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CHAPTER-1 

INTRODUCTION 

A study of the dynamics of interacting species is of 

much interest in theoretical ecology. Mathematical models 

suggested to describe the interaction of two or more species 

populations consist of sets of coupled differential 

equations. The equations specify the growth rate of each 

species as a function of the sizes of the various 

interacting populations. In analyzing them, the first 

objective is tojudge their stability. This stability 

condition depends on the nature of the differential 

equations describing the model, i.e. they are linear or non­

linear. It also depends on whether the equations are assumed 

to apply over all conceivable combination of population 

sizes (global stability) or only in the neighbourhood of an 

equilibrium point at which all growth rates are 

simultaneously zero (local stability) . 

Stability can either be of equilibrium type or the 

periodic solution type. If the equations describing the 

system are linear, we get only equilibrium type stability 

and the latter can be varified by means of Routh-Hurwitz 

criteria. On the other hand if the differential equations 
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are non-linear, we get both types of stability. Since the 

equations of population dynamics are non-linear we have to 

explore both the possibilities. The analysis for stable 

equilibrium can in most cases still be done by treating 

these equations as approximately linear in a sufficiently 

small neighbourhood of the equilibrium point and then us·ing 

the Routh-Hurwitz criteria to judge their local stability in 

that neighbourhood. A non-linear model that is unstable in 

the neighbourhood-of its equilibrium point may be stable in 

the wider sense that it exhibits a stable limit cycle. 

We are basically interested in the limit cycle 

solutions. The existence of a limit cycle 

property of a large number of non-linear 

is an important 

systems. Limit 

cycle:::; corrospuw1 i..u closed curves in the phase space of the 

dynamical variables of the system and are independent of the 

initial conditions. They imply that the system has a stable 

pattern of behaviour and yet it does not display numerical 

constancy of any of the state variables. The reason why a 

dynamical stable system may not display numerical constancy 

is that the system is continuously perturbed from within. 

Many scientists have tried to find out periodic type 

of solutions in two species systems. Kolmogorov (1936) has 

given a theorem which tells about the existence of either a 

stable equilibrium point or a stable limit cycle. As a 

system become more complex, it becomes more difficult to 
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study its stability behaviour. For three species systems, 

asymptotic stability and global asymptotic stability are 

two of the criteria most widely used. But neither of these 

criteria explain the concept of persistence in a 

satisfactory manner as they exclude any discussion of an 

initial-condition independent periodic behaviour in the long 

run, ie, any discussion of a limit cycle solution. Koch 

(1974) has studied the three species model containing one-

prey and two predator species taking into account ~he 

predation of both the predators on a single prey. He has 

incorporated self-interactions for predators though 

competition between them is not included. Surprisingly he 

found that even though his system does not exhibit stable 

equilibrium condition, the compucer ca~culations give limit 

cycle solutions for a certain range of interaction 

parameters. Thus the possibility of permanent co-existence 

of three species system can not be ruled out: 

In our work, we begin with the study of some well kn.own 

models for two species system which exhibit limit cycle 

behaviuor. It is a well known fact that there is no such 
0 

theorem like that of kolmogorov for three species which can 

tell us about the limit cycle solut-ions. To study the limit 

cycle behaviour of three species system, we have made 

generalization of the parameters from certain two species 
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to three species system in such a way that our model 

exhibits ·limit cycle solutions, independent of the initial 

conditions. Basically we consider a one prey-two predator 

system with the effect of prey on both the predators, and 

study the limit cycle behaviour of the system. Further, 

incorporating the mutual interaction between the predators 

we again study the limit cycle behaviour of the modified 

model. Fortunately both the cases exhibit limit cycle 

behaviour. The usefulness· and relevance of our model stem 

from the fact that it exhibits limit cycle solution foi a 

considerably wide range of the parameters. 

The numerical analysis of the model has been performed 

on HP-9836 computer using Runge-Kutta approximation method. 
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CHAPTER-2 

REVIEW OF SOME TWO-SPECIES ECOSYSTEM MODELS 

In this chapter, we will discuss the mathematical 

models of population growth and the prey-predator 

interactions. 

In reality,the ecosystems are very complex. A fruitful 

way to proceed, is to consider simple and ideal ecosystems 

and build a quantitative b~sis for them. The realistic 

case can then be easily tackled. The most idealised system 

is one Wltn a single species in an unlimited environment. 

The ·population of· organisms fluctuate in size. Only 

thing that can be said with certainty is, their sizes ~ill 

never remain constant. 

1. Malthusian Model: 

For the development of a simple mathematical model 

following assumptions are made: 

( i) The organisms are immortal and reproduce at a rate 

which is the same for every individual, that does not 

change with time. 

(ii) The individuals have no effect on one another. 
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Consider a simple kind of ecosystem containing only 

one species. Let N(t) be the size of the population at time 

t and r be the rate of increase of each individual (i.e, the 

per capita growth rate) . The simplest differential 

equation describing growth can in that case be written as, 

dN(t) /dt = rN(t) ( 2. 1) 

which on solving gives, 

N{t) = N{O) exp(rt) ( 2 . 2) 

where, N(O) is the population size at time t=O 

This is well known malthusian model for population 

growth. This model holds-good for a population size so small 

that there is no interference among its members. 

2. Pearl-verhulst logistic model 

The 'environment, in reality, is not an unlimi·ted one. 

