EDINU — A WORDPROCESSING  PACKAGE
N T LANGUAGE

Ié’!&

Dissertation submitted to the Jawaharlal Nehru University
in partial fulfilment of the requirements for
the award of the Degree of

MASTER OF TECHNOLOGY
IN COMPUTER SCIENCE

ANUPAM GOVIL

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI—110067
1988



SE TION

TOPIC : EDJNU - A WORDPROCESSING PACKAGE IN 'C’ LANGUAGE

BY

ANUPAM GOVIL

M. TECH

COMPUTER SCIENCE
JAWAHARLAL NEHRU UNIV,
NEW. DELHI



? : :
DECLARATION -

The work embodied in this Dissertation contains the result of the

research work carried out under the supervision of Dr. P. C.
Saxena , SCSS , JNU , New Delhi . The work is original and has
noct been submitted , in part or full , to any other University

for the award of any other degree or diploma .

i

PROF. KARMESHU - T ANUPAM GOVIL

DEAN ' STUDENT
("ovrQorvorF
DR. P. C. SAXENA
SUPERVISOR

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY
NEwW DELHI-67



ACKNOWLEDGEMENTS

I am indebted to my supervisor Dr. P. C. Saxena for his guidance
and the encouragement provided by him in carrying out this work .

His affection and personal interest have always been an added
stimulus

My thanks are also due to the faculty members for their kind
cooperation and encouragement . '

I am thankful to the computer laboratory staff for their
.cooperation in letting me use the computer equipment . o

Finally I express my gratitude to the Jawaharlal Nehru University
for the financial assistance .

ANUPAM GOVIL

M. TECH

COMPUTER SCIENCE
JAWAHARLAL NEHRU UNIV.
NEW DELHI



PREFACE

This Dissertation deals with an indigeneously developed Word

Processor - EDJNU . This package has a standard set of commands
with a few customised features . The main advantage of this Word
Processor is its compactness , its flexibility and its

portability . The language C has been chosen for development of
this software due ot its various inherent advantages . This
software has been developed on a IBM PC ~-AT compatible using a
Turbo C compiler . However this Wordprocessor can run on almost
any machine due to its compact code and device independence .

All important aspects of development of this software have been
exhaustively discussed 1in the Dissertation . We start from a
brief description of programming techniques in C , the advantages
and applications of C in Software Enginnering . Then we give an
introduction to the Wordprocessor and discuss the various
considerations that have gone into designing the word processor .
Thereafter we provide a detailed structural analysis of the
software itself . Here each and every routine 1is discussed
seperately together with the special techniques used .Finally we
link each command with these routines and hence elucidate the
execution path of each command . Care has been taken to make the
Dissertation as informative and detailed as possible . Even an
average user of C would be able to understand the flow and
structure of the complete program .



CONTENTS

SECTION I : Advantages and Techniques of ’'C’ in Software
Engineering .

Role of C in Software Engineering

C Language Constructs

Program Structures

Simple Data Types
Control Structures

if Statement

? Statement

switch Statement
Structured Data Types
Functions

.11 Pointer Variables

.12 Recursion in C

.13 Applications of C

Conclusion

-
-

-
-

[Tele oI Wer I - JCR VI ]

—
(&)

L e L g ey e el
DN bt bt b b b ek pm b et b e b
- . .

SECTION 1II : Introduction and Salient Features of the Package

Introduction to A Word Processor

What is a Wordprocessor

Developing a Word Processor

Choosing a Language for the Editor

Why Use C 7 )

Why to write a Text Editor.

Salient Features of Word Processor EDJNU
Algorithm for Designing a Text Editor
Implementation of Functions

A Few Salient Features

RS SRR R S SR SR
DS DD DO O = b et b
GBS = O o 2 IO

~
_—

3

SECTION 1III : Structural Analysis of the Text Editor Program

Header Files - A Preview
Header Files Used in this Package
Structural Analysis of Text Editor Program
main() '
searchcomd( )
executecomd( )
store()

W WL Www
W WwWwWwiv

-
S I



SECTION

e * e e e = e o ® 6 ® ¢+ @ e ® e o e e e o o o e

2 e e o«

WWWWWWidwWwWwwWwWwWWwWwwwWwhhwwwwWwwwwwwwww

VNN S
O 2 W N

G0 G0 G0 GO G0 D Lo W O WL LD LWL WWWWWWW

e @ - s & o @4 o * e e * o

« o

WWWWMNMNMNDMNIMDMNNDNNN b bt et e = O 00000

W QWO WD OWO-aMO s W - O

atoi()

getime()
gethelp()

savefile()
loadfile()
ldfile()
exeseq()
displine()
display()

listall()
deletel()
skipblank()
delall()
delline()
lowercase( )
instext()
movtext( )
findstring()
nfindstring()
nchng_string()
nfind_replace()
chng_string()
find_replace()
strn_cmp()
search()
append()
duptext ()
mergfile()
nldfile()

Execution Path of the Commands

IV : Conclusion and Appendices

Conclusion

Appendix
Appendix
Appendix
Appendix

A

B
C
D

.
.

List of Commands :

List of Routines written for this Editor
Bibliography

Program Listing



SECTION I

ADVANTAGES AND TECHNIQUES OF 'C’ IN SOFTWARE ENGINEERING



THE ROLE OF C IN SOFTWARE ENGINEERING

The Programming language C was developed by Dennis
M Ritchie in 1972. C was an off-spring of Martin Richard’s
BPCL, by way of a language called B written by Ken Thompson.
Most languages in common use to-day were developed by

committees. But C was developed by Ritchie and Thomson, who
were undoubtedly excellent system programmers. So C was
developed by programmers for the programmers. It is

relatively a pure language, unrestricted by compromise., As a
result of this it is capable of doing anything that you can
expect a language to do,

The C was made available to public in 1979. Dennis
Ritchie <calls this language as "a programmming language
which features economy of expression, modern control flow

and data structures, and a rich set of operations”.

A programming language is judged from its support
for the design and production of correct, reliable,
maintainable software. So in discussing €, we should
consider the extent to which it meets these criteria. :

The major problem faced by designers and
implementors of realistically large software systems is that
of complexity and the principal tools to deal with
complexity are the process of abstraction and refinement.
Consequently, programming languages shohld support
expression of abstract concepts but must alsc provide means
of ealizing the concepts. To allow the programmer to express
abstract concepts, C provides a hierarchical program
structure and user definition of data types; realization is
achieved by performing a series of transforamtions, or
refinements, on the original procedures and data structures
until an executable form is obtained. '



It is assumed that the programmer has expressed
the original model of the solutionj correctly - and the
likely hood of this being so will be influenced by how
closely the language being used matches the programmer’s
cconept of the problem then the correctness and reliability

of %he final program will depend upon the accuracy of the

refinements made to the original solution.  As the
refinements represent only nfopmal {as opposed to
mathematically formal) transformations,  their preservation
of ' correctness -—cally formal) - transformations, . their

preservation of correctness will depend primarily on the
clarity and ease with whicB they can be made.

Aspects of C which facilitates this process are,
for example, unambigous control structures with a single
entry point and single exit point, and a hierarchical data
types with compiler enforced type checking. Meaningful
choice of datanames (and appropriate comments in routines)
also help the programmer to implement ‘ideas and are a
primary means of communication when it comes to program
maintenance. Software development by successive refinement
allows the maintenance programmer to follow each explicit
design decision which have been made. If subsequently there
arc changes to software requirements or environment, it is
possible to see clearly which levels of abstraction are
affected, and the extent, of amendment is required.

This section is intended to present the
characteristics, level scope and use of C, and to indicate
the support it can offer in software engineering practice. -
Then we also discuss the major language constructs.
After this discussion , the various applications of C have
been discused. In order to appreciate the potential of C and
its application, the algorithms and development of a full-
fledged text weditor 1is mentioned. This is given as an
illustration of the refinement of an abstract concept (in
this case, a text editor) to an executable C program.



C language Constructs :

The Concepts of abstraction and refinement are the
programmer’s principal aids in developing computer programs.
Presented with the 'details of a complex problem, the
programmer can abstract to a higher level at which the
concept to be realized is isolated from details of its
implementation and environment.

t

P
[}
]
I
' Refinement
{
]
1

C

]

|

'

Abstraction : '
. i

|

D s

, Once the concept has been isolated, a model for a
solutlon can be developed. The solution will be implemented
by refining the model until it is realizable language. With
this approach programes are developed by successive
refinements of (active) algorithems and the (passive) data
structures on which they operate.

ki

The basic mechanisms provided by C to support
refinements are the functions for algorithms, and the user
defined data types for data structures. Underlying the
functions are C control statements and wunderlying user
defined data types are C data types and structures.

The language constructs provided by C can be
summarized under the heading of program structures, and data
types and structures.



Program Structures

‘A C program has the following form :-
Constant definitions,
external files to be included
external variables and data types declarations
global variable and data types declarations’
main functioh declarations ;

other functions declarations;

You can include declarations given in some other
files if you want to use some external functions. For
example

[
#include <stdio.h> isaused for standard input output
functions 1like scanf ), printf ( ), getchar ( )
Putchar ( y, etc. '

If you want to access a variable declared in some
other files you have to define them as external like e.g.

extern int i

This allows the programer to access the variable i
declared. in some other file. C allows data abstraction and
data hiding efficiently like in Modula - 2.

Control passes to the main function on the
commencement of execution. The main function can in turn
call other functions and other functions can call some other
functions., One thing has to be noted here is that function
(s) cannot be defined inside other function in C as being
done in Pascal or Modula - 2, '



Simple Data Types :

’int', ’short’, ’'long’, ’float’, ’double’, ’char’
are standard C data types. some examples are given below.

+

#define TRUE 1

#define FALSE 0

Main ( )
int ‘ , C iy
short : : “is;
long 1;
float total;
char c

double d;

The programmer can define further scalar types (user define
types) by specifiying an existing file i.e.

typedef . short ; - byte;
byte ' x1; :

|
So x1 is an integer of 8 -bits.

Control Structures H

?
C control structures fall 1into two main
categories; Conditional (if, switch, ?) and repetitive (do,

while, for,).



if (x > y) if (x > vy)

!
{ ! {
some code ! some code
} ! }
else !
{ .
more code
}
! boolean ! ! boolean !
'expression ! : lexpression!
' ] ! 1

! ! ! !

! ! ! !

! ! ! !
_________ ] - —— - — — —— —————————
! block ! ! ! blockl! ! block2!
! ' ' ! 1 ! !
_________ 1 -—— - —— —— - ———————

! ' ! !

! ! ! !

! ' ! !

! !
' !
1}
if .. statement ‘ if ....else....statement

if statement can be nested e.g.

<

if (red)
stop();
else
if green()
go();
else
reverse();
One should note that the statemenmt following else

corresponding to the statement following else corresponding to
the previous if ... statement .,



? Statement :

This function evalﬁates the expression . If the expression
is True , then it executes the statement immediately after it ,
else it executes the statement after the symbol ":" . e.g.
int lower(int c) /*converts a char to lowercase¥*/
{ _ .
c = (isupper{(c) ? tolower(c) : c ) ;

return(c);

switch Statement :

This statement allows you to take different actions on the
value of a variable . This is analogous to the case statement in
Pascal , Let us consider a device driver for a Printer =>

switch(c)

{
case FF
ffflag = 1;
break;
case ’'\n’ :
putlpr(’\r’);
putlpr(’\n’);
printno(lineno++);
break;
default :
putlpr(c);
colnot++;
}

i

One point to be noted here is that C statement falls through
in the switch statement . For example , if C = FF then all the
staements below Case FF and till } will be executed . So a break
statement is necessary to exit the switch statement .

C's repetitive structures "for" , "do" and "while" have
essentially the same constituent parts :- A boolean expression
to be evaluated and a Statement or sequence of statements to be
executed . They only differ in relative placements .



The structure of "for" loop is :-
for (initial value ; condition ; increment etc.)
{
' <some statements>
} o

The structure of "while" statement is :-

while (condition)

{
<do something>
}
The structure of "do .. while" is :-
do
{

<some statements>

while (condition)

There can also be infinite loops . For e.g. :-
1. for ( ; ;)
{
<do Jjunk> -
}
2. while(1)
{ : ‘
<do some other junk>
}
The above loops will be executed forever , unless a break

return or exit statement is encountered .



