
ANALYSIS AND DETECTION OF MESSAGE PASSINq
DISCREPANCIES IN CONCURRENT PROGRAMS

DISSERTATION SUBMITTED BY

JISNU GHOSH

IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR DEGREE OF

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE&TECHNOLOGY

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-11 0 067

JANUARY 1994

-(!jjj)

CERTIFICATE

This is to certify that the dissertation

entitled "Analysis and detection of message passing

discrepancies in concurrent programs" being submitted by me

to Jawaharlal Nehru University, New Delhi in the partial

fulfilment of the requirements for the award of the degree of

Master of Technology is a record of original work done by me

under the supervision of Prof.P.c.saxena, Professor, School

of Computer and systems Sciences, Jawaharlal Nehru University

during the year 1993, Monsoon semester.

The results reported in this dissertation have not

been submitted in part or full to any other University or

Institute for the award of any degree or diploma etc.

4/
Prof K.K.Bharadwaj
Dean,
School of computer
and System Sciences,
J.N.U.,New Delhi.

Jisnu Ghosh

M~~~
Prof.P.C.Saxena
Professor,
School of Computer
and System Sciences,
J.N.U.,New Delhi.

To

my parents

ACKNOWLEDGEMENT

I confer my gratitude to Prof.P.c.saxena, Professor,

School of Computer and system Sciences, Jawaharlal Nehru

University, New Delhi for his precious and generous guidance

which has been indispensable for successful completion of

the dissertation. I am very much indebted to him for his

personal involvement with my work and for providing me with

valuable notes and references.

I extend my sincere thanks to Prof K.K.Bharadwaj,

Dean, School of Computer and System Sciences, Jawah~rlal

Nehru University for providing me with the environment and

all the facilities required for the completion of my

dissertation.

I also take this opportunity to thank all faculty

and staff members, my friends and well wishers who helped me

in every possible way. Specially I bestow my appreciation to

Abdaal and Manoj for their continuous encouragement

throughout different moments of time.

:J u. ~ ex.;t...
Jisnu Ghosh

CONTENTS

CHAPTER ONE-INTRODUCTION

1.1 Trends in Computing

1.2 Relevance Of the project

1.3 Organization-of the report

CHAPTER TWO-COMMUNICATION IN CONCURRENT PROGRAM

2.1 Examples of concurrency

2.2 Process

2.3 Types of Concurrency

2.4 Communication between processes

CHAPTER THREE-MESSAGE PASSING DISCREPANCY

3.1 Discrepancy

3.2 Aim of the project

CHAPTER FOUR-GLIMPSE OF CONCURRENT C

4.1 Interprocess communication

4.2 Process,Process types, Transaction

4.3 Process bodies

4.4 Process states and termination

4.5 Transaction calls

4.6 An example program

4.7 Delay statement

4.8 Timed transaction call

4.9 Nested process

...... 1

.....• 8

..... 32.

..... 44

CHAPTER FIVE-IMPLEMENTATION

5.1 Queue Generator

5.2 Detector

CHAPTER SIX-CONCLUSION

BIBLIOGRAPHY

..... 57

••••• 8 4

••••• 8 8

CHAPTER ONE

INTRODUCTION

1.1 Trends in Computing

During the last few decades a large number of

developments have occured in the field of computer science.

The storage capacity of the memories have increased to the

point where they equal a significant fraction of human brains

storage capacity. The speed and reliability of the systems

have been improved dramatically. A large number of impressive

software tools have been developed. Increase in device speed,

reliability and reduction in hardware cost and physical size

have greatly enhanced performance. Given these new hardware

and software systems and our improved understanding of the

physical world, we are in the threshold of exploring a new

horizon of exciting innovations. With the development of more

complex systems we are witnessing that the mainstream use of

computers are experiencing a trend towards ascending level of

sophistication. In the earlier days computers were only used

for data processing i.e. for number crunching purposes. But

as the accumulated knowledge bases expanded rapidly there is

a demand to use computers for knowledge processing. Todays

computers can be made very knowledgeable but far from being

intelligent. Intelligence is very difficult to create and its

processing is even more difficult. Computers are still unable

to communicate with human beings in natural forms like speech

and written languages, pictures and images, documents and

illustrations, computers are far from being satisfactory in

1

performing

thinking.

only for

developing

therom proving, logical inferences and crea'ti ve

We are in a period where computers are used not

data-information processing but also towards

practical intelligent systems to advance human

civiliazation. But this require massive computational power

and storage capacity by computers. For this reason high

performance computers are increasingly in demand in the areas

of artificial intelligence, expert system, industrial

automation, remote sensing,weather forecasting and so on.

Without superpower computers many of these challenges to

advance human civilization cannot be made within a reasonable

time period. This can only be acheived by exploring

parallelism. Parallelism is a demonstrated success in making

programs run faster. It is a conceptual model of tantalizing

potential. There are many applications which are

computationally intractable for sequential machines. The

speed of electric current flow along a conductor is one of

the physical phenomena which ensures that such machines can

never deliver the performance demanded by the seemingly

insatiable user. Parallelism is the answer to satisfy this

demand. Parallelism most observers agree can revolutionize

computing from supercomputer down to garden variety household

workstations. At the workstation level the implications might

be even more exciting than they are for supercomputing.

Powerful engineering workstations capable of present day

supercomputer performance will exploit concurrency not only

for raw compute performance but also to provide real time 3-D

graphics displays. The ability both to compute and to visual-

2

ize solutions of complex systems of equations will soon

become an indispensible tool of all scientists and engineers.

In programming a scientific or engineering problem a

conventional uniprocessor require the problem to be cast into

sequential form for its solution. In programming such problem

in a multiprocessor computer liberates the programmer from

this sequential straightjacket and natural parallelism of the

program can be exploited. Most real life science and

engineering problems decompose into many subtasks that can be

performed concurrently. Only parallel system can acheive a

computational throughput which is not acheivable in

uniprocessor.

But dealing with parallel computers we have to face

a challenge. The challenge is of efficiently programming a

parallel machine.The hardware cost is often only a small part

of the total cost of solving a problem. Software development

on such machines are at present less straightforward than for

sequential machines.

A parallel machine consists of many

that can be focused simultaneously on the same

subcomputers

problem. To

use a parallel machine, we need programs that do many things

at once. The problem is broken down into a number of parallel

tasks. Each task is designed to solve a specific portion of

the total problem. The successful completion of all the

subtasks causes the successful solution of the whole problem.

In solving the problem the subtasks can perform independantly

of each other or can work in a co-ordinated way depending on

3

each other on some particular occassion. Though a certain

bunch of tasks can be performed simultaneously c, LISP,

FORTRAN, BASIC and other conventional sequential languages

provide no tools for creating parallel tasks and co­

ordinating their activities. They lack the necessary

adjectives and verbs. Programmers need new tools , either new

programming languages or new dialects of the old languages or

runtime libraries of system level routines in order to write

parallel programs. For these reasons concurrent programs are

used for programming massively parallel computers. Concurrent

programming is becoming increasingly important because

multicomputer architectures particularly networks of

processors

traditional

are rapidly becoming attractive

maxicomputers. Concurrent

important for many reasons;

alternatives

programming

to

is

1. Concurrent

convenient and

programming facilities are

conceptually elegant when used

notationaly

for writing

example systems in which many events occur concurrently for

in operating system, real time system and database systems.

2. Inherently concurrent algorithms are best expressed when

the concurrency is stated explicitly, otherwise the structure

of the algorithm may be lost.

3. Efficient use of multiprocessor architectures require

concurrent programming.

4. Concurrent programming can reduce program execution time

even on uniprocessor by allowing input output operations to

run in parallel with computation.

4

· 1. 2 Relevance of the project

As stated above concurrent program consists of a

number of subprograms. Each subprogram can run on different

processors. In most cases, during the execution the

subprograms need-- to communicate with each other. The

different parts of the problem, the concurrent program is

trying to solve, may be dependant on each other. So, the

intermediate results generated in one subprogram can be

by another subprogram for its further execution. For

used

this

reason the subprograms are required to transfer data between

each other or are required to share some common data. One

type of communication is by using synchronised message

passing. Here one subprogram sends messages to other

programs, or receives messages from another program. In this

type of communication when a supprogram tries to send a

message to another subprogram it waits till the receiving

program accepts that message and then it goes on for further

computing.

subprogram

appropriate

It is also true for a receiving subprogram, this

also waits till it gets a message from an

sending subprogram and then it goes on for its

remaining computation. Now concurrent programs consists of a

number of subprograms and each may need to communicate with

each other. One problem that can appear in developing large

concurrent programs is that the message passing between

different subprograms may not be done in proper order. There

could be mismatch between different subprograms from the

5

point of message passing. The result is that some subprograms

can go in a continuous waiting state. So for successful

running of the concurrent program we have to be sure that

there is no messsage passing discrepancies between different

subprograms. To check that manually will be a very time

consuming and error prone job, specially for large softwares.

In the project work a model has been provided which can

detect this type of discrepancies in concurrent programs

which are using synchronised message passing primitives for

interprocess communication. The program is developed to

detect message passing errors for programs written in

Concurrent c language.

1. 3 Organization of the report

In the next chapter i.e. chapter II communication

methods in concurrent programs has been described in general.

The specific importance is given on the message passing model

of communication between diferent processes which is the main

area of this project work.

In chapter III the problem of message passing

discrepancies

simultaneously

importance of

shown.

between different processes

has been discussed thoroughly.

the problem from different point of

running

Also the

view is

In the project work Concurrent C language has been

used as the target language on which the detection scheme

will be applied. So, in chapter IV the Concurrent C language

6

has been described breifly.Mainly those features of the

language which is needed for the implementation purpose has

been discussed thoroughly.

about

Chapter V is for implementation. Here the details

the model and the implementation of it for the

Concurrent C language is detailed.

Chapter VI is conclusion. Here the acheivement and

limitation

development

highlighted.

of the project work has been discussed.

which can be done in this area

7

Further

is also

CHAPTER TWO

COM~CATIONINCONCURRENTPROGRAM

Concurrent program can be defined as a program which

consists of a number of subparts which are designed to run

simultaneously. Concurrency has ·been present in computers

for almost as long_ as computers themselves existed. Earlier

during the development of digital computer it was realised

that there was an enormous discrepancy in the speeds of

operation of electro-mechanical peripheral devices and the

purely electronic central processing unit. The logical

resolution of this discrepancy was to allow the perpheral

device to operate independantly with the central processor to

make productive use of the time that the peripheral device

is using,rather than waiting for a slow operation to

complete. concurrent programming as a discipline has

been stimulated primarily by two developments. The first

is concurrency which has been introduced in the hardware,

and concurrent programming could be seen as an attempt to

generalise the the notions of tasks being allowed to proceed

largely independantly of each other,in order to mimic the

relationship between the various hardware components. In

particular the control of specific hardware component is

often a complex task requiring considerable ingenuinity

on the part of the programmer to produce a software driver

for that component. If a way could be found by which those

aspects of the driver which are concerned with the

concurrent activity of the device might be separated off

8

from other parts in the system, the task is eased

tremendously. If concurrent programming is employed, then

the programmer can concern himself with the sequential

aspects of the device driver, and only later must he face

the problem of the interactions of the driver with

other components within the system.The second development

which leads directly to a consideration of the use of

concurrent programing is a rationalisation and extension of

the desire to provide an operating system which would

alllow more than one user to make use of a particular

computer at a time. The introduction of concurrent

programming techniques was also recognised to be a useful

tool in providing additional structure to a program.