Beacause of the growth of population the resources available 
0 

to it become limited with the passage of time. Thus a stage 

is reached when the demands of the existing population on 

limited resources restrict further growth and the population 

is then at its "saturation level". The actual growth rate 

in the above expression must therefore also depend on the 
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preparation of the maximum attainable population size that 

is still unrealized. If the maximum attainable size is K, 

then the unrealized preparation can be written as (K-N)/K, 

and the growth rate will became, 

dN/dt = rN(l-N/K) 

or, d.N/dt = N(r-sN) (2. 3) 

where, s = r/k and r,s > 0, 

·The expression {2.3) is well known pearl- verhulst logistic 

equation. 

Solving equation {2.3} we get, 

r/s 
N (t) = ( 2. 4) 

1 + exp {-r (t- tO)} 

here, r/s = K, is the carrying capacity, which decides the 

saturation level of the population growth. 

The constant exp {rtO) is related to the initial 

population size by, 

exp(rtO} = (r/s) - N (0) 

N ( 0) 

From .the above expression one can infer that the 

population rises initially as in the previous case, but then 

the growth rate begins to slow down and then turns towards 

its asymptotic value which is (r/s) . The equality K = (r/s) 
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is the maximum limit that the population can reach and is 

therefore called the "carrying capacity" of the given 

environment. 

3. The Lotka-volterra Model 

Consider a situation when there are two interacting 

populations in the given environment say, a prey and a 

predator. Two ge~eral assumptions taken in such a prey­

predtato~ model are: (i) The two populations inhabit the 

same area, so densities 

numbers. 

are directly propertional to 

( ii) There is no time lag in the responses of either 

population to changes due to the other. 

The mathematical model for the interaction between a 

pair of species- a prey and a predator, was given 

independently by Lotka and Volterra. 

If H is the population size of prey at any time t, in 

the absence of the predator, its growth equation in the 

simplest form is given by 

dH/dt = 

If P is the population of predator at any time t, its 

growth (decay) equation in the absence of prey can be 

written as, 
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dP/dt 

If the prey and the predator interact with each other 

then the interaction term is in general, a complicated 

function of H and P. But, here we consider the following 

equations for a prey-predator system in the deterministic 

approach to the problem: 

dH/dt 

dP/dt 

= 

= ( 2. 5) 

Here, a 1 and a2 are the average rate of growth and 

decay per individual in the absence of other species and b 1 

and b2 are the interaction parameters. 

Unfortunately, equation (2.5) can not be solved 

analytically. We have tp take suitable approximation schemes 

and follow numerical methods. In view of their non-linear 

nature, it is unlikely that the full information content of 

these equations will be uncovered by such methods. It may be 

noted here that equation 

simple form enables us 

(2.3) is also non-linear, bu~ its 

to solve it exactly by direct 

integration. That is no more possible when we come to 

equation (2.5). However, an exact result which is of crucial 

interest in the present context, can be established (pielou, 

1977 ; Simmons 1981) . 
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We can rewrite equation (2.5) as: 

dH/dP = 

- b2 dH + al dP - b1 dP = 0 
p 

Integrating, we get. 

a2 log H - b2 H + a 1 log P - b 1 P = log K ----- ( 2. 6) 

= - a2 log H + b2 H + log K 

or, ------ (2.7) 

where, K is a constant given by, 

-------- (2.8) 

in terms of Ho and Po, the initial values of H and p. Thus 

the system (2.5) possesses a conserved quality given by the 

left hand side of equation (2.6). The equation represents a 

family of closed cu~ves in which each member of the family 

is characterised by a particular value of the constant K. 

One can riot solve equation ( 2. 7) for either H or P 

individually but we can determine the curves on which H and 

P will move. To do this, we equate the left hand sides of 
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equation ·( 2. 3) 

to new variables z and w, and then plot the graphs C1 and C2 

of the functions. 

as shown in figure - 2.1 

For z = W, we are confined in the third quadrant to the 

line L. To the maximum value of Z given by the point A and 

c1 , there corresp~nds one point M_on L and the corresponding 

point A' and A 11 on C2 leading to two values of H which 

determine the bounds between which it may vary. Similarly 

' the minimum value of W given by B on c2 leads to N on L and 

hence to B' and B 11 as c1 , and these points determine the 

bounds on P. In this way we find the points P1 P2 and Q1, 

Q2 on the desired curves c3 . Additional points are easily 

found by starting on L at a point R anywhere between M and N 

and projecting on the one hand on to c1 and over to c3.. It 

is clear that changing the value of K raises or lowers the 

points A and B, and this expands or contracts the curve C3. 

Accordingly, when K is given various values, we obtain a 

family of ovals about the point s, which is all there is of 

C3 when the minimum value of W equals the maximum value of 

Z. Now,· we will see how the corresponding point (H, P) . on C3 

moves around the curve as t increases. We can find out the 

equilibrium point by putting the right hand sides of 
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equation (2.5) equals to zero i.e., 

a 1 H - b 1 PH = 0 

-a2 P + b 2 PH = 0 

Solving these equations, we get, 

H*= a 2 \b2 

p*= a1 \b1 

---------- (2.9) 

Hence, the co-ordinates of S will be 

---------- (2.10) 

When, H < a2/b2 , dP/dt is nega~1ve, so the point on C3 

moves down as it traverses the arc Q2 P2 Q1. Similarly, it 

moves up along the arc Q1 P Q2. Hence, as t increases, 

points on C3 move in an anticlockwise direction. 