Structured Data Types

. arrays

. structures

. unions

. files
Arrays : Arrays _are not declared explicitly in C as in
Pascal . Instead they form the part of a char or int declaration

as in the following example 1=

char a[l10] ; /¥ This declares an array a of maximum
10 characters %/

Structures : - Structures are used to keep different data

items wunder one common name . This is similar to Record type 1in
Pascal but much more versatile . For example :-

typedef struct employee
{
int empno;
char *name;
int birth;
char desgl[20];
} EMPLOYEE ;

Here EMPLOYEE 1is declared to be a structure of type

"employee" which has got integer variable empno , char string
name , int variable birth and char string desg . Hence this
struct has 4 elements . These 4 elements can be modified

individually as in next example :-

EMPLOYEE empmast;

empmast.name = "MARILYN";

So MARILYN 1is stored in the variable name in the struct
empmast . :



Unions : Union in C allows you to select a particular data
type among the various ones . For e.g. :-

union regs
{
int kk;
char *x;
float f1l;
} REGS ;

Only one variable can be accessed at any time which cvan be
kk or x or f1 . _

Files : Files are handled in C through file pointers . A
typical file handling example is given below :-

#include <stdio.h>

main()

{
int c;
cahr filename{30]};
FILE *fpl; .
puts("** Enter a filename *%*");
gets(filename); '
fpl = fopen(filename,"r");
while ((c = fgetc(fpl) != EOLN )

putc{(c);
}

This reads a file and prints the file on the VDU one
character at a time .



t

Functions

A function can be a procedure or a subroutine in C , It may
or may not return a value . A function can be called with or
without parameters . Théareturn value of a function can be
predefined . Let us take an’example :-

main()
{

int a,b,c;

a = b = 5;

c = add(a,b);
printf("c =%d\n",c);

}
int add{int x , int y) /* A function that adds 2 int*/
{ .
return(x+y);
}
A function can return a integer , float , character or a
pointer to any of the above . It can also return pointer to

structures and functions .
Functions that return nothing are declared as void :-
void functionanme() |
Functions are the most important aspect of C’s modularity
and flexibility . Since functions for small tasks can be easily

written and attached to the main program , huge programs become
more easy to understand , decode and modify .



Pointer Variables o

Pointers are the most powerful feature of C language .
Pointers allow the creation of dynamic data structures while size
can change during execution of a program . A pointer variable
allows ©you to return the space allocated back to the operating
system . The pointer variables can point to anything like integer
) float , struct or even functions ! A pointer can literally
point to any part of the memory . In addition to these C allows
pointer arithmetic to facilitate greater flexibility in accessing
different types of data structures . Let us take an example of a
linked list which stores different numbers .

typedef struct link
{

t

int number;
link *next;

} LINK ;
LINK first;
first = {0,NULL};
LINK *p;
main()
{
p = first.next;
p = malloc{sizeof (LINK));

p->number = 10;
p->next = NULL;

}

The space dynamically allocated by the function malloc() can
be returned by function mfree() .

You can define structures , inside structures , inside
pointers and mix them up . So the programmers should be careful
in using pointers and should know their implications . Also since
pointers can point to any part of memory , they shopuld be
manipulated with wutmost care , else they can corrupt your own
operating system . As they say too much of power in the wrong

hands can be very dangerous !



Recursion jin C
C allows recursion routines . i.e. the routines can call
themselves . Let us give an example :-

#include <stdio.h>

main( ) /* This finds the factorial of a number %/
{ v
int n;
puts("** Enter a digit *x");
scanf("%d",&n);
printf{"** Factorial of %d is = %d\n",n,
factor(n));

}

int factor(int x)

{
if (x == 0 |} x == 1)
return(x) ;.
return{x*factor(x-1));

}

Here the function factor() calls on itself recur31vely until
X 1is reduced toe 1 . This recursive property of C is one  source
behind the power of C . :



Applications of C
. ! ‘
THere are various areas in which C has found its usefulness
However we shall concentrate on three areas - namely Systen
software ; Scientific applications and Real-time software .

'C in System Software :

&
C 1is a medium level language . Hence it has the user
friendliness of a high 1level language and the power and
efficiency of a low level language . These properties make C the

ideal language to develop System Siftware in .

~ The applicability of C in system software has been
clearly 1illustrated in the next Section where we discuss why C
was chosen to develop this Wordprocessing package .

C in Scientific Applications :

C has got integer , floating point and double precision
data types to do numerical computations . The usual storage
allocated for these data types is as given below :-

int a ; 16 bit single word is allocated to the integer
variable a .

short x; 8 bit byte is allocated to the integer
variable x .

float fl1 ; 32 bit two words are allocated +to the
floating point variable f1 .

double d ; 64 bit 4 words are allocated to the variable
d .

So C has the necessary storage allocation for handling
complex arithmetic . Using these data types various complex
scientific functions can be built in C .

C also allows data conversion . You can assign integer to a
floating point number , double to an integer etc. These features
can be used to their advantage by clever programmers .



C in Real Time Systems :

With the development of Concurrent C it has become
possible to design real-time software in C . A language should
have the following properties for real-time programming :-

1) Execution speed : Fast code generation by the
compiler .

2) Should possess the ability to react to external
events within a specified response time ., :

3) Should be able to handle multiple tasks (either by
illusion or multiprocessors).

4} Should facilitate inter-process communication .

5) Since software has to run continously , it should
have sufficient error recovery methods in built .

The Concurrent « has these advantages and more .
Features like semaphores , monitors , messages , critical
sections ', concurrent statements etc . are ideally suited for
programming real-time software . :



Conclusion

This section has presented the majof features of C and

illustrated their use in program design and development . .What
programming languages offer however is support for , and not a
guarantee of , good software production . The constructs provided

by a language must therefore underpin a more comprehensive
philosophy of software engineering .

C’s undoubted success as a programming language is a result
of ,its provision of basic language constructs which support the

techniques of abstraction and refinement . C is very flexible
language and it does not restrict the programmer from wusing it
freely . However C expects the programmer to write their own

error routines rather than the compiler giving the error messages
This can be used to their advantages by skilled C programmers .

A lot of C compilers® are available in the market today . C
has been made very versatile by some software vendors by
developing huge libraries and providing low level interfaces with
the hardware . This has made C very flexible . Many critical
projects which were previosly done in assembly languages are now
being done in C as it almost provides the power and performance
of an assembler . '

C 1is now available on most of the computers and runs on

every popular operating system . Of late C is also being used 1in
diversified areas 1like scientific applications , real time
systems and artificial intelligence . Hence C can truly be called

a Universal language which is finally coming of age and making
its impac¢t on the Software Engineering world .



SECTION II

INTRODUCTION AND SALIENT FEATURES OF THE PACKAGE



INTRODUCTION TO A WORDPROCESSOR

What is a Word Processor ?

A word processor is basically a software package
which allows you to enter, retrieve and manipulate text.
It is hence a Text Editor with more advanced functions . A

minimal text editor should provide the following functions:-

- Creation of Files
- modification bn the contents of the files

- File manpulation like loading, saving and merging
operations on the files.

- Insertion/Deletion  of text which can refer to a
character, a word or a block

- Mainpulation of text (like moving a block to some
other part of the file, duplicating a block in
different places

- String searching and string replacement



Developing a Word Processor ':

Keeping all requirements in mind (as mentioned
above) algorithm for development of a Word Processor can
be evolved.

The editor should have a library of commands. All
the commands are stored in this library. This feature allows
you to add more ccommands in future. The existing commands
can also be manipulated. :

The editor works in two modes : -

a) Command mode
b) Text insertion mode
In the command mode, the input string is analyzed
for valied ccommand. If a valid command is found, the

command is executed.

In the text insertion mode, the input text . is
stored in the memory.



Choosing a language for the Editor :

An editor can be written in a high level or a  low
level language. The low level language can be an assembler,
Assemble language programming is exhaustive, errorprone and
difficult to debug eventhough it may be faster than high
level languages, Moreover, a programl written in an
assembly language cannot be run on a kdifferent machine
which is possible in case of a high level language.

With the develobment of optimized compliers, the
object codes of high level language have become efficient
and nearly as fast as assemblers.

The following points need to be considered before
selecting a language for writing a Text Editor.

- The language should be portable (standardized)
- The language should fecilitate efficient

string manipulaltion like searching, sorting
and concatenation operations on the strings

B~

) - Dynamic memory allocation and deallocation
g; ' for strong, deleting text in memory.

HL - The language should encourage . modular
F: programming

- The language should support rich data types
and allow efficient usage of them (e.g.
record type in Pascal, struct type in C).

The present text editor has been developed wusijng
100% portable C. The sofware is portable and can be run on

any ccomputer (mainframes minis or mic ose which has got a
C compiler. ’ 2‘\527-9\} -
L3 06 C

G147
ye




Why use C ? :

C 1is very popular high level language which has
esablished its usefulness in the programming environment. In
spite of being a high level language, C has got many low
level features like that of an assembler. It .allows dynamic
memory allcocation and deallocation. € is a highly modular
language with a rich set of data type declarations. The
string handling is extremely efficient in C due to its very

powerful .compiler. The biggest advantage of C is its
Pointers. Using pointers, the programmer can access any
variable or data type or even any memory locations. In
addition to this, C allows pointer arithmetic. So oneé can

practically access any part of the memory.

During present time, lot of software development
is being done in C. This has been used for writing
sophisticated Operating systems, Complex graphic pacckages,
Optimized Compilers, Database design, data communications,
artificial intelligence etc. The most popular operating
system UNIX has bee written almost 97% in c. The
breathtaking animations shown in the sci-fi movie "Return of
the Jedi" has been written in portable C. In USA majority of
the system software development is being done in C.



Why to write a Text Editor ? :

One may ask the question "Why should I write an
editor when so many efficient editors and word processor are
available "? ~

My answer to this question is simple and
straight forward. Though a lot of editers may be available
in the market, you are never given the source code of
these packages. So no modifications can be carried out in
these packages. Moreover, these editors are not portable

i.e. they cannotv be moved from one machine to the other.

When you write a text editor yourself you can

eliminate all these problems. A text editor available in
the market is very general 1in nature. But you can
tailormade your editor to suit your requirements when you
are developing an editor yourself. This will reduce the
code size and increase the efficiency of the editor. The

code can be modified later to suit your requirements and
lot of additional features can be implemented depending on
the needs.



SALIENT FEATURES OF WORD PROCESSOR 'EDJNU’ ~

EDJNU is a portable word processor which has been
developed using a Turbo C compiler. The software has got a
command set which are given below. When any of these
command is typed in the Command Mode the appropriate routine
is executed. '

The commands are :-

LIST EXIT ~ NFIND
LOAD TIME - MERGE
RESEQ ' CHANGE MOVE )
DELETE | NCHANGE INSERT
. SAVE : FIND ~ DUPLICATE -
: HELP APPEND

For explanations of these commands see appendix A

The data structure forvstoring text has been defined as :

typedef struct text ~
_ | inst _ lineno;
char string [MAX-CHAR];
fp *text;.
} TEXT ;
Here ’'lineno’ represents the acﬁual line number of the text

"string’ stores the text in it
’fp’ is a pointer to the next structure



Algorithm for designiﬂg the Text Editor

The command or input is accepted a line at a time., If
the input 1is a text it is stored in the 1linked 1list in
ascending order of line number. New spaces 1is alloted
whenever a new line of test is entered. The new text points
to the text with the next higher line number. The 1link from
the immediate lower line number packed is conenected to this
list.

If the input is a command_itvis separated and compared

with tHe existing command library.. If a match is found, the
control passes to the appropriate action routine. If some
error occurs during the execution appropriate exception is
done. So the editor never loses control over text.

We shall discuss some of the implementation of various
functions in the editor in brief . A more detailed explanation
can be found later on in Section III .



Implementation of Functions @

The editor is invoked by typing the command EDJNU. this
loads the editor into memory. When the editor is ready to
accept input from you it displays a prompt *.

A file can be loaded from secondary storage by typing
LOAD filename. ~The required file is loaded into the memory
with line numbers starting from 10 with an increment of 10,

o

Inserting a Line :

The input text along with the line number is stored in
the buffer 'line’. The line number is decoded and stored in
variable n. The linked list is searched for the line number
n. This is done by traversing from structure first. If it
is found the text is overwritten. If not, a new packet is
created using the system call malloc after which it is
connected to the packet with the next higher line number.
Similarly a link from the next lower line number packet is
established with the new packet. The flow of operations for
this action can be seen from the diagram.

