
EDJNU - A WORDPROCESSING PACKAGE
IN 'C' LANGUAGE

Dissertation submitted to the Jawaharlal Nehru University

in partial fulfilment of the requirements for

the award of the Degree of

MASTER OF TECHNOLOGY

IN COMPUTER SCIENCE

ANUPAM GOVIL

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-11 0067

1988

Q

DISSERTATION

TOPIC k EDJNU = A WORDPROCESSING PACKAGE IN ~ LANGUAGE

BY

ANUPAM GOVIL
M. TECH
COMPUTER SCIENCE
JAWAHARLAL NEHRU UNIV.
NEW. DELHI

~

DECLARATION

The work embodied in this Dissertation contains the result of the
research work carried out under the supervision of Dr. P. C.
Saxena 1 SCSS 1 JNU 1 New Delhi . The work is original and has
not been submitted , in part o~ full , to any other University
for the award of any other degree or diploma .

~
PROF. KARMESHU
DEAN

_,

ANUPAM GOVIL
STUDENT

(ev-9tv)C~
DR. P. C. SAXENA
SUPERVISOR

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-67

ACKNOWLEDGEMENTS

I am indebted to my supervisor Dr. P. C. Saxena for his guidance
and the encouragement provided by him in carrying out this work .
His affection and personal interest have always been an added
stimulus .

My thanks are also due to the faculty members for their kind
cooperation and encouragement .

I am thankful to the comput~r laboratory staff for their
cooperation in letting me use the computer equipment •

Finally I express my gratitude to the Jawaharlal Nehru University
for the financial assistance .

ANUPAM GOVIL
M. ~ECH
COMPUTER SCIENCE
JAWAHARLAL NEHRU UNIV.
NEW DELHI

PREFACE

This Dissertation deals with an indigeneously developed Word
Processor - EDJNU . This package has a standard set of commands
with a few customised features • The main advantage of this Word
Processor is its compactness , its flexibility and its
portability • The language C has been chosen for development of
this software due ot its various inherent advantages This
software has been developed on a IBM PC -AT compatible using a
Turbo C compiler • However this Wordprocessor can run on almost
any machine due to its compact code and device independence •

All important aspects of development of this software have been
exhaustively discussed in the Dissertation • We start from a
brief description of programming techniques in C , the advantages
and applications of C in Software Enginnering • Then we give an
introduction to the Wordprocessor and discuss the various
considerations that have gone into designing the word processor .
Thereafter we provide a detailed structural analysis of the
software itself Here each and every routine is discussed
seperately together with the special techniques used .Finally w~
link each command with these routines and hence elucidate the
execution path of each command . Care has been taken to make the
Dissertation as informative and detailed as possible • Even an
average user of C would be able to understand the flow and
structure of the complete program .

SECTION I

CONTENTS

Advantages and Techniques of 'C' in Software
Engineering

1.1.1 Role of C in Software Engineering
1.1.2 C Language Constructs
1.1.3 Program Structures
1.1.4 Simple Data Types
1.1.5 Control'Structures
1.1.6 if Statement
1.1.7 ? Statement
1.1.8 switch Statement
1.1.9 Structured Data Types
1.1.10 Functions
1.1.11 Pointer Variables
1.1.12 Recursion inC
1.1.13 Applications of C
1.2 Conclusion

SECTION II : Introduction and Salient Features of the Package

2.1 Introduction to A Word Processor
2.1.1 What is a Wordprocessor
2.1.2 Developing a Word Processor
2.1.3 Choosing a Language for the Editor

1 2.1.1 Why Use C?
2.1.5 Why to write a Text Editor .

. 2.2.1 Salient Features of Word Processor EDJNU
2.2.2 Algorithm for Designing a Text Editor
2.2.3 Implementation of Functions
2.2.1 A Few Salient Features

SECTION III : Structural Analysis of the Text Editor Program

3.1 Header Files - A Pravie~
3.2 Header Fil~s Used in this Package
3.3 Structural Analysis of Text Editor Program
3.3.1 main()
3.3.2 searchcomd(J
3.3.3 executecomd{)
3.3.1 store()

3.3.5 getime()
3.3.6 gethelp()
3.~.7 savefile(}
3.3.8 loadfile()
3.3.9 ldfile()
3.3.10 exeseq()
3.3.11 displine()
3.3.12 display()
3.3.13 atoi()
3.3.14 listall()
3.3.15 delete!()
3.3.16 skipblank()
3.3.17 delall()
3.3.18 delline()
3.3.19 lowercase()
3.3.20 instext()
3.3.21 movtext()
3.3~22 findstring()
3.3.23 nfindstring()
3.3~24 nchng_string()
3.3.25 nfind_replace()
3.3.26 chng_string()
3.3.27 find_replace()
3.3.28 strn_cmp()
3.3.29 search()
3.3.30 append()
3.3.31 duptext(}
3.3.32 mergfile()
3,3.33 nldfile()
3.4 Execution Path of the Commands

SECTION IV : Conclusion and Appendices

4.1 Conclusion
4.2 Appendix A
4.3 Appendix B
1.4 Appendix C
4.5 Appendix D

List of Commands
List of Routines written for this Editor
Bibliography
Program Listing

SECTION .I

ADVANTAGES AND TECHNIQUES OF ~ lH SOFTWARE ENGINEERING

THE ROLE OF Q IN SOFTWARE ENGINEERING

The Programming language C was developed by Dennis
M Ritchie in 1972. C was an off-spring of Martin Richard's
BPCL, by way of a language called B written by Ken Thompson.
Most languages in common use to-day were developed by
committees. But C was developed by Ritchie and Thomson, who·
were undoubtedly excellent system programmers. So C was
developed by programmers for the programmers. It is
relatively a pure language, unrestricted by compromise. As a
result of this it is capable of doing anything that you can
expect a language to do.

The C was made available to public in 1979. Dennis
Ritchie calls this language as "a programmming language
which ,features economy of expression, modern control flow
and data structures, and a rich set of operations".

A programming language is judged from its support
for the design and production of correct, reliable,
maintainable software. So in discussing C, we should
consider the extent to which it meets these criteria.

The major problem faced by designers and
implementors of realistically large software systems is that
of complexity and the principal tools to deal with
complexity are the process of abstraction and refinement.
Consequently, programming languages sho~ld support
expression of abstract concepts but must also pr6vide means
of ealizing the concepts. To allow the programmer to express
abstract concepts, C provides a hierarchical program
structure and user ~efinition of data types; realization is
achieved by performing a series of transforamtions, or
refinements, on the original procedures and data structures
until an executable form is obtained.

It is assumed that the programmer has expressed
the original model of the solutionj correctly - and the
likely hood of this being so will be influenced by how
closely the language being used matches the programmer's
cconrpt of the problem then the correctness and reliability
of the final program will depend upon the accuracy of the
refinements made to the original solution. · As the
refinements represent only nformal (as opposed to
mathematically formal) transformat~ons, their preservation
of correctness cally formal) transformations, their
preservation of correctness will depend primarily on the
clarity and ease with whicR they can b~ made.

Aspects of C which facilitates this process are,
for example, unambigous control structures with a single
entry point and single exit point,· and a hierarchical data
types with compiler enforced type checking~ Meaningful
choice of datanames (anrl appropriate comments in routines)
also help the programmer to implement ideas and are a
primary means of communication when it comes to program
maintenance. Software development by successive refinement
allows the maintenance programmer to follow each explicit
design decision which have been made. If subsequently there
are changes to software requirements or environment, it is
possible to see clearly which levels of abstraction are
affected, and the extent. of amendment is required.

This section is intended to present the
characteristic~, level scope and use of C, and to indicate
the support it can offer in software engineering practice.·
Then we also discuss the major language constructs.
After this discussion , the various applications of C have
been discused. In order to appreciate the potential of C and
its application, the algorithms and development of a full
fledged text editor is mentioned. This is given as an
illustration of the refinement of an abstract concept (in
this case, a text editor) to an executable C program.

C language Constructs

The Concepts of abstraction and refinement are the
programmer's principal aids in developing 6omputer programs.
Presented with the details of a complex problem, the
programmer can abstract to a higher level at which the
concept to be realized is isolated from details of its
implementation and environment.

c 0 n c e p t
I
I
I
I

Abstraction I Refinement I
J
I

D e t a i 1 s

•
1

Once the concept has been isolated, a model for a
solu~ion can be developed. The solution will be implemented
by refining the model until it is realizable language~ With
this approach programes are developed by successive
refinements of (active) algorithems and the (passive) data
structures on which they operate.

~

The basic mechanisms provided by C to · support
refinements are the functions for algorithms, and the user
defined data types for data structures. Underlying the
functions are C control statements and underlying user
defined data types are C data types and structures.

The language constructs provided by C can be
summarized under the heading of program structures, and data
types and structures.

Program Structures

'A C program has the following form :-

Constant definitions,

external files to be included

external variables and data types declarations

global variable and data typ.es declarations'

main function declarations ;

other functions declarations;

You can include declarations given in some other
files if you want to use some external function.. For
example

#include <stdio.h> is used for standard input
functions like scanf)~ printf), getchar
Putchar () , etc.

output
() '

If you want to access a variable declared in so•e
other files you have to define them as external like ~.g.

extern int i;

This allows the programer to access the variable i
declared, in some other file. C allows data abstraction and
data hiding efficiently like in Modula - 2.

Control passes to the main function on the.
commencement of execution. The main function can in turn
call other functions ~nd other functions can call so~e other
functions. One thing has to be noted here is that function
(s l cannot be defined inside other function. in C as being
done in Pascal or Modula - 2.

Simple Data Types .:

'int', 'short', 'long', 'float', 'double', 'char'
are standard C data types. some examples are given below.

#define

#define

Main (

TRUE

FALSE

int
short
long
float
char
double

1

0

i ;
: is;
1;
total;
c;
d;

The programmer can define further scalar types (user define
types) by specifiying an existing file i.e.

typedef
byte

short'
xl;

So xl is an integer of 8 -bits.

Control Structures

byte;

C control structures fall into two main
categories; Conditional (if, switch, ?) and repetitive (do,
while, for,).

if (x > y)
{

some code
}
else
{

more code
}

! boolean
!expression !

block !

if .. statement

if (x > y)
{

some code
}

! boolean
!expression!

! block!!· ! block2!

if else statement

if statement can be nested e.g.

if (red)
stop();

else
if green()

go () ;
else

reverse();

One should ndte that the statemenmt
corresponding to the statement following else
the previous if ... statement .

following else
corresponding to

? Statement

This function evaluates the expression . If the
is True , then it executes the statement immediately
else it executes the statement after the symbol '':" •

expression
after it
e.g.

int lower(int c)
{

/*converts a char to lowercase*/

c = (isupper(c) ? tolower(c) : c
return(c);

}

switch Statement :

This statement allows you to take different actions on the
value of a variable . This is analogous to the case statement in
Pascal . Let us consider a device driver for a Printer =>

switch(c)
{

case FF

case '\n'

default

}

ffflag = 1;
break;

putlpr('\r');
putlpr('\n');
printno(lineno++);
break;

putlpr(c);
colno++;

One point to be noted here is that C statement falls through
in the switch statement . For example , if C = FF then all the
staements below Case FF and till } will be executed • So a break
statement is necessary to exit the switch statement .

C's repetitive structures "for" , "do" and "while" have
essentially the same constituent parts :- A boolean expression
to be evaluated and a Statement or sequence of statements to be
executed . They only differ in relative placements .

The structure of "for" loop is :-

for (initial value ; condition
{

<some statements>
}

increment etc.)

The structure of ''while" statement is :-

while (condition)
{

<do something>
}

The structure of "do ,, while" is :-

do
{

<some statements>
}

while (condition)

There can also be infinite loops . For e.g. :-

1. for (
{

}

2. lvhile(l)
{

}

<do junk>

<do some other junk>

The above loops will be executed forever , unless a break
return or exit statement is encountered .

Structured Data TYpes

. arrays

• structures

. unions

. files

Arrays Arrays ,are not declared explicitly in C as in
Pascal , Instead they form the part of a char or int declaration
as in the following example :-

char a[lO] I* This declares an array a of maximum
10 characters *I

Structures Structures are used to keep different data
items under one common name . This is similar to Record type in
Pascal but much more versatile . For example :-

typedef struct employee
{
int empno;
char *name;
int birth;
char desg(20];
} EMPLOYEE ;

Here EMPLOYEE is declared to be a structure of type
"employee" which has got integer variable empno , char string
name int variable birth and char string desg Hence this
struct has 4 elements , These 4 elements can b~ modified
individually as in next example :-

EMPLOYEE empmast;

empmast.name = "MARILYN";

So MARILYN is stored in the variable name in the struct
empmast ,

Unions Union in C allows you to select a particular data
type among the various ones . For e.g. :-

union regs
{
int kk;
char *x;
float fl;

} REGS. ;

Only one variable can be accessed at any time which evan be
kk or x or fl .