This shows that both prey and predator populations 

under-go prolonged oscillations with constant amplitudes and 

these amplitudes would be determined by the initial 

population sizes~ Ho and Po. This behaviour is generally 

referred to as one of neutral stability. 

4. The Leslie-Gower Model: 

An alternative fomulation of the prey-predator equations 
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was suggested by Leslie and Gower (1960) (May 1972; pielou 

1977) as follows: 

dH/dt = H(a1 - c1 P) 

dP/dt = P(a2 - c2 P/H) ------- (2.11) 

To study the behavioui:" of the system, we use the 

isocline method. The H-isocline and P-isocline are the 

curves in P-H phase space on which the time rate of change 

of prey and pedator respectively are zero. Thus on H­

isocline dH/dt = 0 and an P- isocline dP/dt 0. From 

equation (2.11}, we can write, 

H - isocline: 

dH/dt = 0 = H (a1-c1 P) 

or, p* = a1/c1 

P - is.ocline: 

dP/dt =0 =p(a2 - c2 P/H) 

or, H* = c 2P*/a2 

al c2/a2 c1 

(2 .12) 

----------- (2.13) 

Thus both the isoclines are straight lines which 

intersect at point (P* , H*). 

At point (p* ,H*) both dH/dt = 0 and dP/dt = 0. This 

means that at this point the populations of prey and 

predator do not vary with time, so this point is the 
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equilibrium point. 

From equation (2.11), 

and 

if P>a1 /c1 , 

dH/dt= H (a1-c1P) 

< H (a1 -c1 a 1 /c1 ) 

< 0 

P < a1/c1 

dH/dt > H(a1 - c1 a1/c1) 

> 0. 

Again if H > C2 P/a2, 

and 

dP/dt = (a2 H - c2 P/H) 

> (a2 c2P/a2- c2 P) P/H 

> 0 

H < c2 P/a2, 

dP/dt = (a2 H - c2 P) P/H 

< (a2 c2 P/a2-c2 P) P/H 

< 0 

In the firgure(2.2) H-isocline and P-isocline are 

'plotted,which are straight lines P=a1 /c1 and H= a1 c2/a2 c1 

respectively. We have given above the inequality conditions 

for all the four regions into which the region of positiv.e H 

and positive P can be divided. 

Suppose initially our system is at a point in region I. 

In this region H > 0 & P > 0 . It follows that H and P 

increases with time.Arrows show the direction of the 
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movement along the trajectory. The trajectory will move 

towards the left from the point A and will meet the P­

isocline. At this point dP/dt =o, and the tangent to the 

trajectory will be normal to the P-axis. In region- II 

both H and P increase with time. In this region, the 

trajectory will move to the right and will cross the. H­

isocline. At this point dH/dt =O, and the tangent to the 

trajectory will be normal to the H-axis. Similarly, we can 

draw the trajectory for regions III and IV. In the phase 

space the trajectory is a spira1 which converges on the 

equilibrium point which is the intersection of H-isocline 

and P-isocline. Hence, each species population undergoes 

0~mped h~~~o~i~ oscillations with time towards its 

equilibrium level. 

This effect considers the likely effect on the 

predator's per capita growth rate of the relative sizes of 

the interacting populations. Thus the larger the ratio P/H, 

the smaller the number of prey per predator and, 

consequently the less rapid the growth of the predator 

population. 

Leslie's model is 

following ways: 

different from val terra's in the 

(a) For volterra, whether predator increases or decreases 

in number depends only on the density of prey wher.eas 

17 



for Leslie it depends on the number of prey per 

predator. 

(b) Volterra's model relates the rate of increase of 

predators to the rate at which the prey are being 

eaten where as in Leslie's model there is no 

relationship between the rate at which predator eats 

and the rate at which it reproduces. 

5. The Holling - Tanner Model: 

Neither of 

exhibit stable 

the two preceeding models just discussed 

limit cycle. Kolmogorov has given the 

criteria for stable equilibrium point or stable limit cycle 

which are applicable to all two-soecies prey-predator 

models. 

Here we will consider the Rolling-Tanner model which is 

the representative of a great many non-linear models that 

produce stable limit cycles. 

This model is basically slightly more elaborate than 

that of Leslie and Gower. The growth rate of the prey in the 

absence of predator is given by the logistic equation. 

dH/dt = rH (1-H/K) ----------- (2.13) 

where, r- > intrinsic growth rate of prey and K - > maximum 

number of prey allowed by the resources of the system. 
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When the predators are present in the system, the 

mortality from predators must be taken into account. This 

mortality is the product of predation rate (number of prey 

killed per predator pe.r unit time) and the predator number. 

Many studies have shown that -the predation rate increases 

with prey density in the manner shown in fig. (2.3). One· of 

the equations which will produce a functional response like 

this (by C.S.Holling, 1969) is 

WH 
y ------

D+H 

Where, Y -> predation rate 

W -> Maximum predation rate. 

