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CHAPTER I
INTRODUCTION

A detailed study of dynamics of interacting species is of much interest in
theoretical ecology. Mathematical models used to describe the interaction of two or more
species of populations generally consist of a set of differential equations. The ecjuations
give the growth rate of each species as function of the various i}nteracting populations.
In analysing the models the first objective is to know the stability of the system. This
stﬁbility depends upon whether the differential equations describing the system are linear
or nénlinear. It also depends on whether the 'equations at assumed to apply over all
possiblc combinations of populations (case of Global Stability) or only in the
neighbourhood of an equilibrium point (case of local stability).

Stability can be of equilibrium type or of periodic solution type. If the equations
describing the system are linear, then we get only linear” type stability. In this case, we
test the stability by means of Routh-Horwitz criteria. If the differential equations are
non-linear, then both types of stability are possible. Since the equations of population
ecology are non-linear we have to explore both possibilities. The analysis for stable
equilibrium can in most cases still be done by treating these equations as approximately
linear in sufficiently small neighbourhood of the equilibrium point and then using ﬁouth-
Horwitz criteria to judge their local stability in that neighbourhood. A nonlinear model
that is unstable in the neighbourhood of the equilibrium point may be stable in the wider

sense that it exhibits a stables limit cycle.



In this work, we are basically interes;ed in limit cycle solutions. The existence
of a limit cycle is an important property of a large number of non-linear systems. Limit
cycles correspond to closed curves in phase space of dynamical variables of the system
and are independent of initial conditions. They imply that the system has a stable pattern
of behaviour and yei it does not display numerical constancy of any of the state variables.
The reason why a dynamically stable system may not display numerical constancy is that
the system is continuously perturbed from within.

A lot of work has been done to find out the periodic type solutions in the two
species system. Kolmogorov (1936) has given a theorem which tells about the existence
of stable equilibrium (or limit cycle) in two species systems. No such type of theorem
exists for system of three or mére species. As the system becomes more complex (more
species, more interactions) it becomes more difficult to analyse the stability question.

The main objective of the present work is to see whether it is possible to
introddce, into a one prey-one predator system which exhibits limit cycle solution, a
second prey species and still get limit cycle solutions. And we also wish to investigate
within what range of parameters of initial two species system do we still get limit cycles
for the three species system. Since for a three species system there is no theorem (like
Kolmogorov’s theorem for two species system) which can tell us whether a systefn may
possess a stable equilibrium point or stable limit cycle, we have used only numerical
methods to see whether the system possesses stable limit cycles or not.

The plan of the present work is as follows : In chapter II first certain two species

models are described. Kolmogorov's theorem and certain conditions for which the two



species systems may possess limit cycle solutidns are used. Next a one prey-one predator
mixed model of Rai, Kumar and Pande (1991) is discussed and then it is extended for a
two prey-one predator system. In Chapter-III we have ’analysed the above two prey-one
predator model. The range of various parameters, within which the three species system
still exhibits limit cycle solutions, is determined. The range of various parameters of the
three species system is compared with the range of the same parameters of the two
-spééies system. Relevant conclusions emerging from this comparison are then discussed.
As il_iustration of voui_'.solutions, phase space trajectories of the two species system as well
as the three species system are shown. The variations of the populatiox‘a densities of prey
and predator with time are also shown.

The numerical analysis of the model has been performed on HP-9836 corhputcr

using Runge-Kutta fourth order approximations method.



CHAPTER 11
REVIEW OF SOME TWO SPECIES

ECOSYSTEM MODELS

Ecosystems in general are very complex. It is useful to consider first the simple
idealised ecosystems and build a quantitative basis for them before trying to fackle-
<suc¢essfu11y the realistic ones. The most idealised systeml is one with a single species in
an envifonment in which the resources are unlimited. It may be assumed that in such a
system the growth rate per individual is same for aJl individuals and is furthermore a
constant in time. If we level this growth rate by r and the population at time t by N(t)
then the time rate of change of the population+is given by the equatlon.

dAN()

- | 2.1
w - NO @.1)

Which on solving gives

N -Nje" 2.2)
where N, is the population at time t = 0
This is the well known Malthusian picture of populhations growth where population
rises exponentially with time.

The environment is in reality not an unlimited one. The food available to the

population is sooner or later going to become limited because of rising population.

Hence the growth rate r has to be such that it shows a decrease as the population rises.



The simplest possibility that we could consider is if r is replaced by r-sN, where s is a

positive constant. The equation describing the population growth is then
‘:l_rj- (t-sNN @.3)

This equation is the well known Pearl-Verhulst logistic equation of population

growth, which leads to the result

NO - — 2.4)

Where the constant e™ is related to the initial population by

et - ﬁ’/’*—;‘zcr)—‘;@l 2.5)

According to this picture, the population rises initially as in the Malthusian model,
but as the population riscs the growth rate begins to slow down and the population turns
towards its asymptotic value which is (r/s). The value N = 1/s 15 the maximum that the
population can reach and is therefore called the ‘carrying bcépacity’ of the given
environment.

The Loika-Volterra Model

We now consider a situation where we have two interacting populétions in a given
envi;onment, say a prey and a predator. Two very general assumptions used in such
prey-predator model are :

1) The two populations inhabit the same area, so the densities are directly

proportional to the numbers.



2) There is no time lag in the responses of either populaﬁon to changes due to the
~ other.

An interesting and mathematically elegant model for the interaction between a pair
of species - a prey and a predator, was given independent by Lotka (1925) and Volterra
(1926) |

If H is the population of prey at any time t, in t;\e absence of predator, its grdwth

equation in simplest form is given by

t—?sall{ ’ al>0

If P is the population of predator at any time t, it’s growth (decay) equation in

absence of prey can be written as

If the prey and predator are in the same niche and if they interact, then the
interaction term is, in general, a complicated function of H and P. But here we consider
the simple quadratic form which is a product of the two populations. Consider the

following equations for a prey-predator system.

