi et al., 1996). Temperature and 

humidity has found to favour the pest and diseases (Janu et al., 2018). The pest population 

can be influenced by weather variables such as maximum and minimum temperature, 

precipitation and relative humidity with pests on the study region (Janu et al., 2017, Swami 

et al., 2017). Statistical correlation and regression analysis can be used to predict the pest 

infestation and population for area of interest.  These ‘Weather-based pest forecast models’ 

are termed as ‘Forecasters’ in crop protection parlance. Recently, for real-time assessment 

remote sensing and GIS approaches are used widely. This can help the researchers’ farmers 

and policy makers to design the Integrated Pest Management (IPM) strategies. Remote 

sensing approach can help to quantify the crop health and for the early detection of pests 
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(Ray et al., 2011). It is utilised as a tool for monitoring and mapping stress, yield, quality 

of crop, crop development, nutrient deficiencies, predicting or detecting the pest and 

diseases etc. (Riley, 1989; Neteler et al., 2011; Gooshbor et al., 2016). The pest can be 

identified and validated further with the field observations. 

The study indicates that the NDWI and NDVI calculated using LANDSAT images 

and the field observations has very strong resemblance for the pest infestation in the study 

region. The stress in cotton crop caused by the pest attack are clearly visible in derived 

NDWI and NDVI outputs. Thus, these vegetation indices can be used as an indicator to 

perceive the threshold for zoning the outbreaks. Also, when the crops are affected above 

the ETL they can be identified and therefore forecasted by modelling approaches. This can 

help the researchers’ farmers and policy makers to design the Integrated Pest Management 

(IPM) strategies. The improvement in statistical approach and models could further help to 

analyse the impact of climate change on the pest population and regional distribution. 

These calibrations and forecast can be validated with the observed populations and remote 

sensing applications for more precision and real-time monitoring. For better productivity, 

there is need to broaden the scope and evaluate the capabilities of pest and disease models 

and compliment it with remote sensing technique for monitoring the damage and take 

timely IPM measures. 

This analyse the vulnerability of cotton crop due to changing climate in different 

agroclimatic zones of cotton the central rainfed and northern irrigated is chosen for the 

study. For this having reliable climate data is essential. Climatic projections from various 

global climate models (GCMs) and regional climate models (RCMs) are being utilised for 

this purpose. But they still have significant errors and biases. While GCMs are the primary 

source of information on climate scenarios, but still have the drawback of having coarser 

spacial resolution and inability to capture inter-annual variability which is rectified by 

downscaling with RCMs on regional scales (Metzger et al., 2005). GCMs can also be used 

with various downscaling approaches (Thomas et al., 2008) for these purposes. Climate 

change scenarios and historical data GFDL-ESM2M-IITM-RegCM4 are downloaded from 
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archives of ESGF for the CORDEX-South Asia experiment (RegCM4‐GFDL) with the 

host GCM (GFDL‐ESM2M). These GCMs and RCMs data can be further bias-corrected 

by various methodologies viz., Linear Scaling, Delta change approach, Quantile Mapping 

(QM), etc. (Qian et al., 2016). In this study Quantile Mapping (QM) approach is utilised 

since it is reported to perform better in India for precipitation and temperature both (Mall 

et al., 2017). The observations versus simulations and their bias-corrected version offer a 

comparatively viewpoint for credible information (Gudmundsson, 2014; Maraun, 2016). 

These climate model outputs serve as an input for the hydrological and crop simulation 

models. 

The performance of RegCM climate model is therefore assessed further at different 

climatic regimes and its applications in crop simulation models. It is observed that the RCM 

model is wet and shows high rainfall intensity in terms of frequency and number of rainy 

days. A notable decline in maximum temperature and minimal decline in minimum 

temperature is observed in RCM data. So we can say that the model shows night-time 

warming with reduced diurnal temperature. Less number of intense warm (maximum 

temperature ≥ 45 °C and ≥ 40 °C) and high cold events (minimum temperature ≤5 °C and 

≤ 3 °C) is captured in the model. The model also captures numerous days with rainfall > 0 

mm/day also referred to as ‘drizzle effect'. However, it rainfall > 5 mm/day and > 10 

mm/day values were very close to the observed. RCM model highly underestimates 

temperature and overestimates rainfall which resulted in biasness when compared with 

observed station data.  

