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CHAPTER-1

INTRODUCTION

A study. of the dynamics of interacting species is of
much interest in theoretical ecology. Mathematical models
suggested to describe the interaction of two or more species
populations consist of sets of coupled differential
equations. The equations specify the growth rate of each
species 'as a function of the sizes of the wvarious
interacting populations. In anal?zing them, the first
objective is tojudge their stability. This stabiiity
condition dependé on the nature of the differential
equations describing the model, i.e. they are linear or non-
linear. It also depends on whether the equations are assumed
to apply over all conceivable combination of population
sizes -(global stability) or only in the neighbourhood of an
eqﬁilibrium point at which all growth rates are
simultaneously zero (local stability) .

Stability can either be of equilibrium type or the
periodic solution type. If the equations describinglfhe
system are linear, we get only equilibrium type stability
and the latter éan be varified by means of Routh-Hurwitz

criteria. On the other hand if the differential equations



are non-linear, we get both types of stability. Since the
equations of population dynamics are non-linear we have to
explore both the possibilities. The analysis for stable
equilibrium can in most cases still be done by treating
these eqﬁations as approximately linear in a sufficiently
small neighbourhood of the equilibrium point and then using
the Routh-Hurwitz criteria to judge their local stability in
that neighbourhood. A non-linear model that is unstable in
the neighbourhood of its equilibrium point may be stable in
the wider sense that it e#hibits a stable limit cycle.

We are basically interested in the 1limit cycle
solutions.The existence of a limit cycle 1is an importaﬁt
property of a large number of non-linear systems. Limit
cycles cofrospuud to closed curves in the phase space of the
dynamical variables of the system and are independent of the
initial conditions. They imply that the system has a stable
pattern of- behaviour and yet it does not display numerical
constancy-of any of the state variables. The reason why a
dynamical stable system may not display numerical éonétancy
is that the system is continuously perturbed from within.

Many scientists have tried to find out periodic type
of solutions in two species systems. Kolmogorov (1936) has
given a theorem which tells about the existence of either a
stable equilibrium point or a stable limit cycle. As a

system become more complex, it becomes more difficult to



study its stability behaviour. For three species systems,
asymptotic stability and global asymptotic stability are
two of the criteria most widely used. But neither of these
criteria explain the concept of persistence in a
satisfactory manner as they exclude any discussion of an
initial-condition independent periodic behaviour in the long
run, ie, any discussion of a 1limit cycle solution. Koch
(1974) has studied the three species model containing one-
prey and two prédator species taking into account the
predation of both the predators on a single prey. He has
incorporated self—interactions for predators though
competition between them is not included. Surprisingly he
found that even though his system does not exhibit stable
equilibrium condition, the computer caiculations give Llimit
cycle solutions for a certain range of interaction
paraméters. Thus the possibility of permanent co-existence
df three species system can not be ruled out:

In our work, we begin with the study of some well known
models for two species system which exhibit 1limit ‘cycle
behaviuor. It is a well known fact that there is no such
theorem like that of kolmogorov for three species which can
tell us about the limit cycle solutions. To study the limit
cycle behaviour of three species system, we have made

generalization of the parameters from certain two species



to three species system in such a way that our model
exhibits limit cycle solutions, independent of the initial
conditions. Basically we consider a one prey-two predator
system with the effect of prey on both the predators, and
study the 1limit cycle behaviour of the system. Further,
incorporating the mutual interaction between the predators
we again study the limit cycle behaviour of the modified
model. Fortunately both the cases exhibit limit cycle
behavicur. The usefulness and relevance of our model stem
from the fact that it exhibits limit c¢ycle solution for a
considerably wide range of the parameters.

The numerical analysis of the modél has been performed

on HP-9836 computer using Runge-Kutta approximation method.



CHAPTER-2
REVIEW OF SOME TWO-SPECIES ECOSYSTEM MODELS

In this chapter, we will discuss the mathematical
models of populatiop growth "and the prey-predator
interactions.

In reality,the ecosystems are very complex. A fruitfﬁl
way to proceed, 1is to consider simple and ideal ecosystems
and build a quantitative basis for them. The realistic
case can then be'easily tackled. The most idealised system
is one with a single species in an unlimited environment.

The ‘population of organisms fluctuate in size. Only.
thing that can be said with certainty is, their sizes_wiil

never remain coﬁStant.
1. Malthusian Model:

For the development of a simple mathematical model
following assumptions are made:
(1) The organisms are immortal and reproduce at a rate
which is the same for every individual, that does not
change with time.

V(ii) The individuals have no effect on one another.



Consider a simple kind of ecosystem containing only
one species. Let N(t) be the size of the population at time
't and r be the rate of increase of each individual (i.e, the
per | capita growth rate). The simplest differential

equation describing growth can in that case be written as,
dN(t) /dt = rN(t) _ (2.1)
which on solving gives,

N(t) = N(0) exp(rt) (2.2)

where, N(0) is the population size at time t=0

This 1is well known malthusian model for population
growth. This model holds-good for a population size so small

that there is no interference among its members.