D - > a constant which determines how fast the 

functional resp0~se ~~r~e increases at low 

prey densities. Modified equation for -prey 

can be written as : 

dH/dt = H( 1 - H/K ) - WHP/(D + H ) --- ( 2. 14) 

In the above equation, it is assumed that in the 

absence of the predador, the prey population would grow 

logistically but in the presence cif the prey, growth rate is 

reduced. The reduction in the grOT,<lt·h ·rate of prey is due to 

the fact th~t the predator is now not merely a constant 

multiple of P. The factor W/ (D+H) is taken by considering 

the probable effect on a predate~ attack rat~ of the density 
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of the prey. Holling ( 1965) argued that the attack rate of 

the predador on prey as measured by the number of prey 

attacked per predator per unit of time, say Y, often 

takes the form Y = WH/(D+H). The relation shows that there 

must be a ceiling w to each predator's attack rate, which 

will not be exceeded whatever larger value the prey takes. 

Thus when H >>D, Y = W. The magnitude of the constant D 

varies directly with the prey's ability to evade attack, the 

more elusive the prey, the greater the value of D. The 

explanation for the functional response is that it takes the 

predator a certain amount of time to kill and eat each prey. 

For the growth of the predator populations, an equation 

of the Leslie-Gower form may still be taken : 

dP/dt = sP (1- P/'IH) ( 2. 15) 

Where~ s -> intrinsic growth rate of predators . 

.Y -> number of prey required to support one 

predator at equilibrium. 

Equations (2.14) and (2.15) give a c6mplete formulation 

of the Rolling-Tanner model. Applying Kolmogorov theorem to 

the system of equations in the present model, it is infered. 

that latter exhibits either a limit cycle or stable 

equilibrium. The latter possibility can be checked by 
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applying the neighbourhood stability analysis. 

The equilibrium points H* and p* can be obtained by 

putting the right hand sides of the equations (2 .14) and 

(2.15) equal to zero. From equation (2.15) we get, 

p* = 1 H (2.16) 

and from equation (2.14) 

W -1/r) H* 
1-H*/K = 0 --------- (2.17) 

H* + D 

Defining m and n a~, 

and 

m = (W7) /r 

n = D/K 

equation (2.17) takes the form, 

* 'Z * 2 H + H K (m+n-1)-nK = 0 

The solution of this equation may be written as, 

hence, 

where, 

H* = D (1-m-n± R )/2n 

p* = D (1-m-n± R ) I (2n/.,t). 

R =[(1-m-n)2 + 4 n]1/2 

------- (2.18) 

The solution with negative sign before R corresponds to 

a negativ~ value of H* and is therefore to be discarded. In 

the subsequent discussions we shall consider the solution 

with only the positive sign before R. We can rewrite the 

equations (2.14) and (2.15) as: 

dH/dt = F1 (H,P) = rH (1-H/K)-WHP/(D+H) ------- (2.19) 
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and dP/dt = F2 (H,P) = sP (1-P/~H) ------- (2.20) 

To study the behaviour of the system in the neighbour -

hood of the equilibrium point ( H*, p*) we have linearized 

the system of equations (see appendix-!!) and got the set of 

equations that describe the population dynamics in the 

neighbourhood of the equilibrium point as : 

dX (t)/dt =A X(t) ------- (2.21) 

Here X is a (2xl) matrix and A is the ( 2x2) " community 

matrix" and aij -. the element of this matrix describe the 

effect of species j upon species i near equilibrium. 

The community matrix can be written as, 

A= 

The elements of the community matrix A are : 

a11 = ( '0 F1/'"aH) * = rH* [ -1/K+ (W/r) p*j{H* +D} 2] 

a12 = ( ~ F 1 I '"ap ) * = -WH*/(H*+D) 

a21 = ( '0 F2/'bH) * = s(P*)2j.Y(H*)2 = is 

a22 = ( '"bF2/~P) * -s(P*)/"IH* = -s 

Now, the determinantal equation for the linearized system 

can be written as 

A- A I I = 0 

The eigenvalues follow the equation, 
2 . 

X -(all + a22> ~ + a11a22-a12a21 0 
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For neighbourhood stability,the real parts . of 

eigen value must be negative. 

So, ( 1) 

=> - H* [ r/k + WP* /(D+H)2 ] + s > 0 

=> - s H* 

--------- (2.22) 

- r/k + WP*/(D+H*)2] 

+ ..; sWH* I (D+H*) 2 > 0 
--------- (2.23) 

After simplification, we get, the condition for 

stability as: 

s/r > 2(m-r)/(l+m+n+R) --------- (2.24) 

If this condition is satisfied then the system 

possesses a stable equilibrium point. If this conidition is 

violated, then in accordance with the Kolmogorov theorem, 

the system will exhibit a limit cycle. 

6. A Modified For.m of Holling and Tanner Model 

In the Holling-Tanner Model, the equation for time rate 

of change for predator P was identical to the one used by 

Leslie and Gower. In the prey equation they have introducted 

an interaction teDm different from that suggested by Leslie 

and Gower. The model of Holling and Tanner was modified by 
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Rai, Kumar and Pande (1991) for a two species system. In 

this model the per capita growth rate of predator is not 

propertional to simply the population rate (P/H) but rather 

to a factor which is similar in form as predator's attack 

rate with a ceiling occuring for H --> . This establishes 

a desirable rationship between prey's loss and predator's · 

gain which does not exist in the Holling-Tanner model. The 

prdators functional response of Holling- Tanner type is 

retained in the new model. The behaviour of the rate 

equation, for predator near H=O in this model improved over 

the Lislie-Gower and Holling-Tanner models. 