Files Files are handled in C through file pointers A
typical file handling example is given below :-

#include <stdio.h>

main ()
{

}

int c;
cahr filename[30];
FILE *fpl;
puts("** Enter a filename**");
gets(filename);
fpl = fopen(filename,"r");
while ((c = fgetc (fpl) ! = EOLN

putc(c);

This reads a file and prints the file on the VDU one
character at a time .

Functions

A function can
or ~ay not return
without parameters
predefined . Let us

main ()
{

}

be a procedure or a subro~tine in C , It may
a value , A function can be called with or

. The return value of a function can be
<:> take an'example :-

int a,b,c;
a = b = 5;
c = add (a, b) ;
printf("c =%d\n",c);

int add(int x , int y) /* A function that adds 2 int*/
{

return(x+y);
}

A function can return a integer , float , character or a
pointer to any of the above , It can also return pointer to
structures and functions .

Functions that return nothing are declared as void :-

void functionanme()

Functions are the most important aspect of C's modularity
artd flexibility . Since functions for small tasks can be easily
written and attached to the main program , huge programs become
more easy to understand , decode and modify ,

Pointer Variables

Pointers are the most powerful feature of C language
Pointers allow the creation of dynamic data structures while size
can change during execution of a program • A pointer variable
allows you to return the space allocated back to the operating
system . The pointer variables can point to anything like integer

float , struct or even functions ! A pointer can literally
point to any part of the memory . In addition to these C allows
pointer arithmetic to facilitate greater flexibility in accessing
different types of data structures . Let us take an example of a
linked list which stores different numbers .

typedef
{

struct link

int number;
link *next;

} LINK

LINK first;
first = {O,NULL};
LINK *Pi

main()
{

}

p = first.next;
p = malloc(sizeof(LINK));
p->number = 10;
p->next = NULL;

The space dynamically allocated by the function malloc() can
be returned by function mfree()

You can define structures , inside structures inside
pointers and mix them up . So the programmers should be careful
in using pointers and should know their implications . Also since
pointers can point to any part of memorr , they shopuld be
manipulated with utmost care , else they can corrupt your own
operating system . 'As they say too much of power in the wrong
hands can be very dangerous !

Recursion in Q.

C allows recursion routines , i.e, the routines can call
themselves . Let us give an example :-

#include <stdio.h>

main ()
{

}

I* This finds the factorial of a number *I

int n;
puts("** Enter a digit**");
scanf("%d" ,&n);
printf~"** Factorial of %dis= %d\n",n,

factor(n));

int factor(int x)
{

}

if (x == 0 :: x == 1)
return(x) ;

return(x*factor(x-1));

Here the function factor() calls on itself recursively until
x is reduced to 1 , This recursive property of C is one source
behind the power of C ,

Applications of Q

THere are various areas in which C has found its usefulness
However we shall concentrate on three areas namely System
software ; Scientific applications and Real-time software ,

C in System Software :

* C is a medium level language . Hence it has the
friendliness of a high level language and the power
efficiency of a low level language . These properties make C
ideal language to develop System Siftware in .

user
and
the

The applicability of C in system software has been
clearly illustrated in the next Section where we discuss why C
was chosen to develop this Wordprocessing package .

C in Scientific Applications :

C has got integer , floating point and double precision
data types to do numerical computations . The usual storage
allocated for these data types is as given below :-

int a ; 16 bit single word is allocated to the integer
variable a .

short x;
variable x ,

8 bit byte is allocated to the integer

float fl , 32 bit two words are allocated to the
floating point variable fl .

double d ; 64 bit 4 words are allocated to the variable
d .

So C has the necessary storage allocation for
complex arithmetic Using th~se data types various
scientific functions can be built in C ,

handling
complex

C also allows dat'a conversion . You can assign integer to a
floating point number , double to an integer etc. These features
can be used to their advantage by clever programmers .

C in Real Time Systems :

With the development of Concurrent C it has
possible to design real-time software in C . A language
have the following properties for real-time programming :-

become
should

1) Execution speed Fast cod~ generation by the
compiler .

2) Should possess the ability to react to external
events within a specified response time .

3) Should be able to handle multiple tasks (either by
illusion or multiprocessors),

4) Should facilitate inter-process communication

5) Since software has to run continously ,
have sufficient error recovery methods in built .

The Concurrent ~ has these advantages
Features like semaphores , monitors , messages
sections , concurrent statements etc . are ideally
programming real-time software .

it should

and more
, critical
suited for

Conclusion

This section has presented the major features of C and
illustrated their use in program design and development What
programming languages offer however is support for , and not a
guarantee of , good software production . The constructs provided
by a language must therefore underpin a more comprehensive
philosophy of software engineering .

C's undoubted success as a programming language is a result
.of 1 its provision of basic language constructs which support the
techniques of abstraction and refinement . C is very flexible
language and it does not restrict the programmer from using it
freely However C expects the programmer to write their own
error routines rather than the compiler giving the error messages
ThiB can be used to their advantages by skilled C programmers .

A lot of C compiler~are available in the market today . C
has been made very versatile by some software vendors by
developing huge libraries and providing low level interfaces with
the hardware . This has made C very flexible Many critical
projects which were previosly done in assembly languages are now
being done in C as it almost provides the power and performance
of an assembler .

C is now available on most of the computers and runs on
every popular operating system . Of late C is also being used in
diversified areas like scientific applications , real time
systems and artificial intelligence . Hence C can truly be called
a Universal language which is finally coming of age and making
its impact on the Software Engineering world .

SECTION II

INTRODUCTION AND SALIENT FEATURES OF THE PACKAGE

INTRODUCTION TO A WORDPROCESSOR

What is a Word Processor ?

A word processor is basically a software package
which allows you to enter, retrieve and manipulate text.
It is hence a Text Editor with more advanced functions , A
minimal text editor should provide the following functions:-

Creation of Files

modification on the contents of the files

File manpulation like loading, saving and merging
operations on the files.

Insertion/Deletion of text which can refer to a
character, a word or a block

Mainpulation of text (like moving a block to some
other part of the file, duplicating a block in
different places

String searching and string replacement

Developing a Word Processor?:

Keeping
above) algorithm
be evolved.

all requirements in mind (as mentioned
for development of a Word Processor can

The editor should have a library of commands. All
the commands are stored in this library. This feature allows
you to add more ccommands in future. The existing commands
can also be manipulated.

The editor works in two modes

a) Command mode

b) Text insertion mode

In the command mode, the input string is analyzed
for valied ccommand. If a valid command is found, the
command is executed.

In the text insertion mode,
stored in the memory.

the input text is

Choosing a language for the Editor

An editor can be written in a high level or a low
level language. The low level langu~ge can be an assembler.
Assemble language programming is exhaustive, errorprone and
difficult to debug eventhough it may be faster than high
level languages. Moreover, a program! written in an
assembly language cannot be run on a kdifferent machine
which is possible in case of a high level language.

With the development of optimized compliers, the
object codes of high level language have become efficient
and nearly as fast as assemblers.

The following points need to be considered before
selecting a language for writing a Text Editor.

The language should be portable (standardized)

The language should fecilitate efficient
string manipulaltion like searching, sorting
and concatenation operations on the strings

Dynamic memory allocation and deallocation
for strong, deleting text in memory.

The ~anguage should encourage modular
programming

The language should support rich data types
and allow efficient usage of them (e.g.
record type in Pascal, struct type ih C).

The present text editor has been developed usijng
100% portable C. The sofware is portable and can be run on
any ccomputer (mainframes, minis o_r mi_cr_os..tL which has got a
C compiler. ~·~~~~·

.bg\·3·06C....

4747
-e_~.

Why use C ?

C is very popular high level language which has
esablished its usefulness in the programming environment. In
spite of being a high level language, C has got many low
level features like that of an assembler. It allows dynamic
memory allocation and deallocation. C is a highly modular
language with a rich set of data type declarations. The
string handling is extreme!~ efficient in C due to its very
powerful compiler. The biggest advantage of C is its
Pointers. Using pointers, the programmer can access any
variable or data type or even any memory locations. In
addition to this, C allows pointer arithmetic. So one can
practically access any part of the memor~.

During present time, lot of software development
is being done in C. This has been used for writing
sophisticated Operating systems, Complex graphic pacckages,
Optimized Compilers, Database design, data communications,
artificial intelligence etc. The most popular operating
system UNIX has bee written almost 97% in c. The
breathtaking animations shown in the sci-fi movie "Return of
the Jedi" has been written in portable C. In USA majority of
the system software development is being done in C.

Why to write a Text Editor ? :

One may ask the question "Why should I write an
editor when so many efficient editors and word processor are
available "?

My answer to this question is simple and
straight forward. Though a lot of editors may be avail~ble
in the market, you are never given the source code of
these packages. So no modifications can be carried out in
these packages. Moreo~er, these editors are not portable
i.e. they cannotv be moved from one machine to the other.

When you write a text editor yourself you can
eliminate all these problems. A text editor available in
the market is very general in nature. But you can
tailormade your editor to suit your requirements when you
are developing an editor yourself. This will reduce the
code size and- increase the· efficiency of the editor. The
code can be modified later to sui~ your requirements and
lot of additional features can be implemented depending on
the needs.

SALIENT FEATURES OF WORD PROCESSOR 'EDJNU'

EDJNU is a portable word processor which has been
developed using a Turbo C compiler. The software has got a
command set which are given below. When any of these
command is typed in the Command Mode the appropriate routine
is executed.

The commands are :-

LIST EXIT NFIND

LOAD TIME MERGE

RESEQ CHANGE MOVE

DELETE NCHANGE INSERT

SAVE FIND DUPLICATE -·

HELP APPEND

For explanations of these commands see appendix A .

The data structure for storing text has been defined as

typedef struct text ~

inst lineno;

char string [MAX-CHAR];

fp *text;

} TEXT ;

Here 'lineno' represents the actual line number of the text
'string' stores the text in it
'fp' is a pointer to the next structure

Algorithm for designing the Text Editor

The command or input is accepted a line at a time. If
the input is a text it is stored in the linked list in
ascending order of line number. New spaces is alloted
whenever a new line of test is entered. The new text points
to the text with the next higher line number. The link from
the immediate lower line number packed is conenected to this
list.

If the input is a command it is separated and compared
with tne existing command library .. If a match is found, the
control passes to the appropriate action routine. If some
error occurs during the execution appropriate exception is
done. So the editor never loses control over text.

We shall discuss some of the implementation of various
functions in the editor in brief . A more detailed explanation
can be found later on in S~ction III .

Implementation of Functions :

The editor is invoked by typing the command EDJNU. this
loads the editor into memory. When the editor is ready to
accept input from you it displays a prompt *·

A file can be loaded from secondary storage by typihg
LOAD filename. The required file is loaded into the memory
with line numbers starting from 10 with an increment of 10.

Inserting a Line :

The input text along with the line number is stored in
the buffer 'line'. The line number is decoded and stored in
variable n. The linked list is searched for the line number
n. This is done by traversing from structure first. If it
is found the text is overwritten. If not, a new packet is
created using the system call malloc after which it is
connected to the packet with the next higher line number.
Similarly a link from the next lower line number packet is
established lvith the new packet. The flow of operations for
this action can be seen from the diagram.

Deletion of a line :

The line number which is to be deleted is stored in a
variable-and passed onto the routine for deletion.

The packet containing the desired line number is
searched in the same way. If found, the packet is freed and
returned to the operating system using the system call
mfree. The link from the previous packet is now connected
to the packet next to the deleted one.

A Few Salient Features

Listing of line numbers can be of a single number or a
range of number or the entire memory For e.g. :-

LIST [* displays all lines *)

LIST 15 (*displays the line ·15*)

LIST 10-100 (*di spla~rs all lines between 10 and 100*)

This is also true for the command DELETE.

A lot of routines have been ·written into the editor to
make the job of the user smooth and enjoyable. Please see
Section III for more details.

The input text can be entered a line at a time
with the line number or in block mode ie. by using the
commands insert an~ append. You can terminate block mode .by
just pressing <RETURN> KEY ALONE.

A string can be searched in any range of line numbers.
Nth occurence of a string in a range of· line numbers can
also be done. Similarly a string can be substituted for
another by the CHANGE command within a range of numbers.
The Nth occurence of a string within a line number can also
be changed to something else by the NCHANGE command.
Similarly a string can be searched forr its Nth occurence in
within a range of line numbers.

Line number~ can be entered in any order. However, if
the user wants to sequence the line numbers in some order
she can do so by command reseq m+n, where m is the starting
line number and n is the increment between two adjacent
lines.

The lines in ~he memory can be stored into a · file by
giving the command save filename. If the file already
exists, the editor asks you whether to delete the same.
Depending on the answer appropriate action is taken.

