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INTRODUCTION

, Sulphuﬁ:dioxide pollution has'become a worldwide
phenomenon due to urban/dndustrial development. Even
in India which:still is a developing country, the problem
of air pollution is growing due to rapid industrial ex-
pansion.' During 1966 to 1979, the quantity of sulphur
dioxide released from fossil fuel combustion into the
‘atmosphere has tripled. The total Sulphur dioxide emi-
- ssion in the country has increased from 1.38 million
tonnes in 1966 to 3.20 million tonnes in 1979, an incf-
ease of 21 percent more than twice the rate of increase
of 8.4 percent experienced in United States du;ing the
'same period (Varshney and Garg, 1978). There is likeli-
hood of further increase in emission of sulphur dioxide
into the Indian atmosphere.

Sulphur dioxide interacts with plants and causes
serious damage to vegetation. Various plant processes
are adversély affected as well as composition of plant-
communify is altered (Winner and Bewley, 1978).

Literature on the effects of sulphur dioxide on
plants has grown quite voluminous. During the late
nineteenth century; the effect of acute éulphur dioxide

on plants attracted attention of plant scientists in de-



veloped countries (Hallgren, 1978). Early studies wére
mostly focuésed.on documenting visible injury. Such
descriptive studies made valuable contributions by sti-
mulating interest in the study of effects of air pollu-
tion on plants. In recent years;'attention is being
foqussed to understéhd the effect of subchronic levels
of sulphdr dioxide in terms of physiolbgical and bio-
chemical responses (Ziegler, 1973; 1975; Mudd,1975;
Malhotra and Hocking, 1976; Horsman and Wellburn, 1976;
Davies, 1968; Puckett et al., 1973).

Photosynthesis, which is the main driving force for
biomass production, is sensitive to sulphur dioxide pollu-
tion. Thisvreview isdevoted to the evaluation of the eff-
ect of sulphur dioxide on photosynthesis and related
~ organelles in higher plaﬁfs. Presently, understanding of.
the effects of sulphur dioxide on photdsynthesis in higher
plénts is far from complete. Consequently, treatment of
some of the aspects may appear fragmentary while others

may look somewhat speculative.

Entry and Possible Fate of Sulphur dioxide in the Plant Cell
Sulphur dioxide readily enters leaves through sto-
mata. The diffusion of sulphur dioxide into leaf is

guided by the same physical processes, namely diffusion



along concentration gradiént, which also governs the
entry of carbon dioxide into green leaves.

Sulphur dioxide is highly soluble, it forms
solution, with éurface'or tissue‘moisture in plant
leaves. In solution, sulphur dioxide establishes the
following equilibria, which have an important bearing

on its effects:

S0, + H SO

2 * Hp0 o= H,y504
+ - -—
HyS0, ————=> H'+ HSO] , pk = 1.76
- + -
HSO3 —=——==> H' + 503, pk = 7.20

The ionic species formed upon dissolution of sulphur
dioxide in water are sulphite (sog') and bisulphite
(HSO3 ). |

The percentage distribution of sulphur species
is dependent on pH value. At higher pH the sulphite
ion predominates; around pH 4-5, the bisdlphite ion;
whereas below pH 4, there is an increasing proportion
of sqlphurous acid H2803.

Considerable debate has taken place about what

species of sulphur dioxide i.e., H,S0,, SO%I szog‘,

3’
cal factors (i.e., external concentration of sulphur

HSO is potent for biological injury. Taking physi-

o



dioxide, temperature, and the pH of the water) which

affect flux of sulphur dioxide, Hocking and Hocking

(1977) concluded that the major form of dissolved

sulphur dioxide at physiological pH values is HSOS.

Hocking and Hocking (1977) has made a compara-

tive evaluation of phytotoxicity of various species of

2

sulphur i.e., H,S04, 803: 820-. According to Hocking

and Hocking, HSOE' is most potent species of sulphur

in terms of biological injury.

The various reasons and considerations consi-

dered by Hocking and Hocking are as follows:

i.

ii.

iii.

There is negligible H2803 present in solution at
any concentration of total sulphur dioxide (i.e.,
less'thén 1/1000 th of the total sulphur dioxide,
and in the order of 1/30 th of the unreacted
(50,.H,0) (Falk and Giguere, 1958; Rabe and Harris,
1963).

There»is negligible SO%’ or szog' present in the
solution at any time (Falk and Giguere, 1958;

Rabe and Harris, 1963).

The principal species tying up sulphur dioxide in
aqueous solution is HSOE (to the extent of at least

99 percent of the total sulphur dioxide present at

any concentration).



iv. A télatively minor (but significant) component of
the total sulphur dioxide is present simply as
dissolved unreacted sulphur dioxide i.e.,

S0,.H,0 (number of loosely associated water mole-
cules uncertain but may be about 6) (Tammam
and Krige, 1925).

V. For a given total concentration of sulphur dioxide
in water the amount of unreacted sulphur dioxide
arises sharply with temperature (i.e., for

1x10~3

g 802/100g H,0, a factor of almost 4 over
60°C). This is consistent with the rising sulphur
dioxide vapour pressure above solution is obser-
ved and keeping in with the fact that the fraction
of the total sulphur dioxide present in solution is
shown to follow Hehry's law closely (Johnstone and
Leppla, 1934; Arkhipova et al., 1968).

vi, Hocking and Hocking's (i977)ydata confirm Speeding
and Brimblecombe's (1974) criticism of the Hales
and Sutter (1973) extrapolation that their non-
random error cannot be neglect of pyrophosphates,
because of the relative amount produced decreases
with concentration of HSO}.

Tanaka (1974) in his discussion of the Hales and Sutter

(1973) paper calls attention to the problem of species



distribdtion.. Papers attributing injury mechaniéms to
HSOE, Sog_vor other ionic species beg the question of
penetration (Rao and Le Blanac, 1965; Puckett gﬁ al.,
1973). Subsequent to the passage across cell-membrane
into cell solute, mahy reactions become possible inclu-
ding plausible sinks for any species of sulphur dioxide.
Rahn and Conn (1944) suggested that undissociated H2803
is the lethal égency; Vass and Ingram (1949) agreed.

But later work, with improved spectroscopic methods
showed that HZSO3.exists only in negligible amounts
(Falk and Giguere 1958; Rabe and Harris, 1963). Hill
(1974) recognised Falk and Giguere (1958) conclusion
that Sulphur dioxide in solution may be the same mole-
cule as gaseous sulphur dioxide and eariier Hill (1971)
hinted that sulphur dioxide itself may be the toxic mole-
cule in soluble, but offered no supporting arguments
and did not conceptually separate the stage of penetra-
tion with that of active.injufy.

Hocking and Hocking (1977) inferred that dissolved
but unreacted sulphur dioxide is the most active species
for initial plant injury in air pollution episodes. Fur-
thermore they showed that the solubility of suiphur dioxide
and consequently the equilibrium between atmospheric and

aqueous concentrations is dependent on temperature. Thus,
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if purely physical factors were the only ones affecting
flux, gas uptake should be dependent on external concen-
tration, temperature and pH of the water.

Sulfite originatihg from atmospheric sulphur dio-
xide may be either oxidized or reduced. Atmospheric sul-
phur dioxide is oxidized from sulfite to sulfate (storage
route) (Weigl and Ziegler, 1962) (Fig.l). Sulfite when
converted to sulphate is approximately thirty times less
toxic than sulfite and is one of the major products to
accumulate (Thomas, 1961). Miller and Xerikos (1979) .
while working on eight soyabean cultivars found that the
four comparatively ‘'resistant' cultivars converted the
sulfite more rapidly than the relatively sensitive culti-
vars.

Sulfite originating from atmospheric sulphur dié—
xide is reduced to H,S gas which can be emitted to the
atmosphere (Expulsion route) (de Cormis 1968; de Cormis
and Bonte, 1970; Wilson, Bressan and Filner, 1978; Spa-
leny, 1977; Winner et al., 1981) (Fig.l).

Reactions showing formation of H,S from sulfite
(SO%) a reduction process which takes place within the
chloroplast. Three pathways for the formation of H,S
under sulphur dioxide/HSOS stress on plants can be

visualized (Fig.2).
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i. Light-dependent reduction of suifate to sulfite may

be part of path of H,S synthesis from sulphur dioxide/

33 subsequent to reduction, sulfite may be split

HSO

off carrier-bound sulfite, and released as HZS.(Fig-z)-

ii. Alternatively, carrier-bound sulfide may be incor-

porated into cysteine, from which HZS may be

released by the action of cysteine desuldhydrase(Fig.2).

iii., A third path of HZSvformation may proceed via
direct reduction of sulphur dioxide/HSO%(Fig.Z);

Oxidation of SO%' takes place in plant cells, when they

are exposed‘to sub lethal gaseous sulphur dioxide con-
centrations, which will cause chronic injury. |

When plants are left with exceés of sulphur after
being incorporated into cysteine and thiol under criti-
cal concentration, they release it into the atmosphere.
The emission of H,S may be compared with a bressure valve.
Through it excess of sulfur is released out of the intra-
cellular sulfur cycle.

Asada (1967) has partially characterized the enzyme
sulfite reductase which catalyzes the reduction. Tamura
and Itoh (1974) showed that photosynthetically generated

re&uctant (as reduced ferredoxin) is the physiological



electron donor for the process. Sawhney and Nicholas
(1975) and Silivus et al., (1976) demonstrated that
process takes place within the chloroplast.
Light-dependent sulfite oxidation takes places
within chioroplast (Asada and Kiso0,1973). Light-inde?
pendent sulfite-oxidation is known to take place within
mitochondrion (Tager and Rautanen, 1955; Ballantyne,
1977). Asada and Kiso (1973) reported that the presence
of either sulphite and/or bisulfite promotes the fcrma—
tion of superoxide ‘radical 05 which through a free
radical chain reaction initiates oxidation of sog' in
illuminated chloroplasts. The rate of suiphite oxida-
tion was higher than the rate of OE production deter-
mined by photoreduction of Cytochrome, Asada (1960)
indicating that photoreduced 05 act as a "trigger" in
the oxi&ation of sulphite in chloroplasté. Halliwell
(1981) in his discussion of oxygen-chloroplast interac-
tions, makes the suggestion that the superoxide dismutase
(soD) and ascprbate in the chloroplast are sufficient to.
'neutralize' the normal amount of 05‘ produced in vivo.
Any increased production of 05 “would lead to persistence
of hydrogen peroxide at concentrations inhibitory to car-

bon fixation. The following sequence of reactions have
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" been proposed for sulphite oxidation by 05 (Yang, 1970;
Tuazon and Johnson, 1977; Asada, 1980).

2= - +
SO°3 + 0, + 3H ----> HSO5 + 20H (1)
+
SO%' + OH + 2H =-===3 HSO3 + H20 (2)
- + -
HSO3 + 0,  ----> SOg f‘oz + H (3)
HSO3 + OH ----% S0; + H,0 (4)
2HSO., ----> SO. + S0%"+ 2yt (5)
3 3 3
SO, + H,0° ----> S0%~ + 21" (6)
3 2 ? 20, :
20 ----> H,0, _ - (7)

In the aBove chain reactions active oXygen species such
as H202 and OH are formed from 05 in the cells. This
chain can be terminated by the action of superoxide dis-
‘mutase (SOD) producing hydrbgen peroxide. The increased
levels of H202 produced as superoxide dismutasg termi-
nates the chain reaction of sulfite photo-oxidation may
oxidize the activated enzyme as fructose-l,s-bisphoépha-
tase (FBPase). The oxidation of FBPase may result in
inhibition of rate limiting step of Calvin cycle i.e.
'regenération of RuBP. The extent to which this would
occur would bé partially predicted on the rate at thch

.H202 was removed by the H202- photoscavenging system
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described by Nakano and Asada (1980, 1981) and also by
the efficiency with which oxidized form of the enzyme
could be re-reduced via the light modulation system.

The active oxygen species such as HZOZ and OH
formed as a result of free radical chain reaction in
the cells. These reduced and excited molecular species
of oxygen are highly reactive and oxidize cell components
which may cause serious cellular damage in the absence
of;a suitable scavenger for toxic oxygen species. Differ-
ent spécies of active oxygen require specific scavengers
such as 05 can be scavenged by superoxide dismutase (SOD),

2
carotenoids and OH by polyhydrdxy compounds such as

H O2 by peroxidase and catalase, O2 by tocopherols and

carbohydrates (Asada, 1980). These scavengers also inhibit
further formation of toxic species‘of oxygen. Tanaka and
and Sughara (1980) repérted that the sulphur dioxide dam-’
age is partly due to the toxicity of active oxygen. Pla-
nts protect themselves against such sulphur dioxide
induced oxygen toxicity'with the help of certain scaveng-
ing molecules such as superoxide dismutase and peroxi-
dase. Howevet, their ability to do so varies widely

from one species £o another. They reported a corfelation
between high levels of SOD activity and resistance in

poplar and spinach leaves to sulphur dioxide. An
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increased SOD activity in response to sulphur dioxide
fumigation enables plants to counteract sulphur dio-
xide toxicity. Varshney (1982) found peroxidase acti-
Qity to be directly correlated with sulphite turnover
rate in Zea mays. It may be thus an important factor

contributing towards the sulphur dioxide resistance in
Zea mays.
Effect of sulphur dioxide on Chloroplast

The chloroplast is the site of photosynthesis. Two
distinct types of studies on the effects of sulphﬁr dio-
xide on chloroplasts have been conducted:

i. isolated chloroplasts have been used as model
systems to test reactions to sulphur dioxide
stresses, and

ii, chloroplasts isolated from fumigated plants

have been investigated

The effects of sulphur dioxide on isolated chloro-
plasts have been studied using hydration products of

HSO§ and SO%T Reactions have been discussed at length
by Ziegler (1977) and Hallgren (1978). sog' can inhibit

electron transport reactions. Libera et al., (1973)

2-

showed that SO% inhibited water splitting in chloro-

plast grana.
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In intact chloroplasts sogf appeared to inhibit
Co, fixation by inhibiting the carboxylation step of
‘Calvin cycle (Libera, Ziegler and Ziegler, 1973). The
non competitive sog' inhibition constant is very high
for ribulose-1,5 bisphosphate carboxylase (RuBisCo)
but the competitive SO%’ inhibition constant with car-

bondioxide is lower and closer to the in vivo levels of

sog' (1-5 mM). Thus, carbondioxide fixation could be
2-

competitively inhibited by 503 Chloroplast is the site

for oxidation and reduction of SO%T

Morphological effects: Studies on this aspect are mainly

focussed on Gymnosperms.

Needles of larix. leptolepis (Japanese Larch) fumi-

gated with sulphur dioxide (2.5 ppm for 8 hour during
three days) by Mlodzianowski and Bialobok (1977) found
gradual changes in the chloroplast profile, from ellipsoi-
dal to oval and then to spherical. These observations
were made on mesophyll cells of the middle portion of
needles having clear, visiEle signs of degradation as
well,. The decrease in the number of grana lamellae

was reported by Soikkeli and Tuovinen (1979) in Picea.

abies and Soikkeli (1981) in Pinus. sylvestris from

mesophyll cells of needles collected from areas polluted

mainly by S-compounds Fig. 3(2)
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Ultrastructural effects: The chloroplast, a lens-shaped
organelle is‘completely encompassed by a doﬁble-membrane.
The ground substance of chloroplast, known as stroma is
a slightly electron dense granularvmatrix. Embedded in
the stroma is a large number of membrane bounded fla-
ttened sacs or thylakoids.

Godzik and Knabe (1973) have reported invagina-
‘tions from inner membrane of chloroplast envelope, and
doubling of the envelope, in needles of EiEBE speciés
collected from industrial areas polluted by S-compounds.