The set of equations 

model can· be written as: 

for two species system in this 

dH/dt a1 H-bl H2 - c 1 PH/(d1 +H) 

F1 (H,P) ------- (2.25) 

dP/dt = - a2P + c2 PH/(d2 + H) 

F2 (H, P) ------- (2.26) 

Applying ·Kolomogorov theorem (Appendix-1) to this 

system, w·e see that the theorem is satisfied for the system 

under the conditions, 
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------ (2.27) 

and 

If the above conditions are satisfied, then the system 

always leads to solutions exhibiting either stable 

equilibrium or -limit cycles. The neighbourhood stability 

analysis around ·the equilibrium point will decide- the 

behaviour of the system. 

The equilibrium populations of the system are 

and 

H* = a2 d2 I (c2-a2) 

p* = a1 d1/c1+a2d2/c1(c2-a2)2· [al(c2-a2) 

-bl(dlc2-a2dl+a2d2)] 
-:------ (2.28) 

To study the behaviour of the system in the neighbour -

hood of the equilibrium point ( H*, p*) we have lineari-zed 

the system of equations (see appendix-II) and got the set of 

equations that describe the population dynamics in the 

neighbourhood of the equilibrium point as : 

dX (t)/dt =A X(t) ------- (2 .21) 

Here X is a (2xl) matrix and A is· the ( 2x2) " community 

matrix" and a·· lJ - the element of this matrix describe the 

effect of species j upon species i near equilibrium. 
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The community matrix can be written as, 

A= 

The elements of the community matrix "A" are: 

a11 {'bF1/'lH) * = al - 2b1H* - c 1d 1 P*/(d1 +H*)2 

a12 = (~Fl/'bP)* -dl H*/(dl+H*) 

a21 {'bF2/'lH)* = c 2ct2P*/(d2 +H*)2 

a22 = (~F2/'lP) * = -a2+c2H*/(d2 +H*) = 0 

The determinantal equation for it can be written as, 

lA -~II = o 

The eigenvalues follow the equation: 

0 

According to Routh-Horwitz criteria, (appendix-II) 

stable equilibrium point for the system exists if the 

eigenvalu~s have negative real parts. This is true only if, 

=> all < 0 

=> 2b1 [a2d2/<c2-a2)] + b1 ct1 -a1 > 0 
----------- (2.29) 
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=> a12 a21 < 0 

=> d2 > 0 

as a 21 = o 

•••• ( '2- 3.0) 

Since, inequality (2.30) satisfied for all cases, the 

choice of parameters which satisfy the inequality (2 .29) 

will lead to stable equilibrium and the coice violating. it 

will lead to stabel limit cycles (figures 2.4 & 2.6). 
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One prey-one predator system: 

Table 2.1 

Numerical input for different parameters: 

CASE-I 

CASE-II 

CASE-III 

a1 = 3.0 

b1 = 0.01 

c1 = 30 

d1 = 100 

a2 = 1.0 

c2 = 3.0 

Remaining parameters 

the same as above 

except a 1 = 18 

Same as ease-l 
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X = 85 

y = 25 

figs. 2.4 

X = 120 

y = 40 

& 2.5 

figs. 2.6 & 2.7 

X = 120 

y = 40 

figs. 2.8 & 2.9 
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CHAPTER - 3 

GENERALISATION TO THREE SPECIES: 

AN APPROACH TO FIND THE LIMIT CYCLE SOLUTION 

TO ONE PREY-TWO PREDATOR ECOSYSTEM 

In the previous chapter we have discussed about the 

limit cycle.behaviour of a two species system. We shall now 

construct a new three species system with· one prey and two 

predators. As will be seen, this model is a. generalisation 

to three species of seVe~al two species systems described 

earlier. 

Consider a prey of population size x and two pred~t~rs 

of population sizes y and z respectively. Here we have 

treated two predators y and z similar in some respects and 

both of them prey on x. We have taken the interaction of the 

prey and predators and studied their behaviour in phase 

space. Then, in addition to the prey-predator interactions, 

we have included the competition between the predators. 

The growth rate of the prey in the absence of predator is 

given by, 

where, 

dx/dt = a 1 x - b 1 x2 

b 1 = a 1 /K 
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K --> Carrying capacity or the maximum prey population 

allowed by the limited resources provided by the 

environment. 

In the presence of the predators, mortality from 

predation must be substracted from the right side of 

equation (3.1). It is the product ofthe predation rate (the 

number killed per predator per unit time) and the number of 

predators. A detail study of different models [especially 

Holling (1965)] have shown that the predation rate increases 

with prey density. This type of functional response was 

shown by Holling to be characteristics of invertebrate 

predators, while that of vertebrate predators differs 

because they can learn to search for a particular prey that 

has become more abundant. Here we are taking the former case 

as the predator is assumed to have no alternative prey and 

therefore. should be continuously searching for the prey. 

The functional response equation can be written as, 

q1 = c1 x/(d1 + x ) 

where, q 1 --> the predation rate. 

In the above expression t 1 is the maximum value that 

q 1 can reach when the predator can not kill more prey even 

if latter is available to the former,and d 1 is a constant 

determining how fast the functional response increases at 

low densities of the prey. 
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Treating the second predator z in a similar way, the 

mortality from the second predator can be written as 

q2 = c X I (d2 + X ) 

where, c, d2 are positive constants having similar meaning 

as that of c 1 and d 1 respectively. 

