ROLE OF FORMANTS, F1 \& F2 IN SPEAKER CHARACTERISATION:

A Study of Marwari speaking Monolinguals in Bikaner

Dissertation submitted to Jawaharlal Nehru University in partial fulfillment of the requirements for the award of the degree of

MASTERS OF PHILOSOPHY

BY

NIKITA SUTHAR

Centre for Linguistics
School of Language, Literature \& Culture Studies
Jawaharlal Nehru University
New Delhi- 110067
2017

Centre for Linguistics

School of Language, Literature \& Culture Studies Jawaharlal Nehru University

New Delhi-110067, India

CERTIFICATE

This thesis titled "ROLE OF FORMANTS, F1 \& F2 IN SPEAKECHARACTERISATION:
A Study of Marwari speaking Monolinguals in Bikaner"submitted by Ms Nikita Suthar, Centre for Linguistics, School of Language, Literature and Culture Studies, Jawaharlal Nehru University, New Delhi, for the award of the degree of M.Phil, is an original work and has not been submitted so far in part or in full, for any other degree or diploma of any University or Institution.

This may be placed before the examiners for evaluation for the award of the degree of Master of Philosophy.

Chairperson
Centre for Linguistics
Schotytury tirade 8 Culture Studies
Jawaharal Nohow Unwarily, Now Doh - 110067

(Prof Vaishna Narang)
Prof. Vaishna Supervisor

$$
\begin{aligned}
& \text { Centre for Linguistics }
\end{aligned}
$$

Sentrool of Language n Listics
Jawharfal Nehnoge Liowerature
Nehru University, Nev e Delhi Studies

DECLARATION

Dated 26 th July, 2017

This thesis titled ""ROLE OF FORMANTS, F1 \& F2 IN SPEAKER CHARACTERISATION:A Study of Marwari speaking Monolinguals in Bikaner" submitted by me for the award of the degree of Master of Philosophy, is an original work and has not been submitted so far in part or in full, for any other degree or diploma of any University or Institute.

Nikita SUthar M. phil Student Centre for Linguistics SLL\&CS NU

Acknowledgment

First and foremost, I would like to acknowledge my guide Prof. Vaishna Narang, Centre for Linguistics, Jawaharlal Nehru University. Working under her guidance was an enriching learning experience for me. I thank her for her patience, immense support, encouragement and precious guidance at every step of this journey.

I would like to express my gratitude towards all the staff members at the Centre for Linguistics, Jawaharlal Nehru University.

I would like to express my gratitude towards the team of CFSL (The Central Forensic Science Laboratory), New Delhi, for me helping learn how to conduct a forensic enquiry.

I take this opportunity to sincerely thank the support from the University Grant Commission, for providing financial assistance in the form of Junior Research Fellowship, which helped me to conduct my research comfortably.

I would also like to thank my fellow research scholars, Chandni Dutta, Agniva and Stuti Bhagat for their constant help, support and information provided whenever I needed. I am indebted to my family, Mrs. Manju Suthar, my mother and Mithlesh Suthar, my brother, not only for their endless support but also for helping me collect data by knocking door to door, that has helped me in completing my M.Phil dissertation. Last but not the least, I would like to acknowledge the love and support I got from my friends, Ankita, Apurva, Richa, Ramchandra, Shyam, Simone and Suman.

To my many friends and colleagues whom I could not mention here, I extend my heartiest gratitude.

Nikita Suthar

DEDICATED To My NANAJI
 And
 My MOM
 Thanks for making me who I am today...