2. Pearl-verhulst logistic model

The \environment, in reality, is not an unlimited one.
Beacause of the growth of population the resources available
to it becomé limited with the passage of time. Thus a stage
is reached when the demands of the existing population on
limited resources restrict further growth and the population
is then at its "saturation level". The actual growth rate

in the above expressidn must therefore also depend on the



proporation of the maximum attainable population size that
is still unrealized. If the maximum attainable size 1is K,
then the unrealized proporation can be written as (K-N) /K,

and the growth rate will became,

dN/dt = rN(1-N/K)

or, dN/d4dt = N (r-sN) (2.3)
where, s = r/k and r,s > 0,

"The expression (2.3) is well known pearl- wverhulst logistic
equation.

Solving equation (2.3) we get,

N(t) e | (2.4)

here, r/s = K, is the carrying capacity, which decides the
saturation level of the population growth.
The constant exp(rt0) is related to the initial

population size by,

exp(rt0) = (r/s) - N (0)

From the above expression one can infer that the
population rises initially as in the previous case, but then
the growth rate begins to slow down and then turns towards

its asymptotic value which is (r/s). The equality K = (r/s)



is the maximum 1limit that the population can reach and is

therefore called the "carrying capacity" of the given

environment.
3. The Lotka-volterra Model

Consider a situation when there are two interacting
populations in the given environment say, a prey and a

predator. Two general assumptions taken in such a prey-

predtator model are: (i) The two populations inhabit the

same area, so densities are directly propertional to
- numbers.

(ii) There is no time lag in the responses of either

population to changes due to the other.

The mathematical model for the interaction between a
pair of species- a prey and a predator, was given
independently by Lotka and Volterra.

If H is the population size of prey at any time t/_in‘
the absence of the predator, its growth equation in the

simplest form is given by
dH/dt = a1 H, a; > 0.

If P is the population of predator at any time t, its
growth (decay) equation in the absence of prey can be

written as,



dp/dt = - axp, ap > 0.

If the prey and the predator interact with each other
then the interaction term is in general, a complicated
function of H and P. But, here we considér the fplldwing
equations for a prey—predator system in the deterministic

approach to the problem:

)]

dH/dt H (a; - by P)

dp/dt P (- az + b2 H) (2.5)

where, aj;, ap, by, bp > 0

Here, a1 and ap; are the average rate of growth and
decay per individual in the absence of other species aﬁd'bl
and by are the interaction parameters.

Unfortunately, equation (2.5) can not be solved
analytically. We have to take suitable approximation schemes
and follow numerical methods. In view of their non-linear
nature, it is unlikely that the full information content of
these equations will be uncovered by such methods. It may be
noted herg that equation (2.3) 1is also non-linear, but. its
simple form enables us to solve it exactly by direct
integration. That is no more possible when we comé' to
equation (2.5). However, an exact result which is of crucial
interest in the present context, can be established (pielou,

1977 ; Simmons 1981) .



We can rewrite equation (2.5) as:

or, ap dH - by dH + a; dP - by dP = 0
P

ool

Integrating, we get.

a log H -'by H + aj log P - by P = 1log K ----- (2.6)
a; log P - by P = - ay log H + bp H + log K
or, pdie ~hP = KH -3;e bH  _-_____ (2.7)

where, K is a constant given by,

K = HO afl Pg ag__ exp (~b2Ho- blPO) -------- (2.8)

in terms of Hg and Py, the initial values of H and p. Thus
the system (2.5) possesses a conserved quality given by the
left hand side of equation (2.6). The equation represents a
family of closed curves in which each member of the family
is characterised by a particular value of the constant K.
One can not solve equation (2.7) for either H or P
individua;ly but we can determine the curves on which H and

P will move. To do this, we equate the left hand sides of

10



equation (2.3)
to new variables Z and W, and then plot the graphs Cq and C;
of the functions.

2z = Pate~bP and W = K H 31 ehf

as shown in figure - 2.1

For Z = W, we are confined in the third quadrant to the
line L. To the maximum value of Z given by the point A and
C1, there corresponds one point M on L and the corresponding
point A’ and A" on Cy; leading to two values of H which
determine the bounds between Which it may vary. Similarly
the minimum value of W given by B on Cp leads to N on L and
hence to B’ and B" as Cj, and these points determine the
bounds on P. In this way we find the points P; P; and Qi,
Q> on the desired curves C3. Additional points are easily
found by starting on L-at a point R anywhere between M and N
and projecting on the one hand on to C; and over to Cz. It
is clear that changing the value of K raises or lowers the
points A gnd B, and this expands or contracts the curve Cj.
Accordingly, when K is giveﬁ various values, we obtain a
family of ovals about the point S, which is all there isvof
C3y when the minimum value of W equals the maximum value of
Z. Now, we will see how the corresponding point (H,P) on Cj
moves around the curve as t increases. We can find out the

equilibrium point by putting the right hand sides of

11



Fig.
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equation (2.5) equals to zero i.e.,

i
(@]

al H - bl PH

-a5 P + by PH

1
o

Solving these equations, we get,

H*= as \b2
—————————— (2.9)
P*= al \bl
Hence, the co-ordinates of S will be
H = a2/b2 , P=a1/b1 —————————— (2.10)
When, H < aj/by , dP/dt is negative, so the point on Cj
moves down as it traverses the arc Qp Py Q7. Similarly,.it
moves up along the arc Q7 P Q3. Hence, as t increases,

points on C3 move in an anticlockwise direction.