Bias-correction through QM approach showed good agreement with the observation 

annually but failed to correct daily variability as it is ‘distribution-based method'. The QM 

approach also performed better in the semi-arid northern (Hisar) region than in central 

(Akola). The MBE and RMSE values of weather data show considerable improvement 

when bias-corrected. Simulating these weather data in DSSAT, the deviation in the yield, 

LAI and NM is observed higher for the model then the bias-corrected in general when 

compared with observations in both the regions. The percentage deviation has reduced for 

bias-corrected variables. The I and RMSE values have also improved for the yields. The 
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bias-corrected yield and other physiologies show good agreement with observed.  The 

yield, LAI and NM are higher for the crops in the northern region which is also evident 

from the actual observations. Therefore, we can say the crop is performing better in the 

northern region and there is much scope of improvement in the productivity with the 

management practices.   

Climate models predict an increase in global average temperature for future climate 

change which could affect the crop productivity (IPCC, AR5, 2014).  Therefore, predicting 

the impacts of future climate on the food and fiber production are essential for devising 

suitable adaptations strategy. So, in this study impact of climate on cotton crop change 

using RCM data from CORDEX-SA experiment (GFDL-ESM2M- RegCM4) at RCP4.5 

and RCP8.5 are studied at different regions. And the period considered for the study are 

1971-2005 (1990), 2006-2035 (2020), 2036-2065 (2050) and 2066-2095 (2080). The RCM 

projected daily weather from were downloaded and extracted.  

With the changing climate, the model predicts slightly increasing minimum 

temperature from historical to far future and from RCP4.5 to RCP8.5. The deviation is 

higher in the Hisar region than the Akola region. Thus there is a possibility of increasing 

temperature at a higher rate in the northern than the central cotton-growing region. Again, 

the model suggests there will be an increase in the amount of precipitation in Hisar till the 

near future and it may decline further in the far future. This characteristic is depicted with 

the amount of precipitation during the cropping season too. The model slightly 

overestimates the rainfall in these regions, where the bias-correction method is found very 

reliable for historical conditions. Although, the amount of rainfall in the central rainfed 

region is presently more than the northern region. But the model predicts decreasing 

precipitation from 1990 to 2080 in this region. The amount of rainfall is increasing in the 

northern region whereas decreasing in the central region at RCP8.5. The combined effect 

of increasing temperature and decreasing annual rainfall during the cropping season in the 

central rainfed region from 1990 to 2080 can also have a negative influence over the crop 

productivity in these regions.      
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In the central region (Akola) the yield increased from 2020 to 2050 and then 2080 

for model data in both the RCPs for all sowing dates. The weather is cooler in comparison 

to the northern cotton-growing region so the increasing temperature is not much affecting 

the yield, whereas increasing CO2 in also favoring the crop. While considering the bias-

corrected value, we observe in both the RCPs irrigated conditions has better productivity 

than rainfed with changing climate. This can be because of better water availability as the 

model is wet and underestimate maximum temperature. The yield is increasing with late 

sowing and irrigated is performing better than the rainfed. Whereas in the northern region 

dry yield for the model projected data is higher for 1990 then 2020 in both the RCPs and 

increases with the changing climate in 2050 and 2080. Rainfed and irrigated crops show 

better yield in RCP4.5 than RCP8.5 in all sowing dates with model data. For bias-corrected 

data, there is a reduction in yield in RCP 8.5. Again late sowing is found beneficial in future 

climate for in this region too. This can be because the crop is able the escape the harsh 

summer season with the rising temperature.  

