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CIIAPTERI 

INTRODUCTION 

A detailed study of dynamics of interacting species is of much interest in 

theoretical ecology. Mathematical models used to describe the interaction of two or more 

species of populations generally consist of a set of differential equations. The equations 

give the growth rate of each species as function of the various interacting populations. 

In analysing the models the first objective is to know the stability of the system. This 

stability depends upon whether the differential equations describing the system are linear 

or nonlinear. It also depends on whether the equations at assumed to apply over all 

possible combinations of populations (case of Global Stability) or only in the 

neighbourhood of an equilibrium point (case of local stability). 

Stability can be of equilibrium type or of periodic solution type. If the equations 

describing the system are linear, then we get only linear'· type stability. In this case, we 

test the stability by means of Routh-Horwitz criteria. If the differential equations are 

non-linear, then both types of stability are possible. Since the equations of population 

ecology are non-linear we have to explore both possibilities. The analysis for stable 

equilibrium can in most cases still be done by treating these equations as appro~imately 

linear in sufficiently small neighbourhood of the equilibrium point and then using Routh­

Horwitz criteria to judge their local stability in that neighbourhood. A nonlinear model 

that is unstable in the neighbourhood of the equilibrium point may be stable in the wider 

sense that it exhibits a stables limit cycle. 
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In this work, we are basically interested in limit cycle solutions. The existence 

of a limit cycle is an important property of a large number of non-linear systems. Limit 

cycles correspond to closed curves in phase space of dynamical variables of the system 

and are independent of initial conditions. They imply th'at the system has a stable pattern 

of behaviour and yet it does not display numerical constancy of any of the state variables. 

The reason why a dynamically stable system may not display numerical constancy is that 

the system is continuously perturbed from within. 

A lot of work has been done to find out the periodic type solutions i~. the two 

species system. Kolmogorov (1936) has given a theorem which tells about the existence 

of stable equilibrium (or limit cycle) in two species systems. No such type of theorem 

exists for system of three or more species. As the system becomes more complex (more 

species, more interactions) it becomes more difficult to analyse the stability question. 

The main objective of the present work is to see whether it is possible to 

introduce, into a one prey-one predator system which exhibits limit cycle solution, a 

second prey species and still get limit cycle solutions. And we also wish to investigate 

within what range of parameters of initial two species system do we still get limit cycles 

for the three species system. Since for a three species system there is no theorem (like 

Kolmogorov's theorem for two species system) which can tell us whether a system may 

possess a stable equilibrium point or stable limit cycle, we have used only numerical 

methods to see whether the system possesses stable limit cycles or not. 

The plan of the present work is as follows : In chapter II first certain two species 

models are described. Kolmogorov' s theorem and certain conditions for which the two 
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species systems may possess limit cycle solutions are used. Next a one prey-one predator 

mixed model of Rai, Kumar and Pande (1991) is discussed and then it is extended for a 

two prey-one predator system. In Chapter-III we have analysed the above two prey-one 

predator model. The range of various parameters, within which the three species system 

still exhibits limit cycle solutions, is determined. The range of various parameters of the 

three species system is compared with the range of the same parameters of the two 

species system. Relevant conclusions emerging from this comparison are then discussed. 

As illustration of our solutions, phase space trajectories of the two species system as well 

as the three species system are shown. The variations of the population densities of prey 

and predator with time are also shown. 

The numerical analysis of the model has been performed on HP-9836 computer 

using Runge-Kutta fourth order approximations method. 
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CIIAIYI'ER II 

IlliVIEW OF SOME TWO SPECIES 

ECOSYSTEM MODELS 

Ecosystems in general are very complex. It is useful to consider first the simple 

idealised ecosystems and build a quantitative basis for them before trying to tackle· 

successfully the realistic ones. The most idealised system is one with a single species in 

an environment in which the resources are unlimited. It may be assumed that in such a 

system the growth rate per individual is same for all individuals and is furthermore a 

constant in time. If we level this growth rate by rand the population at time t by N(t) 

then the time rate of change of the population fis given by the equation. 

dN(t) - rN(t) 
dt . 

(2.1) 

Which on solving gives 

(2.2) 

where No is the population at time t = 0 

This is the well known Malthusian picture of populations growth where population 

rises exponentially with time. 

The environment is in reality not an unlimited one. The. food available to the 

population is sooner or later going to become limited because of rising population. 

Hence the growth rate r has to be such that it shows a decrease as the population rises. 
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The simplest possibility that we could consider is if r is replaced by r-sN, where s is a 

positive constant. The equation descri~ing the population growth is then 

dN 
-- (r-sN)N 
dt 

(2.3) 

This equation is the well known Pearl-Verhulst logistic equation of population 

growth, which leads to the result 

N (t) _ _r..:...._/s"-) _ 
1 +e -r(t-to) 

Where the constant e110 is related to the initial population by 

(r/s)-N(o) 
N(o) 

(2.4) 

(2.5) 

According to this picture, the population rises initially as in the Malthusian model, 

but as the population rises the growth rate begins to slow down and the population turns 

towards its asympt()tic value which is (r/s). The value N = r/-:; is the maximum that the 

population can reach and is therefore called the 'carrying capacity' of the given 

environment. 

The Lotka-Volterra Model 

We now consider a situation where we have two interacting populations in a given 

environment, say a prey and a predator. Two very general assumptions used in such 

prey-predator model are : 

1) The two populations inhabit the same area, so the densities are directly 

proportional to the numbers. 
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2) There is no time lag in the n!.sponses of either population to changes due to the 

other. 