Chapter 1. Introduction 1
1.1 Forensic Speaker Identification : 2
1.2 Forensic Phonetics : 2
1.3 Voice vs Fingerprint 3
1.4 A quantitative introduction to the physiology of speech -(Lieberman and Blumstein, 1988) 4
1.4.1 What is Voice? How is it Produced : 4
1.4.2 Function of Vocal Cords 5
1.4.3 Function of Supralaryngeal Tract: its Forensic Relevance : 6
1.4.4 Vocal Tract Length and its Forensic Relevance 7
1.5 Formants 9
1.5.1 Role of Formants in Speaker Identification 10
1.5.2 Formants in vowel perception 11
1.6 About the Research Work 11
1.6.1 Theoretical Framework 14
1.7 Objective and Scope of Research 14
1.7.3 Area of Study: 15
1.7.2 Scope for current research 15
1.7.3 Objective of Research 16
1.7.4 General research Question 16
1.8 Structure of the dissertation 17
Chapter 2. Literature Review 19
2.1 History and Various Theories 19
2.1.1 Traditional " Articulatory" Phonetic Theory 19
2.1.2 Vowels 19
2.1.3 Quantal Theory of Vowels 20
2.2 Brief overview of speech research after 1950s 21
2.3 The Current Approaches on speaker Identification 22
2.3.1 Voice and Personality 24
2.3.2 Voice and Physiology 24
2.3.3 Voice and Race 26
2.3.4 Voice and Sex 26
2.4 Speech Acoustics: Source-Filter Theory 27
What is a Spectrogram? 29
Chapter 3 Research Methodology 30
3.1 Introduction 30
3.1.1 What is Research? 30
3.1.2 Types of Research 31
3.2 A brief Historical Perspective on Methods Employed for Present Study 32
3.3 Overview of Research Design 33
3.3.1 Tools and Instruments 33
3.3.2 Data Elicitation 34
3.3.3 Selection of the participants 41
3.3.4 Data Assessment 42
3.3.5 Ethical Considerations: 44
Chapter 4 Analysis 46
4.1 Pilot Study 46
4.2 General research Question 47
4.3 Analysis 49
4.3.1 Auditory Analysis 50
4.3.2 Acoustic Analysis 61
4.4 Results 115
4.5 Effects of Nasalization on Vowel Formants 115
Chapter 5 Conclusion 121
5.1 Area of Study: 121
5.1.1 Scope for current research 121
5.1.2 Objective of Research 122
5.1.3 General research Question 122
5.2 Conclusion 123
5.3 Limitations of the Present Study 126
5.4 Future Scope 126
Table 3.1 Parameters For Auditory Analysis 38
Table 3.2 Participants Information 42
Table 4.1 : Auditory Analysis of Known Brahmin Speakers (Brahmin Suspect Samples) 52
Table 4.2 : Auditory Analysis of known Bishnoi Speakers (Suspect Samples) 54
Table 4.3 : Auditory Analysis of 20 Unknown Male Speakers (Question Samples). 56
Table 4.4 : Auditory Analysis of 20 Unknown Female Speakers (Question Samples) 58
Table 4.5 Mean Pitch of Suspect Sample Brahmin Variety 60
Table 4.6 Mean Pitch of Suspect Sample Bishnoi Variety 60
Table 4.7 Mean Pitch of Question Sample Male Speakers 61
Table 4.8 Mean Pitch of Question Samples Female Speakers 61
Table 4.9 Word list 62
Chart 4.2 Standard deviation and Mean first Brahmin Males 68
Chart 4.3 Standard Deviation and Mean QS 1-10 68
Chart 4.4 SD and Mean Pitch(Brahmin Female) 68
Chart 4.5 SD and Mean pitch QS (11-20 speakers) 68
Chart 4.6 SD and Mean Of Suspect Samples (Bishnoi Speakers) 69
Chart 4.7 Standard deviation and Mean first Bishnoi Males 70
Chart 4.8 Standard Deviation and Mean QS 20-30 70
Chart 4.9 SD and Mean Pitch (Brahmin Female) 70
Chart 4.10 SD and Mean pitch QS (11-20 speakers) 70
Chart 4.13 : Acoustic Space of Speaker 2 73
Chart 4.14: Acoustic Space of Question Sample 10 73
Chart 4.15 : Acoustic Space of Speaker 3 74
Chart 4.16 : Acoustic Space of Question Sample 1 74
Chart 4.17: Acoustic Space of Speaker 4 74
Chart 4.18: Acoustic Space of Question Sample 6 74
Chart 4.19 : Acoustic Space of Speaker 5 75
Chart 4.20 : Acoustic Space of Question Sample 9 75
Chart 4.21 : Acoustic Space of Speaker 6 75
Chart 4.22 : Acoustic Space of Question Sample 2 75
Chart 4.22: Acoustic Space of Speaker 7 76
Chart 4.23: Acoustic Space of Question Sample 8 76
Chart 4.24 : Acoustic Space of Speaker 8 76
Chart 4.25 : Acoustic Space of Question Sample 9 76
Chart 4.26 : Acoustic Space of Speaker 9 77
Chart 4.27: Acoustic Space of Question Sample 7 77
Chart 4.28 : Acoustic Space of Speaker 10 77
Chart 4.29 : Acoustic Space of Question Sample 4 77
Chart 4.30 : Acoustic Space of Speaker 11 78
Chart 4.31 : Acoustic Space of Question Sample 12 78
Chart 4.32 : Acoustic Space of Speaker 12 78
Chart 4.33: Acoustic Space of Question Sample 14 78
Chart 4.34 : Acoustic Space of Speaker 13 79
Chart 4.35: Acoustic Space of Question Sample 17 79
Chart 4.36 : Acoustic Space of Speaker 10 79
Chart 4.37 : Acoustic Space of Question Sample 16 79
Chart 4.38 : Acoustic Space of Speaker 15 80
Chart 4.39 : Acoustic Space of Question Sample 11 80
Chart 4.40 : Acoustic Space of Speaker 16 80
Chart 4.41: Acoustic Space of Question Sample 13 80
Chart 4.42 : Acoustic Space of Speaker 17 81
Chart 4.43 : Acoustic Space of Question Sample 15 81
Chart 4. 44 : Acoustic Space of Speaker 10 81
Chart 4.45: Acoustic Space of Question Sample 4 81
Chart 4.46: Acoustic Space of Speaker 19 82
Chart 4.47: Acoustic Space of Question Sample 19 82
Chart 4.48 : Acoustic Space of Speaker 20 82
Chart 4.49: Acoustic Space of Question Sample 20 82
Chart 4.50 : Acoustic Space of Speaker 21 83
Chart 4.51 : Acoustic Space of Question Sample 22 83
Chart 4.52: Acoustic Space of Speaker 22 83
Chart 4.53 : Acoustic Space of Question Sample 26 83
Chart 4.54 : Acoustic Space of Speaker 23 84
Chart 4.55: Acoustic Space of Question Sample 27 84
Chart 4.56 : Acoustic Space of Speaker 24 84
Chart 4.57: Acoustic Space of Question Sample 23 84
Chart 4.60: Acoustic Space of Speaker 25 85
Chart 4.61 : Acoustic Space of Question Sample 21 85
Chart 4.62: Acoustic Space of Speaker 26 85
Chart 4.63: Acoustic Space of Question Sample 30 85
Chart 4.64: Acoustic Space of Speaker 27 86
Chart 4.65: Acoustic Space of Question Sample 29 86
Chart 4.66: Acoustic Space of Speaker 28 86
Chart 4.67: Acoustic Space of Question Sample 25 86
Chart 4.68: Acoustic Space of Speaker 29 87
Chart 4.69: Acoustic Space of Question Sample 28 87
Chart 4.70: Acoustic Space of Speaker 30 87
Chart 4.71: Acoustic Space of Question Sample 24 87
Chart 4.72: Acoustic Space of Speaker 31 88
Chart 4.73: Acoustic Space of Question Sample 33 88
Chart 4.74: Acoustic Space of Speaker 32 88
Chart 4.75: Acoustic Space of Question Sample 35 88
Chart 4.76: Acoustic Space of Speaker 33 89
Chart 4.77: Acoustic Space of Question Sample 40 89
Chart 4.78: Acoustic Space of Speaker 34 89
Chart 4.79: Acoustic Space of Question Sample 37 89
Chart 4.80: Acoustic Space of Speaker 35 90
Chart 4.81: Acoustic Space of Question Sample 39 90
Chart 4.82: Acoustic Space of Speaker 36 90
Chart 4.83: Acoustic Space of Question Sample 31 90
Chart 4.84: Acoustic Space of Speaker 37 91
Chart 4.85: Acoustic Space of Question Sample 38 91
Chart 4.86: Acoustic Space of Speaker 38 91
Chart 4.87: Acoustic Space of Question Sample 32 91
Chart 4.88: Acoustic Space of Speaker 39 92
Chart 4.89: Acoustic Space of Question Sample 36 92
Chart 4.90: Acoustic Space of Speaker 40 92
Chart 4.91: Acoustic Space of Question Sample 34 92
Chart 4.92 : A comparison of F1, F2, F2-F1, F3-F2 between SS1 and QS3 along with language mean values and Standard Deviation 94
Chart 4.93 : A comparison of F1, F2, F2-F1, F3-F2 between SS2 and QS10 along with language mean values and Standard Deviation 95
Chart 4.94 : A comparison of F1, F2, F2-F1, F3-F2 between SS3 and QS1 along with language mean values and Standard Deviation 95
Chart 4.95 : A comparison of F1, F2, F2-F1, F3-F2 between SS4 and QS6 along with language mean values and Standard Deviation 96
Chart 4.96 : A comparison of F1, F2, F2-F1, F3-F2 between SS5 and QS9 along with language mean values and Standard Deviation 96
Chart 4.97 A comparison of F1, F2, F2-F1, F3-F2 between SS6 and QS2 along with language mean values and Standard Deviation 97
Chart 4.98 : A comparison of F1, F2, F2-F1, F3-F2 between SS7 and QS8 along with language mean values and Standard Deviation 98
Chart 4.99: A comparison of F1, F2, F2-F1, F3-F2 between SS8 and QS5 along with language mean values and Standard Deviation 98
Chart 4.100: A comparison of F1, F2, F2-F1, F3-F2 between SS9 and QS7 along with language mean values and Standard Deviation 99
Chart 4.101: A comparison of F1, F2, F2-F1, F3-F2 between SS10 and QS 4 along with language mean values and Standard Deviation 99
Chart 4.102 : A comparison of F1, F2, F2-F1, F3-F2 between SS11 and QS12 along with language mean values and Standard Deviation 100
Chart 4.103: A comparison of F1, F2, F2-F1, F3-F2 between SS12 and QS14 along with language mean values and Standard Deviation 100
Chart 4.104: A comparison of F1, F2, F2-F1, F3-F2 between SS13 and QS17 along with language mean values and Standard Deviation 101
Chart 4.105: A comparison of F1, F2, F2-F1, F3-F2 between SS14 and QS16 along with language mean values and Standard Deviation 101
Chart 4.106 : A comparison of F1, F2, F2-F1, F3-F2 between SS15 and QS16 along with language mean values and Standard Deviation 102
Chart 4.106 : A comparison of F1, F2, F2-F1, F3-F2 between SS16 and QS13 along with language mean values and Standard Deviation 102
Chart 4.107: A comparison of F1, F2, F2-F1, F3-F2 between SS17 and QS15 along with language mean values and Standard Deviation 103
Chart 4.108 : A comparison of F1, F2, F2-F1, F3-F2 between SS18 and QS18 along with language mean values and Standard Deviation 104
Chart 4,109: A comparison of F1, F2, F2-F1, F3-F2 between SS19 and QS19 along with language mean values and Standard Deviation 104
Chart 4.110: A comparison of F1, F2, F2-F1, F3-F2 between SS20 and QS20 along with language mean values and Standard Deviation 105
Chart 4.111 : A comparison of F1, F2, F2-F1, F3-F2 between SS21 and QS22 along with language mean values and Standard Deviation 105
Chart 4.112: A comparison of F1, F2, F2-F1, F3-F2 between SS22 and QS26 along with language mean values and Standard Deviation 106
Chart 4.113 : A comparison of F1, F2, F2-F1, F3-F2 between SS23 and QS27 along with language mean values and Standard Deviation 106
Chart 4.114: A comparison of F1, F2, F2-F1, F3-F2 between SS24 and QS23 along with language mean values and Standard Deviation 107
Chart 4.115 : A comparison of F1, F2, F2-F1, F3-F2 between SS25 and QS21 along with language mean values and Standard Deviation 107
Chart 4.116 : A comparison of F1, F2, F2-F1, F3-F2 between SS26 and QS30 along with language mean values and Standard Deviation 108
Chart 4.117: A comparison of F1, F2, F2-F1, F3-F2 between SS27 and QS29 along with language mean values and Standard Deviation 108
Chart 4.118 : A comparison of F1, F2, F2-F1, F3-F2 between SS28 and QS25 along with language mean values and Standard Deviation 109
Chart 4.119: A comparison of F1, F2, F2-F1, F3-F2 between SS29 and QS28 along with language mean values and Standard Deviation 109
Chart 4.120 : A comparison of F1, F2, F2-F1, F3-F2 between SS30 and QS24 along with language mean values and Standard Deviation 110
Chart 4.121: A comparison of F1, F2, F2-F1, F3-F2 between SS31 and QS67 along with language mean values and Standard Deviation 110
Chart 4,122: A comparison of F1, F2, F2-F1, F3-F2 between SS32 and QS35 along with language mean values and Standard Deviation 111
Chart 4.123: A comparison of F1, F2, F2-F1, F3-F2 between SS33 and QS40 along with language mean values and Standard Deviation 111
Chart 4.124: A comparison of F1, F2, F2-F1, F3-F2 between SS34 and QS37 along with language mean values and Standard Deviation 112
Chart 4.125: A comparison of F1, F2, F2-F1, F3-F2 between SS35 and QS39 along with language mean values and Standard Deviation 112
Chart 4.126: A comparison of F1, F2, F2-F1, F3-F2 between SS36 and QS31 along with language mean values and Standard Deviation 113
Chart 4.127: A comparison of F1, F2, F2-F1, F3-F2 between SS37 and QS38 along with language mean values and Standard Deviation 113
Chart 4.128: A comparison of F1, F2, F2-F1, F3-F2 between SS38 and QS32 along with language mean values and Standard Deviation 114
Chart 4.129 : A comparison of F1, F2, F2-F1, F3-F2 between SS39 and QS36 along with language mean values and Standard Deviation 114

