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BREFACE

The efficient nase of Computer in various fields
requires not only extengive knowledge 0f the problens
£0 be solved but also very specialized computer ma@-
how. A knowledge of any one high level programming
language linits the problem that__ can be aolvéd to
fairly simple one from the computer specialists
gtand point.

Algol language degigned for scientific calculation
wag one of the earliest and most influential high-level
language. The most widely used version of the language
is kmown as Algol-60. Algol was the first language
which introduced the concept of bleck structured prog-
ronnes. And it is due to its expressibility and reada-
jbili%y it becane very popular in the educational field
for designing and temching art of computer programming.
In fact, deasign of number of languages like Pascal,
ngel—éa, PL/I etc. was heavily dependent on the design
phﬂ‘paaghy of ﬂgo]l._.

Among the higher level languanges our interest is
to study Algol-60, BHrief discription of the Rlgol
language ig given herewith,

Vi



DATA
TYPES: integer, real, Boolean
STREUCTURES: simple variables, arrays

DATA OPERATIONS:
+y=~y*,/,exponentiation ( ),
relational ( , , = 5 , #),
logical (= , v, o = )
CONTROL OPBRATIONS:
iy |
Af «condition> then <tatement>
if «ondition> then .statement> glse Jstatement) |
for gar> :=nl gtep n2 until nJ do
far <{yar) 1enl step n2 yntil while comditionddo
procedure call by uvvee of nane | '
return
PROGGRAN STRUCTU]
aimple statements, compound stateuents, procedures
" SYSTEM ENVIRONMERT :

usually batch

1/0 varies among implementation

library of standard functions

nn-Algol procedures sometimes permitted

mn~-time packages support 1/0 and epace allocation

I X



Data types and expressions in Algol are integers,
reals and Boolean. Arrays are of more genersl type and
they can have negative index seta.

A significant feature of Algol ig its block
structure. Blocks may be nested. Variable names
defined within & particular block nave the scope of
definition limited to the block in which £t sppears

‘and any inner blocks. Information sbout & variable
declared in a block is completely inaccessible cutcide
the block. 4n example of block structure is as follows:

Begin  zosl a,bjintoger o

a:n7.3; Dbi1=2.35; ocs=2;
begin integer a,cjreal b;

ainT; b3=3.5; cs=a+h;
end (a=7, b=3.5, c=12)

end (a=7.3, b=2.3, c=2)

Figure 1.1. Algol Block Structure

Upon entering a bioely all the variables declared
‘have storage allocated to theh, and upon exit from a
. block, the storage is deallocated.

Bloek structure provides a great deal of expressive
povwer. In a conditional ‘éxpressim, for example, where |



the _gmuai forn is |
if (condition) then (statement > else (statenent)
the gtatement ¢0 Do exocuted conditionally can De a
conpound stetement. Thus & statement which may be a
compound statement can be executed conditionally by
means of this single statement. | |
Algol pemite more powerful use of conditional
etotenents eleo guch ass " -
Atw({if B then C ¢lse D)
This is an assignment atatenent, which assigne to A
the value of C or D aeecrding as B is true or z@m. |

Huch flexibility is ullowed in the uge of pxﬂéed&re
parameters. The ncmes of roi-.-atines_ can be passed, and
data can be passed by value or by name. In passing para-
meters by wvalue, the actual gazmé:%er'a used in the eall
t0 the pmeeﬁmﬁa are evalusied and thege values are used
throughout the aiemtim of the procedure. In passing
by name, the names 0of wvalues sre passed and m:e accessed
by the procedure body as needed. Thisc means thet the
values nsy be chenged by the procedure before they are

used.

 In the definition of Algol, no user-dsfined external
procedures are allowed. Some implementations of Algal

X1



loogen this refetriétwu', even tothe point of permitting
access t0 procedures initially writtem in languages )
other than Algol. Recursion is permitted in Algol. The
following 48 an example of recursive procedurs to
c¢alculate a t&ctcﬁal;

integer procedure factorial (m);
| integer n;
factorials=if n<3 then n
S " elase n*factorial({n-1);

The one area in which Algol, as m:igihfalij defined,
1o quite deficient is that of 1/0. The langunge was
. primarily d}e;ﬂ.@ed as 8 way of expressing algoritims,
and I/0 statements were not made & part of the official
' language. Bach implementatiom of Algol must inciude
statements that permits I/0, dbut these tend to vary from
system to gystem.

In this mseztatim a compiler for a smibaet of
Algol-60 is descrided. It 45 writtem in PL/I language
availeable on copputer EC-10208. The diawerintiom has

| been divided into five cbaptsre.

In the first shapier & survey of ¢ampiler structurs
ig given, and fornal technigques nro expleinad.

X1



The second chapter 1lists the mbset of Algol-60.
This subset ie taken for implementation.

The third chopter explaing various datas stractures
used in the compiler implermatetion.

The fourth chapter describes the logic and algorithm
of the compiler. |

‘At the fifih eheopter progremming details of various
smbroutines is enplalined.

XU
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Compiler translate statements in a programming
language into instructions, which, pospgibly after
leé&ing. can be directly executed by the hardware
of gme computer, not necessarily the one on which
' the translation has taken vplace.

4 useful conceptualization of a conpiler is
that it 18 & pr‘ogmmt vhich tekes ag input a string of
characters representing a program in a language and
outputo a set of machine inetructions with the same
meaning ag wag intended by the statements in the
input. &4 naefﬁl nodel of thé étmemra of a compiler
is shown in figure 1.1, which shows the important
phagens involved during compilation. It has many
variations in practice. For iﬁstanee, not shown are
the importent functions of generating output listing,
and setting up tables and routines for run-time vei;ppe:t'.
Some compilers generate code as the gyntax analysis is
done and thus do not have an explicit code-generation
phase; many do no optimizationjand some conmbine lexical
- and syntax analyaes.



SCURCE PROGRAM

| Lexican amarysis
ﬂ*

__—1 SYNTAX ANALYSIS
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<

CBJECT PROGRAM

Figure 1.1. Phages of a Coumpiler



Figure 1.1 makes it clear that, there are several
major tasks that must e performed im tranclating
atatements in & high-level language into machine code
that is executable by hardware. Jur intention here is
$0 explain the more connmon ones and the principles on
which they are built.

1.1 Lexical snal

It geparateg characters of the source lsngusage
progran into groups that iogically belong togethex;
these groups are called tokens. The ususl tokens are
keywords, such as DO, IF, THES, identifiers, such as

IN or 1X, operaior synbols such as * or +, and punctuation

aynbols such as parentheses or comnsg. The output of the
lexical analyser is a stesm of tokens which 1.5« paased to
the next phase, the ayntax analyser, or paraer. The
tokens in this aiz:am can be mepreaented by eo&ea which we
-:, may regard as integers.

Figore 1.3 fllustrate the role of lexical analyzer
in transformetion of progranm text. It usually performs
several "cleaning functions to remove unneeded blanks,
comments, line numbers, end-of-record marks, carrisge~
tetaﬁt characters, and so forth, that have no meaning
to the t.mslaterf“;»- | |



Words in conputer languages usually belong to one
of three elasaéa: ($) identifiers (labels, varicbles),
{2) terminals (ocperators, reserved words), and (3) literals
(numerical constants, strings). The lexical analyzer
returmns to the parser a code for the token that it found.
‘In the cage that the token is an identifier ar enother tokenm
with a value, the value is also passed to the parser. The
usual method of providing this information is for the lexical
analyser to call & book-keeping routine which ingstalls the
actaal value in the ayubol table 4f it ie not already there.
' fhe lexicel esmalyzer then passes the two components of a
. token to the parser. The first is a code for the token
type {1dentifier}, and the second is the value, a pointer
%o the place in the sysbol table reserved for the
specific value found. : |

Characters from Loxical Code for |

program text Analyzer “1dckens

fables with
information
sbout symbola

Pigure 1.2 Model of lexical analyesis



The function of the syntax aualxsex i2 t0 recognize
the major constructs of the language and to call the |
appropriate action réutinea that will generate the
intermediate form for these constructs. General model
of a ssmtax analyzer is shown in figure 1.3.

Symbols from T :
analysis

structure of
tha progran

Figure 1.3, General Model of & Parsger

Two approsches are common in the design of compiler.
In one, the parser does & complete structural malyss:s of
 the input stream, amd the output is an internal form of
representation known as a tree. Control is then passed
to the semantic analyser. In the other, the parser is a

naster control rontine. wiich eallas on lexien)l and gemantic



analysis routines as it parses. In this case, the output
may be either an internal representation such as a tree
or machine language. - A cmwehmsﬁ,ggq _gfu&y of the mubject
is given in Aho and Ullman (1973), David Gries (1977).

ﬁhe top-down parsing algorithm bunda the syntax
tree, a%arts.ng with the root node and working down to the
sentence. It is described ag analysis by synthesias that is,
enalysis by atteopting o generate a program using the rules
of a grammar as productions. It checks to see whether or
not a group of one Or more synbols in the input stresa

gatisfies a particular produstion rule and predicts that
the string satisfies the right-hand side of this rule.

If 4t is wrong, 1t muast back ug to the beginning of the
'str.tug and whether the string satisfies another production
rule.

We will discuss this technigque in more detail since
it will be uged for the parsing in the cenpner presented
in this dissertation.

Botton up parsing treats grammar rules ag reductions.



Rather than trying to generate the entire program from
the initial symbol, a bottam up parser attempts to
reduce the entire program to the initial symbol of
gragnar. The parser checks t0 see whether or not part
of the string satisfies the right-hand side of a production
rule. If a geduction can be made, that part of the string
is replaced by the left-hand side of the production rule.
Parsing then continuves with the nodified string. 1If at
any point in this process the string cannot satisfy a
production rule, backup must oecur. To avoid backup, the
granmar is ugmually modified or regtricted. Simple prece-
dence grammars and operator precedence grammars are
restricted grammars. A grammar is a simple precedmee'
grammar when there is atmost tne relationship between
any two symbols, and no two production rules have identi.
cal right hand parts. Consider the following grammar
(expr) sim lexpr) + Lterm) | (term)
<€en> tt1= Jterm # <tactom>1 {factor>
actor) :i= (<expr> ) | (number) | |

Figure 1.4, Grammar for
‘bottom-up exanple



Thisn grmsz is not s pimple precedence graunar because

more than meé relationshiy holds in some cases (for

example botween + and <term)> , # snd Lexpr)>, (and
{expr>y ).

