A STUDY OF RESOLDTTON STRATEGIXS

IN
FIRST ORDER PREDICATE CALCULUS

OINAN IHOCHA SINGH

Submitted in partial fulfilment of the requirement for the degree of Master of philosophy

at the
School of Computer © Systems Sciences Jamaharlal Nehru University
New Delhi - 110067

July 1981.

CERTIFICATE

> SCHOOL OF COMPEER \& SYSTEMS SCIENCES JAWAEARLAL WHEN UNIVERSITY NEW DELHI - 110067.

This research work presented in this dissertation entitled "A Study of Resolution Strategies in First Order Predicate Calculus" has been carried out at the School of Computer and Systems Sciences, Jewabarlal Nehru University, New Delhi - 110067.

This work is original and has not been submitted in part or full for any other degree or diploma of any University.

> O. Imocha
> oman mocha sima student
N.f.Murh

PROP. NAP. MOKHERJES
R. Sadamanda

DR. R. SADAKANDA SUPERVISOR

ACKMOHLBDGEMENS

Abstract

I owe a great debt to Dr. R. Sadananda for leveLoping the ideas of Automatic Theorem Proving in Artilicial Intellegence. This diasertation itself was done in Jawaharlal Nehzu Univergity under hie valuable guiaance and superviaion.

I also thank the Dean of the School of Computer and Systeme Sciences, for giving all facilities of producing this dissertation.

I also thanir the staff members and my colleagues of the School and specially to my clasamater S. K. Rao and B. Rajeshwar for their important ouggessiona and encouram gements during my jears in Deihi.

My special thanke are alao due to Ramesh Chander for his hardship in typing the thesis.

Finally I expreas my actowiedgement to my family members for their great care and long patience during my years in the University.

TABLE OF CONXENTS

CHAETSR-I paze No.
INGRODUCTION t-2
CHAPTER-2
RESOLITLON RRINCIPLE AND 153 BACKGROUND 3-19
Mathematical Logte 3
Propositional Celculue 3
First Oxdex Predicte Cal culua 4
Herbrand Zniverse 11
Subatitution 15
Resolution Principle 16
CHAPTER-3
GRELNEMENMS OF RESOLXTION PRTNCIPLE 20-51
Semantio Resolution 20
PI - Deduction 23
Hyper Recolution 24
Set-of-Support Strategy 25
Semantic Reeolution Using Ordered Clauses 26
Look Fesolution 30
Linear Resolution 35
Unit Proof and Input Proos 36
Orderea Linear Reaolution 38
Rage No.
Linear Deduction and Tree Searching 42
Deletion Strategy 46
Model ELimination 48
CHAPTER-4
APPLICATIONS OF RESOLUTION PRINCIPLE 52-64
Towards Deductive Queation Anewering 53
Towards Program Anelysia 54
Towarde State-Space Probleme 54
Towarde Concept Foxmation 61
CHAPARER-5
CHOOSLMO AN ECONONIC RESOLUTICN BTRATEOY 65-85
CHAPT ER-6
INEPFICIBNCIES AND LIMITATIONS OF RESOLU-
TION PRINCIPLE 86-94
REEERENCES 95-100

CBAPMER - 1

ZNTRODECSION

significant resear oh offort onwurem Proving has surfaced in 1930 with the work of Herbrand [21]. And in late 1950s Newell, Simon, and shaw produced some programes on Whitehead and Rassel. s Mrincipia Mathematica" $[63,45,46]$. consequentiy serioue research attention was aram towards this area. These works include those of Glertner, Haye, Neveli, Simon, Shaw, Davie and Putnam, Gilmore $[11,12,17$, 27]. But perhape the most remariteble achievement of it was seen during the mid 60 with the coming of Resolution Principle doveloped by J.A. Robinaon [53].

Resolution Principle has added an additi cnal dimension to the area of mechanical theorem proving, In this, one can directily visualize various practical applications of the theorem proving activity. The resciution procedure has becone a ponerful model for both proof finding and consequence pinding in various branches of mathematice, and also in application axeas where problems can be converted into one of proving an essertion. In practical implementation of resolintion principle in mechanical theorem proving, one has to solve aifficult problems in terme of combinatorial exploaiona demanding prohibitively large menory space and search efforts in digital computere. It means that
theorems can be proved, or problems posed as theorems in some domain can be solved from the given premises or axiomb using reaolution principle.

Heze attempts are being made to atudy various etrategies avallable. And theae atrategien can be developm ed in resolution procese under different problem situatione. The diecussion aleo includes a study of how the resolution inferencee work aliferentiy on different probleme. And for economic purposen (i.e. nanual computation, easy naderstanding and oconomic computar time) the prefercnce of the strategiea for particular problems are alao belng made.

Further, eince the reoolution princtple in defined within the domain of the firat order predicate calculus, the scope and limitations inherent in the predicate cal culil. in gereral, are elso dieoussed.

CHAPTER - 2

RESOLIELON PRNLCHBLE AND THE BACKGROUND

This chapter provides a brief account of the resolution principle in automatic theorem proving and its fundamental requirements.

Mathematical logic sone times called symbolic Logic is the basic foundation of resolution principle and Is the Logic treated by mathematical methods [25A]. Logic can also be considered at a branch of fnoviedge coneeming the reasoning process. In effect its primary concern is to I ind what follows iron what. In any orderly arrangement of the content of mathematics, one could see the exhibition of logical connection. Similarly, logic is used in organizing scientific knowledge, and as a tool of reasoning and argimenration in daily lie. Some of the moat frequently used connectiver are $\sim(n o t), V(o r), \wedge$ (and), \rightarrow (implies), \leftrightarrow (if and only if) though a abet of this is sufficient from the Logical point of view. The logical meanings of these connect five are well know.

Any declarative sentence which is represented by symbols using or without using the connective n can have the
values oither true (T) or false (F) but not both is tomed as proposition and ita logic is known as propoeitional logic. Given the tyuth vaiues of the component sentences, one, can find the valiaity of an axbitraxy sentence in the propositional coloulus by constructing a trath table.

But the propositional calculue lis limited in ite expressive power on account of non-avallability of yaziablon and guantifiend. Therefore, it often becomes alfficult or some timea even imposible to express many reality or mathe matioal pxbleme with the propositional calculus. However, the first onder predioate calculus allows variablee and quantifiers in 1t. In order to describe the firet order predicate calculus we define the following conoepte.

Quantifiere: The meaning of quantifler is well lenow. There are two quantifiere in eirnt oxder logic The universal quantifier (\forall) and the existential quantim fier (7), the ocope of each is to bo cescribed by the paranthesis and are uithin the domain concidexed.

Predicate letter: A predicate letter of n argumente is an n-ary or n-piace predicate letter. .

Temal A texw is ofthex a conatant (uaually denoted by $a, b, c, d, \ldots, n u m e x i c a l s)$, a variable (uaually denoted

Atomić fozrulat it lis obtained by applying a prow alcate lettor to texms.

Well fomed formula(w.f.f.): A w. R.f. is recurbively afined as follows:

1. A term ie a w.f.I.
2. If 0 is a wi.f.t then $\sim G$ 1s a w. fit.
3. If 0 and H are wif.fot then any formule corivod by applying the connectives on and H is a w.f.f.
4. Alı w.f.f.a are generated by applying only these xules.

Free variablest Any variable in a wof.I. is adid to bo a Iree variable if it is not bowded by any quantifiez.

Closed W.f.f.t any w.f.f. containing no free variable 10 called a clooed w.1.f.

There are tro aspects of logic - the oyntactio notion and the gemantic notion. A v.t. i. is a gyntactic or ingaiatic entity and is completely opecilised by a get of gramor mulea. One can interprete a w.P.I. as a meaning or semantio notion.

The gyntax of predicate cal culus system involves
(a) The opeatifeation of an alphabet of aymbola, and
(b) The cofinitions of various uectul expreatione that can be constructed fron these symbols thereas the semantics of a statenent is described by ite interprotation.

Intexpretation: It consists of
(1) a non-empty set of objecta caded the domain,
(2) an asesigument of an object in the domain to each constant,
(3) an aasiganent of an nary function $2 e t t e x$, and
(4) an assignmeat of an n-axy relation on the domain to each n-ary predicate letter.

If a w. 1. G evaluates T undez the inteagretation I we tay inatiafies G on I a model of G.

Satleftable: A toin. G le sald to be aatiaflable $1 f$ and only if there exista an interpwetation x satiafying G.

Tautology: A tatology ia a w. F. I. which io betiom fied by all interpretations.

Uncatisfiable A M.f.f. is said to be unsatiatiable if it gives the vaiue falae (F) for all possible interpretatsone.

Logical voliafty: A w.f.f. G is eata to be logically valia if and only if it is satisfied by all pom asible interpretatione.

Literal: A ilteral is an atom or the negation of the atom.

Conjunctives and diefunctive formulae: A formula of the form $\mathrm{F}_{1} \wedge \mathrm{~F}_{2} \wedge \ldots \wedge \mathrm{~F}_{\mathrm{n}}$ is said to be conjunctive normal form if ail $F_{i}{ }^{\prime B}$ are interais. And if it in in the form $F_{1} \nabla P_{2} V \ldots V F_{n}$ it is of disjunctive form. In the later case alao $\mathrm{P}_{\mathbf{1}}{ }^{*}$ e have the same meaning.

Logical conaequence: M. W.f. Q in a logical consequence of a set of axiome (premises) B if and only if every model of B in a mokel of Q.

Prenex normal reduction: a given set of W.f.f.e may be reduced to prenex nozmal form which is also sometimes referred to as the Skolem stendard form, The following example will be able to explain ite reduction procedure. The given w.f.t. $1 s$
$(\forall x)(P(x) \rightarrow((\forall y)(P(y) \rightarrow P(P(x, y))) A \sim(\forall y)(Q(x, y)$ $\rightarrow R(y)))$)

Step 1: BLiminating the implecation oign uging the equivalence of $A \rightarrow B$ and $\sim A V B$ our exaraple takeo the form

$$
\begin{align*}
& (\forall x)(\sim P(x) \forall((\forall y)(\sim p(y) \forall P(P(x, y))) \\
& \wedge \sim(\forall y)(\sim Q(x, y) \vee p(y)))) \tag{1}
\end{align*}
$$

Step 2: The soye of each negation eign is reatucea till the bcope reduces its application to a aingle predicate Lettor with the replace of

$$
\begin{aligned}
& \sim(A \wedge B) \text { by } \sim A \vee \sim B \\
& \sim(A \vee B) \text { by } \sim A \wedge \sim B \\
& \sim(\sim A) \text { by } A \\
& \sim(\forall x) \text { by }(7 x)(\sim A) \\
& \sim(f x) \text { } A \text { by }(\forall x)(\sim A) .
\end{aligned}
$$

Hence our example reduces to

$$
\begin{gather*}
(\forall x)(\sim p(x) \forall((\forall y)(\sim P(y) \vee P(P(x, y))) \\
\wedge(子 y)(\sim(\sim Q(x, y) \vee P(y))))) \tag{2}
\end{gather*}
$$

and then to

$$
\begin{gather*}
(\forall x)(\sim P(x) \nabla((\forall y)(\sim P(y) \nabla P(f(x, y))) \\
\wedge(\exists y))(Q(x, y) \wedge \sim P(y)))) \tag{3}
\end{gather*}
$$

Step 3: To standardice variablea: Within the scope of any quantifier symbol a variable bounded by that synbol is a dummy variable. It can be uniformiy replaced by any other variable throughout the scope of the quantifier without changing the truth value of the w.f.f. Standardizing variables yithin a w. $\mathcal{F} . \mathcal{F}$. means to rename the dummy variables, to ensure that each quantifier has its om unique dummy varim able. Thus, instead of writing $(\forall x)(P(x) \rightarrow(\exists x) Q(x))$, ve write $(\forall x)(P(x) \longrightarrow(7 y) Q(y))$. Hence our example zeduces to

$$
\begin{gather*}
(\forall x)(\sim P(x) \vee((\forall y)(\sim P(y) \nabla P(f(x, y))) \\
\wedge(\exists w)(Q(x, w) \wedge \sim P(w)))) \tag{4}
\end{gather*}
$$

Stop 4: Here we eliminate existential quantifiera by replacing the variables within its corresponding bound by some constant ox censtante or iunctions of the bounded universaily quentiried variables in it. Hence our example is reduced to

$$
\begin{gather*}
(\forall x)(\sim P(x) \vee((\forall y)(\sim P(y) \vee P(f(x, y))) \\
\wedge(Q(x, g(x)) \wedge \sim P(g(x))))) \tag{5}
\end{gather*}
$$

where $g(x)$ is called the Stolem function in it for it is the new function we derive in removing the existential
quantifiers.

Step $5:$ Hexes the reduced form is converted into prenex form by keeping all the quantifiers separately below. Hence the expression (5) is reduced to

$$
\begin{align*}
(\forall x)(\forall y)(\sim & p(x) \vee((\sim P(y) \vee P(f(x, y))) \\
& \wedge(Q(x, g(x)) \wedge \sim P(g(x))))) \tag{6}
\end{align*}
$$

The quantifier part $(\forall x)(\forall y)$ is known as prefix and the rest part is known as matrix of expression (\%).

Step 6: Here the matrix in put in conjunctive normal form using the mae - to replace A V (B \wedge C) by $(A \vee B) \wedge(A \vee C)$. Thu c (6) reduces to

$$
\begin{gather*}
(\forall x)(\forall y)((\sim P(x) \nabla \sim P(y) \vee P(P(x, y))) \\
\wedge(\sim P(x) \vee Q(x, g(x))) \\
\wedge(\sim P(x) \quad \forall \sim P(g(x)))) \tag{7}
\end{gather*}
$$

Step 7: Here we simply leave the universal quant-

fere.

Step 8t Here te use commas in place of A signs and each expression separated by comma will be treated an an individual clause Hence (*) finally reduced to

$$
\begin{aligned}
& \sim P(x) \vee \sim P(y) \vee P(f(x, y)), \sim P(x) \vee Q(x, g(x)) . \\
& \sim P(x) \forall \sim P(g(x))
\end{aligned}
$$

Which is the etandaxa forms.

Clause As in the above is a finite disjunction of literals; when no $1 i t e r a l$ is there we call the clause to be an empty clause and is denoted by .

Herbrand universe: Hextrand undyarase of aet of clause e ia the set of interpretations over an unsatisfiable set of clauses.

Let Ho be the aet of constants eppeazing in an unsatisfiable set of clauses. If no constants appears in $\mathbb{S}^{(}$ H_{0} is taken as the constrat'o singleton set $\{a\}$. For $1=0$, 1,2. ... let H_{2+1} be the union of H_{2} and the aet of all terms of the form $f^{n}\left(t_{1}, \cdots, t_{n}\right)$ io r all noplace function f^{n} occurining in S, where $y_{y}, j \neq \|, \ldots$ are members of H_{1}. Then each H_{i} ia called the i-level constant set of 5 and H_{∞} or $\lim _{i \rightarrow \infty} H_{i}$ is called the Herbrand universe of g_{0}

$$
\text { Example: } 3=\{P(a), P(x) \vee P(f(x))\} \text { is an un- }
$$

tatiarlable set of clauses were

$$
\begin{aligned}
& \mathbf{H}_{0}=\{a\} \\
& \mathbf{H}_{1}=\{a, f(a)\} \\
& \mathbf{H}_{2}=\{a, f(a), f(t(a))\}
\end{aligned}
$$

ana bo on.