Chart 4.130: A comparison of F1, F2, F2-F1, F3-F2 between SS40 and QS34 along with
language mean values and Standard Deviation ... 115

Chapter 1. Introduction

"The limits of my language means the limits of my world"-(Ludwig Wittgenstein) Language has always been an interesting phenomenon which has fascinated humans throughout its evolution. The Greeks and Sanskrit grammarians from $3^{\text {rd }}$ and $4^{\text {th }}$ century BC have the first known accounts of language studies. Language studies have gone through various stages since the time it started. In linguistics, we call them paradigm shifts or epistemological breaks or discontinuities. From the study of language changes with respect to its historical, to the current trend of studying language as an innate capability of human beings, there have been many paradigm shifts in linguistics. Over the centuries linguists have unraveled many universal truths about human language. The most primal language universal is that "spoken language is the primary form of human language." There are many languages in this world which do not have any written script but each and every known language in this world has a spoken form. With spoken forms come the sounds. Every language has vowels and consonants in its basic structure even though their numbers and combinations may vary from one language to another. Physicists and linguists have been constantly trying to explain how these vowels and consonants are produced and acquired by humans. Child language acquisition is the most challenging and interesting avenue of research in linguistics. The current technologies have enabled us to answer a lot of language related questions. Researchers are regularly exploring various language related fields. Other than language acquisition, there are many other areas of interest in which linguistics can help us understand this mysterious world a little better.

One of the major advancements in speech research is the development of visual speech spectrograph. It has helped us understand how speech signals are perceived through our ears, how our speech organs are unique enough to modify these signals.

In this research, we will go through each and every one of these speech organs along with their role in speech production and we will see if human voice can be characterized as unique as a fingerprint.

1.1 Forensic Speaker Identification :

There are some voices which are familiar to our ears, for example the voices of our family members. Even if they are calling from a mobile phone, with bad connectivity we can easily identify their voices. This shows us that there are some unique properties of human voice. After the development of latest technologies like microphone, recorders or mobile phones, there have been many instances where officials have acquired a recording of human voice with relation to a particular case. For example, in a case about the kidnapping and murder of an 11-year-old German girl, voice samples of the kidnapper were collected or recorded or taped and analyzed. It was then matched with the voice samples of one of the suspects. These kinds of cases show us the importance of voice recognition. Different people have defined forensic speaker identification differently. According to Philip Rose, "Expert Opinion sought in a legal process as to whether two or more recordings of speech are from same speaker or not is usually termed as Forensic Speaker Identification." (Rose, 2002)

We can summarize all these definitions to arrive at their essence:
"Analyzing two or more than two recordings and deducting whether these particular recordings belong to a single person (which usually is one of the suspects in a criminal case or for a legal query) or not, is known as Forensic Speaker Identification."

In forensic speaker identification, one has to acquire a speech sample from an unknown speaker and compare it to the set of speech samples from known suspects. This unknown speech sample is usually termed as Question Sample. When the question sample shows unquestionable similarities to one of the speech samples of a suspect further enquiry can be made. Nowadays the applicability of Speaker Identification technology has been amplified from forensics to many other purposes. There are many kinds of locks, which only open once it hears a particular person's voice. The advancement in technology is helping in designing applications for speaker identification. For example, there are many applications in mobile phones which use an individual's voice to search for information, grant access to services as well as speech-to-text conversion.

1.2 Forensic Phonetics :

Forensic Speaker Identification is a part of Forensic phonetics, which is a practical application of phonetics for legal purposes. Phonetics can be helpful for many purposes, for example identifying a particular dialect on the basis of sounds produced by the
suspect. Every dialect is slightly different from another on the basis of its linguistic features and structure. Phonetic and phonological dissimilarities constitute is one of the differences which makes a dialect uniquely distant from other. For example, amongst the many varieties of Marwari, Brahmin Variety always uses the sound /o/ slightly nasalized where as other varieties lack this particular feature. This makes any Brahmin speaker easily distinguishable.