E - (al -blP) H

2.6)
dp
E - ( 32+b2m P



where a;, a; by, by > 0
| Here a; and a, are average rate of growth and decay per individual in the absence

of the other species and by, b, are interaction parameters. If the niche is not overlapping
the interaction is reduced and the values of b, & b, are very small. The sign'in’ the
interaction terms in the above equations are based on the expectation that the interactions
will géncrate predators at the cost of the prey.

| lefortﬁnately equations (2.6) & (277) can not be solved analytically. We have
to take recourse to approximate schemes and numerical methods. In view of their non-
linear nature it is unlikely that full information content of these equations is uncovered
by such methods. However an exact result which is of crucial importance in the‘p‘resent
context can be esfablished.

We can write

dH _ (3,-bP)H
dP  (-a,+b,H)P

of

(-a,+b,H) dH - (a,-b,P)

dp
H P
Integrating we get
2, InH-b,H+a InP-bInP=InK 2.7
KH“‘z ebzH - P”l c'bAP | (2.7a)



Where K is a constant given by

K - HYpY o b o bh BeX)
in terms of initial values of H and P denoted by H, and P, respectively.

We thus, see that system (2.6) possesses a conserved quantity given by the right
hand side of equation (2.7). ‘The equation represents a family of closed curves in which
each member of the family is characterised by a particular value of K. We can not solve
equation (2.7a) for H or P individually but we can determine the curves on whiéh H and
P will move. To do this we equate the right and left hand sides of equation (2.7a) to new

variables Z and W respectively and then plot the graphs C, and C, of the function.

P - b,H
and W=KH ™™

Z - Phe™

as shoWn in figure (1).
For Z = W, we are confined in the third quadrant to the line (figure 2.1). C.
To the maximum value of Z given by point A on C,, there corresponds one point M on
L and the corresponding points A’ and A" on C, leading to ‘two values of H which
determine the bounds between which H may vary. Similarly minimum value of W given
by B on C; leads to N on L and hence to B’ and B” on C, and these points determihe the
bounds on P. In this way we find the points P, P, and Q,, Q, on the desired curve C,.
Additional points are easily found by starting on L at a point R anywhere between M and
N and projecting on one hand onto él and over to C, and on the other, onto C, and

again over to C;. It is clear that the changing values of K raises or lowers the points A

and B, and this expands or contracts the curve C;. Accordingly, when K is given various

-t
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values, we obtain a family of ovals about the point S..

Now, we will see how the point (H,P) on C; moves around the curve as time t
increases. We can find out the equilibrium point by putting the right hand side of
'equétion (2.6) equal to zero i..e. |

a, H - bPH = 0

-a,P + b, PH =0
Solving these équaﬁons, we get the equilibrium  values

H" = a,/b,

P’ = a,/b,

Hence coordinates of point S will be

H = a,/b,, P = a,/b,

When H < ay/b,, dP/dt is negative, so the point on C, rhoves down as it
traverses the arc Q, P; Q,. Similarly, it will move up along the Q; P, Q,. .Hencé as
time t increases, the points on C; move is anticlockwise direction. |

This shows that both prey and predator populations undergo oscillations with
‘constant amplitudes. The amplitudes would be determined by the iﬁitial.population.sizevs,
H, ﬁnd P,. This behaviour is generally referred to as one of neutral stability.

The Leslie Gower model
B An alternative formulation of prey-predator equations was suggested by Leslie

and Gower (1960). The raiwc equations for Prey H and predator P are given by

% - (a,-¢,P)H - (29

10



dp P
= - (a,-c, — - 2.10
" (a,~c, =)P | (2.10)

Where a, 2, ¢,¢c >0

We use isocline method to study the systein. The H-isocline and P-isocline are
the curves in P-H phase space on which the time rate of change of prey and p'redatqr
respectively are zero. Thus on H-isocline dH/dt = 0 and on P;isocline dP/dt .= 0.
Frbm equations (2.9) and (2.10) we can see that

H isocline : P = a, /¢

P isocline : H =(c/a,)P

Thus both isoclines wre straight lines which intersect at point (P°, H") where

pr -2 and He - 2% (2.11)
c, . a,c,

At point (P°, H') both dH/dt = 0 and dP/dt = 0. This means that at this point
the populations of prey and predators remain constant with time, hence this point is the
equilibrium point. We do not know yet whether this point is stable or unstable. From

equations 2.9 and 2.10 we see i.f

a h
P> -1 then _QE <0
c, dt
and vice-versa
similarly if
c,P
H > 2 then 9.?. >0
a, dt

11



and vice-versa

In the figure 2.2 we have plotted the H-isocline and P isocline. We have given
the inequality conditions for all the four regions into which the positive H and positive
P quadrant can be divided.

Suppose initially our system is at a point in region I. !n this region dH/dt > O,
dP/dt > 0. It follows that both H and P increases with time. Arrows show the
direction in which trajectory moves. The trajectory will move towards the right and mect
the H isocline. At H-isocline dH/dt = 0 and tangent to trajectory will move normal to
H isocline. In region II dH/dt < 0, dP/dt > 0 hence trajectqry will move towards right
side so that H decreases and P increases (slope at any point of trajectory is negative).
The trajectory than meets P isocline, in which dP/dt = 0 and tangent to the trajectory
will be normal to P isocline. Similarly we can draw the trajec‘tory for regions IIT and IV.
The path of the trajectory is P-H phase space is spiral which cthérges at equilibriurﬁ
point. Hence, each species population undergoes damped oscillations wifh time towards
the equilibrium level.

This model takes into account the likely effect on predator’s per capita growth rate
of the relative sizes of inter: ting populations. Thus larger the ratio P/H the smaller the
number of prey per predator and consequently, the less rapid the growth of predator
population.