Deletion of a line

The 1line number which is to be deleted is stored in a
variable. and passed onto the routine for deletion.

The packet containing the desired line number 1is

searched in the same way. If found, the packet is freed and
returned to the operating system using the system call
mfree. The 1link from the previous packet i1s now connected

to the packet next to the deleted one.



A Few Salient Features :
# Listing of line numbers can be of a single number or a
range of number or the entire memory . For e.g. :-
LIST [* displays all lines *)
LIST 15 (*displays the line '15%)
LIST 10-100 (*dispiays all lines between 10 and 100%)
This is also true for the command DELETE.
A lot of routines have been written into the editor to

make the job of the user smooth and enjoyable. Please see
Section III for more details.

# The input text can be entered a line at a time
with the 1line number or in block mode ie. by wusing the
commands insert and append. 'You can terminate block mode .by

Just pressing <RETURN> KEY ALONE.

#- A string can be searched in any range of line numbers.
Nth occurence of a string in a range of line numbers ~can -
also be done. Similarly a string can be substituted for

another by the CHANGE command within a range of numbers.
The Nth occurence of a string within a line number can also
be changed to something else by the NCHANGE command.
Similarly a string can be searched forr its Nth occurence in
within a range of line numbers.

# Line numbers can be entered in any order. However, if
the wuser wants to sequence the line numbers in some order
she can do so by command reseq m+n, where m is the starting

line number and n is the increment between two adjacent
lines. ' :



# The 1lines in the memory can be stored into a "file by
giving the command save filename,. If the file already
exists, the editor asks you whether to delete the same.
Depending on the answer appropriate action is taken.

# A range of line numbers ca be moved from one location
tc another by typing the command move m-n before/after p
where m & n represent the range and p is the destination.

# A range of liﬁes can duplicated at some location by
issuing the command dupliacte m-n before/after p where m & n
represent the range and p is the destination.

# You cannot load a file into the memory if some 1lines
are existing 1in the memory. This can be overridden by
issuing the command merge filename bfore/after lineno, where
lineno is the destination line -number.

# You can use the help command if you want to see the
list of commands.

# You can see the data and time by typing the command
time. : ’ :



SECTION III

STRUCTURAL ANALYSIS OF THE TEXT EDITOR



HEADER FILES - A PREVIEW

C provides a library of routines for input/output , file
manipulation , memory. allocation/deallocation , string handling ,
DOS interfacing etc. These files can be viewed as a collection of
predefined symbols and values which help to provide the wvarious

useful macros . This is the "header files" library .

These files are the backbone of C . These files contain the
various functions which endow C with its reputed power , ease and
flexibility . These files have a .h extension . The .h informs

the compiler that the files are header files that contain
definitions to be placed prior to "main()" .

The include files are provided along with the C package . However
the user himself can create any Function which he feels is used
often and can store it in his own "include" file . The include

files are generally stored in a seperate Directory .
The syntax for accessing an "include" file is ->

#include <filename>
This tells the Préprocessor to load the contents of the text file
"filename" as though it formed part of your .C file at that
point . Once the file has been included , all of the routines it

contains can be accessed throughout the code .

The various "include" files used in this package are discussed on
the next page .



HEADER FILES USED IN THIS PACKAGE

<stdio.h>

This is the standard Input/Output include file for character 1I/0
, stream handling and other I/0 functions ., It contains several
definitions with which we must provide the compiler when we
perform character I/0 . If this file is not included , several of
the definitions reqd. for character I/0 cannot be resolved by the
compiler , resulting in syntax errors

<bios.h>

This include file acts as an interface between C and the BIOS cof

the PC . Many of its functions return useful BIOS information
about the Memory , I/0 Ports , Communications etc.

<dos.h>

This include file links C with the MS DOS . Using functions in
this file we can make System Calls to DOS , allocate DOS memory
segments , include command line arguments etc.

<string.h>

This very useful.include file makes string handling relatively
simple for C . The family of string manipulation functions made
available by this file is invaluable . Functions like strcmp ,

strcpy & strlen make the otherwise rigid C very flexible .,

<alloc.h>

This include file deals almost exclusively with Memory Mangement
Functions . A good share of C’s power comes from the functions in
this file . Allocation of memory heaps , their management and
handling are done by these functions .



<ctype.h>

This include file deals with characters . The functions in this
file work on characters to convert them to ASCII or Uppercase or
Lowercase etc.

<mem.h>

This file inciudes the important functions which 1locad bytes
{data) into/from the memory segments , manipulate memory arrays
and make memory handling so simple .



STRUCTURAL ANALYSIS OF THE TEXT EDITOR PROGRAM

‘main()
This routine reads the input and decides the course of action .

First of all the Text Editor screen is set up . Then the "x"

prompt is provided for the user to enter a command . The command
is accepted into a character array "line[MAX_CHAR]" . It is then
tested for suitable format and if found suitable , the next

routine "searchcomd()" is called .

searchcomd()
This routine searches for a valid command .

Here the input string is first converted to Uppercase ( C 1is
reknowned for its Case sensitivity ) . Then it is compared with.
the Table of available commands to see whether it is a valid
command . Once the validity is established , the command is
processed by the next routine "executecomd" , else "Command not
recognised " is echoed onto the screen . '

executecomd()
This module initiates the exeéution of the command .

This is the block where the input string 1is compared with
individual commands . When a match is met , the corresponding
action is initiated . The string function "strcmp" is used 1in
this routine for comparison . The relevant command is executed by
calling on the corresponding module . More details about this

routine will be revealed when individual commands are discussed
later on



store()
This module stores the entered Text in the memory .

The number of 1lines of text inputted are kept track of by a
variable "counter" . If the number of lines entered exceeds the
limit "MAXLINE" (predefined) , then a warning is given that no
further lines can be stored . If the number of lines is less than
the maximum limit and available memory (out of the allocated
memory) is sufficient , then the line is stored in the memory
Memory resident text is very essential for rapid processing and
editing .

We have to first allocate memory for the text to be stored . Here
we use the Dynamic Memory Allocation technique for keeping track
of the text in the memory . We create a linked list to keep track
of the memory segments . Initially a struct called "TEXT" Iis
created . This has three elements =>

1. A pointer "fp" which is itself a struct of same type
and which points to another struct of the same type . Here we use
the concept of Self-referential structures .

2. An int variable "lineno" which will contain the line
number of the input line . '

3. A char array "string{MAX_CHAR]" which will contain
the input line itself .

Hence we see that the Text is stored as individual lines with an
associated lione number .

Initially we test to see whether memory has been allocated or not
Incidently the struct variable "first" is of type "struct text"
and it always points to the first line in the memory .

Case I : TOP == NULL =>
Memory is allocated by "malloc(sizeof(TEXT))" where sizeof(TEXT)

gives the number of bytes to be allocated . If NULL is returned
then we are out of memory and the user is suitably warned .

Once memory is allocated from the heap , we enter our line into
the struct type "TEXT" . The member "p->stringl[j]" is the char
array which stores each line . The line number "n" is stored in
the member "p->lineno"” . ( The notation "p->lineno”" is equivalent

tc "*p.lineno" ) .



Case I1 : TOP == NULL =>

This means we already have some text in the memory and hence we
have to insert the new line into the existing text at the proper
place corresponding to its line number . Now we test the input
line number .

Case II.I : n < lineno of first line in memory

We have to insert this line before the first line currently in
the memory . Hence we allocate memory and thén attach this new
line to the linked list as its first element . Now "first" points
to this new line and this new line points to what was originally
the first line .

Case II.II : n > or = lineno of first line

We scan the linked list to find out the position in which the
line 1is to be inserted . A simple "for" loop increments the
1" 1"

pointer "p" (by "p = p->fp") and we test each time to see either
of the 3 cases =>

Case II.II.I : p -> lineno == null
This means we have reached the end of the text in the memory and
hence we have to attach the new line at the end of  this 1linked
list . This is easily done by allocating memory and manipulating
the pointers accordingly .

Case II1.I1.II : p->lineno == n

Here we are rewriting an existing line and hence no pointer
manipulation is reqd.

Case TI.II.III : p—>lineno > n

Here we have to insert the new line just before the present line
manipulation .

Note that at any stage if we are out of memory , thid routine
returns the value "0" to the calling routine . Else it returns a
value "1" or in the case of overwriting a line , a value "3"



getime()
This module prints the date and time on the screen .

The two routines "getdate()" & "gettime()" are called by this
module to do the actual execution .

gethelp()

This module displays the Help menu and provides various Help
faclities .

We initially set up the Help Menu . This is done by opening the
Help file "edhelp.hp" and simply echoing its contents onto the
screen . Subsequently if more help is reqd. about the use and
syntax of each command , then that is handled by jumping to the
corresponding statements in the "executecomd()" routine .

savefile()
This saves the input text file onto the disk .
If the pointer TOP = NULL then we have no lines to be saved .

The name of the file to be saved is enterd into the variable
array "filename[j]" Then we open this file for "read" mode and
test to see if there already exists a file with the same name .
Once this is verified then we open the file for "write" mode and
the whole file is written onto the disk by the "fprintf" command
included in a "for" loop which increments the pointer "p->fp" at
each step . -

loadfile().

This initiates loading of the requested file into the memry from
the disk

We first check to see whether there are any lines already in the
memory . If there are they are to be deleted

We then enter the name of the file to be loaded , which is stored
in "filename[j]" . Then the next routine "ldfilel[xxx]" 1is called



ldfile(xxx)
This routine actually does the loading of the file from the disk.

As we see the filename is passed to this rputine as a parameter'

from the previous routine "loadfile" . The requested file is
opened by "fopen" and if valid , each line from the file 1is
stored in the memory . This is achieved by a "while” locop where
each time one line is entered into the variable "line" . An EOLN
char 1is " added to each line and then a line number (with an
increment of >~ 10) is allotted to it . Subsequently the routine

"store()" is called to store each line in the memory .

exeseq(int ml1 , int nl)

This routine resequences the line numbers of all the 1lines in
memory according to user’'s specifications .

Here the 2 . parameters passed to the routine are : ml = the
initial line number ; nl = the increment .

First we test to see that the increment is not more than 100 .
Then we test to see that the final line number doesn’t exceed
32000 (which is the line number limit) . Once these 2 checks are
okay we proceed with the resequencing .. )

Starting from the first line in the linked list ; i.e. p =
first.fp ; we increment p->linenc by the increment "nl1" till we
reach the end of the linked list (i.e. p->fp == NULL) or line

number exceeds 32000 .

Finally we check to see whether the resequencing has been
successful by testing if p->fp == NULL . -

displine(int a , int b) .~
. This displays'text in the specified range of line numbers .

Here "a" and "b" specifyvthe first and the last line number to be
displayed . : )

We first test to see that a>= b is not true and also that there

exists lines in memory (TOP == NULL not true) .Then we increment
the 1linked list pointer "p" to point to the line with the 1line
number "a" . Once the pointer is correctly positioned , we output

the requisite number of lines onto the screen by "printf" command



display(int m)
This displays a specific line from the text .

Here m specifies the required line . If lines exist 1in the

" 1"
memory , the line pointer "p" is incremented till it ©points to
the reqd. line . This line is then echoed onto the screen
atoi()

This converts from ascii to integer .

If the input character is a digit between '0’ and '9’ then it |is
converted from 1its ascii code to integer value by the simple
formula =>

integer value = ascii code. of the number - ascii code
for 0’ ’ :

listall()
This lists all the lihes in the memory .

This is done by equating the pointer "p" to the "TOP" of the list
and sequentially printing all the lines till we come to the 1last
element (i.e. p->fp == NULL) . '

deietel()
This roﬁtine deletes a line in the memory .

Case I : . .
.If the line to be deleted (lineno == n) is the first member in
the 1linked 1list , then we equate "r" to point to the second
member . Then we call the routine "mfree(p)" to free that node
from the linked list . Subsequently we decrease the "counter” by
1 and also change the pointer "first.fp" to point to the second

" "

element "r



" Case II
Here we have to scan the linked list to reach the reqd. line

" "

Hence "p" is incremented till we have either of the 2 cases =>.