2.1 Examples of Concurrency

An example of concurrency can be seen by considering

the evaluation of an arithmetic expression. Suppose one

wiswhes to evaluate the expression:

(a*b+c*d**2)*(g+f*h)

It is assumed that the identifiers a,b,c etc have

values associated with them and the priority rules for

evaluation of the expression are as would be expected. A tree

may be drawn showing the interdependencies of the

subexpressions within the whole expression and one may

use this tree to identify

the evaluation. Three

possible

concurrent

concurrency within

evaluations of

subexpressions can begin at once, namely, a*b, d**2, and

9

f*h. When the second and third of these are finished,

the multiplication by c and the addition of g can take

place respectively, also in parallel. It is only after

c*d**2 has been evaluated that the sub expression a*b can be

added, and then finally the evaluation of the whole

expression can be completed.

2.2J>r~ess

Process is a very important notion for concurrent

programming. It can be stated that the basic building block

for concurrent program is process. One informal definition of

process can be stated as that which runs on a processor.But

this requires to know what is meant by a processor.For

general purpose, processor consists of a device which is

capable of acessing other devices in order to retrieve

information or send information to that device.

A formal model of process in terms of a set of state

varibles can be given. At any given moment of time, each of

the state varibles will contain a particular value and this

collection of values is known as the state of the process.The

behaviour of the process can be described in terms of an

action funtion which maps from one state to another.The

action function is completely determined by the design of the

hardware on which the process is running.

10

2.3 Types of Concurrency

Concurrency in a program can be harnessed in

different ways. As for example we can have real concurrency

or pseudo concurrency. It is almost always the case that the

system allowing the use of multiple concurrent processes will

require more processes than the available processors. In

those rare cases when the number of process will be lower

than the available physical processors we can have real

concurrency where each process will run on different

processor. In the more usual situtation where the program

will require more processes than there are processors

available,in order not to restrict the system arbitrarily,it

is necessary that some mechanism be provided which will

simulate the action of a number of processes using single

processors only. This may be achieved by running the

processor under the control of a program commonly called

kernel. Here time division multiplexing is provided.

Concurrency provided in this manner is called pseudo­

concurrency.

2. 3.1 Statement Level Concurrency

The fundamental notion

concurrency is to have some basic

required

constructs

be regarded as sequential in the ordinary

to specify

which may

programming

language sense. Concurrency can be achieved in instruction

level,i.e. the granularity of the parallel activity could be

11

at the level of individual machine instruction. A slightly

more structured view of the concurrency could be taken by

considering not machine instruction level, but by considering

a single high-level language statement to be the primitive

construct.

One of the earliest notations proposed was that of

Dijkstra which is parbegin and parend.Since then a number of

authors have used cobegin and coend for the same meaning. As

with the sequential begin and end as found in a language such

as Pascal the cobegin and coend are used to bracket a group

of statements. Thus we might expect to find that the

definition of the language might include the BNF description:

<concurrent statement>::=
cobegin<statement list> coend

The action of the concurrent statement impli~s a

certain synchronisation of concurrent activity, both when the

concurrent statements begin, and when it completes.

2.3.2 Program Level Concurrency

Every operating system which has the facility for

providing simultaneous interactive access to multiple users

or for processing multiple parallel streams of jobs,must be

able to handle a set of concurrent processes.Even if the

system has totally static structure in which no additional

processes are created and no processes are destroyed during

the life of the system, concurrent processing will require

some kind of view of what a process is.In the simplest

12

possible case, there must at least be one process to look

after each of the interactive terminals,even if the

invocation of a program by a user causes that process to call

the program as procedure.Other systems may take the view that

the creation of a new process is required whenever a user

wishes to start a-new program executing. The creator of the

new process may or may not be suspended until the new process

terminates.In such system, it may be said that the

granularity of concurrency is the whole program.Concurrency

within UNIX operating system has the granularity of the whole

program ,and it uses this later technique to execute programs

and commands at request of the user, although the user may

specify whether the parent process is to regain control

immediately or to wait until the child process

terminates.User programs may however create new processes for

their own purposes, although they may still only execute

whole programs within a process.

2. 4 Communication Between Processes

As long as all of the concurrent processes are

proceeding completely independantly of each other, we would

expect them all to continue at their own speed until they

terminate.If this does not happen,that is if the result of a

process are affected by the presence or absence of another

supposedly independent process, then we have to investigate

the underlying mechanism to find the reason for this

problem.For the purposes of the discussion of the concurrent

13

processes themselves,they will have an effect on each other

if they are required to communicate with each other.

If two processes wish to communicate with each

other, then this implies that they need to share some common

information. If this were not so, then the two process would

be totally independent of each other and could proceed in

parallel without any interference between them.Thus ·some

information or resource, is to be shared by two or more

processes. Shared resources may be regions of memory or

peripheral devices to which both processes require access.

Sometimes simultaneous access to a resource by more than one

process is permissible, but more frequently it will be

necessary to impose the restriction that only a limited

number of processes can have access to the resource at any

one time.

The communication between concurrent processes can

be considered of having two guises, interference and

communication. Interference is generally regarded as an

occurance in which one process is able to interfere with the

progress, and more importantly with the outcome or results of

another process. On the other hand cooperation is regarded to

be a generally desirable feature which only affects the

behaviour of the participant processes in a constructive way.

Processes executing concurrently and independently

may proceed at their own rate and no assumptions may be made

about the relative times at which they carry out their

14

individual actions. Even with pseudo concurrency the

primitive operations of each process may be executed at

arbitrary moments in time with respect to the times at which

other processes' primitive operations are carried out.It will

be true of course that the primitive operations within each

process will be executed in the correct order, but those

operations may be interleaved with the operations of other

processes in a completely arbitrary way.

which

Now some high level constructs will be discussed by

a structured approach to the inter process

communication problem can be proposed.In the same way that

the use of high level languages allow the programmer to

express his algorithms in a more natural way and hence the

inclusion of simple logical errrors less likely so the use of

high level synchronisation constructs in concurrent programs

will also tend to reduce the incidence of elementary

concurrent programming errors.

2. 4.1 Shared Data

In this type of communication between processes the

processes wishing to communicate with each other do so not

by addressing each other but by accessing data which is known

and available to them all.This type of construct also

provides way of accessing the shared data which ensure that

the data itself is not compromised by undesirable

simultaneous accesses by competing processes by offering

15

operations in the form of procedures and functions to cont.r·ol

the manipulation of data.The data structure itself is purely

passive, and changes are made to the structure by allowing

procedures and functions to be called by the active elements

in the system, namely processes.As these procedures are

called they in a sense become part of the process which calls

them, and the data itself temporarily becomes part of the

address space of the calling process.Here the competing

processes are not required to have any knowledge of the

identities of their competitors, but merely to know the name

of the object(s) they wish to access and which operations

they wish to apply to the data.

Different types

shared data construct.

Critical Regions

of program structures are used in

Brinch Hansen presents a program structure,

originally proposed by C.A.R.Hoare which gaurantees a correct

use of critical sections and provides a method of ensuring

that shared varibles are only accessed within an appropriate

critical sections.This construct is called critical region.

Brinch Hansen suggests that it should be possible to declare

varibles to have the attribute shared, and he proposes that

an additional control structure called region should be

provided. The region statement is used in a similar manner to

that in which the Pascal with statement is used but the

subject of the region statement is required to have the

16

attribute shared.The semantics of the region statement then

require that exclusive control of this shared varible is

necessary before the body of the region is executed.

The following program gives an example of the use of

shared data construct;

typeD= ... ;
var v:shared D;

begin
initialise(v);

cobeqin

P1: repeat
region v do critical section 1;
non critical section i

until false;

P2: repeat
region v do critical section 2;
non critical section-2;

until false; - -
co end
end

The advantage of this type of construct is that the

compiler handling construct of this type will ensure that the

shared resource (the shared variable v in this case) is only

accessed within the respective critical sections.

Monitor

Though the critical region construct has the ability

to check that the shared data is not accessed outside the

critical region, however, they do not apply any discipline to

the way in which the shared data is manipulated. That is once

approval has been obtained for access to the shared data,

17

there are no constraints on the operations which maybe

performed on the data. There is, therefore , an obligation on

the programmer to ensure that the·manipulations carried out

on the data structure during the execution of the critical

region donot leave the structure in an inconsis.tent

state, i.e. the invarient is true on exit from the critical

region.

To impose some controls over the way in which a

shared data structure is manipulated monitor type of

synchronisation construct is used. This is an extension of

the notion of class as found in some programming languages.

The class allows the programmer to manipulate a data

structure in a controlled way by making access to the data

impossible except through a defined interface, consisting of

a set of functions and procedures. Thus it can ensure that

unconstrained interface with the data is impossible, since

the creator of the class can define those and only those

operations on the data which do not destroy the consistency

of the data structure. Another feature of the class construct

is that it encourages the use of abstract data types

which operations can be defined without the client of

upon

these

operations being burdened with the implementation details of

the data type. By compelling the user of the data structure

to access it only through the defined operations, the author

of a class can ensure that the concrete representation of the

data(i.e. the local variables of the class)is in a consistent

18

state on exit from the class. Furthermore the principle of

the

in

class can be used to group together data and

a single structure. This property of the

operations

~lass is

precisely what is required to maintain the integrity of a

data structure when it is desired to operate upon it with a

number of concurresnt processes.

The monitor construct , proposed by Hoare , provides

the notion of shared class, but goes onto insist that any

process wishing to execute an operation of the class may do

so only if no other process is currently accessing the data.

So, the monitor can be considered as a set of hidden

variables together with a set of visible procedures and

functions, but with additional restriction that only one

process may be executing any of the procedures at a time.

Monitor is also like shared variables because access to the

components of the shared variable is only permitted using

particular sections of the code. The principle difference is

that the monitor provides a single object in which the data

and the operations on that data are collected together in one

place within the program. In other words it is not necessary

to broadcast all the details of the data structure to all the

processes which might wish to use it, but merely provide

operations which will manipulate the data structure on behalf

of the processes.

19

As with the critical region, so with the monitor,

there is logical problem associated with giving excll•sive

rights of access to a data structure to a process which may

be unable to use it for other reasons. It is then necessary

for this process to relinquish control in order to let a

second process have access to the_data , while at the same

time keeping some rights of access so that operations may be

performed when the inhibiting condition is removed. The

monitor therefore, like critical region, requires a

mechanism for allowing a process which has control of the

monitor, to relinquish temporarily in order to allow another

process to make modifications to the data structure and thus

allow the first process to continue . Such mechanism is

provided within the monitor and is called a condition. A

condition is similar to semaphore and actually the condition

is also manipulated by using two primitives signal and wait

which behave in similar manner to the corresponding semaphore

operations. A variable of type condition may only be declared

within the monitor however, and therefore the operations

can only be invoked by a process already in a monitor

procedure or function. The effect of calling a wait

operation on a condition is to cause the calling process to

be suspended and to give up temporarily control of the

monitor. Another process may then enter the monitor , and it

is expected that some other process will eventually invoke

the signal operation on the condition, at which time the

waiting process can be resumed.