Leslie’s formulations is different from Volterra’s in the following ways :

1. For Volterra, whether predator increases or decreases in number depends only

12
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on the density of prey whereas for Leslie it depends on the number of prey per
predator. |

2. Volterra’s niodel relates the rate of increase of predators to the rate at which the
prey are being ecaten whereas in Leslie’s formulations there is no relationship

between the rate at which predator eats and the rate at which it reproduces:

The Holling-Tanner model
The Holling Tanner model is slightly more elaborate than that of Leslie and

Gower. The growth rate of prey H in the absence of predators P is given by the logistic

equation
dH o onfi-H : (.12
dt K :

Where r is intrinsic growth rate of prey and

K is maximum number of prey allowed by the resources of the system.
When the predators are present in the system, the mortality from predators must
be subtracted form the right side of equation (2.12). This mortality is the product of
predation rate (number of prey killed per predator per unit time) and the predator
number. Many studies have shown that the predation rate increases with prey density in
the manner shown in figure 2.3. One of the equations which will produce a functional

response like this (by C.S. Holling 1969) is

14



P s e e s o S . e o GEe W e ———“‘"--—‘-~
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Density of prey, H ——s

FIG.2.3 Prey killed per predator per time)Y,
as a function ot prey density,H. The
maximum predation rate is W
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D+H

where Y is predation rate

W is maximum predation rate

D is a constant determining how fast the functional response curve

increases at low prey densities.

Thus we see that at very low prey densities predation rate is directly proportional

to brey density and at very high prey dehsity, it is constant. [Each predator has a
maximum predation rate at certain prey density. It prey density increases further then
predator will not kill (or will not be able to kill) at higher rate. The predation rate is
thus saturated. For a given prey density the constant D is directly proportional to the time
required for predator to search for and find a prey and is therefore determined by the
protection affordedv to the prey by the habit.

The complete equation for prey now becomes

dH _ uf;-H)_WHP (2.13)
at K) D+H

For growth rate of predator population, an equation of Leslie-Gower form is taken

be taken

dap _ sp(l_lli) - 2.14)
H

16



Where s is the growth rate of predators
J is the number of prey required to support one predator at equilibfiﬁm.
when P equals H/J.
The equations (2.13), (2.14) give the complete formulation of the Holling-Tanner
model. We now do the stability analysis of this model. |
The equilibrium point of the system is obtained byr putting dH/dt = 0 and
dP/dt = 0. Thus putting R.H.S. of equations 2.13 and 2.14 equal to zero we get

P'=HYJ - (2.15)

0 (2.16)

Now Let o = W/r]
B8 = D/K
Then solution of equation 2.16 for H* is given by
H' = D (1-a-B+R) /(2B) | (2.17)
where R = [(I-a - B)* + 48]
Hence P* = D (1-a-B+R)/(28)) | (2.18)
To study the behaviour of the system we proceed to a neighbourhood‘stability

analysis (See Appendix - I). Let us rewrite the equations :

dH . H. WHP
— - B (HP)=rH(1-=) -
1(HLP) = 1H( K) D+H

(2.13)
dt

17



4P _ = sp(1-32 2.14
t ,(H,P) = sP(1 H) (2.14)

To construct the community matrix, we evaluate all partial derivatives of F,, F,

at (H", P) this gives

 (oR,Y .
= |—] = -8 - -S
%2 aP) H*

The determinental equation for eigenvalue A reduces to

A%-(a; +ap)A +a,,2,,-2,,3, = 0
For neighbourhood stability, the real parts of eigenvalues A must be negative.
This holds only if
() ~-@;+ay >0
- _H~[__‘_+_._____WP' J+s >0 (2.19)
K (+H*?

@3] a8 -3, >0

r WP*

+

- -sH'|-—
K +H*)

LSWHT (2.20)
ID+H") -

18



By doing some mathematical manipulations and substituting values of H" and P*

we get the condition for stability

s, _20@-R) (2.21)
r l+a+pB+R

If this condition is satisfied than the model possesses a stable equilibrium point.
If this condition is violated, then in view of the Kolmogorov theorem, we can conclude
that the system will possess a linﬁt cycle. A brief discussion of the Kolmogorov theorem
and the conditions under which it is applicabic is given in Appendix (II). The general
formulation of the stability analysis .in the local limit is given in Appendix (I).
A Mixed Model

In the Holling-Tﬁnner model, the equation for time rate of change for predator P
was identical to the one used by Leslie and Gower. It was in prey equation in théh they
introduced an interaction term different from Leslie and Gower. Improvising on the idea
of Holling and Tanner a two species model was constructed iy Rai, Kumar and Pande
(1991). In this model the per capita growth rate of predator is not proportional to simply
the population rate (P/H) but rather to a factor which is similar in form as predator'.
attack rate with a ceiling occurring for H - o, This establishes a desirable relationship
between prey’s loss and predator’s gain which does not exist in thé Holling-Tanner
model. The predators functional response of Holling-Tanner type is retained. In this
process the behaviour of the rate equation for predator near H = 0 is now improved over

the Leslie-Gower and Holling Tanner models.

The model is thus given by equations

19



W .
dH _ "o H’-————'ﬁ— PH (2.22)

P P+ WH HP (2.23)

where a,, b,, W,, Dy, a, W, D are constants, all are positive . o
Application of Kolmogorov theorem to this model shows that the theorem is

satisfied by it under the conditions.

W >a o (2.'.24) .

2 , Da (2.25)
b, W-a

If the above constraints are satisfied, then the model will always lead to.solutions
possessing either stable equilibrium or limit cycles. A local stability analysis around the
equilibrium point will decide as to which possibility will arise and when.