This shows that both prey and predator populations
under-go prolonged oscillatiqns with constant amplitudes and
these amplitudes would be determined by the initial

population sizes, Hp and Pg. This behaviour is generally

referred to as one of neutral stability.
4. The Leslie-Gower Model:

An alternative fomulation of the prey¥predator equations

13



was suggested by Leslie and Gower (1960) (May 1972; pielou
1977) as follows:

dH/dt = H(a; --cq P)

dp/dt = P(az - ¢y P/H)Y = ------- (2.11)

where a;, ap, c1, €y > 0.

To study the behaviour of the system, we use the
isocline method. The H—isocline and P-isocline are the
curves in P-H phase space on which the time rate of chahge
of prey and pedator respectively are zero. Thus on H-
isocline dH/dt = 0 and an P- isocline dP/dt = 0. From
equation (2.11), we can write,

H - isocline:
dH/dt = 0 = H (aj-cy P)
or, p* =ai/e; = memeee---- (2.12)
P - isocline:
dpP/dt =0 =p(aj; - c5 P/H)

or, H* cyP*/ay

aj cp/apy ¢; fmmemmm——- (2.13)

Thus both the isoclines are st;aight lines which
intersect at point (P* , H*).

At point (p* ,H*) both dH/dt = 0 and dP/dt = 0. This
means that at this point the populations of prey and

predator do not vary with time, so this point is the

14



equilibrium point.
From equation (2.11), if P>aj/cq,
dH/dt= H (a;-c1P)
< H (al—cllal/cl)
< 0
and P < aj/cy
dH/dt > H(ay - c1 ai/cq)

> 0.

Again if H > Cy P/ap,

dp/dt = (ap H - Cy» P/H)
> (ap cyP/as- ¢y P) P/H |
> 0 |
and H < cy P/ay,
dp/dt = (ap H - ¢y P) P/H

A

(ap cpy P/ap-cyP) P/H
< 0

In the firgure(2.2) H-isocline and P-isocline are
‘plotted,which are straight lines P=aj /cq and H= aj; cy/as c3
respectively. We have given above the inequality conditions
for all the four regions into which the region of positive H.
and positive P can be divided.

Suppose initially our system is at a point in region I.
In this region H > 0 & P > 0 .It follows that H and P

increases with time.Arrows show the direction of the

15



H<0, P>0

Qy/¢y

FIG. 2.2 PHASE SPACE DIAGRAM
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movement along the trajectory. The trajectory will move
towards the left from the point A and will meet the P-
isocline. At this peoint dP/dt =o, and the tangent to the
trajéctory will be normal .to the P-axis. In region-I11
both H and P increase with time. In this region, the
trajectory will move to the right and will cross the H-
isocline. At this point dH/dt =0, and the tangent to the
trajectory will be normal to the H-axis. Similarly, we can
draw the trajectory for regions III and IV. In the phase
space the trajectory is a spiral which convergeé- on the
equilibrium point which is the intersection of H-isocline
and P-isocline. Hence, each species population undergoes
damped barmonic osgcillations with time towards its
equilibrium level.

This effect considers the 1likely effect on the
predator’s per capita growth rate of the relative sizes of
the interacting populations. Thus the larger the ratio P/H,
the smaller the number of prey per prédator and,
consequently the less rapid the growth of the predator
population.

Leslie’s model 1is different from volterra’s in the
following ways:

(a) For volterra, whether predator increases‘or decreases

"in number depends only on the density of prey whereas

17



fof Leslie it depends on the number of prey per
predator.

(b) Volterra’s model relates the rate of increase of
predators to the rate at which the prey are being
eaten where as 1in Leslie’s model there 1is no
relationship between the rate at which predator eats

and the rate at which it reproduces.
5. The Holling - Tanner Model:

Neither of the two preceeding models just discussed
exhibit stable limit cycle. Kolmogorov has given the
criteria for stable equilibrium point or stable limit cyéle
which are applicable to all two-svbecies prey-predator
models.

Here we will consider the Holling-Tanner model which is
the representative of a great many non-linear models that
produce stable limit cycles.

This model is basically slightly more elaborate than
that of Leslie and Gower. The growth rate of the prey in the

absence of predator is given by the logistic equation.
dH/dt = rH (1-H/K) ----------- (2.13)

where, r-> intrinsic growth rate of prey and K -> maximum

number of prey allowed by the resources of the system.