20

A simple example program with monitor construct is

shown below to illustrate the idea;

monitor
BEGIN

END

var busy:Boolean;
Nonbusy:condition;

procedure acquire;
· begin

if busy then Nonbusy.wait;
busy=true;

end;
procedure release;

begin
busy=false;
Nonbusy.signal;

end;
busy=false;

Here we have a single resource for which a number of

processes are competing and the characteristics of the

process is that only one process should be able to use the

resource at any one time.It is therefore necessary to impose

some constraints on the access of the resource. The two

variables busy and Nonbusy used here , not known outside the

monitor, restricts the acess of the resource.

Though the behaviour of a condition is similar to

the semaphore but there are two very significant differences

between them. Firstly the wait operation on a condition

variable will always cause the calling process to suspend

itself, unlike the semaphore wait which will decrement the

semaphore counter and then only wait if the resulting value

is negative. Thus the behaviour of a program using a

semaphore will depend crucially upon the initial value given

to the semaphore counter, a condition variable requires no

initialisation. The monitor conditions are generally

associated with boolean expression which is generally tested

before the wait is called, and this test in some sense

replaces the test of the counter value during the semaphore

wait operation.

The second difference arises from the fact that a

signal on a condition variable has no effect if no proceses

are waiting.

2. 4. 2 Message Passing

It is another technique for communication between

concurrent processes. In this method each process has its own

self contained state space or address space which is not
'

shared by any other processes either as a whole or in part.

Here the message passing operations are primitives which are

part of the underlying architecture providing concurrency

support and are available to any process wishing to use them.

The simplest form of interaction between two

processes Pl and P2 is for one of them (Pl) to send a message

to another (P2). For this P2 must call the primitive receive

and Pl must call send , specifying both the message to be

sent and the intendent receipent(P2). So, it is necesary for

Pl to be aware of P2's identity. Here in this example it is

not necessary for P2 to be aware of the identity of Pl, not

22

even after the message has been delivered. Two operations

required can be represented like shown below,

procedure send (p: Proce·ssid; m: MessageForma t}
and

procedure_receive(var m:MessageFormat}

Here in this case the reliability of the message

transfer mechanism is not considered. For the transfer to

occur actually, there must be a degree of synchronisation

between the communicating processes. synchronisation depends

on the implementor of the underlying system, particularly as

the individual processes are supposeedly unaware of the

passage of time if for any rreason they are unable to make

progress. Thus the semantics of the operation send are that

the procedure is complete when the message has ceased to be

the responsibility of the sending process. If the process

should happen to be delayed for any reason while attempting

to send a message, the process will not be aware of the

delay. Similarly , the process wishing to receive a message

will be delayed until a message is available. Having called

the receive primitive , the process will not be aware of any

further progress until the receive completes by delivering

the incoming message. The sending and receiving process may

be required to synchronise absolutely in order to transfer a

message, meaning a send must wait until a matching receive is

invoked, after which the message transfer takes place, and

23

the two processes can continue along their respective

execution paths. Alternatively the underlying system may be

capable of buffering messages, in which case an attempted

send will complete as soon as the buffer mechanism has taken

the message and placed it in its own private memory space

ready for delivery-when an appr.opriate receive call is made.

Since the sending and receiving processes are unaware of any

delays there may be within the message transfer mechanism,

distinctions such as these are of no interest to the

communicating processes. But there are variations of message

transfer mechanism which are of interest to and may have

consequences for the users of send and receive primitives.

In the first simple example stated on message

passing mechanism the receiving process had no knowledge of

the source of the received message but for most practical

cases the receiving process needs to know the source of the

received message. A possible example is when a process is

offering a service of which a number of processes (which are

called clients) may want to avail .. So, the process offering

the service , which is the server, will need to carry out an

action on behalf of a client , and then reply to the client

indicating the results of the action. In such cases it is

necessary for the server to know the identity of the client

process, since it could be any of the clients which requested

24

the service. A modification to the previous receive operation

stated will make this possible as shown below;

procedure receive(var p:Processid;var m:MesageFormat)

The two procedures send and receive as defined

represent the simplest possible mechanism for passing

messages between processes. Any synchronisation which may

take place as a result of passing messages is not significant

as far as the component processes are concerned. There are

however some possible alterations which may be made to the

message system which do affect the behaviour of the

communicating processes.

In the procedure receive the calling process is

given the first message which was·sent to that process. If

for any reason the process wishes to receive a message from a

specified sender then the receiving process must take

responsibility for accepting all of the messages sent to it,

and dealing with them at a later time. This responsibility

could be in the form of simply replying to the sender of each

unwanted message ,asking for the message to be sent at a

later time. When the awaited message arrives the receiver can

take the required action and then return to the problem of

the messages which arrived in the interim or waiting for

resubmission.

25

It is possible for the message system to handle it

on behalf of the processes, however, by allowing the user of

the receive primitives the option of specifying the process

from which a message is to be received. Clearly it would not

be desirable for this to be the only way of receiving the

messages , but in some instances it would be more convenient

for the system to handle the queing of unwanted messages

rather than placing this responsibility with the user

process.

In the previous paragraph the concept of client

server relationship has been introduced, now we consider a

situation like that shown in the figure below

GJ I >II s>~--->GJ
GJ

Proces P3 is a server which offers services, and say

Pl and P2 are two clients of P3.It may be frequently the case

that the server process while serving a request from a server

26

(say Pl) may discover that it itself needs a service from

another server say P4. The process P3 can therefore act both

as a client and a server at the same time. Let us take the

case that while processing a message from Pl , P3 sends a

request to P4. P3 will be unable to complete the service for

Pl until it is receiving the service from P4 and it

therefore will have to call the receive procedure to accept

the message returned from P4. Now one thing can happen, if P3

simply accept the next message sent to it , then the message

can come from any of the other processes such as from P2. So,

P3 has to remember the message from P2 and process it at a

later time or else send a reply to P2 asking it to send the

message at a later time.Selective receive are used for this

type of situation.Here the receiving process specifies the

process from which it wants to accept the next message. A

possible applicayion is where a server wants to restrict his

client processes for safety or security purpose of the whole

system.A special case of the selective receive is to extend

the message system to include a reply primitive.

This operation looks like send but is only used

following a receive to acknowledge that the messege has been

received.The send itself is modified so that the sending

process is blocked until the reply is received. The

unconstrained send and receive and send with blocking until

the reply is received is shown in the adjoining figure.

27

Sender
----------------------------.----------------------------------->

1 Send

Receiver
----------------- ----------------------------------->

(a) Unconptrained Send

Sender 1
............. -->

------------~1-R_e_p_l_Y ___________________ > ---------......... .
Send Receiver

(b) Send blocked until reply

~----------------------------------~-->

··········rRecelve Sender

Receiver
--->

(c) Unconstrained send

s~~d~~~~~~~l········· ··r __ r_e_p __ l_y-------------------->

L--------------------------->

Sender

Receiver

(d) Send blocked until reply

The unconstrained send and receive, and the send

with blocking until the reply is received are shown in figure

(a) and (b). In both these cases the receive is being

executed before the send i.e. the receiving process has to

wait until the send primitive is called by the sending

28

process. In the figures (c) and (d) the send occurs before

the receive operation is taking place. In the figure (d) the

sending process is delayed due to two reasons; firstly

because the receiving process is not ready to accept the

message and then because the reply has to be returned

before the sender can continue. This type of message passing

where send is blocked until a reply comes is also called

synchronised message passing.

2. 5 Concurrent Languages

There are a number of languages providing concurrent

statements with different types of communication and

synchronisation facilities.Some of the languages supports

synchronous message passing, asynchronous message pas~ing,

rendezvous,

primitives,

transactions.

remote procedure calls,

operation invocation on

Languages of the first

multiple communication

objects and

two classes

point to point messages. Rendezvous based languages

atomic

provide

support

two way communication between senders and receivers. A remote

procedure call is a two way interaction but its semantics

are closer to normal procedure call. Languages in the fifth

class use variety of one way and two way communication

primitives. Object based languages also support one or more

of the above primitives. Here unlike other languages

communication is between objects rather than processes.· As

object encapsulates both data and behaviour, these languages

may also be thought of as providing some form of data

29

sharing. Occam, NIL, Ada, Concurrent C are some of the

important languages which are widely used nowadays.

Occam is modeled on C.A.R. Hoare's CSP

(Communicating Sequential Process) and was designed for

programming Inmos~s

assembly language

transputer. Occam

of the transputer.

is essentially

The language

the

uses

synchronised

purpose.NIL or

level language

message passing for its communication

Network Implementation Language is a high

for the construction of large reliable

distributed software. NIL was designed by Robert Storm and

Shaula Yemini at the IBM T.J.Watson Research Center.NIL is a

secure language based on asynchronous message passing where

one program module cannot affect·the correctness of other

modules. Security in NIL is based on an invention called

typestate. The language Ada was designed on behalf of the

Department of Defence by a team of people led by Jean Ichbiah

[U.S.Department of Defense 1983]. Parallelism is based on

sequential processes called task in Ada. Each task has a

certain type, called its task type. A task consists of a

specification part which describes

communicate with it and a body

how other tasks

which contains

can

its

executable statements. Tasks can be created explicitly or can

be declared but in neither case it is possible to pass any

parameters to the new task. Limited control over the local

scheduling of tasks is given by allowing a static priority to

be assigned to task types. There is no notation for mapping

30

tasks onto processors. Concurrent C extends the C language

. (Kernighan and Ritchie 1978) by adding support for concurrent

programming. The language is developed at AT & T Bell

Laboratories by N.Gehani et al.This language uses

synchronised message passing for communication between

processes. More about this language will be discussed in

subsequent chapter.

So, from the above discussions it can be seen that

the main reasons for writing an application in concurrent

program are; high speed through parallelism, high reliability

through replicaton of processes and data, functional

specialization. Concurrent programming is welcomed by the

designers of programming languages based on paradigms like

logic programming, functional programming and object oriented

programming. They reliazed that parallelism might be the

solution to the problem of obtaining an efficient

implementation of their languages. This has led to the

development of several languages providing higher level of

abstraction.In this chapter the communication mechanism for

concurrent program has been narrated breifly ,in the next

chapter the problem of message passing discrepancy for

synchronous communication model of communication is

illustrated.

31

CHAPTER THREE

MESSAGE PASSING DISCREPANCY

In developing software system it is seen that

disassembling a program to subparts is generally not a

difficult task but the hard part is to put the tasks back

into coherent whole. Specially it is more difficult when

developing concurrent programs,where the different subparts

are dependant on each other and need to communicate with each

other. Two types of communications are possible between

different processes of concurrent program, they are by using

shared data and through message passing. However there is

some limitations in using shared data communication. One

!imitating factor is the performance degradation due to

memory contentions which occur when two or more processes

attempt to access the same memory unit concurrently. Another

limiting factor is processor memory interconnection network

itself. So, message passing techniques for communication

between processors is becoming popular. The main advantage is

one need not have to use global memory. Reliability of the

system also increases with the use of local memory. Many

languages such as Occam for Transputers,Concurrent c support

message passing method for inter process communication.