A range of line numbers ca be moved from one location
to another by typing the command move m-n before/after p
where m & n represent the range and p is the destination.

A range of lines can duplicated at some location by
issuing the command dupliacte m-n before/after p where m & n
represent the range and p is the destination.

You cannot load a file into the memory if some lines
are existing in the memory. This can be overridden by
issuing the command merge filename bfore/after lineno, where
lineno is the destination line number.

You can use the help command if you want to see the
list of commands.

You can see the data and time by typing the command
time.

SECTION III

STRUCTURAL ANALYSIS OF THE TEXT EDITOR

HEADER FILES - A PREVIEW

C provides a library of routines for input/output , file
manipulation , memory allocation/deallocation , string handling ,
DOS interfacing etc. These files can be viewed as a collection of
predefined symbols and values which help to provide the various
useful macros , This is the "header files" library .

0

These files are the backbone of C . These files contain the
various functions which endow C with its reputed power , ease and
flexibility . These files have a .h extension . The .h informs
the compiler that the files are header files that contain
definitions to be placed prior to "main()" .

The include files are provided along with the C package . However
the user himself can create any Function which he feels is used
often and can store it in his own "include" file . The in~lude
files are generally stored in a seperate Directory .

The syntax for accessing an "include" file is ->

#include <filename>

This tells the Preprocessor to load the contents of the text file
"filename" as though it formed part of your .C file at that
point . Once the file has been included , all of the routines it
contains can be accessed throughout the code ,

The various "include" files used iri this package are discussed on
the next page .

HEADER FILES USED IN THIS PACKAGE

<stdio.h>

This is the standard Input/Output include file for character I/0
, stream handling and other I/0 functions . It contains several
definitions with which we must provide the compiler when we
perform character I/0 . If this file is not included , several of
the definitions reqd. for character I/0 cannot be resolved by the
compiler , resulting in syntax errors .

<bios.h>

This include file acts as an interface between C and the BIOS of
the PC . Many of its functions return useful BIOS information
about the Memory , I/0 Ports , Communications etc.

<dos.h>

This include file links C with the MS DOS . Using functions in
this file we can make System Calls to DOS , allocate DOS memory
segments , include command line arguments etc.

<string.h>

This very useful include file makes string handling relatively
simple for C • The family of string manipulation functions made
available by this file is invaluable . Functions like strcmp
strcpy & strlen make the otherwise rigid C very flexible .

<alloc.h>

This include file deals almost exclusively wi~h Memory Mangement
Functions . A good share of C's power comes from the functions in
this file . Allocation of memory heaps , their management and
handling are done by these functions .

<ctype.h>

This include file deals with characters The functions in this
file work on characters to convert them to ASCII or Uppercase or
Lowercase etc.

<mem.h>

This file includes the important functions which load bytes
(data) into/from the memory segments , manipulate memory arrays
and make memory handling so simple .

STRUCTURAL ANALYSIS OF THE TEXT EDITOR PROGRAM

·main()

This routine reads th~ input and decides the course of action .

First of all the Text Editor screen is set up .
prompt is provided for the user to enter a command
is accepted into a character array "line[MAX_CHAR]"
tested for suitable format and if found suitable
routine ''searchcomd()" is called .

searchcomd ()

This routine searches for a valid command .

Then the "*"
The command
It is then
the next

Here the input string is first converted to Uppercase (C is
reknowned for its Case sensitivity) Then it is compared with
the Table of available commands to see whether it is a valid
command Once the validity is established , the command is
processed by the next routine "executecomd" , else "Command not
recognised " is echoed onto the screen .

executecomd()

This module initiates the execution of the command .

This is the block where the input string is compared with
individual commands . When a match is met , the corresponding
action is initiated . The string function "strcmp" is used in
this routine for comparison . The relevant command is executed by
calling on the corresponding module . More details about this
routine will be revealed when individual commands are discussed
later on

store ()

This module stores the entered Text in the memory .

The number of lines of text inputted are kept track of by a
variable "counter" If the number of lines entered exceeds the
limit "MAXLINE" (predefined) , then a warning is given that no
further lines can be stored . If the number of lines is less than
the maximum limit and available memory (out of the allocated
memorYc) is sufficient , then the line is stored in the memory .
Memory resident text is very essential for rapid processing and
editing .

We have to first allocate memory for the text to be stored . Here
we use the Dynamic Memory Allocation technique for keeping track
of the text in the memory • We create a linked list to keep track
of the memory segments . Initially a struct called ''TEXT" is
created . This has three elements =>

1. A pointer "fp" which is itself a struct of same type
and which points to another struct of the same type • Here we use
the concept of Self-referential structures .

2. An int variable "lineno" which will contain the line
number of the input line .

3. A char array "string[MAX_CHAR]" which will contain
the input line itself .

Hence we see that the Text is stored as individual lines with an
associated lione number .

Initially we test to see whether memory has been allocated or not
Incidently the struct variab.le "first" is of type "struct text"
and it always points to the first line in the memory .

Case I : TOP == NULL =>

Memory is allocated by "malloc(sizeof(TEXT))" where sizeof(TEXT)
gives the number of bytes to be allocated . If NULL is returned
then we are out of memory and the user is suitably warned .

Once memory is allocated from the heap , we enter our line into
the struct type "TEXT" . The member "p->string[j]" is the char
array which stores each line . The line number "n" is stored in
the member "p->lineno" (The notation "p->lineno" is equivalent
to "*p.lineno")

Case II : TOP == NULL =>

This means we already have some text in the memory and hence we
have to insert the new line into the existing text at the proper
place corresponding to its line number . Now we test the input
line number .

Case II.I : n < lineno of first line in memory

We have to insert this line before the first line currently in
the memory . Hence we allocate memory and the'n attach this new
line to the linked list as its first element . No\v "first" points
to this new line and this new line points to what was originally
the first line .

Case II.II : n > or = lineno of first line

We scan the linked list to find out the position in which the
line is to be inserted . A simple "for" loop increments the
pointer "p" (by "p = p->fp") and we test each time to see either
of the 3 cases =>

Case II.II.I : p -> lineno == null

This means we have reached the end of the text in the ~emory and
hence we have to attach the new line at the end of this linked
list . This is easily done by allocating memory and manipulating
the pointers accordingly .

Case II.II.II : p->lineno == n

Here we are rewriting an existing line and hence no pointer
manipulation is reqd.

Case II.II.III : p->lineno > n

Here we have to insert the new line just before the present line
manipulation .

Note that at any stage if we are out of memory , thid routine
returns the value "0" to the calling routine . Else it returns a
value "1" or in the case of overwriting a line , a value "3 ''

getime ()

This module prints the date and time on the screen .

The two routines "getdate()" & "gettime()" are called by this
module to do the actual execution .

gethelp()

This module displays the Help menu and provides various Help
faclities .

We initially set up the Help Menu . This is done by opening the
Help file ''edhelp.hp" and simply echoing its contents onto the
screen Subsequently if more help is reqd. about the use and
syntax of each command , then that is handled by jumping to the
corresponding statements in the "executecomd()" routine .

savefile()

This saves the input text file onto the disk .

If the pointer TOP = NULL then we have no l~nes to be saved .

The name of the file to be saved is enterd into the variable
array "filename[j]" Then we open this file for "read'' mode and
test to see if there already exists a file with the same name
Once this is verified then we open the file for "write" mode and
the whole file is written onto the disk by the "fprintf" command
included in a "for" loop which increments the pointer "p->fp'' at
each step ,

loadfile()

This initiates loading of the requested file into the memry from
the disk

We first check to see whether there are any lines already in the
memory . If there are they are to be deleted .

We then enter the name of the file to be loaded , which
1n "filenarne[j]" . Then the next routine "ldfile[xxx]"

is stored
is called

ldfile(xxx)

This routine actually does the loading of the file from the disk.

As we see the filename is passed to this rputine as a parameter
from the previous routine "loadfile'' . The requested file is
opened by "fopen" and if valid , each line from the file is
stored in the memory . This is achieved by a "while" loop where
each time one line is entered into the variable "line" . An EOLN
char is added to each line and then a line number (with an
increment of- 10) is allotted to i~ . Subsequently the routine
"store()" is called to store each line in the memory· .

exeseq(int ml , int nl)

This routine resequences the line numbers of all the lines in
memory according to user's specifications .

Here the 2 parameters passed to the routine are
initial line number ; nl = the increment

m1 = the

First we test to see that the increment is not more than 100
Then we test to see that the final line number doesn't exceed
32000 (which is the line number limit) . Once these 2 checks are
okay we proceed with the resequencing .

Starting from the first line in the linked list i.e. p =
first.fp ; we increment p->lineno by the increment "n1" till we
reach the end of the linked list (i.e. p->fp ==NULL) or line
number exceeds 32000 .

Finally we check to see whether the resequencing has been
successful by testing if p->fp == NULL .

displine(int a , int b)

This displays text in the specified range of line numbers .

Here "a" and "b" specify the first and the last line number to be
displayed .

We first test to see that a>= b is not true and also that there
exists lines in memory (TOP == NULL not true) .Then we increment
the linked list pointer "p'' to point to the line with the line
number "a" . Once the pointer is correctly positioned , we output
the requisite number of lines onto the screen by "printf" command

8

display(int m)

This displays a specific line from the text .

Here "m" specifies the required line . If lines exist in the
memory , the line pointer "p" is incremented till it points to
the reqd. line . This line is then echoed onto the screen .

atoi()

This converts from ascii to integer .

If the input character is a digit between 1 0' and
converted from it~ ascii code to integer value
formula =>

I 9 I

by
then it is
the simple

integer value = ascii code of the number - ascii code
for 1 0'

listall()

This lists all the lines in the memory .

This is done by equating the pointer "p" to the ''TOP" of the list
and sequentially printing all the lines till we come to the last
element (i.e. p->fp == NULL)

delete!()

This routine deletes a line in the memory .

Case I :
If the line to be deleted (lineno == n) is the first member in
the linked list , then we equate "r" to point to the second
member . Then we call the.routine "mfree(p)" to free that node
from the linked list . Subsequently we decrease the "counter" by
1 and also change the pointer "first.fp" to point to the second
element "r" .

Case II :
Here we have to scan the linked list to reach the reqd. line
Hence "p" is incremented till we have either of the 2 cases=>.

Case II.I : p->lineno == n
Here we again call the routine "mfree(p)" to free the node "p'
and adjust the pointers accordingly . Here we keeep two pointers
=> "1" to point to the previous member and "r" to point to the
next .

Case II.II p-?lineno > n or p->fp == NULL
Here it is the case of a wrong line number and the user is
suitably warned .

skipblank()

This ruotine deletes the blank spaces within a line .

delall()

This routine deletes all lines in the memory .

Here the pointer "p" is incremented in a "for" loop and each time
the routine ''mfree(p)" is called to free the node "p" This
procedure is carried on till we reach the end of the list At
the end we reset the "TOP" pointer and the "counter"

delline(int a , int b)

This deletes lines in the given range .

Here "a" and "b" specify the first and last lines to be deleted

The pointer "p" is incremented till the desired line is reached
Then a "while" loop is used to increment the pointer "p" from
lineno ''a" to ''b" and each time call routine "mfree(p)'' to free
that node .

lowercase(char *s , int k)

This converts the string to uppercase

Here we pass 2 parameters to the routine "s" is a pointer to
the string and "k" is the length of the string . Then we use a
"for" loop and increment the pointer "s" each time converting one
char to upper case using "toupper(c1)"

instext(int baflag , int ml~

This allows the user to insert text without line number .

Here the parameter "baflag" tells us whether insertion is to be
done before or after the line number given by "m1"

First we test
before or after
first line If

to see if "baflag == 0" (i.e. insertion to
the specified line) and "m1 '' corresponds to
this is so , then an insertion is not possible

Now we proceeed with the main block . There are 2 cases

Case I : baflag == 0

be
the

Here we have to insert the text before the specified
line number . Hence we advance the pointer "p" till it points to
the line before line "m1" . No'' "mid2" points to the line "m1"
"midl" points to the previous line and "lastnum" contains the
lineno of the line "mid1"

Case II : baflag == 0
Here we have to insert the text after

line . Hence here pointer is advancedd till "mid1"
"m1" and "mid2" to next line

the specified
points to line

Now we proceed with the insertion Since we are entering lines
without line numbers , we store these lines with temporary lineno
and then at the end we resequence all the line numbers

We get the line from the screen . Thenm we initialize the pointer
"middle. fp '' and allocate memory . Our first line to be inserted
is given the line no "10" . The variable "curline" keeps track of
the inserted lineno since it is incremented by 10 in each
iteration .

No~ we enter each line into the char array "p->string[i]'' using
an infinite "for" loop . We "break" from this loop only when we
come to the end of the lines to be inserted . Care is taken to
increment the "counter" and "p->lineno" is given the latest value
of "curline" on each iteration .