The equilibrium populations of the systsem are

p a,;D, aD
- W, + W [a,(W-2)~b,(D,W-aD, +aD)]
1

The element a;;, a5, 2, and a,, of the community matrix A are given by

The determinental equations for eigenvalues reduces to the quadratic

A? -a; Ah-a,a, -0

20



W,DP*

a,, - a~-2bH"* - 07
1

WH

@, +H")
__WD ..
(D+H*Y?

WH* T

- -a+ -0
“n D+ H*

Stable equilibrium point for the system exists if the eigenvalues have negative real

parts. This happen if the following conditions are satisfied (Routh-Horwitz Criteria). = -

a,a, <0 = D>0 (2.26)

a, <0 = 2b (““;D )<+lel—'a >0 a7
-a

Since inequality 2.26 always holds true, because D is a positive constant, the
choice of parameters which respects inequality (2.27) will lead to stable equilibrium and

a choice violating it will lead to stable limit cycles (Figures 2.4 and 2.5).
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A Two prey-one predator quel

We now extend the model, given Rai, Kumar and Pande, from one prey;one
predator to two prey-one predator system. We have slightly modified the parameters
used in their m'c;del. The prey-predator interactions terms in the rate equations for the
two species are taken simply proportional to each other, as in the Lotka-Volterra case.

Thus the equations are :

9H _aH-bH? - 2.28)
at dH -
dp «,c,PH
— = -a,P+

(2.29)

The constants a,, b,, ¢y, d,l and a,have the usual meaning and are all positive. -
Here the notation (used in equations 2.22 and 2.23) are different. The term a,here is the
efficiency of conversions of prey consumed to predator population growth. Thus the
contribution of predation to the growth rate of predator is now proportional to the
predation rate. The number of parameters in this model are reduced, hence this model
is simpler. The condition for the existence of stable equilibrium poiht now reduces to
2b, (—a?di—) +b d -2, > 0 | (2.30)
«,c -2, .
The choice of parameters which violate the above inequality lead to solutions with
stable Iimit cycles.
A second prey species is now introduced into the system. We assume that tﬁe

second prey species do not compete with existing prey species in the system for

23



resources. Due to the introduction of second prey species into the system the predator
will now start eating second prey species also. The effect of this will be that the
predation rate of first prey species will be reduced. Thus the predators per capita
predation rate of first prey is not only function of density of first brey spécieé but also
of density of second prey species. The per capilta pfédation rate of first prey species can

i

now be written as (Noi Meir 1981).

v o SV .31y
dl+V1+V2

where V, and V, now denote the two prey species

C, is maximum predation rate of first prey species

d, is constant which determines how fast the functional response curve increases
at‘ low prey densities. For a given prey it is proportional to the time required for a
predator to search for and find a prey and is determined by the protection afforded to the
prey by the habitat.

If we compare the predators per capita predation rate of first prey species in two
species system (where only first prey exists) and three species system (where second prey
also exists), we will see that presence of the second prey V, in system has .the effect of
increasing the constant d, (which is proportional to the time required for predator to
search for and find the prey) from d; (in two species system) to d; + V,. This
effectively decreases the predators per capita predation rate of first prey species. The

predator’s per capita predation rate of first prey species is shown in Fig (2.6).
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Per Capita Predation rate of first prey species

V2,0 l
Va1

V2
V2,2 Increasing

Va3

V2,32 V22>V20>V2,0

Vi ——»

FIG. 2.6 Predator’s per capita predation rate
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The predation rate of second prey species can be written using similar arguments.
Thus after the introduction of second prey species the rate equations for system

will be

dv ’
—L - aV, - bV} (2.32)
dt d,+V,+V,
dv. c,PV,
—2 -2V, - bV} R - (2.33)
dt d,+V,+V,
L2 SPPL Lk WL, L (2.34)
dt d,+V,+V, d,+V,+V,

where a,, b,, ¢,, d;, o, are parameters related to second prey species, all of which are
positive. The introduction of second préy species into the system does not altegr the
parameters of first prey species. For a three speeciess sysstem there does not exist any
theorem, corresponding to Koimogorov’é theorem in two species system, whi_ch can tell
the conditions under which a system will exihibit stable limit cycles or stable equiiibrium

point. Hence we resort to the numerical methods to study the behaviour of above system.
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CHAPTER IIF

ANALYSIS OF THE TWO PREY ONE

PREDATQR MODEL

Recently John Loman (1988) has studicd * a . system consisting of the two non-
competing prey species and a predator using a graphical method. He initially starts“with
a two spcecies system of one prey and one predator which is at stable equilibrium, The
graphical method is used to predict the ciréumstances under which a second prey species
can be introduced into the system such that stable equilibrium is still maintained. He has
shown that depending upon the circumstances, the introduction c;f an alternative prey may
either reduce the equilibrium density of the first prey or it may lead to increased density
of first prey popuiation. The former phenomena is termed as ‘apparent competition’ and
the later one the ‘ﬁpparent mutualism’ (Holt 1977). The scope of the stu'dy was limited
to systems with populations at stable equilibrium point.

We have considered a similar extension of a one pre-one predator system to -a
two prey one predator system with more general limit cycle solutions in mind. We start
with a two species system discussed in the last chapter (the mixed model of Rai, Kumar
and Pande 1991).

The dynamics of prey and predator are described by

av )
—L -V, -b V-1 (3.1

dt d1+Vl
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——--—a

I R 62
d,+V, | :

where a,, b, ¢, d;, a3, «; are constants all of which are positive.
As we have already discussed in the last chapter, the application of Kolmogorov’s
theorem give the following conditions for the system to possess either stable limit cycle

solutions or stable equilibrium point.

@,c > a, v (3.3)

a ~da
1 173

-_— 3.4)
b, e -3 (

The linear stability analysis around eduilibrium point give the following condition

for the equilibrium point to be stable.

ad ) '
2b1( s )+bldl-a3 >0 (3.5)
®yCm33) '

If this condition for the existence of stable point is violated then the system will
exhibit limit cycles.