Message passing between different processes can also be done

in two methods. One is asynchronous or buffered communication

another is synchronized or communication through blocked send

and receive. Buffered communication is the technique where a

process sending a data is allowed to leave it in the

32

communication module for subsequent collection by a receiving

process. Unlike buffered communication in synchronized

communication what happens is that the execution of two

processes is aligned in the communication module to allow the

transfer of data from one process to the other to take place.

Synchronized communication between two concurrent processes

require each process to issue matching send and receive

operations which are then synchronized to enable one process

to transfer data directly to another. In operational terms

the first process that attempts the transfer is made to wait

until the other is ready. Similar is the case for receiving

process.

3.1 DISCREPANCY

So,it can be seen that there is one problem, that is

of synchronisation between different processes when

developing concurrent program. As described in the earlier

chapter that when synchronised message passing primitives are

used then, when a process wants to send a message,it must

call a send primitive and has to wait till the receiving

process

also

process

receive

invokes a corresponding receive primitive. This is

same for a receiving process. When the receiving

wants to accept any message it has to call the

primitive and has to wait until there is a

corresponding send operation taking place. So, there is a

problem of matching in this type of communication. If the

send or receive operations do not have a matching pair, the

33

corresponding processes will go into a continuous waiting

state. This is explained by a simple code segment of three

communicating processes below;

procedure Firstprocess

var Cl,Dl,m,l:integer;
check, flow: integer;
Al(lOO],Bl(lOO]:Array of integer;
p2,p3:processid;

Begin
Cl=O;
read(m);
for i=l to m
begin
read{Al[i],Bl[i]);
Cl=Cl+Al[i]*Bl[i];

end;

p2=Secondprocess;
p3=Thirdprocess;

send{p2,Cl);
receive{p3,Dl,l)
flow=Cl*l-Dl;
receive(p3,check);
if(flow<check)then write("Increment the valve outlet");
else if(flow=check)then
write("Keep valve position same");
else if(flow>check)then
write("Decrease the valve outlet);

End

procedure Secondprocess
var a,b,k,D2,C2:integer;

pl,p3:processid;

Begin
pl=Firstprocess;
p3=Thirdprocess;

End

receive(pl,C2);
read(a,b,k);
if{k<lOO)then
D2=C2+a;
else D2=C2+b;
send(p3,D2};

34

procedure Thirdprocess
var k,C3,D3:integer;

A3(100],B3(100]:Array of integer;
pl,p2:processid;

Begin
read(k);
C3=0;
for i=l to k
begin
read(A3(i],B3[i]);
C3=C3+A3(i]*B3(i];

end

End

send(pl,C3);
receive(p2,D3);
D3=D3+C3;
send(pl,D3,k);

Here we see the processes Firstprocess,

Secondproces, Thirdprocess are interacting with one another

and each of them is doing some specific task in a process

control system. The result generated by one process is

utilised in another process for its computation. The final

output comes from the process Firstproces. But there is an

error in the Firstprocess. This is not a syntactical error,

but error in matching. As it is seen due to the wrong

placement of send and receive statements all the three

processes will go into waiting state. There is a simile

between this waiting state and that found in deadlock

situtation. In deadlock also a set of process waits for some

event to occur by another process of that set with no one

being able to administer that event.

35

Here the situtation is somewhat different, the

processes waits not due to nonavailability of resources but

not being able to communicate with each other. The problem

arises due to the discrepancies in message passing between

different communicating processes. Message passing

discrepancies can be again divided in two categories. The

communication between processes can be of unpredictable order

for some problems. Suppose there is a problem which is

divided into different subparts where each part is being

executed by a process. The requirement may be that each

process will communicate the intermediate results generated

by it whenever it gets any break. One situation may arise

when all the processes get some solution at one time and

tries to communicate with each other. Here all the processes

will try to send the messages with no one willing to receive.

Instantly all the processes will go on in infinite waiting

state. The main reason for this problem is that there is no

gaurantee that a process will send exactly one message for

each it receives. The number of incoming messages in a given

period may be quite unpredictable as may the number sent, and

the two numbers may be completely unrelated. This thing can

be avoided by making the processes behave in a more regular

and predictable manner. This disciplined approach is more

reliable than the free for all approach, although it may not

be so fast. But here also problem can arise. One case may be

that all the processes begin to work by sending messages or

status information, then there will be none willing to

36

receive any message and immediately all the processes will go

on in continuous waiting sfate. For the system to run

successfully at least one of the process must begin by

receiving. This is an example of excess elegant symmetry.

Many problems have regular structure which tempts the

programmer to solve them using a number of similar concurrent

processes. But if they are too similar then, when one

attempts to send a message , so will all the others attempt

to send, causing probably infinite waiting condition for some

or all of the processes.

The problem just described above is of dynamic

nature, which occurs during runtime, the programmer does not

have any control over them. The problem requirements become

such that the program becomes prone to this type of

discrepancies. This shortfall can not be predicted during

developing the programs. And as the length of program

increases 4 the probability of this problem also increases.

Another kind of thing can happen that is the discrepancy in

message passing can creep in during the development of the

concurrent program. The reason for.which is erroneous coding

during the development.The error which was described in the

previous example of three communicating proceses Pl, P2, P3

is of this type which has occurred due to improper

synchronisation during developing the software.

At the time of developing the software the

programmer will be aware of the different processes to

37

exchange messages. The intermediate results generated can be

used by many processes for their computation and one process

can use results of many other computing processes for its

computation. Now the question comes that in which order the

result will be send to those processes. Similarly for a

receiving process the problem is to determine in which. order

it will receive different messages from different sending

processes. Natural tendency of programming is whenever a

result is ready, it will be send to the processes those which

wants them for their computation and also similar is the case

for receiving operations. Whenever.a data will be first

only before that it will be attempted to receive from

processes. So, for successful message transfer it

necessary to keep the order of message passing proper.

it becomes very difficult with the increase in length of

program and number of interacting processes.

used

other

is

But

the

It can be seen that if the program is relatively

small then this type of error can be detected by the

participating programmers. They can make a table of

interprocess message passing information for each process and

can match them with the tables of other processes. Even for

relatively small programs this will take quite a long time.

For large programs with a number of processes and

interprocess message passing , cheking all the processes for

finding discrepancies will not only be a very time consuming

job but also very error prone. For every message passing i.e

38

send or receive operation from a process the programmer has

to check not only that the destination process has the

matching receive or send but also that the corresponding

process will be able to perform those operations i.e. he has

to check that whether there is any discrepancies in message

passing between that process and any other process, which

process may eventually be dependant on the first process

invoking the message transfer. So, it is seen that in a way

the programmer has to check all the processes which are

participating in message transfer between each other. As with

large software, the entire progran can be divided in

different modules comprising of a number of processes and

each module can be developed by different programmers, so the

task for checking and detecting this type of errors manually

will be very time consuming and there is every possibility of

human error to creep in.

So, it can be realised that the problem of message

passing discrepancies are more difficult to solve than that

of deadlock due to resource sharing. Incase of deadlock some

prevention and avoidance mechanism can be used to cope with

it. Even deadlock removal is not very difficult in the sense

that what we have to do is first identify the processes in

the deadlock cycle and then preempt some of the processes and

provide the resources used by them for use by other waiting

processes. The processes which will be preempted depends upon

the policy which the system is following. The situtation is

not so straightforward in the case of message passing

39

discrepancies. To break the waiting state some of the

processes are to be provided with the required messages. An

example with the three processes Pl,P2 and P3 is shown below.

>Cf=J
._____GJ <-------'1

Here Pl is waiting for a message from P2, P2 is

again waiting for a message from P3 and P3 in turn on Pl. To

break the waiting state one of the.processes,assume P2 is to

be provided with the message . But P2 gets the message from

P3 so P3 should provide the message.But P3 is again waiting

for a message from Pl and unles.s it gets the message from Pl

it can not go on for further computation and provide the

message to P2. Because further computation of P3 depends upon

the message received from Pl ,so it becomes impossible to

break the waiting state during execution. So the solution of

the problem at runtime is not possible in any simpleway. The

best thing can be done is to try to avoid the situation as

far as possible. This can be acheived if proper checking of

the program is done before execution.

40

3.2 Aim of the project

In the project work a model is provided using which

mismatch errors for processes communicating by the help of

synchronised message passing can-be detected. This is an

userfreindly software which will help the programmers in

developing large concurrent programs. The software will

releive the programmer from the boredom of checking the

processes for correct ordering of interprocess message

passing. The time saved can be used by the programmer for

other fruitfull works or checking other errors in the

program.

The significance of this detection is that if it is

not used the processes will go on in infinite waiting

state during execution and there is no available runtume

solution for this error. All the processes are to be rolled

back and the root for the problem is to be detected. This .will

cause enormous loss of computing time. Another importance of

the problem comes to light when concurrent programs are

applied to real time systems. For some critical system such

as space flight actual testing of the program is not possible

and a problem such as this can cause total wastage of lot of

time and money.

Another aspect of the problem is that in concurrent

programming environment if a process goes on to continuous

41

waiting state this can cause errorneous termination of the

program other than blocking the execution of the program. The

follwing example will explain the case.

within TIME? p.send(parameters):expr;

Here p is a process valued expression on the

transaction send. TIME is a number·indicating the duration of

the transaction call for which the sending process will wait

to receive an acknowledgement from the receiving process p.

If the receiving process sends the acknowledgment within the

duration TIME then the value returned by p will be the

value of the timed call expression. Otherwise, the call

will be withdrawn, expr expression will be evaluated and that

will be the value of the timed call expression.

Now the process p may also communicate during its

execution with other processes and suppose due to

discrepancies in message passing it is waiting on some

communication with other processes. What will happen? The

process p will not be able to accept the call send and the

expr will be evaluated and the result will be the value

of the process valued expression. So the execution of

the sending process will go on in wrong direction ultimately

producing wrong results. The implication here is that if

the process p directly doesnot affect the output

then none will be aware of this execution error because the

program will generate results, but which is wrong. If this

42

misleading result is not detected then the actual error in

the program will not be corrected and the program will not be

able to perform its intended job without any recogniziable

defect. The effect of this bug in crucial systems developed,

spending lot of manhour, money and time will be serious.

The program developed in the project work is able to

detect this discrepancies in message passing for fairly large

number of programs written in concurrent c language. It

can be understood that the importance of parallel processing

is increasing day by day. From few years from now concurrent

programs running on parallel hardware of network of

multiprocesors will be used profusely for all business and

scientific applications. The objective of this project is to

help the programmer in developing concurrent programs for

genuinely parallel hardware.

In the next chapter a brief discussion of

the Concurrent c language is provided which is useful

for the implementation purpose.

43

CHAPTER FOUR

GLIMPSE OF CONCURRENT C

Concurrent C is an upward compatible extension of

the C programming language,it provides concurrent programming

facilites. It has been developed by N.H.Gehani and W.D Roome

in AT&T Bell Laboratories. Concurrent C is based on the

synchronous message passing model that has been described in

the concurrent programming section of this report.The

development of Concurrent c has been done keeping two

objectives in mind;

a)To provide a concurrent programming language that can be

used for writing programs on genuinely parallel hardware,such

as network of multiprocessors or wqrkstations.

b)To provide a test bed for experimenting with a variety of

high-level concurrent programming facilities and distributed

programming.