The same was also observed in Phaseolus vulgaris fumiga-

ted with 0.7 ppm sulphur dioxide for 72 hour by Godzik
and Sassen (1974). These observations were made from
material having no visible symptoms. Chloroplast enve-
lopes of green needles of conifers growing in areas
bolluted by S-compounds were ruptured at the later stage
of cell injury (Soikkeli and Tuovenin, 1979; Soikkeli,
1981). '

Godzik and Sassen (1974) described two types of
vesicles in the periphery of the chloroplast stroma in
sulphur dioxide treated kidney bean leaves. They also
found rod-like bundles that may have a connection with

crystalline bodies found in stroma of chloroplasts in



Fig.3 The ultrastructure of needles of Norway spruce

(Picea abies L. karst.) (1) The chloroplast of a
spruce needle from a clean area in winter, (2) The
decrease in the.number of grana lamellae resulting
from sulphur compounds pollution in winter.-(3) The
increasing lightness in the colour of the plastoQ
globuli and the accumulation of lipid-like droplets
in needlés'under sulphur compounds poilution in
spring. (4) The curliﬂg of lamellae in chloroplasts
under 502 + NOxApollution in winter. (5) The swelling
of lamellae under SO2 + NOx pollution in winter -
(Magnification in all figures, x 20,000 reduced to
two thirds: micrographs by S. Soikkeli) (Source

Koziol and Whatley, 1984, pp. 123).
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a later stage of damage. Granulation of stroma was obser-.
ved as the first change induced by sulphur dioxide by
Fischer et al., (1973). The granulation has been repor-

ted also in Larix leptolepis polluted by sulphur dioxide

(Mlodzianowski and Bialobok, 1977), and in Picea abies and

Pinus sylvestris growing in S-polluted areas in Finland
(Soikkeli and Tuovinen, 1979; Soikkeli, 1981). |
Changes described in the chldroplast @isks or thyia-
koids of plants fuﬁigated with sulpﬁur dioxide include
swelling of the lamellae and reduction of the grana-
Fig 3(2) . Wellburn et al., (1972) in Vicia faba (Broad

bean), Godzik and Knabe (1973) in some Pinus species,

Malhotra-(1976) in Pinus contorta and Wong et al., (1977)
in Eiggg, all described slight swelling of stroma lamellae
in the first stage of injury daused by:sﬁlphur dioxide.
Later the swelling increased and éould bé detected in the
granum thylakoidsvparticularly in those at the 'top' and
'‘bottom' of the granum stacks. In severe cell injury, all
thylakoids were swollen. _
Mldozianowski and Bialobok (1977) described two types
of injury caused by sulphur dioxide in thylakoids of Larix.

leptolepis (Japanese Larch). One involved disappearance

of thylékoids and the other their swelling. These authors

suggested that the first type prevails in plants which
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are more resistant to sulphur dioxide. Godzik and Knabe
(1973) in some Pinus species, and Godzik and Sassen (1974)

in Phaseolus. vulgaris, reported reduction of grana in’

otherwise apparently healthy material affected by sulphur

dioxide. Later Soikkeli and Tuovinen (1979) in Picea.

abies and Soikkeli (1981) in Pinus sylvestris, found that
grana were often reduced, consisting of 2-3 lamellae in
apparently healthy needles collected from areas polluted
by S-compounds. The reduced lamellae were found to swell
only at a iater étage of injury, after the envelope had
shown disintegration. ,

Plastoglobuli are osmophilic granules which contain,
the plastoquinone,'an eleétron-carrier (Bailey and Why-
born, 1963; Lichtenthaler, 1969).

An increase in size and number of plastoglobuli was

described in Spinacia. oleracea fumigated with sulphur

dioxide by Masuch et gl., (1973). They also reported the
appearance of many osmophilic granules in close contact
with the thyiakoids in sulphur dioxide treated material.

In visibly healthy conifer needles exposed to S-
compounds (collected from industrial areas chronically
polluted by sulphur dioxide), Soikkeli and Tuovinen (1979)
and Soikkeli (1981) reported that the lightening of plasto-
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giobuli as the first sign of injury Fig. 3(3) . At a
later stage, the shépe of plastoglobuli changes and
their number increased. |

Ultrastructural studies have shown that exposure
of plaﬁts to sulphur dioxide can disrupt the structure of
thylakoids and grana Fig. 3(4) , swelling of chloroplast
‘thylakoids Fig. 3(5) , a reduction of grana lamellae,
agranﬁlation of chloroplast stroma, stretching of chloro-
plast envelope. These changes are likely to have impor-
tant consequences for activities of PSI and PSII and on

the light-modulated enzymes of photosynthesis.

Interaction of sulphut_dioxide with Chlorophyll
Chlorophyll is the major lipid pigment of thylakoid
membranesvof chloroplaéts in plant-cells. »Chlorophyll may
undergo several photochemical reactions such as oxida-
tion, réduction, phaeophytinization and reversible blea-
ching (Vernon and Seely, 1966). |
Some'of the first'experiments of effect of sulphur
dioxide on chlorophyll bigment was reported by Rao and
Le Blanac (1965) on Lichens (Table 1). They found that
laboratory exposure of lichens to lethal doses of sulphur
diqxide ( 5 ppm) resulted in the bfeakdown of chlorophyll
into phaeophytin and Mg2+ ions. Similar results were

J

"obtained by Coker (1967) wiﬁh Bryophytés. It is also



Table )

Plant species

Vigna. sinesis

Solanun melogena
sativa

Medicago
’IYxtgcun aestivum
__.E mays

sativa

0__
cum aestl

B

Triticum aestivum

Trigonella foemon
graccum

Glycine max
Triticum eestivum

Habit

Concentration

cultivated
crop

cultivated
crop

cultivated
crop

" cultivated
crop

cultivated
crop

cultivated
crop

cultivated
crop

0.25 ppm S0,

0.5 ppm so,

26.6-119.7 ugn™>

ground level
S0, concentra-
ti

218.3 ugn™%s0,

(1.7 gn~%flyash)

1 ppm 802
0.04-1.0 ppm SO2

1 ppm

Duration

: Effect of sulphur dioxide pollution on plants with respect to chloropﬁyll content
Condition

Effect

1.6 hr daily Lab

for 40 days

2 hr daily Llab

for 42 days -

24 hr for Field

90 days

1 hr for

so, artificially
in lab

2 hr daily Llab

for 80 days

3 hr daily Lab

for 30 days

2 hr daily Lab

for 60 days

Field and

Decrease in total chlorophyll
content

Decreased in-chlorophyll
content by 35.5 percent

Total chlorophyll content
reduced 2

Increase in total chlorophyll
content

Urea spray increased
the amount of chlorophyll

Loss of chlorophyll

Glycine less tolerant than
Triticum 26.9 percent less
toxic

Reference

Nandi et al.,
(1984)

Agarwal et al.,

"(1983) T —

Garg and Var-
shney (1983)

and Var-

" Gatg
shney (1983)

Pandey (1983)

Boralkar and
Chapekar (1983)

-Prasad and Rao
(1982)



Table 1},
Plane sEgies‘

Butea. monosperma

Agropyron smithii

Oryza sativa

Triticum aestivum

Vicia faba

Vigna sinensis

?%\&-iaanerimm,
pinacia oleracea

Pinus contorta

Effects of sulphur dioxide pollution on plants with respect to chlorophyll content

Maximm decrease in chlorophyll

content at 3 ppm

Total chl. a and b decreased.
Chl a more sensitive than Chl b

Decrease in chl content by

27.82 percent

Decrease in chl. content by

29.6 percent

Chl content decrease by

4.06 percent

Increase in chl content by
12.67 percent was observed by
the application of Cs(ai)z

Chl content decrease

At 100 ppm SO, conc. not much
cfl a and b, At

Habit Concentration Duration Condition Remarks
Wild tree 1,2,3 ppm SO, 4 hr daily Lab
for 15 days
Wild tree Monthly medium -3 4 years Field
50, conc. 22 ugm - (1975-78)
175 L@.S
cultivated 0.25 ppm S0, 2 hr daily Lab
crop for 90 days
cultivated 1.0 ppm ) 2 hr daily Lab
crop 5 for 80 days
cultivated 0.25 ppm 50, 2 hr daily Lab
crop - for 115 days
cultivated 0.25 ppm 50, 2 hr daily Lab
crop for 90 days .
Wild tree, 0.1, 2.0 ppm S()2
cultivated
crop
conifer 100-500 ppm 22 hr at Lab
tree 23°% 5-6 months old effect upon
needles incu-

250-500 ppm Chl a more sensitive

bated in aqueous than chl b

802 solution

Reference

Dubey et al.,
(1982)

Laurenroth and
Dodd (1981)

Reo et al., (
(198T)

Tanaka and St
hara (1980)

Malhotra and
Hockdng (197:
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known that light accelerated the phaeophytinization
(Krasnowskij, 1969). |

| Chlorophyll a and chlorophyll b have received most
attention in pigmént studies; chl a tends to be destroyed
at a faster rate than chl b, as can be seen from in vivo
and in vitro studies (Bortitz, 1964; Katz and Shore,
1955).

It has been demonstrated that the effect of éulphur

dioxide on pigment breakdown and photosynthesis is a spe-
cific effect and is not a function of increased acidity.

From experiments with Pinus contorta, Malhotra (1977)

reported that concentrations below 100 ppm sulphur dioxide
in solution had no effect on chl a or phaeophytineh, How-
ever, at lower concentrations of sulphur dioxide (10-50
ppm) a significant increase in chlorophyllase activity was
detected and chl b waé converted to the corresponding
chlorophyllide b (The ending -ide indicates the porphyrin
without the alcohol side chain). The enzyme converts
chlrophylls to chlorophyllide by removal of the phytol
group. Chlorophyllase, which was discovered by'Wills-
tatter and Stoll (1910), is intimately associated with
chlorophyll and its activation is also influenced by light

(Holden, 1961). However, it is possible that this enzyme
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is associated with a lipoprotein chlo:ophyllrcomplex and
thus is inactive in vivo. The maximum activity is obtained
when the enzyme is solubilized. The influence of sulphur
dioxide on this hydrolytic reaction mediated by chloro-
phyllase in plants remains to be fully investigated.

The in vivo chlorophyll destruction by sulphur dio-
xide 1is complex té evaluate, and vast majority of work
mereiy confirms that there is pigment destruction by
pH, light and other factors (Fig. 4). Hence, the mech-
anism of chlorophyllrdestruction is not explained, although
the most likely reaction is an oxidation of pigment mole-
cule. The exact mechanism of oxidation and attack by
sulphur dioxide on chlorophylls in vivo is not known. It
is possible that this may be due to an effect on redox
potentials of the pigment-carrier complexes. One possible
explanation of the irreversible photoxidation of chloro-
phyll in vivo is that sulphur dioxide formed radicals
which inhibit the electron transport chain, thus inhibi-
ting reversible reduction of reaction centre. This might
lead to an oxidation of light-harvesting antenna of |
chlorophyll.

»Recently, Sugahara et al., (1980) showed that,

in vitro, water-soluble protein complexes of chlorophyll
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and chlorophyllide were stable and were not destroyed by
even 40 mM SO%T The photoconversion of the dark form of
chl a and chlorophyllide a protein complex (CP 668) to

- the illuminated form (CP 743) is influenced, however, in-

hibited by S03:

The inhibition waé apparently due to

irreversible denaturation of pfotein component in the

pigment protein complex, probably caused by destruction
of disulphide bonds.

R-S-S-R + so§’ _ R-s-so§'+ R-S

(Cecil and Mc Phee, 1955)

V'Rapid in vitro chlorophyll destruction can also be caused
by free radicals-produced during the oxidation of HSOE
catalyzed decomposition of linoleic acid hydroperoxide
(Peiser and Yang, 1977, 1978). Recently, Shimazaki et al.,
(1980) presented evidence that sulphur dio*ide fumigation
of leaves increases the formation of superoxidé radical
05‘ inrchloroplasts that in turn destroys chlorophylls
(Fig. 4). Superoxide radical has been shown to influence

8

chlorophyll at very low concentrations (10™° to 10'7M) '

(Asada et al., 1977). In Spinacia. oleracea leaves gase-

ous sulphur dioxide destroyed chl a more rapidly than chl b,
but the loss of chl a was not accompanied by corresponding

increase in phaeophytin a (Shimazaki et al., 1980a). Free
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radical scavengers inhibited chlorophyll (Pdlyhydric

sugars) breakdown in Spinacia oleracea leaves, it goes

to suggest that sulphur dioxide destroys chlorophyll

mainly by free-radical oxidation.

Effect of Sulphur dioxide on Photosynthesis:
Photosynthesis is key process which results in har-

nessing of solar energy into chemical energy through a

complex chain of reactions. Various workers have shown

on the basis of field and laboratory studies that sulphur

dioxide (> 0.2 ppm) have been shown 'to promote yield in

Medicago sativa (Thomas et al., 1943) and net photosyn-

thetic rates (Katz, 1949). Continuous expdsure to low
concentrations (0.15-0.45 ppm) of sulphur dioxide are
known to bring about premature senescence (Gudérian,
1977). Libera, Ziegler and Ziegler (1973) démonstra-
fed that exposure of isolated spinach chloroplasts to
low concentrations. of sulfite below;sl_mM) produced a
”% imulation of carbon fixation. Higher levels of sul-
i;te (upto 3 mM) stimulation photosynthetic electron
Pfransport but inhibited carbon fi*ation. They were
able to show that stimulation by low concentrations of
sulfite occured at the bisphosphatase step. Ziégler's
group extended this approach to the alga Chlorella
vulgaris in which it has been shown that the'presence
Digsenfodion
147158
C455

Kl
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of low concentration of sulfite ( 1mM) increased growth
rates (expressedras.cell number, protein, chlordphyll

and yield) even under conditions of sulfate sufficiency.
This increased yield was accompanied by an increase in
the rate of carbon fixation. Af higher sulfite concen-
tration rates of carbon fixation were still higher than
those of the control. However, yield had dropped below
control levels. Miszalski and Ziegler (1979) showed that
eprsure of whole spinach plants to 0.67 ppm (1.8 mg m-3)
sulphur dioxide for 1 hour produced incréases in chloro-
plast membrane thiol groups and an increase in the light
activation of NADP-GPD. Paul and Bassham (1971) demons-

trated a stimulation of carbon fixation by sulfite in

isolated cells of the opium poppy (Papaver somniferum).

Pierre (1977) and Pierre and Queiroz (1981, 1982) showed
that exposing whole bean plants over a long term to low
concentrations of sulphur dioxide (0.1 ppm) increased rates
of activity of several enzymes present in the soluble
phase of leaf extracts. An increase in serine levels
was also observed. These plants also become prematurely
senescent.as serine levels was also observed.

Taken togethef, these data suggest that sulfite
at low concentrations can stimulate light activation

through increasing the concentrations of membrane-bound
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thiol groups. This in turn can bring about higher carbon
fixation rates, the consequence of which for algal celis
can be either increased or decreased productivity. In
higher plants, it appears that a cbnsequence of this in-
creased fate of ﬁetabolism can be premature senescence.
Serine has been implicaﬁed in metabolic changes accom-
panying senescence (Nooden, 1980). Studies on the effect
of sulphur dioxide on photosynthesis ranged over a wide
spectrum of differen; photosynthetic reactibns, not all
of which have been studied with equal intensity.and
rigour. However, the available information on the effect
 of sulphur dioxide on photosynthesis have been discussed
under two broad categories namely (a) photochemical

processes and (b) biochemical processes.

Photochemical Processes

Within'chloroplasts, the light reactions wﬁich pro-
duce ATP and NADPH are mainly associated with the lamellae
or tuylakoids while the Dark reactions which enzymati-
cally fix CO2 into acid-stable compounds occur within
stroma.

Although chlorophyll is clearly involved in the
transformation of radiant energy to chemidal energy,

details of intermediates and pathways are poorly under-
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stood. Three major products are formed as a result of
.the absorption of radiant energy by chloroplast pigments -
oxygen, ATP and NADPH.

The following three aspects regarding the effect
of sulphur dioxide on photochemical related events have
been mainly investigated: ’
i. Fluorescence
ii. Hill reaction

iii, Photosynthetic electron transport

i. Fluorescende: Fluorescence refers to the rapid emi-
ssion of light following chlorophyll excitation. Sul-
phur dioxide affects chlorophyll fluorescenée has been
_observed‘by many workers. Arndt (1974) stated that
to study, effects of sulphur dioxide, in vivo, chloro-
phyll fluorescence is one of the useful tool. Several
fluorescence parameters are measurable, although fluo-
rescence sﬁectra and relative‘fluorescence'yield are
the the most readily studied (paperogiou, 1975).