Zhis conflict can be removed by adding ‘additional ’ /
production rules to0 change the gz*amm of figure 1.4 to
the form showm in figure 1.5. Miz.f‘guze 1.6 showse the
precedence reiatianehiy for the new grammar.

8> s1= § o> #

o> 1= lexpr>

<expr) t3 = <axyr> + &>
&> 13 = Lerm> |
(teﬁp t3= (term) * (fastor)
Germs> 1= (factor)
{factor> st= ( <o>')
<factor> ii= (pumber)



__foy empry 45 + Sem>Jactor) dumvery () ¢

10

8>
- lexpr>

&>

perm>

<factor>

Qumbez)

{k

Figare 1.6. Simple precedence relationshipa

= ? 7
> > 2
= ¢ 4 <- <
S . > >
> > > 7
- Y ¢
5 > >
< & & < ¢ ¢
>
< < < 4 ¢ <
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The parsing algorithm uses a stack ag follows.

Bach incoming aymbol of the string being parsed ie
campared with the symbol at the top of the stack. The
relationship can be found by checking & precedence table
or precedence funetion baged on suck a table. If the
relationship between the symbol on the top of the stack
and the new gymbol 18 (. ors , the new eymbol is placéd
on the top of the stack if there is no relationship, an
‘error condition exists. If the rolationehip is.i)> , the
stack Lo searched downward until a relationship & is found.
This can be thought of as a scan fram right-to-left, in
émtm-at $0 the left-to-right scan to find the rdationship
«) + The handle then consiste of all symbols between the

(» and .> relationghips, and they are replaced by the
left part of the production rule whogse right part is
satiafizd by thene syﬁn.bnlsa An aggociated semantic
routine can be called at this tima.

Thé simple precedence method may be used for -
danguages with grme having few production rules
1f the rules can be modified to simple precedence form.
For languages with gmmﬁaze having many production rules,
the resulting table would be too large to be practical.
For some grammars, it is possible to replace the table by
precedence functions £ and g satisfying the following
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relations for all symbols 1 and J of the grammar.
2(1) 1) a2 14§
2(1) = gl(1) i 1=
£(i) > gls) 1z i ;>3

In contrast to a simple precedence grammar in which
relationships among all symbols must be considered, a
_parser for an dperator precedence grammar only considers
relatimships anmong terminal symbols. Froo 'the point of
view of the parser, in the grammar of gigure 1.4, these
az?e +o%y)s( 804 <numher> » plus the melcsing synbol #.

. A <num§ez>}_;’#
. > & & & >
» > > < > % >
( 4 & & = <
) > 2 > >
Lgumber> | P > > >
# - & & p < L
Figure i__,;g;?.f}gamr‘wr gzﬁce&e&@e relationships



13

Figare 1.7 ghowe the precedence relationghips for these
symbols. At most Gne precedence relationship can hold
between any two terminal symbols, and nonterminal aynbols
cannot be adjacent.

The parger stacks all incoming aymbols until the
relatimship .> holds between the top terminal symbol and
the incoming eymbol. The parser uses the Operator prece-
dence tables (which are smaller than simple precedence
tables since they involve only terminal symbols) or |
operator precedence MGtima based on thege tables. It
may use separate stacks for terminals (operators) and
non-terminals {operandg). When the relationship .> is _
found, the appropriate reduction can be made and the stack
modified. As the nenteminéls are ignored in parasing, the
operalor precedence semantic routines must do more than
the simple precedence aemantic routines to emsure the
correciness of the reduction. |

The cperator precedence method is applicable to more
languages than the simple precodence method. ¥When a parti-
cular terminal synbol is used in two different vays, however,
- there may be more than one precedence relationship betveen tvwo |
'témma symbols. For languages permittiing such usage, an

operator precedence grammar is not adeguate.:
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Simple precedence parsers snd operator precedence
parfers are not always satisfactory for programming
languages. It is often easier to determine the production
rule applicable to the handle of a string if we can look
at more pymbols ¢o the left and right. Parsers for (m,k)
precedence grammars, for instance, are more general than
simple precedence parsers in that they determine precedence
on the basis of at ,mam; @ syabols in the stack and k in the in-
put atring. Parsers for {m,k) bounded context grammars
cansider at most m aymbols t0 the left of a handle and k
%o the right to determine the sppliceble production rule.
Pareers for LR(k) grammers can deternine which non-temminal
should replace the handle by scanning the input string from
~left to right snd going at most k symbols to the right of
the handle. These parscrs store information with each
stocked iten that can be used to determine whether stacking
or reduction is $6 occure and if the latter, which production
rale i3 applicable.. |

Further information on persing methods can be faand
(@r&es. 197?) (Ano end Ulloan, 1973)..

The source progrem is transformed to an internal

representation by semantic analysis rontines and directed
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by the syntax analysis of the parser. The time af; whi.eh
swantie analysis ocecures ias influenced by the metﬁo&
choam for syntax analysis. To avoid having to w:gén
semantic sctions when back up is naeeamr. ummwiﬁ
processing may be deferred until P i s comylavim of syntax
proceseing. In this case. -aemant:lc enslysis may be dme

on & parase tree thayé--e the cutput of the pirser. Semantic
anelysis assonris&zéd with optimizing also occurs after the
completion of syntax processing.

A gemantic analysis routine develops the internal
forn of the output on the basis of information in the
stack ané the asymbol table. In addition t¢ the information
 needed for determination of a handle in syatax aualysis,
the atack may also catain semantic information.  For
syntax analysias, it is necessary t¢ know that the current
oynbol is an identifie¥; for pemantic snalyeis, we nust
know which identifier. It is in the senantic analysis
routines that type-checiking ocours. In addition, much that
io implicit in the source program is made explicit at this
time.

Internel forms of representaticn in cormon use include
roatfix notation, quadruples, triples, end tré&e.j Let us

cangider each of thece formnm.

Poptfix notation, in which operators follow their
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operands, is especially useful for producing code for
stack machineg. The expression

a+h #*e
appears in postfix notation as

abe & 4

A quadruple consists of an operator, oOperands, end
the location of the result of the operatiom. The following
expression can be represented by the quadruples

* b ¢ temporary 1
+ a temporary 1 temporary 2

A triple consists of an oOperator and its operands.
The result is not stated explicity, but the triples are
nunbered anﬁ can be reforenced by subsequent triples. The
expression above can be represented by the triples
(1) * v e |
(2) + a (1)

%xégéf meke explicit the infommation provided by
triples. An entiré parsed program can be represented
by a tree. ZXEach gubitree of this tree represents an
operator and its operands. Our example can be represented
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in tree form as followss

VAN

The task of semantic analysis is the transformmation
of the ascurce progran Or its parse tree t0 an internal
form from which code can be generated. '

Code generation consists of the transformation of .
the_{ intermal form of a grogram %o an assenbly language or
machine language form. The addressing mechanism and type
of code depend on the gpecific target machine for which
- the ¢ode is generated. ;&&&tewea may be absolute or
ﬁe’lm&ﬁaﬁl&, depending on the software {gemerally, linkers
and ‘lea&pm) and hardware (for example, base registers or
peging facilities) of the target system. |

As noted adbove, postfix notation is appropriate for
a stack machine and indeed, code may be exitted ﬁimﬂy by
the semantic snalysis routines. Often, however, code is
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produced by separate code-generating routines called
generators.

Typieally, a code-generating routine has a sgkeletal
structure for its ccu;stzﬁet. IZ the internal form consists
of quadruples or triples, specific information such ae
operand addresses can be pussed as arguments t0 the routine,
which can then insert it into the skeletal structure. Code
generated for the expression a + d * ¢ might be something
like thig: | ‘

load b

mpy ©

store temporary 1
‘load a

add temporary 1

store temporary 2

Code for quadmpiw is generated in the order in which
the quadruples appear.. Iafomatim ébmt the temporary
results must be maintained throughout the generation
procesas. . o

Code for itriples is generated in a ‘.smm: nanner,
but the internal representation is cmaller and information
about temporary results (in this ecase, the numbeérs of the
triples) neced be maintained only as long as the related

triple can be referenced.:
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Code can be generated from trees using any of the
several tree-mlking algorithms. As the code is
generated, the tree can be modified to permit opti-

mization.

Code can be géa'ex‘:ateé from postfix notation by
scanning the postfix notation from left to right, placing
operands on a stack, and having the code generator emit
code for the curvent operator and the operands on the
top of the stack. |

A major problem of code generation has to do with .
the addressing of data and program. Issues o be considered
include the time of binding variablesg %o locations, the use
of regieters, and overlaying. ¥ith respect to the binding
time of variab,laﬁ. Potk the binding ¢ iﬁag pernitied by the
languege and thosa permitted by the system must be considered.
The efficient uae of registers is a form of optimization in-
volving the fewest loade and stores of temporary reslts.
The genersal problem of Overlaying involves the sharing of
the same gpace by disjoint loerl variables or temporary
_results as wej‘ll a5 the problem of how to structure a

program 10 make efficimt use of gegmentation or paging.

We have nentioned optimisation in comnecticn with tie
‘afﬁgimt 'uae of registers, but there are nany places in
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which 'thMmﬁeﬁ is appropriate. Compilers my in

the amount and kinds of optimization they do. There is

& Optimization of the source program which is the input

t0 the emgner, ani there is opt:.nnzation of the cbject
program ‘which 1is the butput of the eemgﬂar. Some
optimization is with respect to a specific target computer,
and gome is independent of. the computer. Efficient use of
registors is an exa&gie of the femez,: since the nuuber and
typee of registers veries from one machine ¢o another.
‘Bxamples cf the latter include the evaluation of gome
expression at compile time rather than at run time, finding
conmon eigtessima, and optimizing loops by pulling out of
loepa thoge expzeasima whose valuea €6 not change dmr.’mg
me exmtien ef the lo0p.

Optinication can occur at wvaricus points during the
compilation process. Clever semantic analysis routines can
‘achieve same optimization in producing the internal répre-
sen%aﬁan of the program. An optimizing compiler mey 4o |
flow snalysis oo an internal tree representation prior to
code generation. The result iz & transfomed tree represen~ -
ting a more efficient structure. Code generators mway do |
stne optimization, and, finally, the resultant code may be
examined a few ingtructions at a time.

Sane optmizaﬁm alter the sequence of operations.



21

For purpose of evaluation, it may not matter whether the
commuative operation a+d is evaluated as a+d Or as bea.
However, some caution is needed. There are soue cases

~ 4n which changing the oxder of execution does have an
effect upom the output of the progran {for example, if
evaluation of an operand involves calling a function which
has side effects).