18



When the predators are present in the system, the
mortality from predators must be taken into account. This
mortality is the product of predation rate (number of prey
killed per predator per unit time) and the predator number.
Many studies have shown that the predation rate increases
with prey density in the manner shown in fig.(2.3). One- of
the equations which will produce a functional response like

this (by C.S.Holling, 1969) is

Where, Y -> predation rate
W -> Makimum predation rate.
D -> a constant which determines how fast the
functional regponee curve increacsec at low
prey densities. Modified equation for prey

can be written as
dH/dt = H( 1 - H/K ) - WHP/(D + H) --- (2.14)

In the above equation, it is assumed that in the
absence of the predador, the prey population would grow
logistically but in the presence of the prey, growth rate is
reduced. The reduction in the growth rate of prey is due to
the fact that the predator is now not merely a constant
multiple of P. The factor W/(D+H) is taken by considering

the probable effect on a predator attack rate of the density

19



Predation rate,Y —

Density of prey, H ——s

FIG.2.3 Prey killed per predator per timeY,
as a function ot prey.dens':ty,H. The
maximum predation rate is W
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of the prey. Holling ( 1965) argued that the attack rate of
the predador on prey as measured by the number of prey
attacked per predator -per unit of time, say Y, often
takes the form Y = WH/(D+H). The relation shows that there
must be a ceiling W to each predator’s attack rate, which
will not be exceeded whatever larger value the prey takes.
Thus when H >>D, Y = W. The magnitudé of the constant D
varies directly with the prey’s ability to evade attack, the
more elusive the ﬁrey, the greater the wvalue of D. | The
explanation for the functional response is that it takes the

predator a certain amount of time to kill and eat each prey.

For the growth of the predator populations, an equation

of the Leslie-Gower form may still be taken
dp/dt = sP (1- P/4H) (2.15)

Where, s -> ‘intrinsic growth rate of predators.
4'>, number of prey required to support one

predator at equilibrium.

Equations (2.14) and (2.15) give a cémplete formulation
of the Holling-Tanner model. Applying Kolmogorov theorem to
the system of equations in the present model, it is infered
that latter exhibits either a 1limit cycle or stable

equilibrium. The latter pcssibility can be checked by

21°
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applying the neighbourhood stability analysis.

The equilibrium points H* and P* can be obtained by
putting the right hand sides of the equations (2.14) and
(2.15) equal to zero. From equation (2.15) we get,

*

P* = 7H R [ (2.16)

and from equation (2.14)

( WYr) H*
1-H*/K = —emmmmmemem - = 0 --------- (2.17)
H* + D '
Defining m and n as,
m = (W‘i)/r
and n = D/K

equation (2.17) takes the form,
2
H* + H* K (m+n-1) -nkK2 = 0
The solution of this equation may be written as,

H* = D (1-m-nt R )/2n

‘hence, p* “D (1-m-n+ R )/ (2n/¥) .

Qhere, R =[(1-m-n)2 + 4 n]l/2

The solution with negative sign before R corresponds to
a negative value of H* and is therefore to be discarded. In
the subsequent discussions we shall consider the solution

with only the positive sign before R. We can rewrite the

equations (2.14) and (2.15) as:

dH/dt = F; (H,P) = rH (1-H/K)-WHP/(D+H) ------- (2.19)

22



and dp/dt = Fy (H,P) = sP (1-P/4H) = ------- (2.20)

To study the behaviour of the system in the neighbour -
hood of the equilibrium point ( H*, P*) we have linearized
the system of equations (see appendix-II) and got the set of

equations that describe the population dynamics in the

neighbourhood of the equilibrium point as

dax (t)/d&t =Aax()  =------ (2.21)
Here X is a (2x1) matrix and A is the (2x2) " community
matrix" and ajj - the element of this matrix describe the

effect of species j upon species i near equilibrium.

The community matrix can be written as,

ai; 412
A=

a1 a2

The‘elements of the community matrix A are

ajq; = (Fy/RH)* = rH* [-1/K+(W/r) P*/{H* +D}2] - .
ajp = (®F/?)* = -WH*/(H*+D) |

azy = {(MFy/PM)* = s(P*)2/9(H¥)Z2 = ¥s |

azs = (9Fy/?)* = -s(P*)/YH* = -s

Now, the determinantal equation for the linearized system
can be written as

| A- A1 | =0
Tﬁe eigenvalues follow the equation,

2
A -(ag1 + azp) 2 + ajjazp-ajpap; = O

23



For neighbourhood stability,the real parts. . of

eigen value must be negative.

So, (1) -(agy1 + azy) > 0
=> - H* [ r/k + WP* /(D+H)2 ] + s > 0
————————— (2.22)
(2) az; azp - aijz a1 >0
=> - 8 H* [ - r/k + WP*/(D+H*) 2]
‘ + ¥ SWH* / (D+H*)2 > 0
————————— (2.23)

After simplification, we get, the condition for
stability as:

s/r > 2{(m-r)/(1+m+n+R)  --------- (2.24)

If this condition is satisfied then the . system
possesses a stable equilibrium point. If this conidition is
violated, then in accordance with the Kolmogorov theoren,

the system will exhibit a limit cycle.
6. A Modified Form of Holling and Tanner Model

In the Holling-Tanner Model, the equation for time rate
of change for predator P was identical to thg one used by
Leslie and Gower. In the prey equation they have introducted
an interaction term different from that suggested by Leslie

and Gower. The model of Holling and Tanner was modified by

24



Rai, Kumar and Pande (1991) for a two species system. In
this model the per capita‘growth rate of predator is not
propertional to simply the population rate (P/H) but rather
to a factor which is similar in form as predator’s attack
rate with a ceiling occuring for H --> . This establishes
a desirable rationship between prey’s loss and predator’s -
gain which does not exist in the Holling-Tanner model. The
prdators functionél response of Holling- Tanner type 1is
retained in the new model. The behaviour of the rate
equation, for predator near H=0 in this model improved over
the Lislie-Gower and Holling-Tanner models.