4.1 lnterprocess Communication

In Concurrent C programmers define processes that

communicate by synchronous message passing.Synchronous

message passing primitives combine process synchronization

with information transfer.Two processes interact first by

synchronizing, then by transferring information, and finally

by continuig their individual activities.This synchronization

is called a rendezvous.

44

In simple rendezvous, the exchange of information is

undirectional, from the message sender to the receiver.

However, many process interactions such as client process

requesting service from a server process, require

bidirectional information transfer, and hence require two

simple rendezvous. The server performs the request, and then

if necessary, does a second rendezvous with the client to

give it the results of executing the request.

In Concurrent C extended rendezvous or transaction

concept is used. An extended rendezvous allows bidirectional

information transfer using only one rendezvous. After the

rendezvous is established, information is copied from the

process requesting the service,the client, to the server. The

client process is then forced to wait while the server

process performs the requested service. Upon completion of

the service, the results, if any,are returned to the client,

which is then free to resume execution. From the clients

viewpoint, an extended rendezvous is just like a function

call.

It can be mentioned here that like Concurent C the

programming language ADA is also based on rendezvous model,

but there are important differences between the concurrent

programming facilities in the two languages.

The reasons for chosing message passing model of

communication in Concurrent C as stated by the developers

45

are;

a)Most interprocess interactions are synchronous: the client

requests a service, and waits for it. This matches the

synchronous model perfectly. Thus although the

model is more flexible, few people will use

flexibility.

b)A synchronous model can be impiemented more

asynchronous

this extra

efficiently

than an asynchronous model. For example,an asynchronous model

requires message buffers and a sizable message controller,

data must always be copied into a message buffer and then

out. For the synchronous model, data can be copied directly

from the client process to the server process, without going

through an intermediate buffer and the servers reply can be

copied directly to the client. Thus the synchronous model

saves space and time.

4.2 Process,Process type and transaction

A process definition consists of two parts: a type

(or specification) and a body(or implementation). A process

is an instantiation of a process definition. Each process has

its own flow of control;it executes in parallel with other

processes. The existence of a process definition does not

automatically create a process. Instead , the programmer must

create each process explicitly at run time. One can think of

each process as having its own stack, machine

registers,program counter etc. Most implementations will have

some underlying scheduler that runs these processes on the

46

available processors. Concurr·ent c does not define the

scheduling policy, except to say that the scheduling policy

should be fair. The process type is the public part of the

process definition. Only the information specified in the

process type is visible to other processes. A process body

contains the code{and associated declaration and definitions)

that is executed by a proces of that type; it is analogous to

a function body, which it resembles. Details of the process

body is not visible to other processes.

The extended rendezvous model has a client process,

which initiates an interaction, and a server process, which

waits for an interaction. The process type defines the kinds

of extended rendezvous for which this process can act as

server. Each kind of rendezvous is called a transaction. For

each transaction, the process type defines the name of the

transaction,the types of the arguments passed by the client,

and the type of the value returned to the client. In extended

rendezvous the client process is referred as calling a

transaction to the server process, and the rendezvous itself

as the transaction call.

Process types and transaction declarations:

A process type has the general format;

process spec process-type-name(parameter-declarations)
{transaction declarations};

where parameter-declarations is a conmma separated list of

parameter declarations as in

47

process spec multiply(int num, intmax_size)

If a process has no transactions, the type can be

written as

process spec process-type-name(parameter declarations)

Concurrent c processes synchronize and communicate

by means of transactions. A process type must have a

transaction declaration for each transaction for which this

process can act as server. A transaction declraction is like

a function declaration except that it is preceded by keyword

trans, and that the parameter types are explicitly specified.

The form is:

trans return-type tname(.parameter-declarations);

This declare a transaction named tname, which

returns a value type return-type; parameter-declarations is a

comma-separated list of parameter declarations. The

paramaters represent the data that the client gives to the

server; the return type is the type of the data that the

server returns to the client.

The same transaction name can be used in several

process types, and those transactions can have used in

several process types. Thus, a transaction name

meaningful in the context of a specific process

short, transaction names are to process types as

member names are to structure types.

48

is only

type. In

structure

4. 3 Process Bodies

A process body has the form

process body process-type-name(process-parameter-names)

compound statement

The process body specifies the C statements to be

executed by each process of that type. Each process is

sequential program components that runs independantly and 1n

parallel with other processes. The compound statement in the

process body can have automatic variables; each process of

that type will get its own set of variables. Process

parameters are used in the process body just as function

parameters are used in function bodies. The types for the

process parameters are given in the process type; they are

not repeated in the process body. Values for the process

parameters are supplied when each instance of this process is

created. Process bodies can contain any legal c statement,

plus several Concurrent C extensions, such as accept and

select statements. Process bodies can call functions; the

function is considered to be executing on behalf of that

process. Any function can be called by a process of any type.

The create operator is used to create a new process of the

specified type with appropriate values for the process

parameters. For example,given the declaration

process spec check(int max){ .. }

the expression

create check(1000)

49

creates a new process of type check, with 1000 for the

parameter max, create returns a process value for this type,

in this case a value of type process check. In a process

body, the return statement terminates the process that

executes it. This is equivalent to running off the end of the

process body. A process can not return a value.

4. 4 Process Stotes and Process Tennination

A process can be in any one of the following three

states:

(i) A process becomes active upon creation and remains in

the state while executing the statements specified in the

corresponding process body.

(ii) A process becomes completed when it executes a return

statement in its process body, or when it reaches the end of

its body.

(iii) A process becomes terminated when it has completed and

all the processes created by it have terminated or it

executes a terminate alternative.

A process can also be terminated explicitly by

c abort function, i.e. the call c_abort(p) aborts p.

Abortinhg an active or completed process forces it to become

terminated.

50

4. 5 Transaction Calls

A transaction call is the caller side of the

transaction. The fornmat is similar to a function call;

process-value.transaction-name(actual-parameters)

Process-value is a process valued expression

designating a specific process. The type of the process must

have a transaction named transaction-name,and the types of.

the arguments must match that transaction's parameter types.

Like C function arguments, transaction arguments are passed

by value. The transaction call expression has the type

returned by the transaction. In general, a transaction call

can be used whenever an expression.of that type is allowed.

The calling process is delayed until the called

process accepts the transaction. The called process is given

the values for transaction parameters specified by the

caller. The calling process then remains suspended until the

called process returns a value, this becomes the value of

the transaction-call expression.

accept statements

The accept statement is called process's side of a

transaction. An accept statement has a form:

51

accept transaction-name(parameter-list)

compound statement

The compound statement is the body of the accept

statement. An acce~t statement can.only appear in the body of

a process whose type has a corresponding transaction

declaration.

Receive of Transaction call

For an accept statement , if a process has one or

more transaction calls outstanding for a transaction named t,

then accept statement for t accepts one of them immediately.

Transaction calls are accepted in first-in first-out (FIFO)

order. If there are no outstanding transaction calls for t,

then the accept statement waits until such a call arrives.

Once a transaction call has been accepted, the body

of the accept statement is executed. Within the accept

statement body, the parameter names represent variables that

are initialized to the parameter values given by the

transaction caller. The scope of a parameter variable is

limited to the body of the accept statement. To retain a

parameter value beyond the scope of the accept statement

52

body, the parameter value must be stored in a variable with

larger scope.

The calling process is delayed until the accept

statement terminates by completing execution of its body or

by executing a treturn statement of the form shown below;.

treturn [expression]

The value of the treturn expression is returned to

the calling process. The type of expression must conform to

the result type of the corresponding transaction. If the

result type is void, then no value is returned to the calling

process, i.e. a treturn statement without an associated

expression is used. After executing the treturn statement,

the process containing the accept statement goes on to

execute the next statement after the body of the accept , and

the process issuing the transaction call becomes free to

resume execution.

An accept statement can only be used in the process

body, it can not appear in a function. This restriction is

made so that the compiler will know the type of the processes

executing the transaction calls and can verify that the

processes have those type of transactions defined.

53

4. 6 An example program

Here a simple example program is given to illustrate

the Concurrent C language;

#include<std~o.h>
#include<ctype.h>

process spec consumer()

{
trans void send(int c);

} ;
process spec producer(process consumer cons);
process body consumer()
{

}

int ch;
do{

accept send(c){ch=c;}
if(ch!=EOF)
islower(ch)?putchar(toupper(ch)) :putchar(ch);

}while{ch!=EOF);

process body producer(cons)
{
int c;

do{
c=getchar();
cons.send(c);

}while(c!=EOF);
}

main()
{

}

process consumer q;
q=create consumer;
create producer(p);

It is an example of conventional producer-consumer

problem expressed in Concurrent c.

54

4. 7 Delay statement

A process can delay itself by executing a statement

of the form;

delay duration

where duration is a floating point expresion specifying the

amount of the delay in seconds. The actual delay may be more,

but not the less, than the requested delay.

4. 8 Tuned transaction caU

The timed transaction call allows the client process

to withdraw a transaction call if the server process named

does not accept the call within the specified period. A timed

transaction call is an expression of the form

within duration ?p.t(actual-parameters):expr

where duration is a floating point expression, p is a

process-valued expression and t is a transaction name. If the

process p accepts this transaction call within duration

seconds , the value returned by p becomes the value of the

timed transaction call expression. In this case the

expression expr is not evaluated. otherwise the transaction

call is withdrawn, expr is evaluated, and its value becomes

that of the timed call expression~ The transaction call is

withdrawn automatically, Concurrent C gaurantees that the

server process never accepts a call that has been withdrawn

by the client.

55

4.9 Nested Process

Concurrent

syntactically

processes.

nested

c does

within

not allow

functions

process

or within

to be

other

The concurrency model in Concurrent C is based on

the rendezvous model concept.Concurrent c can be used for a

variety of applications;

1. To implement parallel algorithms.

2. To write genuinely distributed applications such as

distributed databases.

3. To write real time programs.

4. To implement operating systems.

The next chapter explains the implementation detail

of the project.

56

CHAPTER FIVE

IMPLEMENTATION

Concurrent C has been chosen as the language on

which the detection schema has been applied. The reason for

chosing Concurrent C is varied. Concurrent C is an extension

of c language. The popularity of c language is the main

reason for chosing Concurrent c. As Concurrent C is similar

to C language so any one knowing c language will be in

advantage in using it and as a number of people use C

language today so there is every possibility that Concurrent

C will become popular in future. Second and more obvious

reason is that the model developed can detect errors for

synchronized message passing techniques and Concurrent C

uses that mechanism of message passing between different

communicating processes.The software has been developed in C

(Kernighan & Ritchie) language.

The detection schema is divided into two parts; the

first one is QUEUE GENERATOR and the second one is DETECTOR.