A particular optimization is usually not over an
entire program but rather over geveral statements {(such sse
& loop). The ptatements are organized so that execution =eéu
begin only with the first statement. A ugeful optimizatiomn
ie the pulling ocut of a 100p those operations that need de
'pezfameﬁ only once insiresd of each time the loop is
executed. If, say, the assignment & = béc occurs within a
loop and there are no changees to a, b, or ¢ either within
the 100p or potentially from procedures called from within
the loop, thip statement can be pulled outpide the loop and
executed once prior to entering the loop. If & is modified
but b and ¢ are not, the addition can cecur prior to entering
the 100;3 and the result stores in a temporary variable. The
value asaigned to a by this statement within the loop is
then that of the temporary variable.

The above example of optimiecation is based on the
elemination of zednn&agt executions. It is alac possible

_ T - ~?\~:‘\
- 68)-3(0#3) o,
| LI/7 A\
—Bh TH Qg
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to eliminate redundant, or common, expressions. Such
expressions are evaluated once, and the result ig stored
in a temporary variable. Then, rather than reevaluate the
expreosion, ve can simply refer to the temporary variable.
It is not always possidle to tell when an expression is
redundant, but checks on commutativity can recognize asome

cages,



CHAPTER II
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Antroduction

The purpose of this chapter is to present the
definition description of a subeet of the international
~ algorithmic language Algol-60. This subset of Algol-60

‘48 chosen for implimenting on EC 1020B Computer.

. In the first article a survey of the basic comati-
tuents and features 0f the language is given, a,ﬁé the
formal notation, by which syntactic structure is defined,
is explained. |

The second article lists all the bagic symbols, and
syntactic units known &g identifiers and numbere are Go-
fined. ’

The third article explains the rules for forming
expressions, and the neaning of these expressions. Two

different type of expresasions exist: arithmatic aa&' Boolean.

The fourth aftialtﬁ describes the operaticnal units
of the language, known as statementa. The basic statenents
ares asaigm#ent statements{ evaluation of a femuhee) s £0 %0 |
statements {explieit break of the sequence of execution of

statements), and procedure statements (eall far execution
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of a closed proceas, defined by a procedure declaration).
The formation of mors complex siructures, having statement
character, is explained. These includes conditional

statenonts, eompound staterents and blocks.

in the fifth article the units known as declarations,
gerving for defining permanent properties of the units

entring into & process described by the language,are
defined. ‘ ’ '

The purpose of this algorithmic language is %o
descrive eamputational processeas. The basic concept used
for the description of calculating rules iw the well known
arithnatic expression containing as -e-onaﬁit’uenta nunmbers
and variables. From sich expressions are compounded, by
applying mmles of srithmatic composition, self-contained
unite of the lomguage-oxplicit formulae-called Ascignment

gtatenentg.

70 show the flow of cmputatiqnal processes, certain
noe-grithmetsic stetanenta and stetement clauses ax.'é added.

fSince i1t ic necesenxry for the function of these statememts
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that one statement refers to another, statements may be
provided with labels. A sequence of gtatements mey be
enclosed between the the statement brackets begin and egnd

to fom a compound statement.

Statenents are supported by declarations wfaieh. are
not themselves computing instructions, but inform the
translator of the existence and certain properties of
object appearing in statements, such as the class of
numbers taken on as values by a variable. 4 sequence
of declaration followed by a sequence of statements and
‘enclosed between begin and end constitutes a block.
Every declaration appears in a block in this way and
is valid énly for that block.

4 program is 8 block or compound statement which is

not contained within another statement and which makes no

use 0f other stastenmoents not contained within it.

The reference language is built up from the following

basgic symbols:

‘(letterd 1:= A[B|C[D(EIF|G|H|I|J K|LIK|
H|O|P(QIRIS[T(UIV(¥|X|YIZ
alblc|dle|f|gh|i|J k|d|m]
n\olpjair(s(t|u|vIvw|x(y/2
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This alphabet may arbitrarily be restricted. Letters
4o not. have individual meaning. They are used for
~forming identifiers.

La1git> 1= 0|1]2]3]4|5]6|7[8|9
Digite are used for forming numbers, identifiers.

_DEL,

| @elimitez) s (@erat&){(aeganata:}l(bzéek ot>|
{@eclarator>

Qdperator> st= Jarithnetic operator)/relational operator)
| ]<aaqumtia1 operator)

~aritimetic operator> si= +| | *| /

<relational operator) s:= < ‘<ujn[>aX>l.,gl'<[=> |

{gequential operator> ::= goto \11 ( then| else

<geparatorpsim ,| .| ;| s|t= | comment

(oracket)ri= ( | ) | begin) end

<éee’1araton? i3= dinteger \real l procedure

Delimiters have a fixed meaning which for the most
part is obvious, or else will be given at the appropriate
~ place in the seguel.

Typographical features such as blank space or change
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t0 a new line have no significance in the reference
language. They may, however, be uged freely for fagcili-
tating reading.

For the purpose of including text among the synbols
of a prograu the féllo'wing ‘eomnment’ conventions holds

The sequence of basic aynbola: is equivalent to
; comnent {any sequence not cmtaining;) 3 $
begin comment (any sequence not containing ;> 3 begin
end <ény sequence not containing end orjor else) end

. By equivalence is here meant that any of the three structures
shown in the left-hand c¢olumn may, in any occurrence nﬁtaide
of gtrings, be replaced by the symbol shown on the same line
in the right-band column without any effect on the action

of the program. it is further understood that the comment
structure eacountered first in the text when readigxg fronm
left to right has precedence in being replaced om later
structures ¢ontained in the ssguences |

{Adentitier) t:a (Qetter)| (idanﬁt:iez} Qet‘kex}
(ldentifier> Ldigit)>
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Identifiers have no inherent meaning, but serve for
the identification of pimple variables, 1&1:@1:6, and
procedures. They may bo chosen freely.

The same identifier cannot be uned to denocte two
different quantities except when these quantities have
disjoint scopes as defined by the declarations of the
program. |

2.2.5 NUMBERS

<ua§igned _mtager}:- i=Qigiv|Gnaigned integex)@igit)
{integer)t: fnsigned integer)| + {unsigned integer)
| |-<ansigned integex) |
‘@wmal fractions i={unpigned integer)
lexp caent part):i=fFlinteger) i \
Ldecimel number):i=dqnsigned integer’|@ecimal fraction)
lunsigned integerd<decimal fraction
Lunsigned nunber tisdecinal nﬁmbemx;aanmt part)|
: (&eam nunberdléxponent part)
- (ounber) : 1=Qneigned number) |+ (unsigned number)
|- (ansigned number
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Bécm"numbeza have their conventional meaning.
The egmmt 931:% is a geale factor expressed as an integral

power of 10.

A value is an ordered set of numbers (special cases
a single nunber), an ordered set of logical walues {special
cage: a zingle logical value), or a label.

@eﬂam of the ayn'ta@icic -mita are ssaié to poosess
values. These values will in general change during the
execution 0f the program. The values of exprensions and
their cmatituents are defined in Section Z.3.

The various types (integer, real, Boolean) basically
denote properties of values. The %y’péa asnocisted with syntactic
units refer to the values of these units. |




In the language the primary constituents of the

programs deseribing algorithmic processes are arithmetic
and boolemn 'exgraasioné. Constituents of these expressions,
except for certain ée},;imiteza, are logical wvalues, numbers,
variables, and elenmentary arithmetic, relational, logical,
end sequential operators. Since the syntactic definition

of variables contains expressions, the definition of

expressions, and their constituents, 18 necessary recursive.

lexpreseion) t:= Larithzetic expressicm)iboclean expression)

A veriable is a desi@atitm_ given to 2 single value.
This value may be used in expressions for forming other

valuee and may be changed at will by means of aseignment

statements. The type of the value of a particular variable
is defined in the declaration for the variable iteelf.
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Jadding cperator>iis 4| -
<multiplying operatoryise # |/
(factod) st= (unsigned number) (variable)/
| { (arithmetic expression’ )
(termdstm @mwm |<term)><multiplying Operator)
| {factor’

<aritmet.ie expression) st= .’ AR B B

- (arithmetic expression) < adding operator)

<germy| <term> |

\ (4-3/1)
arithnetic expression :3
oV {(a-3/1)

An arithnetic expression ie a rule for computing a
numerical wvalue. In case of simple arithmetic expressions
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this value is obtained by executing the indicated arithmetic
operations on the actual numerical values of the factoras of
the expression. The actual nwvmerical value of a factor is
cbvious in the case of numbers. For variables it is the
current velue (aesigned lest in the dynamic semse). Finally,
for arithmetic expressions enclosed in parentheses the vaiu'e
must through a recursive analysis be expressed in terme of
the values of factors of the other two kinde.

The constituents of simple arithmetic expressions
muet be type real ar integer. The msaning of the basic
operators and the types 0f the expressions to which they
lend are given by the following rales.

2.3.%3.4.1 The operators +4~, 8nd * have the comventiomal
seaning (addition, subtraction, and multiplication). The
type of the expression will be integer if both of the
operands are of integer type, otherwise read. |

2:3:3:4+2 The operation- term / factor

denote division, to be understood ag a multiplication of
the term by the reciprocal of the factor with due regard to
the rules of precedence. The typs of the expz:eésién will
be integer if both ap'erands are of integer type, oOtherwiae
real.
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The sequence Of Operations within ome expression is
generally done from left to right, with the taneuing
additiﬁna‘l rulens

+3.3.5.1 According to syntax given in section 2.3.3.1
the following rules of precedence hold:

firgt: * [/

seconds + -

33, The expresalon between a left parenthesis and
the natching right parenthesig is evaluated by itselfl and
this value is used in subsequent caleulations.

_Numbexrs and variables of type real must be interpreted
in the sense of numerical analysis, i.e., as m;tzitiea
defined inherently with only a finite mccuracy. Similarly,
the possibility of the occurrence of a finite deviation
fron the mathematically defined result in. any arithmetic
aximesaﬂ.en is axplieity ﬁnderatoed. Ko exact arithmetic
will be specified, howem. and 1¢ is indeed understood that
different hardware representatmne may evaluate mthmetie
expressions differently. The cmtrol of the posaible
emaaqneneeé of such difforences must be carrieé out by
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the methods of numerical analysis. Thie control must be
considered a part of the process to be described, and will
therefore be expressed in terms of the language itself.