An interesting and mathematically elegant model for the interaction between a pair 

of species - a prey and a predator, was given independent by Lotka (1925) and Volterra 

(1926) 

If H is the population of prey at any timet, in the absence of predator, its growth 

equation in simplest form is given by 

dH - ... aH 
dt 1 

If P is the population of predator at any time t, it's growth (decay) equ~tion in 

absence of prey can be written as 

dP ---a p 
dt 2 

If the prey and predator arc in the same niche and if they interact, then the 

interaction term is, in general, a complicated function of Hand P. But here we cunsider 

the simple quadratic form which is a product of the two populations. Consider the 

following equations for a prey-predator system. 

dH · 
- -(a -b P)H dt 1 1 

(2.6) 
dP 
--(-a +b H)P dt 2 2 
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where 

Here a1 and a2 are average rate of growth and decay per individual in the absence 

of the other species and b1, b2 are interaction parameters. If the niche is not overlapping 

the interaction is reduced and the values of b1 & b2 are very small. The sign· in the 

interaction terms in the above equations are based on the expectation that the interactions 

will generate predators at the cost of the prey. 

Unfortunately equations (2.6) 3t @;:1) can not be solved analytically. We have 

to take recourse to approximate schemes and numerical methods. In view of their non-

linear nature it is unlikely that full information content of these equations is uncovered 

by such methods. However an exact result which is of crucial importance in the present 

context can be established. 

We can write 

dH (a1-b1P)H 

dP (-a2+b2BQP 

of 

Integrating we get 

a2 In H - b2 H + a1 In P- b1 lnP = In K (2.7) 

(2. 7a) 
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Where K is a constant given by 

(2.8) 

in terms of initial values of H and P denoted by Ho and P0 respectively. 

We thus, see that system (2.6) possesses a conserved quantity given by the right 

hand side of equation (2.7). The equation represents a family of closed curves in which 

each member of the family is characterised by a particular value of K. We can not solve 

equation (2. 7a) for H or P individually but we can determine the curves on which H and 

P will move. To do this we equate the right and left hand sides of equation (2. 7a) to new 

variables Z and W respectively and then plot the graphs C1 and C2 of the function. 

as shown in figure ( 1). 

For Z = W, we are confined in the third quadrant to the line (figure 2.1). C. 

To the maximum value of Z given by point A on C1, there corresponds one point M on 

L anu the corresponding points A' and A" on C2 leading to 'two values of H which 

determine the bounds between which H may vary. Similarly minimum value ofW given 

by Bon C2 leads toN on Land hence to B' and B" on C1 and these points determine the 

bounds on P. In this way we find the points P1, P2 and Q1, Q2 on the desired curve C3 • 

Additional points are easily found by starting on Lata point R anywhere between M and 
!' 

N and projecting on one hand onto C1 and over to C3 and on the other, onto C2 and 

again over to C3• It is clear that the changing values of K raises or lowers the points A 

and B, and this expands or contracts the curve C3• Accordingly, when K is given various 
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values, we obtain a family of ovals about the pointS.·. 

Now, we will see how the point (H,P) on C3 moves around the curve as timet 

increases. We can find out the equilibrium point by putting the right hand side of 

equation (2.6) equal to zero i.e. 

Solving these equations, we get ~he. e.~ul/ibnuWI values tt 

Hence coordinates of point S wiiJ be 

When H < a2/b2, dP/dt is negative, so the point on C3 moves down as it 

traverses the arc Q2 P1 Q1• Similarly, it will move up along the Q1 P2 Q2• Hence as 

time t increases, the points on C3 move is anticlockwise direction. 

This shows that both prey and predator populations undergo oscillations with 

constant amplitudes. The amplitudes would be determined by the initial population sizes, 

H0 and P0 • This behaviour is generally referred to as one of neutral stability. 

The Leslie Gower model 

An alternative formulation of prey-predator equations was suggested by Leslie 

and Gower (1960). The rat\.! equations for Prey Hand predator Pare given by 

dH -. - (a -c P)H 
dt 1 1 

(2.9) 
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dP P - - <az-cz -)P 
dt H 

(2.10) 

Where 

We use isocline method to study the system. The H-isocline and P-isocline are 

the curves in P-H phase space on which the time rate of change of prey and predator 

respectively are zero. Thus on H-isocline dH/dt = 0 and on P-isocline dP/dt = 0. 

From equations (2.9) and (2.10) we can see that 

H isocline : 

p isocline : H =(c)a2)P 

Thus both isoclines are straight lines which intersect at point (P", H) where 

(2.11) 

At point (P", H") both dH/dt = 0 and dP/clt = 0. This means that at this point 

the populations of prey and predators remain constant with time, hence this point is the 

equilibrium point. We do not know yet whether this point is stable or unstable. From 

equations 2.9 and 2.10 we see if 

and vice-versa 

similarly if 

P > ~ then dH < 0 
c1 dt 

11 

dP > O 
dt 



and vice-versa 

In the figure 2.2 we have. plotted the H-isocline and P isocline. We have given 

the inequality conditions for all the four regions into which the positive H and positive 

P quadrant can be divided. 

Suppose initially our system is at a point in region I. ! n this region dH/dt > 0, 

dP/dt > 0. It follows that both H and P increases with time. Arrows show the 

direction in which trajectory moves. The trajectory will move towards the right and meet 

the H isocline. At H-isoeline dH/dt = 0 and tangent to trajectory will move normal to 

H isocline. In region II dH/dt < 0 , dP/dt > 0 hence trajectory will move towards right 

side so that H decreases and P increases (slope at any point of trajectory is negative). 

The trajectory than meets P isocline, in which dP/dt = 0 and tangent to the trajectory 

will be normal toP isocline. Similarly we can draw the trajectory for regions III and IV. 

The path of the trajectory is P-H phase space is spiral which converges at equilibrium 

point. Hence, each species population undergoes damped oscillations with time towards 

the equilibrium level. 

This model takes into account the likely effect on predator's per capita growth rate 

of the relative sizes of inter:· ·ting populations. Thus larger the ratio P/H the smaller the 

number of prey per predator and consequently, the less rapid the growth of predator 

population. 