5.1 QUEUE GENERATOR

This is the first part of the detection model. The

sole aim of this portion is to generate queues

to each processes. These queues will be then

second portion which is the DETECTOR.

corresponding

used in the

In this section of the program the file containing

the Concurrent c program will be opened for analysis. The

57

file is read till the end is reached. Each of the process

in the file may be involved in a number of message passing

transactions either sending data to another process or

receiving data from other processes. The QUEUE GENERATOR

analyses each of the process and for every process it makes

queues listing all the transaction names encountered in the
-

process, and their characteristics i.e. whether it is a

sending operation or a receiving operation and if it is a

sending operation then the identity of the receiver. However

the identity of the receiving process is not stored which

will be explained later.

In the previous chapter various features of the

Concurrent c language has been discussed. It can be seen

there, that the Concurrent c program consists of three main

sections. One is the process specification section, where

various attributes of the process is described, among these

are the parameters that the process will take, the

\

transaction in which it will enter, the processes to which it

will send data. As seen in the examples given there that in

the process specification section no identity of the sending

process is given when a process is receiving any transaction.

So, in developing the queues in QUEUE GENERATOR for receiving

process only the transaction details have been included.

Similarly it can be seen that the sending process doesnot

have the transaction name, the specification of it consists

of only the identity of the receiving process. Analysing the

process body of the Concurrent c program it can be seen that

58

each receiving process has a process identity which is

different from the process name. This process identity is

used in the sending process to send data to the receiving

process. The receiving process uses accept statement for

receiving a data from a sending process. An example of

sending statement is again given here for convenience;

cons.check(k);

Here cons is the process identification name of the

receiving process , check(k) is the message to be sent.

In the receiving process this message check(k) will be

received as;

accept check(k)

So, the QUEUE GENERATOR will look for this type of

operations in the process bodies. It discerns the process

identification such as cons as described above and places the

message in the queue with the name of the receiving process.

Similarly if it encounters an accept ptatement it places the

transaction in the process queue and mark it as receiving

operation.

pseudo

below.

The detailed explanation can be found from the

code of the QUEUE GENERATOR which has been given

Now the data types which has been used and the

implication of them will be discussed which is needed for

better understanding of the pseudo code.

59

queue: It is a record with four fields.transac is the field

which contains the name of the message encountered in the

process bodies. client field stores the process

identification of the receiving process to which the message

containing in the process body is sent. key and loop are two

integer fields that will be used in the DETECTOR portion of

the program. The declaration of the queue is as follows;

struct queue{
char transac(20];
char client (10);
int key;
int loop;
} ;

pa: It is also a record type data type with two fields.

One is the procname. It is a string which contains the name

of the processes. stadd is a pointer which stores the

starting address of each of the process queues that will be

generated during analysing the process bodies.

struct pa{
char procname(20];
struct queue *stadd;

} ;

ident: This record type data type contains fields which are

bdname and mpname. Both of them are strings. bdname is used

for storing the names of the processes which are used in the

process body. mpname is used for the process identification

names whiCh are used within the process bodies for message

passing. It is declared as;

struct ident{
char bdname(20];
char mpname (2 0) ;
} ;

60

A number of subroutines are also used in the QUEUE

GENERATOR, they are as follows;

giveword: This is used for reading the file which contains

the the program-written in Concurrent c. As only the reading

of the Concurrent C program is necessary so the file

containing the Concurrent c program is opened in the reading

mode only. giveword takes the address of the string name and

each of the time it is invoked it stores the next word

encountered in the file in the string name. giveword also

returns integer values according to the terminator

encountered while reading the word as stated below;

1: if I I is encountered.
2 : if I (I is encountered.
3 : if I) I is encountered.
4 : if I { I is encountered.
5: if I } I is encountered.

A string of characters,which has been read till

then, is stored whenever the above five characters is

encountered or a new line or a blank,or a tab, or an EOF is

encoutered. Only for the five characters mentioned the

specified values is returned and for all other cases any

nonzero value other than the five above is returned. When EOF

is reached a specific value is returned to indicate end of

file. The filepointer attached with the file is used for

all the reading operations. The prototype of this procedure

is;
int giveword(char *);

61

initialise: Whenever a process body is encountered in the

file of the Concurrent c program a process queue is

generated. This is done by dynamic memory allocation. All the

information regarding message passing for that process is

stored in the process queue. Process queues are of the data

type queue as stated before. initialise is the procedure

which will intialise each of the process queues before its

first use in the QUEUE GENERATOR. Length of each of the

process queues is a predetermined value. This procedure

initialises the transac and client field of all the elements

to a specific string and the sprocess and the key field to

zero. The prototype of this procedure is;

void initialise(struct queue proqueue[QMAXJ);

Here QMAX is the length of each process queues.

check_process: This subroutine is used to determine whether

the word returned by the giveword is a process identification

name or not. This procedure uses the proname array for.

detecting a process identification name. In the proname array

the mpname field stores all the process identification name

for all the processes. According to the syntax of the

Concurrent C program it can be seen that the process

identification name terminates with a dot. So, if a dot is

encountered as a terminator for the string returned by the

giveword this checkprocess is invoked. The string returned by

giveword, stored in the name string variable, is matched with

62

all the process identification names stored in the mpname

field of the proname.If a match is found it returns a value

acGordingly. Prototype of this procedure is;

int check_process(char *);
•

s_addqueue: This is used for adding the messages·

encountered in the process bodies for the sending operations.

It stores the operation names and the identification of the

receiving process. The procedure takes the process

identification name, the message name and the address of the

next vacant element of the process queue of the sending

process as input. It stores the process identification name

in the rprocess field and the message in the transac field in

the element of the process queue. If the message has been

found within the loop then the loop field is marked to

one.The procedure returns the address of the next vacant

element of the process queue for the process for which it is

invoked so that this address can be used for subsequent

operations. Prototype of this procedure is;

struct queue *s_addqueue(char,char,struct queue *);

r_addqueue: This is the counterpart of the s_addqueue

applied for receiving operation. Whenever an accept statement

is seen in the Concurrent c program this subroutine is

invoked and stores the message in the queue for that

particular process. As stated in the s_addqueue this

procedure also takes the address of the next vacant element

of the process queue of the process where the accept

63

statement has been encountered. The message name is placed in

the transac field of that element. If the message has been

encountered inside the loop the loop field of the element is

marked to one. The prototype of this procedure is;

struct queue *r_addqueue(char,struct queue*);

proarray: This fs an array of record type pa. This array

will contain the name of each of the process queues and the

starting address for each of the process queues for each of

the process. The starting address must be nonzero.

The algorithm for the QUEUE GENERATOR is described

below;

ALGORITHM

l.Enter the name of the file containing the program written

in the Concurrent C language.

2.0pen the file whose name is entered for reading, assign a

file pointer to the file for subsequent access purposes.

3.If the file cannot be opened, write error in opening the

file and end the program.

4.Initialise the procname and stadd field of the proarray

Also Initialise the bdname and mpname field of the proname

array.

5.Get a word from the file invoking the giveword. If it is

end of the file go to step 28.

64

6.Check whether the word is process; if then go to step 7;

otherwise go to step 5.

?.Get another word from the file invoking giveword. Check

whether it is spec; if not then go to the step 15.

8.Read a word from the file by giveword.

9.Check whether an opening paranthesis (is reached, if not

go to the step 8.

10.Read a word from the file invoking giveword.

11.Check whether it is process or not. If it is not a process

check whether a closing paranthesis) is reached, if then go

to step 5; otherwise go to step 10.

12.Read a word from the file by giveword store it to the next

element of the proname array in the bdname field.

13.Read another word from the file by giveword and place it

in the mpname of the proname array.

14.Go to the step 10.

15. Check whether the word encountered is body or not. If. not

go to the step 5, else allocate a storage area for the

process queue for that process of type queue and store the

name of the process and the address of the process queue in

the two fields procname and stadd respectively of the

proarray.

65

16.Read a word through giveword.If the end of process body is

not reached then go to 17 otherwise go to 5.

17.Check whether it is accept statement or not. If not go to

the step 19.

18.Read another word and add that word through invoking

r_addqueue. The procedure will return the address of the next

element in the process queue for the process for which it is

invoked.Go to the step 16.

19.If the word is process identification name go to step 20;

otherwise go to the step 21.

20.Add the process identification name to the process queue.

Read another word, this is the message name, store this also

with the process identification name to the process queue

using s_addqueue. The procedure will return the address of

the next element of the process queue.Go to the step 16.

21.Check whether the word is any of the for,do,or while.

Otherwise go to step 16.

22.Read a word through giveword. If the end of the loop has

not reached ,go to 23 otherwise if the end of loop has been

reached then go to the step 16.

23.Check whether an accept statement is encountered or not if

not go to the step 25.

66

24.Read a word through giveword. Use r_addqueue to place

word in the process queue for that process. Mark the

field to one.Go to step 22.

the

loop

25.Check whether the word is process identification name.

Otherwise go to step 22.

26.Read another word from the file by giveword. Use

s_addqueue to store the process identification name and the

message to the process queue for that process. Mark the loop

field of the element of the process queue to one. Go to step

22.

27. Close the file containing the Concurrent C program.

28.Display the total number of processes encountered and the

name of them. Also display the process queues for all the

processes.

29. Replace the process names in the proarray

corresponding process identification names stored

mpname field of the proname array.

by the

in the

The QUEUE GENERATOR portion of the model ends at the

step 29.The output of this portion is the queues for each of

the process found in the file of the Concurrent c program.

These process queues generated in this portion will be used

in the next portion i.e in the DETECTOR section for

simulating the message passing operation. The pseudo code

67

for this algorithm is also given here for better

understanding.

Pseudo-code
BEGIN
write{"Enter
program")

the filename containing the concurrent c

read{filename) /File name is. a character string where the
-1 name of the file where the Concurrent c
1 program is written is stored

fp=fopen{"filename","r") /The file name is attached with the
/pointer type variable fp for
;subsequent reading purpose. The
/file opened for reading only

/This portion is for initialising the proarray and proname
with a maximum number of elements, PMAX/

for lt= 1 to PMAX
begin

proarray[lt).procname="EMP" /Initialising
/to EMP

/Initialising
I zero

procname field

proarray[lt).stadd=O
end

for lt= 1 to PMAX
begin

proname[lt).bdname="END"

proname[lt).mpname="END"
end

stadd field

/Initialising bdname field
jto END
/Initialising mpname field
jto END

to

to

j= giveword(name) jgiveword is called,it returns the word
fin the name variable

start:
if(name="process")then /Checking whether the word is the
begin 1 start of process body or process

/specification section
j=giveword(name)
if(name="spec")then /Checking that an entry to the

I process specification section has
I been reached begin

j=giveword(name) fj is an integer which stores the
value returned by giveword/

if(j <> 2) ji.e. an '('is not encountered/
repeat j=giveword(name) until (j=2)

if(j <> 3} ji.e. an ')'is not encountered/
repeat

j=giveword(name)
if(name="process")

68

begin
·j=giveword(name)
proname(pid].bdname=name

j=giveword(name)
proname(pid].mpname=name

/Here in the bdname
field of the proname
array the word
returned by giveword
is stored/

increment pid jpid indicates the location in the
end I proname array
until(j~3)

end

else if(name="body")then /This indicates an entry to the
begin process body is reached/

j=giveword (name)