{reiational operatarD six L[| =] >e| 5-m l e (=<
<{boolean expressicn)ii= (boolesn factex)
| (re};atimal' ogerﬁfer>
. {(boolean foctor>
{boolean fector):im (mﬁa&!.@({gumbat}

$-=nl

& boolean exprossion is a rule for computing a logical
yaive. The priineipiea of evaluation are entiﬁ:ely analogous
to those given for arithmetic expressions.

Relationg take on the value true whenever the
corresponding relation ie satisfied for the expreessions
involved; otherwise falsge.
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The units of opemtien within the language are
¢alled statements. They will nomally be executed |
eaﬁae’ciztively ag written. fowever, this seguence of
ep-ezatio%w nmay be broken by go to statenents, which
define their successor explicitly, and shoriened by
conditional statements, tshich may cause certain statements
to be ckippod. ) |

in order %0 make it possible to defing a specific
dynanic .maeeeanm, statements may be provided with labels.

Since saqueﬂeea of sistenents may be gzﬂapeﬁ together
| into compound statements end blocks, the deﬁnitim of

| _ atatem&% muast necessarily be recursive. Also since
declarations, desoribed in Section 2.5, enter fundamentally
into the syntectic structure, the syntactic definition of
statements must suppose declarations ¢to be ah:ea&y defined.

{snlabelled basic statement): :a(ass,i‘,@meﬁt statenent>|
&° ‘ta statenent) |{dunny statement)|{procedure state-
meni> ,

aste statezont) s Galabelled basic statenent) |
{label) : (basic statement)
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canconditional statement>s:= (basic statement) |
£Lonpound s%teneut)}@lnek>
{gtatement)s:= Qntonditional statement)|
<onditicnal statement)
- <gompound taﬁ.}:m@fatemfe:!t}ga_d\(atatment) 3
(em;ym& tail>
| blook headys¢= begin (declarationyjblock head);
declaration> _
lonlsballed compound):i= begin aspound tail>
(unlabelled blockbss=dilock head> @ Jeompound tail)
(eompound stetementy::=qnlabelled ompound, | dabel) 3
<ecpound atatement>
{plock): m@nlaimme& nleck) |[Qabelds &lm!z)
<program>is=dloekd|/eompound statement) |

&‘Mﬂ syntax may be illustreted as foliows: Denoting
arhitiary statements, declarations, and lsbels, by letters
s; D, and L, respectively, the basicepntaciic unite take the
formss
Compound statements:
| L:Lz...begin 8;8:...8;8 end
Block: | |

Liliz...begin D;Ds...039;8;...5;8 end
It ghonld be kept in nind thet each of the statements S may
 again be 2 complete eompound statement or block.
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Bagie eta%anmtz
A ¢ = PaQ
g0 %0 Hext
&9 »°

Conpound statement:
| begin X:=0;
g0 to Fext

end

Block:
Q: bogin integer I, K; real W;
I:=2%X/3; Wi=l-5;
R §uX¥7
end block @

Bvery block autonatically introduces a new level of
nonenclature. This ia realized ag follows: Any identifier
occuring within the block may through a suitable declaration
be specified to be local to the block in question. Thias
means (a) that the entity represented by this identifier
inside the block has no exiatence outside it, and {(b) that
any entity represented by this identifier outside the block
is conpletely inacceseible inside the block.



339

Identifiers {excopt those representing labels)
occurring within a block and not being declared to this
block will be nm-leeai t0 1%, 1.e., will repreosent the
same entity inside the block and in the level inmediately
outside 1¢t. A label geparated by a colon from a statement,
1.¢., labelling that e#at-ement. behaves as though &eelaﬁeé
in the head of the smallest embracing block, i.e., the
emallest block whose brackets begin and end eneloee that
statm&dt. In this context a procedure body must be con-
sldered ap if it were enclosed by degin and end and treated

as a block.

S8ince o statenment of & block may again itself be &
bloeck the concepts local and non-loczl to & block must be
understood recursively. Thus an identifier, which is non-
loeal to & block 4, may or may not be none-ldeal to the
block B in which A is one statement.

{left pert) :t= /variable) s=|/procedure identifierd:=
{agsignment statement) ::=Jdeft partd>larithmetic
expression>
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B: = B+l
At = A%B

Assignment atatmmeé serve for aassigning the value
of an expression to ome varisble or procedure identifier.
Apsignnent to a procedure identifier inay anly oceenr within
the body of & procedure. The process will in the gemeral
cage be understood ¢o take place in tiwt:~ ateps as followss

. 2:8.2.3.1 The sapreceion of the statement is evaluated.

2:4+2.3.2 The value of the expression is assigned to the
left part variable. |

| The type sogociated with a1l vardables and procedure
identifiers of a left part list must be the same. If the
type 4o real or im%teger, the expression must be arithmetic.
If the %ype of the arithmetic expreseion differs from i.&at
mesociated with the variables and procedure identifiers,
appropriste transfer functions are vnderz$ooé ¢o be auto-
matically invo ked. |
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© (g0 to statement) ::= go to (label identifier)
{3abel identifiexdii= <§.-dontﬁ.ﬂar>

g0 to NREXT
g0 16 AGAIN

g».;!‘z: ,3— o
A g0 to statement interrupts the normel gequence of

operations, defined by label identifier. Thus the next

statement t0 be executed will be the one having these value

as its label.

Since labels are inherently local, no go to gtatenent

can lead ocutside into a block. A go to atatenent may,

however, lead from outside into & campound statement.

- <Qummy statementdsim Jempty)
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A dumny statement exotutes no cperation. It may perve
%0 gme a labeli.

- {if clause)i:s 4f <boclean expression) then |
‘{umcanditional statement)::= (basic statement)|dlock) |
, Leompound statexent)
Af statenentd>it=4f clause) (unconditional statement)
ceonditiomal otatement)ss={? statement) else statement)
42 statement)[label)s{emditional
statement > |

if X>0 then Hi=li+l
1£ U=V then Abtbegin
4f g = V then Ag=B
else Yi=2
end

r——
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3@&1&0&3& statenents causs certain statenents
t0 be exetuted Or skipped depending on the running value
of specified doolean expreseions.

23.1 IE STAT

‘The unconditional statement of an if statement will
be executed if booloan expression of the if clause is true.
Otherwise 1t will be gkipped and the operation will be
continued with the next statenent.

According to0 the syntax two different form of
canditional statements are possible. These pay be
illuptrated as follows:

if Bt then 8V else 1f B2 then S2 else 83;3¢
At BY then 31 else if B2 them S2 else if B3 then 53;54

—— —

Here B! and B3 are boolean expresaionse, while St and 53 are
unconditional statements. 34 is the statement following
the canplete conditional sgtatement.

The execution of a conditiocnal statement may be
deceribed as follows: The boolean expreseions of the if
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clauges are ovaluated cne after the other in sequence

from left to right until one yielding the value irue is
found. Then the unconditional statement following this
boolean is eoxecuted. Unless this statenent defines its
successar explicitly the next statement to be executed will
be 54, the statement following the complete oonditimal
statement. Thug the effect of the delimiter else may be
described by saying that if defines the successor of the
atatement 1t follows 10 be the statement following the
cauplete conditional statement.

The constrmotion
else (uneonditicnel statenmt)
is equivalent to
else if true then (unconditional statement)
If none of the boolean -axpzeaéima of the if clause
is true, the effect of the vhole canditional statement will
be equivalent to that of a dummy gtatement.

. For further explanation the following picture may be
uaefuls | ; o
if Bl then S! else if B2 then 852 elge 33;384




The effect of a go to statement leading into a
conditional statement follows dirsctly from the above
explanation of the effect of else. ‘

{actual parameter) tie [identifler>

{actual parameter list) 3:=(actual parameter)|
@etual parameter list) , (actual parameter)

(astual parameter part> sie (<actusl parameter 1istd)|
<{emptyy |

{procedure statement) si=  procedure identifier)
<actual parameter part)

26,2 BXAMPL
SPVR(4)
TEANS(4,B,0)

A procedure statenent serves to invoke (call for)
the execution of a procedure body, where the procedure body
is a gtatement written in Algol the effect of this execution
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will be equivalent to the effect of performing the
following operations on the program at the time of
execution of the procedure statements

The ecorrespondence between the actual parameters of
the procedure statenent and the formal parsmeters of the
procedure ,keaﬁ;m is ostablished as follows: The sctual
- paraneter idst of the proaeané:e statenent must have the
same number of entries as the formal ;:mmeter 11st of
the procedure declaration hending. The corraspondence is
obtained by taking the entries of these two lists in the

- game order.

Declarations gerve to define certain properties of
tho gquantities uned in the progres, and te asgociate then
with identifiers. A declaration of an identifier is valid
far one blook. Outside this block the particular identifier

s

mey be used for other purposes.

. Dynemicelly thig lmplies the following: at the time
of entry into o bleck {through the bezin, since the labels
insido are local and thewefore inaccessible from cuiside) all
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ddentifiers declared for the block assume the significanes
inplied by the a,atnte of the declarations given. If these
identifiers had alveady been defined by other declarations
ocutpide they are for the time being given a new significance.
Identifiers wvhich are not declared for the block, on the
other hand, retain their cld meaning. |

At the time of an exit from a block (through end, or
by a go t0 statenent) all identifiers which are declared for
the block lose this local significance..

ldeclaration>3ss (type declaration>|
{provedure declaration>

{typelist)> 1:w aricble| gariable)> , (type list)>
<&ypedit= real | integer
{type declaration) ::= <type>ltype list)

2 EXAMPLES

resl  LY2
integer 4,B,C



Type declaration serve to declare certain identifiers
to represent simple m@lea of a given type, real declared
variebles may only assume positive or negotive values in-
cluding zero, intm‘érﬂ doclared variasbles may only assume
positive and negative integral values, including zero.

In arithmetic expressions any position w‘hie‘h can
be oceupied by a real declared variable :aay be meapieﬁ
by an integer declazed variable.

5. PROCEDURE DECLA

<{fomal parameter>::= (identifier>
formal parameter listd:i=<fomal parameter)
> .
<formel persmeter list) , (formal parameter)

{formal pavameter paei)d & i=empty) \:( (formal pamaﬁer“ 1ist))

/procedure heading> 1 i=(procedure identifier)
{omal parapeter paxi)

(procedure body) ti= ptoterent) |

(procedure decleretiondiis . procedure procedure hea&ing}

procedure S{a); integor a;
begin S:=mas+t end
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A procedure declaration serves to define the
procedure spsociated with a procedure identifier. The.
principle constituent 0f & procedure declaration is a
statenent, the pmamﬁ body, which through the use
of procedure statements may be activated from other
parts of the dlock in the head of which the procedure
declaration appears. Formal parme‘kaiza in the procedure
body will, vhenever the procedure is activated be assigned
the value of or replaced by actual parameters. Id@tifiers
in the procedure body which are not fomal will be either
local or non-looal to the body depending on whether they are
~ declared within the body or net. Those of them which are
not am-icgal to the body may well be Jlotal {o the block
in the head of whish the procedure declaration appears.

