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Abstract 

An interesting question which arises in many disciplines - physics, chemistry, ecology, 

climatology - is whether two or more experimentally measured time series are coupled 

by same underlying dynamics. Many methods have been developed to answer this 

question. Some of these are based on reconstructing the attract or from the time series 

and hence to determine the dimension of the attractor. If the two series are the result 

of the same dynamics, both should yield the same result. The problem here is that 

these methods are cumbersome and tend to be not very robust in the presence of noise. 

The symbolic dynamics (coarse graining) method discussed in this thesis appears to be 

much more effective and robust in determining whether the different signals are the 

result of the same underlying dynamics. The method has been seen to work quite well 

even in the presence of noise. The method applies the partitioning of phase space into 

'states' (coarse graining) of a chaotic attract or. Application of statistical properties, 

like information entropy to this partitioning leads one to conclude whether the two 

different signals have their origin in common dynamics. The method's suitability in 

extracting delay information from experimental chaotic time series of delay equation 

has also been seen. The method appears to be a useful tool in gathering delay 

information even if noise of appreciable magnitude is present. 



CHAPTER ONE 

INTRODUCTION 

Theoretical studies have made significant impacts in subjects like physics and 

chemistry. In recent times, even more complex sciences like molecular biology 

have started using theoretical techniques in trying to understand some 

fundamental aspects. In environmental sciences, especially in ecology [ 1-4 ], 

theoretical modelling efforts have contributed to developing an understanding 

of the temporal evolution of some simple ecosystems using techniques used in 

the study of non-linear dynamics. 

The basic theme is fairly straight forward. The system under 

consideration is modelled by differential equations which are non-linear and 

coupled. The aim is to understand how such a system would evolve in time. 

Another way-probably more relevant in ecology is to measure the time 

evolution of a particular variable or set of variables and then ask the question -

could the time series be the result of some underlying dynamical system and if 

so could the same dynamical system be responsible for the behaviour of the set 

of variables ? 

In this thesis we review the techniques developed by Lehrman et al. [5] 

which help in answering some of the above questions. In particular, Lehrman 

et al. have developed a technique to determine whether or not two time series 

(experimentally measured) could have resulted from a common underlying 

dynamics. 

A precondition for such a study is that the time series under study be 

chaotic. The implications of this method in time-delay equation are also 
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examined. In some situations it is seen that response to a stimulus occurs but 

with a delay. This method is adopted to see whether one can get an idea of 

how much delay occurs. 

The above techniques would have many applications in environmental 

sciences. The dynamical systems in ecology have also been found to show 

chaotic behavior [6, 7]. The experimental time series as observed for a variety 

of environmental aspects have been actually shown to behave chaotically. For 

example, El Nino events which involve a widespread warming of the equatorial 

Pacific Ocean surface water, have been successfully modelled using partial 

differential equations [8]. The El Nino events occurs irregularly and affects the 

world-wide climate remarkably. Recent studies have shown that the 

unpredictability of this phenomenon is due to spatiotemporal chaos (8-12]. 

Clearly, El Nino dynamics is due to the coupling of some environmental factors 

(variables), the time series of which are chaotic. It would be relevant to 

investigate whether these time series arise from the same underlying dynamics. 

Such studies could then help in establishing the factors which are coupled. 

As stated earlier further relevance can be sought for by looking into 

systems with time delays. Time delay means that to a certain stimulation, the 

response or action comes but with a delay. The concept of the retarded action 

applies to disciplines as widely separate as laser, physiology, ecology etc. In 

physiology, delays applies to the feedback situations where there is a time gap 

between the sensing of some disturbances and the arrival of an appropriate 

response (13]. Such physiological traits have been modelled by non-linear 

differential equations with a delay called delay differential equations. For 

example the models of respiration and also cell maturation show the significant 

delay [14]. 
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The importance of delay can also be seen in ecological models [6, 15]. 

One such is a simple logistic delay equation of single species:-

dx/dt = r x (t) [I - x(t- T)] (1.1) 

where x represents the population density, r is constant and T is the delay. 

Here the current rate of change of population density depends upon the 

population density at some time in the past. 

Such delay equations can be highly chaotic. It would be a matter of 

interest if one can gather the delay information from experimental time series 

of chaotic systems with delay equation. We test the Lehrman et al. method for 

time delay equation also. It is observed that the method works quite well in 

obtaining the delays in such time-series. 

It is thus seen that this model finds good utility in understanding some of 

the useful aspects of chaotic motions. In particular, it can be used in studying 

the dynamical systems governed by our environment. 

We have organized our study in the next four chapters. Chapter two 

deals with chaos - its meaning and how it is an inseparable· part of non linear 

dynamics, its deterministic nature being used to model systems with examples 

of Figenbaum attractor, Henon attractor and Lorenz model. Then some of the 

qualitative as well as quantitative tools used commonly to identify and study 

the chaotic motions have been briefly illustrated. Lastly we discuss some of the 

routes a system undergoes before entering into chaos. 

In chapter three we reVIew the Lehrman et al. method useful in 

determining the time evolution of chaotic signals from the same underlying 

dynamics. The method applies the symbolic dynamics (coarse graining) where 
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each member of the discrete time series is substituted by a symbol or number 

according to some rules. . The motive is to extract the information from the 

simplified series without compromising any way with the result one requires. 

To illustrate the method, two models, viz. Lorenz model and high dimensional 

model have been considered. We discuss how the coarse graining method is 

useful in the study of such models. In this context, the information content as 

contained in the symbolic series and its use further in getting the conditional 

information of two correlated variables is discussed. We present the results of 

numerical simulations performed to review the method as suggested by 

Lehrman et al. 

Chapter four is the application of symbolic dynamics method for two 

attractors-Part I deals with the Rossler attractor and Part II with the time delay 

differential equation. It is seen that method works quite well with the Rossler 

attractor. We vary some of the parameters of symbolic method as used in the 

case of Lorenz model to see the conditions in which this study is best suited. 

Then we numerically simulate the delay differential equation to check the 

validity of this method in this case also. It is inferred that the method is good 

enough to gather the delay information. The method is robust even in the 

presence of noise. 

Chapter five is the discussion of the results. We analyse the results of 

the numerical experiments as done on different models (chapter three & four). 

The robustness of this method in studying systems of diverse fields is also 

discussed. We indicate its main advantages over some other methods. We 

show how fourier transform method helps in getting an approximate idea of 

sampling time interval require~ to get better results of coarse graining method. 