Q_add=Allocate(type queue) /Allocate some
1 memory location

1 for the process queue
I of type queue

proarray(item).procname=name /The name and

proarray(item].stadd=Q_add

initialise(Q_add)

j= giveword(name)
while not(end of process body) do
begin
loop=O
if (name="accept")
begin·

j=giveword(name)
Q add= r addqueue(name,Q add,loop)
~~ - -
else if(j=l)
begin

1 address of the

I process queue is
/stored in current
/location of
l proarray
/Process queue
I initialised

i=check_process(name) /Checking whether the name
I returned is process

if(i<>O)
begin

process id =name
j=giveword(name)

I identification name

/storing operations and message
I name for sending process

Q add= s addqueue(process id,name,Q add,loop)
end- - - -

end

69

else if((name=for)OR(narne=do)OR(name=while))
begin

loop=l /entering within the loop body/
j=giveword(name)

while not(end of loop body) do
begin
if (name="accept")
begin

j=giveword(name)
Q add= r addqueue(name,Q add,loop)
~a - -
else if(j=l)
begin

i=check_process(name

if(i<>O)

/Checking whether the
;returned is process
1 identification name

name

begin
process id =name
j=giveword(name)

js.toring operations and message
1 name for sending process

Q add= s addqueue(process id,name,Q add,loop)
end- - - -

end
j=giveword(name)

end
end I end of the body for loops

j=giveword(name)
end

end
end

I end for process body

if not(end of file)
begin
j = giveword(name)
go to start

end

close(filename) /closing the file opened for reading
i=l
while (proarray(i].procname <> "EMP")

begin
j=l
done=false
while ((proname (j) . mpname <>"END") AND NOT (done))

begin
if(proname(j].bdname = proarray[i).procname)
begin
proarray(i).procname = proname[j).mpname
done =true

end
increment j

end
increment i

end

END

70

Pseudo-Code for procedures of Queue Generator

qiveword (name:array of character)
begin
let= getchar (fp) /This is for reading character from the

I file using the pointer fp

while (let= whitespace characters AND NOT(end of file))
let=getchar(fp)

i=1
name(i]=let /storing the first character in name
increment i
let =getchar(fp) -

while((let<>whitespace characters)OR(let<>' ('OR') 'OR'{'
OR'}'OR '.')OR let<> (end of file))

begin
name[i]=let

increment i
let =getchar(fp)

end

if(let='. ') return
if(let='(') return
if (let= I) I) return
if(let='{') return
if(let='}') return

1
2
3
4
5

if(let =end of file) return end of file character

end

initialise(proqueue[]:array of queue)
begin
for i=1 to QMAX
begin
proqueue(i].transac ="EMP"
proqueue[i].client ="EMP"
proqueue[i].key=O
proqueue[i].loop=O

end
end

/Address Q add is taken which
1 is pointing to the first
I element of this array

check_process (p[]:array
begin

of ident)

i=1 /it checks the word stored
"END") fin name for a match in while (p[i].mpname <>

begin /the mpname field of
name) then fproname array if (p[i].mpname =

return 1
increment i
end

return o
end

71

r addqueue(p():array of queue,Q pointer:pointer to queue,
- lp:integer)-

begin
Q pointer.transac=p
Q-pointer.key=O
Q=pointer.loop=lp

increment Q pointer
return Q pointer
end -

s_addqueue(pl[),p2():

begin

/the message is inthe variable p

/loop field is marked according to
/the value received

array of queue,Q pointer:pointer to
queue,lp:integer)-

Q pointer.transac=p2 /the message is in the variable p2
Q-pointer.client=pl /storing name of receiving process
Q-pointer.key=O
Q~ointer.loop=lp /loop field is marked according to

/the value received
increment Q pointer
return Q pointer

end -

5.2 DEIECIOR

This is the second portion of the model developed.

It performs the actual work of checking the processes for

proper ordering in message passing. Here the actual message

passing between different processes of the Concurrent C

program is simulated and tested if there is any mismatch in

the order of interprocess communication.It takes as input

the queues generated by the QUEUE GENERATOR for each of the

process in the program for simulation. For the simula.tion

purpose a queue is being used which is named run_queue. The

simulation is an iterative method testing each of the

elements of all the process queues for every process. It

starts from the first process queue whose name and address

72

has been stored in the proarray and returns to it at the last

of every iteration. Each iteration goes on till there is any

process in the proarray. In the iteration for every sending

operation in the processqueue for every process it places the

operation in the run_queue and waits for a matching receive.

If the matching receive is found then the sending operation

is removed from- the run_queue. Otherwise the sending

operation waits till a matching receive is encountered. For

a receiving operation a matching sending operation in the

run_queueu is looked for, if it is found then the receiving

operation is removed from the process queue of the process

to which it belongs, otherwise the receiving operation waits

till a matching sending operation is found in the run_queue.

These operations for sending and receiving maessages goes on

till there is any message left in any process queue or the

remaining processes are locked in waiting state for message

passing. If there is no message left in any of the process

queues of the processes then it is declared that all the

processes have finished message passing operation

successfully i.e. there is no mismatch in the order of

sending or receiving messages for the interacting

processes.Otherwise if there is some messages left in either

the run_queue or in any of the process queues of any of the

process and no matching sending or receiving operation is

found for any of them then it is declared that some of the

processes are waiting. The operation of the processes which

are waiting is detected. And finally all the following item

is displayed, the processes which are waiting, the operation

73

on which they are waiting and to which process they are to

send the message or from which processs they are to receive

the message.

Now the main items used in the DETECTOR portion is

desccribed briefly.

run_queue: This one consists of a record type data type

node containing four fields, transac,rprocess,sprocess and

loop. The first one stores the message to be sent, the

second one the identity of the receiving process. In sprocess

the identity of the sending process is kept and the loop

field indicates whether the message is encountered within

the loop or not. The declaration for this is given below;

struct node{
char transac(lO];
char rprocess(lO];
int sprocess;
int loop;
} run queue(RQMAX];

Here RQMAX indicates the length of the runqueue

which is used for simulation.

check wait: This is a subroutine that checks whether any of

the processes is waiting for message transfer or not.

According to the value returned by this procedure the

DETECTOR searchs if all the remaining processes are waiting

for message transfer. This procedure is called at the

begining of each of the iteration~ It takes the address of

the proarray as input and returns integer values.

int check_wait(char p[])

74

The algorithm for the DETECTOR portion is

stated below;

ALGORITHM

!.Initialise the runqueue with a·specific string in the

transac and rprocess field and zero in the sprocess and loop

field.

2.Take the first element of the process queue of the first

process from the proarray whose elements of the process queue

are not finished.

3.Check the key value of it .If it is one call check wait.

4.If check wait returns zero then go to step 5, otherwise go

to step 15.

5.Take the address of the first element of the processs queue

of the process selected. Test whether it is a sending

operation or not; if not go to the step 7.

6.Find an unused element in the run_queue. Store the item in

the transac and client field of the process queue in the

transac and rprocess field of the run_queue. Mark the loop

according to that in the process queue element.Store the item

number of the proarray in the sprocess field of the

run_queue. Mark the key field of the process queue element to

one. Go to the step 14.

75

?.Check whether it is a receiving operation, if then go to

the step a· I otherwise go to step 14.

8.Test the run_queue to find a match in the item of the

transac fields of both run_queue and the element of the

process queue. If a match is not found go to step 13.

9.Check whether entry in the rprocess field of the run_queue

is similar with the process identification name of the

current process selected and also whether the loop condition

is same for both of them. If all the conditions are same then

go to th step 10 otherwise go to the step 13.

10.Delete the sending operation from the run_queue. Mark the

elements of the run_queue as unused. Delete the sending

operation from the process queue of the process of that

operation.

11.Check whether there is any operation left in the process

queue of the process of sending operation; if not delete the

process from the proarray.

12.Delete the receiving operation from the process queu~ of

the receiving process. Check whether there is any operation

leftin the process queue, if not delete the process form the

proarray. Go to step 14.

13.Mark the key field of the process queue element to one.

14.Take the next process from the proarray if any and go to

step 5; if there is no process left go to step 28.

76

15.Select the first process £rom the proarray. Take the

address of the first element of the process queue for this

process.

16.Check whether it is a receiving operation, if not go to

step 22.

17.Test the run_queue to find a same entry in the transac

field of both the run_queue and the element of the process

queue; if not found go to step 22. ·

18.Check whether entry in the rprocess field of the run_queue

is similar with the process identification name of the

current process selected and also whether the loop condition

is same for both of them. If all the conditions are same then

go to the step 19 otherwise go to the step 22.

19.Delete the sending operation from the run_queue. Mark the

elements of the run_queue as unused. Delete the sending

operation from the process queue of the process of that

operation.

20.Check whether there is any operation left in the process

queue of the process of sending operation; if not delete the

process from the proarray.

2l.Delete the receiving operation from the process queue of

the receiving process. Check whether there is any operation

leftin the process queue, if not delete the process form the

proarray.

77

22.Take the next process from the proarray if any and take

the address of the first element of the process queue for

that process and go to step 16; if there is no process left

go to step 28.

23.Select the first process from the proarray if any . .
'

otherwise go to step 28.

24.Take the address of the first element of the process queue

of the selected process. Check whether the key field of the

element is one.

25.Select the next process from the proarray if any; go to

step 24, otherwise go to step 26.

26.If the key fields of the elements of the process queues

for all the processes tested are one then dealare the

processes are in waiting state; otherwise go to step 28.

27.Display the processes which are waiting, from the

proarray. From the process queue of each of the process

display the operation on which they are waiting and to or

from which processes they want to exchange messages. Go to

the step 30.

28.Check the proarray for any process; if there is any

process left go to the step 2.

29. Dispaly no mismatch error found.

JO.End.

78

So, it can be observed that the final output of the

DETECTOR section is the display whether there is any

discrepancies in message passing between different processes

which are consisting the Concurrent c program as a whole. The

proper ordering of the message passing statements is

necessary for successful execution of each of the processes

and also of the Concurrent c program. If any discrepancy

between some processes are found then the affected processes

are listed in the output. The statements over which the

mismatch is occuring are also displayed.