The variable fluorescence (Kautsky effect, consists
of a fast change and slower fluctuation) will be affected
if sulphur dioxide causes blockage on either side of the
oxidizing or reducing of the PSII photoreaction. The

effects of sulphur dioxide on the variable fluorescence
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and the fluorescence spectra have been studied by Hall-

gren et al., (1978). At pH 8.0 and 1.0 mM S02~ there

were increases in the fluorescence yield of spinach
chloroplasts, but the opposite effect was observed at
- dominates (Hallgren, 1978). Arndt

3
(1974) has noticed both a slight SO%’ stimulation of

pH 6.2, where HSO

fluorescence at low concentrations and a decrease at
higher concentrations (> 1mM 10-3M), indicating two
oxidizing and reducing agents) different modes of action
of this cohpound on the electron transport chain in

photosynthesis.

ii. Hill reaction: Ultrastructural studies have shown
that exposure to sulphur dioxide can disrupt the stru-
cture of thylakoids and grana within the chloroplasts,
“and such disruptions are likely to have important con-
sequenceé on the activities of PSI and PSII. As PSI .
and PSII are both localized ih the membranes of chloro-
plasts (Boafdman, 1968), a decrease in the Hill reaction
(photoproduction of oxygen by chloroplasts).

hv -
chloroplasts

A + HZO AH2 + é O2

Hill reaction activity was accompanied by swelling and

disintegration of chloroplast membranes (Malhotra,1976).
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Malhotra (1976) isolated chloroplasts from needles of

Pinus contorta (Lodgepole Pine) treated with (50-1000

ppm) concentratidns of aqueous sulphur dioxide showed
that, at a low concentration (50 ppm), sulphur dioxide
stimulated Hill reaction activity, but this activity
was completely inhibited at high concentrations (500-

1000 ppm).

iii. Photosynthetic electron transporti Recently,
Shimazaki and Sughara (1980a, 1980b) studied in detail
the effect of gaseous sulphur dioxide on chloroplast

photosynthesis in Spinacia oleracea. Fumigation with

sulphur dioxide at 1 and 2'ppm for 1 hour produced no
effect on 2,6-dichloro-indophenol (DCIP) photoreduction
(Hill reaction); however, there was rapid inhibition
following longer exposures (for 3-6 hour at 1 and 2 ppm).
Sulphur dioxide did not inactivate the electron
flow from the reductant (HZO) to primary electron accep-
tor (Q) of PSII. Time-cause analysis of fluorescence
intensity of 502- treated plants indicated that sulphur
dioxide 1inhibited the accumulation of reduced Q. Fur-
thermore, the addition of 3-(3,4 dichlorophenyl);l, 1-
dimethyl urea (DCMU), an inhibitor actihg on reducing

site of PSII (Bishop, 1958), caused a rapid increase in



27

fluofescence in sulphur dioxide inhibited chloroplasts.
This suggests that Q was in the oxidized state. This
could happen because of sulphur dioxide ihactivation
of either primary electron donor or the reaction centre,
itself in electron transport chain. ‘

Reactions (PSII activity DCIP photoreduction; sulphur

dioxide fumigation was performed at 2.0 ppm).

. H20 + Ferredoxin =--% Inhibition of e flow to'NADP
ii. DCIP + Na ascorbate + DCMU --S-» DCIPH,
iii. Tricine-NaOH + Sucrose + NaCl + NH4C1 + Chlorophyll +

DCIP --> Inhibition of e  flow

Shimazaki and Sughara (1980a) investigated the site
of sulphur dioxide attack (at 2.0 ppm for 5 hour and 1.0
'ppm sulphur dioxide for 6 hour) in the electron trans-
port systéms_by studying both photosystems. Electron
flow from H,0 to DCIP was inhibited while that from redu-
ced DCIP to NADP (DCIPH2 - NADP) w#s not affected under
uncoupled conditions. Sulphur dioxide inhibited  the
overall electron flow from HZO to NADP to the same degree
. as the électron flow from H,0 to DCIP. These results,
suggest that sulphur dioxide inhibited the electron flow
driven by PSII but not that by PSI. A similar effect

of sulphur dioxide was observed in photosystems of
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Latuca sativa (Garden Lettuce) chloroplasts (Shimazaki

and Shghara,1980b). The work with chloroplasts isolated

from sulphur dioxide fumigated leaves of Latuca. sativa

(Shimazaki and Sughara, 1980b) demonstrated that the
'site of sulphur dioxide action was located closer to
the oxidizing site rather than the reducing site of
PSII. This was supported_by the observation that the
addition of an artifiéial electron donor for PSII, di-
phenylcarbazide (DCP), did not change the rate of DCIP
reduction in PSII. The work of Shimazaki and Sughara
(1980b) also suggests that the reéhlts of in vivo
effects of_sulphur dioxide on both photoelectron
transport and photophosphorylation and in vitro effects

2~ either

of treatment of isolated chloroplasts with SO
produced no overall effect on electron transfer (Asada
et al., 1965) or else stimulated a non cyclic type of
electron transpoft (Libera et al., 1973). Non-cyclic
electron fransport is so-called because of its unidir-
ectional nature - i.e., chlorophyll molecule excited by
a captured photon transfers an electron to NADP* (or
ferricyanide). |

The effect of gaseous sulphur dioxide seems to be

specific and not associated with acidity released decre-

ase in PSII activity, as a decrease in PSII activity due
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to low pH could be restored by adding electron donors
of PSII but nit in chloroplasts from sulphur dioxide
treated plants (Shimazaki and Sughara, 1980b). The
differences Between in vivo effects of sulphur dioxide
on both photoelectron éransport and phosphorylétions,
and in vitro effects of treatment of isolated chloro-
plasts with aqueous sulphur dioxide (HCOS, SO3'and S0,)
are difficult to reconcile. Shimazaki and Sugahara
(1980a) have attribhted such differences to production
of 05 and other radicals during photooxidation of SO%T
Biochemical Prdcesses

Calvin and Bassham (1962) established thé,sequence
of biochemical interconversions within the chloroplast
leading to carbon fixation. This phase was initially
thought to be light independent, although it used ATP
and NADPH produced during the 'light' phase.

In Redﬁctive Pentose Phosphate (RPP) cycle, the
first step is the photoassimilétion'of CO2 into Ribu-
lose bisphosphate (RuBP) to produce two molecules of
3-phosphoglyceric acid (3-PGA), which via 1,3-bisphos-
phoglycerate (BPGA) is reduced to the triose phosphate,
3-phosphoglyceraldehyde (3-PGAL). An isomerase converts

~some to 3-PAGL and some to dihydroxyacetone phosphate
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(DHAP). 1In the presence of fructose-1, 6 bisphosphate
(F6P) which is debhosphorylated to yield fructose-6-
phosphate (F6P). Part of the F6P recycles to form
Ribulose bisphosphate (RuBP) and the-balance of which
is used either in starch or sucrose synthesis.

In Reductive Pentose Pathway (RPP), five enzymes

- are activated by light, they afé:

1. Ribulose bisphosphate carboxylase (RuBisCo) - This
enzyme brings about carboxylation of RuBP.

& NADP - linkednglyceraldehyde-3;P—dehydrqgenase

" (NADP-GPD). This enzyme brings about dehydro-
generation of glyceraldehyde.

3. Fructose bisphosphate phosphatase (FBPase): brings
about the removal of phosphate group from C-6
sugar. (dephbsphorylation)

4, Seduheptulose bisphoaphate phosphatase (SBPase):
brings about the removal of phosphate

from C7 sdgar. (dephosphorylation)

i Phosphoribulokinase: Regeneration of ribulose in
presence of ATP.

Light modulation refers to light-induced change in
chloroplast stromal pH i.e., from pH 7.0 to 8.0 and inc-

2+

rease in Mg“ concentration. The function of the light
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activation mechanism in photosynfhesis, is to ease
plant cell in switching over from one function to ano-
ther, i.e., from carbon fixation (via the reductive
pentose phosphate pathway) in lighf to starch break-
down (via the oxidative pentose phosphate pathway

and glycolysis) in the dark. Thus, light modulation
enablés this mechanism compartmentalization,'these two
brocesses within chloroplast envelope itéelf.

Conformational changes in proteiﬁ strﬁcture
(which brings about activation of light-induced enzymeé)
can be blocked byvreaction_with sulfite (Koziol and
Whatley, 1984).‘ Changes such as these are thought to
occur during light modulatioh of the chloroplast enzymes.
Membrane-bound and possibiy stromal dithiol groups gen-
erated in the light are known to participate in the modu-
lation mechanism.

NADP-dependent glyceraldehyde—3-phosphate dehy-
drogenase (NADP-GPD) and glucose-6-phosphate dehydro-
genase (G6P). Glucose-6-phosphate dehydrogenase is the
first enzyme in the oxidative pentose phosphate path-
way and is inoperative in the light, have been shown to
be sulfite-sensitive by Ziegler, Marewa and Schoepe

(1976), Anderson and Avron (1976), respectively.
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Ziegler (1977) while working on Spinacia oleracea

showed that sulfur from either sulphur dioxide or SO%’

could be incorporated in the chloroplast thylakoids to
a much greater extent than sulfate (8025 sulfur. It
has been suggested that sog‘ could be directly incor-
porated into the sulfuric groups of sulfolipids (as re-
ported by Benson, 1963) or was taken up at the binding

sites in the thylakoids (Schwenn, Depka and Hennies,

1976). Hampp and Ziegler (1977) reported that both SO§—
ahd SOZ- are transported to the inner chloroplast mem-

branes by phosphate translocators and that light modu-
lators this process. |

Ziegler and Hampp (1977) presented evidence that
the light-induced generation of chloroplast membrane-
‘bound-SH group which is prerequisite for association of
SO%’ with the membranes. This exogenous sulfite gets
incorporated into the sulfate assimilation pathway in
chloroplasts( through binding with "cafrier-SH" (Schiff
and Hodson, 1973). This car-SH provides the substrate
for Car-S-SO3 formation.

Anderson and Duggan (1977) extended the study of

effects of sulphur dioxide and sulfite on light modula-

tion of chloroplast enzymes. They found that the acti-
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vation of NADP-GPD was inhibited by 200 uM SO3; but the
activation of SBPase was stimulated enzyme having two
functional activities. Thé same protein can either cata-
lyse carboxylatioh of the substrate RuBP to form two mole-
cules of 3-phosphogylcerétel or it can catalyse react
with oxygen to give one molecule of 2-phosphoglycolate

and 3-phosphoglycerate. Both these catalytic-reactions
are thought to involve a single active site.

Libefa, Ziegler and Ziegler (1975) demonstrated that,
with isolated chloroplasts and concenirations of sulphite
greater than 1 mM, fixation of 14CO2 declined rapidly,
and at 5mM was‘reduced to 20 percent. The relative amounts
of radioacﬁivity in phosphoglycerate and sugar phosphate
were decreased whereas those in aspartate and malate were
increased. This indicated a possible shift towards the
C4 dicarboxylic type of fixation and may indicate a higher

sensitivity of RuBP carboxylase than of PEP carboxylase

towards sulphite. Horsman and Wellburn (1975) exposed

Pisum. sativum var. Feltham to known amounts of sulphur
dioxide and/or NO2 for six days. At the énd of this
period RuBP carboxylase was extracted and assayed. Whilst
little change was observed by 5mM sulfite. The activa-

tion of NADP-GPD was also inhibited in Pea (Pisum sativum)

seedlings.which were exposed to 5 ppm sulphur dioxide for
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1 hour.

Further‘insight into this process was developed by
Ruth Alscher and Herman (1982).  They carried out a
study of in vitro sulfite effects and so sulphur dioxide
in vivo on light activation of alkaline, FBPase in two

cultivars "Besson" and "Hark" of Soyabean (glycine max.)

Differential sulfite susceptibility of sulphur dioxide
sensitive and sulphur dioxide tolerant‘soyabean varie-
’;ties, was found to be associated with the soyabean chl&-
roplast membranes and not with the soluble stromal phase
of chloroplasts. The sulfite-sensitive membrane protein
described by Mohamed and Anderson (1981) aléo by Heuber
Hansen and Anderson (1982) is likely candidate for this
site. Alscher (1984) proposed that one basis for sulfite
sensitivity of light activation is due to the binding of
" sulfite to the chloroplast membrane at a site which is

cruc ial for activation.

Effect of sulphur dioxide on RuBisCO:

RQBP carboxylase is a complex eniyme having two
functicnal activities. Hallgren and Gezelius (1982)
showed that fumigations with 'low' sulphur dioxide
concentrations ( 400 ug SOzm-3; 0.15 ppm) for 8 days,

in Pinus sylvestris, decreased RuBP carboxylase when

expressed on a dry weight basis. This indicates a dec-
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rease in the amount of active enzyme present rather
than in its specific activity. o
Ziegler (1972) found'Sog' inhibited RuBP carboxy-
lase competitively with respect to bicarbonate; pre-
sumabiy sog; replaces HCOS by reacting «#t the same

2- showed a non-competitive inhibition

enzyme site. SO
: 94

with respect to RuBP and Mg“ . Since sulphur dioxide
binds to the enzyme in the same way as C02, the degree
of inhibition by sog’ will be independent of the RuBF

-and Mg2+

concentrations but highly dependent on the
concentrations of C02 at the réaction site. If this

is theréase it follows that in plants with the C, type
of photosynthesis and an increased concentration of
Co, in the bundle sheath cellé, sulphur cdioxide should
be a less powerful inhibitor.

- Photochemical effects are shért-term effect studies
while yield measurements are long-term studied effects.
Therefore, a critical correlation between the results of
the effects of sulphur dioxide on photochemical and bio-
chemical processes of photosynthesis has not been attem-

pted. Nonetheless sulphur dioxide effects on photo

synthesis at various steps cannot be overlooked.



Effect of sulphur dioxide on the Allocation of Photo-
synthate Allocation and Yield

Plant growth depends on the coordinated acquisi-
tion, allocation &nd use of carbon, water and nutrient
resources to major plant crgans (roo;, stem, leaf, flo-
wer and fruit) and to the major classes c¢r metabolic
function (vegetative growth, ﬁaintenance, defense and
reproduction). Air pollutants like sulphur dioxide can
directly damage plant tissues ard disrupt normal patt-
erns of resource acquisition and allocatiomn.

Not enough attention has been paid to the effect
of sulphur dioxice c¢n dry matter distribution in plarts.

Bell (1982) assembled data from several studies
on the e¢ffects of sulphur dioxide on the growth of gra-
sses and found that greater response in roots (decrease
ir growth) than in shoots often occured¢. Increases in
shoot: root ratic have been found in many dicotyledons
fumigated with sulphur dicxide including trees (Freer-
Smith 1984). Jones and Mansfield (1982) exposed

Phleum pratense to 120 ppb sulphur dioxide for 40 days,

beginning }0 days after sowing. Growth analysis were
conducted at intervals arnd the time «f appearance of
inhibited the growth of roots of seedlings of Zea
mays. Both the retes of cell elongation and cell mul-

tiplicaticn in roots were reduced.
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Two main schools of thought have been pursued to
exblain effects of sulphur dioxide on assimilate parti-
oning.

i. Brouwer (1963) suggested that proximity of éxpaﬁn
ding leaves to photosynthesizing leaves, compared with
remote location of roots meristems, means that expand-
ing leaves tend to gain priority for assimilate distri-
bution when assimilates are in short supply. Thus,
sulphur dioxide which iﬁhibits photosynthesis, causes

a redistribution to roofs underground organs reducing
the normal quofa of photosynthates.

ii. Noyes (1980) showed that translocation was inhi-

bited by 39,44 or 69 per cent in Phaselous vulgaris

(bean) exposed for 2 hour to 0.1, 1.0 or 3.0 ppm sul-
phur dioxide (0.26,2.62 or 7.85 ug m™3), respectively
while Teh and Swanson (1982) found exposure to 2.9
ppm sulphur dioxide (7.60 ug h-3) for 2 hour inhibited
translocation in bean by 45 pertent..