In the light of this method's suitability in gathering delay information, we 

ponder over its possible usefulness in getting delay from experimental time 

series of El Nino event. We also discuss how the method may be useful in 
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getting the time shift of two chaotic time series evolving from same dynamical 

system. 
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CHAPTER TWO 

A BRIEF REVIEW OF CHAOS 

I. Introduction 

Newton's laws of motion have become the foundation stone of the 

understanding of dynamics since its inception over three centuries back 

(Newton's Principia, 1687). Till some years back, it was the general idea that 

if the forces between the particles are known and also the initial positions and 

velocities, one can predict the motion of a system far into the future. However, 

with the coming of computers, it is seen that such predictions are not always 

possible. 

In particular, the study of non linear systems shows this aspect. The 

advent of computers has helped in the rapid development of studies of such 

dynamics. It has been found that even very simple deterministic dynamical 

systems show complicated behaviour. It is found, that for certain ranges of 

values of parameters in the system, the system shows a behaviour where its 

motion is restricted to a region of phase space and it keeps off filing the phase 

space. The system is not cyclic. The trajectories are extremely sensitive to 

initial conditions. The region of phase space where the system operates is 

called a strange attractor and the motion of the system is referred to as chaotic. 

Chaotic dynamics are observed in a wide spectrum of field viz. physical, 

biological, ecological etc. The problem of turbulent flow of fluids has always 

remained a matter of interest. Beyond a velocity called critical velocity, the 

regular pattern of flows goes turbulent. What is most interesting is that a set of 

simple mathematical equations can provide an analogous behaviour as seen in 

such chaotic and turbulent motions. It is now a established fact that chaotic 

dynamics are inherent in many of the non-linear physical phenomena and the 
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subject has itself evolved into a separate entity called Non-linear Science. The 

rising colunm of smoke, wind past the aircraft wing, a storm in the atmosphere 

of Jupiter or Earth provide good example of chaotic motions. Despite 

enormous complexity, we can nonetheless see the underlying regularity and 

order. For example, the storm contains large, rather uniform regions. Chaotic 

patterns are characteristically varied in their details, but they may have quite 

regular general features. A lake which has dried up and thus formed complex 

pattern due to the cracks appearing on the surface shows that the pattern is 

almost the same at different places, but it repeats itself with unpredictable 

variations and thus is chaotic. Such chaotic patterns are sensitive to the 

conditions under which they are formed. Chaotic motions differ from random 

motions in the fact that they have no random or unpredictable inputs or 

parameters. They are referred to the motions in deterministic physical and 

mathematical systems whose time history has a sensitive dependence on initial 

conditions. The underlying structure to such dynamics can be searched in the 

phase space where the structure may appear to have positive non integral 

dimensions, termed as fractal structure [ 16]. For such motions, the forecasting 

uncertainty grows exponentially. The study of chaotic motions can help in 

understanding the source of such random like behaviour. To quantify such 

deterministic noise, tools or measures such as Lyapunov exponents and fractal 

dimensions are generally used [ 6, 16]. 

I I. How to Establish Chaos 

With the study of chaotic signals, both the qualitative and quantitative 

ideas to identify chaotic vibrations have come up. Some of the methods 

[6, 16, 17, 18] generally used are the following: 

(a) Study of the time history of the signals 
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The observation of series of a signal can tell whether the signal is 

periodic or chaotic. The problem is one needs to observe the pattern for quite a 

long time, as there is likelihood of chaotic patterns appearing during much later 

time which is not being observed. The other difficulty is that if the signal is not 

periodic, it might be quasiperiodic which is not chaotic either, since it can be 

expressed as sum of two or more incommensurate periodic signals. 

(b) Observation of the phase plane 

The phase plane traced out by the periodic motion is closed one. But for 

chaotic motions, the path traced on the plane never closes or repeats. The 

trajectories of the orbits are confmed to a limited portion of the phase space and 

keeps on filling the portion. 

(c) Fast fourier transform (FFT) 

Any periodic or non periodic signal can be expressed as a synthesis of 

sine or cosine signals. 

f(t) = (1/27t) f F(ro) exp(irot) dro. (2.1) 

F( m) is often complex, hence its absolute value I F( m) I is taken. The plot of 

I F( m) I against the frequency is taken. For periodic or quasiperiodic motions, 

narrow spikes or lines are seen indicating that the signal has discrete set of 

harmonic functions {exp (±rokt)}, k=l,2, .... The beginning of chaotic regime is 

indicated by rather broad range of continuous frequency spectrum. The full 

chaos can be seen with the appearance of continuous frequency spectrum 

dominating the narrow spikes. This is applicable for low dimension non linear 

system. For systems with high degrees of freedom, we can still get broad range 

of frequencies even though the motion is nonchaotic. 



The numerical calculation of F( ro) is often tedious, so the spectrum 

analyzers use the discrete version of f(t) = {f(tk) = fo, fJ, ....... , fn} applying an 

effective algorithm called the Fast Fourier Transform. 

(d) Poincare map 

To understand a dynamical system, differential equations modelling it 

are solved. The trajectories thus obtained in the phase space depict the 

evolution of such systems. Poincare section [ 18] may be visualised as a surface 

(one dimension less than the dimension of phase space) which cuts across the 

trajectories in a region of phase space. For example, it is a plane if the phase 

space is three dimensional. Subsequent crossings of trajectories on this section 

is found from a function which is a finite difference equation and called as 

Poincare map. If the motion is periodic with period one, for example a circle, 

the Poincare section is a point. If it is a period two motion, the map consists of 

two points. For a motion of the type 

where ro 1/ro2 is an irrational number; and if the sampling is at a period 

corresponding to either frequency, the map is found to be closed curve [Fig.2.1 

] [16]. Such motions are quasiperiodic. If rotfro2 is a rational number, the map 

will consist of a finite set of points. 

If the motion is chaotic, one can take two cases - first if the motion is 

undamped, the map appears to be a cloud of unorganised points. Secondly if it 

is damped, the map appears to be having infinite set of highly organised points. 

Such points appear to be moving in parallel arrays as can be seen in Fig. 

2.2(16]. 
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Fig. 2.1 Poincare map of a motion with two harmonic signals 

with different freqencies. 

Fig. 2.2 Poincare map of a chaotic attract or. 

Quantitative methods 

(e) Lyapunov exponents 

lO 

Chaotic motions are highly sensitive to initial conditions. It means if 

two trajectories start very close to each other, they wi11 be much farther apart 

after considerably smalJ times. The moving apart folJows exponential nature. 
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If ~ is the distance between two such nearby points, after some small time t, 

the distance d by which the points would be separated is given by : 

d(t) = do2J. t (2.3) 

The constant A. is called Lyapunov exponent. 