The provedure body aiways ects iike a block, whether it hes

the form of one or mot. Concequently the scope of any label

labelling a statement within the boly or the body iteelf

can never oxtend beyond the proceiure heé,y.\ In addition,

if the ldentifier of a formal parameter is declared a new

within the procedure body, 1t is thereby given & local

significance and actual parameters which correspand to it are
inaccessible throughout the scope d: this mner local guantity.
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CHAPTER IIX
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DATA_STRUCT

The compiler initiates translation of the source
program by reading the program card. I% 1&@%&!‘1“ the
tokens and accordingly the varicus tables cuch as synbol
toble, literal tamble:. etc. are created. These tables
provide the necessary information assocliated with each
token. Tables like terminals are of fixed lemngth while
others are, of variable length. During the complete

process it makes use of the various data structure.

This chapter critically describes the functions of
the va.twue data striucture used, their fomat and their

locations. Bach such déta structure ig discribed below
in detailsg: ' '

This table completely desoribes all the programmer
defined symbols or the identifiers used in ttie soarce
program. 7The symbol table containg an entry for each
identifier. The symbol table is created by the parger.
Since we are uging block structure in our source language,
& dlock 1ist io required to identify which identifier
belongs to which block. This is described in section
3.5 of this chapter.
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Entries in the symbol table are arranged in
sequential order. New entries are added st the end of
the table, with changing information in the block list.
This table is gearched seguentially %o determine an
entry in a block or in the whole synbol table. It has
not been sorted in alpha betical order or entries placed
in the same ocxder to ﬁave a faat access 10 an entry since
for emsll programs linear search is more efficient pince
no time is spent in sorting and the program to access on
entry iz also quite amall.

The synbol table vpz:aviées information in the following

fornat:

Symbol l, Declaration | Typs | Addrens

Symbol of maximum nine characters in length is stored in

~ nine bytes. Ite declaration field gives the information
about its declaration 1.e., 18 t‘izia identifier declared

or nots This field 1s an integral field occupying 2 bytes.
If the identifier is not defined this fleld is gero and
othervige cne«

Type of the symbol is also an importent field and
is nade of 2 dytes. This field tells us the nature of

~
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the identifier. The following type assignments have been

ugeds
Type Nature of the identifiex
a Type #e be determined lateron
2 Real
3 Integer
-4 atyy

- The addregs field consigts of twe Lytes gives us the
 pddress of the label if identifier i3 label olse 4t gives
information about the gstorage space for the variable ar
starting address of thoe procedure.

Symbol table is located in the memory and can contain
meximum of 1024 symbols.

> ¥ ﬁ

 The 1iteral table consist;of me entry for each
literal in the source program. Its size is dynamic. The
. entries are added at the end of the table. Iinear gearch
| is made to find out the value of the literal in the literal
teble. The literal table is stored on the és.aca One |
record of 19 bytes is assigned to one entry in the literal
table. The format of the literal table recard is as



shown below:

Type | Length Value

The type field of the litersl table madeup of
2 bytes gives the nature of the literal as shown belovw:

Type Bature of the literal
1 Integer
: - Pized point real nunber
Floating point real number

| Length field made up of 2 bytes 6&-36&15&‘7 the length
of the lﬁswa}u ihis will be used for next pass, when
 the value part of the literal will be converted in bite.
Value field made up of 15 bytes contains the literal in

t+he character form.

The special character t:a’hl# is a permanent table that
has one entry for cach terminal symbol. Each entry is one
byte, oud cantaing & terminal character. Yerminal characters
- are |

(+=/%),338 a4 ¢ = >
This table 1e organized in the main memory and searched
dinearly.



Like special character iable, keyword table is also
@ permanent table which is list of all keywords of the
source language in symbolic fom. There is one entry for
each keyword. Keyword teble consists of the following
keywords:

if then else procedure begin goto read write ond
conment real integer

4Algol has nested block and procedure structure. The
same identifier may be declared and uged nmany times in
different blocks and procedures, and each such declaration
sust heve a unique symbol table entry associated with it.

Block list table gives us basice information about
the local wvariables in various blocks. 3Bach entry of the
block list congista of four fieldss

Surround ing| umber of | Pointer to | Block
nunber of |entries in | the symbol | identi-
blocka this dblock j table Zication

Bach entry consists of 2 bytes and is stored in the

nain menory. Total number of blocks that one can use is 128,



56

Surrounding number of blocks field tells us the level of
the block. HRumber of entries £icld tells the number of
local variables in this block. Pointer to symbol table
field gives the pointer to the gymbol table where local
variables are stored. Last field i.e. block identification
tells the nature of the block. If this field is zero,
block is begin and if it 1s one then it is procedure.

This teble is used to store temporary labels. Some
labels are required, which cannot be identified until whole
of the statement le passed and code for that statement is
geneta%eﬁf. fhe only entry in ‘thi-a table is the address of

some intermediate code matrix entry. REach entry of this
table is of two bytes. This table is on the disc.

Temporary Address

This is & permanent table inside the memory. Each
entry of this table is of variable size, dé@@&iﬂg upon
' the nature of the error. HMessage from this table are taken &
printed in the error. fHessage file. The format of the error
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message table is se followss

~ Message Error | |
identification - message B 1

First field is of two bytes gives message
identification. Second field 1.e. error mesasge
field ia of variable length gives the nature of the

~ error.

Errors &ime’verad in the gource program during the
- compilation are stvcreé in the error message file. The |
file is stored on the dise. BEach record occuples 50 bytes
end contains three fields. The entries in the tadle are
nade sequentislly axsd they are printed out in the same

ordexr, Bach entry of the error :maaéaga table lookes like

as ma below:

Statement | Erpraor
S.Ho. No. message

8.§0. ield 15 made up of two bytes. Statement
nunber i.e. the gtatement in which error has occurred,
ig made up of two bytes. Error message field - . eonsiats
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" of remaining 46 bytes contains a dfscription of

max mossage. These errocr message are tsken from
the error message table. Each entry of error message
file is printed out after thé compilation.

The intermediate code teble contains L one entry
for each intermediate instruction. It includes both the
gachine instruction mnemonics and the pseudo instructiom
mnenonics. For each mackine instruction we need to store
& three byte character code of symbolic code and addresss
field epecification. Address field of each instruction
conagists of two fields, i.0. #&dresa of first operand,
end address of second operand. Bach address ' again
cgmaists ¢f three parts namé’lg table, ¢ode and Sloek number.
¥ith the above organisation the format of the intermediate
code looks like:

Op-code ] Tabl | Codel [ Blockl | Tab® ] Sode2 I Block2

, Op-code fielid iy of threc bytes, resaining all the
six fislda are of $wo bytes.’ Each entixy consista of 15
bytes is organised on diac in sequential order.



CONCIUSIOES

Thege are nain data structure used in the conpiler
implementeticn. The compiler useg other structures like
stacka, pointers ete. are given in progragming inplesen~
tetiaz. Since these are transient data struciures and |
hence are not described here. These are deseribed in ves-
pective implementation parts. | |



CHAPTER IV

60



61

This chapter dencribes in detaile the phages of
the compiler. Bach phace is assigned with a fixed tagk.
How this task is done in these phases ig described here:
Logic and algorithn for each phose is given in detail.
How these phases interzet is also doscribed. Here we
study only first fouwr phases of the compiler. These
phasew are lexical analysis, syntax analysis, semantic
anélysﬁ.s and intermediatecode generatar.

All these phages are machine independent. These
phases are combined to form firaet pass of the compiler.
A pecond pass 0f the conmpller can be written in which
optimization and final ¢bject code gensration can be
done: The genoral model of the compiler can be visualized

as follous:

‘Perminal | Eeéuctimal

fable [
= 1!._-.).._..‘.&;.....-1 (et )
L.
> Semantics and

—J&em.al i Syntax
Analysis/ |Analysis

Code

Internediate

Inter-mediate )
gotle generator l

Literal
fable

Block List

Symbol Table’

¥

Pigure 4.1 The interaction of lexical, syntax
senantice and intermediate code generator.
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The purpose of the lexicalanalysis is (1) %o parse
the scurce program into the basic elenents (iokens) of the
lenguage {(2) to build a literal table.

The input of the lexical snalysis phaaaﬁ is a atring
of characters & output are ’bégie .almentg. I;z our imple-
me‘nta:tica lexical phase is called vﬁeaevér there 15 & need
for the next token. At end of the card file, conditions
are set, which indicates that there is no more token
available. The iaput string concists of token is scanned
character by character un2il one token ie found. Each
character is checked for legality, and tested to see if
they are break characters.: Consecutive non-break characters
are accunulated into a tekén‘ Blanks are also treated as |
break charactera. There are four types of tokens (1)
ddentifiers, (2) literals, (3) keywordse, and (4) special
and epézator characters. Lexical recognizes each one of
these tokens.  (omments and blenks are ignored in our
implementation. "

Initialily input giring characters are available in
a buffer. 2There is one pointer to this buffer area from
where next token is t0 be searched.” This pointer is moved
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forward equal to the length of the token while retum

is nade. Lexical checks firet the pointed character

for letter. In case it ip a letter, input ‘atxing

is scanned until an fdentifier is formed. How there

are two possibilities, one 18 may be a keyword, and
gseccnd it may be a variable or 1abe~1. This sa fcmed
fdentiflor is compared with eaeh keyword mtﬂ 4 mateh

i8 found. 1If there is & match then it memns that a
token go formed is a keyword and appropriate information
. about this kfeyieré is returned. Qﬁzc:_wise it ie label
'or & variable and hence necessary informstion is returned.
1f input pointed character is not a letter, it is checked
for nummeric character. If it is a nummeric c‘h'araeter,
input string is scanned until a numseric literal is found
and literal so formed is stored in literal table for
further négesam information, and lexical returns the
token as a literals Finally if input pointed character
is not nummeric, it is checked for eack delimiter:.