Different experts have different opinions regarding the accuracy of this field. Over the time forensic speaker identification has gone through many stages. Before 1965, recordings were not admissible in court. But gradually various countries have recognized their significance. In India voice recordings are admissible as evidence if they are supported by other evidences as well. So in a murder case if all the evidences are pointing towards one suspect and the prosecutor has a recorded evidence to support his or her findings, that recording will be admissible. But if it is only the recording which is available against a particular person, it is not admissible.

1.3 Voice vs Fingerprint

As mentioned above voice recognition has been a field with a lot of doubts Experts have been striving to achieve the level of accuracy of fingerprint technology. Comparing voice samples to fingerprint is not a valid comparison. Because as mentioned by Cain, "Fingerprints have static images that don't change unless some damage is done to the fingerprint ridge detail. In voiceprints, these are dynamic qualities. For example, when you say good morning to your wife or husband early in the morning there will be some changes in the pitch of your voice and how you stress certain vowels, that's why we get several repetitions of a speaker's voice, saying the same thing, so we can find the range of variation" (Cain, 1995). This is just an example of an intraspeaker variation. The articulatory maneuvers used by a single speaker can drastically change the speech uttered by him/ her and if we are analyzing samples from various speakers (interspeaker comparison) the comparison would become very complicated. There are so many parameters to be taken care of before a voice sample is matched to its question sample. In fingerprint analysis the number of parameters is limited and very accurate. Along the course of time even the voice recognition accuracy has increased.

These recordings are gaining accuracy worldwide. The parameters to analyze a voice sample are being set by respective governments for their countries.
1.4 A quantitative introduction to the physiology of speech -(Lieberman and Blumstein, 1988)

1.4.1 What is Voice? How is it Produced :

The sound which is produced in a person's larynx and which is uttered through the mouth, in the form of speech or song is defined by the Oxford English Dictionary as voice. However, the forensic phoneticians do not lay importance to the sound created by the larynx as that sound maybe a scream or a laugh which is not used in forensic analysis but it is instead the speech that is analyzed and not voice itself. They analyze the speech units, i.e. vowels and consonants. Despite this the fact is that the experts analyze voice as well as several features of voice is encoded in these speech units.

It is very important for us to know how voice is produced because this helps in determining the quality of voice.

The expiration is responsible for the articulation of human speech. The process of expiration requires the air to flow up the trachea and exhale through mouth or the nose. While doing so the air passes through the larynx. The larynx contains the vocal cords which are parallel flaps of tissue extending from each side of the interior of the larynx wall. The vocal cords have a slit between them called the glottis. The vocal cords are very flexible. If the back ends of the folds are held apart, the glottis opens and as the back ends of the folds are brought together, the glottis narrows down to a slit and completely closes as the folds are pressed together. In this position, passage of air through larynx is prevented.

The process of phonation requires the vocal cord to vibrate in such a way that it produces voice. It is solely because of a reaction taking place between their elastic properties and the sub-glottal pressure involved that the vocal cords are set in vibration aerodynamically, the myoelastic-aerodynamic theory of phonation is based on the Bernoulli Effect. It provides an explanation of how the vocal folds actually vibrate. Soft tissues are in layers which later on form vocal cords. All the layers are different properties which makes it easier for them to move independently with a layer of elasticity, with the outmost layer providing the most degree of elasticity. The main task
of the vocal cords is to vibrate that leads to the production of voice. When the vocal folds are adducted during phonation, the air-stream is momentarily stopped by the vocal folds. Because of the tension with which arytenoids cartilages pull them together, the adduction of vocal folds takes place. At this point, sub-glottic pressure begins and builds up below the vocal folds. At this point, sub-glottic pressure begins and builds up below the vocal folds. The air-stream through the vocal folds then accelerates causing drop in pressure. This drop in pressure then sucks the vocal folds back together. Subglottic pressure then builds up again and the process continues. This cycle of vocal folds motion create the air compression and rarefaction that produces voice. (Ladefoged, 1993)

Figure 1.1: outline of some important vocal tract structures (Bickford \& David, n.d.)
The human anatomy influences many parts of speech output however the basic modules that have directly had an influence on the speech output are vocal chords and supralaryngeal vocal tract.
1.4.2 Function of Vocal Cords : its Forensic Relevance When there is an increase in tension in the vocal chords, it results in them vibrating. With increase in speed, the vibration occurs at a higher rate. That is why the frequency of vibration of the vocal chords decides its pitch of the speaker. This analysis is of great importance for forensic speech analysis. Hence if there is an increase in the frequency of vibration of the vocal
cords, the pitch of the speaker also increases. However, the pitch of a speaker can vary over a range. Therefore, we have both within-speaker variations as well as betweenspeaker variations in determining pitch of a speaker.

Vocal chords help in regulating the different types of phonation. By vibrating one's vocal cords in different ways one can produce different modes of phonation, examples are creaky voice, whisper etc. Different types of phonation are used to differentiate between words in many other languages. This further helps with the evaluation of forensic speech samples. In most of the criminal cases, culprits deliberately control their vocal cords to produce different phonation types, such as, creaky or breathy voice which may not be the way they normally speak.
1.4.3 Function of Supralaryngeal Tract: its Forensic Relevance: the supralaryngeal vocal tract extends from the vocal cords up to the lips. It consists of three cavities, the oral cavity, the pharyngeal cavity and the nasal cavity. The main speech function of these cavities is that they act like resonators. During the production of speech, especially in the production of vowels, the air in these cavities vibrates in a complex way that is determined by the shape of the cavities. This vibratory response largely determines the quality of the speech sound.

Sounds that are referred to as nasals is produced when the soft palate is lowered, the oral cavity is completely shut and the air is allowed to pass only through the nasal cavity. Whereas sounds called nasalized are produced when the soft palate is lowered and the air is allowed to flow through both the oral cavity as well as the nasal cavity,

Nasal consonants like [m] or [y] are forensically relevant because their acoustic characteristics are assumed to be among the strongest automatic speaker identification parameters. This is because the relative rigidity of the nasal cavity ensures a low withinspeaker variation in the acoustic features associated with the cavity's acoustic resonances, and its internal structure and dimensions are complicated enough to contribute to relatively high between-speaker variation. (Rose, 2002, p. 147)

Nasalized sounds are also forensically relevant. Nasalized sounds are of linguistic, extra-linguistic and paralinguistic importance. Linguistically, nasalized sounds are contrastive in some languages. Extra-linguistically, there are some people who speak
with a nasal twang. Paralinguistic relevance of nasalization can be seen in languages where it marks the status of a person in the society. In Bolivian language Cayuvava, nasalised sounds are used by an individual of lower status towards one of higher status. The task of this information is to help with speaker profiling.
1.4.4 Vocal Tract Length and its Forensic Relevance According to studies it can be seen that with the increases of length of the supralaryngeal vocal tract, the resonant frequencies (F1, F2, F3....) decreases and vice-versa. It means that the resonant frequencies vary with the length of the supralaryngeal vocal tract and they are inversely proportional to each other. Therefore, when a speaker has short supralaryngeal vocal tract, he/she will have high resonances in comparison to the speaker with a long supralaryngeal vocal tract, who will have low resonant frequencies. Thus, one can draw the conclusion that since average height of females is less than those of average males, than the females also have a supralaryngeal vocal tract that is shorter than the males. As a result we find that the formant frequencies of females are higher than those of the males. Which means that males have a longer supralaryngeal vocal tract which produces a lower formant frequencies.

This kind of variation can be found in the same sex groups too depending on the height of the speaker or, to be more specific, the length of his/her supralaryngeal vocal tract.