The exponential divergence of nearby trajectories happens locally, for 

d(t) cannot go to infinity as the system itself is bounded. Hence to determine A, 

the average of the exponential growth at many points along a trajectory has to 

be taken [16]. A reference trajectory is taken (see Fig. 2.3) and then a point on 

a nearby trajectory leads one to calculate d(t)/~. When d(t) becomes larger 

enough to depart from exponential behaviour, one moves to a new nearby 

trajectory and defines a new do(t). One may thus define the first Lyapunov 

exponent as 

The positive value of the exponent i.e. A>O implies the motion is chaotic. 

X 

Fig. 2.3 Sketch of the change in distance between two nearby orbits used to define-
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- the largest Lyapunov exponent. 

(f) Fractal dimension 

This is further a quantitative measure of the strangeness of the attractor. 

To illustrate this let us take the example of Koch curve. One takes a line 

segment of length one. It is then divided into three equal parts and the middle 

segment is replaced by two segments of length 113 as shown in figure 2.4 [16]. 

Thus the total length of the new boundary is increased to 4/3. This process is 

repeated now for each of the four segments and so on. Every time this process 

is repeated, the length increases by 4/3 and fmally the total length approaches 

infinity. After many such steps, the curve appears fuzzy. In the limit one has a 

continuous curve but nowhere differentiable. Still the curve has properties of 

area. The idea is one gets a sense that dimension of the curve is less than 2 but 

greater then 1, i.e. it is fractal. 

Fig. 2.4 Partial construction of Koch curve 

Suppose one has a uniform distribution of N0 points along a line and one 

need to cover this set of points with cubes of length E (Fig.2.5) ( 16]. We are 

concerned with the minimum number of cubes N(E) needed to cover the set. 

Considering No to be large, N(E) can be seen to scale as 
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N(t) ~ tit 

If we take the uniform distribution of N0 points in two dimensional surface, 

N(t) will scale as 

N(t) ~ llt2 

The dimension can thus be seen to follow the scaling law: 

(2.5) 

d is now substituted by de to denote capacity dimension. Thus, 

de= lim log N(E) /log (liE) 

E~O 

(2.6) 

If the dimension de of a set of points turns out to be noninteger, it may be called 

as fractal. 

n = 1/s 
, .. , ... , .. , ... , .. , ... , .. , .. , 

~ 

Fig. 2.5 Sketch illustrating the covering procedure for linear and planar 

distributions of points. 

III. Routes to Chaos 

Period doubling bifurcations 

The simplest one-dimensional example to illustrate chaotic dynamics is 

the logistic equation or the population growth model [ 16, 19] : 
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- b 2 Xn+t - 3Xn- X0 (2.7) 

Xn is the population of nth generation, a and b are constants. 

The first term on the right hand side exhibits the growth effect while the 

non-linear term comes due to competition when the population shows 

overcrowding. Clearly, the negative impact of this tenn balances the unlimited 

growth of the population. 

We may write the equation in nondimensional form, 

Xn+ 1 = AXn( 1 - X0 ), (2.8) 

A is growth rate parameter. 

Consider the situation for different values of A. 

Case I. A< I 

Each successive year the population decreases until it settles down to zero 

value (Fig. 2.6 A). 

Case 2. A just greater than I. 

The population grows and settles to a steady value after some time. In this case 

Xn+l = Xn= x*, 

x* = Ax* (I - x*) implies 

x* = 0 or x* = 1 - 1/A 
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Solutions to the logistic equation for different values of the growth rate parameter 
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For positive growth rate, discarding x*=O, we see for A=2.2, x~0.5454 after 

long period of time (Fig. 2.6 B). 

Case 3. A=3.3 

As A is further increased, beyond the value 3, the steady state behaviour now 

disappears. Choose A=3.3. After few years, the population settles down into a 

time dependent regular pattern. The population fluctuates between two 

extreme values - one high, one low. Such situation is called period two 

doubling or two cycle (Fig. 2.6 C). As A increases above 3.4, a cycle of four 

appears, a bit more increase would lead to eight cycle, a tiny bit more and the 

period double yet again until at A=3.59946 ....... and infinite number of period 

doubling has occurred, a situation which might be called chaos. We see that 

the chaos appears as a result of many successive doublings of the period and 

hence we may call this the period doubling route to chaos. 

Case 4. A=4 

As seen above, we obtain full chaos, the long term behaviour does not settle 

down to any simple periodic motion. In fact all the x-values between zero and 

one show up. It becomes time independent (Fig. 2.6 D). 

Fig. 2. 7 shows that the successive values of A at which cycles of length 

1,2,4,8, ..... first appears are denoted by A1, 'A2, A4, A8, ...... and the one at which 

the cycle of infinite length appears is denoted by "Aoo. This is the onset of chaos. 

The work done by theorists and some experimental verifications 

thereafter show that the route .to chaos as shown by this simple model might be 

more generally applicable. For such systems, as the control parameter 

analogous to A is changed, the system after Wldergoing successive doubling 

phenomena becomes unstable and goes chaotic. 
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Bifurcation diagram of the logistic map 
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0.5 
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0 

3.0 3.5 4.0 

A 
FIG. 2.7 
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Figenbaum showed that A values at which very long cycles would 

appear turned out to be much more predictable. For long cycles, the spacing 

forms a geometrical series in which the successive terms are divided by a 

constant factor called o. This o has been found to be universal. Its value is 

8=4.8296. 

As we have already seem that for a certain value of growth rate 

parameter A, the ratio of existing population to the maximum one approaches a 

fixed value. We may call this value as the attractor since the ratio after some 

time is attracted towards this fixed value. As the value of A is further 

increased, we get period two cycle where the ratio is attracted towards two 

fixed values and so on. On increasing A again we reach a point after which one 

obtains infinite period cycle. One encounters all the values between 0 and I of 

this population ratio. Thus the attractor is the entire interval between zero and 

one. For chaos the attractor can be an interval or a collection of different 

intervals. Such an attractor where one sees structure inside of structure inside 

of sructure and so on, is called a strange attractor. Such nested behaviour is 

described as scale-invariant or fractal. Scale-invariant means that when we 

blow up a certain portion of such structure and then blow up again, we obtain 

structure which is similar to pervious one . Hence it is invariant. They are 

called fractals because the dimension of such strange objects is not just an 

integer, but instead a positive non integral number. 

The limit at which one moves from finite to infinite cycle of length, 

there one obtains an attractor called Feigenbaum attractor. 