When a second prey species is introduced into the system, the system becomes a
three species systems of two prey and one predator. Now not only has the rate equation
of second prey to be introduced but the rate equation of the predator and first prey have

also to be modified. As we have discussed in the previous chapter, the rate equations for

two prey species and one predator are described by the following equations.
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av PV
v, - v (3.6)
dt : d,+V,+V,
v c,PV
2 - aVambVi - o 3.7
t d,+V, +V,

dP “aps «,c, PV, . «,C,PV, (3.8)
dt d1:+Vl+V2 d,+V,+V,

Asitis well knowﬁ, it is not possible to write down the exact analytical solution
for the type of three species system discussed above. The bulk of information;: obtainable
from these models consists in knowing whether or not these systems are cal;able of
possessing stable equilibrium or stable limit cycles.

We are basically interested in the case in which in a prey-predator system, which
exhibits limit cycle solutions, an alternatixi'e prey species is introduced. We want to see
whether the system, which is now a two prey-one predator system, still exhibits limit
cycle solutions. We also want to investigate how in such a situation the range of
parameters of initial one prey one predator system, within which limit cycle solutions
were possible, changes With the introduction of second prey species.

In our study we use the Runge-Kutta fourfh order approximation method to study
the population densities of preys and pred;ator at various times. We have then taken the
projections of the trajectory of the system on V; P plane and V, P plane. If the system
exhibits limit cycle in phase space of V,; V, and P then the projections of the system
trajectory on the coordinate planes V, P and V, P will also be trajectories which

asymptotically reach definite closed curves. The same closed curves will be reached for
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varying initial conditions so long as the model parameters are not changed.

We start with one prey one predator system and choose a set of pz‘xramete"r's'for
which the system exhibits limit cycles. The values of parameters are given in table 1.
Next we find the range of cach paramctcr of the above two species system withiﬁ which
the systems still exhibits the limit cycle solutions. To determine the range, each
parameter is varied, one at a time, keeping other parameters to the initial chosen value.
For example the range of parameters ¢, (The maximum predation rate) is from 19 to 40.
The other parametersare the same as given in table - I. Similarly the range of other
parameters is determined. |

When the second species is introduced into the system it becomes a three specics
problem. The number of parameters reqﬁircd to define the system is increased. The
new parémeters are the ones which are associated with the second prey species (see
equation 3.7). Keeping the initially. fouhd parameters of the two species system the
same, we find a set of parameters associated with the second prey species for which the
three species systeni also exhibits limit cycle solutions. We havé chosen three sets of
parameters associated with the second prey species.. Their values are given in table - 11,

Now we determine the range of the parameters of the ihree species system within
which the system still exhibits limit cycle solutions. Here we take only those parameters
which were also the parameters of the initial two species system. For the two species
system we have already determined their range for limit cycle solutions. The same
- parameters are now varied in the three species system. Thus to determine the range of

a, (the growth rate of first prey species) in the three species system, we keep all other
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parameters to their chosen values and vary a;. The minimum and the maximum valucs .
of a, within which the three species system exhibits limit cycles constitutes the range of
a;. For example, for the first set of parameters of the three species Systems (table - 1I)
the system exhibitsl limit cycleé between 2.5 to 5.3 hence it is the range of a; fo; the three
species systems. Similarly the range of b, (self interaction ten‘n for first prey species) is
determined by keeping the values of all other parameters of the three species system fixed
and varying b, till the limit cycle solutions exist. The range of b, is between .007 to
.020. In a similar way the range of ¢, is found to'be between 16 and 33, range of d, is
between 75 and 205, range of a; is between 0.8 and 1.3 and range of o, is between 1.3
and 2.9.

The whole procedure is repeated for the second and the third set of parameters
of the three species system. The range of parameters of the initial two species system as

well as the full three species system (three sets) are shown in table-l1II.
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TABLE - I

Initial Two Species System

a =33 a4 =10
b,=01 , - =01
¢=2 ,  d =10

Raie equations of the one prey one predator systsem

dv ' c, PV

—1 - alVlébIVf- L1
dt d1+V1
P P+ «,c,PV,

dt d, +V,+V,
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TABLE 11

Three Species System

Set I
a, = 3.3 a, = 3.5 a; =1
b, = 0.01 b, = 0.02 a, = 0.1
Cl = 20 Cz = 20 0, = 0.1
d = 100 d, = 100

Set 11
a, = 3.3 a, = 3.1 =1
b, = 0.01 b, = 0.01 o, = 0.1
¢, =20 ¢, = 15 a, = 0.1
d, = 100 d, = 80

Set III
al = 3-3 az = 3.1 ag = 1.0
b, = 0.01 b, = 0.01 o = 0.1
¢, =20 c, = 20 a = 0.1
d, = 100 d, = 100

Rate equations of the two prey one predator system

dv,/dt
dv,/dt

dP/dt

= a, Vl - b] V,2 - Cl PVl/(d,+Vl + V2)

= Q; V2 - bz sz -C PV:/(d2+V1 + VQ)

= -a;P + a,¢; PV,/(d,+V, + Vo) + a, ¢, PV,/(d,+V,+V,)
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TABLE III

Ranges of various parameters for limit cycle solutions

Parameter Initial two Set-I three Set-1I three | Set-1II three ..
species system | species system | species system | species system
a, | min, 3.1 2.5 2.3 2.2
- max. 6.3 , 53 42 3.5
b, min. .005 .007 .008 ' .009
max. .010 .020 .045 .1
¢; | min. 19 16 13 11
| max. | 40 33 _ 22 20
d; | min. |. 50 75 90 95
max. 110 205 280 350
a; | min. | 0.5 0.8 1.0 1.0
max. 1.0 1.3 1.3 1.4
a; | min. 0.10 0.7 0.06 0.04
max. 0.20 .15 0.11 0.11

In table-1IT we have compared the range of various parameters associated wifh the
first prey before the introduction of second prey species into the system as wel_l as after
its introduction into the system.