Pseudo-Code

BEGIN
1 Initialising the run_queue I

for i= 1 to RQMAX
begin

run queue(i].transac="EMP"
run-queue[i].rprocess="EMP"
run_queue(i].sprocess=O
run queue(i].loop=O

end -

start:
item=1
while (proarray(item].procname ="END" AND

proarray(item).procname <> "EMP")
increment item

q= proarray(item].stadd /starting address of the first
non empty process queue is
taken

if (q <> 0) then
begin
lock=O

if (q.key = 1)
lock = check wait(proarray)

if (lock = 0) -
begin
while (proarray(item].procname <> "EMP")

79

begin
q = proarray(item).procname
if ·{ q <> 0)
begin
if { q.client <> "EMP") /indicating sending process
begin
rptr =run_queue 1 rptr is a pointer which is taking

/the address of run queue
while { (rptr. transac = "NIL" } AND

(rptr.transac <>"EMP"))
begin

increment rptr
end

1 searching for a vacant position in
I the run_queue

rptr.transac =
rptr.rprocess
rptr.sprocess
rptr.loop
q.key =1

q. transac
= q. client
=item
=q. loop

end

if (q.client ="EMP"
begin
rptr = run_queue

I indicating receiving process

jrptr is taking the address
I of run queue

while {{ rptr.transac <> q.transac) AND
{rptr.transac <> "EMP")) /searching

increment rptr /for a match on transac field

check =0
if { rptr.transac = q.transac }
begin
if {rptr.rprocess = proarray [item). procname) then

if {rptr.loop =q.loop) then
check = 1

end
if (check =1) then
begin
rptr.transac="NIL" jas a match is found so the

/operations are being removed from
rptr.rprocess ="NIL" I the run queue
rptr.loop = o -
itno = sprocess

increment proarray(itno).stadd 1 in the proarray the
I starting of the process queue is
/incremented i.e deleting the previous
I operation

k = proarray[itno).stadd
if (k.transac = "EMP")
proarray[itno).procname ="END"
rptr.sprocess =0

increment q
proarray(item).stadd =q
if (q.transac ="EMP")
proarray [item).procname ="END"

end

80

if (check = 0) then
q.key =1

end 1 operations for the receiving case is ending here
end

increment item
end

end
if (lock =1)then
begin
while (proarray[item).procname <> "EMP")

begin

end

if (q.client~="EMP") 1 indicating receiving process
begin
rptr = run queue
while ((rptr.transac <> q.transac) AND

(rptr.transac <> "EMP")) /searching
increment rptr /for a match on transac field

check =0
if (rptr.transac = q.transac)
begin
if (rptr.rprocess = proarray [item). procname) then

if (rptr.loop =q.loop) then
check = 1

end
if (check =1) then
begin
rptr.transac="NIL" fas a match is found so the

/operations are being removed from
rptr.rprocess ="NIL" 1 the run queue
rptr.loop = 0 -
itno = sprocess

increment proarray[itno).stadd 1 in the proarray the
1 starting of the process queue is
/incremented i~e deleting the previous
I operation

k = proarray(itno).stadd
if (k.transac = "EMP")
proarray(itno).procname ="END"
rptr.sprocess =O

increment q
proarray[item].stadd =q
if (q.transac ="EMP")
proarray [item].procname ="END"

end
end

increment item

item=1
flag =0
while (proarray[item) .procname <>"EMP")

81

begin
if (proarray(item].procname
begin

<> "END")

q = proarray(item).stadd I checking if all the
/processes are in waiting.
/condition.

if (q.key =O)then
flag = 1

end
increment item
end

if (flag = 0) then
write("processes are waiting on message passing ")
go to finish

end

item =1
check =0
while (proarray[item).procname <> "EMP")

begin
if (proarray [item].procname <>"END")

check = 1 1 indicating there
remaining for

increment item operations in the
end

if (check = 1) then
go to start

else write("no discrepancy found")

finish: end of the code

END

check wait(
begin

p(] : Array of pa)

are processes
message passing
proarray

item = 1
cond = 1

I indicating the first item of the proarray
I used for cheking whether all the processes
I are in waiting state

while (
begin

p(item] .procname <> "EMP")

if (p[item].procname <>"END"
q = p[item].stadd
if (q.key = O)

cond = o
increment item

end
return cond

end

82

The software for the model has been developed in C

language and implemented in Vax 11/780 machine. The program

written in Concurrent c can be within one single file or the

different process bodies can be separeted in different files

in which case the name of those files will have to be

included in the main file. The software has been tested with

quite a number of programs written in Concurrent c language.

The results , advantages and some shortcomings of this model

and implementation has been discussed in the next chapter.

83

CHAPTER SIX

CONCLUSION

In this project a schema has been provided for

detection of message passing discrepancies that can be

creeped in during the development of large concurrent

software. The developed software has been tested for a

number of Concurrent c programs. It has successfully checked

programs containing processes from 10 to 20. The number of

message passing operations within one process has been varied.

from 5 to 20. The program has also been tested for concurrent

C programs with process bodies in different files ,the method

which is very popularly used in modern programming specially

where different parts of the program is developed by

different programmers.

The main advantage of this model is that it is not

necessary to run the developed software in parallel

processors. This is developed to run in uniprocessorss making

it cheaper for use by any user. It will be very usefull where

there is limited access to parallel processors. Parallel

processors are costly machines and till today most of the

organizations donot have parallel processors and also those

posses it have it in small numbers. So, these machines are

heavily demanded specially by scientific community. It is to

be taken care of that one should get maximum benifit out of

its utilisation. The users those who donot have those

machines, have to reserve them for use against a considerable

84

money. So, if there is any bug in the developed program then

that will cause a considerable loss of computing time as well

as money. As described in the previous chapters the error

in message passing can be enforced during developing the

program. One has to be very carefull in coding to avoid this

type of error. But with large softwares and with a number of

programmers participating in developing it, the assuarance

that there will be no discrepancy in message passing

operations is not gauranteed. So, the model developed will

help to debug this type of errors. As it can run in

uniprocessors by simulating the message passing operation so

it is cost effective also. It will also save the time in two

way. The software is not required to run in parallel

processors so the programmers need not to depend

parallel processors for checking their programs which

upon

will

save quite a lot amount of time and also the checking is not

required to be done manually that will also save time.

There are some issues of the developed software

which are aplication dependant. The length of the process

queues, the memory for which will be dynamically allocated

each time a process body is entered, and the length of the

runqueue for simulation will depend upon the Concurrent c

program. The number of processes in the Concurrent C program

and the interprocess message passing operation can vary

randomly. The length

accordingly. Similar

of the runqueue has

is the case for the

to be

length

modified

of the

process queues. The amount of memory that has to be allocated

85

for each of these queues is dependant on the number of

message

bodies.

needs.

passing operations found in each of the

The user has to modify the length according

process

to his

There is one shortcoming in the software developed

in the way that it is not intelligent. It can be observed,

when checking message passing operations within the loops.

The software can check whether the corresponding message

passing statements has matching loop conditions or not. But

it cannot check whether the conditions for entering or coming

out of the loop are proper or not. In fact this cannot be.

checked statically, some of these conditions are dynamic in

nature i.e. can change from one execution to another. The

programmer has to take the responsibility for the validity of

the conditions put forth. Another thing could be that if the

corresponding loop conditions doesnot match then also

sometimes the program can be correct. For this reason in the

actual implementation an alternative is used where a warning

message will be displayed if the corresponding loop

conditions doesnot match. Further improvement can be done in

this area to make the software more intelligent. The testing

for GOTO statements are also not applied, it is assumed that

there is no need of using GOTO statements in a structured

language such as Concurrent c.

86

So, to summarize the whole thing, in this project a

schema has been proposed to check the concurrent programs

written in Concurrent C language for proper ordering of.

interprocess message passing statements. The idea can be

extended to check concurrent programs in other languages also

which use synchr~nised message passing techniques. The

application of concurrent programs and multiprocessors are

increasing, so, it is hoped that the developed model will be

very helpful! to the programmers who are writing concurrent

programs.

87

BIBLIOGRAPHY

1.P.Brinch Hansen;The Architecture of Concurrent Programs,

Prentice Hall (1977).

2.D.Whiddett;Concurrent Programming for software engineers,

Ellis Horwood (1987).

3.L.H.Jamieson,D.Gannon,R.J.Douglass;The Characteristics of

Parallel Algorithms ,MIT Press (1987).

4.G.R.Andrews;Concurrent Programming:Principles and Practice,

Benjamin/Cummings (1991).

5.D.Bustard,J.Elder,J.Welsh;Concurrent Programs Structure

Prentice Hall (1988).

6.W.M.Gentleman; Message Passing between sequential

processes: the reply primitive and the administrator concept,

Software Practice and Experience Vol 11, 1981.

7.J.Wexler and D.Prior; Solving Problems with transputers :

background and experience , Microprocessors and Microsystems,

Vol 13, No 2, March 1989.

8.A.Knowles and T.Kantchev; Message Passing in a transputer

system Microprocessors and Microsystems, Vol 13, No 2,

March 1989,

9.N.H.Gehani and W.D.Roome; Concurrent C Software

Practice and Experience Vol 16(9) September 1986.

10.N.H.Gehani and W.D.Roome;

Concurrent C and the Ada Language ,

Software Engineering Vol 14, No

88

Rendezvous Facilities:

IEEE Transactions on

11, November 1988.

11.K.A.Murray and A.J.Wellings;Issues in the Design and

Implementation

Network of

of a Distributed Operating Systems for a

Microprogramming,

1988(24).

Transputers

Proceedings of

Microprocessing and

EUROMICRO '88,Zurich

12.K.Hwang and F.~Briggs;Computer Architecture and Parallel

Processing , McGraw-Hill International (1987).

13.G.R.Andrews and F.P.Schneider;Concepts and Notation for

Concurrent Programming, ACM Computing Surveys. 15(1),March

1983.

14.H.E.Bal and Tanenbaum et al;Programming Languages for

Distributed Computing Systems,ACM Computing Surveys, Vol

121(3) ,September'89.

15.H.E.Bal;Programming Distributed Systems, Silicon Press,

1990.

16.A.Basu,S.Srinivas,K.G.Kumar,A.Parulral and L.M.Patnaik;

Message Passing Multiprocessor, Proc.Fifth IEEE symposium on

Parallel Processing, California,1991.

17.A.K.Srivastava and S.C.Kshetramade; PRESHAK: A Generic

Tool to Implement Application Specific Message Passing

Communication Kernels for Concurrent Machines Proc.Fifth

IEEE symposium on Parallel Processing, California,1991.

18.B.W.Kernighan,D.M.Ritchie,The

Prentice Hall (1988).

89

C Programming Language,

	TH51330001
	TH51330002
	TH51330003
	TH51330004
	TH51330005
	TH51330006
	TH51330007
	TH51330008
	TH51330009
	TH51330010
	TH51330011
	TH51330012
	TH51330013
	TH51330014
	TH51330015
	TH51330016
	TH51330017
	TH51330018
	TH51330019
	TH51330020
	TH51330021
	TH51330022
	TH51330023
	TH51330024
	TH51330025
	TH51330026
	TH51330027
	TH51330028
	TH51330029
	TH51330030
	TH51330031
	TH51330032
	TH51330033
	TH51330034
	TH51330035
	TH51330036
	TH51330037
	TH51330038
	TH51330039
	TH51330040
	TH51330041
	TH51330042
	TH51330043
	TH51330044
	TH51330045
	TH51330046
	TH51330047
	TH51330048
	TH51330049
	TH51330050
	TH51330051
	TH51330052
	TH51330053
	TH51330054
	TH51330055
	TH51330056
	TH51330057
	TH51330058
	TH51330059
	TH51330060
	TH51330061
	TH51330062
	TH51330063
	TH51330064
	TH51330065
	TH51330066
	TH51330067
	TH51330068
	TH51330069
	TH51330070
	TH51330071
	TH51330072
	TH51330073
	TH51330074
	TH51330075
	TH51330076
	TH51330077
	TH51330078
	TH51330079
	TH51330080
	TH51330081
	TH51330082
	TH51330083
	TH51330084
	TH51330085
	TH51330086
	TH51330087
	TH51330088
	TH51330089
	TH51330090
	TH51330091
	TH51330092
	TH51330093
	TH51330094
	TH51330095
	TH51330096
	TH51330097
	TH51330098
	TH51330099
	TH51330100
	TH51330101