The Henon map as obtained from set of equations 

Xnext =AX (1-x) + y 
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(2.9) 

Ynext = xb 

shows that the strange attractors occur for many values of b and A. [ 19]. Also 

here the motion is chaotic. Blowing up the phase space diagram again and 

again shows similar structure every time, i.e. the attractor is scale invariant and 

fractal. 

Quasiperiodic route to chaos 

We have seen the period doubling route to chaos. There are some other 

routes also. One such is quasiperiodic route [16,17]. Now when the parameter 

is changed, the stable periodic orbit may not enter into higher periods as 

observed in period doubling, but it may become a limit cycle1
• Such transitions 

are called Hopf bifurcations. Further change of parameter may see two more 

Hopf bifurcations and we get three simultaneous coupled limit cycles and then 

the chaotic motions become possible. 

When two simultaneous periodic motions with frequencies ro1 and ro2 

are present and they are incommensurate, i.e. the ratio ro 1/ ro2 is an irrational 

number, the motion is termed quasiperiodic. The Poincare map of such motion 

is a closed curve. The motion is on the surface of a torus where the 

trajectories tend to fill it and the Poincare map is a plane cutting the torus as 

shown in Fig. [2.9] [16]. As the parameter is further vaned, the torus structure 

of quasiperiodicity may break and the motion goes chaotic. 

1 
A limit cycle (20) is a closed path of a non linear system which is approached spirally from either 

the inside or the outside by a non closed path either as t-H-oo or t~--co. Fig. 2.8 shows a limit cycle 
where a non closed path Ct approaches closed path C from the outside. 
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Fig. 2.8 A limit cycle 

Fig. 2.9 Sketch showing the coupled motion of two oscillators and the 

Poincare plane used to detect a quasiperiodic route to chaos 

Intermittency 

20 

Intermittency is yet another route to chaos [ 16]. It refers to such 

situations where bursts of chaos occur after long periods of periodic motion. 

As the parameter is varied, the bursts become more frequent and longer [Fig. 

2.1 0]. Such chaotic motions have been observed in experiments on convection 

in a cell with a temperature gradient (Rayleigh Benard convection). 
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Time 

Fig. 2.10 Sketch of the intermittent chaotic motion. 

IV. Lorenz Attractor 

As we would take the particular attractor as one example for study in 

subsequent chapters, it is worthwhile to make introductory remarks. The 

unpredictability as observed in the flow of fluids past an obstacle, air flow near 

the aircraft wing and a score of other such turbulent features led scientists to 

think over it again and again. In 1963, an atmospheric scientist E. N. Lorenz of 

MIT proposed a simple model for thermally induced fluid convection in the 

atmosphere [21]. When the fluid is heated from below, it becomes lighter and 

rises up while denser fluid from above tends to come down. As a result, 

convective rolls are produced and what one observes is a complicated swirling 

motion. The simple model as presented by Lorenz uses only three variables. It 

is described by the set of equations :-

dxldt = a(y - x) 

dy/dt = rx - y - xz 

dz/dt = xy - bz 

where a= 10, r=28 and b=8/3 

(2.10) 

(2.11) 

(2.12) 

In the phase space, it represents orbits which are confined to small 

region as shown in Fig.(2.11 ). Not a single point is ever crossed twice. It 

always form new orbits as the time evolves. The attractor has inherent 
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simplicity despite being complex. The attractor has two loops - right and left. 

As the time progresses, the system moves through each of these two kinds of 

loops in tum. The structure thus formed appears like two wings of a butterfly. 

But the structure is very sensitive to initial conditions, for even a slight change 

in initial values will cause a complete reshuffling of the loops at later times. 

The above is a brief review of some relevant aspects of chaos. In what 

follows, we study the application of the technique of Lehrman et al. to time 

series which are chaotic. 
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Phase portrait of Lorenz attractor 
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CHAPTER THREE 

REVIEW OF LEHRMAN et al. METHOD ON SYMBOLIC 
ANALYSIS OF LORENZ MODEL AND HIGH 

DIMENSIONAL MODEL 

We present in this chapter the review of the method adopted by Lehrman 

et al. [5] to study the dynamical coupling of chaotic signals. The method 

applies symbolic analysis [22-24] of such signals to determine whether they 

follow the same underlying dynamics. The method works well even if external 

noise is added to the signal. 

This technique is applied to Lorenz model and high dimensional model. 

We have discussed the Lorenz model briefly at the end of second chapter. The 

Lorenz model in the presence of additive noise can be written as: 

dX/dt =-aX+ aY +8X 

dY/dt = -XZ + rX- Y +8Y 

dZ/dt = XY- bZ + 8Z 

(3 .l) 

(3.2) 

(3.3) 

Here X(t) is proportional to the amplitude of the fluid velocity while 

Y(t) and Z(t) are related to temperature fluctuations in a simplified Benard 

thermal convection model. 

Further a=lO, b= 8/3, r=28 . The terms oX, oY and oZ represent the 

additive noise. 

We solve equations (1) - (3) by fourth order Runge-Kutta numerical 

method with time step ~t=.005 and the initial conditions Xo=6, Y0=6, Z0=13.5. 

Then every time step ~t, a random variable with Gaussian distribution is added 
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to the signals X(t), Y(t), Z(t). The variances of all three random variables are 

equal and are parametrized as : 

<rx =cry= <rz = R-v'<(~ Y)2> 

(3.4) 

The average values are calculated in the absence of external noise. 

We check the method for three different noise ratio R=0.5, 1 and 1.5. 

For the present study of symbolic analysis method, we first take the two 

signals X(t) and Z(t) as generated by Lorenz model without external noise. The 

time series of the two signals for t=25 and time step L1t=.005 is shown in Fig 

(3.1). The behaviour of the two signals appear quite different, though they 

have evolved following the same dynamics, i.e. on the same attractor- the 

Lorenz attractor. 

The purpose of the method is to show, by analysing the time series data 

only, that the two time series could have arisen from the same underlying 

dynamics. Other methods exist which show a similar result - one could 

calculate the dimension of the attractor from each of the time series. But these 

other methods are fairly cumbersome and are less robust in the presence of 

noise indicating that with experimentally measured time series, these methods 

would be less accurate. 