Herbrand base: The pet of ground atoms of the form $p^{n}\left(t_{1}, \ldots, t_{n}\right)$ of all $n-p l a c e$ predicates p^{n} occurring In the set 5 of clauses, where Fisare elements of the Herbrand universe of 3 , Ls called the Herbrand base, or the atom set of s.

Ground instance: A ground instance of a clause c of a set 5 of clauses ia a clause obtained by replacing variables in C by members of the Herbrand universe of S.

H-interpretation: Let B be the set of clauses; H, the Herbrand universe of 9 and I and interpretation of S over H. I is gaia to be an H-intexpretation of 9 if
(1) I maps all constants in 5 to themselves.
(2) if i is an $n-p l a c e$ function symbol and $\left(h_{1}\right.$, $\left.\ldots h_{n}\right)$ an element of H^{n} then $I\left(h_{f}, \ldots, h_{n}\right)$ is in H.

Let $A=\left\{A_{1}, A_{2}, \ldots A_{n}, \ldots\right\}$ be the atom set of S. then an $\mathrm{H}-\mathrm{interpretation} \mathrm{I} \mathrm{is} \mathrm{conveniontly} \mathrm{represented}$ by $I=\left\{m_{1}, m_{2}, \ldots, m_{n}, \cdots\right\} \quad$ in which m_{j} ie either A_{j} orr $\sim A_{j}$ for $j=1,2, \ldots$ The meaning of this convention is that if m_{j} is A_{j}, then A_{j} is assigned M_{y} otherwise $F_{\text {. }}$

Semantic trees Let A be the atom net of the Bet S of clauses. Then the aemantic tree for S is a domyard tree 7, Wexe each 1 ink ia attached wth a inite net of atoms or negatione of atome from A in auch a way that:
(1) For each note N , thexe are only initoly meny immediate links L_{1}, \ldots, L_{n} from N. Let Q_{1} be the conjunction of ail interale in the aet attached to I_{1}.
 fommila.
(2) Fow each node N, let $I(1)^{\prime}$ be the union of all aets attached to the IEnks of the branch of 1 low to and including A. Then $I(N)$ coeo not contain any complementary psiz.

Complete Berantic tree: A semantic tree 18 naid to be complete if and only if for every tip node 1 of the semantic tree, 1.e. a node that has no links aprouting Irom it, $1(1)$ contains either A_{1} or $\sim A_{1}$ for $1=1,2, \ldots$.

Fallure node: 4 node N is a tailure node f I(N) falaifies bome ground instance of a clause in S, but $I(\dot{B})$ a 0 not falaify any ground instance of a claves in \mathbb{S} for every ancester node k of N.

Clobed aemantic treer A pemantic tree T is naid to be cloped if and only if every branch of 3 texainatea at a failure node.

Inference node: A node of a clobed semantio tree is called an inference node if all the immediate deacendant nodes of N are failure nodes.

To test whether a net $\mathbf{3}$ of clavaes ia unsatisfiable, wo need to consider intexpretations over the Rerbrand univerae of S. If S is Lalse under all interpretations over the Herbrand universe of S, then we can conclude that \mathcal{G} is uneatiafiable. Since there are usualiy many, poseibly an infinite number of these intexpretations; it is done in the systematio way of using a cemantic tree. Hexe two versions of Herbrandts theorem are giving whion are connected with it. 1.e., Whth the notione of semantic tree. These wersions are of very importent in aeveloping the resolution fin prom perties.

Herbrand' s theorem:
Version I: A set 5 of clauses is unbatiatiable 11 and only if corresponding to every complete semantio tree of S, there is a finite closed semantio tree.

Version II: A aet 9 of clauses is unsatialiable $i f$ and only if there is a finite unsatisfiable set s^{\prime} of grourd inatances of the claveea of S.

Subatitution A aubatitution is a pinite set of the forma $=\left\{a_{1} / x_{1}, \ldots, a_{n} / x_{n}\right\}$, where evexy texm a_{1} is to be substituted for every variable x_{i}. If it is a formuLa In denotes the foxmala resulting from perfoming the eubetitution of 9 on L.

Unification: Two formulas L_{1} and L_{2} are afid to unify if the re exigts a substitution orach that $L_{1} 9$ ie equal to $L_{2} 9$ and if I^{\prime} is $I_{1} q$, thon L^{\prime} is sald to be an inetence of L_{1}.

Most general unifier (meg. u_{*}): The gubatitution 9 is sald to be m. g. $u_{\text {. of }}$ of formulas L_{1} and L_{2} if $L_{1} 9=I_{2} 9$ and, for any other unifier λ of L_{1} and $I_{2}, I_{1} \lambda=J_{2} \lambda$ ia an instance of $L_{1} 9=L_{2} 9$. If two foxmalas unify, thexe exist a m.g.u. of the two formulas $[12]$.

Using the set notation to repregent clausea, the rebolution rule of inference is:

Qiven two clausee $\left\{L_{1}, \alpha\right\}$ and $\left\{\sim L_{2}, \beta\right\}$, where α and β are disjunctions of 2 iterale and L_{1} and L_{2} axe atomic
foxmulas, and if L_{1} and L_{2} have the mogrug infer by resolvent $\{\alpha, \beta\} Q$ e here L_{1} is any atomic formula and $\sim L_{2}$ is the negation of an atomic formula consioting of the same predicate aymbol of I_{i}, but in general with different arguments.

Pactor of a clauce: Given a clavse $C=\left\{I_{1} \nabla L_{2} \nabla \beta\right\}$ where I_{1} and I_{2} are Iiterals and β is a disjunction of iiterale, if I_{1} and I_{2} have the mageu. then infer the factor $O^{\prime}=(L ; \upharpoonleft \vee \beta \cap)$. For example in $G=P(x) \vee P(f(y)) \vee \sim Q(x)$, the firat and second interala have the m.g.u. $q=\{f(y) / x\}$. Hence $C q=P(f(y)) V \sim Q(f(y))$ is a factor of C.

Binary resolventz Let C_{1} and C_{2} be two clauses with no variablee in common. Let L_{1} and L_{2} be two litexals in C_{1} and C_{2} reapectively. If L_{1} and $\sim I_{2}$ have a m.g.u. q then the clause $\left(C_{1} \cap-L_{2} q\right) \cup\left(C_{2} \cap-L_{1} \cap\right)$ is called a binary resolvent of C_{1} and C_{2}.

Repolution Principle:

Robinson's resolution proof procedures are refutation procedures; 1.e., instead of proving a formula velid.. it proves the negation of the formula to be an inconsistant system of clauses. The essential idea of resolution principle is to check whether a set S of clauses containg or could reduce from the clauses of s the ompty clause \square.

If 3 contains the empty clause, then 3 is unsatieflable [12]. If S doea not contain the ompty caluse Airectiy we have to check up whether \square can be dexived from s. By Herbrand"a theorem veraion I, checking for the presence of $口$ is equivalent to counting the number of nodea of a closed senantic tree for S_{6} Thus, g is unsatiefiable if and only if there Is a fintte closed semantie tree T for $9 . \quad$ Clearly s contains \square if and only if T conetsto of only one node - the root node. If does not contain \square and is unsatibilable set. T contann more than one node and we can reduce the number of nodea in 7 to one, and \square can be forced to eppear. Thia is what resolution princiole does. Thus reaolution is an inference used to generate new clauses from so that bome nodes of the oxiginal T could be reduced to fallure nodes and to dixive \square at the end.

The reaclution procedure is the noat effiaient one amonget other techniques for theorem proving, and le better than the Hezorand'e method. In Herbrand's procedure it is a very long process to check up the inconsietenoy of a get of clausee taking enourmous H-interpretations Iron Herbrand s universe of the set, which is again based on ground ingtances only.

The resolution principle is sound, effective and complete [62]. The souncness of resolution principle meane that a clause logically implies each of ite factore and that two alauses together, logieally imply each of their resolvienenta. If every theorem produced by an inference is valid, then the inference is called a sound inference. The offectiveneas of the resolution principle means that one can weite a computer program, which, in a ilnite number of btope, will find the factore of any clause and the resom Ivents of any two clavses. And, if a search organization, which se have been referring as inference or proof procedure, permits a theorem to be e日tabliehed, whenever the canclusion Logically Lollows from the pxemises and the assetted mules, then the proof aearch organization system is called complote [36].

Here statements of two theorems on the completeness of resolution principle are given. These will be of grott Importance in the next chapter where wo discues the refinements of reaolution principie.

Theorem(completeness of reaolution): A aet S of clauges is uncatisfiable if and only if there is a deduction of the empty clause \square.

Theorem (on consequence finding): If a olause C is a consequence of a finite non-empty set of clauses, then a clause I can be found in afinite number of applications of the resolutaon principle puch that C is an immediate consequence of T alone $[8]$.

CHAPRER - 3

REEINEMENTS OF BESOLUTION PRXNCLPLE

In proving a theorer by reaolution principle many inferencen could be used, some of which may not be effective for the particular application or may produce clauses wioh could be of no nae in that proof finding or consequence finding of the problem. It infers irrelevent and redundant resolvente or rather, it may lengthen the computer time in proving the theorem. To restrict and overcome these ditficulties or inefficiencies many refinemente or simplifions of resolution procedure have been developed. For an effective application of resolution principle in proving a theom rem in oomputer these refinements are diecuasea in thia chapter.

Semantio Reaolution

In cemantic resolution a given set s of claubes $1 s$ divided into two aeto S_{1} and S_{2} such that clauses within the ame sot can not be reaolved upon. For a clear 1dea, the explanation is given uith the help of en example from propositional logic. Let S be the unsatiaflable oet of clauees $\{\sim P V \sim Q \vee R, P \vee R, Q \vee R, \sim R\}$. Hexe

take the interpretation $I=\left\{\sim p, \sim Q_{n} \sim R\right\}, C_{2}$ and C_{3} are falsified by $I_{\text {, }}$ whereas G_{1} and C_{4} are antisited by $4 \psi_{0}$ Since A is ungatiailable, no interpretation can satiafy or falaify all the olausea. Iherefore, every interpretation partitions S in to two non-empty sets. In thie case the aets are $s_{1}=\left\{c_{2}, c_{3}\right\}$ and $s_{2}=\left\{c_{1}, c_{4}\right\}$. To blook the resolutions, we uee ordering of predicato aymole in it. as $\quad P>Q>R$. Heze \rangle is convenned for oxdering only. When we reaolve one clause from S_{1} with another from \mathbf{B}_{2} 。 the reaolved iltexal in the clause Irom S_{1} ehoula contasin 2argeat (i.e. the itrat in the ordering) bymbol in that clause. With these two reatrictione (oplitting of S and oxdering of predicates in S) we reauce many posbible resoIutions. Using these we can generate $C_{5}=\sim Q \vee R$ from C_{1} and c_{2} and $c_{6}=\sim P$ from C_{1} and c_{3}. How c_{5} and C_{6} are L-batioflable. Hence we put in S_{2}. Resolving G_{5} and C_{2} we get. $C_{7}=R$, and reaclving C_{6} and C_{3} ve get the same
 Now reaolvent of C_{7} with C_{4} gives \square. Here, two deductions of I are seen as deduced $\operatorname{Iron} C_{1}, C_{2}$ and C_{3} juat by changing the oxder. To generate this R directiy from C_{1}, C_{2} and C_{3} without going through the intormediate clauses C_{5} or C_{6} 。 1a the notion of shaph. Fiere the set $\left\{c_{1}, c_{2}, c_{3}\right\}$ is called ciach. Thus, combining tho concepts of interpre-

taticnal split of the set of clauses, ordering of the predicatos and clabh we can restrict many reeolutions.

Semantic clacht let I be an interpretation and P be an ordexing of predicate symbols. Thon the set of clauses $\left\{E_{1}, E_{2}, \ldots, E_{q}, N\right\}, q \geqslant 1$ is called a emantic clash with reapect to P and I (or in ahort P I - clash), If and the only if E_{1} 's and satiafy the following conditions.

1. $E_{1}, \ldots, E_{\mathrm{g}}$ are false in I .
2. Let $R_{1}=\mathbb{N}$. For each $1=1, \ldots, q_{\text {, there }}$ ia a resolvent R_{1+1} of R_{i} and E_{i}.
3. The literal in E_{1}, whioh is resolved upon, contains the largest prealcate symbol in $B_{i}, 1=1, \ldots, q$.
4. $R_{\mathrm{R}_{\mathrm{F}} 1}$ is false in I .
R_{q+1} is called a P I -reaolvent of the P I clash $\left\{\mathrm{E}_{1}, \ldots\right.$. $\mathrm{B}_{\mathrm{q}}, \mathbb{}, \mathbb{}$. We also call these $\mathrm{E}_{\mathrm{i}}{ }^{\prime} \mathrm{B}$ as electrons and N as neucleus with these properties.

Bxample: Let $B_{1}=\sim Q(z) V \sim Q(a)$,

$$
B_{2}=R(b) \nabla \quad s(c)
$$

$$
N=Q(a) V Q(a) V \sim R(y) V \sim R(b) V s(c)
$$

Let $I=\{Q(a), Q(b), Q(c), \sim R(a), \sim R(b), \sim R(a), \sim S(a)$, $\sim S(b)$. $\sim S(c)\}$. Let P be an ordering of predicate aymbola
in which $Q>R>S$. Let $R_{1}=N . \quad$ There is a resolvent of H_{1} and E, namely $R_{2}=(\sim R(y) V \sim R(b) V S(c))$. Then there ls a resolvent of R_{2} and B_{2}, namely $\mathrm{R}_{3}=\mathrm{S}(0)$ which is false in 1 . Since $\left\{B_{1}, E_{2}, N\right\}$ satisfies all the four conditions, it is a P I-clash. The PI resolvent of this clash is $S(0)$.

PI -deduction: Let I be an interpretation for the set s of clauses, and P be an ordering of predicate symbol in S. A deduction from S is called a P I-deducetimon if and only if each clause in the deduction is either a clause in S_{7} or a P I resolvent.

Example: Let $S=\left[A_{1} \nabla A_{2}, A_{1} \nabla \sim A_{2}, A_{1} \nabla A_{2}\right.$
$\left.\sim A_{1} \nabla \sim A_{2}\right\}, I=\left\{A_{1} \sim A_{2}\right\}$ and ordering P as $A_{1}<A_{2}$.
then the deduction in Pig. 3.1 is a PI -deduction of the empty clause \square from $S_{\text {, }}$ and PI resolvents in it are $\sim A_{1}$, A_{2} and \square.