Case II1.I : p->lineno == n
Here we again call the routine "mfree(p)" to free the node "p’
and adjust the pointers accordingly . Here we keeep two "pointers
=> "1" to point to the previous member and "r" to point to the
next .

Case II.II : p-2lineno > n or p->fp == NULL

Here it 1is the case of a wrong line number and the user is
suitably warned

skipblank()

This ruotine deletes the blank spaces within a line .

delall()

This routine deletes all lines in the memory .

Here the pointer "p" is incremented in a "for" loop and each time
the routine '"mfree(p)" is called to free the node "p" . This
procedure is carried on till we reach the end of the list . At
the end we reset the "TOP" pointer and the "counter" .

delline(int a , int b)

This deletes lines in the given range

" L1

Here "a" and "b" specify the first and last lines to be deleted

The pointer "p" is incremented till the desired line is reached

Then a "while" loop is used to increment the pointer "p" from
lineno "a" to "b" and each time call routine "mfree(p)” to free

that node .



lowercase(char *s , int k)

This converts the string to uppercase .

Here we pass 2 parameters to the routine - "s" is a pointer to
the string and "k" is the length of the string . Then we use a
"for" loop and increment the pointer "s" each time converting one

char to upper case using "toupper(cl)

instext(int baflag , int mlf
This allows the user to insert text without line number .

Here the parameter "baflag'" tells us whether insertion is to be
done before or after the line number given by "ml"

First we test to see if "baflag == 0" (i.e. insertion to be
before or after the specified line ) and "ml" corresponds to the

first line . If this is so , then an insertion is not possible
Now we proceeed with the main block . There are 2 cases
Case I : baflag == 0
Here we have to insert the text before the specified
line number . Hence we advance the pointer "p" till it points to
the line before line "ml1" .Now "mid2" points to the line "ml1" ,
"midl" points to the previous line and "lastnum” contains the

lineno of the line "mid1" .

Case 1II : baflag == 0
Here we have tc insert the text after the specified
line . Hence here pointer is advancedd till "midl" points tc line

"ml" and "mid2" to next line

Now we proceed with the insertion . Since we are entering 1lines
without line numbers , we store these lines with temporary linenc
and then at the end we resequence all the line numbers

We get the line from the screen . Thenm we initialize the pointer
"middle.fp" and allocate memory . Our first line to be inserted
is given the line no "10" . The variable "curline" keceps track of

the inserted lineno since it is incremented by 10 in each
iteration



Now we enter each line into the char array "p->string{i]"” wusing
an infinite "for" loop . We "break" from this loop only when we
come to the end of the lines to be inserted . Care is taken to
increment the "counter" and "p->linenoc" is given the latest value
of "curline" on each iteration .

At the end we have to adjust the pointers to include the inserted
text at its proper place in the linked list . Now '"middle.fp”
points to the first inserted line . Hence we change the pointer
"midl-> fp" to "midle.fp” . The pointer "1" points to the last
inserted line . Hence we change "1->fp" to point to "mid2" .

Once this 1is over our insertion is complete . Now we call
"exeseq(10,10)" to resequence all the line numbers .

movtext(int baflag , int ml , int nl , int pl)

This routine moves the text freom one location. to the other
according to user specifications

Here "ml" & "nl" are the range of linenumbers to be moved and
"pl" is the destination line number . "baflag” denotes the status
"after" or "before" ' :

First we test the validity of the 3 parameters ml, nl, & pl .
THen we call on routine "search()" to see whether the 3 1line
numbers exist . Now we maintain 3 flags

1., tflag => this is set to TRUE if ml is the first line
-in the linked list . (i.e. TOP->lineno == ml)

2., iflag => this is set to TRUE if pl is the line just
after n1 . (i.e. p->lineno == nl ; p = p->fp ; p->lineno == pl )

3. eflag => this is set to TRUE if nl is the last line
in te linked list . ( i.e. p->fp =NULL ; p->linenoc == nl)

The 4th flag "baflag" is passed to this routine from the calling
routine . However if we find that "iflag = TRUE " or pl is the
first line in the linked list then we set this flag to "1"

The variuos cases and how they are tackled are discussed using
linked list representation diagrams in the following pages



- ®

TF t\clog = TRUE 5'1\(|C1Cj = TRUE

1. ITNITIAL

————

ToP— ml ‘» -

Pt

| .

mid |

¥y : T

mdl P wid2
‘ p! x| 5

‘midl Top mid).
L




5 FINAL

Tr tJC\QS::

ni |—

L. ITNTIAL

we_ M| ] nl XU X2 p
| G _—
2. I midl ToP
£ —t mif——— sl | e | xa | p! \Xsk
3. . .
I mid! ToP NI‘“- I
g — mt — - - 5 nl > X --yX2~—)(PO XS}L
| |




4 |
-~ Top
i — m'____,),nl_ef)ﬂ
5,
¥ Top

Hi

i

P mid2 mid |

I

e — — —4 n! X1 X2 Pl! x3|_>
L
— |
& . FINAL
P Xl—-—--—stle{—;«- pl m - - - N‘afxs—g




@ Ir eflag = E |
i IN\TIAL "tf‘“ ¥ r
— A
. | [
“op )ﬂ-—_-aixz__; p! 5 XB L - - - > X4 m\}_-.>{|
l— L)
mr\l b}‘;r g{
” v J} RV,
oP—y Xl — - - X2 P! XB - — —-> X4 ma‘f,_a/ hl\
3  midl P P,

e el e

4. IrF bq’(:IQS]:TRUE_
mid} P mldz.

L

ToP-— XN —-_?ixz

He-1




Ji

mid! Z mf L l i‘

| | $
(e x\k; — - 5 X2 4 x3|_ . _ o X4 mYy | _ >( m}»
é FiINAL
BY—3 Xl |— — - 4 X2 p! ﬁ{ L T N N Y XX _ _5/ >4 |
4, 1e baglaq = FALSE
milll P mids I 4

— p! > X3

W?ﬂk - —-3 X2

‘->{X‘c mi— — — > nl




m .

TP XV [— - - x2| |pt X3 _ % | el sn

& FINAL

- [
ToP—> Kb — — ;{Xl—aml_._—a/'\l p! X3 _ -

@ M\SCELLANEOUS Case

i. INIT AL

PP Xl |~ — — —> Pl — — Ml - -snl - >

rrez

f—e




= mdl P 1

- \ % ‘ S R Y
urbp% x‘ _ — X2 P' \__) x3 - — x4 > >

S midt & P Y

d L

-—~—>»"'~)j;
4. xTr baglaqg = TRUE

midt  p | A » m
Lo |

|

|
T™P—x XV |- — ~>'Lx2.
L

e Xt - - = X2 pt x3

,
X
W

-ap'

)

mid} P wida

[ i —

r
ToP—y X k» —— i X2 f' }ﬁ X3 _ _5|X4 mi - . )* Nl >




mid| 1 mrl J 4 ' «
BP—s XN |- — - % X2 > P! X3 - — » X4 mL ™ l
I (
7. FinAL
,‘”Hx\___;}x;Afl m\»___> nl X3t_“>x".
1 .
5. TF boilgg - FALSE
mla\l Pl'j{“‘h‘ ’;L .
100 —> "6'4““5”‘2 P! | X3~__>{X5 M\}__% hl#}‘




p midyr

L

Pl

\,}xs_-_ x4 ﬁ_

_ v-:-: 1
x|

mid)

‘, :