We discretize the time series signals as 

(3.5) 

Zn= Z(to + nt) 

Here n=O, 1,2, ...... . 
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Time records of X & Z signals of Lorenz model 

10 

(ij 
c 
.Q> 0 
(/) 

I 

>< 

-10 

-20 
0 10 15 20 25 

50 

40 

ro 30 c 
Ol w 
I 

N 20 

10 

0 
0 10 15 25 

Timet 

FIG. 3.1 



27 

For this case we choose t=l, i.e. we choose every 2001
h signal points in 

the time series of signals with ~t=. 005. The most suitable value of t is taken 

after verifying where the main result looks to be most pronounced. To get an 

approximate idea oft, we obtained the Fast Fourier Transform (FFT) of our 

signals. This method that we applied for it is illustrated below : 

Suppose we sample a signal f(t) according as 

fn = f (nd) (3.6) 

where n= ..... , -2,-1,0,1,2, ..... . 

~ is the time interval used for sampling. The reciprocal of ~ is called the 

sampling rate, i.e. the number of samples taken per unit time. 

The Nyquist critical frequency [25] is defined as follows : 

fc = l/(2d) (3.7) 

If we sample a sine wave with Nyquist critical frequency C the 

sampling would imply that the first sample taken would lie on one of its crest, 

the second on the trough of that cycle, the third on the crest of the next cycle 

and so on. It means there are two samples per cycle. The importance of this 

frequency is that if the continuous function f(t) , sampled at an interval ~' 

happens to be bandwidth limited to frequencies less in magnitude than fc, i.e. 

I~:$ (, then the function is completely determined by its samples fn. This is 

known as sampling theorem [25]. To illustrate the usefulness of this for our 

method, we take the first 4096 points of X-signal of Lorenz model sampled at 

~t=.005. We obtain the fourier transform of this data as: 

X= FFT(X) (3.8) 



The frequency axis may be defined by noting that for any point D 
(D:::;4096/2), the corresponding frequency is 

f = {(1/~t)/4096} D (3.9) 

which we do for the first 2047 points (the remainder of the 4096 points are 

symmetric). 

Thus 

f= (200/4096) D (3.10) 

where D = 0,1, ..... , 2047 

Now we plot the transform X as y-axis and D as x-axis as shown in Fig (3.2). 
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The graph shows that the transform X falls off rather rapidly with time. 

The value of D after which X seems to be much lower is noted as De and the 

corresponding frequency as the critical frequency fc. Thus from eqn (3.10) we 

get 

fc = (200/4096) De (3.11) 

The frequencies greater than fc corresponds to signal values rendered 

insignificant due to excessive noise. This frequency (when converted to time) 

gives an approximate idea of when the autocorrelation goes to zero. This time 

calculated as indicated above, is used as the lag in the calculations. Any time 

greater than this would be appropriate. 

This frequency fc may be treated as Nyquist critical frequency. Then 

eqn (3 .11) can be written as 

1/(2~) =(200/4096) De, which gives 
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Fast-fourier transform of X-signal of Lorenz model 
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~ = 4096/(400 D~:) (3.12) 

11 here is the analogue of our t. Clearly the value oft would be greater than the 

11 thus calculated. As shown in Fig. (3.2), the value of De is taken as 50. From 

eqn (3.12), 11 comes out to be -<>.2. 

The good approximation of t can be obtained for by looking for some 

values oft greater than 0.2. The best value oft is one which makes our result 

most prominent. 

Now to analyse two different signal patterns, we need to have an 

appropriate language in order to extract maximum required information without 

losing the essence of pattern behaviour. We use here the symbolic language for 

the signals. To our signal points, Xn, Zn, we associate symbolic 

representation. The symbolic dynamics, in fact, present the partitioning of the 

phase space (coarse graining) such that the information concerning the particle 

orbits is embedded in the partitioning [23 ,24]. In the method, for the discrete 

signal points Xo, X1, X2, •..•. , one associates a sequence of integers S0 , S1, 

S2, ..... , according to some prescribed rule. Then to a shorter sequence of length 

L taken out of this sequence, one associate an integer I, again defmed by some 

rule. The core meaning of this phase partitioning is that if 0 1 be the set of all X 

in some initial domain D such that any orbit with Xo=X will evolve in time to 

produce the same sequence (So, S1, S2, ..•.. ) of length L and thus exactly the 

same value of I, then 0 1 is said to represent a coarse grain element of phase 

space. It is to be noted that the sequence define a symbolic dynamics if for a 

given I each set D, is simply connected. This means that there are not two or 

more different sets of all X corresponding to a particular 0 1• Thus a particular 

truncated sequence is characterized uniquely by an integer 1, 
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(3.13) 

where M is the nwnber of symbols or integers used to divide the entire 

sequence into different domains as will be illustrated now. Sk corresponds to 

the kth symbol or integer of the truncated sequence of length L. 

One may thus divide the Xn time senes corresponding to different 

symbols/integers according as 

A (0) Xmin < X < Xct 

= B ( 1) Xct < X < Xc2 (3.14) 

C (2) Xc2 < X < X max 

)(.;~, )(.;2, ..... , are critical points which divide the whole series into different 

domains. 

Rochester and White [24] have shown that the proper selection of 

critical points is necessary for the symbolic dynamics method to work. They 
. 

studied the partitioning of the Hen on map. It is thus established that the critical 

points must be boundaries of symbol domains~ otherwise the nonmonotone 

character .of the map leads to domains 0 1 which are not connected, meaning 

thereby that many such domains would have the same symbol sequence. Thus 

very different orbit are associated with the same sequence and the partitioning 
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would not reproduce the correct statistical properties of the map. Thus the ale 

for partitioning is that any critical surface must separate symbol domains. 

Lehnnan et al. emphasizes that, for coarse graining method to work in 

establishing the dynamical coupling, one need just rough approximation. It 

means that the better optimum language is one that keeps the degeneracies of 

domains D1 to a minimum. 

The determination of values of such critical points is discussed later. 

For our discussion we take integers instead of symbols. For the Lorenz 

model, we convert the time series by using just two integers 0 and I i.e. in eqn 

(3.13), M=2. We take out all sequences of length L, as for example ifL=5, 

,1 1,1 0 0,1 q 1 0 0 11. .. 

we can have as many as ML such different sequences. Here they are 25=32 

different sequences. 

Clearly the sequences thus obtained have unique value of 1, where 

s L-" I= L 2 IS· . I 
,:1 

(3.15) 

Here 1 may take any value from 0 to 3 1. The same procedure has to be 

followed for Zn time series also. 

Our next consideration would be to determine the critical points. 
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We break here briefly to discuss the information theory [26,27] that is 

used to get the results. 

If E be some event which occurs with probability P(E), then the 

information received when the event E has occurred is 

I(E) =log 1/P(E) units of information (3.16) 

If one takes a logarithm to base 2, then the resulting unit of information is 

called a bit 

l(E) = log2 1/P(E) bits (3.17) 

Let us think of a discrete information source emitting a sequence of 

symbols from a fixed finite source alphabet S = 's1, s2, ..... ,sq}. Successive 

symbols are selected according to some fixed probability law. 