The acoustic output of a vocal tract is a unique function of the vocal tract that produces. In other words, one can predict the acoustic output if the dimensions of the vocal tract are already known. (Or, more accurately, since the vocal tract is usually in motion from one speech sound target to another, if we know the trajectories of the vocal tract over a short stretch of time we can predict the trajectories of the acoustics.) It is in this sense that the acoustic wave-form carries the imprint of the tract that produced it.

There is a possibility to establish a relationship between acoustics and human anatomy, however one needs to keep in mind the relationship between the length of the supralaryngeal vocal tract and the formant frequencies. Despite this, the relationship must be treated with caution due to several reasons.

The length of the human supralaryngeal vocal tract is not invariant to a speaker. It is highly deformable. Every speaker can alter the length of his/her supralaryngeal vocal
tract by lengthening or shortening it during the production of speech. This process requires the speaker to protrude the lips or to alter the vertical length of the larynx which in turn alters the length of the supralaryngeal vocal tract by a minimum of one centimeter.

The supralaryngeal vocal tract is highly plastic in nature. The variation that takes place in terms of the tract length is also very narrow among the individuals. Therefore, this results in low ratios of within-speaker and between-speaker variations.

Therefore, one cannot simply jump to the conclusion that if a speaker produces low formant frequencies, he/she has a longer supralaryngeal vocal tract. Instead it is also a possibility that the person may be habitual of producing sound by lowering his/her larynx.

Physiology is a science that deals with the functioning of biological systems. A physiologist would have to consider bones and muscles of human body with regard to their function.

The three physiological components of speech production:

1. The larynx: It is a reference point of a three-ways split. The primary role of larynx in the production of speech is to convert a relatively steady flow of air from the lungs into a series of almost periodic .i.e. quasi periodic puffs of air. The larynx does this by rapidly closing and opening the airway by moving the vocal cords together and pulling them apart. The puffs of air contain acoustic energy at audible frequencies. The larynx thus is a valve that can rapidly open and close, generating a source of acoustic energy. This acoustic energy characterizes phonation.
2. The sub glottal component: It consists of the lungs and associated respiratory musculature. The sub glottal component generates the airflow that powers speech production.
3. The third component is the superalyrangeal vocal tract. It consists of the airways above the larynx, which includes airways of nose, mouth and pharynx. During the production of speech, this acts as a variable acoustic filter that acts on the source of acoustic energy. It is a variable acoustic filter because the speaker changes the shape of his vocal tract as he speaks. The superalyangeal vocal tract
lets proportionately more energy at certain frequencies that are called formant frequencies.

All these components have the primary function of maintaining life. Speech production is not their primary purpose. Even though during the course of evolution some changes have occurred in human larynx, these show the adaptations that enhance the communications.

Human speech is thus, in part, structured by the constraints of physiological mechanisms whose primary function is non-linguistic. (Lieberman and Blumstein, 1988).

Phonation: The process of phonation involves an alteration of forces. The air flow out of the lungs first pushes the vocal cords apart, letting lots of air through. The vocal cords are then pulled together by the elastic properties of their stretched tissue and the suction generated by the flow of air through the glottal constriction. The force generated by the airflow through the glottal constriction, the Bernoulli force, is similar to the suction that occurs when a bus passes close to a car at a high speed. Phonation consists of the vocal cords rapidly opening and closing under the control of the laryngeal muscles, powered by the air flow from the lungs. The respiratory muscles can also exert control on phonation.

1.5 Formants

In speech, there are certain resonant frequencies of the vocal tract which are louder than the others. These loudest resonant frequencies are known as formant frequencies. Formants are easily recognizable as the peaks of the spectrum.

With vowels, the frequencies of the formants determine which vowel we hear and, in general, are responsible for the differences in quality among different periodic sounds. At any one point in time (as with spectra) there may be any number of formants, but for speech the most informative are the first three, appropriately referred to as F1, F2, and F3.

The first formant (F1) in vowels is inversely related to vowel height: The higher the vowel, the lower the first formant (and vice versa). The second formant (F2) in vowels is somewhat related to degree of backness. The more front the vowel, the higher the second formant (but affected by lip-rounding). The distance between F1 and F2 is a
better predictor of degree of backness in vowels. The closer F1 and F2 are to each other, the more back a vowel is.

1.5.1 Role of Formants in Speaker Identification

We have discussed earlier that every sound generates a pattern of waves, which are transmitted to our ear with the help of air molecules. Tunning fork is good instrument to demonstrate the activities involved in any sound production. When a tuning fork vibrates, the air molecules around it also vibrates, which results in the rapid vibration movement of these air molecules, all the way to our ears. This shows the process involved in sound production very clearly.

A sound wave is a combination of many properties, for eg. Amplitude (peak deviation of a pressure fluctuation from normal to atmospheric pressure), Frequency (the vibration rate of the air molecules, number of cycles per unit of time), pitch etc. Sound waves often consist only one frequency, this type of sound wave is called pure tone. Sounds waves containing more than one frequency is called complex tone. This kind of sound waves shows a complex wave form. Complex tones can also be further divided into periodic and aperiodic, former being a complex wave pattern, however complex it is repeating itself, and the later being a wave form in which the vibration is random and has no deductible pattern.
In a speech sample, we look for a periodic wave form which is usually the result of conversation, and try to avoid the aperiodic waveform, which is the result of the background voices or any other disturbance to the recording device. Every periodic wave form contains numerous frequencies. For the purpose of any acoustic enquiry the first three frequencies play a very important role. The lowest frequency, is called the fundamental frequency(F0). F0 is also represents the pitch of the person. F0 constantly varies during the speech production because while speaking, human voice tend to go high and low according to the situation. The later frequencies are called the harmonics of F0. F1 represents the vowel height and F2 is the indicator of the frontness and backness of the vowel. F1 is inversely proportional to the vowel height i.e. the high the is the low the F1 will be. On the other hand, high F2 represents the front vowel and low F2 is the indicator of back vowel. Lip rounding sometimes affect the values of F2.

1.5.2 Formants in vowel perception

Reasons for the prominence of F1 (height) in vowel system
This can be explained in two ways, acoustically speaking, a lower frequency usually shows higher amplitude. This results in lower peaks of energy to be first picked up by the vowel system. Human ears pick the F1 first, its only after that the later frequencies come into the picture. The second explanation is auditory, according to which, human ears prefer lower frequencies because it is picked up by them easily. So, if we take auditory phonetics into account, the frequency regions of different vowels will show a better distinction.

The importance of vowel formants has been mentioned earlier. This line of investigation has been there in the field for over a century now. Helmholtz(1885), synthesized the vowel sounds with the help of a resonator, by using the vowel formant frequencies. The importance of vowel formants was also shown by Fry et al.(1962), who demonstrated with the help of a continuum of synthetic vowels.

Soft palate and the lips are areas of mouth where most of the vowel articulation coincides with most of the consonant articulations. This might influence the vowel articulation. F2 articulation is also affected by this. The front back distinction only depeds on a very little acoustic space, i.e. Front, central and backness. Backness of vowels, as shown by many languages is highly influenced by the lip articulations (Neural, compressed (F2 raising) and Protruded(f2 lowering)). Both height and the backness are predicatable in many of the world's languages, with the help of lip rounding.
Other vowel properties;

1. Nasalization
2. ATR : because of toungue route and the entire phyrangeal cavity might influnces the vowel height. It can affect both F1 (lowering of F1) and F2 (slightly raising the F2)
3. Phonation processes; a) Creaky voice, b) Modal, c) Breathy voice- all these have a very noticeable effect of F1 and F2.