rop —y XV b — — _s X2
e FINAL

TP — Kl |- - _ X2

mi

~~~3/ ni
A

x3




findstring()

This finds a given string from the text and displays that
particular line _.

We first read the string to be searched in to the array

"str2{xl1]" . We then initialize the pointer "p" to TOP and scan
all " the lines by advancing the pointer by "p = p->fp" . On each
iteration the string is compared wusing "strn_cmp()" and on

successful comparison we display that particular line by calling
routine "display(p->lineno)" .

nfindstring(int al) N
This routine searches for the nth occurrence of the specified
string in the text and then displays that line . -

This routine is similar to the previous one , except that here on
first successful comparison we start a counter "y1" and increment
it on each successful comparison . When "yl == al" we have found
the nth occurrence of the string and hence call "display(p-
>lineno) ‘to display that line .



nchng_string(int rept , int al)

This replaces nth occurrence of a string ; within a range of line

numbers ; with another string .
Here ‘"rept" is the number of occurrences and "al" is the 1line
number .

We first read the string to be changed into the array "strlxl1]"
and the string to be the replacement in the array ‘“str2[x1]" .
Now we scan the lines till we come to the line number al . Then
we call on the next routine "nfind_replace()" to do the actual
job. If the returned value of "rep_flag" is FALSE then we haven’t
found our string .

nfind_replace(int rept)

This finds the nth occurrence of the string and replaces it with
another string .

We start scanning the line "al" and use "strn_cmp(}" function for
comparison of the 2 strings . Once we find the string being
searched , we start a counter "loopl" which counts the number of
times that the comparison is successful . When we have "n"
successful comparisons , we set "rep_flag” to TRUE . Then we
exchange the searched string with the other string wusing the

"strcat()" function .

chng_string(int al , int bl)

This replaces a string with another , within a range of 1line
numbers .

T

Here the 2 parameters "al" and "bl" specify the range of line

numbers .

We first verify that the 2 line numbers are in proper sequence .
Then we read the 2 strings into the arrays "str1" and = "str2" .
Now we advance the pointer "p" till we reach the line number al



We now scan each line from "al" to "bl" and each time call on the

routine "find_replace()" to do the actual job of finding and
replacing the specified string . If the returned value of
"rep flag" is FALSE , then our search has been unsuccessful .

find_replace()

This routine actually finds the specified string and replaces it
with the other string ’

Now this string is called to scan one line at a time . Hence here
we scan the 1line "p->string({xl1]" and wuse "strn_cmp()" for
comparison of strings . If comparison is successful , we replace
the found string with the other string using "strcat()" function
and the intermediate array variable "reset(x3)" . This function
returns "rep_flag" .equal to TRUE if search and replacement 1is
successful .

strn_cmp(out , in , count)

This compares the strings passed to it and returns the wvalue "0O"
if successful .

Here "out" is the pointer to one string and "in" to the other .
"count" contains the length of the first string . Now we set
"flagl" to TRUE and compare the two strings "*out" and "*in" one
cahr at a time . This is done by a "for" loop which increments
-as long as "al < count" . If ‘all the characters of the 2 strings
have matched (i.e. flagl == TRUE) , then we return a value of "0O"
; else we return a non zero value .



search(int al)
This checks for the existence of the line number in the text .

Here the parameter "al" 1is the line number which 'is to be

searched . This is done by a simple "for" loop which searches for

"p->lineno == al" each time . A value TRUE is returned if search
is successful . ) :

o~

append()
This routine lets you append lines at the bottom of the text .

We first advance the pointer "p" to the last line in the 1linked
list and the wvariable "ml" is given the value of the last line
number . Then using an infinite "while" loop we 'gets{line)" and
allot the line number "n = ml" to it . On each iteration "ml" is
incremented by 10 and the line is appended to the linked list by
calling the "store()" routine . This loop is exited by a "break"
statement when there are no more lines to be appended .

duptext(int baflag, int ml, int nl, int pl)

This duplicates the text from one location to another .

This routine is similar to "movtext()" in most aspects except
that hére the text is copied and not moved . THe parameters
passed here are the same as "movtext({()" routine .

Here we maintain 2 flags :

1. tflag => This is set to TRUE if "pl1" is the first line in
the linked list .

2. eflag => This is set to TRUE if "pl" is the last line in

the list .

%



Now we advance pointer "pl" till it points to the 1line with

lineno equal to "mi" . The we allocate memory which is pointed to
by the pointer "middle.fp" and "1" . This node is given the same
line number as "ml" . We then use a "for" loop toc copy the string

from line "ml" one char at a time to the node "1" .

This procedure is then repeated for all line still line number
"nl" . At the end "1" points to the last copied line (since each

time we advance "1" by "1 = 1->fp") .

Now all we have to do is manipulate the pointers so that this
copied text is placed at the right position . i.e. before or
after line "pl" . This™is accomplished by the same procedure as

the one in routine "movtext()" .

mergfile()

This routine merges a file from disk with text in memory .

The input filename is read into the char array- "filename[j]"
{after "skipblank()") . Next we set the baflag to "1" if merging
is to be done after and "O0" if before the specified line number .
Lastly we read the specified line number with the variable "k" .
Now we call on the next routine "nldfile()" to load the specified

file from the disk and merge it with the text . After ,merging is
successful we call on "exeseq()" to resequence the line numbers .

nldfile(baflag , xxx , lin)

This routine loads the specified file from the disk and merges it
with the text . :

The 3 parameters passed to this routine are "baflag" , "xxx”

(filename) , and "lin" (line number) .
We first "fopen" the file xxx in read mode . Then we set "tflag"

toe TRUE if the specified line is the first line and set "eflag"
to TRUE if the line is the last in the linked list .



Now we "fgets" each line from the open file using a "while" loop
associated line number ("1->linenoc = j") . The line is stored in
the cahr array "1->string{il"” .

At the end when the whole file has been read , we manipulate the
pointers to "merge" the file at the proper place



EXECUTION PATH OF THE COMMANDS

EXIT => This is done by the function "exit(0)"

- LIST => First "skipblank()" is called to skip a blank . Then
execution is according to 1 of the 3 cases

LIST n : Here "display(j)" is called to list all lines
after line number n ‘

LIST n-m : Here "displine(j,k)" is called to list all
lines in range n to m .

LIST : Here "listall()" is called list all the lines

TIME => Here routine "getime()" is called to display date - and
time

FIND => Here the routine "findstring()" is called to find the
specified string . :

NFIND => Here the routine "nfindstring(j)" is called to find the
"osn

nth occurrence of a string after line number "j

DEL => Here execution is according to 1 of 2 cases
DEL n : Here we.call "deletel()" to delete the line "n" .
DEL n-m : Here we call "delline(j,k)" to delete the 1lines

from "n" tO "m"

SAVE => Here we call the routine "savefile()" to save the
specified file in the disk : '



"

RESEQ => Here we call the routine "exeseq(j,k)

to resequence the
line numbers from line "j" to "k" :

INSERT => Here execution is according to 1 of 2 cases

INSERT a n : Here set baflag toc "1" and call on routine

"instext(baflag,j)}" to insert lines after line "j

INSERT n : Here baflag is kept as Q" and

'"instext(baflag,j)" is called to insert lines before line "j

APPEND => Here the routine "append(}" is called to append lines
after the text in memory .

MOVE => Here we call the routine "movtext(baflag, j,k,rept)” to
move the text between line numbers "j" and "k" to location before
or after line number "rept" . There are 2 cases .

MOVE j k a n : Here baflag is set to "1" for after
MOVE j k n : Here we leave baflag as "0" for before

At the end "exeseq(10,10)}" is called to Tresequence all 1line
numbers . )

DUPLICATE => THis command works in similar fashion , escept that
here "duptext(baflag,j,k,rept)" routine is called to duplicate
the text .

HELP =>Here the routine "gethelp()" is called to display the Help
menu . ’

ERASE => Here the routine "delall()" is called to delete all the
lines in the memory. ’



LOAD => Here the routine "loadfile()" is called to 1load the
specified file from the disk into the memory .

MERGE => Here we call the routine "mergfile{()" to merge the
specified disk file with the text in memory

NCHANGE => Here the routine "nchng_string(rept,j)" is called to
replace the nth occurrence of a string after 1line "j" with
another string .

CHANGE => Here the routine '"chng_string(j,k)" is called +to
replace the specified string within a line range "j" to "k" with
another string .



SECTION 1V

CONCLUSION AND APPENDICES



CONCLUSION

The entire software ot the word processor has been
written 1in ©portable C. The total number of lines of code
amounts to nearly 1500, One point to be noted here is that
it is a line editor. It takes as input a line at a time.
This is not a screen editor in which vou take the cursor tc
the te text and do the modificatin. The idea behind writing
in the line editing mode was tc ensure portability. All
screen based editors are actually device dependent as they
use device specific instructions for the implementation.
So a screen editor written for one machine may not run on
some other machine., This 1s not the case with the text
editor EDJNU . The coding has been made compact, device
independent an flexible for future modifications. Hence
this Wordprocessor can be easily ported from one machine
to another with minimal changes . The compactness of the
code also enables this editor to run on the smallest of mac-
hines . Special care has been taken to previde a very exhaus
tive Help facility for the ease of a new user .

All the best to the Users !



APPENDIX A

LIST OF COMMANDS

LIST : This commands lists the file which has been loaded into
the memory . ‘

EXIT : This command lets you exit to DOS .