The set of equations for two species system in this

model can be written as:

dH/dt = a; H-by H2 - ¢, PH/(dy + H)
= F; (H,P) ------- (2.25)
dP/dt = - ajP + c5 PH/(dy; + H)

= Fy, (H,P)  —------ (2.26)
Where, aj;, by, cj, di, ap, cy & dy are positive constants.

Applying ‘Kolomogorov theorem (Appendix-1) to this
system, we see that the theorem is satisfied for the system

under the conditions,

25



c2>a2

and aj/by > dpas/(cp-as)

If the above conditions are satisfied, then the system
alwéys leads to solutions exhibiting either stable
equilibrium or -limit cycles. The neighbourhood stability
analysis around ‘the equilibrium point will decide. the

behaviour of the system.

The eguilibrium populations of the system are

*

H

ap dz / (cp-ap)

and p*

a; di/cqp+azdy/cy(cy-as)2 [ag(cr-ap)
-bq (d1cp-asdq+asds) ]
“——m - (2.28)

To study the behaviour of the system in the neighbour -
hcod of the equilibrium point ( H*, P*) we have linearized
the system of equations (see appendix-II) and got the set of
equations that describe the population dynamics in the

neighbourhood of the equilibrium point as

dX (t)/de = A X(t) m-=e-e- (2.21)
Here X 1is a (2x1) matrix and A is the (2x2) " community
matrix" and ajj - the element of this matrix describe the

effect of species j upon species i near equilibrium.
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The community matrix can be written as,

a11 @12

azp azp

The elements of the community matrix "A" are:

aj; = (®F1/3H)* = a; - 2bjH* - c1dP*/(d+H*)2
ajy = (®F1/PP)* = -dp H¥/(di+H")

ay] = (BF,/AM)* = cpdyP*/ (dy+H*)2

azy = (BF,/AP)* = -as+cyHY/(dy+H®) = 0O

The determinantal equation for it can be written as,
A - A1} =0

The eigenvalues follow the equation:

2

A - (ag; + ago) A+ ayy azy - ajp az; = 0

According to Routh-Horwitz criteria, (appendix-II)
stable equilibrium point for the system exists if the

eigenvalues have negative real parts. This is true only if,

—(all +a22) > 0
=> ajq < 0 , @5 Ay =0

=> 2b1 [a2d2/(c2—a2)] + bl dl—al > 0

27



And (agjappy - a1z azi) >0
=> ajp azy < 0 ; @S Qg =
=> d2 > 0 ‘."(,2_30)
satisfied for all cases, the

inequality (2.30)
(2.29)

) Since,
choice of parameters which satisfy the inequality

will lead to stable equilibrium and the coice violating. it

(figures 2.4 & 2.6).

will lead to stabel limit cycles
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One prey-one predator system:

Table 2.1

Numerical input for different parameters:

CASE-1I
ay = 3.0 x = B85
by = 0.01 y =25
cy = 30 . figs. 2.4 & 2.5
dy = 100
a, = 1.0
‘ cp = 3.0
CASE~-TI1
Remaining parameters
the same as above
except a; = 18 x = 120
y = 40
figs. 2.6 & 2.7
CASE-I11I

Same as case-1I . X 120

y = 40

figs. 2.8 & 2.9
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CHAPTER - 3

GENERALISATION TO THREE SPECIES:
AN APPROACH TO FIND THE LIMIT CYCLE SOLUTION

TO ONE PREY-TWO PREDATOR ECOSYSTEM

In the previous chapter we have discussed about the
limit cycle .behaviour of a two species system. We shall now
construct a new three species system with-one prey and two
predators. As will be seen, this model is a. generalisation
to three species of several two species systems described
earlier.

Consider a prey of population size x and two predators
of population siieé y and z respectively. Here we have
treated two predators y and z similar in some respects and
both of them prey on x. We have taken the interaction of the
prey and predators and studied their behaviour in phase
space. Then, in addition to the prey-predator interactions,
‘we have includéd the competition between the predators.

The growth rate of the prey 1in the absence of predator is
given by,.
dx/dt = a; x - by x2

where, b; = a;/K
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K --> Carrying capacity or the maximum prey population
allowed by the 1limited resources provided by the
environment .

In the presence of the predators, mortality from
predation must be substracted from the right side of
equation (3.1). It is the product ofthe predation rate (the
number killed per predator per unit time) and the number of
predators. A detail study of different models [especially
Holling (1965)1 have shown that the predation rate increases
with prey density. This type of functional response was
shown by Holling to be characteristics of invertebrate
predators, while that of vertebrate predators differs
because they can learn to search for a particular prey that
has become more abundant. Here we are taking the former case
as the predator.is assumed to have no alternative prey and
therefore should be continuously searching for the prey.