In Noyes studies, the quantitative changes ¢f net

photosynthesis and translocation in Phaselous vulgaris

(sulphur diokide 100 ppb) appeared to be very differently
related tc dose of sulphur dioxide. Noyes suggested that

because sulphur dioxide decreased translocation (by 39
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.percent) without corresponding decrease in photosynthesis,
it was likely that sulphur dioxide inhibits thé mechanism
of translocation directly. Autoradiographic studies of
his material suggested that sulphur dioxide might inhibit
sieve-ﬁuBe loading.

Like Noyes, Teh and Swanson (1982) found that expo-

sure of the source leaf of Phaselous vulgaris for 2 hour

to 2.9 ppm sulphur dioxide inhibited the rate of photo-
synthesis by 75 percent and the same time the rate of
translocation of photosynthate out of leaf fell by 45
percent. Therefore, a larger proportion oé the photo-
synthates were retained. They pointed out that the
same proportional effects on translocation in 502 poll-
ute& leaves was less than predicted i.e., the effect of
sulphur dioxide could not be entirely accounted for b&
its inhibition on photosynthesis. Koziol and Jordan
(1978) found increased levels of starch and sugars in

the leaves of Phaselous vulgaris of sulphur dioxide

polluted plants (3.06 ppm for 24 hour), which is con-
sistent with the inhibition of phloem loading.

Kasana and Mansfield (1986) have pointed out that
information on the effect of sulphur dioxide stress on

root systems especially in grasses is lacking. Gener-
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ally it is assumed';hat the above ground plant parts are
more affected than the roots because they are nof dir-
ectly exposed to pollutant molecules in the atmosphere.
Pollutant-induced reductions in root growth are 1ike1y
to have important consequences in perennials such as
grasses, in which regrowth after cutting and grazing

is dependent upon the reserve assimilate stored in

the roots.

Ecology of Sulphur dioxide Resistance: C3, C4 and CAM
plants: One of the major objeétive in the analysis of
effects of sulphur dioxide pollution at fhe physiolo~
gicai and biochemical_level is the development of an
understanding of what determines relative resistance

or susceptibility. Resistance\bf plants £osulphur dio-
xide is determined both by sulphur dioxide toleranée
and sulphur dioxide avoidance (Levitt 1972; Taylor,
1978). Stress tolerance ié further divided into strain
avoidance and strain tolerance.

Avoidance involves the exclusion of the pollutant
from the plant, primarily by increased stomatal resis-
tance (Mansfield and Freer-Smith, 1984) but increased
leaf pubescence (Sharma and Butler, 1973, 1975). Toler-

ance involves minimising the effects of a pollutant
\
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through detoxification or by metabolic compensations.
In the case of sulphur dioxidé the absorbed pollutant
can be ‘detoxified by oxidation t;:ulphaté (Ballantyne
1977; Varshney, 1982; Garsed and Read, 1977) or reduc-
tion to sulfide and emission as H,S gas (Dé Cormis,
1968; Filner et al., 1984). Metabolic compensation
is perhaps best exémplified by a pollutant-induced |
transcription of isoenzymes of various constitutive
enzymes - (Weinstein, 1977). Varshney (1982) found
sﬁlphur dioxide to alter isoenzyme profile of gluté-
mate dehydrogenase in P. radiatus, B. giggg and Z.
mays exposed to 3, 5 and 10 pphm sulphur dioxide for
six weeks. |

Winner and Mooney (1980a, 1980b, 1980c, 1982).in
their series of papers described a method for paftition-
ing changes in photosynthesis between stomatal and non-
stomatal components. For stomatal component they con-
cluded that plants with high conductancé will absorb
more sulphur dioxide during comparable fumigations than
.planté with low conductance. They were the first to
employ a diagnostic gas exchange technique to explain

the effect of sulphur dioxide on ecologically diverse

plant species.
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Sulphur‘dioxidefresistance is the resuit of inter-
play between the écological, morphological and physio-
logical characterisﬁics of a plant (Winner and Mooney,
1980b). For native speéies, in polluted area, these
characteristics have e?olvéd through natural selection
and can be interpreted in evolutionaryecbntext. A num-
ber of studies have suggested that plant populationé
growing near sulphur dioxide sources are more sulphur
dioxide resistant than populations found in S0,- free-

air. Geranium carolinianum populations differed with

respect to the fqrmation of visible injury following
'anAacute sulphur dioxide dose (Taylor and Murdy, 1975)
and this ihtraspecific difference in sulphur dioxide
resistance was found to be heritable (Taylor, 1978).

Since plants of both G. carolinianum populations absor-

bed similar quantities of sulphur dioxide during fumi-
gations, the thsioldgical mechanisms accounting for
these differences ih sulphur dioxide resistance seemed

to be related to differences in the capacity of mesophyll
tissue to assimilate, detoxif§ or repair biochemical dam-
age from sulphur dioxide (Taylor and Tingey, 1981). |

Populations of Lolium perenne also differ in sulphur

dioxide resistance into sensitive plants being associated
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plasm. CO2 provided by decarboxylation of molate asper-
tate enters'chloroplasts of bundle sheath cells where it
combines with RuBisCo and (é interconversions take place.
Thus, this division of labour helps C4 plants in main-
taining internal CO2 constant with that o§ ambient CO2
concentration (Akita énd Moss 1972; Goudrien and Von

Ler 1978; Louwerse, 1980). C, plants show “"kranz
anatomy" i.e., chlofoplasts are concentrated near bundle
sheaths (Osmond et al., 1969) which may render them less
“vulnerable to absorb sulphurAdioxide_than more uniform
chloroplast distribution of C3 plants. Further, the
chloroplast arrangement in C4 plants may facilitate de-
toxification of sulphur dioxide absorbed in the immediate
vicinity of bundle sheath cells via assimilatory sulfur
reduction.

Biochemical contrast between C3 and C4 species may
also contribute towards differences in their sulphur dio-
xide responses. The iﬁitial CO2 fixation enzymes differ
for these two photosynthetic processes. Ziegler (1972;
1973) with the help of in vitro studies have shown that
carboxylating enzymes of both photosynthetic types are

competitively inhibited by sulfite with respect to bicar-
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bonate. However, PEP carboxylase from corn, a Cy plant,
had greater bicarbonate affinity and therefore better
sulphur dioxide exclusion than RuBP carboxylase from
spinach, a C4 plant. Both carboxylating enzymes are
found in spinach chloroplasts (Rosenberg et al., 1958)
although RuBP carboxylase is primarily responsible for
initial fixation of CO,. In vityo studies carried out
by Mukerji and Yang (1974) have shown that PEPCO allo-
enzyme (some enzymes are built to bind compounds at sites
other than fhe catalytic sites so as to alter the rate
bf reaction) from'spinach chloroplasts was relatively more
sensitive to sulphur dioxide than PEPCO alioenzyme from
corn (Ziegler, 1973) but was comparatively lesé seﬁsitive
than RuBisCo from spinach (Ziegler, 1972). Significance
of such differences in the response of various enzymes

at physiological levels is not understood.

Carlson and Bazzaz (1982) measured photosynthetic
responses of 03 and C4 plants fumigated with sulphur.dio-
xide at elevated COz. They proposed that because of
stomatal component, Cg plants, on being fumigated with
sulphur dioxide at elevated sulphur dioxide levels,
could increase photosynthetic rate with increased co,
and compensate for rate reduction caused by sulphur

dioxide while C4 plants are not able to compensate in
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can be expected, since Cy species maintain high COZ fixation rates
‘even when stomatal conductance is low. On the other

hand, photosynthetic*rates of C3 planis decline in con-
cert with stomatal élosure (Wong et al., 1979)(TbbL32).

C4 plants'with their physiblogical and biochemical
characteristics, which lead to greater water-use effici-
ency, are better adapted not only in water-limited habi-
tats but appear to be better adapted for polluted habitats
also. Cy plants have been shown to be generally more tol-
erant than C3 plants (Sij and Swanson, 1974; Winner and
Mooney; 1980c). Morphological contrasts between C3 and C4
may also contribute towards greater intrinsic tolerance
of the latter towards sulphur dioxide stress (Winner and
Mooney, 1980). A leaf section of C4 plants show large
green bundle sheath cells around vascular bundles flanked
by a layer of green mesophyll cells. Such an ordered arr-
angement is known as "kranz anatomy". It provides C,
plants with division of labour or compartmentalization.
Initial carbokylation reaction i.e., PEPCO enzyme having
greater affinity towards carbondioxide than RuBisCo com-
bines with it and the resultant product is Malate aspar-
tate. The above mentioned réaction takes place in meso-
.'phyll cells. Malaie aspertate enters into bundle sheath

cells where it undergoes decarboxylation reaction in cyto-
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with habitats with little or no sulphur dioxide (Bell and

Mudd, 1976; Horsman et al., 1979). Similar interspecific

differences have been found for Rumex obustifolius

(Horsman and Wellburn, 1977), Dactylis glomerata, Festuca

rubra and Hdlcus.’lahatus (Ayazloo and Bell, 1981). In

contrast to the ;ondition of Geranium carolinianum, the
differences of sulphur dioxide resistance for these pla-
nts seemed at least partly related to sulphur dioxide
absorption capacities; plants representing sensitive
.pOpulationsrfrom ;lean air sites absorbed more sulphur
dioxide fumigations than resistance plants f:om sites
with industrial sulphur dioxide (Ayazloo et gl.,_1982).

Studies on the evolution of sulphurldioxide resis;
tance, are mostly confined on temperate plants but infor-
mation is lacking on tropical plants. In general
1. it is not known the rate at which sulphur dioxide
resistance can change within a species, 2. prediéting
which épecies have the greatest potential to adapt to
increased level of sulphur dioxide, and 3. the way
in which two levels of sulphur dioxide stress will
modify community composition.

C5, C, and CAM planfs: C3'and C, plants differ.in
their photosynthetic sulphur dioxide sensitivityﬁuaThis



Teble 2 : Effect of Sulphur dioxide on c’, C, and CAM Plants

candl
Cy (Re; ~ductive Pentose Phosphate cycle)

S, -dicarboxylic acid cycle

CAM (Crassulacean Acid Metabolism)

vStomatal @onents

Cy plants generally have higher sto-
matal conductance resulting in high-
er S0, absorption (Winner and Mooney,
1982).

In C3 plants, stomata either stay open

resulting in internal (0, concentra-
tion which remain near to that of
air surrounding the leaf or stomata
vhich maintain a constant ratio bet-
ween external and internal G)z
concentrations.

Morphological

C, plants, which are better
adapted for water conserva-

tion have the lower capacity -

for so, absorption resulting
in higher SO2 resistance
(Winnter and Mooney, 1982).

In C,. plants, stomata tend
to keep the internal @0,
concentration constant and
therefore independent of
external 002 concentrations
(Carlson and Bazzoz, 1982).

'

CAM mode results in stomatal opening

in dark and not in light. This dark

opening provides the opportunity
for uptake of 802 during the period

. when physiological mechanisms for

802 detoxification are not active
(Olszyk and Tingey, 1984).

C, plants show "kranz anatomy" i.e.
chloroplasts are concentrated around

vascular bundle sheaths.
Even if, stomata close on SO, fumi-

C; plants have chloroplasts which are
uniformly distributed throughout meso-
phyll tissue (Osmond et al., 1969).
This arrangements results in decline
of photosynthetic rate, when stomata gation, they carry out photosynthesis
get closed oa’ SO, fumigation at usual rate (Winner and Mooney,

(Winner and Mooney, 1982). 1982).



Cq (Re, - ductive Pentose Phosphate cycle)

Cb (dicarboxylic acid cycle)

CAM (Crassulacean Acid Metabolism)

High 00,

Fumigation with SO, reduced leaf
area of Cq plants more at low @,
than at high 00,.

(Carlson and Bazzaz, 1982)

Bioc.henical

The intiial mz-fixation enzymes in
C3 plants is RuBP-carboxylase which
has a lower bicarbonate affinity
than PEP carboxylase (Ziegler, 1972,
1973). Sulfite—competitively

binds to RuBP carboxylase and shows
poorer sulfite exclusion than PEP
carboxylagse (Winner and Mooney, 1980;
Ziegler, 1972, 1073).

leafareaofcl‘plantsmstedu:edmore

-at high o, than at low 00,. These results

support that the notion that C3 species
are more sensitive to 802 fumigation than
are C, species at concentrations of (Dz
equal to that found in normal ambient
air (Carlson and Bazzaz, 1982).

The initial (X)z-fixation enzyme in C, plants
is PEP carboxylase which has a higher bi-
carbonate affinity than RuBP carboxylase of
C3 species (Ziegler, 1972, 1973)’ Sulfite
competitively binds to both enzymes but

PEP carboxylase is better-able to dis-
criminate between bicarbonate and

sulfite (Ziegler, 1972, 1973;

Winner and Mooney, 1980).

The initial _(Dz- fixation enzyme
in CAM plants is also

PEP carboxylase, however, no
work has been reported , of
S0, effect on PEP carboxylase

of CAM plants Bisulfite inhibits
B-carboxylation and normal
pattern of CAM metabolism
(Osmand and Avadheri, 1970).
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a similar fashion and thus exhibit lower rates of photo-
synthesis.
Olszyk, Bytneroricz and Fox (1987) studied sulphur

dioxide effects on plants exhibiting Crassulacean Acid

Metabolism (CAM). Theyfound that Opuntia basilarics
(Bearer tail cactus) wés the most sensitive species
among species surveyed. Injury was found fo be associa-
ted with a hiéher stomatal conductance (Table 2).

Olszyk et al., (1987) reported that native vege-
tation in desert areas of the southwest could be adver-
sely affected by sulfur dioxide emissions from fossil
fdel energy generating stations, smelters and other
indusdtrial facilities both in the.United States and
Mexico. .Whilé physiological adaptations to arid envi-
rohment are likely to render plants insensitive to air
pollutants during much of the year, some of these éda?
ptations may.maximize pollutant sensitivity during those
periods when the plants have théir greatest metabolic.
activity due to favourable environmental conditions.

CAM mode results in stomatal opening primarily in
the dark and not in the light. The dark opening provi-
des the oppoitunity for uptake of sulphur didxide during

the period when physiological mechanisms for sulphur dio-



47

xide detoxification are not active (Olszyk and Tingey,
1984).

It has been suggested that CAM plants are not as
sensitive_to sulphur dioxide unaer field conditions.
The physiological mechanism of sulphur dioxide toxicity
appears to be different for CAM plants compared to C3‘
plants. The phytotoxicity of sulphur dioxide has been
found to be enhanced in light compared to dark in

Opuntia basilaris (Olszyk, Bytneronicz and Fox, 1987).

In contrast, the phytotoxicity of sulphur dioxide was

decreased in light as compared to dark in Pisum sativum

and Lycoperscion esculentum. This maybe due to photo-

reduction and photo-oxidation of sulphur dioxide»in the
light (Olszyk and Tingey, 1984). The mechanism for sul-
phur dioxide toxicity in the light has not been determined
but may be linked to the differential gas uptake and
carbon metabolism in dark vs light in CAM plants. Osﬁond
and Avadhani (1970) have shown that sulfite inhibits
normal pattern of CAM metabolism under otherwise favour-

able conditions.

Effect of sulphur dioxide on Key Physiological Processes
Not many in depth studies have been done on the

effect of sulphur dioxide on key physiological processses.
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However, results of various studies on the effect of
sulphur dioxide on major physiological proéeéses are
discussed below.

Information on respiratory response to sulphur
dioxide is extremely limited. Thomas and Hill (1937)
found no effect of sulphur dioxide on dark respiration
in plants exposed to 1 ppm sulphur dioxide for 1 hour.
Similar responses to high concentrations have also
been observed by Katz (1949),'Sij and Swanson (1974)
and Furukawa, Nato:i and Totsuka (1980). Shimazaki
and Sugahara (1979) reported that changes in dark res-
piration, that they observed in plants exposed to 2 ppm
sulphur dioxide for 5 hour were too small to have an
; appréciable effect on two rafes of net photosynthesis.