T

TIME : This command displays the current date and time

FIND : This command finds the specified string from your text and
displays that particular line . )

NFIND : This command finds the nth occurrence of the specified
string and displays that line on the screen .

DEL : This command can delete a specific line ; or lines within a

specific range .

SAVE : This command saves the text in memory in the specified
disk file .
RESEQ : This command resequences all the line numbers according

to user’s specifications .

INSERT : This command allows you to insert lines without line
numbers at a specified place in your textv.

APPEND : This command allows you to append lines at the end of
your current text .

MOVE : This command moves the text within a specified range of
line numbers to another specified location in your text .

DUPLICATE : This command duplicates text within a specified rénge
of line numbers in another specified location in the text

HELP : This command displays the HELP Menu and prompts vyou for
more help . If asked , it can display the list of all commands |,

their use and their syntax .



ERASE : This command deletes all the lines in the memory .

LOAD : This command loads the specified file from the disk into
the memory .

MERGE : This command merges the specified disk (external) file
with the text in memory at a specified location .

CHANGE : This command finds and replaces a specified string from
the text , within a range of line numbers , with another string .
Hence this combines the 2 commands FIND and REPLACE .

NCHANGE : This command finds the nth occurrehce of a specified
string , starting from a specified line number , and replaces it

with another string . Hence this combines the commands NFIND and
REPLACE .



APPENDIX B

LIST OF THE ROUTINES WRITTEN FOR THIS TEXT EDITOR

main ()
searchcomd( )
executecomd( )
store()
getime()

” gethelp()
savefile()
loadfile()
ldfile()
exeseq()
displine()
display()
atoi()
listall()
deletel()
delline()
‘delall ()
skipblank({)
lowe;case()

instext()



movtext()
nchng_string()
nfind_replace()
chng_string()
find_replace()
strn_cmp( )
find_string‘)
nfind_string()
search()
append( )
duptext()
mergfile()

nldfile()



APPENDIX C

BIBLIOGRAPHY
THE C PROGRAMMING LANGUAGE

PROGRAMMING IN C
UNDERSTANDING C
MASTERING TURBO C

MICROSOFT C COMPILER
REFERNCE MANUAL

UNIX PRIMER PLUS

UNIX PROGRAMMER'S .MANUAL

FEATURES OF HIGH LEVEL LANG
-UAGES FOR MICROPROCESSORS

- DENNIS M. RITCHIE &

BRIAN W. KERNIGHAN
KRIS A. JAMSA
HUNTER

STAN KELLY BOOTLE

MICROSOFT CORPORATION

MICHAEL WAITE , DONALD MARTIN
& STEPHEN PRATA '

MASSACHUSETTS COMPUTER CORP.

A. C. DAVIES (MICROPROCESSORS
MICROSYSTEM VOL II MAR 1987)



APPENDIX D

PROGRAM LISTING



/* EDJNU - A PORTABLE WORDPROCESSOR ¥/

/**% This software is being developed by ANUPAM GOVIL
ag a part of his MAJOR PROJECT for fulfillment
of Masters of Technology Degree in Computer Science
at Jawaharlal Nehru Univer<sity , New Delhi xx/

#include . <stdio.h>

#include ~blos.h>

finclude <dos.h>

#include <string.h>

#include <alloc.h>

#include “ctype.h>

#tinclude <mem.h>

tdefine MAXLINE + 5000
sdefine MAX_CHAR 132
fidefine MIDDLE middle. fp
#define TOP first.fp
sdefine mfree free
#icefine TABLEN 19
#Hdefine STRING_LIMIT 80
idefine TRUE 1
sdefine EOLN N0’
fidefine FALSE -0

/A
/

This Software acts as a TEXT EDITOR. This has got a standard
cet of Commands. When any command is typed, appropriate
action is taken. :

*4 )

typedet struct text {
struct text *fp;
int lineno;
char " string(MAX_CHAR]; : : .
N TEXT

TEXT *p; )

TEXT first = {NULL,0,’\0’};

TEXT *1,*%r, *midl,*mid2;

TEXT middle = {NULL,0,’\0’};

char *indblock(] = {
"LIST™,
"DELT" .-
TEXITY, )
“SAVE",
“HELPT,



"CHANGE ™,

TIMET .

LOAD T,

"ERASE T,

TRECEQT.

MCHANGE ™

FIND",

UNFINDT,

"MOVE ",

DUPLICATE",

TINSERTT,

APPEND T,

"MERGE .

NOT,
char Lineimns _CHARY, line2{MAX_CHAR]:
char reset{mnX_CHAR] :
int 1.0n,y.counter
int rer_flag, set_quote_flag, set_help_flag ;
int sidline(MAXLINE],newline(MAXLINE];
char Strl{STRING_LIMIT),str2[STRING_LIMIT];

main¢ s+ Tnie routine reads the input and decides the course of action x/

putchar(1i12);

prlntf{ "\\n\n I ZES S FE TSRS SRR TSI ELS SRS SRS R LRSS L2222 2220223222338 2228222 F 23
primtf. "yny\n\t\t WELCOME TO THE JNU TEXT EDITOR\Nn");

printt{ "\n\t\tDeveloped Exclusively for use at JNU , DELHI\Nn");

Prarcs{ VNN  AXAXXEEXXXTXAKE TR KR XK XK K KK 300K XK K KKK KRR K K KOK K OR K K K XK KK KKK KK KKK K K K X K% KX

zleep(Z:
orintf(” LIST OF COMMANDS IN THE REPERTOIRE \n");
Printf(” ~-e-msccemm e e e e et me e \n ");
printf(” LIST DEL \n ");
printf(” EXIT SAVE \n ")
orintf: HELP MOVE \n ");
printi(” TIME LOAD \n ")
orintf(” ERASE RESEQ \n ")
printf(” CHANGE NCHANGE\Nn ") ;
grintf(” . FIND : NFIND \n “);
printf(” DUPLICATE © INSERT \n ");
printf(” APPEND MERGE \n ");
Printf(" cocmcmrm s m e et el e \n ")
printfe \n");
counter = O3 .
et _quote_*flag = FALSE ;
cet_help_flag = FALSE ;
for ( ; )
{

printf( " *"});

gets(line);

for ( i = 0 ; line(il == " 7 1! line(i] == ’\t’ && line{i] != ’\0’; i++)

if (1inefi) t= '\0’ )
{ if(isdigit(line(i}))
{ n = atoi();

n



¥

L

3

searchcomd( )

{

/ x

cea

store( );

zearchcomd( );

rches for the command %/

nt b, B
for (x=0; line(i] !'= "\t’ && line(i) !'= ’\0’ && line(i] != '/’
&& line[i] != ’*\x22° && line(i) != * ’;i++ ,x++)
lowercase(&line{i1-%x],x);
for (y=0; ¥y TABLEN ; yt+)
if (‘strncmp(&line(i-x),indblock(y]),x))
break;
ity >= TABLEN )
{.
puts("** Command not Recognized *x");
return;
Execute:émd();
3
executecomd( ) , * This mcadule executes the commands */
{
int i,k,rept,baflag;
J = Kk = rept = baflag = 0O;
it (=strcmpt indblockfyl], "EXIT") == 0 )
{
1f (set_help_flag == TRUE)
{ printf("\n This lets you exit to DOS \n") ;
printf("\n Eyntax = *¥EXIT \n");
set_help_flag = FALSE;
return;
Srintf(¢% Thank You **\n");
printf( "\n\nINU  TEXT EDITOR SYSTEM\n");
zleep(l);
exit(0);
J
1f (strcemp(indblock(y]. "LIST") == Q) E
{ if (set_help_flag == TRUE )

[
1

printf(”"\n This command lists the file which has been LOADed into the memo
grintftC \n Syntax = - XLIST \n");

set_help_flag = FALSE ;

return ;

Fs %
snioblank();'?

if

{
{
1

isdigit(line(il))
J Tateil}s
it Clrpatate s ittt Vine 1]
{ display(3);

EOLN )



return;:
tF Clineti) == "=%0
{ *+is
k = atoi();
displine()j,k);

return;
J
listalli()
rexurns
it (strcmprindolock(y), "TIME") == O )
{ 1if tcet_neip_flag == TRUE)

printf( '\n This gives you the time \n ' :
printf{ \n:Syntax "—=>- *TIME \n");:
et _nelp tlag = FALEE;
return;

getimel }

3
ztrcmp(inablock(y], "FIND") == 0 )

s
{ if (cset_help_flag == TRUE)
{ printf("\n Thic finds the specified string from your text \n") ;
printf("\n Syntax => *FIND xxx \n");
zet_help_flag = FALSE;
return;
s
skipblank();
if (linefil == "\x22%)
cet_quote_flag = TRUE;
e
findstring( );
}
if (strcmp(inablock(y], 'NFIND") == 0 )
{ if (<et_help_flag == TRUE)
{ printT("\n This finds the nth occurrence of a specified string from your text \
printf("\n Syntax => *NFIND n xxx \n");
zet_nelp_flag = FALSE;
retu H
s o
skipblank():
if (isdigit(line(i])) A
s _atoal);
if (line(i) == %22')
set_quote_ fla = TRUE;
2 26 25 {2
nfindetring(j);
}
if (strcmp(incdblock(y]l," "DEL") == 0 )
{ if (set_help_flag == TRUE)

[ printf("\n This can delete a specific line ; or lines within a specific range \
printf(” or all the lines in your text \n");
printf(“\n Syntax => =* DEL nm \n");



cet_help_flag = FALSE;
return;

skipblank();
1f (1sdigit(line(i]}))
{ j = atoi();

if (line(i] == * " || line{i] == EOLN )
: n=j;
deletel();
return;
1
J
if (linefi} == "-")
{ ++1;
k 2 atoi():
delline(j,k);
return;
j .
putst ** Error : Line numbers expected *xx");
}
if (strcmp(indblock(y], "SAVE") == 0 )
{ if (set_help_flag == TRUE)

{ printf("\n This saves the specified file in the disk \n") ;
printf("\n Syntax => *SAVE filename \n');
set_help_flag = FALSE;

return;
¥3
savefile();
return;
if (strcmp(indblock(y]l, "RESEQ") == 0 )
{ if (set_help_flag == TRUE)

{ printf("\n This recsequences all the lines numbers in your text \n") ;
printf("\n Syntax => *RESEQ n m \N&>* )3
set_help_flag = FALSE;
return;

HE

skipblank();
3 = Atedid);
1EEE
k= atoi();
B (79 5= @ 1) K o== B )
§ puts( '** Error : Command Ignored *x");
return; N
exeseqg(j.k);
return:
1 f

(z=trempl{indblockiy] , (INSERT) =50 )
{ 1f (set_help flag == TRUE)
{ printf("\n This allows the user to insert text without line numbers \n"
printf("\n Syntax => *INSERT a n \n')s:
set_help. flag = FALSE;
return;



zrapplank( /;
£ (Pawaliss] iz gt e tinelise] == *a*)
patTdag T 13
wnile ('!'isdigit(line(i]))
{ if (line[1]) == EOLN )
{ puts( '** Line number expected #*x");
return;
}
el<se
p 2 O3
'
= atoil):
i1f .3 =2 © 1}
cuts(“s% E€rrcr : Command Ignored «*");
regurn;
incterticaflag,j):
FETUr M
1f (strcmp({inazslock(y), "APPEND") == O )
g if (cet_help_flag == TRUE) )
I printf("\n This allows the user to append lines at the"end of the text\n
printf( \n Syntax => *APPEND \n");
zet_help_flag = FALSE;
return;
¥s
append( );
if (stremo(indblock({y]l, "MOVE") == 0 )
{ if (set _help_flag == TRUE)

I printf(”"\n This moves the text from one location to othar \n");
printf(“\n Syntax => *MOVE nm a p \n");
cet_help_flag = FALSE;
return;

skipblank();
j = atoil);

#?1; 3
kT ateal )s
if () == 0 |, k == 0)
{ puts(“** Error : Command Ignored **");
return;
skipblank(); o
it {lipeli) == "a* ¥) line(i]) == 'A*)
baflag = 1;
while (!isdigit(line(++1i])).
if (line(i) == EOLN )
{ puts( “** Command Ignored #+*");
return;
3

rept = atailil);
if (rept == ¢ )
{ puts("** Line number expected *x");
return;



il
movtext(baflag, j,k,rept);
exeseq(10,10):

returns
g ztremp(indblock(y]l, "ODUPLICATE ) == O )
1f (set_help_flag == TRUE)

i printf("\n This duplicates text from one location to other \n");
printf("\n Syntax => *DUPLICATE nm a p \n");
cset_help_flag = FALSE;
return;

¥

skipblank();

j = gbodil)s

?'91;

“ = atoi();

1if (3 == 0 |} k == 0)

{ puts("“** Error : Command Ignored **x");

return;

|3
J

skipblank();

if (line(i] == ’a’ ! line(i] == ’A’)
baflag = 1;

while (!isdigit(line(++1i]))

if (1line(i] == EOLN )
{ puts( " **x Command Ignored *xx");
return;
{
rept. = atox();
S SRR b ok et Sl o)
{ puts( " ** Line number expected *x");
return;

}
duptext(baflag, j.k,rept);
exeseq(10,10);
return;

]

if (stremp(indblock(y]l, "HELP") == 0 )
gethelp( );
EBTUENRS

if (strcmp(indblock([yl, "ERASE") == O )
£ if (set_help_flag == TRUE) x
{ printf(”"\n This erases all the lines in the memory \n"); 7
printf(”"\n Syntax => *ERASE \n");
set_help_tlag = FALSE;

return;
Tl
delall();
return;
1f (strcemp(indblock(y]l, "LOAD") == O )
{ if (set_help_flag == TRUE)

{ printf(”"\n This loads the specified file from the disk \n");