At the end we have to adjust the pointers to include the inserted
text at its proper place in the linked list . Nm.: "middle. fp"
points to the first inserted line . Hence we change the pointer
"midl-> fp" to "midle.fp" The pointer "1" points to the last
inserted line . Hence we change ''1->fp" to point to "mid-2" .

Once this is over our insertion is complete Now we call
"exeseq(lO,lO)" to resequence all the line numbers .

movtext(int baflag , int ml , int nl , int pl)

This routine moves the text freom one location to the other
according to user specifications .

Here "ml" & "nl" are the range of linenumbers to be moved and
"pl" is the destination line number . "baflag" denotes the status
"after" or "before"

First we test the validity of the 3 parameters ml, nl,
THen we call on routine "search()" to see whether the
numbers exist . Now we maintain 3 flags :

& pl
3 line

1. tflag => this is set to TRUE if ml is the first line
in the linked list (i.e. TOP->lineno == ml)

2. iflag => this is set to TRUE if pl is the line just
after nl . (i.e. p->lineno == nl ; p = p->fp ; p->lineno == pl)

3. eflag => this is set to TRUE if nl is the last line
in te linked list . (i.e. p->fp =NULL ; p->lineno == nl)

The 4th flag "baflag" is passed to this routine from the calling
routine Ho\vever if we find that "iflag = TRUE " or pl is the
first· line in the linked list then '"e set this flag to "1"

The variuos cases and how they are tackled are discussed using
linked list representation diagrams in the following pages

1.. I:.N 1i tAL

-
-roP-~> ~I r- --- ' r• ~ XI !-7

l

2. t micle
j ~ ~·

TOP _3. W\1 --) nl ' P' XI 7
/ --·

). ' ~

~ jj_ -../)

(
;

~ nl- J ,, XI ~ ... -

4. 'Y ~ITbP ~·dl.
J jj_ \JI f ...,

J.-i I

~' ---- -~ .,, fl I Xf ~ - ~
I i I
I

~ .. ,,

5. i=-INA L

' _,

f' m• / / XI - - - ;... "'

t. :CNITIAL

. n I w)<.I _ _ _ ~ X2 --) f't
_____ .J ~·~

2.

......

~· r---- nl x•)(1 P' xi ---

3.

"''d 1.
t=' ._,

""~' 1bP
v ll I _L

_,
h'\t --- ~ nl ~XI xz. P' X15 L / . l

I
I

reP

4. f' mi.t&
\
!

. ~ __L_

t --t:J-· --1_:j1 XI ---
P'

'1bP p ~\ci 2 m\d I

U_l
r I)

!
X t _ _ - X pI lC.3 l--7> ~·---

{;. Flt-.lAL

- ·-n
)(I -- i_j pt mt - .,,

rn\cl t

~---8 I'>' B---- ~
. 2... 0\t~l

11>P·--B- -81 pt 1---7 . X3 - - -- . X4

3· 0\\cll t:'

Lj

~P-G-- -- X1 - -- ->)(lf P'

7r J
_L 1
DU~---

-4· 'IF bq~ I Ct :J = TRUE. ' MiA•

l
M•dl. "' l

L l
I l

I

I I

'TC>P. x• i pi X3 --- ~,_ X~ Ml --- ---

5.

1 1 J_
I

ml _ --1 ,, ' ~ Xl. ·----) pt x3 - - - ;) XI., ~
I

I

t
i

1\\ II'

_l

£. FINAL

) 1<2.. r--7 P' f----? Ml

-) n1 '-)(3 c- - -~ X'f ~ ./ ""/ ~f-8- ---

Y' 1.
l_ I

I
!

.J

P' t- ';) '1-4 ~·
1'---? "'

5.

"''"' ..., rwt~1 r J
'J l ,~; ... ~,.r

r-'

--?)(l, P' M X3 - --~)(~ n\1 - - -'l)\

,_
;I\ l I

6.· FINA-L

"'' - - - P' X3

© tv\ I SC..E LLANEOV.S. CA-SE.

)CI f I - - - -? rtt' - - - ---> n I -- -
M

>"
L.
L

I

2..

Ml ru

3·

Xt - -7 lCa. ---? P' t --- nlt -- - - nl

~ •;;:C;;;;;__F _b_q~f,_l_q---J.'] __ T_R_U_E_

l)l\~1 p '

~]_ -1 'lC2. 1-o. r' ~ x3- - -1l(.. -yeP~)Ct --

1

"'' -- -

5.

P wn\d2-

'
f' X3 - - Xlt '"' - -- · n 1

t ... v j_' J _j__ I -

f"tdl J 7

i

P' X3 X'f nt
? X'l f-7 n-t I

- - ~ 1-- - ->
I

)('\ - - -

-:
II' T '

7. Ftt-JA;L

~f'')(' --- XL ,,

5. IF ba~ lo 9 = FALSE

ftl\.:11 p 1"\cb.. J ~

_L _ __ ,
'

~p "' /<1. X3 -- . ~s M'

'Y

1
XI - - -))(l.

'7. FINA-L

findstring()

This finds a given string from the text and displays that
particular line .

We first read the string to be searched in to the array
"str2[xl]" . We then initialize the pointer "p" to TOP and scan
all the lines by adv~ncing the pointer by "p = p->fp" . On each
iteration the string is compared using "strn_cmp()" and on
successful comparison we display that particular line by calling
routine "display(p->lineno)" .

nfindstring(int al)

This routine searches for the nth occurrence of the specified
string in the text and then displays that line

This routine is similar to the previous one , except that here on
first successful comparison we start a counter "yl'' and increment
it on each successful comparison . When "yl == al" we have found
the nth occurrence of the string and hence call "display(p
>lineno) to display that line .

nchng_string(int rept , int al)

This replaces nth occurrence of a string
numbers ; with another string .

within a range of line

Here "rept"
number ,

is the number of occurrences and "al" is the line

We first read the string to be changed into the array ''strl(xl]"
and the string to be the replacement in the array "str2(xl]"
Now we scan the lines till we come to the line number al Then
we call on the next routine "nfind_replace()" to do the actual
job. If the returned value of "rep_flag" is FALSE then we haven't
found our string .

nfind_replace(int rept)

This ·finds the nth occurrence of the string and replaces it with
another string .

We start scanning the line "al" and use "strn_cmp()" function for
comparison of the 2 strings . Once we find the string being
searched , we start a counter "loopl" which counts the number of
times that the comparison is successful . When we have "n"
successful comparisons , we set "rep_flag" to TRUE Then we
exchange the searched string with the other string using the
"strcat()" function •

chng_string(int al , int bl)

Thii replaces a string with another , within a range of line
numbers .

Here the 2 parameters "al" and·"bl" specify the range of line
numbers .

We first verify that the 2 line numbers are in proper sequence
Then we read the 2 strings into the arrays "strl" and - "str2"
Now l-<e advance the pointer "p" till l-<e reach the line number al

We now scan each line from
routine "find_replace()"
replacing the specified
"rep_flag" is FALSE , then

find_replace()

"al" to "bl" and each time call on
to do the actual job of finding
string . If the returned value
our search has been unsuccessful .

the
and

of

This routine actually finds the specified string and replaces it
with the other string

Now this string is called to scan one line at a time . Hence here
we scan the line "p->string[xl]" and use "strn_cmp()" for
comparison of strings . If comparison is successful , we replace
the found string with the other string using "strcat()'' function
and the intermediate array variable "reset(x3)'' . This function
returns "rep_flag" equal to TRUE if search and replacement is
successful .

strn_cmp(out , in , count)

This compares the strings passed to it and returns the value · ''0"
if successful .

Here "out" is the pointer to one string and "in" to the other
"count" contains the length of the first string . Now we set
"flagl" to TRUE and compare the two strings "*out" and "*in" one
cahr at a time . This is done by a "for" loop which increments
as long as "al < count" . If all the characters of the 2 strings
have matched (i.e .. flagl ==TRUE) , then we return a value of "0"
; else we return a non zero value .

search(int al)

This checks for the existence of the line number in the text .

Here the parameter "a1" is the line number which is to be
searched . This is done by a simple "for" loop which searches for
"p->lineno -- al" each time A value TRUE is returned if search
is successful .

append()

This routine lets you append lines at the bottom of the text .

We first advance the pointer "p" to the last line in the linked
list and the variable "ml" is given the value of the last line
number . Then using an infinite "while" loop we "gets(line)" and
allot the line number "n = ml" to it . On each iteration ''ml" is
incremented by 10 and the line is appended to the linked list by
calling the "store()" routin~ . This loop is exited by a ''break"
statement when there are no more lines to be appended .

duptext(int baflag, int ml, int nl, int pl)

This duplicates the text from one location to another .

This routine is similar to "movtext()" in most
that here the text is copied and not moved
passed here are the same as "movtext()" routine .

Here we maintain 2 flags

aspects except
THe parameters

1. tflag =>This is set to TRUE if "pl" is the first line in
the linked list .

2. eflag => This is set to TRUE if ''pl" is the last line in
the list .

Now we advance pointer "pl" till it points to the line with
lineno equal to ''ml" . The we allocate memory which is pointed to
by the pointer "middle.fp" and "1" . This node is given the same
line number as "ml" . We then use a ''for" loop to copy the string
from line "ml" one char at a time to the node '' 1" .

This procedure is then repeated for all line still line number
"nl" At the end "1" points to the last copied line (since each
time we advance "1" b~' "1 = 1->fp")

Now all we have to do is manipulate the pointers so that this
copied text is placed at the right position i.e. before or
after line "pl" . This"is accomplished by the same procedure as
the one in routine "movtext()"

mergfile()

This routine merges a file from disk with text in memory .

The input filename is read into the char array· "filename[j]"
(after "skipblank()") Next we set the baflag to "1" if merging
is to be done after and "0'' if before the specified line number .
Lastly we read the specified line number with the variable "k" •

Now we call on the next routine "nldfile()" to load th~ specified
file from the disk and merge it with the text . After ,merging is
successful we call on "exeseq()" to resequence the line numbers .

nldfile(baflag , xxx , lin)

This routine loads the specified file from the disk and merges it
with the text .

The 3 parameters passed to this routine are ''baflag"
(filename) , and "lin" (line number)

"x)~x··

We first "fopen" the file xxx in read mode . Then we set "tflag''
to TRUE if the specified line is the first line and set "eflag''
to TRUE if the line is the last in the linked list .

Now we "fgets" each line from the open file using a ",,,hile" loop
associated line number ("1->lineno = j"l The line is stored in
the cahr array "1->string(i]"

At the end when the whole file has been read , we manipulate the
pointers to "merge" the file at the prope_r place .

EXECUTION PATH OF THE COMMANDS

EXIT=> This is done by the function "exit(O)"

LIST => First "skipblank()" is called to skip a blank
execution is according to 1 of the 3 cases .

Then

LIST n : Here "display(j)" is called to list all lines
after line number n

LIST n-m Here "displine(j,k)" is called to list all
lines in range n to m .

LIST Here "listall(}" is called list all the lines .

TIME => Here routine "getime()" is called to displa:'i' date and
time .

FIND => Here the routine ''findstring()" is called to find the
specified string .

NFIND => Here the routine "nfindstring(j)'' is called to find the
nth occurrence of a string after line number "j" .

DEL => Here execution is according to 1 of 2 cases .

DEL n : Here we.call "delete!()" to delete the line "n" .

DEL n-m : Here He call "delline(j,k)" to delete the lines
from "n" to "m" .

SAVE => Here we call the routine "savefile()" to save the
specified file in the disk .

RESEQ => Here He call the routine "exeseq(j,k)" to resequence the
line numbers from line "j" to "k"

INSERT => Here execution is according to 1 of 2 cases .

INSERT a n : Here set baflag to "1" and call on routine
"ins text (baf lag, j)" to insert 1 ines after line ., j"

INSERT n Here baflag is kept as ''0" and
"instext(baflag,j)" is called to insert lines before line "j"

"

APPEND =>Here the routine "append()" is called to append lines
after the text in memory .

MOVE => Here we call the routine "movtext(baflag,j,k,rept)" to
move the text between line numbers "j" and "k" to location before
or after line number "rept" . There are 2 cases .

MOVE j k an : Here baflag is set to "1" for after

MOVE j k n Here \ve leave baflag as "0" for before

At the end "exeseq(l0,10)" is called to resequence all line
numbers .

DUPLICATE => THis command works in similar fashion
here ''duptext(baflag,j,k,rept)" routine is called
the text .

, escept that
to duplicate

HELP =>Here the routine ''gethelp()" is called to display ihe Help
menu .

ERASE=> Here the routine ''delall()" is called to delete all the
lines in the memory.

LOAD => Here the routine "loadfile()" is called to
specified file from the disk into the memory .