Effects of sulphur dioxide on dark respiration (Ja.blp.,?:)_
include both inhibition (Taniyama, 1972; Luttge et al.,
1972) and a stimulation (Keller, 1957; Bortitz, 1964;
Vogl Bortitiz and Polster, 1974; Vogl and Bortitz, 1965;
Taniyama et al., 1972; Black and Unsworth, 1979). Enhan-
ced respiratory rafes have been observed in a number of
pine species and bean (Vicia) exposed to wide range of
sulphur dioxide concentrations (0.04 - 2 ppm). These
changes in respiratory rates may reflect'a number of

responses to the pollutants; e.g., process of detoxifica-



- Table 3: Effect of sulphur dioxide on Respiration in Plants

Name of the Plant Habit Concentration Duration Condition Effect Reference
Helianthus. annus herbaceous 1.5 ppm S0, 30 min 0., was Decrease in photorespiration Furukawa et al.,
—— T cultivated - refeased in (1980)
= S
Pinus banksiana conifer 0.34 ppm soz 24 and 48 Lab Decrease in activity of Khan and Mal-
hour enzyme glycollate oxidase hotra (1982)
Spinacia oleracea, herbaceous éo?" 1 oM Spinach Inhibition of enzyme glyco- Libera et al.,
Hordeum vulgare cultivated 3 chloroplasts llate oxidase and accumula- ~ (1974)
crop exposed tion of glycollate; 1mM so,
does not alter ATP concen=
tration, but 1 mM decreases it
Phaseolus vulgaris herbaceous 30-100 mM Mitochondrial Inhibition in both plants Ballantyne
Zea mays cultivated Na, S0, preparation  of ATP formation; Corn (1973)
mitochondria are as sensi-

tive as bean mitochondria



Vicia faba

Nicotiana tabaccum

Pinus contorta x
banksiana

Phaseolus vulgaris

Dark respiration variation
did not have geographical
pattern. The process fluc-
tuated in most cases near to
the overall average of 1.20
dry wt h
Dark respiration rates
increased substantially
of SO2 concentration

39 percent increase in gly-
collate oxidase activity

Inverse linear relationship
between ATP content and
SO2 concentration measured

Respiration increased expo-
nentially with increasing
502 concentration

Table 3 : Effect of Sulphur dioxide on Respiration in Plants
Habit Concentration Duration Condition Effect
conifer  0.75 ul litre”! 5 days, 1ab. and
tree SO2 6 hr daily in field
mg 0, g
herbaceous 20-200 perts 3 days Glasshouse
cultivated 10 soz . conditions
crop
- 1.3 ppm S0, 18 hr Lab
conifer 20 ppm SO, and 0.5 hr Artificially
10-207 ppb in lab and
field condi-
tions
herbaceous 0.77, 1.53 24 hr Lab
cultivated 3.06, 4.03 continuous
crop 6.50, 8.0,
parts 10. 502

Reference

Oleksyn and
Bislobok (1986)

Black and
Unsworth (1979)

Soldatini and
Ziegler (1979)

Harvey and
Legge (1978)

Kozoil and

Jordan (1978)
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tion, repair mechanism on direct interference with spe-
cific respiratory pathways on organelles. Malhotra
(1976) reported ultrastructural changes in mitochondria

of Pinus contorta (Lodgepole pine) and an inhibition of

ATP formation and phosphorylation activity of mitochon-
dria in sulphur dioxide exposed to piants (Ballantyne,
1973; Malhotra and Hocking, 1976; Harvey and Legge,
1979). Nikdlarvskii (1966, 1968, cited in Horsman and
Wellburn, 1976) reported that exposure of Betula and
Acer to 125 ppm of sulphur dioxide for 17 hour resulted
in alteration in the activity of the glycolytic and

pentose phosphate pathway and the citric acid cycle.

Photo- respiration: Photorespiration is the oxidative
and irreversible biosynthesis and metabolism of glyco-
late; few studies have been carried out to study the
effect.of sulphur dioxide on photorespiration in intact
-plants. Koziol and Jérdon (1978), however, estimated
photorespiration from the rate of CO2 released in the
dark period immediétely following a light period in

which bean (Phaseolus vulgaris) plants had been expo-

sed to 1-8 ppm of sulphur dioxide. They reported
exponential increase in photorespiration with incre-

asing sulphur dioxide concentration, which is attribute
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to a greater use of energy in repair and replacement
processes. Ziegler (1975) found photorespiration to
be inhibited by sulphur dioxide. Glycollate oxidase,
an important enzyme for the synthesis of glycine and
serine was inhibited by low concentrations of 303-

in vitro (Zelitch, 1957; Paul and Bassham, 1978; Khan
and Malhotra 1982a), and by gaéeous sulphur dioxide
(Khan and Malhotra 1982 ). Exposure of Nicotiana
tabaccum (tobacco) to high sulphur dioxide concentra-
tion (1;3 ppm for 18 hour) induced enhanced the syn-
thesis of glycollate oxidase (Soldatini and Ziegler,
1979).

It has been suggested that a decrease in photo-‘
respiration as a result of sulphur dioxide or Sog-expo-
sure 1is due to formation of glyoxylate bisulfite,
which is a potent inhibitor of glycollate oxidase (Zeli-

tch, 1957). Glyoxylate bisulfite was found to accumu-

late in the leaves of Oryza sativa (rice) plants expo-

sed to high concentrations of sulphur dioxide (Tanaka

et al., 1972a). Similarly, Pisum sativum exposed to

high sulphur dioxide concentration, produced toxic
bisulfite compdunds of glyceraldehyde, L-ketoglutarate,

pyruvate and oxalate (Jiracek et al., 1972).



Effect of sulphur dioxide on Plant Productivity

This tbpic haé been very widely reviewed in lit-
erature (Linzon, 1972; Kozlowski and Mudd, 1975; Guder-
ian, 1977; Heck and Brandt, 1977; Jeffree, 1980)(1554e19.

Low sulphur dioxide concentrations (> 0.2 ppm)
were long shown to cause increases in yield (Thomas
et al., 1943) and net photosynthetic rates (Katz, 1949).
Prolonged exposure to low concentrations of sulphur dio-
xide are also known to bring about premature senescence -
(Guderian, 1977). »

Relationship between foliar injury and yield
loss are not well understood. Katz and Ledingham
(National Research Council of Canada, 1939) found
that sulphur dioxide did not affect alfalfa growth
until at least 5 percent of the foliage was visibly
injured, and Hill and Thomas (1933) reported that yield
reductions from acute sulphur dioxide injury were
roughly equivalent to plants from which same amount
of leaf tissue was removed.

Plant response to short-term high level sulphur
~ dioxide exposures may result in acute foliar injury,
whereas low concentration can be beneficial - espe-
cially if the soil is deficient in sulphur (Lockyer

t al., 1976). Conversely, long term, subacute expo-



Decrease in productivity
and leaf Area Indices (LAI)

" Reduction in area and Biomass

of leaf, Total plant biomass

1I‘C translocation and leaf
growth increased

Decrease in growth and
biomass accumilation

Plants were exposed to two light
regimes -simulating summer and
winter conditions. 50 percent
reduction in dry matter for
winter light regime

Decrease in Yield

Table Q : Effect of sulphur dioxide on Yield in Plants
Name of the Plant Habit Concentration Duration Condition Effects
Alliim-ursimm Trees 300 ug S0, w3 4 hr/week  Field
Anemone nemorosa c
Arum, maculatum
Viola-reichenbachiana
Triticun sestivum Cultivated 218 ug SO, u™> 1 hr for  Field and
Medicago sativa crop -2 S0, and artificially
Zea mays (1.7 g™ “ flyash) . to in lab
i flyash and
combination
of S0,(1 hr)
and £
Agropyron-smi thii Qultivated 200 ug SO~ 30 days Lab
j crop
Alianthus altissima wild tree 0.1, 0.2 ppm 1 and 2 Lab
' SO2 weeks
Phleun pratense wild grass 343 ug S0, w3 S weeks Lab
Lolium perenne Wild grass 700 ug Sozm'3 8 weeks Lab

Reference

Steubig and
Fangmeier
(1987)

Garg and Var-
shney (1983)

Milchumas et

Marshall and
Furnier (198!

Davies (1980

Horsmen et a
(1979)



Growth reductions

Growth suppression, early
abscision and reduction

Growth reduction

Name of the Plant Habit Concentration Duration Condition Effects
Nicotiana tabaccum cultivated 0.1 ppm so, 8 hr/day, Greenhouse
crop S days/week exposure
(4 weeks)  chamber
Phleum pratense wildgrass  0.95 ppm SO, 8 hr Field "
. exposure
Trifolium pratense cultivated " 8 hr = =
crop
‘Trifolium pratense cultivated " 12 hr o “
crop
5
Lolium multiforum wildgrass " 12 hr " a
General 0.05-2.0 ppm SO, 24 hr for "
' i growing
season in yield
Lolium wildgrass 0.1 ppm SO. 63 days Ambient air
=pllum perenne 2 pr -

Reference

Re:lnerte_tg:
(1969)

Guderian (196
3
Guderian (19
Guderian (19¢
Guderian (19
Thomas and

Hendricks (1¢

Bleasdale (1¢
352
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sures can also result in crop yield losses - often with

any accompanying visible folié; injury.‘
In’sulphUE-deficient soil,'sulphur dioxide acts

as a sulphur-nﬁtriént. Bell and Clough(1973) found that

continuous exposures to'bOth 12 ahd 6.7 pphm sulphur dio-

xide for 9 and 26 weeks respectively, depressed the shoots

growth of 523 ryegrass (Lolium perenne) approximately 50

percent. However, Cowling et al., (1973) found that expo-
sure to‘4.6 pphm sulphur dioxide for 59 days increased
the yield of same variety of ryegrass when it was grown

in a sulphur-deficieht soil, and later the same research
team (Lockyet gg'gl., 1976) reported that exposures of
upto 7.3 pphm sulphur dioxide for 77 days had no effect

on growth, even when adequate supply of sulphate was pre-
-sent in the soil.

Decreased growth attributable to sulphur dioxide
is well presented in numerous publications, but very
little information is available to suggest growth redu-
ctions unless visible injury occurs. Bell and Clough
(1973) found a 46 percent depression in final yield of
ryegrass exposed to 0.12 ppm of‘sulphur dioxide for 9
weeks and a 52 percent depression when plants were ex-
posed to 26 weeks to 0.067 ppm. Exposed plants showed

chronic injury but no acute injury. Guderian (1977)
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hés‘reported reduced growth in a number of species like

'Helianthus annus, Zea mays, Pisum sativum, Vicia sativa,

when grown singly or in combination with each other,
after exposure for 8 to 12 hour to about 1 ppm of sul-
phur dioxide and in a mixture of three species after
48 hour exposure to 0.4 ppm.

The most extensive data relating to foliar in-
jury occuring in the field in relation to continuous
monitoring of ambient sulphur dioxide concentrations
are those reported by Dreisinger and Mc Govern (1970)
from studies around smelters near Sudbury in Ontario,
Canada, énd by H.C. Jones et al., (1979) obtained
around electric power generating plants in Tennessee
Valley. Both investigations demonstrate that consi-
derable variation exists among species in their toler-
ance to sulphur dioxide. Leaf injury was related to
peak concentrations in Sudburyvarea. To prevent
sulphur dioxide injury to most species, the authors
concluded that sulphur dioxide concentrations should
not exceed 0.70 ppm for 1 hour, 0.40 ppm for 2 hour,
0.26 ppm for 4 hour or 0.10 ppm for 8 hour. Some
sensitive species may be injured from 1 and 2 hour
exposure to concentrations slightly below than those

mentioned above.
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Jones et al., (1979) studied foliar effectsvcau-
sed by ambient suphur dioxide levels on native plants
as well as crops. After 6,500 field inspections, they
concluded that the threshold dose for foliar injury on
sensitive species Qas 0.32 ppm for 1 hour or 0.17 ppm
fof 3 hour. The probability that foliar effects would
occur on any species examined, or that‘yields of soy-
bean would be reduced, was less than 50 percent for
3 hour exposures to concentrationé less than 0.50 ppm.

Zea mays, Gossypium sp. Triticum sp. and Nicotiana .sp.

were much more resistant than Glycine or Pinus taeda

and Pinus virginiana.

Research in future should aim at quantifying
the importance of sulphur dioxide on crop growth in
areas with different pollution characteristics. Field
investigations muét be backed up by laboratory fumiga-
tions, which should closely simulate the ambient situa--
tion with respect to climatic coﬁditions, realistic
fluctuating levels of differeﬁt mixtures of pollutants,

and normal practices of crop cultivation.

Task for Future Problems Ahead
Detailed studies are needed to corfelate results
of short-term photochemical studies with that of long-

term effects of sulphur dioxide on plant yield.



33

Laboratory experiments with different combinations
of air pollutants are required. As in the reél world,
outside the laboratory, plants experience all possible
interactions with the atmospheric environment. It is
also demonstrated that combinations of air pollutants
can cause rapid inhibition of co, exchange (Bull and
Mansfield, 1974; Ormord, Black and Unsworth, 1981). A
challenge for the future will be to describe the rela-
tion between deﬁosition velocities of air.polldtants,
‘the influence on plant photosynthesis and pfoductivity
in the field. |

- To understand the mechanism of sulphur dioxide
action of C3 type of plants, knowledge is required to
understand the effect of sulphur dioxide on different
key photosynthetic enzyme systems both in vitro and

In recent years some attention has been paid to
a few photosynthetic enzyme systems such as FBPase,
SBPase, RuBisCo.

Inspite of some serious studies by Ziegler (1972)

in Spinacia oleracea, Gezelius and Hallgren in Pinus

sijlvestris and Hallgren and gezelius (1982) in Pine sps.

the behaviour of RuBisCo is far from clear since inhibition

by sulphite is a complex and time dependent phenomenon.
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Fumigation System
Fumigation chamber

A dynamic fumigation chamber made of glass
'having 1m3 capacity was used in this study (Fig. 5).
The chamber was illuminated by light bulbs of 100 W,
mounted 30 cm above the chamber. The chamber was air
tight having an iﬁlet at the base and an outlet at the
tdp on the opposite side. A small electric fanvof
10"x9" size was fixed inside the chamber to ensure
uniform mixing. The flow of air-gas mixture into the
chamber waé monitored with the help of a rotameter and

kept constant at 1.55 1 min~1.

Sulphur dioxide generation

The sulphur dioxide was generated by tubbling
~air at a constant rate of 1.55 1 min-1 in an impinger
containing a 100 ml of the desired aqueous solution of
sodium metabisulphite (5 mg or 10 mg). The sequence of

reactions leading to Sulphur dioxide evolution are as

follows:
NaHS0y ———————> Nat + HSO 4 (1)
- +
HSO,™ + H —>  H,S0, (2)

The sulphur dioxide was introduced into the chamber .

through an inlet. The SO, concentration in the air



Solution |¥

\NuHSO3
Solution

Fig. 5. Schematic representation of SO2 generation
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gas mixture was in the chamber determined by passing out
the gas from the exit through a 0.4 percent aqueous
solution of tetrachloromercutafe (TCM) for ten minutes.
A dichloromercurate is formed which reacts with pararo-
saniline and formaldehyde making a complex of pink
colour. The intensity of the colour was measured, spect-
rophotometrically at 548 nm and optical density (OD) was
converted in sulphur.dioxide concentration (ppm) using
the formula described by West and Gaeke (1956) as

| 3 _ (A-A)) x (10)° x (B,) |

ug SO, m XD
Ve
where,
A = sample absorbance
A, = reagent blank
103= conversion of litres.to cubic metres
v, = ﬁhe sample ?olume corrected to ZSOC and
760 mm Hg litres
BS =7calibration factor, ug/unit of absorbance
"D .= dilution factér

One ppm SO, = 2620 ug m~3 50,

Complete scrubbing of sulphur dioxide from the air
stream was achieved by passing the gas current through
two bubblers connected in series containing TCM solu-

tion. The concentration of sulphur dioxide in the gas
0\
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stream is dependent upon the strength of sodium metabi-

sulphite solution at a given rate of air-flow.