printf("\n Syntax => *LOAD filename \n");



cet_heip_fiag - FALS
returns;
loaafiie():
return:
r ‘ztrcmp(inablock(y), "MERGE ") =
i 1f (set_help_flag =:- TRUE
foprantf(\n This merg

printf(”"\n Syntax
FALS

<et_nelp_flag
return;

mergfile();
regturn ;

retremptinaocliock{y], "NCHANGE )
d 1f (set_nelp_flag == TRUE

1f

I printf("\n This changes the nth

printf('\n Syntax

cet_help_flag = FALS
return;
s s
J s
cskipblank();
if (isdigit(line(i]))
rept = atoi();
else
return;
if (lineli] =3 "\x2F° ')
b 3K 5
elcse
return;
if (isagigit(linef(i]))
Jo= atoi();
it (linell]) 22 "\x22’)
set_quote_flag = TRUE;
¥f (Line(i) == "yx22’ !
i
M ( § == 9 )
I puts('** Cannot chan
return;
}
nchng_string(rept,j);
return;

i

25

(o8

trcmp(indblock(y], "CHANGE")

if (set_help_flag == TRUE

I
.

(<
{

printf(“\n Syntax =
set_help_flag = FALS
return;
§ 5
it (line (i) == o\x2F i
Lok

E:

s 9 )

)

ec a file from disk with text in memory \n');
>~ *MERGE filename a n \n");

£

=z 0)
)

occurrence of a string \n");

> *NCHANGE n m "xxx’' ’yyy' \n");
Es

linel[i] == "\w22’)

line(i]) == */’)

ge String ¥x");

)

o)

printf(“\n This changes the specified string \n");

> *CHANGE ’xxx’ ’yyy’ \n");
£;
line(i] == ’"\x22’)



1Nt

if (isdigit(line(i]))
] = atoi();:
if Clipeli] == ;")
L id#s
if (1sdigit(line(i])))
k = atoi();

lze
¥

- -

if (linefi] ==z "\x22")

cset_quote_flag = TRUE:
it (1inmelil == /7 4. Yipeli]) == "\x22* )

44 i
it (3 = O

) puts( ** Error : Cannot Change String *x");

return:

chng_string(j,k);
return;

store() /* This stores the text in memory %/

int 3 5 Tlag;
if (counter > MAXLINE )
L puts( ' ** No of lines exceeding Limit : Cannot store");
return(2);

counter++;
zkipblank( );

if (TOP == NULL )
¢
first.fp = mallcoc(sizeof(TEXT));
it (first.fp =% NULL )
{ printf("** Sorry : No Memory *x");

return(d);
1
J
p = first.fp;
p~>fp = NULL;
p--lineno = n;
for (3j=0 ;line(i] !'= ’\O’;i++,j++)
p=>string[3]) = lineli]);
p->string(jl = ’\0*;
1 2 Firskt.Tpj

else

R = first.fes
if (p->lineno > n )
£ r = p;
first.fp = malloc(sizeof (TEXT));
if (first.ftp == -NULL )
{ puts(”"** Sorry : NO memory *x");



return(l);

D3 Firset. O3

p->tp = rj
p->lineno = n;
for ¢ 379 £ lineli) !t EOLN 7 a#%+,3++)

p->string(j] = lineli):
p=sstrimgiil = EOLN;
return(Q):

.

for (psfirst. . fp @ Z--ltnenmoc <« N ¢ p = =3P . )
{ 1 = p3
T (p=#fp == NULL )
{ p->fp - malloc(sizeof(TEXT));
1t (p->fp == NULL )
{ puts("** Sorry : NO memory *x");
return(l);
3
o = prafps
p->fp £ NULL:
p->lineno = n;® _
for (3j=0;line[i]) !'= EOLN ; i++,)j++)
p->string(j] = line(i];
p->string(3)] = EOLN;
return(9);
3
i3
if (p=->linend == n )
{ for (j=0;line(i) != EOLN; i++,j++)
p->stringl(j) =

line(i];
p->string(j) = EOLN;
counter--;
return(3);
¢

J
if (p->lineno > n)

{ r = p;
1->fp = malloc(sizeof(TEXT));
if (1->fp == NULL )
{ puts(“** Sorry : No memory **");

return(l);
1
J
P = 1~->Fp;.:
p->fp = r;
p->lineno = n;
for (3j=0;line(i] !'= EOLN; i++,j++)
p->string(j) = line(i);
p->string(j] = EOLN;
return{(?Qj;
}
}

return(0);

int getimef } /¥ This prints the c¢ata and time */
{

10



struct date today:

struct time now ;

getdate( &today);

gettime(&now);

orimEf("NEDATE : %$d/%d/%d \tTIME = %02d:%02d:%02d.%02d\n",
today.da_day, today.da_mon, today.da_year,now. ti_hour,now.ti_min,
now.ti_sec,now.ti_hund);

return;

int gethelp() /* displays the help mesnu */

FILE ¥fpl;
char chy, s¥yn2;
fol = fopen('edhelp.hp”, " r");
if (Fpd == NULL )
{ puts("** File EDHELP.HP not found *x");
return;
-
EES( © = i st i e e i o ol s S o e 2
while ((ch=getc(fpl)) != EOF )
putchar{(ch);
DEEEEA - NSt oo on S 8 it 5 o B X e 5 a1

fclose(fpl);
puts( "Do you want to know more about any Command ?2");
puts(“Type Y or N");

oiriAEf  Nnan) ;
yn2 = getchar(
it yn2 == ¥

printf("\n
gets(line);
for (i = 0 ; line(i] == * * || line(i] == ’"\t’ && line(i] != °"\O’ i++)
g S T 5N i e i S RS s E |
it (isdigit{lineli]))
{ n'7 atoi();
store();

el

(U]

%y
e
g

earchcomd( );

s

\
@

returns
i .

int <savefile() /+* This saves the file in the disk */

{

char filename(30];

BEECE *fpl;

char ans;

int J,status;

skipblank();

3% LTOP a5 N

L puts("** No input line in memory *x");

return;

11



}
int

s
L

3
int
char
{

for (3:9slineli] = ' ° && linefi] !2 €EOLN ; J++,i+¢)
tilenamelj. - linel1];

filename(j] = EOLN;

ctatus T FALEE:;

wnile (statue == FALSE )

{ fpl = fopen(&filename, r ' );
if (fpl == NULL)
Dreak.;

orintt("File %= already exists : delete it ? (Y/N) : ",filename);
anc - getche()
if (ans == 'Y’
break;
crintf( "Enter the new name : ");
gets(filename);
H
fpl - fopentfilename, 'w');
It ( Tpl == NULL )
i printf({ ** Unable to ozen/create file : %s\n",filename);

return;

5
i oans =z 'y’

}
far (p = first.fp 3 p=5>fp != NUCL s P = pedtp )
forintf(fpl, "%¥s\n",p-><string);
forintf(fpl, '¥s\n" ,p->string);
printf( "\n** Text saved into file %s *x*\n",filename);
printf( "#8 Total numer of linecs <avea = %d ##\n",counter);
tfclose(fpl);
returns:

ozdfile() /* This loadg:z the file into the memory */

har filename(20];
nt s
-3
f

oo 0

(TOPC = uNta L)
< cuts('+% Delete all lines pbefore loading the file *x");
return;

counter = O;

for (j=0;1line(i]l '= * * && line(i] != EOLN ; i++,6j++)
filename(j) = line(i]); ‘

filename[j] = EOLN;

counter = Q;

j = ldfile(filename);

it =)
return;

printf("=* O0.K.\x07\x07 **\n");
printf("\na#t %d lines copied##\n”,counter);
return;

ldfile(xxx) /* This loads a file from disk */
xxx{]);



FILE ¥fol;

int j,m;
fpl = fopen(xxx, 'r’);
if (fpl == NULL )

printf( " «% File %< not found\xO07\x07**x\n" K xxx);
return(0);

;.Ilvn;
wnile (fgets{iine,MAX_CHAR,fpl) != NULL )
f 1 = O3
m - =trlen(line;;
e = i

line(m] = EOLN;
skipblank();

n = 3;

3. #2105
ztore();

i
J

el seifpl}:
return(5);

int exeseq(int mi,int nl) /* recequencing line numbers */

int counti,count;
if (n1 > 100 )
{ puts( " *¥* Increment cannot be more than 100 *x");
return(0);
for (countl = ml,count2=0 ;count2 < counter ; countl += nl,count2++ )
if (countl > 32000 )
{ puts("*¥* New line numberc exceeding limit *x");

return(0);
S

for (countl = ml,p = first.fp ; countl <« 32100 && p->fp = NULL ;
p = p->fp , countl += nl )
p->lineno = countl;
p->lineno = gcountl;
if (p=>fp == NULL )
{ printf("**x Resequencing Over \x07\x07**x\n");
return(0);

3
crintf( ' ** Resequencing Fails *x\xO07\xO07**x\n");
return(0);

1
J

int dicspline(int a ,int b) /* displays text in the specified range x/
{

@ g B
! puts( "*® Lines out of range : Try again xx');
return;
if (TOP =z NULL)
\ puts( '** No lines in memory *x");
return:

13



int

int

3

int

{

for ( ;p->lineno < a ; p = p->fp)

{ if (p=->fp == NULL)
{ puts("*x Line out of Limit *x");
return;
}
3

for ( ; p->lineno >= a && p->lineno <= b ; p =
{ printf("%d %s\n",p->lineno,p->string);

if (p->fp == NULL )
{ puts("**x End of Storage *x");
return;
1
3
if (p->fp !'= NULL )
puts("**x 0 K *x");

return;

display(int m) /* diplays a line x/

if (TOP == NULL )
{ puts("** No lines available **x");
return;
3
for (p = TOP ; p->lineno < m ; p = p->fp )
{ if (p->fp == NULL )
{ puts("*x Line not found x");
return;
}
}
if (p=->1lineno == m )
printf("%d %s\n",p->lineno,p->string);
else
puts(”"** Line not found *x");
return;
atoi() /* converts from ascii to integer */
int K;

p->fp)

for (k=0;line(i] >= 'O’ && line(i] <= ’9" ; ++i)

k = 10xk + line(i) - ’0’;
return(k);

listall() /* Lists all line in the memory */

ifCCTOR == NULL )
puts(”** No lines in memory *x");
else
{
p = _TOP;
while (p->fp != NULL )

14



{ printf(”"%d %s\n",p->lineno,p->string);
p & p=2fp
J
printf("%d %s\n".p->lineno,p->string);
0 K *» )3

puts( " *x* 38

return;
}
int ieletel( ) /* This deletes a line in the memory */
p
L
it (18P == NULL )
puts("**x No lines in memory **');
alse
t
p = TOP:
it (p=2lineneo == n)
L r = p->fp;
mfree(p);
counter--;
first.tp = r;
return;
J
for (p=TOP; p-rlineno 'z m 3 p = p=>Tp )
{ 1 = p&
if (p->lipneno »* i () p=fp == NULL )
| puts{("** Line not found *");
return;
i
1
if (p=>xlinenc Zz n )
{ r = p=->fp;
mfree(p);
counter--;
1=>fp & s
puts(*x 0 K *xx");
3
3
returnsg
3
1int <skipplank() /* deletes the white spaces x/
!
L
PoEs b < Fipeli]) == 0 & dinelil A= EOENG ! linefil == INES
++1 )
J

int delall() /* This deletes all lines in the memory x/
{
Nt XlLxas
D e P
1o Ep—afprE=s Null )
{ mfree(p);

15



TOP = NULL;
puts( "#x 0 K xx");
return;

tfor { p = TOP ;5 p->fp != NULL : )
{ 1 = p->tp;
mfree(p);
p = 1;
mfree(p);
TOP = NULL;
counter = O;
puts( % 0 K *x");

i

int Zdellarne{int. a , int b) /* This celetes lines in the given range */
{

int flagl;

flagl = FALSE;

1 €6 a T o) ¢
7 puts(“** Lines not in sequence *x");
return;
J
if (TOP == NULL )
£ puts("*%* No lines in memory **");
return;
}
1l = TOP &
if (l-:xlineno >= a)
flagl = TRUE;
Tor-tp ==J0Ps.p~>lineno < a : 1 = p , P = p=>fp ")
{3 dp->fp =" NULL )
{ puts('*x Line out of range *x");
return;
h )
3

while ( p->lineno >= a && p->lineno <= b && p->fp !
{ r = p->fp;
mfree(p);
counter--;
g = r;
3
p->lineno <= b)
mfree(p);
counter--;
if (flagl == TRUE )
TOP = NULL ;

NULL)

i:f

o~

else
1->fp = NULL ;
puts(“x%x 0 K *x").
return;
3
if (flagl == TRUE )
TOP = p;
else

16



1=-3Fp = ps
puts( "xx 0 K *xx");
return:
}
int nchng_string(int rept,int al) /* Replaces n th occurence of a string */
A
int xl:
rep_flag = FALSE;
if (zet_quote_flag == TRUE )
for (x1=0; line(i] != EOLN && line(i] != ’\x22°;i++,x1l++ )
stri(x1) = lineli];
else
for(x1=0; line(i] '= EOLN && line(i] != '/’ ; i++,xl++)
strl{x1) = line(i]);
sfrilxll & EQLM:
if (set_qguote_flag == TRUE )
for (x1=0; line[i] != EOLN && lins(i] != *\X22°; i#+,xl++ )
stir2ix1) = lirnefdi);
elce .
for (xi. = Oy lineld] o= EOLN && line(il) != ’/'; itt,witt)
gtr2{xt] = lineli]:

str2ix1) = EOLM;:
zset_quote_flag = FALSE
for ( p = TOP ;. p=>tp

= NULL && p->lineno != al ; p = p->fp )

if (p->lineno != al )
{ puts("** Line Number not found *x*x");
return;
3
nfind_replace(rept);
if (rep_flag == FALSE )
puts( ' ** String not found *x");
return;

}

int nfind_replace(int rept) /* Finds and replaces the string */
{ int xR1,%2,%3,31,lo00pl;

al = strlen(strl);
for (x1=0,lo00pl=0; p->string(x1] != EOLN ; xl++ )
if (strn_cmp(&p->string(xl),&strl,al) == 0 )
{ loopl++;
if (loopl != rept)

continue;
rep_flag = TRUE
for (X388 0,.%2 xl+al ; p->string(x2] !'= EOLN ;
reset(x3] = p->string(x2];
reset(x3] = EOLN;
p->string(x1] = EOLN ;
strcat(p->string,str2);
strcat(p->string,reset);
return;

"o

37

X2++ ,%x3++ )

i




int chng_string(int al,int bl) /* Replaces a string with another %/
o

int x13
W N - B bl && bl !'= O )
4 puts( " ** Lines not 1in sequence **");
return;
i
rep_flag = FALSE;
1f (cset_quote_flag == TRUE )
for (x1=0; line(i] '= EOLN && linef(i] != ®\x22';i++,x1++ )