MERGE => Here we call the routine "mergfile() II to
specified disk file with the text in memory

NCHANGE => Here the routine "nchng_string(rept,j)" is
replace the nth occurrence of a string after line
another string .

load the

merge the

called to
"j" with

CHANGE => Here the routine ''chng_string(j,k)" is called to
replace the specified string within a line range "j" to "k" with
another string .

SECTION IV

CONCLUSION AND APPENDICES

CONCLUSION

The entire software of the word processor has been
written in portable C. The total number of lines of code
amounts to nearly 1500. One point to be noted here is that
it is a line editor. It takes as input a line at a time.
This is not a screen editor in which you take the Ct!rsor to
the te text and do the modificatin. The idea behind writing
in the line editing mode was to ensure portability. All
screen based editors are actually device_dependent as they
use device specific instructions for the implementation.
So a screen editor written for one machine may not run on
some other machine. This is not the case with the text
editor EDJNU . The coding has been made compact, device
independent and flexible for future modifications. Hence
this Wordprocessor can be easily ported from one machine
to another with minimal changes The compactness of the
code also enables this editor to run on the smallest of mac
hines . Special care has been taken to provide a very exhaus
tive Help facility for the ease of a new user

All the best to the Users

APPENDIX A

LIST OF COMMANDS

LIST ; This commands lists the file which has been loaded into
the memory .

EXIT This command lets you exit to DOS

TIME This command displays the current date and time .

FIND This command finds the specified string from your text and
displays that particular line .

NFIND This command finds the nth occurrence of the specified
string and displays that line on the screen .

DEL ; This command can delete a specific line
specific range .

or lines within a

SAVE This command saves the text in memory in the specified
disk file .

RESEQ : This command resequences all the line numbers according
to user's specifications .

INSERT This command allows you to insert lines without line
numbers at a specified place in your text .

APPEND : This command allows you to append lines at the end of
your current text .

MOVE : This command moves the text within a specified range of
line numbers to another specified location in your text .

DUPLICATE : This riommand duplicates text within a specified range
of line numbers in another specified location in the text .

HELP This command displays the HELP Menu and prompts you for
more help . If asked , it can display the list of all commands
their use and their syntax .

ERASE This command deletes all the lines in the memory .

LOAD This command loads the specified file from the disk into
the memory .

MERGE This command merges the specified disk (external) file
with the text in memory at a speci~ied location .

CHANGE : This command finds and replaces a specified string from
the text , within a range of line n~mbers , with another string .
Hence this combines the 2 commands FIND and REPLACE .

NCHANGE This command finds the nth occurrence of a specified
string , starting from a specified line number·' and replaces it
with another string . Hence this combines the commands NFIND and
REPLACE .

APPENDIX I!

LIST OF THE ROUTINES WRITTEN FOR THIS TEXT EDITOR

main()

searchcomd()

executecomd()

store()

getime ()

gethelp()

savefile()

loadfile(}

ldfile()

exeseq ()

displine()

display(}

atoi(}

listall()

deletel()

delline()

delall(}

skipblank ()

lowercase(}

ins text ()

movtext ()

nchng_string()

nfind_replace()

chng_string()

find_replace ()

strn_cmp()

find_string()

nfind_string()

search ()

append(}

duptext()

mergfile()

nldfile()

APPENDIX Q

BIBLIOGRAPHY

1. THE C PROGRAMMING LANGUAGE

2. PROGRAMMING IN C

3. UNDERSTANDING C

4. MASTERING TURBO C

5. MICROSOFT C COMPILER
REFERNCE MANUAL

6. UNIX PRIMER PLUS

7. UNIX PROGRAMMER'S .MANUAL

8. FEATURES OF HIGH LEVEL LANG
-UAGES FOR MICROPROCESSORS

DENNIS M. RITCHIE &
BRIAN W. KERNIGHAN

KRIS A. JAMSA

HUNTER

STAN KELLY BOOTLE

MICROSOFT CORPORATION

MICHAEL WAITE , DONALD MARTIN
& STEPHEN PRATA

MASSACHUSETTS COMPUTER CORP.

A. C. DAVIES (MICROPROCESSORS
MICROSYSTEM VOL II MAR 1987)

APPENDIX 12_

PROGRAM LISTING

/* EDJNU - A PORTABLE WORDPROCESSOR */

I•• This sotLware is being developed by ANUPAM GOVIL
as a part of his MAJOR PROJECT for fulfillment
of Masters of Technology Degree in Computer Science
at Jawaharlal Nehru University • New Delhi **/

#include
!:I include
II include
#include
#include
#include
II include
:tdefine
;;define
:tdefine
#define
!ldefine
*!define
#define
#define
ttdefine
ttdefine

/.

.... /

<stdio.h>
-bios.h>
<dos.h>
<string.h>
<alloc.h>
·:ctype.h>
<:mem.h>
MAX LINE
MAX_CHAR
MIDDLE
TOP
mfree
TAB LEN
'STR ING_LIM IT
TRUE
EOLN
FALSE

5000
1.32
middle.fp
first.fp
free
19
80
1
'\0'

0

This Software acts as a TEXT EDITOR. This has got a standard
set of Commands. When any command .is typed, appropriate
action is taken .

typedef struct text
struct
int
char

r
' text •fp;
liner.o;
string[MAX_CHAR);
TEXT.

TEXT
TEXT
TEXT
TEXT
char

;
*P;
first= {NULL,0,'\0'};
•l,*r,*mid1,*mid2;
middle~ {NULL,0,'\0'};
*indblock() = {

"LIST",
"DEL" ,
'EXIT",
"SAVE",
"HELP",

1

char
char
int
i nt
int
char

main(

CHANGE .•
TIME ...

. LOAu··
ERASE .

. F:ESEQ.

;lCHANGE ..
FIND .. ,

.. NFIND ...
''MOVE".

D•JPLICATE"
'lNSERT".
APPEND'' .

. MERGE.

·,.
·'. "l :<e (;-:!._,·_CHAP.] , 1 i ne2 (MAX _CHAR] :.

reset[~(IY._CHARj:

1.n.y.counte~:

<"e~_flag, set_quote_flag, set_help_flag·
~:~line(MAXLINE],newline(MAXLINE];
strl[STRING_LIMIT),str2[STRING_LIMIT);

· • Tni~ routi:<e reads the input and decides the course of action */

putchar (1:::~ J;
printf 1 ''\n\n ****•***
print~ '\n\n\t\t WELCOME TO THE JNU TEXT EDITOR\n");
or1ntfl '\n\t\tDeveloped Exclusively for use at JNU , DELHI\n");
orln~~(\n\n ***
:.leep(:::'J:
orintf("
p 1·1 n t t ("
p1·1ntf("
printf("
printf•.
orintf("
orintf("
orintf('·
printf("
printf("
pr intf (
print+("

LIST OF COMMANDS IN THE REPERTOIRE \n'');
-------------------------------------\n ");

LIST DEL \n ");
EXIT SAVE \n ");
HELP MOVE \n ");
TIME LOAD \n ");
ERASE RESEC \n ");
CHANGE NCHANGE\n ");
FIND NFINO \n ");
DUPLICATE INSERT \n ");
APPEND MERGE \n ");

-------------------------------------\n ");
printf•. \n");
counter = 0;
=:et_Quote_f !.ag = FALSE ;
set_help_flag = FALSE ;
tor ()
{

printf("*");
gets(line);
for (i = 0 1 i ne [i] --

it (line (i] ! = '\ 0 ')
if(isdigit(line(i)))
{ n = atoi ();

2

'' line(i] '\t' && line(i) != '\0'; i++)

-:; to re() ;

elo:;e
-:; earchcomd();

.,
·'

)
searc h c omd (; • o:;earches f or the com~and * /
{

}

l:it X ;
for (x - 0 ; 1 i ne (i) ! = ' \ t' && line (i) ! = '\ 0 ' && line (i) ! = 'I '

&& line[i) '= '\x22 ' && line[i) !=' ' ;i++,x++)

O~Jercase (& line [i- x], x) ;
for (y =O; y · TABL EN : y ++)

i t (!s t.rncmp (& l ine(i- x) , i ndblock(y),x))
brea k ;

1f (y >= TABLEN
{

l

·'
e ·~ecu te com d (l;

p uts (" •• Command not Recognized **");
r eturn;

e x e cute c o md (1 • T hio:; mc.:Jule e x ecutes the comman ds */
{

1n t J . ~ . r ep t , baflag;
J = v : r ept ~ batlag = 0;
11' (o:;trcmp (:n-:Jblock[y], " Ex n ··)
{

0)

J

1f (s et_help _f lag == TRUE)
{ printf(" \n This lets you e x it to DOS \n ")

printf("\ n S :,'<J ~ a x = > * EX IT \ n ");
s e t _ help_flag = FALSE;
r e t ur n:

J :
or lntr (·· ·· Thank Yo u "'* \ n "l ;
r:;un t. f(" ' n \ nJNU TE XT EDITOR SYS TEM\n ");
:.l e eo (l l;
e x it (0) ;

1f (s t rcmp ~ i nobloc k (y]. " LIST") =:: 0)
{ if (s et _ help_flag == TRUE)

{ printf("\ n Tnis comm3nd lis t s the file which has been LOADed into the memo
orintf(" \ n Synta x = > *LIST \n ");
o:;et_help_fl3g = FALSE ;
retur n ;

} ; ~

o:; k ipb l3r:i.<() ; .
i f (isdigi t (line(i)))

{ j = at.oi();
if (1 i ne (i 1 = = ' : : 1 i ne (i] -- EOLN)

{ display(j);

3

r et u ,-r.:
)

retu rr.:

if (11 ne (i J = = · i
{ ++i;

k = atoi();
displinetj , k) ;
retu rn ;

if •-:: t r cmp• lnd!:>loc..-.[y] , · TIME ") == 0 i
1f ! Set_nelp_flag == TRUE)

' .
J .

o rintf(" \ n This gi v es y ou the
ori ntf (" \ n Syntax :) *TIME
~et_nelp _fl 3g c FALSE;
r eturn ;

get.ime (:0 ;
,- e turn;

time \ n · '
\n ") ;

if (·~trcmp(inaol oc k (y),"FIND") == 0)
{ if (se t _help_flag == TRUE)

)

(printf (''\ n This finds the spec1fied string from your text \n")
printf('' \n Syntax => *FIND xxx \n ");

'. J .

~e t_helo_flag = FALSE;
r eturn;

skioblank();
i f (line (i] == ' \x22')

~et_quote_flag = TRUE;
,. + l ;
f i nds t ring () ;

if (strcmp (i ndblock(y), " NFINO ") -- 0)
(if (set_help_flag == TRUE)

}

{ orintf(" \ n - This finds
orintf(" \n Sy nt.ax - -.
~ e t_nelp_flag = FALSE;
retu~;,

s ~<: iobl ank():

it (i aa i g it (1 i ne (i J))
j = atoi () ;

if ·(li ne(i] == '\x22')
set_quote_flag = TRUE;

+ + i:
nfind~tring (j) ;

the nth occurrence of a specified string from your text \
*NFIND n x xx \n");

if (strcmp (indbl ock(y],"OEL ") == 0)
{ if (set_help_flag == TRUE)

(orintf(" \n This can delete a specific line ; or lines within a specific range\
printf(' ' or all the lines in your text \n");
printf(" \n Syntax => *DEL n m \n");

4

)

\ .
·''

se t_nelp_flag = FALSE;
retu rn;

skipbl an k();
1 f (isdig it <li ne[i]))

j = atoi () ;
if (1 i ne [i] = =

n=j;
del etel () ;
r eturn;

}
if (line(i] == ' - ')

++i;

I I
I I

1--. = atoi () ;
delline (j,k);
return;

· ..
·'

line(i] - - EOLN)

puts t · •• Err or ; Li ne numbers e xpected *• ") ;

if (strcmp (indb l ock (y), " SAVE ") == 0)
(it (set_help_flag == TR UE)

}

C p ri ntf ("\ n This saves the specified file in the disk \n ")
printf ("\ n Syntax => *SAVE filename \n ");
s et_help_f l ag = FALSE;
r etu r n;

} ;
savefile();
r eturn ;

if (s r. rcm p (indblock (y], " RESEQ ") = = 0)
it (s et _ help_flag == TRUE)

}

(prin tf ("\ n This resequences all the line nu mbers in your text \n")

., .
) '

pr intf (" \n Syntax => *RESEQ n m \n");
s et_ne l p_flag = FALSE;
r eturn;

sk ipb lank();
)~ a.to i () ;

i ++;
.-. = a to i () ;
if ('j == 0 :: k == 0)

'~ pu t s(" •* Error : Command Ignored** ");
re tu r n;

}
e xeseq(j.k);
r eturn:

if (st rc mp(lndblocl<(y] , " INSERT ") 0)
(1 f (s et_help_flag == TRUE)

(print f (" \ n This allows
printf("\n Syntax =>
s et_hel p_flag = FALSE;
r eturn ;

} ;

5

tne user to insert text without line numbers \n" :
*INSERT a n \n");

2.t . lPO ..3.r"'l~. () ;

: ~ 1 ! ~e (i + +]
• 3g - l

.3 I '

' . !ine (i.,..,.]