$\begin{array}{ll}B_{1}^{\prime}=\sim A_{1} V A_{2} & V^{\prime}=A_{1} V \sim A_{2} \\ E_{1}^{\prime}=\sim A_{1} & \mathbb{N}^{n}=A_{1} V A_{2} \\ E_{4}^{\prime \prime}=\sim A_{1} & V^{\prime \prime \prime} \quad A_{1} V \sim A_{2} \\ E V^{\prime}=A_{2} & \end{array}$

Pig. 3.1

Theorem (completenees of I meaolution): If 1. an ordering of preaicate symbols in a finite and unaatiam ELable set S of clauees, ma if in interpretation of s, then there is a I -aeduction of the empty olaune from B_{o}.

Hyper recolution and set of oupport atrategy: special cases of sematic xesolution:

Hyper resolution [54].
If we ate an interpretation I in which every 1iteral is the negation of an atom, every electron and every 2 I resolvent must contain oniy atoms. Similarly. if every literal in 1 is an atom, then every electron and every P I -reaolvent must contain only negated atoms. Thus eimplifies in choosing the claugen to be resolved upon. This method ie called nypar resolution.

A pogitive ciauge is the clause wich containe nox negation aign. A negative clause is the one were all of its iliterale contain negation aign. If it is neither negative nor poaitive then it is termed as mixed clause.

A pooitive hypar resolution is a special case of P-resolution, in wich every iiteral in the interpretation I contains the negative aigns only. And if it contains no negation aign, then it is negative hyper

regolution.

Set-ol-support strategy [70]

A aubeet of a set 5 of clances is callea a cet of oupport of $\$$ if S-2 1 satiafiable. A setmofsupport resolution 1 a x resolution of two olausea that are not both Irom sme A set-of-gupport deduction is a aeduction in which every cecuction 1 a set-of-guppoxt regolution:

Set-ofmaupport atrategy conelets cealgnating the conclusion of the projected theorem, and a small number of relevent axions, as - having the eupport property, i.e., lying in the eet of cupport for the theorem. phererafter. oniy those pairs of clansea, vinch contain at leat one member the thepport, axe con sidered for regolution and evexy olange ia automatically attributed to the support property. If the theorem concicta of the axiome $A_{1}, A_{2}{ }^{\prime} \ldots$ A_{n} and the concluaton B, then in resolution procedure we need to prove $A_{1} \Lambda \cdots A_{n} \wedge \sim B$ to be ungatisilable. Ugually $A_{1} \wedge \cdots A_{n}$ is satibitable。

The set-or-aupport etrategy is complete. It is employed only in proof finding. And it is aimed at avoidIng the deduction of consequences which are redundant to the partioular conclusion deaired.

Semantio resolution using ordered cleuees:
There are cases in which using ordering of predicate symbols only may not allow to single out uniquely a iiteral in an electron. Hence the inference may generate more than one sematic resolvent from a semantic clasit. For example tate

$$
\begin{aligned}
& E=Q(a) V Q(b) V Q(c) V Q(d) \\
& N=\sim Q(x) .
\end{aligned}
$$

where I is an interpretation uith negative in every ifteral and I may be any ordering of the prealcate aymbis. Here even if $\left\{S_{0} N\right\}$ is a P I clash, all iiterals in E contain the some precscate symbol Q, so we can not eingle out the interal on which the P I decuction is to be spplied by the above rule. In oxder to remedy this bituatian, ' is 'ordered clauses' is introdueed $[52,61,66]$.

An ordered clause ia a aequence of distinct 11terals and not a ot of 11terals. According to our concept in a clauso, if the literal L_{2} foll ows another 1iteral L_{1} in the specified sequence, then we take $L_{2}>L_{1}$. Thus, the last literal in an oxdered clause will be considered to be the largest literal in the clause. An ordered clause is also written as a disjunction of literala. Here
we define few more relevent concepts.

Oxdered factor: If two or more literale with the same sign of an ordere olauge 0 have a m.8.u., 9 . then the oxdered clause - obtain ed from the sequence 09 by doleting any literal that is iaentical to a maller interal in the sequence is called an ordered factor of 0 .

Ordered binary resolvent: A clause 0 is said to be an ordered binary reaolvent of the claume C_{1} against the clause C_{2} if the following conditions are eatiafied
(1) C_{1} and C_{2} are ordered clausea with no variables in common.
(2) if L_{1} and L_{2} are two Iiterals in C_{1} and C_{2} such that L_{1} and $\sim I_{2}$ have a m.g.u. q. and
(3) If the ordered clause 0 1s obtained by ooncatenating the sequences $c_{1} \alpha$, and $c_{2} \propto$ by removing $L_{1} \propto$ and $I_{2} 9$ and deleting any literal that is identical to a emailer literal in the remaining sequence.

An ordered resolvent of an ordered clause C_{1} againgt an oxdered clause C_{2} is one of the following ordexed binary resolvents:

1) an ordered binary resolvent of C_{1} against C_{2} :
2) an ordered binary resolvent of C_{1} againetlordered factor of C_{2};
3) an ordered binary resolvent of an ordered factor of c_{1} against c_{2};
4) an ordered binary resolvent of an ordered factor of G_{1} against an ordered factor of C_{2}

Ordered resolution is an inference rule that gen. aerates ordered resolvents from a set of ordered clauses. It is also complete.

Ordered semantic clash: Let I be an interpretstron. A finite sequence of ordered clauses, $\left(E_{1}, \ldots, E_{q}, H\right)$, $q \geqslant 1$ is called an ordered semantic clash with respect to I (or $0 . I$-claeh) if and only if $\left\{E_{1}, B_{2}, \ldots, E_{q}\right\}$. reformed as ordered electrons and B, referred as ordered nucleus, satisfy the following conditions.

1) $\mathrm{E}_{\mathrm{q}}, \ldots, \mathrm{E}_{\mathrm{q}}$ are false in I .
2) Let $R_{q}=$ N. For each $1=q, q-1, \ldots, 1$ there is an ordered resolvent R_{1-1} of E_{1} against R_{1}.
3) The literal in B_{1} that is resolved upon is the
last ilteral in E_{1}, $1=1$, q; the ilteral in n_{1} that is resolved upon is the largest interal that has an instence which is true in I.
4) R_{0} is false in I.
A_{0} is oalled an 0 I-resolvent of 0 I -alash (B_{1}, \ldots E*)

0 I-deduction (ordered smantic deduction):
Let I be an interpretation for a set s of oxcered clausea. A deduction from 3 is called on 0 I deduction if and only if each ordered olause in the deduction 10 edther an ordered clause in so or an 0 I -resolvent.
slagle and Noxton experimented with 0 I -resoIution proving many theorems quite effectively [66]. But O I mesolution is not complete. The following is a counter example of it due to Anderaion $[1]$.

Example: Let $s=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\}$, where $c_{1}=\mathrm{FVQ}, C_{2}=Q V R, c_{3}=R V W, C_{4}=\sim R V \sim P_{i}$ $C_{5}=\sim V V \sim Q_{1} C_{6}=\sim Q \nabla \sim R$. And $C_{1}{ }^{\prime \prime}$ are ordered clauses. The interpretation I is given as $I=\left\{\sim P, \sim Q_{0}\right.$. $\sim R, \sim W$. Thus the clauses C_{1}, C_{2}, C_{3} can be taken as
ordered electrone, $E_{1}{ }^{\prime} 6$ and claubes C_{4}, C_{5}, C_{6} as ordered nucleus N. Now ye get the resolvents

$$
\begin{aligned}
& c_{7}=\mathrm{RVP} \text { from } O I \text {-chash }\left\{c_{3}, c_{1}, c_{5}\right\} \\
& c_{8}=P V Q \text { from } O I \text {-chanh }\left\{c_{1}, c_{2}, c_{6}\right\}
\end{aligned}
$$

from the clauses C_{1-8} we can obtain the 0 I -resolvent

$$
c_{9}=Q \vee R \text { from O I -clash }\left\{c_{2}, c_{7}, c_{4}\right\}
$$

We know that C_{8} and C_{9} are in S. Therefore, from clausea C1-9 we cen not produce any new O I -resolvent. That is the empty clause can not be produced by 0 I -reaolution even though 3 1s unsatiafiable. Hence, O I resolution is not complete.

Zock Resolution [4]

This refinement was introduced by Boyer in 1971 [4]. It is similar to the concept of ordered clauses of semantic resolution, Given a set s of alauses, oxdering of literala of the clauses of s using indiees is the idea of lock resoIution. It involves arbitrary indexing each occurrence of a literal in S with an integer; different occurrences of the eame literal in s may be indexed differently. Resofution is then permitted only on literals of lowest index in each clause. The interale in resolvente inherit their

Indiees from their parent clauses. If a iiteral in a rem solvent has more than one posaible inherited indieces, the lowest index is assigned to this 2iteral.

Conetder $s=\left\{c_{1}, c_{2}\right\}$ where $c_{1}=1^{p} \nabla_{2} Q$ and $C_{2}=3^{\sim P V_{4}}$. The integer beneath a iliteral is the index aseociated with that ilteral. Since the index of p is lower than thet of $2 Q, p^{P}$ is pempitted to be reaolved upon. Similariy, eince the index of $3^{\sim} \mathrm{P}$ is lower then that of $4^{Q}, 3^{\sim} P$ is permitted to be resolved upon. Thus, resolving C_{1} and C_{2} upon p^{p} and $3^{\sim} P$, we obtain $C_{3}=2^{Q}$ V 4^{Q}. Now 2^{Q} and $4^{\text {a mean the same } 1 i t a r a l}$ and and $2<4$, so Q is indexed 2 in c_{3}. Hence $O_{3}=C_{4}=2 Q_{4}$ is called 2ook resolvent of C_{1} and C_{2}. If the iiterals of C_{2} are
 in C_{2}^{*} that is permitted to be resolved upon is 3^{0}. However f^{P} and 3^{Q} can not be resolved. Therefore, there La no lock resolvent of C_{1} and $C_{2^{*}}^{*}$ Below, we give explanations on few relevent concepte.

Lock factor: Let 0 be a clause that hao every one of ite literals indexed with integers. If two or more ifterals uith the aign of C have $a \operatorname{mog} u .9$, then the clambe obtained from 6 a by deleting any literal that is identical to a 1 iteral of lower index is called a lock factor of C.

Bxample: Let $C=2^{P(x)} \vee_{8} \underbrace{Q(a)} V_{11} P(a) V_{5}(x)$. Here we know that $2^{p(x)}$ and $11^{p(a)}$ has a m.g.u. $q=\{a / x\}$. Thus $C=2^{p(a)} \nabla_{8^{Q(a)}} \nabla_{11^{P(a)}} \nabla^{q(a)}$
$=2^{p(a)} V_{5^{(a)}}$ (by look resolution)
which is a lock pactor of C.

The operation of keeping only the literal with the lowest index and deleting the other identical iiterals is called mergingion for identical itterals.
ginaxy lock resolvent: Let C_{1} and C_{2} be two clauses with no variable in comon and with every ilteral in them indexed. Let L_{1} and L_{2} be fuo ilterale of 'iowest Index in C_{1} and C_{2} reapectively. If L_{1} and $\sim L_{2}$ have a m.g.u. q, and if C ia the clause obtained from ($C_{1} \mathcal{A V C}_{2} q$) by removing $L_{1} 9$ and $I_{2} q$ and by mergirg iow for any identicol literals in the remaining clause, then is called a binary lock reoolvent of C_{1} and C_{2}. The literals I_{1} and L_{2} are called the literals rebolved upon.

Lock resolvent: Let C_{1} and C_{2} be tro clauses with every literal in them inaexed. A look resolvent of C_{1} and c_{2} is one of the following binary lock reaclventas

1) a binary lock resolvent of C_{1} and $C_{2} ;$
2) a binary lock resolvent of C_{1} and a lock factor of C_{2};
3) a binary lock resolvent of a lock factor of $c_{\text {; }}$ and c_{2}
4) a binary look reaolvent of a lock factor of C_{1} and a look factor of C_{2}.

Lock deduction: Let s be a sét of clauses, where every interal in $3 i_{s}$ indexed with an integer. A deauction from s is called a lock decuction 14 and only if every clauge in the deduction is elther a clause in s s or a lock rebolvent.

Lock resolution $1 s$ effeotively efficient. Below is an example using lock resolution. This example when solved by oxdinary resolution i.e. by level saturation method 35 resolution steps is to go through.

Example: Let $S=\left\{c_{1}, C_{2}, c_{3}, c_{4}\right\}$ where

$$
\begin{aligned}
& C_{1}=1^{\mathrm{V}} 2^{Q} \\
& C_{2}=3^{\mathrm{P}} \mathrm{~V}_{4} \sim Q \\
& \mathrm{C}_{3}=6^{\sim P \nabla_{5}^{Q}} \\
& C_{4}=8^{\sim P \vee V^{\sim Q} .}
\end{aligned}
$$

S is an unsatisfiable aet of clauses. Now, from clauses C_{1-4}, there is only one look resolvent as $C_{5}=6^{\sim P}$ from C_{3} and C_{4}. From clauses C_{1-5}, there are two lock rebolvents an $C_{6}=2^{Q}$ from C_{1} and C_{5} and $C_{7}=4^{\sim Q}$ from C_{2} and C_{5} Finelly realving C_{6} and C_{7} we obtain $C_{8}=\square$. Thia lock deduction is ahom in Fig. 3.2.

Fig. 3.2.

Lock resolution thus azves much computer time in resolutLon steps. It is also complete i.e. Ior any unaatiafiable set s of olauses there exiats a lock deauction for the empty clause *

Linoas Aesolution

Linear resolution starts with a clause resolving against another clause to obtain a resolvent which again resolves with yet mother clause and thus applying the chain until we get the empty clause a. It is complete. and also can be conveniently applied to the heuriatic methods. Thua, given a aet S of clauses and a clause C_{0} in 5 , a 'linear deauction' of the clause C_{n} from s with top alamse C_{0} is a deduction of the form given in Fig. 3.3 where

1) for $1=0,1, \ldots, n-1, c_{i+1}$ is a resolvent of C_{1} and $B_{1}\left(C_{1}{ }^{\prime \prime}\right.$ s are called centro clauses where B_{1} " B are called siae clauses); and
2) each B_{i} is either in s or is a C_{j} for scone j, euch that $1<1$

Fig. 3.3

Hese C_{i-1} is known as 'near parent' of c_{i} and $C_{j}, 1<1-1$ Is as "Iar parent" of c_{1}. Now we aiacuse some of the 11near recolution procedures.

The unit proof and the input proof $[9,6]$:
The unit preference strategy or unit resolution essentially orders the clause to be resolved by theix length i.e. by the number of literals they contain. A claube consisting of only one literal is termed as unit clause. Contradictione become appaxent only when two unit clauses reaolve together to produce the empty clause. Therefore, we can think of aiacovering a contradiction at the end of the process by working first with shorteat clausea. This atrategy aaye to fiproduce the shortest resolvent poasibie first in which at least one of the parent clauses is a unit clause. If no such resolutions are poesible, the shorteat posefble resolvent of factor 1a produced. Suppose one resolves a unit clause $U 1$ with the first iliteral in a clause, and then resolves a unit 02 with the deacendant of the aecond Literal in the olause. Slagle proved that one will obtain the oame resolvent if inatead one firat resolves 02 with the second ilteral in the clause end then Uf with the descendant of the ilret literal in the olause [61]. Hence, in this case, unit resolution restricte
resolution to only one of the two poasible orders in which the resolvent could be obtained.