Source r S;, Sj, ..... 

.___ _____ ___. 

An information source 

We assume that successive symbols emitted from the source are 

statistically independent. Such as information source is called zero memory 

source and is completely described by source alphabet S and the probabilities 

with which the symbols occur : 
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If symbol Si occurs, the amount of information is equal to 

(3.18) 

Since the probability of this to happen is P(si), the average amount of 

information obtained per symbol from the source is 

I: P(si) l(si) bits 
5 

L is the summation over the q symbols of the source S. 
5 

This quantity, the average amount of information per source symbol is 

called entropy H(S). 

bits (3.19) 

Considering our discussion on the symbolic representation of time 

signals, the infonnation content may be defined as entropy E where, 

(3.20) 
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P1 is the probability of fmding a particular sequence I, i.e. the number of 

sequences corresponding to this I divided by total number of all sequences. 

To get the critical points Xci for a particular signal, one need to 

maximize this entropy with respect to some ranges of sample points chosen. 

For example one may choose one range of sample points so that every time a 

sample point Xc so selected converts the time series into integer symbols 0, 1 

according as if X< Xc, then X = 0, else X= 1. and then see at which value of Xc 

the entropy is getting maximized. The value of X: that maximizes the entropy 

denotes the critical point of signal series. Similarly two critical points for the 

series can be found if we maximize the entropy using two different ranges of 

sample points. If we increase the number of critical points from one to two, we 

see that information content getting increased. We may see further increase 

with the increase of critical points until we reach a stage where addition of 

critical points will not increase the information content anymore and thus for 

this set of critical points Xci, an optimum language for the symbolic analysis is 

found. 

We obtain the critical points for both Xn and Zn data. We then convert it 

into states lx(n) and lz(n). If the Xn and Zn data come from different dynamics, 

the evolution of lx(n) and lz(n) are not correlated. It means that if the variable X 

occupies the state lo, the variable Z can occupy any of the states available to it. 

But if Xn and Zn data follow the same dynamics, then if X occupies the state 10, 

Z can occupy only neighboring states. This happens because these states are 

different symbolic coarse grainings of the same orbit. But if we time shift these 

two sequences lx(n) and lz(n), i.e. for sequences like lx(n) and lz(n+no), the 

correlation no longer exists. In order to verify this assertion, we compute here 

the conditional entropy defined as 
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E(Z/X) = - 11 N, t 1/LtL P (lzflx) In P(l/lx)(3.21) 
.qc "'lx 

where P(lzllx) is the probability for the variable Z to occupy lz state if the 

variable X occupies lx state. N1 is the total number of different lx sequences. 

The first summation is done over all accessible lz states for a given lx state and 

the second summation is done for all available lx states. 

A sharp minimum is observed in E(Z/X) vs shift parameter no curve in 

Lorenz model when no=O i.e. when X and Z signals are evolving 

simultaneously and hence they are correlated. This correlation is destroyed by 

taking nonzero integral values of no. 

For the Lorenz model, we have studied four cases- one when there is no 

noise and rest three when noise of different noise ratio R is added. 

We take t= 1. We get an approximate verification of this from FFT 

method as described earlier. Time T=4000, with ~t=.005, we simulate 800000 

signal points. We use one critical point Xc and Zc and the result appears quite 

outstanding. The full optimization may need some more critical points. The 

number of integer symbols being used are 0 and 1, i.e. M=2. The graph of 

E(Z/X) vs n0 for four cases is shown in Fig. (3.3). 

Case A 

This is ideal situation for model when noise 8X, 8 Y, and 8Z are zero 

(R=O). Here Xc=0.07 and Zc=21.24. 

A sharp minimum appears at no=O but if time shifting IS done, E(Z/X) 

increases and nearly stabilizes at some far away no values. 
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Conditional entropy as a function of shift parameter n
0 

for the X & Z signals of Lorenz model 
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Case B 

Noise ratio R=0.5, X:=-0.13, Zc=22.25. This minimum gets shifted up 

substantially and comparatively stabilises rather a bit earlier. 

CaseC 

R=l, Xc= -0.63, Zc=23.25. The peak appears but the sharpness ts 

considerably reduced. 

CaseD 

R = 1. 5, Xc=O. 0 1, Zc=24 .41. Due to heavy noise the peak is greatly 

reduced and stabilizes much quicker. 

From the four cases, we observe that the peak gets less pronounced as R 

is increased. The presence of peak in all cases demonstrates that correlation is 

not easily disturbed by noise but the effect of noise leads to the increase in 

information content E(Z/X) rather. Hence the result appears quite robust even 

in the presence of noise. 

We proceed further to apply this method for more complex signals 

shown in Fig. (3.4) and generated by a high dimensional model. 

The equations of motion are 

(3.22) 



Time Records of signals 1 & 3 for the high dimensional model 
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It models the basic physics of a turbulent system. Here k is an integer. 

The variables Xk may be considered as values of some atmospheric quantity in 

K sectors of a latitude circle with periodic condition Xk._K= Xk. The external 

forcing and internal dissipation are described by the constant F and linear tenn. 

The quadratic tenns simulate advection which conserves the total energy of the 

system X1 2+ X/+ ..... XK2
. 

We take K = 10 and F= 15. We thus have ten coupled non-linear 

equations of motion corresponding to signals from X1 to X10. To solve it, we 

use fourth-order Runge-Kutta numerical method with ,1t=O.Ol. Time T=20000. 

The language is here optimized by taking two critical points for each signal, i.e. 

for the ith signal Xi, 

If Xi < Xch then Xi = 0 

If Xc1 < Xi < Xc2, then Xi = 1 

and If Xi > Xc2, then Xi = 2 

(3.23) 

Thus the number of integer symbols taken is 3, i.e. M=3. ~1 and ~2 are the 

two critical points used for signal Xi. The critical points for signal I are found 

to be 0.39 and 5.34 and that for signal 3 are 0.50 and 5.38. Using FFT 

analysis, the value oft has been found approximately around O.I5. We check 

the result for three values oft as shown in A, B, C of Fig. 3.5 for signal I and 

signal 3 (si & s3). We see the results satisfy the symbolic study for the high 

dimensional model. 
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Conditional entropy as a function of shift parameter n
0 

for signals 1 & 3 of the high dimensional model 
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CHAPTER FOUR 

APPLICATION OF SYMBOLIC STUDY TO OTHER 
DYNAMICAL SYSTEMS 

I. Rossler Attractor 

42 

Rossler proposed another simple model describing the dynamics of 

chemical reactions in a stirred tank [6, 16]. 

dX/dt = - (Y+Z) (4.1) 

dY/dt =X+ aY (4.2) 

dZ/dt = bX- cZ + XZ (4.3) 

where a, b, c, are constants 

This is also a three dimensional system with a single non linear cross term XZ. 