Leslie's formulations is different from Volterra's in the following ways : 

I. For Volterra, whether predator increases or decreases in number depends only 
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on the density of prey whereas for Leslie it depends on the number of prey per 

predator. 

2. Volterra's model relates the rate of increase of predators to the rate at which the 

prey are being eaten whereas in Leslie's formulations there is no relationship 

between the rate at which predator eats and the rate at which it reproduces;· 

The Holling-Taimer model 

The Holling Tanner model is slightly more elaborate than that of Leslie and 

Gower. The growth rate of prey H in the absence of predators Pis given by the· logistic 

equation 

dH - rH (1- H) 
dt K 

(2.12) 

Where r is intrinsic growth rate of prey and 

K is maximum number of prey allowed by the resources of the system. 

When the predators are present in the system, the mortality from predators must 

be subtracted form the right side of equation (2.12). This mortality is the product of 

predation rate (number of prey killed per prcdntur per unit time) and the predator 

number. Many studies have shown that the predation rate increases with prey density in 

the manner shown in figure 2.3. One of the equations which will produce a functional 

response like this (by C. S. Holling 1969) is 
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where Y is predation rate 

WH 
Y- -­

D+H 

W is maximum predation rate 

D is a constant determining how fast the functional response curve 

increases a:t low prey densities. 

Thus we see that at very low prey densities predation rate is directly proportional 

to prey density and at very high prey density, it is constant. Each predator has a 

maximum predation rate at certain prey density. If prey density increases further then 

predator will not kill (or will not be able to kill) at higher rate. The predation rate is 

thus saturated. For a given prey density the constant Dis directly proportional to the time 

required for predator to search for and find a prey arid is therefore determined by the 

protection afforded to the prey by the habit. 

The complete equation for prey now becomes 

dH ( H) .WHP dt - rH l- K - D+H (2.13) 

For growth rate of predator population, an equation of Leslie-Gower form is taken 

be taken 

dP - sP(l- JP) 
dt H 

(2.14) 
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Where s is the growth rate of predators 

J is the number of prey required to support one predator at equilibrium. 

when P equals H/J. 

The equations (2.13), (2.14) give the complete formulation of the Holling-Tanner 

model. We now do the stability analysis of this model. 

The equilibrium point of the system is obtained by putting dH/dt = 0 and 

dP/dt = 0. Thus putting R.H.S. of equations 2.13 and 2.14 equal to zero we get 

p• = H•/J (2.15) 

H• WH•/rJ 
1--- - 0 (2.16) 

K D+H* 

Now Let et = W/rJ 

{3 = D/K 

Then solution of equation 2.16 for H. is given by 

H" = D (l-a-{3+R) /(2{3) (2.17) 

where R = [(l-et- {3)2 + 4{3] 112 

Hence p• = D ( 1-a-/3 + R)/ (2{31) (2.18) 

To study the behaviour of the system we proceed to a neighbourhood stability 

analysis (See Appendix - I). Let us rewrite the equations : 

dH · H WHP 
- - F (H,P) • rH(l--)- --
dt 1 K D+H 

17 
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dP JP - - F2(H,P) .. sP(l--) 
dt H 

(2.14) 

To construct the community matrix, we evaluate all partial derivatives of Fh F2 

at (H', P*) this gives 

( 
aF1 )* [ r WP • ] au - aHl - H*- K + (D+H*)2 

WH* 

(D+H') 

a,,-(~)'-·~:: s --
J 

The determinental equation for eigenvalue 'A reduces to 

For neighbourhood stability, the real parts of eigenvalues A. must be negative. 

This holds only if 

- [ 
r WP* l -H'--+ +s>O 
K (D+H*)2 

(2.19) 

- ·[ r WP* l sWH* 
-sH - K + (D+H*)2 + J(D+H*) > 0 

(2.20) 

18 



By doing some mathematical manipulations and substituting values of H. and p• 

we get the condition for stability 

.! > 2(«-R) 
r l+«+P+R 

(2.21) 

If this condition is satisfied than the model possesses a stable equilibrium point. 

If this condition is violated, then in view of the Kolmogorov theorem, we can conclude 

that the system will possess a limit cycle. A brief discu~sion of the Kolmogorov theorem 

and the conditions under which it is applicable is given in Appendix (II). The general 

formulation of the stability analysis in the local limit is given in Appendix (I). 

A Mixed Model 

In the Holling-Tanner model, the equation for time rate of change for predator P 

was identical to the one used by Leslie and Gower. It was in prey equation in whiCh they 

introduced an interaction term different from Leslie and Gower. Improvising on the idea 

of Holling and Tanner a two species model was constructed hy Rai, Kumar and Pande 

(1991). In this model the per capita growth rate of predator is not proportional to simply 

the population rate (P/H) but rather to a factor which is similar in form as predator':. 

attack rate with a ceiling occurring for H ~ oo. This establishes a desirable relationship 

between prey's loss and predator's gain which does not exist in the Holling-Tanner 

model. The predators functional response of Holling-Tanner type is retained. In this 

process the behaviour of the rate equation for predator near H = 0 is now improved over 

the Leslie-Gower and Holling Tanner models. 

The model is thus given by equations 
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dH 2 wt -a H-b H - PH 
dt 1 1 D +H 1 

(2.22) 

dP- -aP+~ HP 
dt D+H 

(2.23) 

where a11 b11 Wh D11 a, W, D are constants, all are positive 

Application of Kolmogorov theorem to this model shows that the theorem is 

satisfied by it under the conditions. 

W >a (2.24) . 

at Da 
->--
b, W-a 

(2.25) 

If the above constraints are satisfied, then the model will always lead to.solutions 

possessing either stable equilibrium or limit cycles. A local stability analysis around the 

equilibrium point will decide as to which possibility will arise and when. 