Plant Material

Two plant species, viz., Spinacia oleracea,

Lycoperscion esculentum were selected for this study.

Plants were raised from seeds in earthern pots
(height 15 cms) filled with éandy-loam soil. Three to
four seeds were sown in each pot and twenty five pots
were prepared for each species. Plants were exposed
to sulphur dioxide when they were 21 days old. Pots
were regularlyvirrigated during the experimental per-
iod; Pots were divided into three batches - (1) one
batch éf control plants, (2) second batch for exposure
to 0.1 ppm sulphuf dioxide, (3) third batch for exposure

to 0.2 ppm sulphur dioxide.

Exposure Schedule
Plants were fumigated daily for 2 hours duration
and periodical observationsbwere_taken for morphological
characters. Plants were fumigated with 0.1 ppm and 0.2
ppm sulphur dioxide. At the.end of six weeks, experi-
ment was terminated. Plant observations were made on
a number of morphological, physiological and biochemical

parametres in addition to biomass measurements.
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Morphological Parameters
Number of leaves per plant
Average leaf-area

Shoot biomass (Leaf biomass + stem biomass) and
root biomass

Fresh weight of plants were taken to calculate root
and shoot biomass.
Physiological and Biochemical Parametefs
Chlorophyll content estimation
Net photosynthesis

- Ribulose-biphosphate carboxylase (RuBisCo) activity

Morphological Parameters

Number of leaves per plant was counted at the re-
gular intervals, i.e., after 7th, 1l4th, 21st, 28th, 35th
and 42nd day of exposure schedule. Results have been
expfesséd as average number of leaves per plant.

Leaf-area measurements were similarly takeﬁ at re-
gular intervals, i.e., 7th, l4th, 21st, 28th, 35th and
42nd day of exposure schedule. Leaf-area was calculated
by measuring the length of the leaf and perpendicular line
to it was taken as width of the leaf. To minimize error
in leaf-area calculations, ten leaves of the same plant
were harvested. Outline of leaves were drawn on paper.

The same piece of paper was cut into one centimeter square



and weighed. Paper on which leaf-margin is drawn is also
weighed. Weight of one centimeter square paper divided
by paper weight of leaves gives the multiplying factor.
This factor though very small has to be multiplied when

making leaf-area measurements.

Physiological and Biochemical Parameters
Chlorophyll estimation:

Fresh leaves weighing 0.5 g were homogeﬁiZed in
20 ml of 80_percent acetone (acetone: water v/v) in a
mortar. The homogenate was filtered through a double
layered muslin cloth. The filterate was céntrifuged at
3000 g for 15 minutes. The supernatant was made upto
100 ml with 80 percent acetone and the optical density
of the extract was measured at 645 and 663 nm wévelength
using a Spectronic-20 Bausch and Lamb spectrophotometer
(USA). The chlorophyll a and chlorophyll b was
determined by using the formula described by Maclachlan

and Zalik.

/

n

Chlorophyll a (mg g'l fresh leaves )

12.3 Dee3 - 0.86 D645

dx 1000 X w XV

Chlorophyll b (mg g‘{ fresh leaves )

19.3 D645 - 3.6 D
dx IOUD X w

663 X V

60
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where
v = volume of chlorophyll extract in acetone (ml)
d = length of light path (cm)
w = fresh weight g leaves (g)

Net photosynthesis was measured with the help
of photosynthesis system, LI-COR Inc., Lincoln Nebrasaka,
USA. To measure rate of photosynthesis, a fully sunlit
leaf near perpendicular to the sun was.chosen. The leaf-
chamber of LI-6000 was installed after slightly (one
litre size) elevating the concentration in the leaf cham-

ber C02. Logging was started with a time step appro-

priate for a CO2 draw-down of about 30 ppm. When a-page
is compléte, store it and begin logging again.
Measurement cautions:

Keep the leaf chamber in the shade and open with
fans running. :

14 Avoid contaminating the leaf chamber with your
breath when closing.

iii. Avoid shading of the leaf when closing the cham-
ber, or at any time immediately prior to measure-

ment.

iv. Keep the chamber clean and free of dust or
other particulates which may contribute to water

adsorption.

Ve The range of CO, drawn-down should be about 25
ppm. If your Ca draw down is too small: (a) use

a smaller chambef, or (b) increase observation
time, or (c) increase the amount of leaf tissue.
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vi. The change in relative humidity should be zero.

vii. Light intensity must be constant during the mea-
surement, '

viii. The change in leaf temperature should be less
than or equal to 1°C or so; however, this varies

strongly with measurement duration and condi-
tions. : '

Ribulose bisphosphate carboxylase (RuBisCo)

RuBP carboxylase determination by enzymic estimation
of D-3-PGA formed, method described by Marco and Tricoli
(1983) (F:i.é. )

Ribulose-1-5-bi§phos§hate (RuBP), Bicine, Mercapto-
'ethanol; Phosphocreatine,bcreatine phosphokinase, Glycer-
aldehyde-3-phosphate dehydrogenase (GADPH), Phospho-
glycerate kinase (PGK), were obtained from Sigma Chemical

Company, USA.

i. 10 ul: Clinipette, Clinicon International GmBH:
West Germany.

ii. 50 ul: Clinipette, Clinicon International GmBH:
West Germany. ' :

iii. 100 ul: Sigma, Sigma Chemical Company, USA.

iv. P-20: Pipetman: Gilson, Gilson Medical Electro-
nics, (France) S.A.

v. P-1000: Pipetman: Gilson, Gilson Medical Ele-
ctronics, (France), S.A. -

One gram leaves were homogenized in a mortar
with glass beads in 10 ml per gfam of 100 mM Bicine

~(pH 8.2) 10 mM MgCl,, 5mM NaHCO, and 5mM Mercaptoethanol.



Homogenize 1 gm of leaves/10 ml of 100 mM Bicine,
+ 100mM MgCl2
+ 5 mM NaHCO
+ 5mM Mercapéoethanol

Filter the extract
through muslin cloth

Centrifuge for 50 minutes
on a K-24 refrigerated centrifuge

To 3 ml cuvette add 1.3 ml of 100 mM
Bicine + 5 mM Mercaptoethanol (pH 8.2)
+ 200 pl of Plant-extract

Incubate for 5 minutes

Add 50 ul of RuBP (1.02 mg of RuBP in
150 pl of

+ 100 mM Bicine

{ + 10 mM Mg012

+ 5 mM NaHCO3'

¥

Stop the cafbbxylation reaction after
two minutes by adding 100 ml of 1 M HCI1

v
Neutralize, by adding 100 ul of 1 M NaOH

v

Add 100 ul of 100 mM ATP,
+ 50 pul of 200 mM phosphocreatine
+ 5 units of creatine phosphokinase
+ 500 pnl of NADH '
'] .
[kead OD at 340 nm]
]

5 Units of phosphoglycerate kinase (PGK) +
5 units of glyceraldehyde phosphate dehydrogenase
(GADPH) 10 ul

]
[ Read change in OD for 5 minutes at 340 nm |

Fig.6 RuBP carboxylase determination by enzymic
estimation of D-3-PGA formed
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The extract, after filteration through cheesecloth was
ceﬁtrifuged’in K-24 at 16,000 x rpm for 50 min at 0°C.
0.1 ml of crude plant extract was incubated for 5 min.
After 5 min of incubation in reaction mixture, reaction
was started by adding 0.5 u mol of RuBP in 50 ul of
reaction buffer minus NaHCO3. The reaction was stopped
after 2 min by addiﬁg 100 ul of 1M HCI.

| The spectrophotometric assay was effected by per-
formiﬁg the carboxylation reaction and then to the reac-
tion mixture adding 100 ul of 1M NaOH with 1.3 ml of
100 mM Bicine pH 8.2, containing 5mM mercaptoethanol.
This reaction mixture was transferred to 3 ml quartz
cuvette. To this mixture was added 100 ul of S5mM NADH,-
IQO ul of 100 mM ATP, 50 ul of 200 mM phosphocreatine
and 5 units of creatine phosphokinase to give a final
volume of 2.4 ml. After recording the absorbance of
this solution against arblank containing the same amount
of NADH in Bicine on Beckman DU-20 Spectréphotometer 5
units of phosphoglycerate kinase (PGK) and 5 units of
glyceraldehyde phosphate dehydrogenase (GADPH) as a
suspension in aﬁmonium sulphate solution (10 ul) were
added. The reduction of D-3-PGA went to completion in
about 5 min at 28°c.

Following precautions were observed:
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Homogenization of leaves shoﬁld be carried out in
chilled mortar and pastle so that heat cauéed by
friction may not denaturate the enzyme RuBisCo.
pH of the reaction mixture should be around 8.2.
Meréaptoethanol is to bevadded to buffer just
before making use of the buffer. |
After centrifugation, the éupernatant should be

crystal-clear, as crude plant-extract is used

for determining enzymic activity.

RuBP, NADH, ATP, phosphocreatine are to be freshly

prepared, i.e., approximately half an hour before
the enzyme assay has to be carried out.

Ribulose-1-5-bisphosphate dissolves in slightly

- acidic solution, i.e., pH 4.5 - 5.0.

Statistical Analysis:

The internal variability or dispersion of the

data on total biomass, biomass of stem, leaf and root,

chlorophyll content was subjected to statistical analy-

sis and standard deviation (o~ ) was calculated. The

sum of squares of the deviations (x-x-)2 from the mean

(x~) divided by number of observations (N). The square

root of the resultant represents the value of standard

deviation (¢— ).



$(x - x7)?
N

where

o— = standard deviation

¢ = sign of algeberic sum

X = observed value

x = mean of observed values

‘N = number of observations
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- RESULTS

The effect of sulphur dioxide 0.1 ppm (Tl) and 0.2 ppm
(T,) fumigation in S. glgggégg and L; esculentum 2 hr daily
for six weeks was evaluated. The parameters chosen for |
‘'studying the respbnse of the above plant species were leaf

area, number of leaves per plant, chlorophyll content, bio-

mass content, net photosynthesis and RuBisCO activity.

Leaf Area
In S. oleracea leaf area decreased following S0,
fumigation (Table 5, Plate 1,2). 1In control plants the

ﬁotal leaf area was 10.5 cm2 in fumigated plants it

decreased to 9.12 and 9.41 cmz_in T1 and T2 treated

plants for two weeks, respectively (Table 5, Fig.7).

After three weeks of fumigation the leaf area decreased

2

to 22.8 and 25.4 cm? in T, and T2 treated plants, res-

pectively in contrast control set having 29.2 cm2 leaf

area (Table S5, Fig.7). Leaf area increased to 31.7 and

2

34.5 cm” in T1 and T2 treated plants, respectively after

four weeks of fumigation in contrast to control set having

2

26.5 cm” leaf area. Average leaf area decreased in plants,

after five weeks of fumigation, over control value of

2 to 31.9 and 33.9 cm? respectively (Table 5, Fig.7).

34.7 cm
In plants subjected to Tl'and T, treatment for six weeks

the leaf area decreased with fespect to control value of



Table 5. Effect of 2 hr daily 0.1 and 0.2 ppm of S0, fumigation for six weeks on S. oleracea and L. esculentum

Date of
sampling

Duration
“of ex
(days

S. oleracea
16.3.88
23.3.88
30.3.88
6.4.88
13.4.88

- L. esculentum

16.3.88
23.3.88
30.3.88
6.4.88

13.4.88

IA = Leaf area

aAverage of twenty reading;

14
21
28

35

42

- Avg. 1A of

control
plants

10.5 + 2.0%

29.2 + 6.25
26.5 + 9.98
34,72 + 8.08
34.78 +10.05

2.3 + 1.64°

3.35 + 2.09
3.7 + 0.9
6.02 +1.22
7.70 + 1.87

Avg. 1A of

plants exposed

to 0.1 and

9.12 + 3.97
22.8 + 10.6
31.72 + 4.49
31.9 + 5.66
33.9 + 5.89

2.6 + 1.43
3.03 + 1.3
4.76 + 1.59
5.07 + 1.48
5.80 + 3.16

Average of six readings

% reduc-
tion over
control

-13.1
-21.9
+16.4
-8.12
-2.53

+13.0
-9.5

+27.0
-15.7
-24.6

Avg. 1A of

plants exposed
to 0.2 ppm of SO2

9.41 + 3.20
25.4 + 2.25
34.5 + 3.16
33.9 + 7.98

© 33.38 + 5.89

2.4 + 1.92
2.86 + 0.72

5.68 + 1.58

4.85 + 3.16
5.65 + 1.73

% reduction
over control

-10.3
-13.0
+30.1
~2.36
-4.02

+4.34
~-14.6

- +53.5

-19.4
-26.6



Plate 1. S. oleracea control and treated plants (fumigated
with 0.1 ppm SO, 2 hr daily for six weeks)

Plate 2. S. oleracea control and treated plants (fumigated
with 0.2 ppm S0, 2 hr daily for six weeks)
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34.7 cm? £633.9 éﬁd 33.3 cm3, respectively (Table S; Fig.7).

In L. EEEHLEEEEE average leaf area of plants subjected
to.Tlvand T, sulphur_dioxide treatments for ﬁwo weeks incre-
ased over control value of 2.3 cm2 to 2.6 and 2.4 cm2, res-
pectively (Table 5; Fig.8). However, after three weéks
of-fumigation, leaf area decreased to 3.03 and 2.86 cmz
for T1 and T2 treatments, respectively in contrast to con;
trol set having 3.35 cm? (Table 5,.Fig.8). Leaf area increasec
in Ty and T, treated plants for four weeks of fﬁmigation to
4.76 and 5.68 cm2. respectively over control vaiue of 3.7
em? (Table 5, Fig.8). Leaf area deereased to 5.07 and 4.85
cm2 in T1 and T2 treated plants for five weeks, respectively
in cont:ast to control set having 6.02 cm2 leaf area (TableS R
Fig.8). Leaf area decreased to 5.80 and 5.65 cm2 in plants
subjectéd to T1 and TZ treatments, respectively for six
weeks, in contrast to control set having 7.70 cmz(Téble 5,
Fig.8).
Average Number of Leaves Per Plant~

| In S. oleracea average number of leaves per plant

increased to 6.46 and 7.11 in plants subjected to T1 and
T, treatment, respectively invcontrast to control set
having 6.27 (Table 6, Fig.9). However, after three weeks

of fumigation leaf area was reduced to 6.61 and 7.34 for

T1 and T2 treatments, respectively in contrast to control



Table 6. Effect of 2 hr daily 0.1 and 0.2 ppm of S0, fumigation for six weeks on S. oleracea and L. esculentum

Date of Duration of Avg. no. of lvs/Plt Avg. no. of lvs/Plt 7 reduc- Avg. no. of lvs/Plt l% reduction
sampling exposure in control plants in plants exposed tion over in plants exposed over
(days) to 0.1 ppm of S0, control to 0.2 ppm of SO, control

S. oleracea

16.3.88 14 6.27 + 1.25% 6.46 + 2.96 430 7.11 + 2.27 +13.3
23.3.88 21 7.56 + 1.50 6.61 + 3.59 -12.5 7.34 + 3.48 -2.9
30.3.88 28 7.81 + 2.09 10.6 + 4.14 +35.7 9.45 + 7.93 +20.9
6.4.88 35 9.86 + 4.34 15.2 + 13.6 +56.1 12,3 + 8.8 +24,7
13.4.88 42 10.6 + 4.44 15.8 + 7.18 +49.1 - 13.7 + 3.16 L %292
L. esculentum |

16.3.88 14 41.0 + 8.68° 30.3 + 7.21 -26.8 41.1 + 8.65 +0.24
23.3.88 21 45.5 + 9,12 43.3 + 14.6 -4.83 41.3 + 15.9 -9.23
30.3.88 28 61.5 + 13.5 47.16 + 26.3 -23.3 © 63.0 + 13.3 +2.38
6.4.88 35 102 + 98.32 - 91.25 + 4.02 -10.5 113+6 + 120.2 +9.7
13.4.88 42 154 + 28.5 92.84.+ 45.2 . =39.7 129.2 + 36.7 - -16.1

Avg no. of lvs/Plt = Average number of leaves per plant

aAverage 6f twenty readings; b Average of six readings
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set having 7.56 (Table 6, Fig.9). The average number of
leaves per plant increased after four weeks of fumigation
to 10.6 and 9.45 in T1 and T2 treated plants,respectively
in contrast to control set having 7.81 (Table 6, Fig.9).
The average nﬁmber of leaves per plant increased to 15.2
.and 12.3 in plants subjected to T1 and T, treatments for
five weeks, respectively in contrast to control set héving
'9;86 (Table 6, Fig.9). After six weeks of fumigation the
average number of leaves per plant incréased to 15.8 and
13.7 in T, and T2 treated plants, respectively with respect
to control set having 10.6 (Table.6, Fig.9).