The study of various parametérs viz. a; (growth rate) b, (self interaction terms),
¢, (maximum predation rate), d, (.tenﬁ proportional to time required for search and kill
of prey), a, (decéy rate of predator) and «, (efficiency of conversion of prey consumed
to growth rate of predator) show that a range still exist within which the new there
species system exhibits limit cycle solutions. The range of parameters does not remain
the same. In some cases the range is shifted to the lc.)wer side (e.g. a;, ¢, etc) and in

same cases the range is shifted to the upper side (e.g. by, d,, a; etc).
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If we‘ compare the range of ¢, (the maximum predation rate) we find that the
minﬁm and the maximum valué of predations rate in }he two species system are 19 and
40. Corresponding values for the three species system (set-I) are 13 and 33. The
introduction of second species into the ecosystem reduces the value of maximum
predation rate of the first species. Similarly comparing the values of constant d; (term
proportional to search time for prey), we see that minimum and maximum values in two
species system are 50 and 110. For three species system (set-I) corresponding values
are 75 and 205. We observe that time required for search and capture of first prey is
increased after second species is introduced into the ecosystem. Set - II and set- 111 also
corroborate above facts. Both effects are due to the reason that the p‘redation pressure
on first prey is reduced when second species is introduced into ecosystem. Alsé Qincc
predator spends some time for search and capture of second prey species hence effective
search time for finding first prey is incrgased.

The figures 3.1 to 3.35 show som§ specimen results of the computer calpulations.
The numerical inputs for each figure are mentioned in figure ;:aplion table-1. figure 3.1
to 3.6 are phase space diagrams for the initial two species system. For three species
system we have drawn the projection of the system trajectory on V,-P'and V,-P planés.
As can be seen from figures, these are also the closed curves. We have ‘veriﬁed that for
each case the same curve is reached even when initial conditions are changed. Thus the
trajectories in the phase space of V,, V,, P end up in the limit cycles. Corresponding to
each phase space diagram, the time development of each species of the system is also

shown,
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In figure 3.31 to 3.35 we have compared the time development of the population
densities of initial two species system with final three species systems. Here, for the
three species systems only the parameters related to the second species are changed. The
other parameters for the three species systems are same as that of the two species system.
The numerical inputs for each figure are mentioned in figure caption table II. It can be
seen -that the range of tﬁe population of the first prey is increased when the second prey
species is introduced into the system. This is analogous to the phenomena of "apparent

mutualism", observed by Loman (1988).
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1)

2)

3)

4)

)

6)

7

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

3.1

3.2

3.3

3.4

3.5

3.6

3.7

FIGURE CAPTION TABLE - I |
Initial Conditions: V(0) =130 P(0) = 15
Numerical inputs for different parametefs
3, =33 b =.01 ¢, =30
a; = 1.0 a; = 0:1 | d, = 100
Initial Conditions: V(0) =40 P(0) = 22
Numerical inputs same as above.

Initial Conditions: V() = 130 P(0) = 15

Numerical inputs for different parameters

a, =33 b, = .01 ¢, =30

a; = 1.0 o, =0.1 d;, = 105

Initial Conditions © V(0) = 50 P(0) = 20

Nunﬁerical iﬁputs same as above -

Initial conditions : ~ V(0) = 130 P(@) =15

Numerical inputs for different parameters

a, =33 b, = .01 ¢, =30 -

a; = 0.8 a; = 0.1 d, = 100 .

Initial conditions 2 V(0) = 40 P(0) = 40

Numerical inputs same as above

Initial Condition§ 0 Vi(0) =75 V,0) = 80
Numerical inputs for different parameters

a, =43 b, =001 ¢ =20 d, =
a, = 3.5 b, = 0.2 c, = 20 d, =

=10 o, =01  a=01 "

P(0) = 30



8) Fig. 3.8 Initial Conditions {  V,;(0) =110 V,(0) = 60 P@0) = 65
Numerical inputs same as above
9) Fig. 3.9 Initial coﬁditions: Vi(0) = 105 V,(0) = 90 P0) = 15
Numerical inputs for different parameters
3 =33 b, =0.01 ¢ =20 d, = 100
a, = 3.5 | b, =0.02 ¢ =20 d, = 100
a; = 1.0 a; = 0.1 a, = 0.1
10)  Fig.3.10  Initial conditions: V,(0) = 110 V,(0) = 80 P(0) = 75
Numerical inputs same as above
11)  Fig. 3.11 Initial conditions ¢  V(0) = 240 V,(0) = 190 P(0) = 22
Numeri?:al inputs for different parameters ,
a, = 3.3 b, =001 ¢ =16 d; = 100
a, = 3.5 b,=002 ¢ =20 - d,=100
a;= 1.0 "« =0.1 azéO.l |
12)  Fig. 3.12 Initial conditions :  V;(0) = 90 V,(0) = 60 P(@0) = 65
Numerical inputs same as above |
13)  Fig.3.13 Initial conditions ¢ V,(0) = 120 V,(0) =90 P(0) = 15
| Numerical inputs for different 'parameters |
a, =33 b =001 ¢ =16 d, = 150
a, =35 b, =0.02 ¢ =20 d, = 100
a; = 1.0 a, = 0.1 a, = 0.1
14)  Fig. 3.14 Initial conditions:  V,(0) = 100 V,(0) = 60 i’(O) = 65

Numerical inputs same as above
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15)

16)

17)

18)

19)

20)