The functional response equation can be written as,

gy = ¢c1 x/(d1 + x )

where, g; --> the predation rate. X
In the above expression ¢ is the maximum value that

g1 can reach when the predator can not kill more prey even
if latter is available to the former,and d; is a constant

determining how fast the functional response increases at

low densities of the prey.
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Treating the second predator z in a similar way, the
mortality'from the second predator can be written as
g =cx / (dy + x )
where, ¢, dp are positive constants having similar meaning
as that of él and dj respectively.
Thus,  in the presgsence of two predators, the complete

equation for the prey becomes,

dx/dt =.a;x - byjx2 - cyxy/(d; + x) - exz/(dy + x) -- (3.2)

The . growth- ofthe predators, without taking the
interaction between them, as in the Lotka-Volterra case can

be written as,

dy/dt

- ayy + coxy/(d; + x) --- (3.3)

dz/dt - aéz + c3xz/(dy + x) .o--- (3.4)

‘Where, aj; and a3 are the net growth (decay) rates for
the predators y and z respectively. The predators dwindle to
nothing in the absence of prey, since the feproduction is
then impossible. This is why negative sign is taken in the
first term in equation (3.3) & (3.4).

Now taking the competition between two predators, the

equations (3.3) & (3.4) have to be modified:
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Thus, the complete dynamics of this one prey-two

predator system is given by the following sets of equations,

dx/dt = aix - byx2 - cyxy/(dy + x) - cxz/(d5 + x) --- (3.5)
dy/dt = - ajy +-coxy/(dy + x) - kiyy=z --~- (3.6)
dz/dt = -a3z + c3xz/(dy; + x) - kpyz --- (3.7)

Here, ki and k, are the competition coefficients arise
because of the competition between two predators,
and, a3 , by , ¢35, 41, d3 , ¢, az, ¢z, k; , az ,

C3,_k2 > 0

To study, the behaviour of one prey-two predator system
in phase space and hence to study their variation with time:

In a two species system given by,

dx/dt = aj x - byx2 - cyxy/(d] + x)

dy/dt -ay y + coxy/(dy + x)

the condition for the existence of stable equilibrium point,
with the application of Kolmogorov theorem (appendix - I)
and Routh-Hurwitz criteria (appendix - II) becomes,

2bj [ay ds / (cp - az)] +bg d1 - a3 > 0 --- (3.9)

and ds >0 --- (3.10)



Since condition (3.10) is satisfied always, the choice
of parameters which violate the inequality of equation (3.9)
lead to solutions with stable limit cycles. As there is no
such theorem like Kolmogorov theorem to'check the stability
of the system ﬁe have taken the parameters for the three
species same as that of two species and the remaining
perameters are chosen by trial and error method which
satisfy the limit cycle condition. |
As is well known, it is not possible to write down the
exact analytical solution for the type of three species
system discussed above. But we can study the behaviour of
the system-whether or not these systems are capable of
possessing stable equilibrium or stable limit cycle. We are
interested in limit cycle solutions. For this, we have taken
recourse to approximation schemes and numerical methods.
For numerical analysis, we have used Runge-Kutta
approximation method.
The main results of our model are systematised in Table-
3.1 The specimen results cf it are plotted in figures
3.1 to 3.42.In drawing phase-space figures, we have reduced
the three dimensional phase space into 2 two - dimensional
ones - by taking p;ojections of the trajectory of the system
on XY-plane and XZ-plane. We see from the figures that with
respect to time, the sizes of all the three populations

oscillate perpetually with amplitude and periods that soon
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tend to a limit that is independent of their intial sizes
and depends only on the constants of the system - thus our
system of three species exhibit limit cycle in phase space.
We étart with one prey- one predator system_ahd choose
a set of parameters for which the system exhibits limit
cycles. The values of parameters are given in Table (2.1).
With the introduction of a second predator, it becomes a
three species system. The number of parameters required to
define the system is increased. The new parameters are the
ones which are associated with the second prey species.
Keeping the constants for the two species system the same,
we find a set of parameters associated with the second prey
species for which the three species system also exhibit
limit cycle solutions. Then we found out the range of fhe
parameters of the three species system within which the
system still exhibits limit cycle solutions. This 1is
achieved by changing one paraméter at a time. Furthermore,
we have taken different initial population sizes of the
species and ensured that they lead to the same final resultb
for the chosen set of parameters for the system.This shows

that we have the proper limit cycle solutions
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One prey—Two predator system :

Table 3.1

Numerical inputs for different parameters -

a; =%0 ap, = 1.0
by =041 cp, = 3.0
cq =50 . ) ax = 1.0
c = 25 , cz = 3.0
dy = 100 R ky = 0.012
do, = 100 ' ko = 0.01
For finding the range of parametric values, we have

varied the numerical value of some of the parameters one at
a time.

Table 3.2 gives 1in detail ( 1 ) the minimum and
maximum value of different parameters,( i1 ) the initial
vconditions, { 111 ) number of corresponding figures and (iv)

the behaviour of the three species system in phase-space.
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TABLE - 3.2

Value Initial No. of Behaviour
of Condition Corresponding in
Parameters figures Phase space

CASE - A : WITHOUT CONSIDERING THE INTERACTION BETWEEN

PREDATORS

case 1 °

a; = 3,ax =1

cq =30, c = 25 x = 40

dy =100,cy = 3 y = 25 3.1 & 3.2 Limit CYcle
dy =100,c3 = 3 z = 25

az = 1 = azy
case 2

Remaining parameters

the same as X = 40

case 1 except y = 25 3.3 & 3.4 Limit Cycle
a] =4 . z = 25

case 3 :

Remaining parameters

the same as x =40
case 1 except y = 25 3.5 & 3.6 Limit Cycle
a; = 2.9 z = 25
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case 4

Remaining Parameters

the same as X
case 1 except y
aj ; 4 z
case 5 .