As per the deviation from present climate is concerned on the Akola region, the yields 

are higher for RCP8.5 than RCP4.5, whereas in Hisar yields are lower in RCP8.5 than 

RCP4.5 for both model and bias-corrected data.  So in Hisar, the may crop yield improve 

far future in RCP4.5. Whereas in RCP8.5, it falls for both near and far future. The reason 

can be, the crop has achieved maximum tolerance for the temperature at RCP4.5 in the hot 

and dry northern cotton-growing region and further increase (as in RCP8.5) even with 

increasing CO2 is detrimental. Whereas in the central region which is cooler and wetter the 

slight increase in temperature is not a hindrance and at the same time increased CO2 is 

favoring the production. In this study generally, the late sowing D3 is found beneficial with 

the climate change scenarios in both the regions. And the percentage change from the 

present is higher for D1 and D2 with model and its bias-corrected data in Akola and D2 

and D1 with model and its bias-corrected data respectively in Hisar. So with the changing 

climate positive variation is also higher for the early sown crop from the present.  

As per climate observations, during RCP 8.5 there is a slight rise in temperature in 

this region with increased rainfall and CO2. This could suitable for the crop in the central 
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region. Therefore, the yield has increased to a larger extent. This signifies the suitably of 

crop in this region at the RCP8.5 emission scenario here. Whereas in the northern region 

the temperature slightly rises form present in RCP4.5 and then RCP8.5 and the 

precipitation increases till RCP4.5 and then reduces in RCP8.5. Thus the crop could stand 

an increase in temperature till RCP4.5 and increased CO2 and precipitation also benefitted 

the productivity. But, beyond that at RCP8.5 the plant could not tolerate increased 

temperatures with reduced precipitation. So, productivity increased in RCP4.5 and 

declined in RCP8.5.  Therefore, in the future at RCP4.5 northern regions and RCP8.5 

central regions can facilitate cotton production with proper management strategy. 

As an adaptation measure alteration in sowing dates and irrigation and fertilizer 

scheduling will play a significant role. For cotton, late sowing is seen as beneficial with 

climate change. This delayed sowing owes its response due to delayed onset of monsoon 

in the study region where the rainfall intensity has increased during the cropping season. 

The percent deviation of yield and LAI from present signifies in future climate in the 

northern region (Hisar) is increasing for near future and far future at RCP4.5 and declining 

for near future and far future at RCP8.5. In the central region (Akola) it increases in near 

future and then far future as per both model and its bias-corrected data. So the is a scope 

of better productivity in the northern region at RCP4.5 and in the central region at RCP8.5 

with the changing climate when proper irrigation is provided. To influence the yield of 

cotton, it is required to go for timely sowing of the plant which means that sowing should 

be carried during the most optimum period.   

The study embrace utilization of crop growth models for developing crop 

management strategies, yield forecasting, and the sustainability of the crop, climate change 

impact assessment, and economic analysis for bringing precision in agriculture. The 

growers and scientific communities have to about site-specific crop management and 

variability within the field for potential productivity with the changing climate. This can 

be done by modifying the sowing window, adopting stress-resistant varieties, developing 

new-age cultivars, improvising management and implying climate forecasts in cropping 

decisions. Selecting weather tolerant varieties and pest-resistant crops can also help in the 
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adaptation and sustainability of the crop. To influence the yield of cotton, it is required to 

go for timely sowing of the plant which means that sowing should be carried during the 

most optimum period.   

Uncertainty and variability in future climate may affect the growth and development 

of crop.  The quantum and distribution of temperature and moisture conditions for the crop 

is predominant for researchers and farming communities for climate-smart agriculture, 

especially in the rainfed regions.  Future research could apply these model-simulated data 

to explicitly study the impact of climate change on crop productivity.  This can also be 

complemented with more reliable model data and bias-correction techniques to 

complement the research.  Although, the model bias-corrected data showed a better 

representation of the actual weather of a region, but still, there are some limitations and a 

lot needs to be done for its improvement in the approach. Understanding the ambiguous 

and unpredictable character of biases in climate models and bias-correction approaches is 

essential in studying the impacts of future climate.  Development of physiology linked 

economic models at the farm-level for decision-making under climate change scenarios are 

important. Coupling the pest attributes with the crop modeling to forecast or estimate the 

climate-induced impacts on crops and pest need of the hour for cotton crop.  Similarly 

understanding the quantum and characteristic of pest and diseases are important to for 

predicting the infestation and take timely measures. Forecasting the pest along with real-

time monitoring with the remote sensing approach could help the farmers and policy 

makers for better pest management. 
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