The equilibrium populations of the systsem are 

aD 
W-a 

The element a11 , a12, a21 and a22 of the community matrix A are given by 

The determinental equations for eigenvalues reduces to the quadratic 
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wop• 
a11 - a - 2b H • - 1 ~ 

t t (Dt+H*)z 

WH* 
at2 -

1 

(Dt +H*) 

azt -
WD. p• 

(D+H*)z 

WH* 
- 0 ~- -a+ 

D+ H* 

Stable equilibrium point for the system exists if the eigenvalues have negative real 

parts. This happen if the following conditions are satisfied (Routh-Horwitz Criteria). · 

D>O (2.26) 

(2.27) 

Since inequality 2.26 always holds true, because D is a positive constant, the 

choice of parameters which respects inequality (2.27) will lead to stable equilibrium and 

a choice violating it will lead to stable limit cycles (Figures 2.4 and 2.5). 
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A Two prey-one predator model 

We now extend the model, given Rai, Kumar and Pande, from one prey-one 

predator to two prey-one predator system. We have 'slightly modified the parameters 

used in their model. The prey-predator interactions terms in the rate equations for the 

two species are taken simply proportional to each other, as in the Lotka-Volterra case. 

Thus the equations are : 

dH - a H - b H2 ,_ ciPH 
dt 1 1 dH 1 

(2.28) 

. (2.29) 

The constants a 1, b" c1, d1 and a3have the usual meaning and are all positive. · 

Here the notation (used in equations 2.22 and 2.23) are different. The term a, here is the 

efficiency of conversions of prey consumed to predator population growth. Thus the 

contribution of predation to the growth rate of predator is now proportional to . the 

predation rate. The number of parameters in this model are reduced, hence this model 

is simpler. The condition for the existence of stable equilibrium point now reduces to 

(2.30) 

The choice of parameters which violate the above inequality lead to solutions with 

stable limit cycles. 

A second prey species is now introduced into the system. We assume that the 

second prey species do not compete with existing prey speCies in the system for 

23 



resources. Due to the introduction of second prey species into the ~ystem the predator 

will now start eating second prey species also. The effect of this will be that the 

predation rate of first prey species will be reduced. Thus the predators per capita 

predation rate of first prey is not only function of density of first prey species but also 

of density of second prey species. The. per capita predation rate of first prey species can 

now be written as (Noi Meir 1981). 

(2.31) 

where vl and v2 now denote the two prey species 

C1 is maximum predation rate of first prey speCies 

d1 is constant which determines how fast the functional response curve increases 

at low prey densities. For a given prey it is proportional to the time required for a 

predator to search for and find a prey and is determined by the protection afforded to the 

prey by the habitat. 

If we compare the predators per capita predation rate of first prey species in two 

species system (where only first prey exists) and three species system (where second prey 

also exists), we will see that presence of the second prey V2 in system has the effect of 

increasing the constant d1 (which is proportional to the time required for predator to 

search for and find the prey) from d1 (in two species system) to d1 + V2• This 

effectively decreases the predators per capita predation rate of first prey species. The 

predator's per capita predation rate of first prey species is shown in Fig (2.6). 
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The predation rate of second prey species can be written using similar arguments. 

Thus after the introduction of second prey species the rate equations for system 

will be 

(2.32) 

. (2.33) 

(2.34) 

where a2, b2, c2, d2, a 2 are parameters related to second prey species, all of which are 

positive. The introduction of second prey species into the system does not alte¢r the 

parameters of first prey species. For a three speeciess sysstem there does not exist any · 

theorem, corresponding to Kolmogorov's theorem in two species system, which can tell 

the conditions under which a system will cxihibit stable limit cycles or stable equilibrium 

point. Hence we resort to the numerical 1nethods to study the behaviour of above system. 
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CIIAPTERIII-

ANALYSIS OF THE TWO PREY ONE 

PREDATOR MODEL 

Recently John Loman (1988) has studied _' a _ system consisting of the two non-

competing prey species and a predator using a graphical method. He initially starts with 

a two species system of one prey and one predator which is at stable equilibrium. The 

graphical method is used to predict the circumstances under which a second prey species 

can be introduced into the system such that stable equilibrium is still maintained. He has 

shown that depending upun the circumstances, the introduction of an alternative prey may 

either reduce the equilibrium density of the first prey or it may lead to increased density 

of first prey population. The former phenomena is termed as 'apparent competition' and 

the later one the 'apparent mutualism' (Holt 1977). The scope of the study was limited 

to systems with populations at stable equilibrium point. 

We have considered a similar extension of a one pre-one predator system to a 

two prey one predator system with more general limit cycle solutions in mind. We start 

with a two species system discussed in the last chapter (the mixed model of Rai, Kumar 

and Pande 1991). 

The dynamics of prey and predator are described by 

(3.1) 
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(3.2) 

where a1, b11 c11 d11 a3 , a 1 are constants all of which are positive. 

As we have already discussed in the last chapter, the application of Kolmogorov's 

theorem give the following conditions for the system to possess either stable limit cycle 

solutions or stable equilibrium point. 

(3.3) 

(3.4) 

The linear stability analysis around equilibrium point give the following condition 

for the equilibrium point to be stable. 

(3.5) 

If this condition for the existence of stable point is violated then the system will 

exhibit limit cycles. 

When a second prey species is introd1,1ced into the system, the system becomes a 

three species systems of two prey and one predator. Now not only has the rate equation 

of second prey to be introduced but the rate equation of the predator and first prey have 

also to be modified. As we have discussed in the previous chapter, the rate equations for 

two prey species and one predator are described by the following equations. 
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dP 
dt 

(3.6) 

(3.7) 

(3.8) 

As it is well known, it is not possible to write down the exact analytical solution 

for the type of three species system discussed above. The bulk of information~·: obtainable 

from these models consists in knowing whether or not these systems are capable of 

possessing stable equilibrium or stable limit cycles. 