\. · ~ nile •. ! isdig t(line(i)) J
f it Cl ne(i) =7 EO LN

'A')

outs(·· •• Line number expected ** ");
return;

else
+ + i ;

; : .3 to 1 (l ;
lf (j 77 0)

::;. u t-s (" •t Errc:-
r eturn~

::o mmand Ignored ** ");

ins:er : I C3flag , j) ;
:--:s : urn:

it (strcmo(ln~olcck[y) , ' ·A PPEND ..) --
if (se t_help_tlag == TRUE)

printf ('· \ n This allows
or1ntf (··\ n Syntax - -.
~et_nelp_flag = fALSE;

\.
J •

return;

append() ;

0)

the user
*APPEND

if (~trc~. :;:; (incblock(y). "MOVE") == 0)
if (set_help_flag == TRUE)

to append lines at the0 end of the text\n
\n ");

(printf('" \n This moves the text from one location to other \n");
printf(" \n Syntax => *MOVE n map \n ");
set_help_flag = fALSE;
r eturn;

) ;
skioblank(J;
J = a to i () ;
++ i;
~. = a to i (l ;
if (j == 0 :: k :: O)

(puts(" ** Error
return;

)
skipblank();

Command Ignored **");

if (line (i J = = 'a : : 1 i ne (i] -- 'A')
baflag = l;

while (! isdigit(line(++i)))
if (line (i) :: EOLN) .

(puts(" ** Command Ignored •• ");
return;

)
r eot = atoi();
if (rept == 0)

{ puts(" ** Line number expected** ");
return;

)
mov te x t (baflag,j,k.rept);
e x eseq(10,10 J :
r eturn;

~ r ·, s t rcmp(indbloc i.., [y], " DUP:..!CATE ') :: 0 l

)

: t (~et_help_flag == TR UE)
printf("\n This duplicates te x t from one location to other \ n ") ;
printf("\n Syntax = ~ *DUPL I CAT E n map \ n ");
~et_help_flag = ~ALSE;
return;

} ;
skipbl an k(,) ;
J : ::no i() ;
"t -t i ;
i·. = a to i () ;
lf (J == 0 :: k == 0)

pu ts (" ".. Error
r eturn:

}
skipbla n k() ;

Comma nd Ignored** ") ;

if (1 i ne [i J = = 'a ' : : 1 i ne [i] - - 'A')
baflag = 1;

l>~hile (! isdigi t(1 ine(++i]))
if (1 i ne (i) = = EOLN)

f puts (" ** Command Ignored** ");

}
r ept - 3tol() ;
if (r ept. == 0)

return;

{ puts (" ** Line numoe r e x pected ** ");
return;

}
du ptex t (baflag, j.k,rept) ;
e x eseq (10. 10);
r eturn;

1f l strcmp(indblock[y]," HELP ") --0)
gethelp();
retur n;

j
if (strcmp (indblock[y)."ERASE") == 0

i f (set_help_flQg == TRUE)

J

(printf (" \n ·This erases
printf("\ n Syntax =>
set_help_fl ag = FALSE;
return;

} ;
delall();
return;

all the lines in the memory \n ") ;
*ERASE \n");

if (strcmp (indbloc k[y). " LOAD ") == 0)
{ if (, s et_help_flag == TRUE)

(printf(" \ n This loads the specified file from the di$k \n ");
printf ("\ n Syntax => *LOAD filename \n");

7

set _neip_tl3g - F ~LSE;

r etur n ;

lo.J.otilel):
re tu r n:

· ·::t rcm p (lnOblocf'.(y l . " M€:RG C . ' o = 0)
it (set_help_fl.J.g - ~ : TRUE)

prlntf(''\ n This merges 3 file from disk with text in memory \n '');
printf("\ n Syntax - .· *MERGE filename a n \n");
set_nelp_flag = FALSE;
return;

mergfile () ;
r eturn;

lf •. -::trcm~ \ lnaoloc~: (y], ·· NcHANGE '' J == 0)
it (set_nelp_flag == TRUEi

printf("\ n This cn.J.nges the nth occurrence of a string \n");
printf ("\ n Syntax = > *NCHANGE n m 'xxx' 'yyy' \n ");
set_help_fl.J.g = FALSE;
return;

\ .
J •

skipblank();
if (isdigit(line(i)))

rept =· atoi();
else

return;
if (line(i) -- '\x2F' :: line(i) -- '\x22')

i++;
else

return;
if (isoigit(line(i)))

j = atoi();
if (lir.e f i) == ' \x22')

set_quote_flag = TRUE;
1 f (line (i l ' '. x 22' : : line (i) -- 'I ')

i++;
if j == 0

(putst"•* Cannot ch.J.nge String**");
return;

}
nchng_string(rept,j);
return;

if ! ~trcmp(indblock(y),"CHANGE") == 0)
(if (set_help_flag == TRUE)

{ printf(" \n This changes the specified string \n");
printf("\n Syntax => *CHANGE 'xxx' 'yyy' \nw);
set_help_flag ::: FALSE;
return;

} ;
if (line(i] == '\x2F' , , line(i) -- '\x22')

i ++:

8

J

it (isdigit (line(i))J
J ~ .3. to l() ;

1 f (l i ne (1) ~ ~

i++;
if (i sdigit(llne[i l))

k ~ a to i () ;
}

e l -se
~-. ~ (! ;

if (1 i ne (i l ~ = ' '. >< 2 2 ·)
set_quote_flag ~ TRUE;

1 f (11 ne [i] ' /' : , line (i J -- '\x22 '
+ + i ;

lf t j~~o)

(puts(.. •"' Er r or
r etur n;

cnng_s t ring (j . ~);

retur n ;

Cannot Change String ** ");

1nt s tore () / * This stores the tex t in memory */

int j , fl3g;
if (counter > MAXL INE)

{ puts (" ** No of lines e xceeding Limit
return(2);

J
counter ++ ;
s!d pbl ank(J;
if (TOP == NULL

{
first.fp = m3lloc (sizeof(TEXT)) ;
if (first.fp == NULL)

Cannot store");

orintf (" ** Sorry : No Memory** ") ;
returnll);

}
else

{

}
p = first.fp;
p- >fp = NULL;
p- .· lineno = n;
for (j=O ;line[i) '= '\O';i++,j++)

p- >string[j) = line[i);
p- >string[j) = '\0';
1 = first.fp;

p : firs t.fp ;
if (p- >lineno > n)

{ r = p;
first.fp = malloc (sizeof(TEXT));
if (first.fp == NULL)

{ puts(" ** Sorry : No memory**");

9

}

1nt get 1me (
(

}

r eturn(lJ;

:::; : f1r st .fc;
p- ;- fp = r :
p- :- lineno = n:
for (j - ·) : l i n e [i) ! = E 0 L N

p- ;- stringlj) = line[i);
p- · · s tr :r.;; ~ jj ~ EOLN:
return(O) :

i++.j++)

fo r p=fi rst .f p : - · i "~e no ~ n p ~ p- >fp)
1 = p:

}

lf (p- >tp NUL L)

··. J

p - >fp = m3lloc(sizeof(TEXT)) ;
if (p- :- fo :: NULL)

}

puts('' ** Sorry : NO memory** ");
return(l);

j.? = p- ·' 'fp;
p- >fp = NL':..:..;
p- >lineno = n:• ~
for (j=O;line[i) != EOLN ; i++,j++)

p- ~ string(j] = line(i];
p- >string[j) = EOLN; .
returr~(O);

if (p- ' lineno ~= n)
{ for (j=O;line[i) != EOLN; i++,j++)

}

p- >~tri ng(j] = line(i);
p- >string[j) = EOLN;
counter--;
return(3);

if (p- >lineno > n)
f r = p;

}

1- >fp = malloc(s i zeof(TEXT));
if (1->fp :: NULL)

(puts("** Sorry: No memory _** ");
return(l);

p=l- >fp; ·
p- ;. fp = r;
p->lineno = n;
for (j=O;line[i] != EOLN; i++,j++)

p ->string(j) = line(i);
p- >string(j) = EOLN;
return (O) :

r eturn(O);

! " This prints the C3t3 and time*/

n t

)

s t r u ct d ate today :
s truct time now:
g e r. d ate (&t oday) ;
ge t. time (&now) ;
;..,rln tf("\ t.DA TE : 't d /'td /'td \ t TI ME ~ 't02d: %0 2 d: \02 d . %0 2 d\n " ,

t.oda y . d a _day ,tod a y . da _ mon , today . da_yea r, now.ti_hour,now.t i _min,
now.t i _~ ec , now . r.i_hund l :

r e r.u r n :

q er.nelpl I * d i~play s t he help menu ~ ;

FI LE *"fpl;
c.na r ch , yn 2 ;
fp l ~ fop e n (" ed h e lp . h p '' , " r ");
i f (fp l c ~ NU LL)

' J

pu r.s (" *• Fil e EDHELP.HP not f ound * * ") ;
r etu r n;

pu ~ (" - - - -- - -- - - --- ---- - ----- - - -- - -- - ---------- - ----- ");
1--1hile ((ch= getc (fpl)) ! = EOF)

pu tcha r (c h) ;
put.s l "\ n - ------ --- - - - ---------- - ---- - --- -- ----- --- ----- ") ;
fclos e (fp l) ;
p uts (" Do y o u wa n t to k n o w mo r e about any Command ? '');
p u r.s (" Type Y o r N") ;
pr in t f ("\ n _ ") ;
yn:' = ger. c h ar () ;
~r (yn'2 -= -= 'Y' :: yn2 == ' y ')

s er. _ help _flag = TRU E ;
pri nr.f (" \ nll ") ;
g er.s(l i ne) :
fo r (i = 0 : l ine (i] - - l ine(i] -- '\ t ' && li ne (i] != '\0'
1 f (1 i n e [i) ! = '\ 0')

r etu r n :

(if (isdig i t (line[i)))
{ n : a to i () ;

stor e () ;

else
s earchcomd () ;

1nt sav eflle l) / + Th i s s a v es the file in the disk */
{

cha r
FILE

f ilename (30):

c ha r .~n s ;

1 n t j, status ;
s k ipblank(l ;
' f (TOP == NU LL)

t puts (" ** No i nput line in memory**");
r e r.urn;

11

i++);

· && 1 i ne (l] ' - £0LN j++,i++)
t11 ename [j~ : 11ne l 1 l;

fil e name(j] ~ EOLN;
-:: tatu o:: 7 Ff1LSE;
wnile t ~tatu~ ~~ FALSE ;

{ fol = topen(&filename. ·· r ··);
lf (fpl ~ =NULL)

}

orea l-".;
::>rlntt(" File ts already e x ists
an~ 7 -:~etche();

if (3.ns = ':" 'Y' : : ans = = ' ·,·')
break;

p:-ln tf (" Enter the new name: ");
gets(filename i:

fo l - fooentfilena me . .. w··l:
1f (fpl == NULL)

delete it ? (Y/N) .. , filename):

prlntf(.. •• Unable to o::>en/create file 's\n " , filename);
return;

} 0

tor (p ~ first.fp ; p- >fp !=NULL p = p->fp)
tori ntf(tpl, " ~s\n " ,p- >strir.g);

fprintt(fpl, " 't-s\n " .p- > ~tring);

printf(" \n*• Te x t saved into file 'is """\n " ,filename);
o r intf (" !fa Total numer of line~. savea ~ %d IUJ\n" ,counter);
fclose (fpl);
re t~rn :

int !o~dfi le () ! • This load: the file into the memory ·•1

<::h .:l r fllename(.!O);
1 n t j;
~!·. i::>::Jl3 n k(j:

if (TOP ! = NULL
puts(.. Delete all lines oefore loading the file**");
return;

counter = 0;
for (j =O;line(i) !=' ' && line(i) != EOLH

filename(j) = . line(i);
filename(j] = EOLN;
counter = 0;
j = ldfile(filename);
if (j == 0)

return;
printf("u O.K.\x07\x07 **\n");
orintf(··\ n#U 'd lines copiedlflf\n ", counter);
r eturn;

i++,j++)

int ldfil e(xxx) /* This loads a file from disk*/
char xxx(] ;
(

12

}

FI LE 'fp l;
in t j,m ;
fpl = fopen (xxx, " r j ;

1f (fpl ==NU LL)

' 10;

prtntf(" .. * F ile 't s not fo u nd\x07\ x 07**\n " , xxx);
r etu r n (O) ;