If 1t is not delimiter, error conditions are set and
rétm is ma&e.f | Otherwise next input pointed character -
is aleo tested for various cambinaﬁms of double
characters éeiimttexrs.«

¥hile doing 80 there cmm be some errors like
length of the identifier otc. which are recorded in the
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error file with card numbers, and error message numberx.

The funeﬁ._cn of the syntax phase is % recognize

the major comstructs of the language and %o call the
appropriate action routines that will generate the
intemediate form or mertix for these consiructs. In

our compiler this phase is implémented by one large program
that recognizes each construct. COCud parser has a input,

a stack, and a parsing table. The input is read from left
to right, ome symbol at a time. The stack contains a
string of the form 8oX181X282.. 4. Ity sﬁmﬁe o is on
~top. Bach X3 is & grammar gysbol and each sy ia a symbol,
called & state. Each state symbol summarizes the infor-
mation contained in the stack below it and im used to guide
the shift-reduce decision. In an actual implementation,
the grammar symbols need not appear on the stack: We
ihelu&e then to gx?lam the behaviour of the parser.

an /U Priver : “Parsing|
Routine | Pable

31/32

Stack

PFlgure 4.2 Syntex Phase



The program driving the parser behaveg as follows.
It determines gy, the state curreatly on top of the stack,
and a4, the current input symbol. It then consults
Action (g84), the paraing aéticm table entry for state g,
and the input a3. The entry dction (sy,84) con have cne
of four values:

t. Shift 8

2. reduce A——-—-—f )

3. ‘a\ee‘@pi . o

- 4. erTOor

4 canfiguration of the paraer is & psa»ir‘ vhoge firast
~ eomponent is the stack contents and shose gecond eoapment
. s the unexpected mputz

( 0511 9‘1232-0. see 650%%,:&*&1‘*1' e ta%‘)

| The next move of the parser is determined by

reading &4» the current input symbol, and 8 n? the atate
on top of the stack, and then consulting ae%m table
entry Action (%"1)' The configurations resulting after
each of the four types of move are as follows:

1. If setiom { 8024 J=uhift 5, the parser executes a
shift nove, entering the configuration
(0gXy 3 Xp80 0o - ByBe8e8s 2544000 8y3)
‘Here the parser has shifted the current input
symbol ag and the noxt e=G0T0(g,,a1) onto the stack,
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84,9 becames the new curremt input symbol.

2. if Action (em,ai}uxfe&aee A—-—-—P, then the parser
executes a reduce move, entering the configuration
(8o%181 X850 e oo v By pBg phSe 81284 q00r808)
where g=GOT0(g,_.,4) and r ie the length of P, the
right side of the production. Here the parser first
popped 2% symbols off the stack {r state symbols
and » granmar gymbols), exposing state 8p.p* The
parser then puched both A, the left side of the
production, and s, the entry for Action (a’m_r,&),
onto the stack., Zhe current‘ input symbol ig not
changed in a reduce w&v&, ~ For the parser we chall
conatruct, %.rﬁ.m..,.g. the sequence of grammar
symbole popped off the stack, will always match P,
the right gide of the reducing production.

e 18 If Action (aa.gi)saegegt, parsing is conpleted.

4. 1t Action (g,,a,)=crror, the parser haes digcovered
an error and calls an errar recovery routine.
Ve illustrate the technique using the following
grammars

progy s:= (Ggtate)
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{etate) 1i=if Gxpr> them (otate)
<gtate) 1= &ar> 3= Llexpx)
(expr> 3= lexpr) + Lvar)| Lvard
Har>  is=i

(V)

We make up an Action matrix whose rows represent heads

{which end in a teminsl symbol) of right sides of rules

which may appear in the gtack, and whose columns represent
 the terminal symbols, including the gentence delimiter #.

The elements of the matrix will be ﬁm&ezse or addresses

of gubroutines. These gpubroutines are action routines far
 interpretation phage.

# A2 then 3= + 1

# | - : 1
LenDtha |
Gor) =
 <Lexpr) +

i 2 2 2 2

Figure 4.3 Partial filled Transition Matrix
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The recognizer uses the typical stack 8 and incoming
cymbol variable R. We structure the stack a little
differently, appear in a stack element. Strings
appearing here will be heads (which end in a terminal
symbol) of right parts of rules. For example, if the
conventional atack at some point contained o

# AL (expr) then if /lexpr) then Jyar) i=
The gtack weuld look like

{vaxr) =

if <exprd> then

if lexpr> then

NHote that all we are doing is keeping together those

symbols which we know must be reduced at the heme time.
One final point we need a third variable U. It is either

empty or containg the gymbol to shich the last prime phase
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hag been zeéucea:“ Thus, if the partial string parsed

80 far is .

# AL (expr> then 4if /(expr) then [var) i= {e@r}
Then the stack would be as above and (expr) woudd be in U,

The recognizer uses the matrix as follows. At each
step, the top stack element éorreaponﬁ.a to gome row of
the matrix, since both zegz:eémt the head (ending in a
torminal symbol) of some right part. The incoming terminsal
symbol R determines a c¢olumn of the matrix. These two
together determine an eloment of the matrix which is the
number of @ .subroutine to execute. This subroutine will
perforn the necessary reductien or will stack R and scen

the next source symbol.

For example, vhen we start out we have # in the
stack au& ﬁ empty. Qhev Smamiag symbol, according to
grammar (1), muat be either if or 1. Since these begin
| right parts, ve want to stack them and go on. The first
subroutine is then |
1: 42U * * then orror; IsI-1;3(I)=R;sosn.
where sean neans to put the next gymbol of the input string
inte R. 7The check on U being empty will become clear in
a moment. ' '
Suppose L is at the top of the stack, what can be
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a vajdd symbol in R? 4 can be followed by the symbol #,
then, 3= or +. What we want to do in all these cases
is to change i to (vard , making reduction
PR > JTTRPS £ LOPREPYS PEPRYEIT

subroutine 2 to do this is

- 2:1L Gf * '_then errox; Ii=I-1; Ui= (vary
Bach matrix element, then is e number of a subroutine wvhich
either stack the incoming symbol or makes & reduction.
The gtacking 1s a little bit more involved because vﬁ' the
way each clement locks. The complete matrix and eubroutines
for gramuar (1) are infgure dede gg 4 o |

# if then 1= + i

i2 expx>then |7 1 0 6 o 1

&ar) s= 8 0 e; 0 3 1

lexpr) + 4 o 4 o0 s 1
1 2 o 2 2 2 o

Figure 4.4 Transition Matrix, . grammar (1)
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AL U£ * ' then error;

I=I-1; 3(I)=R; scanj:

Af U#£ * * then error;

Inlei; U=! (var>';

AL Uf * expr>' or U# ' Gar)' then error
I=I4t; 8(I)=' exprO+*; U=' '; secan;

Af0f ' GGax>' then error; |

1=3-1; U= ' lexpr>'s _

iL U# ’(g:cg) @ U '<tate>‘ M errar;
if Uf *yar)' taen error;

U= ' 0 I=Iel; 3(1)8’@&2)25';7@521;
AL Uf ‘<Gtated' then error;

I=l-1; B='<state>’* . .
if U ' <lyardt or Uf ‘(exyt)' h . eYror;
I=1-1; U= 'Jetate>';
if Uf * &ax)' or Uf ' expr>! then error;
s(I)*'(_z. éwbm';

.gag ’; gean’ -

error; gtop;

Figure 4.5 Subroutines for Grammar(1)
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This technique is used for our Algol-60
subget compiler, where the matrices are all eonsatmetea:
by hand in much the same manner as we bhave done, Each
elenent of the matrix was filled in by determining
from ti‘ze iéugnage what iﬁe' ineeﬁing symbol could be
and wvhat corresponding action ghould be performed. The
use of the matrix allowed us to concentrate on ome
particular consiruct at a time and thus helped break
the project up into a number of little tmes. This
technique is very fast, because no searching is required
at all; each subroutine knows exactly what it has to do.
Another nice point is that error recovery can be aeazgwgteé
very easily, BHach zero in the matrix eerreagénés to a
syntax error and, since over half the elements are
usually sero, one c¢an write nany mtinés to handle
tﬁese exrrors and have several ways of recovering. With
all the other techniques no good error recovery has been
&éﬁiaed. becauge one cannot really M-;eak it up easily

into sub cages.

In this gection the algorithm for the parsing of
the s tatenent ig discussedi. These routine accept the
"input from the lexical analysis and generate imtermediate
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-

_ ' Froce~Beg~ ‘ wrle
#  if then esle dure. in. goto Read te. end (Reld> ; 1= I

e,

-l
O |
»

# 34 2

$ 1 o0 o0 T 1 0 6 10

42> ¢ o0 9 o 118 2 0 o0 o0 23 o o0 o 17
if éxpr>then - o 1 o0 2 18 21 1 1 1 25 0 7 6 10
if@xpdythenelee 0 1 O o0 18 20 1 1 1 25 o0 32 6 10
progedure 0 1 o0 0o 35 21 1t .1 1 33 0 % €6 10
begin o 1 o o 38 2 2 1 1 22 0 26 6 10
goto © o o o 18 2 0o o o 3 0o 3 o 2
Read o o o o 18 23 0 o 0 B 0 24 0 13
write © o o o 18 2 0o o0 0 B 0 28 0 14
&aryiw 6 o o o 8 25 0o o o0 819 B8 0 15
dar><rel> ©o o o o 18 2 0 o 0 25 0 0 0 12
IE <I> ©o o o0 o0 18 25 0 o0 O 23 1 o 0o o
as 6 0o o0 o0 18 25 0 O O 29 16 2 4 0
1f @xpb>thenss 30 30 0 31 30 30 3% 30 30 30 3 0 O 30

Figure 4.6 Decision Matrix for parsing of statement for ALGOL-~60.
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code in the matrix fam. Since separate routines have
been written for handling identifier, literals ete. while
implementing the algorithm, their consideration is taken
into account. 7To study the parsing of statement gfammar
is taken from chapter 2 section 2.4.1. Decision table
for the grammar is given in figure 4.6. The entries ef
the decigion matrix denoted by numbers are the semantiec
routines. The tagk of these routines is described as
follows:

1:  if 3(I)="begin' then U=' '; if Up' ' then error;
I=1+1; S(I)=R; scan;
23 12 Ufg* * then error; U=a'L'; US=R; scan;
3s  Af UA'L' then error; Us'S'; IsI-i: gm(Bm,ﬁs).
4 AL uUp M error; Us'V'; I=l-1;
53 'g._z Ukt 8' thon 1f UA' ' then error; if R='#' then retum;
6: “._1_-3;53#'?' then error; Is=I+1; 3(1)“@9828'; soon § ;"
?: if GA'S' then error; S(I)s’ﬁ(expr) L ¢8> 'sscan; "
8:  if UA'E' then error; IsI-1; U='S'; ugm(mv as.wm’),
95 AL UA'B' then error; S(I)='if $xrdihen’sUs’ '3
gen (BEN CNCD,UTAB); | |
10+ if S(I)#'begin’ then 1f UA'S' them U=' *; 42 Ufac
~ ihen errar; IsI+i; 5(I)= 41 ; scan;
113 ;_z_ Ug' * then error; Us' *; CHCD=C0G(R); S(I)='if’'; -l
I=Isl; S(I)=* arplrelop) '3 scen; |



12:

13:

145

153
163
172

19

- 20:

5

4L UA' * then error; IxI-1; U='B*; gen (CMR US,R);
gean; |
call 10; UasiS?; Talely

gall 10; Un'S'; Islel;

gall expr; U='E';

A2 U4 ' then error; IsI-1; scan;

AL U#* * then error; Us=R; S(I)='ifd)>*; ecan;

‘error; I=l-i;

eall expr; U='R';
LU Mew; ﬁii}ség_@xpr)thm(q} 88)';
U=' *; gen (BRN, 15, UT4B); aean. ‘

4f 8(X)="begin' then if Ux'S’ then U= '; If UA' *
‘fhen error; I=I+l; S(I)='begin‘;

erzor; retumn;
orror; lsl-t;

AL U£'S' then ervor; ls=l-1

if U£'S' then error; Isi-i;

if U#'S' then errox; Us=' %3 sem: -

4L U#'3" then error; U='S8’; I=I-1; sceng

AL U#*Y° then errar; U={g'; zpz.a-;

AL UF* ' then erxor; U='9'; I=l-1; gen {(J¥S R);
I=I-1; | | |

S(i)au @@r)%hm@7_g}; Um' '; eem{BRR 15, UTAB);

| scan;
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32: Aif Up's’ __tg_gg error; I=I-1; U='3S';

33: error; U=' '; gcan;

34: AL UEL _ih_gg error; I=l+1; 5(1)="procedure’;scan;
35: error; I=l+1; 8(I)='procedure’, scan;

36s Af U#*S* then error; gen (DNDP) Hcan;

In this section parsing method for an aritimetic
expression is desceribed. Here it is not iaking the symbel
tables, attributes etc. into consideration as these are
used while implementing. The syntax for the arithmetic

expression isg as followss

B 3= 2|B4D |20
T its F[T4F|T/F
Fi=Il(R)

Decision table for the above grammar is given in figure
4.7. The entries of the decision matrix demoted by the
nunbers are the semantic routines. Task of these routines
is described as follows: o |

13 ALUA' ¢ then error; I=I+l; S(I)=R; scan;

2t if AT | UA'E* then error; U='E'; rgm_xg,

51 42 UA'T® then error; Ial-1; U='E'; gena(UFLaG);
;3: AL UA'TY M aﬁ-’ar; 1=I-1; gena (UFLAG);

5: Af UA'T* then error; IaI-ﬁ 3(1}-:4"_&5-'; U=' *;scan;
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T
83
93
10:
14:

122
13:
14z
152
16:

17:

183
193

21
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AL UA'F' then error; I=I+1; S(I)='2J'; U=' ';sean;
1L UA'F' then error; I=l+l; 3(I)='l#'; U=' *;scen;
A2 GA'T' then eorror; I=l-1; gennl{UFLAG);
Aif UA'D' then error; I=I-1; U='F'; genml{UFLAG);
if UA* ' then error; U='T'; US=R; UFLAG=1; scan;
if UA* ' then error; I=I+1; S(I)=R; US=R; UFLAG=1;
scan;

if G£' * 3hen error; I=I-1; Um'T';

AL S(I-1)=t# | S(I=1)=*(*|S(I-1)='~"then HOV(US);
Af UA* ' then orror; I=I-1; U='RF'; MOV (US);

AL UE'T|UA' B then error; 5(I)='(e)'s U=' ';scan;
AL U ' then error; I=I-i; U='T'; -
AL U4 * then ervor; I=I-1;
ir 3(1-13:‘?*"8@-%)&'2/' m U='7'; elge Un'F';
if U§* * then error; if S(I-1)=1 then return; glse
goto 12;
AL Uf' * then errory S(I)='(e>'; scan;
if UA'D' then errory I=l-1; genm(UTEMP);

it ﬁ#‘f’ then bogin if UA* 'then ezrcr;le!d;

8(1)='-; scan; end;
6lse Isi-1; S(I)="@~'; U=' *; scan;

Af UA'F* then error; I=Is+l; genm (UTHIP);
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- The routine exror is executed, whenever aome
eryor is invoked. The routine gena is called to
generate an add fnstmection. If UFLAG=0 intermediate
cobe generated will be

AVD T

»‘t » LENP2

where TE¥P2 ig temporary location whose address g o
the top of the stack UTENP. TEAPY ig the next top of
stack. /'Staek‘ UTENF is popped. If UFLAG=1 code is
generated like

ADD  TEMP2, UR

where UR contains the address of some éntry in the s&m&el
table. In this case UFLAG is set to zero. Similarly,
SUB instmuction is generated by this routine. I% is
generated vhen top of the stack 8 is ¢ -, Similar
interpretation is for GENML (for multiplication and
divieion), GEH¥ (for uniry operation minus) and MOV

(for transferring contents).
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T/
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15

19
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12 12 13

5 20 6

15 18 16

21

13

16

19

12

14

15

11

11

11

10

10

11

11

| » on Matrix for parsing
- Pigure 4J’§§fﬁ§§;£§aaimr<mm Saboat
of Algol-60. =
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The entries in the decigion matrix for apression
are different from entries that appear in decision matrix
for statement. These entries indicate the sction routine
%0 be executed next. A zero entry in the deecision table
indicaten the sgatax'ezrer in the source program. Fox
exaﬁple an expresgion cannot begin with right paranthesis.
These acticn routines are executed and appropriate inters
nediate code is generated., 4 detailed information, abous, |
what is done in these aetlion rontines, is given in the

interpretation phase.

This phase 15 & collection of routines that are called
¥hen & construct is recogniced in the gyntactic phase. The
purpose of these routines (ealled action routines) is to
create an intemediate form of the source and update the
identifier table. ZThe separation of this phase from ﬁ&e
ayﬁ%aetie phage is a logicel divisgion. The latter phase
recognizes syntactic constructs vhille the former interprets
the precise meaning into the matrix or identifier table.

Syntax anslysis eolls the interpretastion phase. In
cur inplementation there iz no clear cut line where syniax
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phage io over and shere gemantics starts. Once a construct
is recogniped then ite intermediate code is:generated. As
¥e have seen in the syntax phase, there are some entries in
the decigion matrix, these entries are the numbers of the “
action routines t0 be executed. The purpose of these action
routines is to check the information assgociated with the
top of the stack and incoming symbol. If there is no
matching an error message is recorded in the error message
file. 1If some construet is recognized and there is no |
error of any kind, the intermediate code is generated for
that construct. Semantics for various constructs is

supzarized as followas:

The usual definition of a conditional statement is
(statementiy = (1P clause) (statement2)else @tatemenrt 301
{if clanse)> /statement 2> '
Af clansed:s= if Gxprd)then
Lexprb>ise Zvarl>elops/vard>

e should generate one of the following sequences.

(1) omp v1,V2 (1) om ,v2
(2) B CC, g4t (2) BEE CC,q

Letatement2) OR é%tment~2>"
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(¢) BE 15,» | (q)-
(q+1) btatement3 )
(x) |

Where CC 1s the condition code for which branching
is %o take place. If CC=15 then it is an unconditional
branch. The code BEN is generated by the routine :t‘az- {it
clause)si= 1f ZLexprd> then. Of couxce, we 4o ﬁat know
where to branch prior to parsing of (statement2> . To
overcome this difficulty ve stack the address gf this
entry, and when (statement2) is pamsed the sta;e_k is poped
and address of that entry is filled. In actual implemen-
tation these addresses are stored in a table and their '
references are made through the pointer. If 1t is a
if then glpe statement then there is a little problenm.

In this casge bmehiag address ig g+t and at matrix entry
q¢ There is an inﬁ@euémt branch r. In order to know
what ig the actual amddress r, value q is stack end poped
when Gtatement3)is parsed.

These routines aret



{if clause> ti= Af Sfexprd> then

Check <exprb> is boclemn. If false then
eryor. Generate the BRE code. BSave the
address of this newly generated entry in
the ptack. Stack will be poped when
Btatenent2> will be parsed and code for
it will be generated. J{urrent wvalue of
the matrix entry is the addresg for branch
inatruction.

Ustatenent!) ti= /if clausé>atatenent2)

Stack ia - epeﬂ which centainmi the matrix
entyry in ahieh modification of the address |
portion is ¢o be done. The next matrix

entry is the asctual address for the branch
ingtruction.

Jitatenentl) 3:a(4f clause> Lstatement2?
< g;gg <a%a%mat3>

Stack is poped and address is modified.

Stack is again pushed with the current
entry shich ig to be modified after

<stamt3> will dbe pawsged.
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In our syntax, label are defined as follows:
<aftatmenﬂ) st= It Jstatement 2>

whore "I" is the nonterminal, meaning identifier.
The labels can be referenced before their actual defi-
nitions. We write the following semantic routine:
{label definition)> 13= I ¢

~ Search the identifier in the current block.
If 1t 18 not there, put 1t .= ™~ in the symbol
table and nake it as & 2.a§e§..
I 4t ig already there, make cure 1% is a
labels If it is nlready declared print errwr
message in error file. OQtherwise set decla~
ration bit and Till the a&dxess.