Thus, in the presence of two predators, the complete 

equation for the prey becomes, 

The. growth· ofthe predators, without taking the 

interaction between them, as in the Lotka-Volterra case can 

be written as, 

dy/dt = - a2y + c2xy/(d1 + x) 

dz/dt = - a3z + c3xz/(d2 + x) 

( 3 . 3) 

(3 .4) 

Where, a2 and a3 are the net growth (decay) rates for 

the predators y and z respectively. The predators dwindle to 

nothing in the absence of prey, since the reproduction is 

then impossible. This is why negative sign is taken in the 

first term in equation (3.3) & (3.4). 

Now taking the competition between two predators, the 

equations (3.3) & (3.4) have to be modified: 
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Thus, the complete dynamics of this one prey-two 

predator system is given by the following sets of equations, 

dx/dt = a1x - b1x2 - clxy/(dl + x) - cxz/(d2 + x) 

dy/dt = - a2y + -c2xy/(d1 + x) - k1yz 

dz/dt 

( 3 0 5) 

(3 0 6) 

( 3 0 7) 

Here, k 1 and k 2 are the competition coefficients arise 

because of the competition between two predators, 

and, a1 1 b1 1 c1 1 d1 1 d2 1 c 1 a21 c21 k1 1 a3 I 

c3, k2 > 0 

To study, the behaviour of one prey-two predator system 

in phase space and hence to study their variation with time: 

In a two species system given by, 

dx/dt = a 1 x- b 1x2 - c 1xy/(d1 + x) 

dy/dt -a2 y + c2xyj(d2 + x) 
( 3 0 8) 

the condition for the existence of stable equilibrium point, 

with the application of Kolmogorov theorem (appendix - I) 

and Routh-Hurwitz criteria (appendix - II) becomes, 

--- (309) 

and > 0 (3ol0) 
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Since condition (3.10) is satisfied always, the choice 

of parameters which violate the inequality of equation (3.9) 

lead to solutions with stable limit cycles. As there is no 

such· theorem like Kolmogorov theorem to check the stability 

of the system we have taken the parameters for the three 

species same as that of two species and the remaining 

perameters are chosen by trial and error method which 

satisfy the limit cycle condition. 

As is well known, it is not possible to write down the 

exact analytical solution for the type of three species 

system discussed above. But we can study the behaviour of 

the system-whether or not these systems are capable of 

possessing stable equilibrium or stable limit cycle. We are 

interested in limit cycle solutions. For this, we have taken 

recourse to approximation schemes and numerical methods. 

For numerical analysis, we have used Runge-Kutta 

approximation method. 

The main results of our model are systematised in Table-

3 .1 The specimen results of it are plotted in figures 

3 .1 to 3. 42. In drawing phase- space figures, we have" reduced 

the three dimensional phase space into 2 two - dimensional 

ones - by taking projections of the trajectory of the system 

on XY-plane and XZ-plane. We see from the figures that with 

respect to time, the sizes of all the three populations 

oscillate perpetually with amplitude and periods that soon 
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tend to a limit that is independent of their intial sizes 

and depends only on the constants of the system - thus our 

system of three species exhibit limit cycle in phase space. 

We start with one prey- one predator system and choose 

a set of parameters for which the system exhibits limit 

cycles. The values of parameters are given in Table (2.1). 

With the introduction of a second predator, it becomes a 

three species system. The number of parameters required to 

define the system is increased. 

ones which are associated with 

The new parameters are the 

the second prey specie~. 

Ke·eping the constants for the two species system the same, 

we find a set of parameters associated with the second prey 

species for which the three species system also exhibit 

limit cycle solutions. Then we found out the range of the 

parameters of the three species system within which the 

system still exhibits limit cycle solutions. This is 

achieved by changing one parameter at a time. 

we have taken different initial population 

Furthermore, 

sizes of the 

species and ensured that they lead to the same final result 

for the chosen set Qf parameters for the system.This shows 

that we have the proper limit cycle solutions . 
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One prey-Two predator system 

Table 3.1 

Numerical inputs for different parameters -

a 1 ='ZJ·O a2 = 1.0 

b1 = O·l c2 = 3.0 

c1 =be a3 = 1.0 

c = 25 c3 = 3.0 

d1 100 k1 = 0.012 

d2 = 100 k2 = 0.01 

For finding the range of parametric values, we have 

varied the numerical value of some of the parameters one at 

a time. 

Table 3.2 gives in detail i the minimum and 

maximum value of different parameters,( ii the initial 

conditions, iii ) number of corresponding figures and (iv) 

the behaviour of the three species system in phase-space. 
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Value 

of 

Parameters 

TABLE - 3.2 

Initial 

Condition 

No. of 

Corresponding 

figures 

Behaviour 

in 

Phase space 

CASE - A 

PREDATORS 

WITHOUT CONSIDERING THE INTERACTION BETWEEN 

case 1 

a1 = 3,a2 = 1 

c1 =30, c = 25 X = 40 

d1 =100,c2 = 3 y = 25 3.1 & 3.2 Limit Cycle 

d2 =100,c3 3 z = 25 

a2 = 1 = a3 

case 2 

Remaining parameters 

the same as X :::;: 40 

case 1 except y = 25 3.3 & 3.4 Limit Cycle 

a1 =4 z = 25 

case 3 

Remaining parameters 

the same as X = 40 

case 1 except y = 25 3.5 & 3.6 Limit Cycle 

a1 = 2.9 z = 25 
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case 4 

Remaining Parameters 

the same as X 70 

case 1 except y 40 3.7 & 3.8 Limit Cycle 

a1 = 4 z = 40 

case 5 

Remaining Parameters 

the same as X = 40 

case 1 except y = 30 3.9 & 3.10 Limit Cycle 

a1 = 3 z = 30 

case 6 

Remaining parameters 

the same as X = 40 

r.nRP 1 PXCept v = ?.0 3.11 & 3.12 Stable 

b1 =0.013 z = 20 Equilibrium 

case 7 

Remaining parameters 

the same as X = 40 

case 1 except y = 25 3.13 & 3.14 Limit Cycle 

b1 = 0.008 z = 25 

case 8 

Remaining Parameters 

the same as X = 40 

case 1 except y = 25 3.15 & 3.16 Limit Cycle 

c1 = so z 25 
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case 9 . . 
Remaining Parameters 