Fig. 3.15

Fig. 3.16

Fig. 3.17

Fig. 3.18

Fig. 3.19

Fig. 3.20

~Initial conditions ;- --.V{(0) =75 . V,(0) =.80 P(0) = 30

Numerical inputs for different parameters

a, =33 b, = 0.01i ¢ =20 =.100

a, = 3.5 b, =002 ¢, =20 d, = 100

a; = 1.0 a,; = 0.08 o;2 = 0.1

Initial conditions ¢  V;(0) = 30 V,(0) =20 P(@0) = 80
Numeriéal'inputs samé as above

Initial conditions ; V,(0) = 166 V,(0) = 145 P0) = 22
Numerical inputs for different parameters

3, = 33 b, =002 ¢ = 20 d, = 100

a, = 3.1 b, = 0.01 c, =15 d, = 80

3, =10 o, =01 @ =01

Initial conditions . V,(0) = 40 V,(0) = 50 P(0) = 70
Numerical inputs same as above '

Initial conditions * | Vi(0) = 240 V,(0) = 2‘20 P@O) = 20
Numerical inputs for different parameters

a, =33 b, =001 ¢ =15 d, = 100

a, = 3.1 b,=001 ¢ =15 d, = 80

5, =10 o =01 o=01

Initial conditions +  V,(0) = 130 V,(0) =90 P(0) = 75

Numerical inputs same as -above
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21)

22)

23)

24)

25)

26)

Fig. 3.21

Fig. 3.22

Fig. 3.23

Fig. 3.24

Fig. 3.25

Fig. 3.26

Initial conditions @ V,(0) = 110 V,(0) = 140 PQ) = 225
Numerical inputs for different parameters

a, =33 b, =001 ¢ =20 d; =5200

a, = 3.1 b, =001 ¢ =15 d, = 80
;=10 = o« =0.1 o, = 0.1

Initial conditions; V,(0) = 80 V,(0) =50 P@0) = 40
Numerical inputs same as above

Initial conditions: V,00) = 15§ V,(0) = 150 PO) = 22
Numerical inputs for different parameters

a, = 2.3 b =001 ¢ =20 d, = 100

a3 =33 b,=001 ¢ =20 d, = 100

a; = 1.0 o = 0.1 a, = 0.1

Initial conditions:  V,(0) = 70 V,(0) = 40 P(0) = 40
'Numerical inputs same as above

Initial conditions ¢ V,(0) = 170 V,(0) = 150 P(0) = 32
Numerical inputs for different parameters |
a, =33 b, =003 ¢ =20 d, = I.OOl
=33  b,=001 ¢=20  d =100

a; = 1.0 o, = 0.1 a, = 0.1

Initial conditions:  V,(0) = 30 V,(0) = 100 P(0) = 85

Numerical inputs same as above
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27)

28)

29)

30)

Fig. 3.27

~ Fig. 3.28

Fig. 3.29

Fig. 3.30

2, =33 b, =001 ¢ =20

Initial conditions: ~ V(0) =38 V,0) =8 P@O) =18
Numerical inputs for different parameters

a, =33 b, =00l ¢ =20 d, = 200

d, = 100

3 =10 o =01 a =01

Initial conditionsg‘_ Vi(0) =40 V,0) =90 P@O) =385
Numerical inputs same as above

Initial conditions 3  V,(0) = 80 V,0) =30 P() = 30
Numerical inputs for different parameters

a, = 3.3 b, =001 ¢ =20 d, = 100

a, =33 b,=001 ¢, =20 d, = 100

a; = 1.0 o, =006 a,=0.1

Initial conditions; V,(0) =70 V,(0) =50 P@O) =40

Numerical inputs same as above
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1

2)

3)

Fig. 3.31

Fig. 3.32

Fig. 3.33

FIGURE CAPTION TABLE - I
Initial populations :
V(o) =50 P@) = 60
Numerical inputs for different parameters
a =33 b, =001 ¢ =20 d;
a; = 1.0 a; = 0.1
Initial conditions :

V,0) =70 V,0) =50 P(0).= 42

Numerical inputs for different parameters®

a, =33 b, = 0.01 c, =20 d,

a2 = 43 bz - 0.01 C/z = 20 d2

a; = 1.0 a, = 0.1 a, = 0.1

Initial conditions :

Vi(0) =70 V,(0) =50 PO) =42
Numerical inputs for different parameters:

a, =33 b, = 0.0t ¢, =20 d,
a, = 3.3 b, =0.005 ¢,=20 d,

a; = 10 0’]=O.1 012=01

42
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4)

5)

Fig. 3.34

Fig. 3.35

Initial conditions :

Vi(0) =80  V,y(0) =50 PO = 40.

Numerical inputs for different parameter.s..

a, =33 b, =00 ¢ =20  d =100

2, =43 b, =001 ¢ =15 d; = 100

a; = 1.0 o, = 0.1 o, = 0.1
Initial conditions :

V,i(0) = 80 V,0) = 5.0 P0) = 40
Numerical inputs for different parameters:

a, =33 b, =001 ¢ =20 d, = 100

a, = 3.0 b, =001 ¢

i
—
W
QL

~

|
[0 ]
o

n
w
I

10 o =Ol | a2=0.1
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CHAPTER IV

CONCLUSION

We have studied a three species system consisting of two prey species and one
predator.

We were motivated by the paper of John Loman (1988) in which he has studied
the extension of one prey one predator system to a two preyone predator system by
introducing a second prey species into the two species system. He employed a graphical
method, using consumption curve, production curve and auxiliary equation curve, to
study the system. He confined his study to systems exhibiting stable equilibrium solutions
only. A study of the two prey-one predator system was also done by Noy-Mier (11981)
using isocline method.

We have studied here the extension of a two species system to a three species
system with limit cycle solutions in mind. We first started with a one prey-one predator
system. Then using Kolmogorov’s theorems and Linear stability analysis around the
equilibrium point, the conditions for the systems to exhibit limit cycle solutions were
found. A set of parameters which obeyed the said conditions were chosen. We also
found the range of each parameter within which the system still exhibited the limit cycle
solutions. For this one parameter was varicd at one time.