1.6 About the Research Work

Forensic speaker identification is a long and dull process. It includes the analysis of each sound uttered in the speech sample. The analysis of all these sounds is done on the basis of auditory and acoustic features. Yet again, there are a number of such auditory
and acoustic features. The task of the forensic linguist becomes very complex when a choice of parameters is to be made.

This research focuses on understanding the job of a forensic linguist and extracting such acoustic features which are more fruitful and which yield a more accurate conclusion.

Speaker identification involves the acoustic analysis of both consonants and vowels. The current research deals only with the vowels. Since we presume that voice has both unchangeable and changeable features, we will try to understand which of these features carry more information potential about the voice of an individual. By unchangeable features, we mean those features which are always a part of an individual's voice. It is because of these unchangeable features that even after a child becomes an adult and then moves towards old age, one can easily recognize him/her by his/her voice. One can assume that these unchangeable features of voice are genetically determined. On the other hand, our voice also has some changeable features which are acquired with time as we are exposed to a new language or society. The changes in voice are also due to physical and psychological factors. These are called acquired features.

The acoustic parameters that we will deal with include, pitch which is a voice parameter, formants which are resonance parameters and duration and amplitude which are acquired features. The aim of this research is to hierarchically arrange these parameters on the basis of their significance in the process of forensic speaker identification. But, we cannot do away with the auditory features completely as the acoustic analysis is preceded by auditory analysis. Therefore, auditory features will also be discussed in brief.

Pitch is considered to be a very important characteristic of voice since pitch is a result of the vibrations of the vocal cords. The rate at which the vocal cords vibrate depends on the mass, area and length of the vocal cords therefore it is different for different individuals. No two speakers can have the same set of vocal cords. The area, mass and length of vocal cords is determined genetically. How it will develop in a child as he/she grows under normal conditions is also determined genetically. It is possible that those features which are genetically determined remain with an individual for a longer period of time and they have the component of distinctiveness of a speaker. We can , therefore, presume that pitch is one such parameter which may carry those information about
voice which are genetically hard-wired. But, it is wrong to say that it is one of those parameters which remains unchangeable because with time and with exposure to different languages and different physical and psychological situations, we acquire many features. It is because of this reason that the pitch of a child is higher than that of an old person. Singers generally increase their pitch range with continuous practice. So, pitch might be one of those parameters which has the potential to carry genetic information about voice although it is not such a parameter which carries only genetic information about voice.

Formants are also counted amid strong acoustic parameters. They are produced by the resonance which is created in the laryngeal cavity, oral cavity and the nasal cavity during the production of vowels. The areas of the three cavities are also different for different people. thus, we can again presume that the areas of these cavities are genetically determined. Therefore, on the basis of this presumption we can state that resonance parameters also have the potential to carry information about genetically hard-wired features of voice. However, we must not forget that formants are not produced due to resonance alone. They also depend on the tongue movement and movement of lips and jaws. The movement of these articulators is an acquired habit and it can be modulated with ease. Consequently, we can state that formants carry both genetic as well as acquired features of voice.

Duration and amplitude are entirely acquired features. They are largely dependant on what kind of articulatory habits are acquired as a part of the process of acquiring L1 phonology. It also depends on individually acquired articulation habits as we know that every speaker of the same language does not have the same manner of articulation. By this we are suggesting that, parameters such as, duration and amplitude carry information only about the acquired features of voice, the L1 phonology of the an individual to which he/she has been exposed to.

As a researcher, our work is to find that which of these parameters carry genetically hard-wired information about voice, and whether they are strong parameters for speaker identification or not and which of them can yield accurate results so that voice recordings can gain greater acceptability in courts. Once this task is done, our next work is to arrange these parameters in a hierarchy on the basis of their significance. This information will be useful to the forensic experts as they will know which parameters
should be analyzed first in order to get greater accuracy in result. That will save both their energy and time.

1.6.1 Theoretical Framework

The ultimate goal of forensic speaker identification is to prove that voice of an individual is unique just like fingerprint and that it is a robust evidence which is reliable enough to decide cases in courts. We know that voice of an individual changes with time. It may vary due to physiological and psychological factors. The physiological factors may include age, health, smoking and drinking habits etc. Whereas, the psychological factors may include emotional state of an individual, situational factors such as extreme hot/cold weather, background noise etc. Speaker identification aims at discovering those features of voice which remain unaffected by these factors. We can say that those features which are inherent in voice of an individual are not subjected to change by physiological and psychological factors.

This argument leads us to the direction of associating voice with genes. It has been established that in humans, FOXP2 is one of the genes which is responsible for language. Similarly, we might not be completely wrong if we assume that there is any such gene which is also responsible for uniqueness of voice of an individual. In this area, a step has already been taken by Prof. Vaishna Narang and Dr. R. N. K Bamezai. In the volume III, Voices and Genes, of their project report " Mapping Language Mind and Brain: Studies in Biolinguistics" they have talked about the heritability of voice. Another such study " Voice Traits: Inherited or Acquired" was conducted by Steven D. Gray who examined the hypothesis that "vocal traits are determined by genes or environment" . However, whether voice quality of an individual is determined by his/her genes or not is yet to be established.

So, we understand that ultimately any research in speaker identification is done within this framework where the final goal is to establish that every individual's voice is unique, to find out those features which are responsible for this uniqueness and to discover a technique which can measure these features. Every research in speaker identification is a step ahead in bringing voice recordings closer to fingerprints as evidence in courts.
1.7 Objective and Scope of Research

1.7.3 Area of Study:

Speaker Identification has always been an area with numerous applications but the major component in any speaker identification study is to believe and try to prove that voice is unique for every individual. This proof is required to make speaker identification a valid field, so that voice samples can be treated as admissible evidence. Among the various applications of speaker identification, is speaker profiling. Just by hearing the voice we can deduce the age, gender, height etc. This type of profiling helps in a criminal case where the identity of speaker is unknown and the only known thing we have about speaker is his or her voice.

1.7.2 Scope for current research

Voice analysis has many parameters but the first step is to divide these parameters on the basis of auditory parameters and acoustic parameters. Auditory analyses consist of various features, for example: speaking mode of the speaker, speaker's respiratory form or pitch level etc. On the other hand, in acoustic analysis the focus is on the visual representation of the voice. When analyzing voice acoustically we focus on the frequency, resonance, and formant harmonics etc.

The current acceptable mode of voice identification is to combine both auditory and acoustic parameters. The current research is also going to combine both auditory acoustic parameters. Auditory analysis always precedes the acoustic analysis. For current research the set parameters for the auditory analysis will be analyzed first. After that we will move towards the acoustic parameters. The main aim in this research is to find out the one unique feature which can improve the accuracy of forensic speaker identification. After distinguishing proper auditory parameters, we will look into the acoustic parameters.

This research is going to help us develop a proper analyzing method for voice recognition. Vowel analysis has always been an important factor in forensic speaker identification. This research will contribute to the vast history of vowel analysis. By combining both auditory and acoustic parameters, the probability of improvement will increase.

1.7.3 Objective of Research

Many scholars have argued that changing the vowel pattern while uttering a sound is very difficult. Consonants can easily be modified but vowels are very speaker specific. Numerous researches have been conducted on the following topic. The objective of current research is to develop on the findings from previous researches by combining two different approaches together.