the same as X = 80 

case 1 except y = 30 3.17 & 3.18 Limit Cycle 

c1 = 18 z = 30 

case 10 

Remaining Parameters 

the same as X = 40 

case 1 except y = 25 3.19 & 3.20 Limit Cycle 

b1 = 0.01 z 25 

case 11 

Remaining Parameters 

the same as X = 70 

case 1 except y = 50 3.21 & 3.22 Limit Cycle 

c1 =20 z = 50 

case 12 

Remaining Parameters 

the same as X = 30 

case 1 except y = 20 3.23 & 3.24 Limit Cycle 

b1 = 0.012 z = 20 

case 13 

Remaining Parameters 

the same as X 45 

case 12 except y = 20 3.25 & 3.26 Limit Cycle 

c = 18 z = 20 
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case 14 

Remaining Parameters 

the same as 

case 1. except 

X = 45 

y = 20 

c = 18 & bj =0.01 z = 20 

case 15 

Remaining Parameters 

the same as 

case 1 except 

c = 37 

case 16 

X = 80 

y = 30 

z = 30 

Remaining Parameters 

the same as 

case 1 except 

c = 18 

X ::: 80 

y = 30 

z = 30 

3.27 & 3.28 

3.29 & 3.30 

3.31 & 3.32 

Limit Cycle 

Limit Cycle 

Stable 

Equilibrium 

CASE B : WITH THE INCLUSION OF COMPETITION BETWEEN 

THE PREDATORS 

case 17 

Remaining Parameters 

the same as 

case 16 except 

k 1 = o.o1, 

k2. = 0.016 

)( = 40 

y = 20 

z = 20 3.33 & 3.34 Stable 

Equilibrium 

46 



case 18 

Remaining Parameters 

the same as X = 45 

case· 1 except y = 20 3.35 & 3.36 Stable 

C=18, c2 = 3 z 20 Equilibrium 

c3 = 3.1,k1 =.01 

k2 = 0.016 

case 19 

Remaining parameters 

the same as X = 80 

case 1 except y = 30 3.37 & 3.38 Limit Cycle 

c = 18, k1 = .012 z = 30 

k2 = 0.009 

case 20 . . 
Remaining Parameters 

the same as X = 45 

case 1 except y = 20 3.39 & 3.40 Limit Cycle 

k1 = C.01, z = 20 

k2 = 0.016 

case 21 . . 
Remaining Parameters 

same as case X = 80 

case 20 except y = 30 3.41 & 3.42 Stable 

k2 0.014, z = 30 Equilibrium 

d1 = 105 
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CHAPTER - 4 

CONCLUSION 

We have studied a three species system with one prey & 

two predactors. This is done by extending a two species 

system to a three species system with limit cycle solution 

in mind. we first started with a one prey-one predator 

system. Then by applying Kolmogorov's theorem and 

linearized stability analysis around the equilibrium point, 

the conditions for the system to exhibit limit cycle 

solutions were found. 

A second predator species was introduced into the 

system, which then led to · a set of three coupled non-linear 

differential equations describing the new situation. The 

equations so obtained can not be solved analytically. For 

numerical work, we first chose the parametric values of the 

two species system which leads to limit cycle solutions.The 

rest of the parameters of the three species system were then 

chosen by trial and errorin a way that we finally had 

thelimit cycle solutions once more . We also studied our 

solution under variation of parameters one at a time. 

The calculations were of course repeated with different 

initial value for the populations and it was seen that the 
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results remain unchanged asymptotically.The same pattern was 

also seen in the individual amplitude versus time plots of 

different populations.The limit cycle nature of the 

solutions was therefore established. 

Though our calculations were primarily aimed at studing 

the system without mutual competition between the two 

predators,some positive results were also obtained and 

reported here for a few cases when small but somewhat 

similar interaction terms representing the above competition 

were included. 
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APPENDIX-I 

THE KOLMOGOROV THEOREM: 

Kolmogorov has given the criteria for stable 

equilibrium point or a limit cycle behaviour which are 

applicabie essentially to all two species prey-predator 

models. This is due to the fact that, the form in which 

kolmogorov wrote the equations for the one prey-one predator 

system is quite general. The general equation for two 

species prey -predator can be written as: 

This 

dH/dt = H F (H,P) 

dp/dt = P G (H,P) 

theorem says that predator-prey - .c 
UL the 

above form have either a stable equilibrium point or a 

stable limit cycle, provided that F and Gi are continuous 

functions of H and P, with continuous first derivatives 

throughout the domain H>o, P>o and following conditions are 

satisfied:-

(i) F/ P < 0 

( ii) H F/ H) + P( F/ P) < 0 

(iii) G/ P < 0 

(iv) H ( G/ H) + P ( G/ P) > 0 

(v) F (0,0) > 0 
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It is also required that there exist quantities A, B, C 

such that, 

(vi) F (O,A) 

(vii) F(B, 0) 

( ix) H ( C, 0) 

( ix) B > C. 