Remaining Parameters

the same as x
case 1 except Y%
a; = 3 z
case 6

Remaining parameters

the same as x
case 1 except v
by =0.013 z

case 7 .

Remaining parameters

the same as - X
case 1 except Yy
bl = 0.008 zZ

case 8 ¢

Remaining Parameters

the same as X
case 1 except y
C1=50 Z

70

40

40

40

30

30

40

20

20

40

25

25

40

25

25

44

3.9 & 3.10 -

3.11 & 3.12

3.13 & 3.14

3.15 & 3.16

Limit Cycle

Limit Cycle

Stable

Equilibrium

Limit Cycle

Limit Cycle



case 9 .

Remaining Parameters

the same as X
case 1 except Yy
Ci ; i8 : z
case 10 .

Remaining Parameters

the same as X
case 1 excépt -y
by = 0.01 z
case 11 ¢

Remaining Parameters

the same as b e
case 1 except y
cqp =20 . z
case 12 ¢

Remaining Parameters

the same as x
case 1 except Y
by = 0.012 z
case 13

Remaining Parameters

the same as X
case 12 except Y
c = 18 z

80

30

30

40

25

25

70

50

50

30

20

20

45

20

20

45

3.17 & 3.18

3.19 & 3.20

3.21 & 3.22

3.23 & 3.24

3.25 & 3.26

Limit Cycle

Limit Cycle

Limit Cycle

Limit Cycle

Limit Cycle



case 14
Remaining Parameters
the same as X

case 1. except Y

c = 18 & bj =0.01 =2

case 195

Remaining Parameters

the same as X
case 1 except Y
c = 37 -
case 16

Remaining Parameters

the same as X
case 1 except 2%
c = 18 z

45

20

20

80

30

30

80

30

30

3.27 & 3.28 Limit Cycle
3.29 & 3.30 Limit Cycle
.31 & 3.32 Stable

Equilibrium

CASE B : WITH THE INCLUSION OF COMPETITION BETWEEN

THE PREDATORS
case 17

Remaining Parameters

the same as X
case 16 except Yy

ky = 0.01, rd
k, = 0.016

i

40

20

20

446

3.33 & 3.34 Stable

Equilibrium



case 18 .

Remaining Parameters

the same as x
caée‘l except Y
c=18, c»3 =.3 z
cy3 = 3.1,k; =.01

ko = 0.016

case 19 ‘:

Remaining parameters

the same as b'e
case 1 except Y
c = 18, k1v= .012 =z
ko = 0.009

case 20 .

Remaining Parameters

the same as X
case 1 exéept Y
k1 = 6.01, : z
ko = 0.016
case 21 :

Remaining Parameters

same as case X
case 20 except Y
ko = 0.014, z
d; = 105

45

20

20

80

30

30

45

20

20

80
30

30

47

3.35 & 3.36

3.37 & 3.38

3.39 & 3.40

3.41 & 3.42

Stable

Equilibrium

Limit Cycle

Limit Cycle

Stable

Equilibrium
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CHAPTER - 4
CONCLUSION

We have studied a three species system with one prey &
two predactors. This is done by extending a two species
system to a three species system with iimit cycle solution
in mind. We first stafted with a one prey-one predator
system. Then 5y applying Kolmogorov'’s tpeorem and
linearized stability analysis around the equilibrium point,
the conditions for the system to exhibit limit cycle
solutions were found.

A second predator species was introduced into the
system, which then led to  a set of three coupled non-linear
differential equations describing the new situation. The
equations so obtained can not be solved analytically. fér
numerical work, we first chose the parametric values of the
two species system which leads to limit cycie solutions.The
rest of the parameters of the three species system were then
chosen by trial and errorin a way that we finally had
thelimit cycle solutions once more .We also studied our
solution under variation of parameters one at a time.

The calculations were of course repeated with different

initial value for the populations and it was seen that the
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results remain unchanged asymptotically.The same pattern was
also seen in the individual amplitude versus time plots of
different populations.The 1limit c¢ycle mnature of the
solutions was therefore established.

Though our calculations were primarily aimed at studing
the system without mutual competition between the two
predators, some positive results were also obtained and
reported here for a few cases when small but somewhat
similar interaction terms representing the above competition

were included.
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APPENDIX-I

THE KOLMOGOROV THEOREM:

Kolmogorov has given the <criteria for stable
equilibrium point or a limit cycle behaviour which are
applicable essentially to all two species prey-predator
models. This is due to the fact that, the form in which
kolmogorov wrote the equations for the one prey-one predator
system 1is quite general. The general equation for two

species prey -predator can be written as:

dH/dt = H F (H,P)
dp/dt = P G (H,P)
This theorem says that predator-prey Systew Of the

above form have either a stable equilibrium point or a
stable limit cycle, provided that F and G; are continuous
functions of H and P, with continuous first derivatives

throughout the domain H>o, P>o0 and following conditions are

satisfied: -

(i) F/ P < O
(ii) H ( F/ H) + P( F/ P) < 0
(iii) G/ P < 0
(iv) H ( G/ H) + P ( G/ P) >0

(v) F (0,0) >0
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It is also required that there exist quantities A,B,C
such that,

(vi) F (0,A) 0 with 4 > 0

(vii) F{(B,0) 0 with B > 0

(ix) . H (C,0) 0 with C > 0

(ix) B > C.