We are basically interested in the case in which in a prey-predator system, which 

exhibits limit cycle solutions, an alternatiye prey species is introduced. We want to see 

whether the system, which is now a two prey-one predator system, still exhibits limit 

cycle solutions. We also want to investigate how in such a situation the range of 

parameters of initial one prey one predator system, within which limit cycle solutions 

were possible, changes with the introduction of second prey species. 

In our study we use the Runge-Kutta fourth order approximation method to study 

the population densities of preys and predator at various times. We have then taken the 

projections of the trajectory of the system on V1 P plane and V2 P plane. If the system 

exhibits limit cycle in phase space of V1; V2 and P then the projections of the system 

trajectory on the coordinate planes V 1 P and V2 P will also be trajectories which 

asymptotically reach definite closed curves. The same closed curves will be reached for 
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varying initial conditions so long as the model parameters are not changed. 

We start with one prey one predator system and choose a set of parameters· for 

which the system exhibits limit cycles. The values of parameters are given in t;1ble 1. 

Next we tind the range of each parameter of the above two species system within which 

the systems still exhibits the limit cycle solutions. To determine the range, each 

parameter is varied, one at a time, keeping other parameters to the initial chosen value. 

For example the range of parameters c1 (The maximum predation rate) is from 19 to 40. 

The other parameter~are the same as given in table - I. Similarly the range ofother 

parameters is determined. 

When the second species is introduced into the system it becomes a three species 

problem. The number of parameters required to define the system is increased. The 

new parameters are the ones which are associated with the second prey species (see 

equation 3. 7). Keeping the initially found parameters of the two species system the 

same, we find a set of parameters associated with the second prey species for which the 

thr~e species system also exhibits limit cycle solutions. We have chosen three sets of 

parameters associated with the second prey ~pecies .. Their values are given in table- 11. 

Now we determine the range of the parameters of the Lhree species system within 

which the system still exhibits limit cycle solutions. Here we take only those parameters 

which were also the parameters of the initial two species system. For the two species 

system we have already determined their range for limit cycle solutions. The same 

parameters are now varied in the three species system. Thus to determine the range of 

a1 (the growth rate of first prey species) in the three species system, we keep all other 
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parameters to their chosen values and vary a1• The minimum and the maximum valut'S 

of a1 within which the three species system exhibits limit cycles constitutes the range of 

a1• For example, for the first set of parameters of the three species systems (table- II) 

the' system exhibits limit cycles between 2.5 to 5.3 hence it is the range of a1 for the three 

species systems. Similarly the range of b1 (self interaction term for first prey species) is 

determined by keeping the values of all other parameters of the three species system fixed 

and varying b1 till the limit cycle solutions exist. The range of b1 is between .007 to 

.020. In a similar way the range of c1 is found to be between 16 and 33, range of d1 is 

between 75 and 205, range of a3 is between 0.8 and 1.3 and range of a 1 is between 1.3 

and 2.9. 

The whole procedure is repeated for the second and the third set of parameters 

of the three species system. The range of parameters of the initial two species system as 

well as the full three species system (three sets) are shown in table-Ill. 
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TABLE- I 

Initial Two Species System 

c:¥1 = 0.1 

Rate equations of the one prey one predator systsem 

dP 
dt 

32 



TABLE II 

Three Species System 

Set I 

a, = 3.3 a2 = 3.5 a3 = 1 
bl = 0.01 b2 = 0.02 a 1 = 0.1 
Ct = 20 c2 = 20 a2 = 0.1 
dl - 100 d2 - 100 

Set II 

al - 3.3 a2 - 3.1 a3 = 1 
bl = 0.01 b2 - 0.01 a 1 = 0.1 
cl = 20 c2 = 15 a 2 = 0.1 
dl = 100. d2 = 80 

Set III 

at - 3.3 a2 = 3.1 a3 = 1.0 
bl = 0.01 b2 = 0.01 a 1 = 0.1 
Ct = 20 ~ = 20 a 2 = 0.1 
dl = 100 d2 = 100 

Rate equations of the two prey one predator system 

33 



TABLE Ill 

Ranges of various pa1·amctcrs for limit cycle solutions 

Parameter Initial two Set-! three Set-II three Set-Ill three . 
species system species system species system species system 

at min. 3.1 2.5 2.3 2.2 
max. 6.3 5.3 4.2 3.5 

bl min. .005 :007 .008 .009 
max. .010 .020 .045 .1 

~I min. 19 16 13 11 
max. 40 33 22 20 

dl mm. 50 '75 90 95 
max. 110 205 280 350 

aJ min. 0.5 0.8 1.0 1.0 
max. 1.0 1.3 1.3 1.4 

a! min. 0.10 0.7 0.06 0.04 
max. 0.20 .15 0.11 0.11 

In table-III we have compared the range of various parameters associated with the 

first prey before the introdu..:tion of second prey species into the system as well as after 

its introduction into the system. 

The study of various parameters viz. a1 (growth rate) b1 (self interaction terms), 

c1 (maximum predation rate), d1 (term proportional to time required for search and kill 

of prey), a3 (decay rate of predator) and al (efficiency of conversion of prey consumed 

to growth rate of predator) show that a range still exist within which the new there 

species system exhibits limit cycle solutions. The range of parameters does not remain 

the same. In some cases the range is shifted to the lower side (e.g. a11 c1 etc) and in 

same cases the range is shifted to the upper side (e.g. b11 d1, a3 etc). 
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If we compare the range of c1 (the maximum predation rate) we find that the 

min$m and the maximum value of predations rate in ~he two species system are 19 and 

40. Corresponding values for the three species system (set-I) are 13 and 33. The 

introduction of second species into the ecosystem reduces the value of maximum 

predation rate of the first species. Similarly comparing the values of constant d1 (term. 

proportional to search time for prey), we see that minimum and maximum values in two 

species system are 50 and 110. For three species system (set-I) corresponding values 

are 75 and 205. We observe that time required for search and capture of first prey is 

increased after second species is introduced into the ecosystem. Set- II and set- III also 

corroborate above facts. Both effects are due to the reason that the predation pressure 

on first prey is reduced when second species is introduced into ecosystem. Also since 

predator spends some time for search and capture of second prey species hence effective 

search time for finding first prey is increased. 