Many important researchers like Steven Gray, Dr. Vaishna Narang, Dr. Bamezai etc. have tried to test a hypothesis that the voice quality of an individual is determined by his or her genes. . The research revolves around the question that which features of voice are genetically hard wired and which of them are acquired. Both auditory and acoustic analysis will be conducted on the voice samples of the subjects to find out the answers to these questions.

If every individual has a unique articulatory maneuver, then the filters i.e. different articulators should always produce similar results. The formant frequencies will always have the similar results. The genetic features are like the shape of our vocal tract whereas the acquired features are like phonology of our L1, individual acquired articulation habits. Manner of articulation also changes with age. Socio-psychological factors can also affect the way a person utters a particular sound. There are so many factors which can affect our speech production. This research will try to check whether instead of these factors, there are any kinds of features which cannot be modified.

1.7.4 General research Question

We have discussed this field and all the problems associated with it in great extent. So far, the discussion has pointed out that Voice pattern of every human is unique. There are genetically hardwired features which makes it a unique .These genetically hardwired features have major impact on our speech production. No matter what our condition is, changing these features is not possible. When a vowel is produced there are three components which are responsible for its form; height, length and position. When we analyze a vowel acoustically, F1 represents the height of the vowel and F2 represents the position. The difference between F2 and F1 represents how back the vowel is. The current study will look deep into the vowels produced by Marwari speakers at different syllable positions and analyze the change in formant frequencies. There are many articulatory factors which can affect the production of a vowel.

Nasalized vowels are one of them. These vowels along with their articulatory modifications we will see whether their formant frequencies have changed. The features like pitch, tone and accent can easily be modified but a person cannot change his or her articulator. These formant harmonics are the representation of the filters which are affecting voice productions. These formant frequencies should be unchangeable. This study will try to identify formant values for vowels and see if we change the pitch, tone these formants remains constant or not. Phone recordings will also be taken into account in order to check the variations in formant frequencies.

The relevant research questions for the proposed dissertation are :

1. How do the genetically hardwired features make the voice pattern of every human unique?
2. What aspects of F1 and F2 are helpful in identifying language specific or variety specific sections of an ethnic group?
3. How does F0 measure help in increasing the accuracy of identifying these ethnic groups?
4. How do parameters vowel height, vowel position and nasalization can affect the identification process of the given ethnic groups?
5. Are the formant frequencies affected by the position of vowels (syllable positions)?
6. What is the role of F2 and F2-F1 in increasing the accuracy of speaker identification?

Hypothesis

The values of F2 and F2-F1 determine the position of vowels in the vocal cavity. Changing this position consciously is very difficult, which means that F2 and F2F1 should be unchanging for every individual. Considering the constancy of these measures (negligible change which is statistically non-existent), improvement in the accuracy of speaker identification is possible by checking for these. By looking at the acoustic analysis of speech data of two distinct ethnic groups of Marwari speakers, we will attempt to justify the hypothesis.

1.8 Structure of the dissertation

This dissertation is divided into five chapters followed by references and bibliography.

The first chapter is comprised of introduction to the research topic i.e., "Role of Formants, f1 \& f2 in Speaker Characterisation: A Study of Marwari speaking Monolinguals in Bikaner the chapter is followed by the second chapter i.e. a study on the literature already available on it which has been put under 'Review of Literature'.

It is followed by the third chapter which is 'Research Methodology'. This chapter gives an account of the available methodologies for research in forensic speaker identification. It also discusses the method and process of data collection adopted for the current research and the problems faced during this process.

Next comes the chapter on 'Analysis'. The whole chapter is dedicated to a nalysis of the speech samples using Praat. Various acoustic parameters have been measured in Praat and the speakers in the Suspect sample have been matched with the speakers in the Question sample. For every acoustic parameter used in the speaker identification process, the observations have been noted down.

This is followed by the concluding chapter which presents the result of the research conducted.

Chapter 2. Literature Review

2.1 History and Various Theories

2.1.1 Traditional " Articulatory" Phonetic Theory

People have been working on speech acquisition and identification for decades. Language labs were established before during world wars but their primary function was to teach second languages. It was Melville Bell (1867) who contributed the most in developing phonetic theory. His students later worked on in his theories and the sound spectrograph was first developed during the 1940s in Bell laboratories. Mellvile Bell's theory is known as Traditional articulatory theory. (Lieberman and Blumstein, 1988). Bell's primary concern was to find out the articulatory maneuvers so that he could teach to deaf people how to talk. He majorly focused on the articulators which could provide instructions for producing various sounds. Around the time Bell was working on his theory, the lack of XRay techniques and MRI techniques made a lot of his assumptions false. But some of the articulators which he observed were right also. For example the position of lips while producing the /u/ sound. (Lieberman and Blumstein, 1988).This particular sound can be found without any particular instrument. But there are many sounds whose production cannot be observed by naked eye. For example the velar sounds or the phyrangeal sounds. One of the examples given by Lieberman and Blumstein is the way in which larynx produces and regulates the phonation. The phonetic theory which Bell gave became the classic phonetic theory and helped a lot in various advances in phonetics, phonology and acoustics.

2.1.2 Vowels

Bell said that the phonetic quality of vowels is derived from the position and height of the point of constriction of the tongue. The height of the tongue constriction was supposed to be low for a vowel like /a/ and
supposed to be high for vowels like $/ \mathrm{i} /$ and $/ \mathrm{u} /$. The position of the point of constriction with respect to front-back was also specified. Bell's theory was used by Chomsky and Halle (1968) in their distinction of binary features. As mentioned earlier all of the Bell's presumptions were not accurate because of the lack of an understanding of the pharyngeal cavity's role in speech production.

Radiographic techniques made X -Rays of supralaryngeal vocal tract possible by 1919 (Jones, 1919). Russell (1928) made use of Radiographs of sustained vowels produced by speakers of American English. After these techniques were available, many linguists and physicists tested this theory and came up with two hypotheses.
1.Formant frequency patterns that differentiate many speech sounds are determined by the areal function of the vocal tract. A particular areal function will always result in a specific unique formant frequency pattern (Lieberman and Blumstein, 1988).
2. The X-Ray studies showed us that different speakers use different articulatory maneuvers to produce similar phonetic contrast.

2.1.3 Quantal Theory of Vowels

Stevens (1972b) introduced the term quantal factor with respect to the acoustic signals used for vocal communications. Stevens (1972b) stated that certain speech sounds are more distinctly recognizable than the others. He focused on three major vowels, [i], [u] and [a]. Acoustically speaking for [i] the second and the third formants, F_{2} and F_{3} are both high; [a] has low, F_{2} and F_{1} is high whereas $[\mathrm{u}]$ has a low, F_{1} and F_{2}. Articulatory and Acoustic analysis have shown that these vowels are the limiting articulations of a vowel triangle which constitutes a Language-universal.

And all these three vowels have well defined spectral properties. A central spectral peak occurs at the above 1 KHz for[a], a High frequency spectral peak occurs for [i] and a low frequency spectral peak occurs for [u].
2.2 Brief overview of speech research after 1950s.