In general, if there are ig unita to be reaolved with a clause, unit resolution restricts resolution to one of the ql possible orders in whioh the resolvent could be obtained. Unit resolution is a gecial caee of serantic resolution.

An input resolution is a resolution in which one of the two parent clauses is an input clause. An input deduction is a deduction in which every resolution in an input reaolution. Fig, 3.41 s an input refutation from $S=[\sim P(x, y, u) \quad \forall \sim P(y, z, v) \quad V \sim P(x, v, u) \forall P(u, z, w)$, $P(g(x, y), x, y), P(x, h(x, y), y), \sim P(k(x), x, k(x))\}$ 。 $\sim P(x, y, u) \quad V \sim P(y, z, v) \quad V \sim P(x, v, w) \quad V P(u, z, w)$ $P(g(x, y), x, y) Q \quad \rho \quad \rho(g(x, y), x, y)$ $\sim P(y, z, v) \vee \sim P(g(y, u), v, w) \circ$

Fig. 3.4

Now we concentrate on the effective application of linear resolution uaing ondered elauses and ite deduction and tree searching.

Ordered innear resolution:
In linear resolution the concept of ordered clauges vill not destroy its completeness. We use a concept 'Information of rebolved iiterals' in oome linear xesolution where when a resolvent it obtained, literals resolved upon axe aeleted. The algorithm that empoys both the concepts of ordered ciauses and the information of resolved literals is called 0 L -deduction (ordered linear cetuction) [0]. If we take $S=\{P \vee Q, E V \sim Q, \sim P \nabla$. $\therefore \perp V \sim Q\}$ and $C_{1}=P \vee Q ; c_{2}=\sim Q \vee R$ there $1 s$ anc. ordered resolvent namely P V R of C_{1} against C_{2} with Q and $\sim Q$ being the iiterale resolved upon. since Q and $\sim Q$ are complementary, ve record oniy one of them. Suppose ve record Q, the last literal of C_{i}, Then the ordered resolvent can be represented by P V $Q \vee R$, where the framed ifteral is the intemal reaolved upon. If the iramed ifteral is not folloved by my unframed 1iteral, we shall delete this framed ifteral.

An orderea clause C is a reducible oxdered clause if and only if the last ilteral of C is unifiable with the negation of the framed iiteral of C.

Whenever a reducible ordered clause is generated we do not have to seaxch the memory for a deduced centre clause to resolve it with. Instead, we may eimply delete the lest literal from this oxdered clause. For exanple, 1f [D $\mathbb{D}[\mathcal{P} \sim$ ie generated, we simply aelete $\sim P$, then [a] then [E] as they are not followed by a non-framed iiteral then we get \square. This kind of operation is called reduction of reducible ordered ciause.

The reduced ordered clause of a reducible oxdered clause C is ghte ordered clause obtained from $C 9$ by delem ting $I 9$ and every subsequent fremed literal not followed by an unframed iiteral, where, I is the last literal of C and unifiable with the negation of some Pramediliteral with a m.g.u. 9 .

Once the reduction of reducible clavees is incorporated into 0.2 -deduction, we do not have to etore interinediate clauses any more. This important aspect of 0 L deduction makes it very suitable for computer
mplementation [8]. The detection of a reducible oxdered clause already narrowe down the choice of reaolutions and reduction mechanish effectively reduces it to only one reaolution. 0 I meduction is easentially similar to Lovelande nodel elimination [31.36], which we define in later section. In an ordered clause if the occurrence of an unframed 1 iteral is more than one, then we keep it only the leftmont n one and delete the other identical 1iterals. This process is called leftmexging. For
 $\nabla[R]$. Now we define ordered factor of C as, the factor of C after merging left in the C q for the m. B.u. of Cor which factor we are concemed and by deleting e every framed literal not followed by an unframed iiteral. Now fev relevent concepts axe defined below with explanations whereever neceasary.

S-resolvont: An S-resolvent or subguned zebolw vent C of near parent C_{1} and far parent C_{2} is a faotor of xesolvent of C_{1} and C_{2} euch that c subsumea an instance of C_{1}

S-linear decuction: An Sminear deduction of a
clane C from a set S of atrietly innear deduction of C from the eet S_{f} of all factore of such that each alause In the deduction not a mon of S_{f} or a factor of the preceading clauae elther is a resolvont with tar parent from ar is an s-reaolvont ; also no tautologies aze pezmittea.

Qriexed binary reboltent of on ordered clauae C_{1} against mothez oxdoced clause C_{2} is obtained from a clause $c^{\text {Wy }}$ bemoving cyery Ixames $24 t e r a l$ not followed by any unframed 1140 ral in 0^{*}. whare $C^{*} 13$ auch that c_{1}, C_{2} have no variables in oomon and I_{1}, I_{2} axe two unIramed itterale in C_{1}, and $C_{\text {g reapectively. And }} 16$ meg.u. of I_{1} and $\sim H_{2}$. Then C^{*} La the oxdered alruse obtained by concatening the aequence $c_{1} q$ and $c_{2} q$ framing $L_{1} 9$. romoving $j_{2} 9$, and merging zeft for any identical unframed itherals in the romaining sequonce.

0 I deanctiont Let g be a aet of oxdered claubes With C_{0} as the top clanse, thon an $0 L$-deduction of C_{n} from S-Ls a deduction of the form shown in Eig. 3.5 which satiafies

1) $\operatorname{tox} 1=0,1,2, \ldots, n-1,0_{1+1} 1 B$ an ordered reaolyent of C_{1}, a centre ordered clawse againat B_{1} a ale e
ordered clause.
2) each B_{i} is eithex in S or $C_{j}, j<i$, or an instance of $O_{j}, J\left\langle 1\right.$ if and only $1 f C_{i}$ is a reducible ordered clause. In this case C_{i+1} is the reduced ordered clause of C_{1}.
3) no tautology is in the deduction.

Fig. 3.5

Linear Deduction and Tree Searchingt
Linear deduction and tree searching techniques developed by Luckham [37] and slagle [62] are applied in O I -deduction. Now the algorithm of the tree searching method - Breadth - First Method" - is defined. Suppose S 13 a set of ordered clauses to be proved unsatiafiable.
C_{0} la m ordered clause in s to be the top clause. Then the Breath First Method algorithm follows as:

Step 1. CLISI $=\left(C_{0}\right)$
Step 2. If CLIST = \square. Stop, otherwise, con-
tinue.
Step 3. Let C be the first ordered clause in LISt. select C from list.

Step 4. Find all the ordered cause in 8 that can be aide clauses of C. If no such clause exist goto step 2 ; otherwise, resolve C with all these side clauses. Let $\mathrm{F}_{1}, \ldots, \mathrm{~F}_{\text {mi }}$ denote these ordered resolvents. Let R_{i}^{*} be the reduced ordered clause of R_{i} if n_{i} is reducible. If R_{1} is not reducible, let $R_{1}{ }^{*}=R_{i}$.

Step 5. If some R_{Q}^{*} is $\square, 1 \leqslant q \leqslant m$, stop,
otherwise, continue.
Step 6. Put $R_{1}^{*}, \ldots, f_{m}^{*}$ (in an arbitrary order) at the end of CIsT and go to step 2.

Below is an example using this method in 0 L reduction

Example: Let $S=\{P \vee Q, \sim P V G, P V \sim Q$, $\sim P \vee \sim Q \mid$ and $C_{0}=P \vee Q$. Then the $0 L$-refutation of s is given in Fig. 3.6.

Fig. 3.6a

$$
\begin{aligned}
& \text { PVQ } \\
& \left\{\begin{array}{l}
P \\
P V \sim Q \\
P D V Q \\
\sim P \quad Q \\
\sim P V \sim Q \\
P \quad V \quad Q P \sim P \\
P \\
\square
\end{array}\right.
\end{aligned}
$$

Fig. 3.6b

The breadth-ifret atrategy in deacribed for the reasons that (1) simple to understand. (2) is basic strategy used in Lee's congequence finding program and (3) it wan ueed for theoretical purposes, for example in Robinson's proof of completenens of the reeolution prineiple for proef inding it is used [53].

The Depth Finst Method:
It is another way to aearch a tree, unlike the breadth-firet method it expandis nodec from left to right and not from top to bottom. The depth first method is almoat the same as the breadth Ilrot method except that in step 5 where in this case we put $\mathbb{R}_{1}^{*} \ldots \ldots \mathrm{~B}_{\mathrm{m}}^{*}$ at the beginning of the cLism, instead of putting at the end of CLIST.

In an O L deciuction with top ordered olause C_{0}. the depth of C_{0} is 0 . If the depth of a certain orderad clauge C is k and R is on ordered resolvent of C and ecne aide clause, then the depth of f is (k+1). Applying the depth-first method to the eame example given in breadthFirst method we generate the tree of Pig. 3.7 whioh is smalier than the one in Fig. 3.6a.

Fig. 3.7

Deletion Strategy:

Now we discuss the heuristic tree searching metho of deletion strategy. In order to check the unlimited application of resolution causing irrelevent and redundant clauses to be generated the level-saturation method is used. In any unsatisfiable set of clauses s, for level saturation we generate the sequence $3_{8}^{0} \mathrm{~s}^{1}, \mathrm{~s}^{2}$, there $s^{0}=S$ sine

$$
\begin{aligned}
s^{n}= & \text { resolvents of } c_{1} \text { and } c_{2} \mid c_{1} \sum_{i=0}^{n-1} \text { Us } \\
& c_{2}{ }^{2} s^{n-1} \quad n=1,2,3, \ldots
\end{aligned}
$$

To program this method on computer, one has to list clauses of $\frac{n-1}{\pi} \mathbb{S}^{1}$ in order, then to compute resolvents
 that is listed after C_{1}. When ${ }^{i m 0}$ resolvent is computed is appended to the end of the 11 st so far generated.

A clauge C Ls said to subaume a clause D if and only if there is a aubatitution q auch that $0 \quad q \rightarrow D . D$ is called oubsumed clause.

Pox example in $C=E(x)$ and $D=P(a) \forall Q(a)$ if

Here D is identical to C_{1} or D is an instance. of C. Then D ia subamed by C. The deletion strategy is the deletion of any tautology and any aubsumed clause whenever pogaible. It is generalization of David and Putnam's tautology rule $[12]$. The completeneas of it depends on how tautologies and subeumed clauses are deleted [25]. It is complete only when it followe the rule to deleto the nondiy generated clause if it is reither a tautology nor gubeumed by any clause in the 2 ist as derived in the rixst part of this atrategy.

Subaumption Algorithm: Let O and D be two alases and $\theta=\left\{a_{1} / x_{1}, \ldots, a_{n} / x_{n}\right\}$, mere x_{1} ' are variables occurxing in D, and $a_{1}^{\prime \prime} s$ are new dietinct constante not occurring in C or D. Suppose $D=I_{1} V I_{2} V \ldots \nabla I_{m}$ Then the algorithm 10

Step 1. Assume $w=\sim D \theta=\left\{\boldsymbol{L}_{1} \theta \ldots \ldots m L_{m} \theta\right\}$ Step 2. Set $k=0$ and $0^{0}=\{0\}$
Step 3. If U^{k} contains \square. terminates C abbsumer D. Otherwise, let $U^{k+1}=\left\{\right.$ resolvents of C_{1} and C_{2} such that $O_{1}\left\{\mathbb{U}^{k}\right.$ and $c_{2}\{W\}$.

Step 4. If U^{k+1} is empty terminate, 0 does not subsume D. Otherwise, set $k=k+1$ and do step 3.

Here each clause in $\mathrm{U}^{\mathrm{t}+1}$ is ambler by one literal than the clause in U^{k}. Therefore, the sequence $U^{0}, U^{*}, U^{2}, \ldots$ must eventually contains a set that contains \square.

Yodel Elimination

The model elimination was introduced by Loveland and much improvement of it was given by him $[15,31,32,36]$ to avoid the difficulties of testing for 5 -resolvents in some of the linear resolution methods. The model elinination procedure is not formally expressible in the resow Iution formate, but is a variant of resolution. A primary difference is that the basic entities are not ordered clauses but are literal lIsts containing two types of
literals.

We recall the definition of intexpretation by epecifying the truth values of the atoms in the Herbrand base. Ve call such a speotilication a model. Thus if the Herbrand base consiat of the atome $\{P(a, b), P(a, a)$, $P(b, b), F(b, a), Q(a), Q(b)\}$ them one poselble model wowld be $\{\sim P(a, b), P(a, a), P(b, b), \sim P(b, a), \sim Q(a)$. Q(b) \}. In general, model (possibly infinite) is a set of ilterals construoted from the Herbrand base in such a way that each atom in the Herbrand base is appearedeither in the negeted or non-negated form but not in both in the model. A given model may not batiafy a clause C. Por example, $\{\sim P(a, b), P(a, a), P(b, b), \sim P(b, a), \sim Q(a), Q(b)\}$ does not atiefy $\sim Q(x) V P(y, x)$. since the substitution \{(b/x), (a/y)\} creates a ground instance having the valuo F. This model does artigif the clause $\{Q(x) V$ $P(y, y)\}$. Aince no aubatitution createa a ground instance having the velue P.

A model can often be more compactiy specified by listing a oet of literais all of whose ground ingtances over the Herbrand universe have the value T. Thus take the aet of clauses

$$
S=\left\{\begin{array}{l}
f(x) \vee P(a, P(x)) \\
Q(x) \vee P(P(x), a) \\
\mathcal{P}(x, f(x)) \vee H(y) \\
-\mathbb{R}(a)
\end{array}\right.
$$

which can be opecilied by the set $(Q(x)$.
$\sim P(x, f(x)), P(f(x), a), R(x)\}$. In terms of atoms in the Herbrand base this moded is the inianite set

$$
N= \begin{cases}R(a), R(f(a)), R(f(f(a))), \ldots \\ Q(a), Q(f(a)), Q(f(f(a))), \ldots \\ \sim & \ldots(a, f(a)), \sim P(a, f(f(a))), \\ P(f(a), a), & P(f(f(a)), a), \ldots\end{cases}
$$

Here we notice that the Piret and the lact olausan are not gatiafiad by this model, whereas the second and thixd are satisfiod.

The model atrategy is baged on the principle that - Lor an mactisfiablo set 3 of clauses and any model 14 over the Herbrand base of 3 , a refutation graph for s exiete having the property that each node in the graph is either a clause in S or has as one of its impediate ancestors a clause that ie not satiafied by M.

The cxiterion that must be satiopled by a paix
of aclauaes (A, B) in oxdex that they be xesolved relative to the model etrategy is that at least one of (A,B) must not be satisfied by the model.