The figures 3.1 to 3.35 show some specimen results of the computer calculations. 

The numerical inputs for each figure are mentioned in figure caption table-I. figure 3.1 

to 3.6 are phase space diagrams for the initial two species system. For three species 

system we have drawn the projection o~ the system trajectory on V1-P and V2-P planes. 

As can be seen from figures, these are also the closed curves. We have verified that for 

each case the same curve is reached even when i1iitial conditions are changed. Thus the 

trajectories in the phase space of V11 V2, P end up in the limit cycles. Corresponding to 

each phase space diagram, the time development of each species of the system is also 

shown. 
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In figure 3.31 to 3.35 we have compared the time development of the population 

densities of initial two species system with final three species systems. Here, for the 

three species systems only the parameters related to the second species are changed. The 

other parameters for the three species systems are same as that of the two species system. 

The numerical inputs for each figure are mentioned in figure caption table II. It cari be 

seen that the range of the population of the first prey is increased when the second prey 

species is introduced into the system. This is analogous to the phenomena of "apparent 

mutualism", observed by Loman (1988). 
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1) Fig. 3.1 

2) Fig. 3.2 

3) Fig. 3.3 

4) Fig. 3.4 

5) Fig. 3.5 

6) Fig. 3.6 

7) Fig. 3.7 

FIGURE CAPTION TABLE - I 

Initial Conditions~ V(O) = ·130 P(O) = 15 

Numerical inputs for different parameters 

a, = 3.3 b1 = .01 c1 = 30 

a3 = 1.0 a1 = 0:1 d1 ~ 100 

Initial Conditions: V(O) = 40 P(O) = 22 

Numerical inputs same as above. 

Initial Conditions: V(O) = 130 P(O) = 15 

Numerical inputs for different parameters 

a1 = 3.3 b1 = .01 c1 = 30 

a3 = 1.0 a 1 = 0.1 d1 = 105 

Initial Conditions : V(O) = 50 P(O) = 20 

Numerical inputs same as above 

Initial conditions : V(O) = 130 P(O) = 15 

Numerical inputs for different parameters 

a, = 3.3 b, = .01 c1 = 30 

a3 = 0.8 a 1 = 0.1 d1 = 100 

Initial conditions: V(O) = 40 P(O) = 40 

Numerical inputs same as above 

Initial Conditions : V 1 (0) = 75 V iO) = 80 P(O) = 30 

Numerical inputs for different parameters 

a1 = 4.3 

a2 = 3.5 

a3 = 1.0 

b, = 0.01 

b2 = 0.2 

a 1 ~ 0.1 
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8) Fig. 3.8 Initial Conditions ~ V1(0) =· 110 V2(0) = 60 P(O) = 65 

Numerical inputs same as above 

9) Fig. 3.9 Initial conditions : V1(0) =. 105 V2(0) = 90 P(O) = 15 

Numerical inputs for different parameters 

at= 3.3 bl = 0.01 Ct = 20 dl = 100 

a2 = 3.~ b2 = 0.02 ~ =:_ 20 d2 = 100 

a3 = 1.0 a 1 = 0.1 a2 = 0.1 

10) Fig. 3.10 Initial conditions : V1(0) = 110 V2(0) = 80 P(O) = 75 

Numerical inputs same as above 

11) Fig. 3.11 Initial conditions : V1(0) = 240 V2(0) = 190 P(O) = 22 

Numerical inputs for different parameters 

a1 = 3.3 bl = 0.01 c, = 16 d, = 100 

a2 = 3.5 b2 =. 0.02 ~ = 20 d2 = 100 

a3 = 1.0 · a 1 = 0.1 a2 = 0.1 

12) Fig. 3.12 Initial conditions : V1(0) = 90 V2(0) = 60 P(O) = 65 

Numerical inputs same as above 

13) Fig. 3.13 Initial conditions ~ V1(0) = 120 V2(0) = 90 P(O) = 15 

Numerical inputs for different parameters 

a1 = 3.3 bl = 0.01 c, = 16 dl = 150 

a2 = 3.5 b2 = 0.02 ~ = 20 d2 = 100 

a3 = 1.0 a 1 = 0.1 a2 = 0.1 

14) Fig. 3.14 Initial conditions : VI(O) = 100 V2(0) = 60 P(O) = 65 

Numerical inputs same as above 

· .. 

38 



15) Fig. 3.15 Initial conditions : .. V 1(0) = 75 V2(0) ·=··· 80 P(O) = 30 

Numerical inputs for different parameters 

a1 = 3.3 bl = 0.01 c, = 20 d, = 100 

a2 = 3.5 b2 = 0.02 ~ = 20 d2 = 100 

a3 = 1.0 a 1 = 0.08 a2 = 0.1 

16) Fig. 3.16 Initial conditions ~ V1(0) = 30 V2(0) = 20 P(O) = 80 

Numerical· inputs same as above 

17) Fig. 3.17 Initial conditions : V1(0) = 160 V2(0) = 145 P(O) = 22 

Numerical inputs for different parameters 

a1 = 3.~ b, = 0.02 c, = 20 d, = 100 

a2 = 3.1 b2 = 0.01 ~ = 15 d2 = 80 

a3 = 1.0 a 1 = 0.1 a2 = 0.1 

18) Fig. 3.18 Initial conditions : V 1(0) = 40 V2(0) = 50 P(O) = 70 

Numerical inputs same as above 

19) Fig. 3.19 Initial conditions ~ V1(0) = 240 Vz(O) = 220 P(O) = 20· 

Numerical inputs for different parameters 

a1 = 3.3 b, = 0.01 c, = 15 d, = 100 

a2 = 3.1 b2 = 0.01 ~ = 15 d2 = 80 

a3 = 1.0 a 1 = 0.1 a2 = 0.1 

20) Fig. 3.20 Initial conditions : V 1(0) = 130 V2(0) = 90 P(O) = 75 

Numerical inputs same as above 

'· 
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21) Fig. 3.21 Initial conditions : V1(0) = 110 V2(0) = 140 P(O) = 225 