In L. esculentum, the average number of leaves per
plant decreeased following sulphur dioxide exposure over
the control. The average number of leaves in T1 and T2
treated plants for six weeks was 30.3 and 41.1, respecti-
vely as compared to control plants having 41.0 (Table 6,
Fig.10). The average number of leaves per plant decreased
to 43.3 and 41.3 in.plahts subjected to three Qeeks of
fumigation, respectively with respect to control set having
45.5 (Table.6, Fig.10). After four weeks of fumigation the
average number of leaves per plant decreased to 47.1 in
plants subjected to T1 treatment, whereas in plants exposed
to T2 treatment it decreased to 63.0. 1In control set,

the average number of leaves was 61.5 (Table 6, Fig.l@(&aﬂ53,40‘



Plate 3. Growth of L. esculentum plants exposed to 0.1 ppm
SOZ (2 hr daily for six weeks) along with control

‘Plate 4. Growth of L. esculentum plants exposed to 0.2 ppm
SO2 (2 hr daily for six weeks) along with control
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Similarly, after five weeks of fumigation the average number
of leaves per plant decreased to 91.25 in plants subjécted to
Tl treatment, whereas the average number of leaves per
plants increased to 113.6 in piants subjected to T2 treat-
ment, in contrast to control set having 102 leaQes (Table6,
Fig.lO).» The average number of leaves per plant decreased
to‘92.8 and 129.2 in plants subjected to T, and T, treat-
ments, fér six weeks, respectively in contrast to control

set having 154 leaves (Table 6, Fig.10).

Chloroplyll content

to 0.609 and 0.504 mg g-1 fresh weight in plants subjected
to_Ti and T2 treatments, for six weeks, respectively in

- contrast to control value of 0.736 mg g—l fresh weight
(Table 7, Fig.11). Chlorophyll a decreased in plants
to0.367 and 0.295 mg g-l fresh wéight, in plants subjected
to T1 and T2 treatments for six weeks, respectively with
respect to control set having 0.451 mg g-1 fresh weight
(Table 7, Fig.1l). Chlorophyll b decreased in plants
subjected to T1 and T2 treatments for six weeks to 0.243
and 0.209 mg g'l'fresh weight respectively in contrast to
control value of 0.285 mg g_l-fresh weight (Table 7,
Fig.11). Chlorophyll a/b ratio decreaed in plants subjected

to T, and T2 treatments for six weeks to 1.51 and 1.41,



Table 7. Effects of SO, (0.1 and 0.2 ppm 2 hr daily for six ngks) on the absolute and relative
_ (values in pagentheses) amounts of Chlorophyll (mg g - fresh weight) in S. oleracea

Parameter Chlorophyll content of Chlorophyll content of % reduc-  Chlorophyll content 7 reduction
control plants plants exposed to 0.1 tion over of plants exposed over
v ppm of 802 control to 0.2 ppm of S0, control
chl a 0.451% 2.4 (100) 0.367 + 2.4 (81.3) 18.6  0.295 + 0.04 (65.4) -34.8
Chlb 0.285 + 2.4 (100) 0.243 + 0.04 (85.2) -14.7 - 0.209 + 0.01 (78.3) =-26.6
chl (a+b) 0.736 + 2.4 (100) 0.609 + 0.11 (82.7) -12.7 0.504 + 0.07 (68.4) -31.5
Chl a/b 1.58 1.51 1.41

bAverage of three readings
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respecfively with respect to control value ofv1.58
(Table 7, Fig.ll).
In L. esculentum total chlorophyll content decreased
after six weeks of fumigation to 0.572 and 0.579 mg g;l
~fresh weight in plants sﬁbjected to T, and Tz'treatments,
respectively, in contrast to control set having 0.744 mg g-l
fresh leaves (Table 8, Fig.12). Chlorophyll a decreased
to 0.344 and 0.339 mg g'l fresh leaves in plénts subjected
to T1 and T2 treatments for six weeks respectively in
contrast to control set having 0.378 mg gfl fresh weight
(Table 8, Fig.12). |
Chlorophyll b decreased to0.242 and 0.243 mg g~ 1
fresh weight in plants subjected to T, and Té treatments
for six wegks, respectively in contrast to control value
of 0.259 mg g~} fresh weight (Table 8, Fig.l1l).
Total chlorophyll decreased to 0.572 and 0.579
mg g-1 fresh leaves in planfs subjected to T1 and T,
treatments for six weeks with respect to control value
of 0.744 mg g'1 fresh weight (Table 8, Fig.1l).
Chlorophyll a/b ratio decreased to 1.42 and 1.39 in

plants subjected to T1 and T, treatments for six weeks

with respect to control value of 1.45 (Table 8, Fig.l1l).

Biomass Content

In S. oleracea total biomass content increased to



Table 8. Effects of SO, (0.1 and 0.2 ppm 2 hr daily for six wegks) on the absolute and relative
: (values in pagentheses) amounts of Chlorophyll (mg g ~ fresh weight) in L. esculentum

Parameter Chlorophyll content of Chlordphyll content of % reduc- Chlorophyll content % reduction
control plants plants exposed to tion over of plants exposed over
' 0.1 ppm of SO2 control to 0.2 ppm of 802' control
chl a 0.378% + 0.23 (100) 0.344 + 0.07 (91.0) -8.9 0.339 + 0.41 (89.6) -10.3
chl b~ 0.259 + 0.04 (100) 0.242 + 0.42 (93.4) -19.0 0.243 + 0.23 (93.8) -18.7
Chl (a+b) 0;744 + 0.65 (100) 0.572 + 0.36 (76.8) -23.1 0.579 + 0.11 (77.8) -22.1

Chl a/b 1.45 ' 1.42 ' | 1.39

a'Average of three readings



Table 9. Effect of 0.1 and 0.2 ppm of SO fumigation (2 hr daily for six weeks) on
' S. oleracea (average of twenty“readings)

Plant system Biomass of control Biomass of Plants 7 reduc- Biomass of Plants % reduction
Plants fumigated with tion over fumigated with 0.2 ppm  over
0.1 ppm of S0, control of_SO2 control
Shoot 3.30 + 3.74 3.77 + 3.74 +14.2 4.63 + 3.74 +40.3
Root 0.432 + 3.7 ©0.329 + 3.74 -23.8 0.393 + 0.20 9.5
- Total - 3.73 + 3.6 - . 375+ 3.7 .53 5.33 + 3.74 +42.8
Root/Shoot  0.130 | 0.087 0.084

ratio
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3.75 and 5.33 g fresh weight in plants subjected to T,
and T, treatments, for six weeks, respectively in contrast
to control set having 3.73 g fresh weight (Table 9, Fig.13).

Shoot biomass.increased to 3.77 and 4.63 g fresh
weight in plants subjected to T, and T, treatments for
six weks over control set having 3.30 g fresh weight
(Table 9, Fig.13).

Root biomass decreased to 0.329 and 0.393 g fresh
weight in plants subjected to T, and Té treatments for
six weeks as compared to 0.432 g fresh weight in control
plants (Table 9, Fig.13).

Roét:shoot ratio decreased to 0.087 and 0.084 in
plants subjected to T1 and T2 treatments for six weeks
in contrast to 0.130 R/S ratio in control plants LPLoJLS;é;)
and 13.9 g fresh weight in‘T1 and T2 treated plants in
comparison to control set having 15.4 g fresh weight
(Table 10, Fig.l14). |

Total shoot biomass decreased to 12.7 and 12.8 g
fresh weightbin plants'subjected to T, and T, treatments
for six weeks, respectively in comparison to control set
having 13.4 g fresh weight (Table 10, Fig.l14).

Sfem biomassvdecreased to 7.27 and 7.65 g fresh

weight in T1 and Tz'treated plants, respectively for six



Table . 10. Biomass content (g fresh weight) of L. esculentum fumigated with 0.1 and 0.2
‘ppm of SO, 2 hr daily for six weeks (average of six readings)

Plant system Biomass of control Biomass of Plants 7 reduc- Biomass of Plants

% reduction

Plants . exposed to 0.1 tion over exposed to 0.2 over control
ppm of 802 . control ppm of 802
Stem 8.09 + 2.23 7.27 + 2.23 -10.1 7.65 + 2,23 -5.43
Leaf 5.33 + 2.23 5.51 + 2.44 +3.30 '5.18 + 2.23 | -2.81
Total shoot 13.42 | 12.78 -4.76 12.83 -4.39
Root | 2.03 + 2.23 1.22 + 2.23 -39.9 1.14 + 0.89 -43.8
Total biomass 15.45 14.00 -2.17 13.97 -12.82
Root:Shoot  0.151 0.095 0.088
ratio
Leaf :Stem 0.65 0.75 0.67

ratio
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Plate 5. Difference in biomass content of S. oleracea
plants exposed to 0.2 ppm SO, (2 hr daily for
six weeksg along with controf

Plate 6. Above uprooted plants of S. oleracea fumigated
with 0.2 ppm SO, (2 hr daily For six weeks)
in pots along thh control
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weeks as compared to control set having 8.09 g fresh weight
" (Table 10, Fig.14). '

Leaf biomass incréased to 5.51 g fresh weight in

_ pl;nts subjected to T; treatment whereas it decreased in

T, treated plénts for six weeks to 5.18 g fresh weight

as compared to control set having 5.33 g fresh weight of
leaf biomass (Table 10, Fig.l14). ' s

Root biomass in T1 and T2 treated plants decreased
to 1.22 and 1.14 g fresh weight, respectively as compared
to control set having 2.03 g fresh weight of root biomass
(Table 10, Fig.l4).

Root:shoot ratio:decreased to 0.095 and 0.088 in
plants subjected to T1 and T2 treatments for six weeks;
respectiﬁely in R/S ratio in control plants was 0.151
- (Table 10, Fig.14).

Leaf:steﬁ ratio inc;eased to.0.75 and 0.67 in
plants subjected to T1 énd T, treatments for six weeks,
respectively as compared to control set having 0.65

(Table 10, Fig.l4).

Net Photosynthesis

In S. oleracea net photosynthesis increased following

sulphur dioxide fumigation for six weeks. For first set

of observations, it decreased to 0.777 u mol m-2 sec;"1



Table 11. Effect of SO, (0.1 an§20;2 pgm ) fumigated (2 hr daily for six weeks) on net
photosynthesis (umol “ sec ™) in S. oleracea of 0, fixed! -
' (Average of ten readings) -

Set No. - Nét‘photosynthesis of Net photosynthesis of = % change
Control plants plants fumigated with over

' 0.1 ppm of 802 control
Sy 0.9539 . 0.777 - ~18.5
S, 0.9539 0.833 - -10.9

S3 - 0.6028 0.9281 +35.0



Table 12. Observations of Net Photosynthesis in S. oleracea

and L. esculentum plants
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CO, fixed in plants subjected to T; treatment, in con-

2 c-l

trast to control value of 0.9539 mol m “ se (ofs)

2

fixed (Table 11,12, Fig.15). In second set of obser-
vations net photosynthesis decreased to 0.8333 and

in plants subjected to T1 and»T2 treatments, in contrast
to control value of 0.9539 mol m~2 se<:v-1 Co, fixed (Table‘
11,12, Fig.15). For third set of observations, net photo-
synthesis increased to 0.9281 u mol™? sec™! co, fixed

in plants subjected to T1 treatment for six

weéks’ ., in contrast to control set having 0.6028 u

mol ml-2 sec”! CO, fixed (Table 11,12, Fig.15).

In L. esculentum net photosynthesis decreased

- after six weeks of fumigation. In first set of obser-

vations, net photosynthesis decreased to 1.209 and
1 0.8316 u mol m"z_s_ec:-1 CO, fixed in plants subjected
to T1 and T2 treatments, respectively in contrast to

© control set having 1.527 u mol m-2 sec'1 CO2 fixed

(Table 12,13, Fig.16). For second set of observations,

net photosynthesis decreased to 1.786 and 1.111 u mol™!

sec ! CO? fixed in plant subjected to T; and T, treatment

respectively in contrast to control set having 1.8235'u
mo1™? sec™! o, fixed (Table 12,13, Fig.16). For third
set of observations, net photosynthesis decreased to

28 -1

1.174 u mol m “sec C0, fixed in T, treated plants as



Table 13 - Net photosynthesis (u mol m 2 sec™l o, fixed) invL: esculentum fumigated with
0.1 and 0.2 ppm of SO, (2 hr daily for“six weeks) (Average of ten readingy)

Set No. Rate of photosynthesis of Rate of photos’;inthesis of 7 change Rate of photosynthesis of % change

Plants treated as control Plants fumigated with over Plants fumigated with over

' 0.1 ppm of 802 _ control 0.2 ppm of SO2 control
S.1 1.527 - 1.209 -20.8 0.8316 _ ' -45.5
s, 1.8235 1.786 22,05  1.111 C =39.0

S, 1.209 | 1.513 1.174 : -2.89
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compared to control value of 1.209 u mol mfz sec™1 co,

fixed (Table 12,13, Fig.16).

RuBisCo Activity
"The RuBisCo activity of fumigated plants was

assayed and compared with control. RuBisCo activity

— o - —— ————

L. esculentum subjected to TI,and T, treatments.

The RuBisCo activity in S. oleracea decreased

after six weeks of fumigation over control value of 0.95

u mol min~! m1™! NADH oxidized to 0.15 and 0.08 u mol

-1

ml

min 1 ml NADH oxidized in plants subjected to T1 and

T, t;eatménts, respectively (Table 14, Fig.17). 1In
second assay, RuBisCo activity decreased over control
Qalue of 0.91 u mol min~! m1™! NADH oxidized in plants
subjected to Tl and T, treatments for six weeks res-

pectively in contrast to control value of 0.13 and

1 -1

0.078 u mol min~~ ml™ " NADH oxidized (Table 14

Fig.17).

. ———— . et e o S S

0.103 and 0.099 u mol min~} m1~1

NADH oxidized in plants

subjected to T1 and T, treatments, respectively with

1 -1

ml NADH

respect to control value of 0.108 u mol min~
oxidized (Table 15, Fig.17).:

In second. assay, RuBisCo activity decreased to

0.102 and 0.087 u mol min~! ml1™! NADH oxidized in plants
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Table 14. RuBisCo activity (u mol min~! m1~! mapH oxidized) in S. oleracea fumigated with
0.1 and 0.2 ppm SO, (2 hr daily for six weeks)

Set No. RuBisCo activity of RuBisCo activity of % reduction RuBisCo activity of
control plants plants exposed to - over control plants exposed to

1 0.95 0.15 ~84.2 0.08

2 0.91 | 0.13 -85.7  0.078

% reduction

~over control

-91 04



Table 15. RuBisCo activity in Lycoperscion esculentum fumigated (u mol min~! m1™1 NADH oxidized )
with 0.1 and 0.2 ppm 802 (2 hr daily for six weeks) ,

Set No. RuBisCo activity of RuBisCo activity of % change RuBisCo activity of % change
control plants plants exposed to - over control plants exposed to over control
0.1 ppm,SO2 0.2 ppm SO2
1 0.108 0.103 ~4.62 0.099 | . -8.33

2 0.105 | 0.102 -2.85 0.087 -17.1
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subjected to T1 and 7T2 treatments, respectively in con-
trast to control value of 0.105 u mol min~! m1™! NaDH

oxidized (Table 15, Fig.17).