In Fig. 3.8. e refutation graph for the set of unsatiafiable clauses $S=\{Q(x) \vee P(a), \sim Q(x) \vee P(x)$, $\sim Q(x)$ V. $\sim P(x), Q(x) V \sim P(x)\}$ Le Given. Each resolution in the graph batiafies the model cxitexion with $\{0(x)$, $P(x)]$ used to define a model. Those clausee not satisfied by the model are enclosed in bosea. The extent to mich the model strategy reduces the number of needed rebolutions depends on N, any model M not satiafying any of the clauses in S is a bad choice.

CHAPTER - 4

APRLICATYOM OF HESOLUT TON PALHCELE

There are man application axeas of reaolution principle. It ig applied in areas like questionmangwering deductive syatem, program analyais, atate-apace prom blems, concept formation, etc. And in what is cormon to all of these 18 the formation of these problens in to the framework of theorem proving problems and applying resolution principle to establish assertions. The discuesiong on these are following now.

In previoue chapters it has disquased how reaoIution principle is ubed in proving theoreme eithex a proof finding or a concequence finding. A proof ilinding program attempts to find a proof for a certain theorem where certain premises or axiome are given. And in a consequence finding program given exioms then tries to deduce consequences from the axioms and to eelect "interesting" congequences. Both typea of programs uee resolution principle. The resolution peinciple does provide a machine oriented algorithm. It ia a atraight forward procedure whioh combinea several well known ayllogisme debcribef in the earlier
parts of chapter 2 in the area covering the mathematical logic. The reaolution procedure is mechanisable in the sense that when once a problem is formulated in terme of predicate calculue, it is poasible to develop an approm priate programme for it.

Tovarda Deductive question Answeringt

To use computer for getting angwers of questions Irom given facts of premises ia best to be on a timemaring syetem, with interaction between the computer and the human uaer. For applying theorem proving to question ansm vering it la obvious that given a question to anawer, a queation anevering system ahould not conduct an exhaustive aearch among all the facte in order to anawer the question. Also in applying theorer proving to queation anewering, we often need to translate English sentences into fomulat of the fixat-order logic which is by no means triviel. Thio area is also relatec to the general repreaentation problen.

Green and Raphol [19] made a break through in this fiald by pointing out that mechanical theorem proving teomique of resolution principle can be applied to design queation-anawering and problem solving ay ateme Their
concept is that the set of zacts necessary for questionansworing or problem solving can be viewed as axioms of a theorem, and the quection or the problem can be viewed as the conclusion of the theorem.

Towarda Program Analysia:
The resolution principle is also used in prom gram analysia. Here the aim of uning it is to underatand the F/O relationship of the program. Eloyd and Hanna described about the $1 / 0$ rslation of programs in $1960 \mathrm{a}[16,36,39]$. Considering the 10 gical Iormulas descxibing the execution of a program as axioms the logical consequences can be done. Chang and Lee in [7] aleo worked in this area. In pamitoviar. there is one clause called the 'halting' clauce that will be mechanically deduced using the rosolution prinoiple if and only if the program teminatea. Ueing this conoept one chacks whether a program has the I / O relation.

Towarde State-Space Probleme:
A state space problem denoted by (S, F, O) consists of a deacription of a set 4 posesble starting states, a set F of operatore that convert one state into

55

another, and a set G of goal states 1.e. the output net after applying the elements of F on the elements of 5 . Here how resolutionmbased theorem provers can be used as a gFS for atatempace problems la briefly aiscusaed.

The terminology-for state space problems includes (1) 'states" which is represented by $\$, s^{*}, s^{\prime \prime}$. etc. (2) objecta' denoted by $0,0^{\prime}, 0^{\prime \prime}$, etc., (3) 'relations" denoted by Iluent symbole (undemined) and are defined between objecffs and properties of states, and aotsons; and (4) 'operators' Here the Isrst-order predicate calculua Le applied in atate space probleme. The following is an oxample of it using reaolution principle in solving a state apace problem in ifist-oxdex predicate calculus.

Example: "A monkey is in a room where a bunch of bananag is hanging zrom the celling, too high to reach. In the cornex of the roon 4.8 a box, which is not under the bananas. How can the monkey get the bananas ?"

The solution to the monkey's problem is to move the box under the banenae and climb onto the box, fron which the banana will be reached. The objects used in the etate space description of this problem are monkex, boxe
bananas, place 1, place 2, place 3. The operators used are goth, move, climb, and reach fox, each of wish will be a situational-Ruent function. The relations used in the description ore under, on at, and has-bananas, each of which will be a situational fluent predicate. The adjoining table -Table 4-1 gives the first-ordex predicate formulation that correspond to a description of this state space, using this objects, operators and relations. The monkey's problems is represented by the formula

$$
\begin{equation*}
(\forall s) \text { (has-bananas }(s)) \tag{4.1}
\end{equation*}
$$

which is to be proved using the formulas in take $4-1$ by resolution principle. Fig. 4.1 shows the refutation tree of it after adding the negation of the solution given in the expression (4.1)" giving a deduction of and hence showing the unsatiafiability of the clauses in fable 4-1, with negation of (4.1)". In Table 4-1, we take 'mon' for monkey and 'ban' for bananas. Table is in next pages.

Table 4-1A. The Monkey-Banana Problem Aximatized
A1. $\forall p \not p p \forall s(a t(b o x, p, \theta) \rightarrow a t(b o x ; p, g o t o(p, \theta)))$
A2. $\forall p \not p p^{\prime} \nvdash g(a t(b a n, p, s) \rightarrow a t(b a n, p$, goto $(p ; s)))$
$A 3 . \nLeftarrow \operatorname{prs}(\mathrm{at}(\mathrm{mon}, \mathrm{p}, \operatorname{goto}(\mathrm{p}, \mathrm{s})))$
A4. $\forall p \not p p^{\prime} \forall \theta\left((a t(b o x, p, s) \wedge a t(\operatorname{mon}, p, s)) \rightarrow\left(a t\left(b o x, p^{\prime}\right.\right.\right.$, move (mon,box, p, p^{\prime}, s))))

A5. $\forall p \not p p^{\prime} \forall P^{\prime \prime} \forall \varepsilon\left(a t(b a n, p, s) \rightarrow a t\left(b a n, p, \operatorname{move}\left(m o n, b o x, p^{\prime}, p^{n}, \theta\right)\right)\right)$
A6. $\forall p \nmid p^{\prime} \forall s\left(a t(m o n, t p, s) \rightarrow a t\left(m o n, p^{\prime}\right.\right.$, move $\left.\left.\left(m o n, b o x, p, p^{\prime}, s\right)\right)\right)$
A7. $\forall g(u n d e r(b o x, b a n, B) \rightarrow$ under $(b o x, b a n, \operatorname{slnb}(m o n, b o x, a)))$
A8. $\forall p \forall s(a t(m o n, p, s) \wedge a t(b o x, p, s) \rightarrow o n(m o n, b o x ; c l i m b(m o n$, box, e)))

A9. $\forall s($ under $(b o x, b a n, s)$ non $($ mon, box, $s)) \rightarrow$ hasmbananas (reach for, mon,ban,s)))
A10. $4 \mathrm{~s}(\mathrm{at}(\mathrm{box}, \mathrm{p} 3, s) \wedge \mathrm{at}(\mathrm{ban}, p 3, s)) \rightarrow$ under $(\mathrm{box}, \mathrm{ban}, \mathrm{s}))$
A11. at (box, $\left.2, s_{0}\right) \wedge a t\left(b a n, p 3, s_{0}\right)$

Table 4-1B: Clatise Form of Table 4-1A

A1. ~at (box, $p, B) \operatorname{Vat}\left(\right.$ box $\left._{,} p, g o t o\left(p^{\prime}, B\right)\right)$
A2. ~at (ban, $\left.q, s^{\prime}\right) V$ at(ban, q, goto $\left.\left(\varepsilon^{\prime}, s^{\prime}\right)\right)$
A3. at(mon, $x, g \circ$ to $\left(x, r^{*}\right)$)
A4. $\sim a t(b o x ; u, v) V \sim a t(m o n, u, v) v a t\left(b o x, u^{\prime}\right.$, move $(m o n, b o x, u$, $\left.u^{*}, ~ v\right) ~()$

A5. ~at(ban, $\left.t, t^{n}\right) \vee$ at(ban, t, move $\left.\left(m o n, b o x, t^{\prime}, t^{n}, t^{\prime \prime}\right)\right)$

A7. ~under(box, ban, w) \vee under(box,ban, climb(mon,box, w))
A8. $\sim a t\left(m o n, w^{*}, w^{\prime \prime}\right) \nabla \sim a t\left(b o x, w^{*}, w^{\text {f }}\right) V$ on(mon,box, climb(mon, box, w")
A9. ~under $(b 0 x, b a n, x) \nabla \sim o n(m o n, b o x, x) V$ has-bananas (reach for (mon, ban, x))
A10. ~at (box, 3 3, y) V~at(ban, p3, y) V under (box,ban, y)
A11. at(box,p2,0)
A12. at(ban,p23,0)
113. Negated conjencture (NC): ~has-bananas(z).

Table 4-10: Consequences of Fig. 4.1

C1. at(box, p2, goto (p^{\prime}, s_{0}))
C2. $\sim a t\left(\operatorname{man}, p^{2}, g o t o\left(p^{\prime}, s_{0}\right)\right) V$ at(box, \mathbf{z}^{\prime}, move(mon,box, p^{2}, $\left.u^{\prime}, \operatorname{goto}\left(p^{\prime}, B_{0}\right)\right)$

C4. $\sim a t\left(b a n, p 3\right.$, move $\left.\left(m o n, b o x, p 2, p 3, g o t o\left(p 2, s_{0}\right)\right)\right) V$ under (box, ben, move(mon, box, p2,p3, goto(p2, s_{0})))
C5. at(ban, p3, goto (q^{\prime}, s_{0}))
C6. at(ban, p3, move(mon, box, $\left.t^{\prime}, t^{\prime \prime}, g o t o\left(q^{\prime}, \theta_{0}\right)\right)$)

Fig. 4.1

C7. under (box, ban, move(mon, box, p2,p3, goto(p2, B_{0})))
C8. undex(box, ban, climb(mon, box, move(mon, box, p2,p3,goto ($2, \theta_{0}$)))
C9. at(mon, r^{n}, move(mon, box, x, v^{n}, goto $\left.\left(x, x^{\prime}\right)\right)$)
C10. at (box, v^{n}, move(mon, box, r, v^{n}, goto $\left.\left(x, r^{\prime}\right)\right)$)V on(mon,box,

 ($22,0_{0}$)))
C12. on(mon, box, climb (mon, box, move(mon, box, p2,p3, goto ($\mathrm{p} 2, \mathrm{~s}_{0}$))) V hae-bananasyreachfor(mon, ban, climb(men, box, move(mon,box, p2,p3,goto (p2, θ_{0}))))
C13. has-baxtenaa(zeachfor (non, ban, climb (mon, box, move(mon, box, p2 p 3 goto $\left(\mathrm{p} 2, \mathrm{~s}_{0}\right)$))))

Biven though the application area of resolution principle is quite wide, like areas on first theorems on group theory, geometry theorem proving etc., we are brieking it with the explanation of one more application axea only - that is on concept formation.
3% 者
Tovardo Concept Formation:
The concept tomation le a system that developa concepte and infers on plotorial data 58 . The general concept about the recognition is a viaual scene. Bruner argues this point effectively on the basia of experimental evidence[5]. Looking into this account Sadananda and Mahabala cevel oped the laed of conceptrerence in [58] using resolution principle.

Conceptiexence works in two phacea: (1) initiam lization of concepts neceasary to aescribe the scene, and (2) to operate on these concepte in the domain of a first order theory.

Concept Fomation: In this phaee the neceasary concepts or functions to deacribe the scene if formalized. They used LISP compiler to define theae.
*
Operation Phase: Here the entire aceme is oxpressed in terms of the well formed foraulas of the first order prealcate calculue. The names of the concepte formed in innet phase are predioate letters conetituting the w. P.fagenerated in this phane.

The systom of anceptearence generatea binary relations between every pair of neighbouring pictures expressed in the form of w. F. $\mathcal{L} . \mathrm{B}_{\text {. }}$ Two pictures are taken to be in a neighbourhood if the aistance between them is less than a pre-assigned positive number d. For calculation of this distance Kuclidian distanceo between the labeled comordinatea of the first picture to that of the second picture axe considered and the last is chosen.
'Adhoc' interpretation for the prediacte letters representing binary relationa auch as LEFT, INSIDE, ABOVB are absigned and no attempt lis made to obtain general interpretations.

The inference mechanism of conceptierence utilizes the resolution principie after converting the set of w.f.f.s, including the negation of the assertion exprem
 strategy takes into account tha nature of the assertion to be eatablished.

The clause repreaenting the negation of the ascertion ia rearranged such that an order of priority of importance of the predicate letter appears, and this is
followed by the priority of the arguments. However, if no importance of priority ic found, an alphabetioal order la chosen. the cleuaes unifiable with nigher order literala of the clause representing the negation of the asgextion are ohosen, and all such resolvents are obtained in one stage. In the asse of clausee invom Iving vaxiables and ground instances the latter are assigned prioxity in resolution over the former. The elauses not unifiablo at any ntage are discarded, asving space and effort. Whe next level io reached for all cormesponaing reeolvente, and the proe ece is carried out unitl an empty clause \square is reached or certain prespecified oteps are oszxied out.

If a question on the exiatence of an object responde after generating the description of the scene in
 clame with no iiterals, the system wovid terminate with a TES or HO or DO NOD KNOW etatenont if \square is not generam ted vithin a reasonable numbex of steps. Desides atmapting an exiatence problems, conceptference oan hanale an identification problem. The Fig. 4. 2 deacribea briefly how identification could be performed uging relationship of different picturee.

The descriptit acene which is generated in texno of a set of w.f.f.e defined on the domain of pictures of trianglea, squares, rectanglee and polygons to $14 e n t i f y$ the picture. Bome of the W.f.f.g are
 TRIANGLE $\left(P_{5}\right)$, RECTANOLE $\left(R_{6}\right)$.

CHAPTER - 5

CHOOSING AN RCONOMLC RESOLUTYON SRRATEGY

Here examples in automatic theorem proving are dealt in order to choose an economic realution strategy for different types of problems. The contex of economy here $2 \boldsymbol{s}$ the usual economy. The number of ateps in an exam. ple, the time conamption of the problem by computer, the easeness in hanaling the problem, etc, all are factors of the economy here.

Example 5.1
To show thet the alternate intexiox engles formed by a diagonal of a trapezoid are equal.

Fig. 5.1

The axiomatization of this pxoblem is as follows:
q($x, y, u, v)$ means that $x \quad y v$ is a trapezoid with upper-left vertex x, upper-right vertex y, lowershght vertex u, lower-left vertex v;
$P(x, y, u, v)$ means that the line segment x in parallel to the line segment u;
$E(x, y, z, u, v, w)$ means that the angle $x y$ is equal to the angle $u \vee v$.