Numerical inputs for· different parameters· ·· ·· 

a1 = 3.3 bl = 0.01 Ci = 20 dl =200 

a2 = 3.1 b2 = 0.01. Cz = 15 d2 ,; 80 

a3 = 1.0 a 1 = 0.1 a 2 = 0.1 

22) Fig. 3.22 Initial conditions ; VI(O) = 80 Y2(0) = 50 P(O) = 40 

Numerical inputs same as above 

23) Fig. 3.23 Initial conditions: V1(0) = 15~ V2(0) = 150 P(O) = 22 

Numerical inputs for different parameters 

a1 = 2.3 bl = 0.01 c1 = 20 dl = 100 

a2 = 3.3 b2 = 0.01 Cz = 20 d2 = 100 

a3 = 1.0 a 1 = 0.1 a 2 = 0.1 

24) Fig. 3.24 Initial conditions~ V1(0) = 70 V2(0) = 40 P(O) = 40 

Numerical inputs same as above 

25) Fig. 3.25 Initial conditions : VI(O) = 170 V2(0) = 150 P(O) = 32 

Numerical inputs for different parameters · 

a1 = 3.3 bl = 0.03 Ct = 20 dl = 100 

a2 = 3.3 b2 = 0.01 Cz = 20 d2 = 100 

a3 = 1.0 a 1 = 0.1 a 2 = 0.1 

26) Fig. 3.26 Initial conditions: VI(O) = 30 Y2(0) = 100 P(O) = 85 

Numerical inputs same as above 
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27) Fig. 3.27 Initial conditions! , V1(0) .= 38 V2(0) ~ 8 P(O) = 18 

Numerical inputs for different parameters 

a1 = 3.3 b, = 0.01 c, = 20 dl = 200 

a2 = 3.3 b2 = 0.01 ~ = 20 d2 = 100 

a3 = 1.0 a 1 = 0.1 a2 = o.1 

28) Fig. 3.28 Initial conditions: V1(0) = 40 V2(0) = 90 P(O) = 85 

Numerical inputs same as above 

29) Fig. 3.29 Initial conditions ~ V 1(0) = 80 V2(0) = 30 P(O) = 30 

Numerical inputs for different parameters 

a1 = 3.3 b, = 0.01 c, =:= 20 d, = 100 

a2 = 3.3 b2 = 0.01 ~ = 20 d2 = 100 

a3 = 1.0 a 1 = 0.06 a 2 = 0.1 

30) Fig. 3.30 Initial conditions : V1(0) = 70 V2(0) = 50 P(O) = 40 

Numerical inputs same as above 
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FIGURE CAPTION TABLE- II 

1) Fig. 3.31 Initial populations : 

V(o) = 50 P(O) = 60 

Numerical inputs for different parameters 

a,= 3.3 b, = 0.01 c, = 20 d, = 100 

a3 = 1.0 a 1 = 0.1 

2) Fig. 3.32 Initial conditions : 

V,(O) = 70 YiO) = 50 P(O) .. = 42 

Numerical inputs for different parameters· 

a, = 3.3 b, = 0.01 c, = 20 d, = 100 

a2 = 4.3 b2 = 0.01 ~ = 20 d2 = 100 

a3 = 1.0 a 1 = 0.1 a 2 = 0.1 

3) Fig. 3.33 Initial conditions : 

V,(O) = 70 YiO) =50 P(O) = 42 

Numerical inputs for different parameters 

a1 = 3.3 b, = 0.01 c, = 20 d, = 100 

a2 = 3.3 b2 = 0.005 c2 = 20 d2 = 100 

a3 = 1.0 a 1 = 0.1 a2 = 0.1 
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4) Fig. 3.34 

5) Fig. 3.35 

Initial conditions : 

V1(0) = 80 V2(0) =50 P(O) = 40 

Numerical inputs for different parameters, 

a1 = 3.3 b1 = o.o1· c1 = 20 

a2 = 4.3 b2 = 0.01 C2 = 15 

a3 = 1.0 a 1 = 0.1 a 2 = 0.1 

Initial conditions : 

V1(0) = 80 Y2(0) = 50 P(O) = 40 

Numerical inputs for different parameters· 

a1 = 3.3 

a2 = 3.0 

a3 = 1.0 

bl = 0.01 

b2 = 0.01 

a 1 = 0.1 
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CI-IAPTER IV 

CONCLUSION 

We have studied a three species system consisting of two prey species and one 

predator. 

We were motivated by the paper of John Loman (1988) in which he has studied 

the extension of one prey one predator system to a two prcyone predator system. by 

introducing a second prey species into the two species system. He employed a graphical 

method, using consumption curve, production curve and auxiliary equation curve, to 

study the system, He confined his study to systems exhibiting stable equilibrium solutions 

only. A study of the two prey-one predator system was also done by Noy-Mier (1981) 

using isocline method. 

We have studied here the extension of a two species system to a three species 

system with limit cycle solutions in mind. We first started with a one prey-one predator 

system. Then using Kolmogorov's theorems and Linear stability analysis around the 

equilibrium point, the conditions for the systems to exhibit limit cycle solutions were 

found. A set of parameters which obeyed the said conditions were chosen. We also 

found the range of each parameter within which the system still exhibited the limit cycle 

solutions. For this one parameter was varied at one time. 