This system may be thought to model the flow around one of the loops 

of the Lorenz attractor and is thus a model of a model. Here a=0.38, b=0.3. 

With c=4.5, we see the chaotic motion. c is taken as the bifurcation parameter. 

J The phase portraits of the attractor is shown in Fig. 4.1. The flow forms a 

single spiral embedded in a disc, with trajectories from the outer part of the 

spiral twisted and folded back into the inner part of the spiral. 

We apply symbolic analysis for the Rossler system to verify the method 

as applied to Lorenz attractor in the previous chapter. 
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Phase portraits of Rossler attractor 
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The equation (I) - (3) is solved numerically by Runge-Kutta fourth 

order method with time step .1t=0.005. We take the initial condition Xo= 

Y0=Z0=1.0. The time T=3900. We discretize the X and Z signals. Using 

FFT analysis, the most appropriate value oft has been found as 1.5. We then 

determine the critical points Xc & Zc. Fig. 4.2 shows the information entropy E 

as a function of~ points for M=2 and L=5. The information content is 

maximum at Xc~.95. Hence this is chosen as the critical point appropriate for 

partitioning. 

We analyse the coarse-graining method for four cases here as shown in 

Fig. 4.3. 

The graphs from (A) to (C) are ones in which three different lengths of 

short sequences, i.e. L=3, 5 and 7 are taken. We take one critical point for each 

of the cases. We want to verifY the value of L most appropriate for our study. 

Before that we show here how the maximum value of information entropy 

changes for X and Z signals for three values of L. We tabulate the result shown 

below. 

L EX EZ 

3 0.633 0.615 

5 0.562 0.557 

7 0.504 0.507 

Table 4.1 

EX' and EZ denote the maximum value of information entropy for X and Z 

signals respectively. We observe that the entropy decreases as the length L is 

increased. 
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Information content as a function of Xc points of X-signal for the Rossler model 
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Conditional entropy as a function of shift parameter n
0 

for the X & Z signals of Rossler model 
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The information content, 

-1/L ~ Ptln Pt 

is maximum when all the P1' s are equal. When one chooses a small L, say 3 

with one critical point, the number of possible different sequences is 23
. It 

appears that most or all of these sequences appear with non zero probabilities. 

As L increases, the number of possible sequences increases and some of them 

appear with almost vanishing probabilities thereby reducing the information 

content. 

A glance at graphs (A) - (C) shows that the most pronounced peak 

occurs when L=5. Hence short sequences of length L=5 yield better 

approximation for present symbolic dynamical study. 

Graph (D) shows a special case when two critical points are taken. Here 

L=5. We compare the information entropy of X and Z signals corresponding to 

one and two critical points. 

Critical EX EZ 

Point(s) 

1 0.562 0.557 

2 0.725 0.701 

Table 4.2 

From Table 4.2, we see that information entropy corresponding to two 

critical point is higher. The increase in critical point implies increase in 

number of symbols used to redefine the series and hence number of unique 

values of I used in partitioning the phase space increases. (J=O to 25-1 for one 
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critical point, 1=0 to 35-1 for two critical point). Hence the infonnation content 

is higher in the case with two critical points. The comparison of conditional 

entropies for the two cases has been made in graph (B) & (D). Graph (D) 

shows a much pronounced peak in comparison to graph (B). It implies that two 

critical points make the symbolic language more suitable for this study. 

This study of the Rossler equation indicates that the Lehrman et al. 

method is fairly general. Further we have shown that choosing ''t' using the 

FFT is reasonable. 

II. Time Delay Equation 

Time delay applies to situations where there is occurrence of delayed 

action in response to certain casualty. This time-lag is very crucial in 

determini-ng the nature of action [ 13,28]. Time delay finds wide relevance in 

manifold domains as diverse as optics[29], physiology [ 14] and population 

biology [15,30]. The time delay as inherent in so many natural or man made 

dynamical systems result is in rich dynamics. Mackey and Glass (14 , 18 ) have 

studied the delayed mechanisms in physiological control systems. They 

pointed out that a number of chronic and acute diseases show non-periodic 

behaviour and the oscillatory instabilities shown by them has been established 

through mathematically complex models. They emphasize that simple 

mathematical models of physiological systems show periodic as well as non 

periodic dynamics similar to those encountered in human diseases. They take 

the simple ordinary differential equation, 

dX/dt = A.-vX (4.4) 

where X is a variable to be controlled, t is time, and A and v are positive 

constants giving the production and decay rates respectively, of X. In the limit 
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t~cx:>, X=/Jv starting from any initial condition. This system reaches a point of 

stable equilibrium. In fact to describe physiological systems, A. and v are not 

taken constants, but depend on the value of X at some earlier time. In 

considering a homogeneous population of mature circulating cells of density X, 

it was assumed that the production was a non linear function of the density at a 

time t' in the past, Xt'-

dX/dt= f(XJ- vX (4.5) 

f{X't1 is considered in two different forms: 

f(XJ = A-9°/(9° +X/) (4.6) 

f(Xt~ = A.9°X/(9° + Xt~) ( 4. 7) 

where e, n are constants. 

Fowler and Kember [31] uses the Mackey-Glass equation in the form, 

E dX/dt =-X + f(Xt-t1 (4.8) 

f(X) = A.X/(l+Xc) (4.9) 

We thus have a first order delay differential equation which may show chaotic 

behaviour. It has an exponential relaxation term -X(t) and an external forcing 

term f(Xt-r1 which is non linear with a delay T.~ E is the ratio of the relaxation 

time to the delay and thus is a dimensionless parameter. E is taken as very small 

and hence solutions can be taken close to the limit, 

X= f(Xt-J (4.10) 
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We look for the solution of equation (4.8)- (4.9). The chaotic attractor is seen 

for A= 2, c = 10, -r'= 1, E = 0.05 [31,32]. We iterate the equation with time 

step ~t= 0.005 . 