= 0 with A > 0 

= 0 with B > 0 

= 0 with C > 0 

The proof of the theorem comes from the poincare 

Bendixson theorem· (Minorsky, 1962). In biological terms, 

Kolmogorov·· s conditions are: 

(i) for any given population size, the per capita rate of 

increase of the prey species is a decreasing function 

of the number of predators. 

(ii) the rate of increase of the iJLt:::y la ct dec:t.ect::;iug 

function of population size. 

(iii)the rate of increase of predators decreases with their 

population size. 

(iv) the rate of increase of predator is an increasing 

function of population size. 

· (v) when both populations are small the prey have a 

positive rate of increase. 

(vi) there can be a predator population· size sufficiently 

/ l·arge to stop further increase of prey species, even 

when the prey are rare. 
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(vii) 

(viii) 

(ix) 

there is a critical prey population size B beyond 

which they can not increase even in the absence of 

predators a resource or other self limitation) . 

there is a critical prey size c that stops further 

increase in predators, even if they be rare. 

B>C, otherwise the system will collapse. 

This theorem may be applied to a system to show that it 

possesses either a stable limit cycle or a stable 

equilibrium point. A conventional neighbourhood analysis 

reveals whether the equilibrium point is stable or not, here 

we consider the linearized version of the model in the 

neighbourhood of the equilibrium point and use the so called 

Routh-Hurwitz criteria. 
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APPENDIX-II 

THE LINEARIZED STABILITY ANALYSIS: 

The multispecies population dynamics can be written by a 

set of m equations as: 

dN i ( t ) I d t = F i [ N 1 ( t ) , N 2 ( t ) , . . . . . Nm ( t ) ] - - - - - - ( 1 ) 

i = 1 -> m 

here the growth rate of ith species at time t is given by 

some non-linear function- Fi of all relevent interact-ing 

population. The population size at e;:quilibrium point, · Ni, 

are obtained from m algebric equations obtained by putting 

all growth rates zero. 

( * * Fi N1 I N2 ....... . Nm * ) = 0 - - - - - - - ( 2 ) 

expanding about this equilibrium, for each population we 

write, 

Ni (t) = Ni * + Xi (t) -------- (3) 

Where, Xi the measures the initially small perturbation to 

the ith population. Expanding equation (1) by Taylor series 

expansion around this equilibrium point and neglecting all 

terms which are of second or higher order in x, a linearized 

approximation is obtained 

dxi(t)/dt = 

99 
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The set of equations (4), describe the population dynamics 

in the neighbourhood of the equilibrium point. In matrix 

notation, we can rewrite equation (4) as: 

dX(t)/dt = AX (t) ( 5) 

Here X (t) is (mx1) coloumn matrix Xi and A is (m x m) column 

matrix Xi and A is (m x m) "community Matrix" whose elements 

aij describe the effect of species J on species i near 

equilibrium. 

The elements a·. 1] depend upon the details of the 

original equations (1) and on value of equilibrium 

population according to recipe 

a·. 1] = ----------- (6) 

The partial derivatives are evaluo.t.cd. o.t. -=q-u.ilibriu.rt1 

values of all populations. 

For the set of linear equations (5) the solutions may 

be written, 

c·. 1] 

"" Xi (t} = ~ Cij 
t=1 

are constant which 

exp ( ~ t t ) - - - - - - - - - - ( 7 ) 

depend upon initial values of 

perturbations to the populations and the time dependence is 

contained. solely in m exponential factors. ·The m constants 

( j = 1, 2, ... m) which characterize the temporal behaviour 

of the system are eigen values of matrix A. 
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Substituting ( 7) into ( 5) we get, 
Nl 

~ x·. ( z) = L a·· Xj (t) ---------- ( 8) lJ • 1 lJ 

~ 
t~ 

or, (A - I) X ( t) = 0 -------- ( 9) 

Here I is a (m xm) unit matrix. This set of equations 

possesses a non-trivial solution if and only if the 

determinant vanishes: 

det (A - A I) = 0 (10) 

This is a mth order polynamial equation in of matrix 

A. They may- in general be complex numbers,"-=! +~(;in any of 

terms of equation the real part s produces exponential 

growth or decay, and imaginary part f produces sinusoidal 

oscillatons. It is clear that perturbation to the 

equilibrium populations will die away in time if any only 

if, all eigen values have negative real parts, If ~ny 

of eigen values has a positive real part, that exponential 

factor will grow ever larger as time goes on and constantly 

the equilibrium is unstable. The special case of neutral 

equilibrium is obtained if one or more eigenvalues are 

purely imaginary numbers and rest have negative real parts. 
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Routh-Horwitz Stability Criteria: 

The equation for polynomial of is , 

+ ..... t a,.... = 0 

The necessary and sufficient condition for all roots of 

above polynamial to be negative is that the coefficients .al, 

a2 , ...•. am must fulfill Roth-Horwitz stability conditions. 

The conditions form = 2,3,4 are 

m = 2 al > 0, a2 > 0 

m = 3 al > 0, a3 >0, ala2 > 0 

m = 4 al >0, a3 >0, a4 > > 0 

al a2 a3 > a32 + al2 a4 
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