Then we have the following axioms:
A1: $(\forall x)(\forall y)(\forall u)(\forall \nabla)(T(x, y, i, v) \rightarrow P(x, y, u, v))$ defining the traperoid.
A2: $(\forall x)(\forall y)(\forall u)(\forall v) \rightarrow P(x, y, u, v) \rightarrow E(x, y, \nabla, u, v, y)$ atates that the altemate interior angles of parallel lines are equal.

A3: $T(a, b, c, a)$ from Fig. 5. 1.

From these exioms we conclude that $B(a, b, d, c, d, b)$
is true, that is,

$$
A 1 \wedge A 2 \wedge A 3 \rightarrow B(a, b, d, c, a, b) \text { is a valid for- }
$$

mula. Since we have to prove it by resolution principle we negate the conclusion for getting an unsatiafiable get. Thus the uncatiefiable set of clausea of this problem is

$$
\begin{aligned}
& S=o_{1}, c_{2}, c_{3}, c_{4} \quad \text { where } \\
& c_{1}=\sim 2(x, y, u, v) \vee P(x, y, u, v) \\
& c_{2}=\sim P(x, y, y, v) \forall E(x, y, v, u, v, y) \\
& C_{3}=T(a, b, c, d) \\
& c_{4}=\sim B(a, b, a, c, d, b)
\end{aligned}
$$

To begin, resolution process is now called out between these clauses and xeaolvente of then in teas of their levels which ne call level geturation method. $g=\left\{c_{1}, C_{2}, C_{3}, C_{4}\right\}$ will. be taken as 3° meaning at zero level. How the reeolutions in the first level are as below t

The aet of clauges $s^{1}=\left\{c_{5}, c_{6}, c_{7}\right\}$ in in the first level s^{1}. So we proceed for the second level.

$$
s^{2}=\left\{c_{8}, c_{9}, c_{10}, c_{11}, c_{12}, c_{13}, c_{14}\right\} \text { is the }
$$ bet of clauses in the second level. Here we have derived the empty clause in C_{14}. Hence we have solved our problem by inconsistency method of resolution principle with 14-4 =10 resolution stops.

Now the pome problem in solved by inear resolution. The solution is given in Pig. 5.2.

Fig. 5.2

Hexe in 2 inear nethof it takea onjy 3 ateps of resolution. Fence by linear reaolution it aavee $10-3=7$ unita of computex ting of reaciution steps.

Again, we solve the problem by eemantic reaolut1cm. The interpretation is taken as $I=\{\sim T, \sim p, \sim-z\}$. Hence $s_{1}=\left\{c_{1}, c_{2}, 0_{4^{*}}\right\}, s_{2}=\left\{c_{3}\right\}$ are the non-empty seta of S partiticnod by I, and ordering is taken as I $\boldsymbol{P}>\mathrm{E}$. Thus the resolution steps due to I I -resolution strategy are given as follows:

Now c_{5} enters s_{2}. Therefore $s_{1}=\left\{c_{1}, c_{2}, c_{4}\right\}$ and $s_{2}=\left\{C_{3}, c_{5}\right\}$. Wow c_{1} does not resolve with o_{5} as T > P , instead C_{2} resolve with C_{5}.

Therefore $s_{1}=s_{;}=s_{2}^{p}=\left\{c_{1}, c_{2}, c_{4}\right\}$, and $s_{2}^{n}=\left\{c_{3}, c_{5}, c_{6}\right\}$ Now C_{2} does not resolve with C_{6} as $P>E$ instead, C_{4} resolves wi th C_{6}.

Since we get the empty clause here the process hate. Here the number of resolution step is 3.

In semantic resolution we need to order the prodicates or iliterals of the seta of clauses which are certvel from the problem and also we need to give an Interpretatron for the partition of the set 8 whereas in in ear resolution we need to check whether there is unit clause
in 3 or in regolvents of 3 which we prefer to reeolve first with some other clause posaibly of multiliteral. This ia the case of unit reaolution in inear regolution. And also, in inear reaclution if we ube the concept of oxter of the 1iterals, we have to deetroy the concept of completeneas. No: let us sea, how the same problem 1n aolved by lock resolution,

In the case of look resolution we index the ilterala in all the clauses differentiy and those ilterals whese indiees are lower in the same clanae is allowed to be reapolped upon.

$$
\begin{aligned}
& c_{1}=1^{\sim} \sim(x, y, u, b) v 2^{F}(x, y, u, v) \\
& 0_{2}{ }_{3} \sim \mathcal{P}(x, y, u, v) v{ }_{4} R(x, y, v, u, v, y) \\
& c_{3}=5 \quad T(a, b, c, d) \\
& c_{4}=6^{\sim} \sim(a, b, a, c, a, b)
\end{aligned}
$$

Here we can not regolve 2^{p} of C_{1} with any other alauae in S for, the index of ${ }_{2}$ p is not lowest in C_{1}. And we can resolve, \sim is of C_{1} with any other clause, in this case with C_{3}, Likewise we can not resolve upon 4^{E} with $6^{\sim E}$. The refutation graph of the problem aolved by look resolution 1 is thus giving below:

Eig. 5.3

Hex also the number of resolution pteps is oniy 3. alence if we acixame that the time taken by computer in resolving two clause for getting a third chause is as unit tine and neglecting the scanning time by computer of clauses then in the refined resolutions in the above problet time saved by each refined atrategy is 7 units of time.

Exampla 5.2:.
To prove by recolution principle that (1) finm ger is a part of man, with the coaditione (2) finger is a part of hand, (3) hend is a part of arm. (4) arm is a part of men and (5) x ia a part of v and v is a part of y implies that x is a part of y.

Here the axiomatization is done by $P(B, t)$ meaning that s is a part of t. Hence the axioms are

1) part $(x, v) \wedge \operatorname{part}(v, y) \rightarrow \operatorname{part}(x, y)$
2) part (finger, hand)
3) part (hand, arm)
4) part (arm, man)
5) part (finger, man) (conclusion)

For using automatic theorem proving we reduce (1) - (4) in the following clauses and negate (5) for the inconsistent proof.

$$
\begin{aligned}
& C_{1}: \sim \sim^{\prime} \operatorname{part}(x, v) V \sim \operatorname{part}(v, y) \vee \operatorname{part}(x, y) \\
& C_{2}: \quad \operatorname{part}(f i n g e r, \text { hand }) \\
& C_{3}: \quad \operatorname{part}(\text { hand, arm }) \\
& C_{4}: \quad \operatorname{part}(a x n, \text { man }) \\
& C_{5}: \sim \operatorname{part}(\text { finger, man }) .
\end{aligned}
$$

$s=\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right\}$ is an unsatisfiable set of clauses. Now we solve the problem by using the level saturation method of resolution principle. Here we use the rotation $x\left(c_{i}, c_{j}\right): c_{k}(G): L$ meaning that C_{i} resolves with C_{j} and gets the resolvent $C_{k}=L$ by using the substitution 9 .

$$
\begin{aligned}
& r\left(C_{2}, C_{1}\right): C_{6}(x=\text { inger, } \forall \text { hand }): \sim \text { part }(\text { hand, } y) V \\
& \text { part(finger, y). } \\
& x\left(C_{3}, C_{1}\right): c_{7}(x=h a n d, \nabla=a r m): \sim \operatorname{part}(a r m, y) \nabla \operatorname{part}(h a n d, y) . \\
& r\left(C_{4}, C_{1}\right): C_{8}(x=a r m, \forall=m a n): \sim \text { part(man, y) V part(arm,y). } \\
& r\left(c_{5}, c_{1}\right): c_{9}(x=f i n g e r, y=m a n): \sim \operatorname{part}(\text { fingex, } v) V \\
& \sim \text { part(} v, \text { man). } \\
& r\left(c_{2}, c_{1}\right): c_{10}(v=f i n g e r, y=h a n d): \sim \operatorname{part}(x, \text { inger }) \nabla \\
& \text { part(} x \text {, handi). } \\
& \left.r\left(c_{3}, c_{1}\right): c_{11} \text { (Vmand, } y=a r m\right): \sim \operatorname{part}(x, \text { hand }) V \text { part }(x, a x m) . \\
& x\left(c_{4}, c_{1}\right): c_{12}(v \operatorname{man}, y \operatorname{man}): \sim \operatorname{part}(x, \operatorname{arm}) V \operatorname{part}(x, \operatorname{man}) . \\
& S=S^{0} \text { Le the Level zero clause aet and } \mathrm{s}^{1}=\mathrm{C}_{6-12} \text { is }
\end{aligned}
$$ the first level clause set. Now we find s^{2}.

$$
\begin{aligned}
& \left.r\left(C_{1}, C_{6}\right): C_{13}(x \text { hand }): \sim \text { part(hand, } \nabla\right) V \sim \operatorname{part}(\nabla, y) V \\
& \text { part(finger, y). } \\
& r\left(C_{1}, C_{6}\right): C_{14}(x a f i n g e r, v=y): \sim \operatorname{part}(y, y) v \text { part(finger,y) } \\
& x\left(c_{1}: c_{6}\right): c_{15}(v i f i n g e r): \sim \text { pazt }(x, \text { finger }) \nabla \text { part }(x, y) v \\
& \sim \text { part(hand. y). } \\
& r\left(C_{3}, C_{6}\right): C_{16}(y=a r m): \text { part(finger, axm). } \\
& x\left(c_{5}, c_{6}\right): c_{47}(y \operatorname{man}): \sim \text { part }(\text { hand }, \operatorname{man}) .
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{I}\left(0_{1}, O_{7}\right): O_{18}(x=a m): \sim \operatorname{part}(a r m, v) V \sim \operatorname{part}(x, y) V \\
& \text { part(hand, y). } \\
& \mathbf{r}\left(C_{1}, C_{7}\right): C_{19}(\text { vehand }): \sim \operatorname{part}(x, \text { hand }) \nabla \sim \operatorname{part}(a r m, y) V \\
& \text { part }(\boldsymbol{x}, \boldsymbol{y}) \text {. } \\
& I\left(C_{1}, C_{7}\right): C_{20}(x=a r m, v=h a n d): \sim p a r t(a r m, \text { hand). } \\
& x\left(C_{4}: C_{7}\right): c_{21}(y=m a n): \text { part (hand, man). } \\
& r\left(C_{6}, C_{7}\right): C_{22} \text {,part(finger, y) } \mathrm{V}_{\mathrm{N}} \text { part(arm, y). } \\
& x\left(C_{1}, C_{8}\right): C_{2} 3(x \operatorname{man}): \sim \operatorname{part}(\operatorname{man}, v) V \sim \operatorname{part}(v, y) V \\
& \text { part(am, y). } \\
& r\left(C_{1}, C_{8}\right): C_{24}(v a x m): \sim \operatorname{part}(x, \operatorname{arm}) \forall \sim \operatorname{part}(\operatorname{man}, y) V \\
& \text { part (} x, y \text {). } \\
& x\left(C_{1}, C_{8}\right): C_{25}(x=m a n, v=a m n): \sim \operatorname{part}(\operatorname{man}, ~ a r m) . \\
& x\left(C_{1}, c_{g}\right): C_{26}(x=a x m, v=y): \sim \operatorname{part}(y, y) v \text { paxt }(\operatorname{arm}, y) V \\
& \text { ~part(man, y). } \\
& \left.r\left(C_{7}, C_{8}\right): C_{27}: \sim \text { part(man, } y\right) V \text { part(hand, y). } \\
& r\left(C_{1}, C_{9}\right) C_{28}(x=f i n g e x, v=y): \sim \operatorname{part}(\text { 1inger, } g) V \\
& \sim \operatorname{paxt}(y, y) y \quad \operatorname{part}(y, \operatorname{man}) . \\
& x\left(C_{1}, C_{9}\right): C_{29}(\nabla=x, y m a n): \sim \operatorname{part}(x, x) V \sim \operatorname{part}(x, \operatorname{man}) V \\
& \sim \text { paxt(Iinger. } x \text {). }
\end{aligned}
$$

$$
\begin{aligned}
& x\left(C_{2}, C_{9}\right): C_{30}(v \text { mand }): \sim \operatorname{part}(\text { hend, man }) . \\
& r\left(C_{4}, C_{9}\right): C_{31}(\text { vearm }): \sim \text { part(pinger, arm). } \\
& x\left(C_{6}, C_{9}\right): C_{32}(y=v): \sim \operatorname{part}(h a n d, \nabla) \nabla \sim \operatorname{part}(v, \operatorname{man}) \\
& r\left(C_{6}, C_{9}\right): C_{33} \text { (vafinger, yman) } \sim \sim \text { part(hand, wan) } V \\
& \sim \text { part(finger, finger). } \\
& x\left(C_{7}, C_{9}\right): C_{34}(\nabla \text { hend, yeman }): \sim \operatorname{part}(a r m, \operatorname{man}) V \\
& \sim \text { part(Ringer, hand). }
\end{aligned}
$$

$$
\begin{aligned}
& z\left(C_{7}, C_{10}\right): C_{42}(x=h a n d, y \text { finger }): \sim \text { part(azm, finger) } \\
& \checkmark \text { part(hand, hend). } \\
& x\left(C_{8}, C_{10}\right): G_{43}(x=m, y=h a n d): p a r t(a r m, \text { hand }) V \\
& \sim \text { part(man, finger). } \\
& r\left(c_{8}, c_{10}\right): c_{44}(x=a r m, y=f i f g e r): \sim \text { part(man, finger) } V \\
& \text { part(axm, hand). } \\
& x\left(C_{9}, C_{10}\right): C_{45}(x=0 \text { inger, } \nabla=h e n a): \sim \operatorname{part}(h e n d, \operatorname{man}) V \\
& \text {, ~part(finger, finger). } \\
& r\left(C_{1}, C_{11}\right): C_{46}(y \text { mand }): \sim \operatorname{part}(x, v) V \sim \operatorname{part}(v, \operatorname{man} d) V \\
& \text { part(x, amn). } \\
& x\left(c_{1}, C_{11}\right): c_{47}(\forall \operatorname{arm}): \sim \operatorname{part}(a r m, y) V \operatorname{part}(x, a x m) V \\
& \sim \operatorname{part}(x, \operatorname{han} d) . \\
& x\left(c_{1}, C_{11}\right): c_{48}(x=v, y=a x m): \sim \operatorname{part}(v, v) V \operatorname{part}(v, a x a) \text { IV } \\
& \sim \operatorname{part}(\mathrm{v}, \text { hand). } \\
& r\left(C_{2}, c_{11}\right): c_{49} \text { (x=fingex): part(finger, axn). } \\
& r\left(c_{6}, a_{11}\right): c_{50} \text { (xuringer, ymand): } \sim \text { part(hand, hand) } V \\
& \text { part(finger, arm). } \\
& x\left(C_{6}, C_{11}\right): C_{51}(x=h a n d, y=a r m): p a r t(f i n g e x, ~ a r m) V \\
& \sim \text { part(hand, hand). } \\
& r\left(C_{7}, C_{11}\right): C_{52}(x=y m b a n d): \sim \text { part(axm, hand) } V \text { part (hand,axm). }
\end{aligned}
$$