"n i !.e tfgetS\iine,MA X_(;HI'•R . f pl) •- NULL)
i = 0;

l
J

m = s trl en (line) ;
m- - ;
li ne[m] = EOLN;
s Y. ipblank () ;
n = j;
J += 1 0;
s tore(J;

fc!.os e (fpl) ;
r eturn(S);

i n t e xeseq(int ml,i nt nl) / * resequencing line numbers */
(

t n t
i f (nl

(

c ountl,count::;
> 10 0)

pu ts(" ** Increment cannot be more than 100 ** ") ;
return(O);

for (cou nt! = ml,count2=0 ; cou nt2 < counter ; count! += nl,count2++
if (count! > 32000)

{ pu ts (" ** New line numbers e xceeding limit**");
r eturn(O);

f o r (cou nt! = ml . p = first. fp ; cou ntl ~ 32100 && p- >fp != NULL
p = p - ~ fp . count! += n l)

p- >lineno = count!;
p- >lineno ~ cou nt!;
i f (p - ~ fp == NULL)

{ pr int f (" ** Resequ encing Over \x07\ x07**\n ");
return (O);

}
c~· intf (" .-. Resequenc ing Fails ** \x07\x07**\n");
re t urn(O) ;

int displine(int a ,int b) / *displays tex t in the specified range*/
(

: f I :;,. : b)

\

'

pu t s(" •• Lines out of r.:;~nge

r etu rn ;
Try again"'* ");

if (TOP== NULL
putst " ** No lines in memory** ") ;
r etur n;

13

)

}
p = TOP;
for (;p- >lineno < a ; p = p- >fp)

{ if (p- >fp == NULL)

}
for (

{

}

C puts("** Line out of Limit **");
return;

}

p- >lineno >= a && p- >lineno <= b ; p = p->fp)
printf("%d %s\n",p->lineno,p->string);
if (p- >fp == NULL)

{ puts("** End of Storage**");
return;

}

if (p- >fp != NULL)
puts("** 0 K **");

return;

int displ 3y(int m) /* diplays a line */
{

}

int
{

}

if (TOP == NULL)
{ puts("** No lines available**");

return;
}

for (p = TOP ; p->lineno < m ; p = p- >fp)
{ if (p->fp == NULL)

{ puts(" ** Line not found*");
return;

}
}

i f (p-> lineno == m)
printf("%d %s\n",p->lineno,p->string);

else
puts("* * Line not found** ");

return;

atoi() I* converts from ascii to integer */

int k;
for (k=O;line(i] >= '0' && line(i] <= '9'

k = lO*k + line[i] - '0';
return(k);

int listall()
c

I* Lists all line in the memory */

if (TOP == NULL)
puts("** No lines in memory **");

else
{

p = TOP;
while (p->fp !: NULL)

14

++i)

}
return;

}

C printf ("%d 't s \ n " , p- >lineno,p- >string);
p = p- -~ tp; .,

)

printf("% d %s \ n".p- >lineno,p- >string);
puts("** 0 K ..- ... ·) ;

int jelet9l\) / *This d eletes a line in the memory *I
r
l

}

if (TOP== NULL
puts("** No lines in memory** ") ;

else

}

r
l

p = TOP;
it (p-/l ineno n)

J

r -: o- >fp;
mfree (p);
c ounter--;
first.fp = r;
r etu r n:

for (p=TOP; p- >lineno ~= n ; p = p- >fp)
{ 1 = p;

}

if (p- .· lineno '> n :: p - .' fp ==NULL
~ - puts ("*-+- L1ne not found *");

return;
}

if (p- >lineno n)
(r = p- >fp;

mfree(p);
counter--;

}

1- >fp = r;
puts("** 0 K ** ") ;

return;

1nt skipblank() I* deletes the white spaces *I
r
l

}

for (1 i ne [i 1
++i)

' && line[i] 1 = EOLN line(i]

int delall () I* This deletes all lines in the memory *I
{

1nt x l,x2;
p = TOP;
if (p->f p == NU LL)

{ mfree (p);

15

'\ t. ;

)

TOP = NULL;
put-=:(·· .. • OK«« ");
r etur n ;

tor p = TOP ; p- ~ fp o- NULL
1 = p- >fp;
mfree(p);
p = l;

mfree(p);
TO P ~ NULL;
counter = 0;
p~r~t"•• 0 K '*'* ") ;

int a el line (int a o int b)
{

1* This aeletes lines in the given range */

1nt flagl;
f l agl = FALSE;
l f .:;. ~ b)

puts("** Lines not in seauence **");
return;

}
if (TOP == NULL)

puts(" ** No li n e-.:; in memory** ") ;
return;

}
= TOP

if \ l- ~ li neno ~ =a}

flagl = TRUE;
fe r (p 7 TOP: p- >lineno < a: 1 = p, p = p->fp ·)

{ if (p - ~ fp == NULL)

)

(putst " ** Line out of range**");
return;

while (p- >lineno > = a && p->lineno <= b && p->fp != NULL)
{ r = p->fp;

mfree(p);
counter-- ;
P = r;

}
1f (p- ~ lineno ~ = b)

{ mfree (p);

' _o

counter--;
if tflagl == TRUE)

TOP = NULL ;
else

1- >fp :: NULL
puts("** 0 K ** ");
return;

if (flagl == TRUE)
TOP = p;

else

16

'··

.....

}

l- >fp = p ;
p uts (" -"* 0 K ** ") ;
r eturn;

!nt nc nng_~ tring(int rept,int all ; ~Rep laces nth occurence of a string*/

}

int ;<l ;

re p _fl a g = FALS E;
if (:;e t _qu ote_flag == TRUE

for (x l=O; line[i) != EOLN && line(i] != '\x22 ' ;i++,xl++)
strl[x l) = line[i];

else
for(x l=O; l ine [i) != EOLN && line(i) != '/'

strl[x l) = line[i);
s tr l[:.-:J:i - EOLN;

if (set_quote_f lag == TRUE

i++,xl++)

for (x l =O; line[il '~ EOLN && line[i) != ' \ x22'; i++,xl++)
str2[x l) = llne[i j ;

else
f o r (;<1 = 0; line [i) ~= EOL N && line(i] ! = '/ ' ; i++,xl++)

st r2 [x l) = line(i);
s tr2(x l) = EOLN;
·::et __ q uote_f lag F('\LS E
for (p = TOP ; p- >fp ! =NULL && p- >lineno != al p = p->fp)

if (p - >li neno ! = al)
{ puts (" ** Line Number not found **");

r eturn;
}

nfind_replace (rept);
if (rep_flag :::: FALSE)

putst " ** String not found ** ") ;
r eturn;

in t nfi nd _repl ace (int rept) / * Finds and replaces the string */
{ int x l ,x2,x3,al.loopl;

al : s t r l en (strl);

}

for (x l =O, loopl=O; p- >string[x l) != EOLN ; xl++)
if (strn_cmp(&p- >string(xl),&strl,al) == 0)

C loopl++ ;

)

if (loopl ! = rept)
continue;

rep_flag = TRUE
for (x3 = 0, x2 = xl+al ; p- >string(x2] ! = EOLN

reset[x3) = p- >string(x2];
reset(x3) = EOLN;
p->string(xl) = EOLN ;
strcat(p- >string,str2);
strcat(p- >string,reset);
return;

17

x2++,x3++)

int chng_string(int al,int bl) /* Replaces a string with another */
r •.

}

1nt x l:
l f L 31 td && b l ! ~ 0

PL1tS(·· • • Lines not in sequence ** ··);
r eturn:

)
rep_f lag ~ F~LSE;

1f (set_quote_flag == TRUE
for (:<1=0; line(i] ! = EOLN && line(i) !-= •\x22';i++,xl+T)

strl(xl) = line(i);
else

for lxl-=0; line(i] ! -= EOLN && line(i) != '/'
strl(x l) = line(i);

strl(x l] = EOLN ;
i + +;
if (set_quote_flag == TRUE

i++,><l++)

fer (x l =O; line(i] ! = EOLN && line(i] ! = '\x22'; i++,xl++
str2(xl) = line[i];

else
for (xl = 0; line(i] ! = EOLN && line(i] != '/'; i++,xl+'+)

str2(xl) = line[i];
st r 2(x l j = EOLN ;
s et_quote_flag = ~ALSE
f or(p = TOP : p- >fp != NULL && p -> lineno < al p = p->fp)

if (p- >fp :: NULL)
{ puts(" ** Lines out of range ** ");

return;
}

1 f (bl = = 0)
{ find_replace();

if (rep_flag ::FALSE)
puts(" ** Str i ng not found **");

return;

f or (; p- >fp ! = NULL && p- >lineno <= bl
find_replace();

1f (p- >lineno <= bl)
f i nd_replace();

if (rep_flag -== FALSE)
puts(.. String not found ** ");

r eturn;

p = p->fp)

int finc_replace ()
{

! • Finds and replaces the string */

int xl,x2,x3,al;
al = strlen(strl);
for (x l=O; p->string(xl) != EOLN; xl++)

i f (strn_cmp{&p->string(xl),&strl,al) == 0)
{ rep_f lag : TRUE

for (x3 = 0, x2 = xl+al ; p->string(x2] !: EOLH
reset(x3) = p->string(x2);

18

x2++.x3++)

}
}

r eset[x3) = EOLN;
p- >string[xl) = EOLN
strcat(p- >string,str2);
strcat(p- >sL r ing,reset);
break;

1nt st rn _c mp(ou t,in,count) / * Compares two strings */
cha r * i n,-+ou t;
int c o u nt;
{

}

inL al,flagl;
f lagl = TR UE;
for (a! =O ; al < count al++,out++,in++

if (*OUL != ~in)
flagl = FALSE;

if (f lagl == TRUE)
return(O);

r eturn (4) ;

in t lowercase(char •s,int k) / * c onverts the string to u pper case */
{

}

1nt xl,cl;
for (x l=O; x l ·· ~; ; x l++,s++

{ cl = *s;
*s = toupper (cl);

}

int findstring () /* finds the given string*/
{

int x l;
if (se t _quote_flag == TRUE

e l se

for (x l=O; line[i) ! = EOLN && line[i) ! = '\x22'; i++,xi++)
str2[xl) = line[i);

for (x l = 0; line[i) != EOLN && line[i) != '/'; i++,xl++)
str2(xl) = line[i);

sLr2 [x l) = EOLN;
Se L_quo te_flag = F ~ LSE;

for (p = TOP ; p- >fp !=N ULL ; p = p- >fp)
for (x l=O; p - .:- string(x l) != EOLN; xi++)

if (str n_cmp(&p- >string(xl),&str2,strlen(str2)) -- 0)
{ display(p->lineno) ;

return;
}

for (xl=O; p- >string [xl) != EOLN; xl++)
if (strn_cmp(&p- >string[xl),&str2,strlen(str2)) -- 0)

(display(p- >lineno);
return;

}
puts ("** String not Found**");

r eturn ;

19

.nt nfindstrlng t lnt a11 ! • finds the gi~en string • !

int , 1. 1 !:
it (set_quote_flag == TRUE

for (x 1=0; line(i]
str2[x l) =

!= EOLN && line[i]
1 i ne [i) ;

!= '\x22': i++,xl++)

for L <l : O: line(i] != EOLN && line(i) != '/': i++,xl++)
str2[xl) = line[i);

str2[x 1J: EOL N;
set_quote_tl 3g : F~LS E;

yl = 0;
for (D ~ ~ O P; p- .' fp != NULL; p = p- >fp)

for (xl=O: p- , string[xl) != EOLN ; xl++)
1f (str r._cmo(&p- , string(x l).&str2,strlen(str2)) -- 0)

y l++;
if (y1 == al)

{ display(p- >lineno); ·0

return;
}

\
·'

for L <l= O: p- >string(x l] ! = EOLN ; xl++)
if (strn_cmp(&p->string[xl),&str2,strlen(str2)) -- 0)

'/!. + T ;

)

1 f (yl == al)
(display(p->lineno);

return;

puts (·· •..- S tring not Found .._ ...) ;
return:

n~ instext(int ba flag, lnt ml) I* Thi~ allows tne user to insert without line number */

··r:-

•;

' ,._

int curline ,i ncr,lastnum,cnt;
cur li ne = lastnum = 0;
i ncr = 10 ;
p = TOP;
if (p- >lineno -- m1 && baflag == 0)

{ puts(" ** Insertion not before the beginning ••");
return:

}
if (baflag == o J

for (o = TOP p- >l ineno < ml && p- >fp != NULL
{ midl = p;

else
for

mi d~ = p- , fp :
lastnum = p- >lineno;

p = TOP ; p- , lineno <= ml && p- , fp ! =NULL
midl = p;
mid2 = p- >fp ;

20

p = p->fp)

p = p->fp)

.,

.;