Flower _Formation

Sulphur dioxide enhanced flower formation in
S. oleracea. After six weeks of fumigation with T,
and T, treatments number of flowering plants increased

to 4 and 8 as compared to control set having 2 flowering

plants (Table 16).



Table 16. Effect of 0.1 and 0.2 ppm SO, (2 hr daily for six weeks) on flowering of S. oleracea

S0, fumigation in days
14 21 28 35 42

No. of flowering plants

Plants fumigated with - - 1 2 4.
0.1 ppm SO2 for
2 hr daily®

Plants fumigated with - - . 1 3 4 8
0.2 ppm 802 for ‘ ‘
2 hr daily

Control - - - - 2
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Leaf Area

The sulphur dioxide treatment of S. oleracea plants
fumigated with 0.1 (T;) and 0.2 (Tz)vppm‘Z hr daily for
six weeks has shown that the leaf area of the treated

plants is reduced by 2 to 4 percent as compared to con-

trol (Table 5).

In L. eséulehtumbplants subjected to T, and T,
treatments, the leaf area decreased. The reduction in
leaf area varied between 24 to 26 percent (Table 5).

The reduction in leaf area in plants exposed to
sulphur dioxide is also observed by Bell and Clough

(1973) in Lolium perenne, Ashenden (1978) in Dactylis

glomerata, Ashenden and Mansfield (1977) in Lolium

perenne, Laurence (1979) in Zea mays and Triticum aestivum.

Gupta and Ghouse (1987) reported planté of A.
esculentum grown in the Qicinity of Kasimpur thermal
power plant complex have less number of leaves per plant
(higher degree of defoliation) and foliar ‘injuries.

Leaf area and yield in cultivated plants have
been shown to decrease as a result of sﬁlphur.dioxide
fumigation in several laboratory and field studies

(Davies, 1980; Heck et al., 1981; Ashenden, 1978;



Laurence, 1979; Ashenden and Mansfield 1977). A decrease
in leaf area in sulphur dioxide exposed plants also holds
true for the native forest floor plants of GieBen (West

Germany) namely Allium ursinum, Anemone nemorosa and

Arum maculatum by Steubing and Fangmeirer (1987).

Leaves Per Plant

In S. oleracea there was an increase of 29 to 49
percent in the average number of leaves in plants exposed
to T1 and T2 sulphur dioxide treatments 2 hr\daily for

six weeks.

In L. esculentum there was a decrease in average

number of leaves per plant after fumigation of six weeks.
The decrease varied between 16 to 39 percent in plants
exposed- to T, and T, treatments 2 hr daily for six weeks

as compared to control (Table 5). Observation of the
decreage in average number of leaves per plant is supported
by sfudies carried out by Laurence (1978), Gupta and

Ghouse (1987) aﬁd Steubing and Fangmeirer (1987).

"~ Increase in the average number of leaves per plant
of S. oleracea appears to be a compeﬁsatory growth mech-
anism operating to counteract a reduced photosynthetic
efficiency (Whitmore and Mansfield, 1983).

Observations made by Farrer et al., (1977) in
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Garsed et al., (1981) in P. sylvestris by Prasad and Rao

(1981) in Triticum sp. by Shanklin and Kozlowski (1984)

in Fraxinus pennsylvanica also support the trends obtained
in this sfudy with respect to increase in number of leaves
per plant. The plants growing in polluted air do appear
to be somewhat more leafy. This would be a reasonable
compensatory response to sulphur dioxide-induced losses
in the photbsynthetic capacity of leaves (Winner, Williams
and von Caemmrerer, 1985). Plants with more leaves but
lower specific photosynthesis will, however, have lower
water use efficiencyvand will be more prone to drought
stress; compensafory increase in root for the acquisition
of water seems unlikely in view of the overall debression
of'root-growth under pollution stress (Lechowicz, 1987).
In S. oleracea,leaf area in T1 and T2 tfeated plants
éecreased whereas number of leaves per plant increased.
This was primarily due to reduction in leaf-size in T,
and T2 treated plants. The total leaf area of treated
plants remained much less as compared to control inspite

of increase in number of leaves due to their small size.

Chlorophyll Content
Chlorophyll content in treated S. oleracea and
L. esculentum plants decreased 12 to 31 percent on

exposure to T1 and T, sulphur dioxide treatments for

six weeks (Table 7,8).
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Total chlorophyll was observed to decrease (12.7 -
31.5%) significantly in plants fumigated 2 hr daily
upto six weeks with 0.1 and 0.2 ppm sulphur dioxide of

S. oleracea and L. esculentum (Table 7,8). Chlorophyll a

was found to be relatively more sensitive than chlorophyll b.
Similar pattern of response>of Chlorophyll to sulphur
dioxide was observed by Rao and Le Blanc (1966, 1968),
Malhotra (1977), Rabe and Kreeb (1979), Laurenroth and
Dodd (1981), Williams et al., (1971), Kondd et al., (1980),
Shimazaki et al., (1980). | -
Nandi, Aggarwal and Rao (1986) reported that chloro-
phyll b was more sensitive in rice plants to sulphur
dioxide damage than chlorophyll a. This they attributed
to increase in chlorophyll activity (Malhotra, 1977) and/or
inhibition of chlorophyll b synthesis (Aronoff and Kwok,
'1977; Castelfranco, 1983).

" Mechanism of éulphur dioxide interaction with chloro-
phyll was suggested as chlorophyll a 1is converted to
phaeophytin following sulphur dioxide fumigation. The
conversion of chlorophyll to phaeophytin resulted by
replacing the Mg+2'w1th 28" formed due to increased cell
acidity due to sulphur dioxide (Rao and Le Blanc, 1966)
(Fig.4). However, production of phaeophytin does not

seem to be sulphur dioxide specific. Arhdt (1971) was
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able to get the same type of conversion with other acids,
such as hydrofluoric acid and hydrochloric acid.

Hill (1971) suggested that the breakdown of chloro-
phyll réported by Rao and Le Blanac (1965) was a secondary
effect of sulphur dioxide, Puckettet al., (1973) suggested
that the toxicity of lichens to sulphur dioxide was due
to increased.toxicity at low pH, was associated, in part,
with the destruction of chlorophyll b by an irreversible
oxidation process. Malhotra (1977) reported that chloro-
phyll a is converted into phaeophytin a and chlorophyll b
into_chlorophyllide b, in preseﬁce of enzyme chlorophyllase
into chlorophyllide b following sulphur dioxide fumigation.

Peiser and Yang (1978) showed that free radicals
produced from linoleic acid (LooH) decomposition by HSOS
were responsible for chlorothll destruction. Later they
observed increased amounts of malaﬁdialdehyde (MDA) in
leaves damaged by sulphur dioxide. The MDA formation
decreases with the reduction of chlorophyll a by the addition
of tririon (1.2-dihydroxy benzene-3,5 disulphonate) a
scavenger of superoxide (0,) radical (Shimazaki et al.,

1980). It has been suggested that the destruction of
chlorophyll may be due to the formation of superoxide
radical in plants exposed to sulphur dioxide. Chloro-

plasts produced 02 on the reducing side of PSI under
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illumination (Asada et al., 1974). Low levels of sulphur
dioxide fumigation may not bring about sufficient Change

in cell pH necessary for converting chlorophyll into phaeo-
plytin. However, deactivation of chlorophyll by super-
oxide radical (05) appears more likely in plants receiving
low dose of sulphur dioxide (Fig.4). Thus, the effect of
sulphur dioxide on chlorophyll may be considered under two
cellularvconditions, i.e., at pH Valueé below and above
3.5 (Fig.4). At pH 2.2 to 3.5 the free H' ions generated
in the cell from splitting of H,S0, into,Sog- and H', dis-
place Mg2+ from chlorophyll molecules to degrade from them
into phaeophytin molecules (Rao and Le Blanac, 1966). At
pH above 3.5 sulphur dioxide may affect the thylakoid mem-
brane of chloroplant by causing oxidation of cardtenoids
through generation of 05 (superoxide radicals) from HSOS
(Peiser and Yang, 1978). Once the carotenoid protection

is lost, ;he éhlorophyll molecules get oxidized and reduced
quantitatively, decreasing fhe photosynthetic ability of
the plant. Also, the free radical (05) in the presence of
superoxide dismutase (SOD) may increase the level of H,0,
in the cell which in turn may cause oxidation of chlorophyll
molecule in presence of peroxidase and thereby may reduce

the level of chlorophyll pigment in the cell.
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Biomass

Biomass content of S. oleracea treatedvplants did not
show anyidéfinate treﬁd. 'The biomass of Tl treated plants
did not show any significant change and almost equal to
control plants, _only marginally’0.53 percent high whereas
in T, treated plants, biomass was more than tﬁe-contrdl
plants. The effect of sulphur dioxide on biomass data in
S. oleracea did not show any relation to experimental
treatments. However; root biomass decreased in T1 and T2
treated plants (Table 9). The increase in shoot biomass
has mainiy contributed towards increase in the total
biomass content of S. oleracea plants (Table 9). The
increase in total biomass content.in T1 and T, treated
plants appears to be somewhat anamolous type. This
deviation can be due to a number of reasons (1) seeds
samples may‘not have same genetic composition as they were
purchased from market which did ﬁot guarantee same
genetic identity in all seeds, (2) period of six weeks
fumigation was not sufficient to reveal effect of sulphur
dioxide treatment on biomasé.

In L. esculentum total biomass content decreased

after six weeks of fumigation in T1 and T2 treated plants
(Table 10). Decrease in root biomass varied between
39-44 per cent as compared to control. however reduction

in shoot biomass varied between 4-5 percent, indicating
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;OOt tissues.are adversely affected by sulphur dioxide
pollution as compared to shoot tissue. However, leaf
biomass increased in T, treated plants whereas it
decreased in T, treated plants exposed for six weeks
(Table 10).

The overall impact of sulphur dioxide pollution
stress appears to be greater on roots than on shoot

tissues. In L. esculentum, the mean reduction in root

biomass is 39.9 and 43.8 percent in plants fumigated
with 0.1 and 0.2 ppm of sulphur dioxide com§ared to 4
percent reduétion for shoot biomass during the six weeks
period,.respectively (Table 10). In S. oleracea too;
shoot biomass increased to 14.2 and 40.3 percent compared
to reduction in root biomass by 23.8 and 26.1 percent in
- plants fumigated witH'O.l.andiO.Z ppm of sulphur dioxide,
_respéctively (Table 9). The greater suppression of root
growth relative to shoot growth is more often apparent
in response to either sulphur dioxide or 04 (Lechowicz,
1987). '

Radish (Reinert and Gray, 1981; Reinert et al.,
1982) alfalfa (Tingey and Reinert, 1975), blue grass

(Poa pratensis) (Whitmore and Mansfield, 1983), perennial

rye grass (Lolium perenne) (Bell et al., 1979), Scots

Pine (Pinus sylvestris) and Sitka spruce (Picea sitchensis)
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(Garsed and Rutter, 1984), all show greater suppression

of roots than of shoot biohass. In cqntrast, root and

shoot growth in hardwood tree species appear to be either
unaffected or equally affected by sulphur dioxide exposure
(Garsed et al., 1979; Roberts, 1975). Norby and Kozlowski
(1981), however, did show that the relétive effects of
sulphur‘dioxidé on root versus shoot growth was temperature

dependent in white birch (Betula papyriera), red pine

(Pinus. resinosa), and T, and T, two Eucalyptus species.

For example, white Birch seedlings grown at 32°C after
fumigation had greafer suppression of root“than shoot
growth, but 12°C resulted in a greater suppression of
shoot growth. The net effgct of these changes in alloca-
tion priorities is to reduce the root:shoot ratio under
sulphur dioxide pollution regimes. This may have occured
because sulphur dioxide inhibits the phloem loading sys-
tem (Teh and Swanson, 1982). The import of an altered
root:shoot ratio lies in the possibility that the acquisi-
tion of carbon, energy, water and the nutrient resources
will be impairéd, thus aggravating deleterious effects of
pollutant itself. The polluted plants may be more vulner-
abie to drought stress since proportionately less root is

available to supply water to transpiring leaves (Lechowicz,

1987).



Sulphur dioxide fumigation Ty and sztreatments
-2 hr daily for siﬁ weeks increased leaf:stem ratio in
S. oleracea (Table 13,14) and L. esculentum. Available
numeric data (Farrar et al., 1977; Freer-Smith, 1985;
Garsed et al., 1981; Prasad and Rao, 1981; Shanklin and
Kozlowski, 1984) show a mean 7 percent increase in leaf
biomass and a concomitant 5 percent decrease in mean stem
biomass in sulphur dioxide fdmigated plants.r Similar
trends are evident for white birch and pin oak (Quercus

palustirs) seedlings (Roberts, 1975) and for tobocco

but not fo: cucumber (Cucumis sativus) (Mejstrik, 1980)..

Since leaves account for essentially all transpiration
and have higher nutrient concentrations than stem tissues,
any disproportionate change in leaf to stem biomass under
sulphur dioxide pollution regimes can potentially amplify
the deleterious effects of reduéed root:shoot ratios

‘(Lechowicz, 1987).

Net Photosynthesis

L. esculentum plants fumigated with T, sulphur dioxide
treatment (Table 11,12,13).

In S. oleracea net photosynthesis decreased in T1'
treated plants. However, for third set of observations,

there was an increase of 35 percent in net photosynthesis
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‘as compared to control plants (Table 11). The cause of
such variation could not be ascertained as time did not
permit for another layout of this experimental schedule.
In L. esculentum, net photosynthesis decreased 2
to 50 percent in T1 and T2 treated plants for six weeks

(Table 13).

The RuBisCo Activity

The RuBisCo activity was found to be decreased in
§; oleracea and to84.2 to 85.7 percent and 91.4 to 91.5
percent in plants fumigated with 0.1 and 0.2 ppm éulphur
dioxide respectively (Table 13). The same was true for
L. esculentum, RuBisCo activity decreased to 2.85 to
4.62 percent and 6.33 to 17.1 percent in plants fumigated .
with 0.1 and 0.2 ppm of sulphur dioxide (Table 14). From
these results it can be deducted that S. glgggggg'is more

sensitive than L. esculentum.

It has been demonstrated that theﬁlevels of certain
enzymes decrease while others apparently increase after
sulphur dioxide fumigation (Horsman and Wellburn, 1976;1977;
Pierre, 1977; Malhotra and Khan; 1980). RuBisCo is reported
to decrease after pretreatment with sulphur dioxide
(Miszalski and Ziegler, 1980). However, reason for this

is not known. Ziegler (1972) proposed that the mechanism
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by which-sulphur dioxide interfered with photosynthesis

was due to the potent and competitive inhibition of RuBisCo
with respect to HCOE . However, Gezelius and Hallgren
(1980), reported using similar preparationsof RuBisCo

from spinach and pine fouhd SO§ associated-carboxylase
activity to a lesser extent and was non-competitive

with respect to HCOE.

Hallgren and Gezelius (1982) suggested that a decrease
of RuBiéCo in senescing plants has been associated with
proteolytic enzyme activity (Peterson and Huffaker, 1975).
Whether‘the sulphur dioxide effect is associated with a
stimulation of hydrolytic enzymes or with aﬁ increased
access of RuBisCo to proteineses, this mimicking senescence,
is not known. The lower levels of RuBisCo after sulphur
dioxide treatment might élso be considered in relation

to decreease in protein synthesis (Godzik and Linskens,1974).

Flower Formation

Sulphur dioxide fumigation enhanced flower formation
in plants fumigated with T1 and T2 treatments, 2 hr daily
for six weeks in S. oleracea (Table 15, Plate 1,2). Similar

observations were made by Murdy (1979) in Lepidium virginicum.

In contrast, sulphur dioxide reduced flower number in
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Begonia sp. (Adedipe et al., 1972; Reinert and Nelson,
1980) and in a variety of énnual bedding plants (Adedipe
et al., 1972). |

Above studies clearly show that sulphur dioxide

fumigation effects plant metabolism at various steps.
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