A second prey species was then introduced into the system. Thus one more rate 

equation (for second prey species) was incorporated into the system and also the rate 

equations for predator and first prey species were modifie9. We were able to find values 
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for the new parameters introduced into the system for which the three species system still 

exhibited limit cycle solutions. Three such sets of values were found. We also found 

for each set of parameters the range of old parameters within which the system exhibited 

limit cycle solutions. We found that a range still e~isted for which the three species 

system exhibited limit cycle oscillations, though the range of parameters was not the 

same as was for initial two species system. Thus we were able to show that it is possible 

. se.c.o .. J 
to introduce into a two species system (one prey-one predator) a #tift~. prey species so 

that the three species coexist in the dynamic equilibrium. 

It was also observed that when second prey species is introduced into a orie prey-

one predator system then the range of population of first prey species is increased. This 

in an average sense at least, suggests "apparent mutualism" which was also found under 

certain conditions by Loman in his study. 
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APPENDIX- I 

TI-IE LINUAIUZED STABILITY ANALYSIS 

Suppose multispecies population dynamics are given by a set of m equations. 

i = 1 to m 

here the growth rate of ith species at time t is given by some non-linear function Fi of all 

relevant interacting populations. The equilibrium populations N;·, are obtained form m 

algebraic equations obtained by putting all growth rates zero. 

(2) 

expanding about this equilibrium, for each population we write 

(3) 

Where x; measures the initially small perturbation to the ith population. Taylor 

expanding each of the basic equations (1) around this equilibrium and discarding all terms 

which are of second or higher order in x, a linearized approximation is obtained 

(4) 

This set of m equations describe the population dynamics in the neighbourhood 

of the equilibrium point. Equivalently, we may write, in matrix notation, 

Here X(t) is m x I column matrix of X; and A is m x m "community matrix" whose 
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dX(t) ~ A X (t) 
dt 

(5) 

elements a;i describe the effect of species j in species i near equilibrium. The elements 

a;i depend upon the details of the original equations (U and on value of equilibrium 

populations, according to recipe 

a--~ ( aF.J· 
ij aNJ 

(6) 

The partial derivatives are evaluated at equilibrium values of all populations. 

For the set of linear equations (5) the solution may be written 

m 

xi(t) - L c11 exp (,l. 1t) 
j-1 

(7) 

C;i are constant which depend upon initial values of perturbations to the populations and 

the time dependence is contained solely in m exponential factors. The m constants A.i 

U = 1 ,2, ... m) which characterize the temporal behaviour of the system are so called eigen 

values of matrix A. They are found substituting (7) into (5) to get 

or in more compact form 

m 

,1. xii(z) - L aij xJ(t) 
j-1 

(A- A.l) x (t) = 0 

(8) 

(9) 

Here I is m x m unit matrix. This set of equations possesses a non-trivial solution if and 

only if the determinant vanishes : 
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det(A-A.D • 0 (10) 

This is in effect mth order polynomial eq!Jation in A of matrix A. They may in 

' 
general be complex numbers, A = r+ i ~~ in a~y of terms o_f equation the real part t 

produces exponential growth or decay, and i0aginary part ~ produces sinusoidal 

oscillations. It is clear that perturbation to the eq'uilibrium populations will die away in 

time if and only if, all eigenvalues A have negativ~ real parts. If any one of eigenvalues 

has a positive real part, that exponential factor will grow ever larger as time goes on, and 

consequently the equilibrium is unstable. The special case of neutral equilibrium is 

obtained if one or more eigenvalues are purely imag~nary numbers and rest have negative 

real ports. 

Routh-llonritz Stability C.-itcria-~ 

The equation of polynomial of A is 

,m ,m-1 ,m-2 ' 0 
11. +a 1 ~~. +a.,/\. + •... .'.+a-

. - ' m 

' 
The necessary and sufficient condition for aq roots of above polynomial to be 

negative is that the coefficients a1, a2 ••• am must fulfill Routh-Horwitz stability conditions. 

The conditions for m = 2, 3, 4 are 

111 = 2 

m = 3 

m = 4 
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APPENDIX - ll 

KOLMOGOROV'S TllEOREM 

Consider a prey - predator system 

dH - H F(H,P) 
dt 

dP - p G(H,P) 
. dt 

Kolmogrov's theorem says that such a sys~em will possess either a stable 
' 
' 

equilibrium point or stable limit cycle, provided that H and G are continues functions of 
I 

' 
H and P, with continues first derivatives, throughout; the domain H > 0, P :=:: 0 and 

' 

that 

1. aFJaP < o 

2. H ca FlaH) + P caFJae) < o 

3. aaJaP < o 

4. H (aG/aA) + P (aG/aP) > 0 

5. F(O,O) > 0 

It also required that there exist quantities such:that 
I 

6. F(O, A) = 0 with A > 0 

7. F (13,0) = 0 with 13 > 0 

8. G (C,O) = 0 with C > 0 

9. 13 > c 
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The proof of above theorem follows from Poincare-Bendixon theorem. The 

theorem also usually holds when certain above conditions are equalities ( =) rather than 

in-equalities ( < or > ). 
' 

In more biological terms, Kolmogorov's conditions are roughly that 

1. For any given population size (As measured by numbers) per capita rate of 

increase of prey species is decreasing function of number of predators, 

2. The rate of increase of prey is a decreasing function of population size 

' 

3. Rate of increase of predators decreases with their population size. 

4. The rate of increase of predators is an increasing function of population size. 

5. When both populations are small the prey have a positive rate of increase 

' 
6. There can be a predator population size s~fficiently large to stop further prey 

increase, even when prey are rare. 

7. There is a critical prey population size B, beyond with they cannot increase even 

in absence of predators (a resource of othe~ self limitations). 

8. There is a critical prey size C that stops further increase in predators, even if they 
I 

be rare 

9. B must ·: always be greater than C (otherwise system will collapse) 
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