}

l3~ tnum = p- >lineno:
}

curl~ne = l3~ tnu m + incr;
cnt = FALS E;
middle . fp ~NULL:

ge::.~ (line);

if (l ine(O] == 0)
r etur n ;

m~adle . fp = m3 lloc (sizeof (TE XT)) ;
p = middle . fp;
p- >lineno = curl ine:
c urline + = incr;
for (i = 0; l ine (i] ! = EOLN ; i.,. +

p- > ~tring(i) = line(i);
p- ~ string(i) = EOLN;
1 ~ p ;
p- .. f., = NULL :
++counte r;
for (cn t 7 = Ft'ILSE ;

gets(line) ;
if (line[O] == EOLN

br ea k ;
p- >fc " m3lloc(s izeof (TE XT)) ;
if (p- >fp == NULL)

{ put~ (" • • Sorry: . no memory** "");

\
.)

r eturn;

p = p- >fp;
p - >lineno = curline;
curline += incr;
f or (i : 0; line[i] != EOLN

p- >string[i) = line[i);
p- >s tring[i] = EOLN;
p- >fp : NULL;
++counter;
l = p ;

p = mid l:
p- >fp = middle . fp;
p = ~·- · tp;
1- ~- fp = mid2:
e x e seq(10, 10) ;
prin t r ("' \ n\n** 0. K. *"'\ n ·· l;

i++

int movtex tlint baflag,"nt ml, int nl , int pl) / *moves the text from one location to other*/
{

int flag,efl~g,i flag;
tflag = i flag = eflag = FALSE;
if (ml >= nl :: pl == nl :: pl - - ml)

{ puts("'* * Invalid Sequence ** ");
return ;

}
if (ml <= pl && nl >= pl

{ puts (" ** Invalid Sequence** ");

21

.. _~

r e t u r n ;
}

if (searc h (ml) && search(nl) && search(pl))

e l s e
{

puts("** Line not found.* * ") ;
r eturn;

}

p = TOP ;
if (p-> lineno == ml)

tflag = TRUE;
for(p=~OP;p- > lineno != nl

p = p->fp;
if (p->lineno == pl)

iflag = TRUE;
for (p = TOP ; p- >fp ! = NULL

if (p- >lineno == nl)
eflag = TRUE;

if (iflag == TRUE)
baflag = 1;

p = TOP;
if (p->lineno == pl)

baflag = 1;
I* Extract the range */
if (tflag == TRUE)

{ l = TOP;

p = p- >fp)

p = p->fp)

for (p = TOP ;p- >lineno ! = nl p = p- >fp)

r = p;
midl = r- >fp;
i f (iflag == TRUE)

{ TOP = r- >fp;

}
else

{

mid2 = midl- >fp;
midl- >fp = l;
r- >fp = mid2;
puts("** 0 K **") ;
re tu rg_;

TOP = midl:
for (p = TOP ; p- >lineno != pl

mid2 = p ;
if (baflag == 1)

{ mid2 = p;
midl = mid2- >fp;
mid2- >fp = l;
r- >fp = midl ;
puts(" *..- 0 K **") :
r eturn;

22

p = p- >fp)

}
}

e l se
l.

}

midl = p- :- fp;
mid2- >fp = 1 ;
r- >fp = p;
puts (" * * 0 K **") ;
re t urn ;

if (ef l ag == TRUE)
{ for (p = TO P ; p - >l ineno '= ml

}

mi dl ::: p;
r = p ;
while (p- >fp ! = NULL)

p = p - >fp;
l = p;
midl- >fp = NULL;
f or (p = TOP ; p - >lineno '= pl

midl = p;
if (baflag == 1)

{ mid2 = p- >fp;

}
else

r
I.

}

p- >fp = r; ·
1- >fp = mid2;
puts("** 0 K **");
return;

mid2 = p;
midl->fp = r;
l- >fp = mid2;
puts("** 0 K **");
r eturn;

:n idl -:: TOP;
if (p- >lineno == pl)

baflag = 1;

p = p- >f p)

p = p- >fp)

• or l p = TOP; p- >lineno != p l p = p - >fp)

:f (p -> fp == NULL)
baflag ::: FALSE;

for (p = TOP p- >l ineno ! = ml
midl ::: p ;

l = p;

p = p -> fp)

f or (; p- >lineno ! = nl p = p- >fp)

; = p;
f.l;!.d2 ::: p -> fp:
mi dl - >fp = mid2;
fo r (p = TOP ; p- >l ineno != p l

midl = p ;
: f (b a f l ag)

23

p - p- >fp)

e lse
t

m 1 d:· - (..- : f p :

p - . fp = l;
r- • p = mld2:
:> u ts. ~ "* O K .a-* ") :
r eturn;

'l\ l d2 - o :
midl· >fo : 1 ;
r - :· rp = mtd::?;
DULS (- •• 0 ~ •• ") ;
... et.urn ;

inL se; r :r. t : n t 3! : .' • Th io;: c hec f. s for the e x i s tence of the line number • /
l

fo r ' p =TOP ; p· >fp != NULL : p = o- >fp)
1 f (o - • lineno ==al l

return(TRUE l :
1 ' \ o - , l l n e no = = a 1)

r eLu r n(TRUE) ;
r eturn (f A LSE) ;

1n t looe n c (l
{

/ .._ L et ~ /OU .l.dd te x t. • /

1 n t rn 1. n ! :
ITI ! : n O·
f or • - TOP ::> - >fo ! = NULL

m! l t ne r. o ;
n 1 ' 10 ;
";-, tie (ml l

t g et. s (l i ne) ;
tf ! line [O) - - EO LN)

b r eai'. ;
- :) :

ml •= nl:
n-=- m! :
s Lore () ;

PUtS. ! '' 0 ~t J :

p o- >fo)

1 nt du p te ~ t : 1n t bafl ag .t nt ml.tnt nl. int pl) / • duplicates the text from one location to other*/

· t tf l3.g ,efl.3.g;
L T lag: eflag: fALSE;
i f (ml > = nl :: pl == nl :: pl = = ml)

{ puts (- •• Inv alid Sequence •• '');
r eturn;

tf \ ml < = ol && nl >= pl)

24

puts(.. _.,,., Inv3lid Se o uence *"* ") ;
r er-urn;

1f Cs e3r ch(ml) && se3rchlnl) && search(p l))

puts("** Li ne not fou nd * *");
return;

...
~

p = TOP;
if (p- >lineno == pl)

tflag = TRUE;
for (p = TOP ; p- >fp != NULL

if (p- >lineno ·-== pl)
eflag = TRUE;

if (tflag == TRUE)
baflag = 1;

i f (eflag == TRUE)
baflag = FALSE;

p = p- >fp)

for (p = TOP ; p- >lineno != ml ; p = p->fp)

middle.fp = malloc(sizeof(TEXT));
if (middle . fp == NULL)

{ puts("** Sorry : No memory**");

1.
)

return;

l = middle.fp;
1- >lineno = p- >lineno;
for (i = 0 ; i < strlen (p- >string) i++)

1- >string[i] = p- >string[i1;
1- >string[i] = EOLN;
1- :- fp = NULL;
++counter;
for (p = p->fp ; p- >lineno <= nl ; p = p- >fp)

{ 1->fp = malloc(sizeof(TEXT));
if (1- >fp == NULL)

C puts("** Sorry : No mema-ry **");
return:

' l
J

.i = 1- >fp;
1 -> lineno = p- ~ 1ineno;

for (i = 0 ; i < str1en(p- , string)
1- >string[ij = p- >string[i];

1- >string[i] = EOLN:
1->fp = NULL;
++counter;

for p = TOP o- ~ li neno ' = pl p- p- ,·· fp
midl = p;

if tJ3.flag == l)
mid2 = p - ;· tp:

i +~)

e 1 'O:e

midl - "'. - ,_. ~

~ lcl - fp = m1 aale .f p ;
l- .· fp = mia:?;
;:· ~ ts (" •• 0 •· ...
ret urr.~

~11 \J:::: 7 p;
mi d l - ~ fp 7 miadle.tc;
1- · fp 7 mid:?:
put~ c ···· o 1': ·· ·· l :
retu r n;

int r.-: .=r~}tl !f" ~ · • T~i~ merges a fi!e ~itn te x t in memory */

1nt
cha r

-~·· t:. lename(JO];
:.n1 J.k .baflag ;
::, ~.t l .J.~ c 0:
sv. ip r:dank(J;
f onj - C: : :lne[i) . - ' .'.& li ne[i] ! = EOLN i++,j++)

til en3me[j) = li ne (i);
fl len3me[j] = EOLN :
s ~; 1 p b 1 3 r. r: () ;
if (line(i l .. 'A ' 1 ::'\e (:.] 3

bafl3g = 1;
·.·JrHle(! i~di •Jlt(line(+-.i I) l

:.f (l ine[i) == EOLN

1-: = .:. to1 l) ;

put s (" •• Line number e x pected •• ") ;
return;

; = nldfile(baflag,filename, k);
it == 0)

put~(" ** Could not merge** ");
return;

e x eseq(10 , 10);
orintf ("\ n•• O. K.\x07 \x07 **\n ");

n latilelb3flag . ~xx .linl / * Thi~ loads a file from
XXX (1 ;

int ~~flag,lin;
{

F ILE *fpl:
1 n t J,m, tfl3g,eflag;
l'pl = foo en <xxx , " r ");
if (fp1 == NULL)

(printf(" ** File "ss not found\x07\x07**\n",xxx);
return(C);

\
J

:.f (search(lin) -- 0)

disk */

l .
J

p = TO P:

Gut ·s("i:* Line not fo un d .o:.o: ") :

return(O);

if (p- >lineno == lin)
tflag ::: TRUE;

else
tflag ::: FALSE;

for (p = TOP ; p- >fp != NULL p ::: p -> fp)

if (p- >lineno == lin)
eflag ::: TRU E ;

else
ef lag ·- FALSE;

j ::: 10;
1 :: &middle;
while (fgets(line,MAX_CHAR,fpl) ! = NULL)

{ ·m = str-len(line);
iT: -- ;

li ne[m] ::: EOLN;
1- >fp = malloc (s izeof(T EXT));
if (1- >tp :::::: NULL)

{ puts("** Sorry : no memory** ");
r eturn(O);

' l
J

\
)

l = 1- >fp;
1 - >lineno = j;
j += 10 ;
for (i:: 0; line[i] != EO LN

1->str ing [i] = line [i];
1- >s tring [i] ::: EOLN ;
1- >fp ::: NULL ;
++counter;

fc lose(fpl);
i f (tflag :::::: TRUE &~ baflag ::: :::

{ r ::. TOP ;

-, ,.

p :: TOP ::: middle.fp;
while(p->fp != NULL)

p ::: p->fp;
p->fp = r;
re turn (S);

0)

if (eflag == TRUE && baflag 1

i++)

{ for (p::: TOP;p->fp !=NULL p = p- >fp)

"l
J

p- >fp = middle.fp;
re turn (S) ;

for (p=TOP; p- >line no != lin
midl = p;

if (b3fL3.g == l)

{ m1d l ::: p;
mid2 :: p -> fp;

l
. I

p = p- , ... fp)

else
' ·-

midl- >fp ~ mi dd l e.fp;
for (p=middle.f p ; p- >tp 1 = NULL

p- >tp = mid2;
re t urn(S);

p = p- >fp)

	TH29070001
	TH29070002
	TH29070003
	TH29070004
	TH29070005
	TH29070006
	TH29070007
	TH29070008
	TH29070009
	TH29070010
	TH29070011
	TH29070012
	TH29070013
	TH29070014
	TH29070015
	TH29070016
	TH29070017
	TH29070018
	TH29070019
	TH29070020
	TH29070021
	TH29070022
	TH29070023
	TH29070024
	TH29070025
	TH29070026
	TH29070027
	TH29070028
	TH29070029
	TH29070030
	TH29070031
	TH29070032
	TH29070033
	TH29070034
	TH29070035
	TH29070036
	TH29070037
	TH29070038
	TH29070039
	TH29070040
	TH29070041
	TH29070042
	TH29070043
	TH29070044
	TH29070045
	TH29070046
	TH29070047
	TH29070048
	TH29070049
	TH29070050
	TH29070051
	TH29070052
	TH29070053
	TH29070054
	TH29070055
	TH29070056
	TH29070057
	TH29070058
	TH29070059
	TH29070060
	TH29070061
	TH29070062
	TH29070063
	TH29070064
	TH29070065
	TH29070066
	TH29070067
	TH29070068
	TH29070069
	TH29070070
	TH29070071
	TH29070072
	TH29070073
	TH29070074
	TH29070075
	TH29070076
	TH29070077
	TH29070078
	TH29070079
	TH29070080
	TH29070081
	TH29070082
	TH29070083
	TH29070084
	TH29070085
	TH29070086
	TH29070087
	TH29070088
	TH29070089
	TH29070090
	TH29070091
	TH29070092
	TH29070093
	TH29070094
	TH29070095
	TH29070096
	TH29070097
	TH29070098
	TH29070099
	TH29070100
	TH29070101
	TH29070102