stri(x1) = line(i);
else
for(xi=0; line(i] != EOLN && line(i] !'= */7 ; i++,xX1++)
str1{x1] = line(i];
stri(xl) = EOLN:
b & s
if (set_guote_flag == TRUE )
for (x1=0; line(i] !'= EOLN && line(i] != "\x22%; i++,x1l++ )
str2[(x1]) = line(i);
else
for (x1 = O; line(i] !'= EOLN && line(i] != ’/'; i++,x1+%)

str2(x1) = line(i);
str2(xl] = EOLN;
cset_quote_flag = FALSE ;

for(p = TOP : p->fp '= NULL && p->lineno < al ; p = p->fp )
if (p->fp == NULL )
{ puts("“** Lines out of range *x"); -
return;
3
it (bl =20 )

{ find_replace();
if (rep_flag == FALSE )
puts(“** String not found *x");
return;
}
for (. ;. p=>fp 4t=-NULL && p->lineno <= bl 3 p = p=>fp )
find_replace();
1f (p->lineno <= bl ) -
find_replace();
1f (rep_flag == FALSE )
puts("*x String not found *x");

return;
3
int finc_replace() /* Finds and replaces the string */
{

int - xl x2,%3,al1;
al = strlen(strl);
for (x1=0; p->string(x1) != EOLN ; xl++ )
if (strn_cmp(&p->string(x1l]),&strl,al) == 0 )
L rep_flag = TRUE ; :
for (x3 = 0, x2 = xl+al ; p->string(x2] != EOLN ; x2++,x3++ )
reset[x3) = p->string(x2]); S

18



reset{x3] = EOLN;
p->string(xl1] = EOLN ;
strcat(p->string,str2);
strcat(p->string,reset);

break;
?
y
int strn_cmp(out,in,count) /* Compares two strings *x/
char #*in,*out;
int count:
{
int al,flagl;

flagl = TRUE; s
for (21=0 3 al < count ; al++,out++.,.int+ )

if (*outr != *in )
flagl = FALSE;
if (flagl == TRUE )

return(0);
return(4);

int lowercase(char *s,int k) /* converts the string to upper case %/

int xl.ecl3

for (x1=0; x1 = K ; Xl++,s++ )
{ cl = *s;
*s = toupper(cl);

i
J

}
int findstring() /* finds the given string */
{
int xi;
if (zet_quote_flag == TRUE )
for (x1=0; line(i] != EOLN && line(i] !'= ’\x22’; i++,x1l++ )
str2(x1]) = line(i];
else
for (x1 = 03 line(i] != EOLN && line(i] != */’; i++,xl++)
str2ix1ll) = line[i];

str2(x1) = EOLN:;
set_quote_flag = FALSE;

for ( p = TOP 3 p->Tp != NULL ; p = p=>Ffp )
for (x1=0; p->string(xl] != EOLN ; xl++ )
if (strn_cmp(&p->string(xl],&str2,strlen(str2)) == 0 )
{ display(p->lineno);
return;
}
for (x1=0; p->string(xl] !'= EOLN ; x1++
if (strn_cmp(&p->string(x1]),&str2,strlen(str2)) == 0 )
{ display(p->lineno);
return;
}
puts("** String not Found *x");
return;
19

LR e



.nt nfindstringtint al) /* finds the given string */

W ol S R D

if (set_quote_flag == TRUE ) :
for (x1=0; line{i] != EOLN && line(i]) != ’\x22': i++,x1++ )
str2[x1) = line(i);
else
for (<1 = O; line(i] != EOLN && line(i] != ’/"; i++ ,x1l++)
str2(x1] = line(i];
str2lxl] = EOLN:
set_quote_flag - FALSE;
yl = O;
for ( o = 702 i p~>Fp 12 NULL 2 p = p—>fp )
for (x1:0: p->string[x1l]) '!'= EOLN ; x1l++ )
1f (strn_cmp(&p->string(xl).&str2,strlen(str2)) == 0 )
{ yl+ey .
¥ {yl 22 al)
{ diesplay(p->lineno); °
return;
3
for (x1:0: p->string(xl] '= EOLN ; x1++ )
if (strn_cmp(&p->string(xl]),&str2,strlen(str2)) == 0 )
7L Ee7
1t (y1 == al )
{ display(p->lineno);
return;
}
b
puts( ' ¢¥ String not Found *x");
return;
nt instext(int baflag,int ml) /¥ This allows the ucser to insert without line number */
oy int curline,incr,lastnum,cnt;
g2 curline = lastnum = O;
o incr = 10:
p = TOP;
if (p->lineno == m1 && baflag == 0 )
{ puts( '** Insertion not before the beginning **");
return:
3
if (baflag == 0 )
for ( o = TOP ; p->lineno < ml && p->fp = NULL ; p = p->fp )
. { midl = p;
mid2 = ->fp ;
lastnum = p->lineno;
X
J
else
for ( p = TOP ; p->lineno <= ml && p->fp != NULL ; p = p->fp )

{ 'midl = p3
mid2 = p->fp :

..1'_..(; ?

20



lastnum = p->lineno:
2+
curline = lastnum + ‘incr;
ent = FALSE:
middle. fp - NULL;
gets(line);
1f (livefo]) s= o )

return;

micdle.fp = malloc(sizeof(TEXT));
p = middle.fp;

p->linenoc = curline;

curline #:z: incr;

for ( 1 = 0; line(1i] != EOLN ; 1i++ )
p->string(i) = linel(i];

p-rstring(i)] = EOLN;

p=+fp = NULL:
++counter;
for [ 7 ont =2 FALSE 3 i)
{ gets(line);
1T (line(0] == EOLN )
break;
p->fg = malloc(sizeof (TEXT));
if (p=>fp == NULL )
{ puts("** Sorry : .no memory *x");
return;
J
p = p->fp;
p->lineno = curline;
curline += incr;

Por - {51°2.0: line(i] != EOLN ; i++ )
p->string(i]) = line(i];
p->stringli] = EOLN;
3¢ p=>fp = NULL:
3 ++counter;
P <N
p = midl;
™ p=>fp = middle.fp;
p = p->tp;
1=>fp = mid2;

exeseq(10,10);
printt{ "\n\n** 0. K. **\n");
3

int movtext(int baflag,int ml,int nl,int pl) /* moves the text from one location to other */

int tflag,eflag,iflag;
tflag = iflag = eflag = FALSE;

ITCmE AR e s s S T e e ) )
% { puts("** Invalid Sequence **");
A return;
}
if (mi <=ipl && nil >3 pl:) fchi
{ puts("** Invalid Sequence *x");
21



return;

}
1f (search(ml) && search(nl) && search{(pl)
else
{ ;
puts("**x Line not found.*x"}-
return;
}
p = TOP;
i {p=>lineno ==.ml)
 tflag = IRUE;:
for(p=TOP;p->1lineno != nl ; p = p->fp )
p = p->fp;
if ( p~>Yineno =z pl)
iflag = TRUE;
for (p = TOP ; p->fp != NULL ; p = p->fp )
if (p->lineno == nl1 )
eflag = TRUE:;

if (iflag == TRUE )
batlag = 1;
p = TOP;
if (p->lineno == pl )
baflag = 1;
/* Extract the range */
if (tflag == TRUE )
{ 1 = TOP;
for (p = TOP :p->lineno != nl
o3

" =

midl = r=>fp;

1f (iflag == TRUE)

{ TOP = r->fp;

mid2 = midl->fp;
midi->fp = 1;
rr2dfpizimid2:
puts(“*xx Q0 K *x")-
return;

else

TQP = midis

for (p = TOP ; p->lineno

mId2 ez p>

Ltetbaltlag 2= 1)
fomid?> = p-
midl = mid2->fp:;

miazZ->fp =1
et o el i B B

£l

puts( " ** 0 K *x"3-

e ryrn:

rJ
1AV

;P

p=>fp

o3 BEealid o

p->Tp



midl = p->fp:
mid2->fp = 1:

pl 5 p = p->Tfp )

r->fp = p;
puts("**%x 0 K *xx");
return;
h
: }
}
if (eflag == 3FRUE )
{ for (p = TOP:;p->lineno != ml
migl = p3
R D3
while ( p->fp != NMULL )
p = p->fp;
Lz p3
midl->fp = NULL:
for (p = TOP ; p->lineno 1=
midl = ps
if (baflag == 1 )
£ mid2 = p~->fp;
p->fp = r; -

I->fp = mid2:
puts("*x 0 K *x");

return;

i

J

else

{
midZ % p3
midl=>Tp = 3
1-3Tp = mid2:
puts("xx 0 K *x").
return;

b

,
migl ‘= T@pP:
if (p~->lineno ==

for ( p = TOP: p~

if o p=ofpa=siNULL- )
baflag = FALSE:

for. . (p.= TOP p=lanento. Vs mli oo
midl P

if e

nidzZ =ipE>Tp

nidi->Ffp = mid2:

for L pesiBPe e -l jneno: = pl <= p
mrgr = p:

if (baflag)

it



int searcriint al: /+ This checks for ths existence of the line number */
c % i ) = =

for { o = TOP; p=>fp != NULL : p = p->fp )
it (p->lineno == al) 2
- eturn(TRUE ) 2T
it (p->lineno == al ) g
p return(TRUE);

return(FALSE);

b
puts( & O K 2" )
3
int duptext{int baflag.int ml,int nl.int pl) /* duplicates the text from one location
10t tflag,eflag; ) S FO
t1lag = eflag = FALSE; T
G- 3= #F {ml 32 ol J! pd == Al F pf S ml ) ’

{ puts(“+* Invalid Sequence **");
return; EE 4




puts("**x Invalid Sequence *xx");
recturn;

1T {eearch(ml) && search(nl! && search(pl))

]

-
L
- (0

cuts("*x Line not found **x");
return;

p = TOP;
it (p~>lineno == pl)
tfkag = TRUE;
for {p =-T0F 3:p=>Fp = NULL : p = p<x¥p )
if (p->lineno == p
eflag = TR
it (tflag == TRUE
baflag = 1;
1if (eflag == TRUE )
baflag = FALSE:

for (p = TOP ; p=>lineno != ml : p = p~->fp )
middle.fp = malloc(sizeof (TEXT));
if (middle.fp == NULL )
{ puts( " **x Sorry : No memory Xx*x");
return;

"
1 = middle.fp;
l1->lineno = p->lineno;
for ( 3 2 0 ; 1 € strien(p=>string) ; i++)
l=>stringli] = p=vstringlil;
1->stringli] = EOLNj;
Y=>fp-=-NULL:
++counter;
for (tpss benfipir o> ldnenn. <=0l Qp
{ 1->fp = malloc(sizeof(TEXT));
3. Cleptp ==—NUEL <)
{ puts("*x* Sorry : No memory *x"):
return;

p->fp )

3

bzl =

l1->lineno = p->lineno;

For - 1o 0 0 e cictrlen{p->string) ;. 1++)
=sstringlil]) = p=>stringlils

exatrihaf 1 b =~ EOLN:

d=ry e N

++counter;

for ( p = TOP

R S S S s Uy - Yo IS o W IR e o T s of o S
midlia="p:
1Al ags =219
{ mid2 = p->fp;



int
I3
L

int
char
int

midl = p3
migl-. tp = miaale.fp;
i=sfp = midg2;
uts{ “Ex Q@ K &=
t

reLUrng

nrae = P

midl->fp - middle.fp;
I1-=fp = midls
puts(“*¢ 0 K =*");
ragurn;

m2ratile! v This mergez a file with text in memory ¥/
B 3

=iy ri1lename(30]);
int 1.k.baflag;
Hartlaa < & 2 98
skipplank( );

fort j-0:Lainelil ¥= 7 ' && line(i] Y= EOLN 3 i#+#,j+%)

filename(j) = line(i]:
filename(j)] = E0LN;
srapblans! ):
if (linelfi] == "A° I} limefi] == ta' )

baflag = 1;
while( !isdigit(line(++i] )}
1f (line(i] == EOLN )
I puts("** LIne number expected **");
return;
K 2 atodl);
7 T nldfile(baflag,filename.k);
it o g = 0 )
! puts( '** Could not mergexx");
return;
}
exeseq(10,10);
orintf("\n** O0_XK.\x07\x07 #**\n");

nlatile(baflag,~xx,lin) /* Thic loads a file from disk */
xxx{]:
garlag,lin;

FILE 5 o o3 S
int a,m,tflag,eflag;
fpl = fopen(xxx,'r");
if (fpl ==TNULLEY)
{ printf("** File %< not found\x07\X07**\n",6xxx);

return(0);
1
4
1f (search{lin) ==10 )



cuts( "¥x Line not found #*«"j;
return(Qj;
}
o = TOR:
1f {(p~=>Yineno == lin)
tflag = TRUE:

else :
tflag = FALSE;
for (p = TOP z p=>fp Iz NMULL 3 p = p=>fp )
if (p->lineno == 1lin )
eflag = TRUE;
else
eflag = FALSE;
J = 10;
1 = &middle:;
while (fgets(line,MAX_CHAR.fpl) != NULL )

{ ' m = strlen(line);
line[(m] = EOLN;
1->fp = malloc(sizeof (TEXT));
AFeLl-=>Fp =2 "NULL )
{ puts("*¥* Sorry : no memory *x");
return(0);

1
J

S B o & i o B

l->lineno = j:

Jic#o 10

For g 20 - Yine il BN o 1¥E)
l->stringli]) = linefi];

->2tringfal = EOEN:

s foa NUEL?
++ocounter;
Y
af
fclose(fpl);
if (tflag == TRUE && baflag ==:0 )
{ roe =R
p = TOP = middle.fp;
while(p->fp != NULL)
p = p->fp;
pr2tp =i
return{(5);

eflag == FRUOE &R batlag == 1)

1
{ for (p=TOP;p->fp != NULL

o]
it
o]
i
v
—h
Lo}
S

DT = middle fp:
return(5s);

8

S
for (p=TQP; p-

>lanano. s an 5 = p=>Ffp )
midl =-p:
1fChbafiag==.1)
{ mIdal = p-
mide = p-

>TEs



->fp = mic
(p=middle.

return(5);

e



	TH29070001
	TH29070002
	TH29070003
	TH29070004
	TH29070005
	TH29070006
	TH29070007
	TH29070008
	TH29070009
	TH29070010
	TH29070011
	TH29070012
	TH29070013
	TH29070014
	TH29070015
	TH29070016
	TH29070017
	TH29070018
	TH29070019
	TH29070020
	TH29070021
	TH29070022
	TH29070023
	TH29070024
	TH29070025
	TH29070026
	TH29070027
	TH29070028
	TH29070029
	TH29070030
	TH29070031
	TH29070032
	TH29070033
	TH29070034
	TH29070035
	TH29070036
	TH29070037
	TH29070038
	TH29070039
	TH29070040
	TH29070041
	TH29070042
	TH29070043
	TH29070044
	TH29070045
	TH29070046
	TH29070047
	TH29070048
	TH29070049
	TH29070050
	TH29070051
	TH29070052
	TH29070053
	TH29070054
	TH29070055
	TH29070056
	TH29070057
	TH29070058
	TH29070059
	TH29070060
	TH29070061
	TH29070062
	TH29070063
	TH29070064
	TH29070065
	TH29070066
	TH29070067
	TH29070068
	TH29070069
	TH29070070
	TH29070071
	TH29070072
	TH29070073
	TH29070074
	TH29070075
	TH29070076
	TH29070077
	TH29070078
	TH29070079
	TH29070080
	TH29070081
	TH29070082
	TH29070083
	TH29070084
	TH29070085
	TH29070086
	TH29070087
	TH29070088
	TH29070089
	TH29070090
	TH29070091
	TH29070092
	TH29070093
	TH29070094
	TH29070095
	TH29070096
	TH29070097
	TH29070098
	TH29070099
	TH29070100
	TH29070101
	TH29070102