$$
\begin{aligned}
& r\left(C_{7}, C_{11}\right): C_{53}(x=a r m=y): \text { part(hand, arm) } v_{\sim} \text { part(arm, } \\
& \text { hand.). } \\
& r\left(C_{8}, C_{11}\right): C_{54}\left(x=3 m^{\prime}, y m h a n d\right): r \operatorname{part}(\text { man, hend) } V \\
& \text { part(axm, axm). } \\
& \left.x\left(C_{8}, C_{11}\right): c_{55}(x=m a n, y=a r i n): \text { paxt(arm, men }\right) V \\
& \text { ~part(man, hand). } \\
& r\left(C_{9}, C_{11}\right): C_{56}(\text { rainger, } \forall=a r m): \sim \operatorname{part}(a r m, \operatorname{man}) V \\
& \checkmark \text { part(ingger, hand). } \\
& x\left(c_{10} \cdot C_{11}\right): c_{57} \sim \operatorname{part}(x \text {, finger)V part(} x \text {, amm). } \\
& x\left(c_{1}, c_{12}\right): c_{58}(y=a z m): \sim \operatorname{part}(x, v) V \sim \operatorname{part}(v, \operatorname{arm}) V \\
& \text { paxt(} x \text {, man). } \\
& x\left(c_{1}, c_{12}\right): c_{59}(\nabla=m a n): \sim \operatorname{part}(\operatorname{man}, y) v \operatorname{part}(x, y) \nabla \\
& \sim \operatorname{part}(x, a x m) \text {. } \\
& r\left(C_{1}, C_{12}\right): C_{60}(x=v, y=m a n): \sim \operatorname{part}(v, v) V \operatorname{part}(v, y) \\
& \text { V } \sim \text { part (} v, \text { azn) . } \\
& x\left(C_{3}, C_{12}\right): c_{61}(x \text { hand }): \text { part(hand. man). } \\
& r\left(C_{5}, c_{12}\right): c_{62}(\text { xafinger }): \sim \text { part(finger, arm). }
\end{aligned}
$$

$$
\begin{aligned}
& \text { part(fingex, man). }
\end{aligned}
$$

$r\left(c_{6}, c_{12}\right): c_{64}(x$ many, $y=m a n):$ part(finger, man) V
\sim part(hand, hand).
$x\left(C_{7}, C_{12}\right): C_{65}(x=h a n d, y=a x w): \sim \operatorname{part}(a m, y) V$
part(hand, man).
$x\left(C_{7}, C_{12}\right): C_{66}(x=a r m$, yean): part(hana, man $) V$
\sim part(axm, amin).
$r\left(C_{8}, C_{12}\right): C_{67}(x=y=a z m): \sim \operatorname{part}(\operatorname{man}, \operatorname{arm}) V$ part (axm,man).
$r\left(C_{8}, C_{12}\right): C_{68}(x=y=m a n): p a r t(a m, \operatorname{men}) V_{N p a r t}(m e n, ~ a x m)$.
$x\left(C_{9}, C_{12}\right): C_{69}(x=f i n g e r, \forall \operatorname{men}): \sim p a r t(m a n, m a n) V$
\sim part(finger, finger).
$r\left(c_{11}, c_{12}\right): c_{70}: \sim \operatorname{part}(x$, hand $) V \operatorname{part}(x, \operatorname{man})$.
Here 0_{14-70} are in s^{2} level. Now in the process
of getting $\mathrm{s}^{3}, \mathrm{C}_{13}$ can resolve for 21 different resolvents
and C_{14} can resolve for 17 different resolvents. But
still we would not be able to get the empty clause \square.
But until that time we already have to cover $70+21+17$-10e
resolution steps. The empty clause will be getting only
when the turn for a_{21} resolving with c_{17} in s^{3} level. comes.
This way the number of resolution steps before getting
the empty clause must be around 300. Thus even if the Level saturation method is complete it consoles too much computer time in solving problems of such type. Now let us see how this problem is solved by different relined strategies in much shorter computer time.

By linear resolution with unit preference
strategy:

$$
\begin{aligned}
& x\left(C_{2}, C_{4}\right): C_{6}(x=I n g e x, v=h a n d): \sim \operatorname{part}\left(\text { han } d_{i}, y\right) V \\
& \text { part(finger, y). } \\
& r\left(C_{2}, C_{1}\right): C_{7}(v=f i n g e x, y=h a n d): \sim \operatorname{part}(x, f i n g e r) V \\
& \text { part (} x \text {, hand). } \\
& x\left(c_{3} ; c_{1}\right): c_{8}(v=a z m, x=h a n d): \sim \operatorname{part}(a r m, y) v \text { part (handy). } \\
& x\left(C_{6}, C_{3}\right): C_{9}(y=a m): \text { part(finger, aam) }
\end{aligned}
$$

$$
\begin{aligned}
& x\left(c_{8}, c_{q}\right): c_{10}(y=\text { man }): \operatorname{part}(\text { hand, man }) . \\
& r\left(c_{6}, c_{5}\right): c_{11}(y=\text { man }): \sim \operatorname{part}(\text { hand, man }) . \\
& x\left(c_{11}, c_{10}\right): c_{12}: \square:
\end{aligned}
$$

The refutation tree of this colution is giving in Fig. 5.4 where we combine two linear trees.

FIg. 5.4

Hence in this case we could see the amount of computer units of time saved by using this refined strategy.

Again we solve this problem by set-of-eupport strategy (semantic resolution):

Here C_{1-5} are as above.

$$
\begin{aligned}
r\left(C_{1}, C_{5}\right) & : C_{6}(x=f i n g e x, y=\operatorname{man}): \sim \operatorname{part}(\text { finger, } \nabla) V \\
& \sim \operatorname{part}(v, \text { man }) .
\end{aligned}
$$

$$
r\left(c_{2}: c_{6}\right): c_{7}(v=h a n d): \sim \operatorname{part}(\text { hand, man }) .
$$

$$
x\left(C_{4}, C_{6}\right): C_{8}(v=a x m): \sim \text { part }(f \text { finger }, \text { arm })
$$

$$
r\left(C_{1}, C_{7}\right): C_{9}(x=h a n d, y=\operatorname{man}): \sim \operatorname{part}(\text { hand, } v) V
$$

$$
\sim \operatorname{part}(v, \text { man }) .
$$

$x\left(C_{3}, C_{9}\right): C_{10}$ (Vara) $: \sim \operatorname{part}($ arm, man $)$. $r\left(C_{4}, c_{10}\right): C_{11}: \square$.

Here the set of support clause is C_{5} only. In this case we save one more computer unit time than the one solved by unit resolution.

By lock resolution: We make the order of the
ifterale in S by prefix in it as below:
$c_{1}: \quad \sim^{\sim \operatorname{part}(x, \nabla) V_{2} \sim \operatorname{part}(v, y) V_{3} \operatorname{part}(x, y) .}$
$C_{2}: 4^{\text {part(finger, hand). }}$

$$
\begin{aligned}
& C_{3}: 5^{\text {part(hand, arm). }} \\
& \mathrm{C}_{4}: 6^{\mathrm{part}(\text { arn }, \text { man })} . \\
& 0_{5}: 7^{\text {~part(finger, man). }} \\
& \left.r\left(C_{2}, C_{1}\right): C_{6}(x=\text { Pinger, } v=\text { hand }): 8^{\sim} \text { part(hand, } y\right) v \\
& g^{\text {part(finges, }} \text { y). } \\
& x\left(C_{3}, C_{4}\right): C_{7}(x \text { hehand, } v \text { earm }): 10 \sim \operatorname{part}(a r m, y) V_{11} \text { part } \\
& \text { (hand, y). } \\
& r\left(C_{4}, C_{1}\right): C_{8}(x=a r m, \text { veman }): 12 \sim \operatorname{part}(\operatorname{man}, y) V_{13 p a r t} \\
& \text { (axm, y). } \\
& x\left(C_{6}, C_{3}\right): C_{9} \text { (yeara) }: 14^{\text {part(inger, axn })} . \\
& x\left(C_{7}, C_{4}\right): C_{10} \text { (y=fan): } 15^{\text {part(hand, man). }} \\
& \left.\left.r\left(c_{9}, c_{1}\right): c_{11} \text { (xefinger, } v=a n d\right) \text { : } \mathbf{1 6}^{\sim \operatorname{part}(a r m}, y\right) V \\
& 17^{\text {part(finger, }} y \text {). } \\
& x\left(C_{10}, C_{1}\right): C_{12}(x=h a n d, \forall=\operatorname{an}): 18 \sim \operatorname{part}(\operatorname{man}, y) \\
& \nabla_{19} \text { part(hand, y). } \\
& r\left(C_{11}, C_{4}\right): c_{13} \text { (yeman): }{ }_{20} \text { part(finger, man) } \\
& x\left(C_{13}, C_{1}\right): C_{14}(\text { xafinger, } \forall=\text { man }): 21 \sim \text { part(man, y) } \\
& V_{22^{p a r t}(f i n g e r, ~ y) .} \\
& x\left(C_{13}, C_{5}\right): C_{15}: \square \text {. }
\end{aligned}
$$

Here also 1 t takes much shorter computer time then the one in level aturation method but longez than by other resolution strategiea given above for the example.

From these examples we conclude that if the given problem could get the first order predicate formulae i.e., the clanees with more unit literals we prefer to use innear resolution and aemantic resolution etrategies to the solution by look resolution. And in case, 12 the formula reduced problem containg more multi1iteral claubes, we prefer lock resolution to the reat of the resolution strategies. Again. aince the omantic resolution (as in the case of 0 (-resolution) is not complete we may get problems where it can not be applied even if it contains unit ilterals. An example of 14 vas given in chapter 3 . In auch cases the priority ia higher in linear strategy and lock resolution etrategy.

In previous chapters many reaolution strategies have been mentioned, each of which has its own mexite and demerite. For a specifle theorem or problem aome strategy may work well while othere may perform poorly, as is explained in the last chapter by giving exenaplea.

The application of resolution theorem provers in real vorid problem atarte only in 1969 due to Hewitt by developing the programing language PLANAER, which pexmits the statement and execution of plans in a theom rem proving format $[22,23]$. The extent to uhich resoLution theorem provers can be used for solving real world problem depende on several factore, including how wall predioate calculus can be used to fescribe real world aituations and actione, and how efficiently theoe rem provers can be ueed to find solutions to problems that are given predicate calculue formulizatione. Any mathematical theory can be expressed as a byetem of prodicate calculua fomulas. Thus predicate calculus offers a metaphysically adequate mathenatioal frame voxk
for the description of the real world, if any guch frame work can be constructed at all. Thue in resolution methode, the question is about the golatomological adequack $1 . e$. , how it can repreaent every day aspecta of the real world, and about its heuriatic adequagy 1. $e_{\text {. . h how }}$ it can be used to express information that is helpful in aolving problems. The answer to the first adequacy is astiafactory even if many-valued logice are more destrable then predicate calculus [18,42]. however, eny embodiment in a precicate calculus machine would require a set of axioms to define the functions and predicates that were associated with each of the aepects like ambiguities, inaccuracies, probabilities, multiple interpretations, etc., wish are really in a real world environment. thus even if no completely satisfactory : manymalued logic has yet been developed we can conclude that the resolution theorem proving is imperfect or inefficient in the real-worid problems. Hewitt's PLANNE is a powerful lenguage for solving a theorem proving problem [22]. Hewitt's work in [22,23] 1s concerned uith the heuristic adequacy of predicate calculus. He showed that it is possible, not only to use predicate calculus formulas as etstemente of facte,
but elso to uae them as recommendations for how to proceed in solving problems.

Mc Carthy and Layes in [42] inscuess the inefficiency of theorom provers in "frame problem" of problems, The frame problem azise日 from the fact that, in a atatempace problem, an application of an operator to a atate will usualiy affect some relations between objecta in the otate and not affect others. In predim cate calculus formalization for auch a problem there must generally be axioms for each opexatox to exprese both the relations that exists and are not changed by the ayplication of that operator. For example in the Monkey-Banana problem of chapter 4 we had to state and use the fact that the application of the operator alimb would not aftect the position of the box. Various teciniques for overcoming the frame problem have been inveatigated by Hewitt, Fikes and Nilseon in [22,23.14]. In [14]. Pikea et.al. preaents a Gpg-like program that controla the application of a theorem proving program to various sete S_{1} of clauses, each set S_{1} reprosenting a given stato in a state space. Each operator has agecoiated with it a collection of delete' and
'add' instructions that identify the relations changed by the application of that operatox. The program performe a heuristic search in state space untill it finds a sequence of operators that will produce a sot s_{g} of clauses containing the deajred goal relations. It performs tasks in real-world environment.

Another 1 imitation of resolution procedure is that all resolution based theorem provere are designed to be general and complete programs for proving and disproving theorems within mathematical theories, the primary ascent in their development has been a concentration on their completeness and soundness, 1.e. on prom Ving their applicability to any mathematical system and increasing thelreficiency as much as possible without relinquishing that applicability. But in the aystem using planner it proviess frame work in which it is posaible to urite very sophisticated programs for special purpose types of theorem proving. There are many types of information processing and problem solving that involve logical deduction, ox theorem proving, without requiring full completeness or generality.

In previous chapters we have been discusaing
about the proof tinding and consequence finding résolution based theorem provers, but we have not crobsed of n Lea about deciaion procedure for firat-ordexlogic. Thexe le no guarantee that a proof procedure will converge to a proof in a finite number of stepe when attempting to prove a non-theorem. As a practicel matter, however, this lack of deciaion procecure does not 1 imit the applicability of $10 g i c$ as much as it may at fixst appear. Because of the time and space consm trainte on practical computation, the heuristie power of a proof procedure i.e. ita ability to prove useful theoreme officientiy ia more important than 1 te theoretical limitations. A deaision procecure that requires enoxmons amounta of time or intermediate atorage is indiso tinguishable, in practice, from a proof procedure that
 that include both theoretical and practical imitationm, no theorem prover can be realiy complete. Eventhough a theorem may be logically implied by a sot of azioms, we can not gurantee that the theorem prover will eventually develop a proof for 1t, because of -

1) the $\operatorname{limitationa}$ of space and time which aft.
ects the computational ability of any machine and,
2) the undeciaability of the predicate calculus.

Again the recolution procedure for automatic theorem proving falla in solving problems in mathematics which are hard, haxd is in the sense that difficuit or Pall to expreas in predicate form like problemo on infinite set, such as probleas on set theory, group theory; ring theory, fielde, etc. To avoid this somewhat. W. W. Bledsoe in 1977 in [3] used a method temed as complete set of reductions'. His ldea was based on the vork [29] of Lankford. He cited an example for it as le giving below.

$$
(\forall A)(\forall B)(\text { Subsetg }(A \cap B)=\text { Subseta }(A) \cap \text { Subsets }(B))
$$

where $A_{i} B$ are sets, posaibly inifinite. Thie problem was proved by his method of non-resolution theorem prover[29]. Not only Bledeoe' B work, there are many-refine work on mathematical theorime on sets where only reaolution principle can not work effectively. Following example due to chang and Lee [8]is an example of cuch problen.