It must be emphasized here that in a delay differential equation, one 

need to specify initial conditions over a period of time and hence the dimension 

of such equation is infinite [ 13]. It is now an accepted fact that the dynamics of 

non linear equations are characterized by dimension which is not always an 

integer but it may be less than the number of independent variable used to 

describe the equation. Fanner [33] studied the delay equation (4.8)- (4.9) and 

showed that it was possible to determine the dimension and for certain 

parameters, the dimension appeared to increase linearly with time delay. Thus 

substantially high delay would lead to high dimensional delay equation. 

The time series of the system being studied is shown in Fig. (4.4). The 

phase portrait is shown in Fig (4.5). 

The objective of our study is to determine the time delay in an 

experimental time series similar to Fig (4.4), assuming that the non linear 

function f(Xt-d is not known. 

For this we apply the symbolic analysis method (coarse graining) as 

developed by Lehrman et al. and described in chapter 3. We see that the 

method works extremely well for delay time series also and it is quite robust 

even in the presence of noise. 

The time series of our signal X(t) is descretized as 

Xn = X(to + n-r) (4.11) 

n=O, 1,2,3, ...... 
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Phase portrait of the time delay chaotic system 
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The delay equation is converted into difference equation [31,32] and taking 

dX/dt ~ (Xt- Xt-&)/8, the equation is iterated as 

(4.12) 

Where 8 is sufficiently small, 8<£. We take 8=(114)E. We take all the initial 

values as 0.1. The delay equation is iterated with time step 0.005. Using FFT 

analysis, the value of t has been approximated as 0.1. The ftrst 1000 data 

samples are discarded to allow the trajectory to fall on the system attractor and 

then the next 10000 samples are taken. We take one critical point for the 

symbolic language of the delay signal . The critical point has been found as 

)(.;=0.92. 

The conditional entropy E(X/Xt) where Xt implies delayed state X(t-1) 

is calculated for different values of delay 1:' by shifting the time series with 

respect to itself. The graph is shown in Fig. (4.6). We observe a sharp 

minimum for time delay t~ I. It thus establishes that the coarse graining 

method works well to determine the time delay in experimental time series. 

We check now how the method works when noise is added. Let the 

measurement process be described by 

(4.13) 
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Conditional entropy as a function of time lag -r of the time 
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Where Y1 is the measurement value of X1 and n1 is a white measurement noise 

with zero mean and variance cr2
11 [32]. The measurement noise intensity is 

characterised by the signal to noise ratio (SNR). SNR = ...Ja2J..Ja2
11 • as is the 

standard deviation of the noise free chaotic series and <J11 that of noise. We 

generate noisy time series described by equations (4.8), (4.9) and (4.13) with 

SNR = 2, (cr2s ~o.I, cr2
11 ~ 0.025) as shown in Fig. (4.7). The graph of E(Y/Yd) 

versus time delay t'is shown in Fig. (4.8). The critical point for the time series 

is foood as Yc=0.95. We again observe sharp fall when the delay t'equals I 

which means that the method works well in the presence of noise. 
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Noisy Chaotic time series of the time delay system 
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Conditional entropy as a function of time lag -r' for a noisy time series 
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CHAPTER FIVE 

DISCUSSION 

The numerical studies on non linear model system - Lorenz, Rossler and 

a high dimensional one show that the method of Lehrman et al. does, in fact 

help in establishing whether two chaotic time series could originate from the 

same underlying dynamics. Other methods which rely on calculation of the 

dimensions of the attractor from each of the time series using the method of 

Grassberger and Procaccia [34] also do the same. However what is seen is the 

robustness of the present method in the presence of noise. 

This approach investigates the correlation of the informations of two (or 

more) series. It has been elaborated by defining the conditional entropy for two 

signals. A sharp minimum is seen when time shift is zero for Lorenz, high 

dimensional and Rossler model. It implies that the conditional entropy, i.e. the 

information of one signal with respect to the other is minimum. The meaning 

is, to a certain value of one signal, the other cannot take any of all possible 

values, but is constrained to take only certain values. Hence the conditional 

information is confined and therefore is minimum, showing the two series are 

correlated. Otherwise, if the series are not at all correlated, to a certain value of 

one signal, the other has the freedom to take any of all the possible values~ thus 

increasing the conditional probability of two such signals and the conditional 

information is maximum. We have seen the breaking of such correlation by 

time shifting of two series with respect to each other. Obviously this will tend 

to decrease the constraints and the conditional information will increase until 

we reach a shift where the information tends to a maximum value and any 

further shift will no longer increase the information. 
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We have, checked the validity of the method in the presence of noise. 

Noise of increasing magnitude is added to the signals. The persistence of sharp 

minima shows the robustness of this method. The other advantage is one does 

not need to determine the dimension of the dynamical system [5]. Some other 

methods, viz. a geometrical method [35] applied for reconstructing phase space 

from a single variable and another, a different method of symbolic analysis of 

noisy chaotic signals (36] also exist. 

The work on Rossler model shows the need of optimization of symbolic 

language by taking more than one critical point for each time series. With two 

critical points the peak is much more pronounced than that for one critical 

point. Clearly with the addition of noise, the peak would tend to disappear 

faster in the latter in comparison to the former case. The information does not 

keep on rising as the number of critical points is increased. Beyond a certain 

number of critical points (usually 2 or 3) the information stabilises. The 

advantage of this method is that, even if one works with fewer critical points 

than the number which give the maximum information, it works. In fact one 

need to make only rough approximation of the optimum langauge. 

It is worthwhile to mention some other aspects which we investigated in 

connection with this study. 

We checked how the method works for different sampling time intervals 

't. It is seen that the selection of appropriate value of 't is a must for the coarse 

graining method to work well. One gets a well pronounced peak for a right 

value of 't. We searched for a method to get an approximation of 't. In chapter 

three, we have shown how the analysis of fourier transform of discrete series 

helps in achieving this. The value of 't should not be less than the sampling 

interval found from this fourier transform method. The most appropriate value 

is one which gives the best peak. The method is verified for all the models we 
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studied and it appears to work quite satisfactory. 

We also tested the validity of coarse graining method to analysing time 

delay equations. The method appeared successful in getting the delay 

information from such equations. The graph shows the peak to be most 

pronounced at the delay interval. It is quite effective even after the addition of 

noise. Thus a technique based on coarse graining method and information 

entropy has been developed to gather the delay information from an 

experimental chaotic time series. 

The experimental time series of El Nino have been found to show delay 

[ 12]. Thus one possible utility of this technique can be in getting delay 

information as contained in El Nino phenomena. 

Another possible application could be the following. Consider two 

experimentally measured time series. These time series could have been 

measured at different starting times. The above method will then, probably, 

help us in determining the time difference between the starting times. Of 

course, the two series must be chaotic and governed by the same dynami~s. 
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