The proof of the theorem comes from the poincare
Bendixson theorem’ (Minorsky, 1962). In biological terms,
Kolmogorov’s conditions are:

(i) for any given population size, the per capita rate of
increase of the prey species is a decreasing funétion
of the number of predators.

(ii) the rate of increase of the prey 1s a decreasing
function of population size.

(iii) the raﬁe of increase of predators decreases with their
pdpulation size.

(iv) the rate of increase of predator is an increasing
function of population size.

-(v) when both populations are small the prey have a

positive rate of increase. .
(vi) there can be a predator population size sufficiently

-large to stop further increase of prey species, evén

when the prey are rare.
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(vii) there 1is a critical prey population size B beyond
which they can not increase even in the absence of
predators ( a resource or other self limitation).

(viii) there is a critical prey size c that stops further
increase in predators, even if they be rare.

(1x) B>c, otherwise the system will collapse.

This theorem may be applied to a system to show that it
possesses either a stable 1limit cycle or a stable
equilibrium point: A conventional neighbourhood analysis
reveals whether thé equilibrium point is stable or not, here
we consider the linearized version of the model in the
neighbourhood of the equilibrium point and use the so called

Routh-Hurwitz criteria.
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APPENDIX-II
THE LINEARIZED STABILITY ANALYSIS:

The multispecies population dynamics can be written by a
set of m equations as:
dN; (t)/dt = Fi [Np (t), Ny (t),..... Nm(t)] ------ (1)
i=1->m
here the growth rate of ith gspecies at time t is given by
some non-linear function Fi  of -all relevent interacting
population. The population size at equilibrium point, " Nj,
are obtained from m algebric equations obtained by putting
all growth rates zero.
Fi (N7%, Np* ........ Np *) =0 ~------ (2)
expanding about this equilibrium, for each population we
write,

Nj (t) = Ni¥ + x5 (t) -------- (3)

Where, Xj; the measures the initially small perturbation to
the ith population. Expanding equation (1) by Taylof sefiés
expansion around this equilibrium point and neglecting all
‘terms which are of second or higher order in x, a linearized

approximation is obtained

dXi(t)/dt = Z aij xj (t) _______ (4)
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The set of equations (4), describe the population dynamics
in the neighbourhood of the equilibrium point. In matrix
notation, we can rewrite equation (4) as:
dx(t)/dt = RX (t) T mmmmmemmm- (5)
Here X (t) is (mx1l) coloumn matrix xj and A is (m x m) column
matrix xi and A is (m x m) "community Matrix" whose elements
aj describe the effect of species j on species i near
equilibrium.

The elements ajj depend upon the details of the
original equations (1) and on value of equilibrium
population according to recipe

ajj =  (DF{/AN§)* —---moooo- (6) - -

The partial derivatives are evaluated at eguilibrium
values of all populaticns.

Fbr the set-of linear equations (5) the solutions may
be written,‘

™
X5 (t) = z; cij exp ( Xi t) ---------- (7)
t=1

Cij are constant which depend upon initial values of
perturbations to the populations and the time dependence is
contained solely in m exponen;ial factors. The m constants

(j = 1,2,...m) which characterize the temporal behaviour

of the system are eigen values of matrix A.
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Substituting (7) into (5) we get,
Wi
A oxiy (z) = %:.‘aij X5(E)  mmm-mm---- (8)

or, (A - A2 1) X-(t) = 0  -------- (9)

Here I is a (m xm) unit matrix. This set of equations
possesses a non-trivial solution 1if and only if the

determinant vanishes:

]
0

det (A - A I)

This is a mth order polynamial equation in of matrix
A. They may in general be coﬁblex numbers,2=§UH¢3in any of
terms of eqpation the real part ¢ produces exponential
growth or decay, and imaginary part § produces sinusoidal
oscillatons. It is clear that perturbation to the
equilibrium populations will die away in time if any only
if, all eigen values A have negative reél parts, If any
‘of eigen values has a positive real paft, that exponential
factor will grow ever larger as time goes on and constantly
the equilibrium is unstable. The special case of neutral
equilibrium is obtained if one or more eigenvalues are

purely imaginary numbers and rest have negative real parts.
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Routh-Horwitz Stability Criteria:
The equation for polynomial of is ,

M- 2

™M -1
A" 4 A + 34,4 + - - 18w =0

The necessary and sufficient condition for all roots of
above polynamial to be negative is that the coefficients ag,

a,.....ammust fulfill Roth-Horwitz stability conditions.

The conditions for m = 2,3,4 are

m = 2 : a; >0, as > 0
m = 3 a; > 0, az >0, ajapy > 0
m = 4 a; >0, a3z >0, ag > > 0

aj ap az > az? + aj? ay
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