Example 6.1.
Let ($G, 0$) be a group in which $x 0 x=e$, the identity element of G for any x in G; then G is a commutative group.

Let $A_{1}, A_{2}, A_{3}, A_{4}$ are the axioms of G to be a group and B the conclusion of this problem. Then
$A_{1} \quad \dot{x}, y \in G \Rightarrow x 0 y \varepsilon G$
$A_{2}: x, y, z(0 \Rightarrow x O(y O z)=(x 0 y) 0=$
$A_{3} \quad x 0 e=0 \mathrm{x}=\mathrm{x} \quad \forall \mathrm{x} \varepsilon \boldsymbol{\theta}$
$A_{4}: \forall x \in Q$ there expat X^{-1} ouch that $x 0 x^{-1}=x^{-1} 0 x=0$.
$B:(x 0 x=e \forall x\{G) \Rightarrow u 0 \forall=\nabla 0 u \forall u, \nabla \delta G$.
Here they use the convention $=(x, y), \sim=(x, y)$ and $O(x, y)$ Io r $x=y, x \neq y$ and $(x 0 y)$ respectively. Then the axioms are reduced respectively to

$$
\begin{aligned}
& A_{1}^{\prime}:(\forall x)(\forall y)(\exists z)(=(O(x, y), z)) \\
& A_{2}^{\prime}:(\forall x)(\forall y)(\forall z)(O(x, O(y, z))=O(O(x, y), z)) \\
& A_{3}:(\forall x)((=(O(x, e), x)) \Lambda(=(0(e, x), x)))
\end{aligned}
$$

$$
\begin{aligned}
& B^{\prime}:(\forall x)(E(O(x, x), e)) \rightarrow((\forall u)(\forall \nabla)(=(O(u, v), \\
& O(\geq, u))) \text {) }
\end{aligned}
$$

How negating B and transforming $A_{1} \wedge A_{2}^{\prime} \Lambda A_{3}^{\prime} \Lambda$ A: $1 \sim B^{\prime}$ into the prenex normal form the set s consisting of the following clauses is obtained, where I, a, b, are skolem functions.

1) $x 0 y=f(x)$
2) $x O(y \circ z)=(x 0 y) 0 z$
3) $x 0 e=x$
4) $0 \quad 0=x$
5) $x 0:\left(x^{-1}=e\right.$
6) $x_{1}^{-1} \circ x=e$
7) $x 0 x=e$
8) $a 0 b \neq b 0 a$.

This set S of the clausess can not be proved unsatisfiable by using only resolution principle even if we know that the statement of the problem is true mathematicalily. It is because of the reason that we have not defined the properties of equality in S. Hence for proving it, Chang and Lee define 10 more axiome for defining the equality as defined by reflexibility, symmetry, transitivity and substitutivity of equality. After that uging the overall 18 axioms and applying resolution principle they prove the statement of the problem. This problem is too clumsy in resolution

Principle for it generates on unmanageable number of recolvents therein. Avoiding this aifficulty they (Chang and Lee) proved the problem atatenent golution using the concept of Equallity' [8].

These points given in this Chapter about the limitatione and inefifiencies of resolution strategies have lead serlous research effort to go into the fundementale of theorem proving. Active efforts by Bledsoe, Nelvins, Chang and lsee $[3,6,7,9]$ on to this axea ty to remedy the veakess of theoxem proving. The exact mathenatical relation connecting the number of parent clauses and the number of reaolution gtepe for alffereat resolution atrategies in solving a problem will be a vexy interesting one. However, thla relation hes been developed here empemically uith the help of fev examplea for certain clase of problems one can overcame the 1 imitations imposed by resolution process by adopting apecilic non-resolution etrategies $[3,8]$. It also vill be interesting and important to identify these classes of problems. Inspite of the there areapects in resolution theorem provine. It is alno posaible to thinic of applications in the domein of realworld, atch as in the well fnom 'analogy problems'. "pictuce identification problems' and in date bese areas.

REFERETCES

1. Anderaon, H. (1971): Completeness of the Locking Resolution 10 Paramodulation' Dept. of Computer Science, University of Houston, Houston, Texas.
2. Anderson, R. and Bledsoe, W. W. (1970): "A.Inear foxmat for Resolution with Merging and a Now Technique for Eotablishing Completeness; JACM. Vol.17. No.3. pp. 525-534.
3. Bledsoe, W. W. (1977): Non-Resolution Theorem Proving; JAI, Vo2.9. pp. 1-35.
4. Boyer, R. S. (1971): 'Locking, a Reatriction of Resolutions (Mimeographed $2 h, D$, thesie). Univeraity of Texas, Auatin.
5. Bruner, J.3. et, az. (1956): 'A Stuay of Thinking', New Zork.
6. Chang, C. I. (1970a): The Unit Proof and the Input Proof in Theorem Proving; JACK, Vol. 17,N0.4, pp.698-707.
7. Chang, C.E. and Lee, R.C.T.(1971): Program Analysis and Theorem Proving; Div. of Computer Reeearch and Tech., National Institute of Health, Bethesaa.
8. Chang, C.I. and Lee, R.C.T. (1973): Symbolic Logic and Mechanical Theorem Proving."
9. Chang, C.L. and slagle, J.R.(1971): Completenebs of Linear Resolution for Theories with Equality; JACh, Vol. 18. No.1. pp.
10. Darlington(1968b): Autonatic Theorem Proving with Equality Substitutions and Mathematical Inductionsf" Machine intelligence. Voz.3.
11. Davis. M. (1963): Eliminating the ixrelevent from mechanical proofe", Proc. 15th Symp, in Applied Mathematico, A.M.S., Providence, R I, pp.15-30.
12. Davis, H. and Putnam, H. (1960): A computing procedure for quantification Theory', J.A.C.H. 7, No.3.
13. Feigenbaum, B.(1968): Artificial Intelligence Themes in the second decade, Proc. Int. Fed. of Infomation Procescing Society.
14. Fikes and NLisson(1971): "gTRIPS: A new Approach to the Application of Theorem proving to Problem Solving'. J.A.I. Vol.2, PP. 189-208.
15. FLeising, Loveland. Smiley and Yarmash(1974): Aa Implementation Proot Proceoure", J.A.C. 21.
16. Floyd, R. W. (1967): Agsigning Neaning to Programs' Proc. Symp. App1. Nath. A. 隹. S. Vol. 19.
17. Gilmoxe, P.C. (1960): ha Proof wethod for quantifiaation Theory, ita juatification and realization', lam J. Res. Development, pp. 28-35.
18. Green, C. C. (1969a): Application of Theorem Proving to Problem Solving'. I.J. CAI pp.219-239.
19. Green, C.C.(1973): The Application of Theorem Proving to Queaticn-Angwering System". Ph, D. Thesir Managem ment Information Sezvices: Iib. of Congrees, USA.
20. Henschon, L. and Woa, L. (1974): Unit refutations and Hozn seta". JACN.
21. Herbrand, f. (1930): Reaearchea Sunia Theores dela demonetration', Trav. Soc. Soi., letters Varzovie, claape III Sci, Math. Phys., No. $33,1930$.
22. Hewitt, C(1969): PLANNER: A langage for Proving theorems in Robots', IJCAI, pp. 295-301.
23. Newitt, C.(1971): Procedural Embedaing of Knowledge in PLANNER', IJCAI, pp. 167-182.
24. Hunf, E. B_{*} (1975): 'Artificial Intellegence'.

25A. Xleene, S.C. (1967): 'Matinematical Logic', John Wiley and sone Inc., New York.
25. Kowalaki, R. (1970b): "Btudies in the Completeness and Efficiency of Theorem proving by Resolution', Ph.D. Thebis, University of Edinburg at Edinburg. Scotiand.
26. Howal oki, R. (1970e): Search Strategien for Theorem Proving', Machine Intellegence, Vol.5. New York. Fp . 181-201.
27. Kowalski. K. and Hayo, P. (1969): Semant io Trees in automatic Theorem Proving', Machine Inteliegence Vol. 4.
28. Kowaicki and Kuehner(1970): Linear Resolutionwith Selection function" Mathematios Unit, Edinburgh Univexsity, Scotlana.
29. Lankford, D. $\mathbf{S}_{,}(1975)$: Complete sete of recuctions for Computational Logic'. University of Texas, at Austin, Math. Dept. Memo A TP-21.
30. Jee, R.C.T.(1967): A Complete Theorem and a computer Program for Finding Theoreme Dexivable from given axiome Ph. D. Thegie, Dept. of Electrical Bngineering, and Computer Science, Univeraity of Califomia, Berliey.
31. Loeeland, D.W. (1968): Mechanical Theorem Proving by Hodel eliminaticn', JACM 15.
32. Loveland, D.W. (1969): A SAmplifiea Pormat for the Model BLimination Proceaure', JACM 16.
33. Loveland, D. W. (1970a): "A Hinear Format for Reaolution". Proc. IRIA Symp. Automatic Demonatration, Springez Verlatg, New York, pp. 147-162.
34. Loveland, D. Y. (1970b): Some Linear Herbrand Proof Procedures: An Analyes ${ }^{\prime}$. Dept. of Computer Solence, Carnegie, Mellon Univeraity, Pitt bburg, Pennylvania.
35. Loveland, $D_{\text {. Wi. (1972): "A unlfying view of Some Linear }}$ Herbrand Procedures'. JACM 19 No. 2, pp. 366-384.
36. Loveland. D. W. (1978): Automatic Theorem Proving A Logical Basia', Duke University, Durham, North California.
37. Luckham, D. (1970): 'Refinemente in Reaclution Theory', Proc. IRIA, Symp. Automatic Demonistration, Versailes, France, 1968, Spxingex-Verbag, New York, pp. 163-190.
38. Manna, Z. (1969a): The Correctnees of Programs". J. Comp. Syetem Science, Vol. 3. No. 2, pp. 119-127.
39. Nanna, 2. (19896): Eroperties of Programe and the pirat Order Predicate Calculus'. Jach 16, pp. 244-255.
40. Me Carthy, J. (1962): "LISP 1.5 Programmer Manual". The NIT Preas, Cambridge, Rassachusetts.
41. Mc Carthy, J. (1963a): Situations, Actions, and Cagual Lawsi, A. I. Memo 2, Gtanford 3 tanford A. 1. ixoject.
42. Nc Carthy and Hayes(196a): Some Phylosophical Probiema from the etandpoint of A.I.'. AIM-13. Stanford: Stanfox A.I. Project.
43. Meltzex, ${ }^{\text {F. (1966) }}$:Theorem Proving for Computexe: Some reaults on Resolution and Renaming*. Comp. J. 8 . pp. 341-343.
44. Morria(1969): E-resolution Extenaion of Resolution to Include the Equality", Proc. Int. J. CAJ, Washington D.C.
45. Nevell, A. and Shaw. J.C.(1956): The logic Theory Machine". Int Trans, Ink Theory IT-2. No. 3. pp. 61-79.
46. Newell, A., Shaw, J.0. and simon, H. (1957): Emperical Explorations of the Logic Theory Ifaehine', Proc. West Joint comput. Conf. 15. pp. 218-239.
47. Hileson, N.J. (1971): Problem Solving Methods in A.I.'
48. Norton, L.M.(1971): Gxperiments with heuristic Theorem proving Lor Prealcate Calculus ith Equality*. AL. 2, No.3/4. pp. 261-264.
49. Pastre, D. (1978): 'Automatic Theorem Froving in Set Theory". Univerbity of Paxis VII Francb. J.AI. 10, pp. 1-27.
50. Philip C. Jackson (1974): Introduction to A.I.' Jew York, Petrocelli/Charter.
51. Rester, R. (1971): Two Resulte on Ordering for Resolution with Nexging and linear Pormat' JACN 18, No. 4.pp. $636-646$.
52. Reiter, R. (1973): A Semantically Guidea Deductive System for Automatic Theorem Proving'. Proc. of 3rd Joint Conf. A. I., pp. 41-46.
53. nobingon, J.A. (1965a): "A machine oriented Logic Based on the fiesolution Principle', JACM 1965: $1 / 12$, pp.23-41.
54. Robinson, J.A.(1965b): Automatic Deduction with Hyperm Reaolution', Iat. J. Comp. Math.1, pp. 227-234.
55. Robinson, J.A.(1967): A Review of Automatic Theorem Proving', Proc. Symp., Appl. Math, Vo.2. 19, ANS, Providence RI.
56. Robinaon $J_{\text {. }}$ A. (1968): The Generalized Reaclution Principle' Machine Intellegence 3, Michie and B. Meltzer, Eda, (Edinburgh, University Preas, Bainbuxgh, Scotiand).
57. Robinson and wos(1969): 'Paramodulation and Theorem Proving in first Order Theories uith Equality", Machin a Intellegence, Vol. 4
58. Sadananda, R. and Mahabala, H.M. (1978): Conceptterence: A System that aevelops concepte and Infers on pictorial Data', Proc. IEBE, VoL. SNC-8, NO.3. March 1978.
59. Sibert(1969): 'A Hachine Oxiented Logic Incorporating the Equality Relation', Machine Intellegence Vol. 4 .
60. Simon. H. (1971): The Theory of Problem Solving', Infn. Procesaing 1971 Amsterdam:
61. Slagle, J.R. (1967): Automatic Theorem Proving with remamable and Semantic Reaolution(, JACM 14, No. 4 pp. 687-697.
62. Slagle, J.R. (1971): Artificial Intellegencet A Heuriatic Approach'.
63. Slagle, J.R.(1972): Automatic Theorem Proving with built in Theories Including Equality, Partial Ordexing and Sete'. JACM 19, No. 1 pp. 120-135.
64. Slagie, J.R., Chang, C.L., and Leo, R.C.T(1969): Completeness Theorems for Semantic Resolution in Consequence Finding', Proc. Ibt Int. Jt. Conf. A.I. pp. 281-285.
65. Slagle and Farroll(1971): Experiements in automatic Learning for a Multipurpose Heuriatic Progran', Comun. ACM 14, No.2, pp. 91-99.
66. Slagle, J.R. and Norton, L. (1971): Experiments with an Automated Theorem Prover Having Partial Oxdering fules', Div. of Comput. Res. and Tech. Inett. of Health, Bethesde, Maryland.
67. Waldinger and Lee(1969): PROH: A step Towards Automatic Yrogram Uriting': I.J.C.A.I. pp 241-252.
68. Whitehead, A.N. and Russel, B. (1925-27): 'Principia Mathematica,'2nd Edn, ISBN, Cambriage University Preag.
69. Woa, L., Garson, D_{0}, and Rohinson, G.A.(1964): The Unit Preference Strategy in Theorem Proving' : Proc. A.F.I.P. S. 1964, Full Joint Comp. Conf. 26, pp. 616-621.
70. Wos, L., Robineon, Q.A., and Carson, D. F. (1965s): EP11ciency and Completeness of the Set of Support'strategy in Theorem Proving', JACM 12 No.4. pp. 536-541.
71. Yates, Re, Raphael, B., and Mart, T. (1970): Resolution Graphs' J.A.I. 1 No. 4, pp. 257-290.