The gemantic routine for branch goto I 1s
letatement!) s3= goto I

Search the identifier in the current block.
If 3¢t 15 not there Put it im synbol table
and make it as a label. HMake it undeclared.
If it is there; if it not labdel type print
nessage. OGenerate the branch matrix code.
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Py eompound statement is a block statement if there
is no declaration statement available in it. So we will
discuss only block statement. General block statement is

I1spegin D1,D2,...0n,81,52...00 end
where L1 is a label. Di{i<i¢n) are declarations and
8j{1<jn) are statements which may be dlock statements.
This syntax of the dloctk ¢an be written ast
(1) <block begin)> :t= begin
(2) ®lock> :i= Jblock begin) fgeclarations) ;
| Jetatenents) end

We open & block when routine (1) is executed and
close 1% when routine (2) is executed. When & dlock is
c¢losed labels are local ¢0 the next surrounded block.
More details about block structure has already been
discussed in chapter IIIV

General :m of our arithmetic expresaion syntax
Sf;a» as £ollovwe:

Brswl | BeT | Bat| 2

Ts:eF |2%P|2/F

F:i=l|(E)
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?¢ study the Intermediate Code Phage, we use the
rules of operatar precedence, {0 associate the proper
operandg with an operator and then put the a;emﬁbns
into the matrix in the gegquence they should be executed.

We will discuss vaxim routines as follows:

- Pizel

This routine requirein® guadruplesto be gmrateﬁ
because n0O binary operation is involved. ¥We must only
100k up the identifier in the symbol table and associate
its entry with Fi W¥e, thus, have the semantic routine

Look up the name associated | Search{l Fame,P)
with the fdentifier. If 4t | If PO then eoxror|
ip not available give errer | (F). entryi= P
mespage. Associate the _
address of the table mtzy |
with 4?) .

"

The Fis= (E), requires no quadruples to be generated.
Simply we have $o asgociate entry with F. VWe thus have the
gsemantie routine

Fite {(E)

Asgociate the nddress
of expression entry

{B).entryi=E). entzy with factor eatry.
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Semantic routines for B:i=T, and T::=F are sinilar
to that of Pi:s]l, and Pi:=(E).

Bext conpider the semantice routines for
Ei:= BEs?7

In this routine first type of E az.zd ? is chétked 1if they
are of the same type ald instruction is generated. If
they are not of the same type, T is firat converted to
the type of E and then new entry is uged for add instruction.
| S8imilarly we have gemantic imﬁnea for

T3 :=14F, T3 :=T/Fand E: :=B-T.
FPor Eis=-l |
a simple instruction is generated i.e. NEG and such new
entry is used as &n expreseion entry. Its type is some
as that of 2.
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The present work contains the implementation of
the first end of the Algol-60 subset. This includes
lexical saaiyais, syntax asalysisc, semsntics analysis
and the intezmediate code generatar. All this has been
implemented in FPL/1 on EC 1020B. The whole inplementation
containg many subroutines with a main program to start
and end the job. Subroutines for a well defined and |
predeternined task. The compilation starts with the main
progran when it reads a gource program card. Various -
subroutines are called to compile it. The process of
 reading a card and compiling it is continued until the
end of source program. This chapter desc¢ribes the function
of various subroutines teking part in compilation of
A1g0l-60 subset statemente.

This program consists of declarations in which some
necessgary dde is iafiaed and initialired $o meet %ha
requirenent . Files, error messages are also declared in
‘ﬁzia section of the program. Iaiﬁa}.isaﬁm of stack
pointers, and other important variables is done in this
section. It then pawses control to STATE subroutine which



30

is a routine performing the task of parsing a statement.
The STATE subroutine then controls the fiow and calls the
other various msoutines whenever regquired. When the source
prograz ends thig STATE retums comtroel to the main program.
It then prepares all the files for updation and closes them.
After closing the files main program terminates to stop
compilation. '

This is the most impartant routine of the compiler.
It is designed for parsing a statement of Algol-60 subset.
It calls GETSYM, EXPR, BIKLS, NEXTEN, ERROR, I0, SEARCHSB,
mm&,' INSERT and other routines 1o complete the process.
How i;hia routine parses a statement is explained in chapter
i¥. This routine uses a stack 3 and an incoming symbol R. .
Depending on the top of the stack and incoming symbol a
particular routine is executed. In case top of the stack
and incoming symbol sre not matching according to the syntax
of ﬁw»}.anga&ge an error condition is detected. An exrror
code of four characters is printed, first two characters
show the top of the stack and 18,9{2'@01:6113&9 the illegal
matching of keywords or delimeters. To distinguish vhether

the error occured in the statement stmeture or in expression
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structure another character ig printed along with the
error code. An 'S’ means an error in parsing of the
statenent, and an ‘E? maieatesf\kg the expression.

After printing the error measage in the error mesgage
1’.3.1#_, the statenent under congideration is ignored and

the stack is poped up except when it is begin or procedure
ete, How input string is scanned until end of the
current statement ie found. In case, there is no error

in the current statement, an error free intermediate code
is generated for this parsed statement. Intermediate code
natrix is available in CODEF file. At the end of the
source program file, CFILE, this routine passes control

to the main pmgmg

+3 GET:

This routine scans the input string until a token
is found, 80 as to be identified as lexical analyzer.
This routine is called whenever there is need of a token.
At the end of source program file, eﬂm, it retums TibB=0
which is & signal for the aul of the source program. This
routine limits the length of the identifier at 10 characters.
In case 1% exceeds its length of 10 characters, an immediate
action is taken to truncate the identifier and a waraning
alongwith the listing of the source file is printed out.



Literals are also dealt with similarly except that the
literal length for integer is taken t0 be 10 characters
and thet for reals is 15 characters. This routine also
checks every identifier for a possibility of ite being
keyword. Hence ,maxzy‘ identifier token is compared with
the entries in the keywords table. If a match is found
code for keyword is returned, 'atherﬁse a code for an
identifier is returned. Similarly code for numerieal
literals, operators and delimetexs are returned.

This routine scans the input string until a syntacti-
cally correct expression is found. Intermediate code for
the parsed apression is then generated and astored in the
intermediate code file CODEF. This routine is provided
with a pointer to the input siring from vhere expression ips
to be passed. On retum, this pointer is at the end of %he
expresciin. It also returns the pointer t0 a temporary
location, where the value of the yarséd expression would
be available.

Ituses a atack § and an " _ ing syanbol R. Depending
on the top of stack and incoming symbol a particular routineis
okecuted. In case top of the stack and in“caming symbole are




not matehing according to the syntax of the arithmetic
expresgion, described in the text, an error comdition 13
deteated. An eorror code of four characters is printed,
firat two characters showing the top of the stack and last
two the in coming gymbol. One extra character *E' is almo
_printed with the erzor code which indicate that sxxror has
oceured during parsing of the ézﬂ.ﬁmetie expression. Once
an errox "isa;s been detected this routine trsasferscontrol to
the STATE.

5.5 10

This routine is called by ST4TE, for generating

' intermediate code for input/output statements. This
routine is provided with a pointer to the input string
from wvhere, identifier list for input/cutput statement,

is to be parsed. This routine scanes the input string

- until syntmﬁcaily correct inmput/output statement is
found. During this process it generates the intermediate
code for the parsed statement, and on detection of some
error, error condition is set and this .zsm:tia_e tranafers

eontrol to SPATE, where it prints error message.

This routine is called to genornte the intermediate
code in proper formats This routine ie called by STATE.
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The input to this routine is elready provided by STATE
by mesng of global variables. Intermediate code is
available in CODEF.

This routine is called by STATE. It is called for
naking & new entry in the block ligt. The input of this
routine is a pointer to the current dlock entyy and bleock
fdentification. ¥ith this information 1t creates & new entry
in the block 1ist. The ficlds in the newly created entry
are filled as descrided im chapter III. |

This routine is ealled by ST4ATE. It is called whenever
STATE finds end of a block. At this time ell the entries
belonging +0 the current block are transferred to the other
end of the symbol table. If the closed block is & procedure
block,all the lsbel variables are local to this procedure
and hence chetked for their declaration within this procedure.
If these are not #eclam& error message is recorded in the
error message file! After elosing a block, carrent block
is next saz:mdaﬁ_;hifeeﬁgi A1l the variables shich ae not
local %o the closed block are now local to the current
biaakgi .



This routine is called for searching an identifier
in the current block. It initialises DHCHBL wvariable with
mﬁ‘ end then tramsferseontrol %o o routine SRDMBL. It is
nothing to do more becmse 8ll searching-work is done by
SRDMBL. When SRDMBL tramsferscontrol to SEARCH, 1t transfers
eontrol i-;‘m& taféemea routine.

This routine does the same work, what is done by
SEARCH. Instead of gearching an identifier within the
current block, it searches it in all the surrounded blocks.

This rcutine is called by sEARCH and SEARCHB. The
‘input to this routine is the block number within which an
identifier 1is searched. It wuses block liet for that block.
Block list provided it the number of entries in the given
blee_k and a pointer to the asymbol table for that block.

With this information it makes & linear search in the symbol
‘table. If idemtifier 1s found, entry point to the symbol
table for this identifior is tranaferred to the called
program. If identifier is not found code=0 set and control
is transferred to the eailing Program..
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) 012 S

2his routine is used to insert a given identifier
into a current block. Given identifier ig inserted at the
top of the stack. Inserted variable type is set to sero
{which is a ai.gna‘i that identifier type is unknown) and its
detlaration bit is aleo sent to zero. In thé block 1ist
entries for the curremt block are also modified. For
example number of entries field i¢ incremented. After
ingertion,control is transferred to the calling program.
5.13 O0PP ROC

This routine makes a new entry in block list. Block
identification field is set t0o one(which tells that block
represented by this block is a procedure). Kumber of entrics
field is set to zZero. Pointer to the top of the gymbol table
18 stored in pointer to the symbol table field. Other
entries of block list are also modified. Then it transfers
“emml to the PROCID, where parsing of procedure head is
done. When it receives control from the PROCID then it
trangfer eax;tmz to STATE.

Thig routine isg called by PPROC. It parses the input



string until the procedure head is defined. During

this process, it calls DCLEEN %o parse declaration statemenis
appearing in the procedure head. All the declared wvariables
are ptored on the top of the stack and various block list
entries are also modified. During this process if same
error is detected it 1s printed out.

5.15 OPBLCK

 This routine is called by STATE to open a begin
blook. Its purpose is to create a block list emactly
in the same manner as is done by CPPRUOC. 1% calls LCLREN

routine for parsing declaration statements.

This routine is called by OPBLOK and OPPROC routines.
This mtine is previded with a pointer to the input string
zm where declaration statement is to be parsed. Alil the
variables occuring in a declaration statement are placed on
the top 01’\ the symbol table and block list entries are also
modified. When there is no more declaration statement, it
transfers control to the calling program. |

This routine is called by STATE routine. It is



provided with a pointer to the mput stiring and it
scans the input string until, end of the statement is found.
Thie is done to ignore the current statement.

Begides the above described routines, there are
a few moere routines which perform other jobs to complete
the process of compilation. '
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