A seclond prey species was then introduced into the system. Thus one more rate
equation (for second prey species) was incorporated into the system and also the rate

equations for predator and first prey species were modified. We were able to find values
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for the new parameters introduced into the system for which the three species system still
exhibited limit cycle solutions. T‘hree such sets of values were found. We also found
for each set of parametérs the range of old parameters within which the system exhibited
limit cycle solutions. We found that a range still existed for which the three species
system exhibited limit cycle oscillations, though the range of parameters was not the
same as was for initialltwo species system. Thus we were able to show that it is possible
to introduce: _into a two species system b(_one prey-one predator) aih%ff’é“grey species so
that the three»species coexist in the dynamic equilibrium.

It w.as also observed that when second prey species is introduced into a. one prey-
one predator system then the range of population of first prey species is increased. This

In an average sense at least, suggests "apparent mutualism" which was also found under

certain conditions by Loman in his study.
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APPENDIX - I

THE LINEFARIZED STABILITY ANALYSIS

Suppose multispecies population dynamics are given by a set of m equations.

AN,
dt

- RN, (ON,(D,..N_@®) (D

i=1tom
here the growth rate of i species at time t is given by some non-linear function F; of all
relevant interacting populations. The equilibrium populations N;*, are obtained form m

algebraic equations obtained by putting all growth rates zero.

F, (N;,N;,..NJ) = 0 | )
expanding about this equilibrium, for each population we write
N; (t) =N+ x(t) : 3)
Where x; measures the ini;ially small perturbation.tb the i® population. Taylor
expanding each of the basic equations (1) around this equilibrium and discarding all terms

which are of second or higher order in x, a linearized approximation is obtained

dxi(t) m .
T g O | @

This set of m equations describe the population dynamics in the neighbourhood
of the equilibrium point. Equivalently, we may write, in matrix notation,

Here X(t) is m x 1 column matrix of x; and A is m x m "community matrix" whose
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dX(t)

- 5
S AX(@® )

elements a; describe the effect of species j in species i near equilibrium. The elements
a; depend upon the details of the original equations (1) and on value of equilibrium

populations, according to recipe

a; = (-ilj‘-)‘ (6)
aNj

The partial derivatives are evaluated at equilibrium values of all populations.

For the set of linear equations (5) the solution may be written

X =3 c;exp (A )
i1 ‘

¢; are constant which depend upon initial values of perturbations to the populations and
the time dependence is contained solely in m exponential factors. The m constants N
(j=1,2,...m) which characterize the temporal behaviour of the system are so called eigen

values of matrix A. They are found substituting (7) into (5) to get

Axy(2) = 2 a; x,(t) ®)
i
or in more compact form
(A-NDx (@) =0 o 9)

Here I'is m x m unit matrix. This set of equations possesses a non-trivial solution if and

only if the determinant vanishes :
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det(A-AD = 0 (10)

This is in effect m™ order polynomial eqi\uation in A of matrix A. They may in
general be complex numbers, A = ¢+ i & in a;ly of terms of equation the real part {
produces exponential growth or decay, and i‘r“naginary part ¢ produces sinusoidal
oscillations. It is clear that perturbation to the ecf_pilibrium populations will die away in
time if and only if, all eigenvalues A have negativé real parts. If any one of eigenvalues
has a positive real part, that exponential factor will-‘-‘grow ever larger as time goes on, and
consequently the equilibrium is unstable. The Sbecial case of neutral equilibrium is
obtained if one or more eigenvalues are purely imaénary numbers and rest have negative

real ports.

Routh-Horwitz Stability Criteria-,

The equation of polynomial of A is

The necessary and sufficient condition for all roots of above polynomial to be
negative is that the coefficients aj, a,...a,, must fulfill Routh-Horwitz stability conditions.

The conditions for m = 2, 3, 4 are

m = 2 a, >0, a,>0
m=3 a; >0,2,>0,aa >0
m =4 a1>0,a3>0,a4>>0, alaza3>a32+a,2a4
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APPENDIX - II

KOLMOGOROV’S THEOREM

1

Consider a prey - predator system

M g rup)
dt :

dP Dy
— =P GHP
" (H,P)

- Kolmogrov’s theorem says that such a systjem will possess either a stable
equilibrium point or stable limit cycle, provided that F and G are continues functions of
H and P, with continues first derivatives, throughout‘} the domain H = 0, P = 0 and
that |
1. JdF/oP < 0
2. H (@ F/3H) + P (0F/de) < 0
3. d0G/aP < 0
4. H (0G/3A) + P (0G/dP) > 0 |
5. 0,0 > 0

It also required that there exist quantities such%that
6. F(O,A) =0 with A >0
7. F(B,0) =0 with B >0
g. G (C,0) =0 with C > 0

9. B>C

87



The proof of above theorem follows froxjn Poincare-Bendixon theorem. The
theorem also usually holds when certain above conditions are equalities (=) rather than-
in-equalities (< or >). | |

In more biological terms, Kolmogorov’s cg?)n'ditions are roughly that
1. For any given population size (As measufed by numbers) per capita rate of

increase of prey species is decreasing function of number of predators,

2. The rate of increase of prey is a decreasing function of population size

3. Rate of increase of predators decreases witrﬁl their population size.

4. The rate of increase of predators is an increasing function of population size.

5. When both populations are small the prey have a positive rate of increase

6. There can be a predator populétion size SL;lfﬁCicntly large to stop furthe( prey

increase, even when prey are rare.
7. There is a critical prey population size B, beyond with they cannot increase even

in abscence of predators (a resource of other self limitations).

8. There is a critical prey size C that stops furtﬁer increase in predators, even if they
be rare !
9. B must .-: always be greater than C (otherwise system will collapse)
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