The second half of the twentieth century was the pioneering era for speech research (Gunnar, 2004). Gunnar Fant in his paper 'Speech research in historical perspective' has extraordinally classified various stages of speech research in four parts.
1.1950-1965- Fant stated this time as a pioneering era for speech research. The first part marks the beginning of interdisciplinary contacts i.e. when linguists started combining their research with physicists, biologists and various experts from other fields.
2. 1965-1980- In this second period computers had become a a very important factor for any laboratory, which marked the transition from analog to digital processing in all aspects of speech research, and was the foundation for text to speech synthesis and speech recognition.
3. 1980-1995-In the third period statistically oriented methods of speech processing, HMM and analog neural networks became standard tools for speech recognition and in man-computer dialog systems. This technology provided valuable tools for the visually challenged as well as for speech and language-deficient people.
4.1995-2004- Ken Stevens' book Acoustic phonetics was published in 1998 and has provided valuable insights for speech production researches. A main trend in the fourth period has been a shift towards speech technology applications from computer science, applied linguistics and psychology,.

The paper " Parson Authentication by voice : A need for caution" mentions the brief overview of the contemporary state of scientific knowledge and technological development in the field of voice identification. Paper states that even though there have been extraordinary scientific advancements in this area, the certainty of the accuracy of voice identification is still very limited. The current classification of the aural recognition procedures has been elaborated by the authors. It states that there are six things which determines the accuracy of the Aural recognition;

1. Familiarity with the speaker
2. Duration of the sample
3. Context
4. Contemporaneous samples
5. Lack of vocal stress and disguise
6. Training

Another article, " forensic speaker identification based on spectral moments", 2002 mentions different approaches used for speaker identification.

1. Long term approach : in this approach, the analyst observes and analyzes the average of acoustic features, like filter spectral coefficient, pitch, cepstral coefficient (Doddington,1985) for a very time. The overall result is then accepted as a final conclusion.
2. Use of Neural Networks to determine Speaker Drawback: Neural Networks require excessive amount of data needed to train the speaker models. In this approach when a new speaker enters, the entire neural network must be trained again.
3. Segmentation Method: this method compares speakers based on similar utterances and then measures differences that originates with speakers rather than the utterances.

Voice

" Communication has long been recognized as one of the most fundamental component of human behaviour." (Peterson,1958)
" The act of speaking is a very specialized way of using the vocal mechanisms. The act of speaking is even more so. Speaking or singing demand a combination or interaction of the mechanism of respiration, phonation, resonance and speech articulation. (Boone,1972)
"Voice play a musical accompaniment to speech, rendering it tuneful, pleasing, audible and coherent, and is an essential feature of efficient communication by the spoken word"

The sounds which humans use can be served at many level, less one percent of the sound produced by humans is useful for linguistic purposes, others give us many information, like the characteristics of speaker, both physiological as well as environmental. Voice carry both linguistics and non-linguistic functions. The degree of the importance of these functions depends on the language. For example, tonal language depends on the voice more specifically than the others.

The voice is a very important factor in speaker identification. Perkins (1971) identified that there are at least five non-linguistics elements associated with voice i.e. voice can give information regarding the sex, height, age and weight. Lass(1980) reported in his studies that it is possible
to identify the age, sex, race, socio-economic status, facial features, height and weight according based on the voice.
"The aspect of voice has received considerable attention and has been found to be useful in criminology. The ability of the voice to provide information regarding the speaker is from well perfected implicit code. (Voicers, 1964). This code is gaining importance, which is evident from the rapidly interest in voice printing, the telecommunication analogue of finger printing" (Perkins, 1971)

2.3.1 Voice and Personality

The relationship between voice and personality has always been dwelling with the minds of the reseachers. It was not before Stark Weather (1961), Ostwald (1963), Mankel, Meisels and Hauk (1964) and Rousey and Moriarty (1965) conducted several investigations with positive outcomes, to prove the relationship between Voice and personality of a person. Fairbanks
$(1938,39,41,66)$, Pronovost (1938) and Huttar (1967) showed that there is direct connection between a person's voice and his or her emotional condition.

2.3.2 Voice and Physiology

Voice can also reflect the physiological condition of a person. For example, a very slow or weak voice can be an indication of bad health, a nasalized voice can reflect person suffering from cold.

Other than these factor a person's voice can also reflect the shape of their articulatory system, their respiratory, phonatory and resonatory mechanisms. A specific abnormality or distinguished feature in any of these might result into a very unique speech production.

An attempt was made to identify the relationship between physiological condition and voice utterance. Numerous studies was conducted, where
infant cries were analyzed. (Blinik,1971; Fisichelliv,R et.al.1963,66; Illingworth,1981; Indira,N 1982). These studies proved that it is possible to identify abnormalities in the neonates by analyzing their cries just after birth and a few hours after that.

2.3.3 Voice and Race

Studies have shown that it is possible to identify the race of an individual's race (Stroud,1956; Hibler,1960; Dickens and Sewyer,1962; Larson and Larson,1966) . An individual's socio-economic background, their personality, region specific identity and even the facial features can be associated with their voice features.

2.3.4 Voice and Sex

Identifying speaker's sex is one of the most easy and common usage of speaker identification. But, even this has many variables. The male speaker might have a high pitched sound or a female speaker can have a very masculine sound. There are some cases where speakers often try to produce a mimicry of the sound, which, if analysed can give mixed results. To ensure the sanctity of the results, voice analysis is often done using auditory and acoustic analysis both. For the purpose of speaker's sex identification studies have often used, voice-less fricatives, isolated spectral noise and whispered vowels (Schwartz, 1968; Ingerman,1968; Colemon, 1971). All these studies have shown that speaker's sex can be determined accurately(dennis, 1980). The result of (dennis, Ingressano, Gray Weismer and Gordon H. Sehucker, 1980) study on sex identification is children has shown that vocal tract resonance characteristics give us most accurate result for speaker's sex perception.
"In a study of spontaneous speech of five and six year old children, Murray (1975) - Listeners, were able to identify the speaker's sex with 71 to 78% accuracy for male and female separately". (Dennis, 1980).

Sachs (1973) found that 81% of adult speaker identification was correct. Fundamental frequencies in males was significantly higher than in females. For vowels, /i/ and /u/ lower formant values were seen in males than that
of female voices. They concluded that the correct results are not based on fundamental frequencies then the difference in the formant frequency values of male and females.
2.4 Speech Acoustics: Source-Filter Theory
"Acoustics Theory of Speech Production" (Fant,1960) came up with a new theory, which was later named as Source-Filter Theory.

This theory explains the acoustics of voice in terms of the vocal mechanism that produces them. It is a received theory that is largely responsible for 'raising the field of acoustic phonetics toward the level of a quantitative science' (Stevens, 2000). Sourcefilter theory is yet to be falsified.

It has two components- a source of energy and a filter which modifies that energy. The theory relates acoustics to production in terms of the interaction of these two components.

The larynx is the source of energy input in the production of oral vowels. The production of voice takes place due to the structure of the vocal cords, the air-stream mechanism and the Bernoulli's effect. The structure of the vocal cords, the process of phonation and the Bernoulli's effect behind the process of phonation has been discussed in detail under the section "what is voice and how is it produced?" The air-stream is initiated by the lungs and gets modulated by the vocal cord activity. As the air flows through the glottis, the vocal cords start oscillating. The cords come together, stay together for an instant, and then come apart. The rate at which which the vocal cords vibrate is called the fundamental frequency. The overtones that are produced along with the fundamental frequency are called harmonics.

After the vocal cords start oscillating, the process of abduction and adduction goes on. This cycle is then repeated as long as the aerodynamic and muscular tension conditions for phonation are met. As a result of this, a sequence of high velocity jets of air is injected into the supralaryngeal vocal tract. This makes the already present air in the supralaryngeal tract vibrate. The three resonance cavities, pharyngeal cavity, oral cavity and nasal cavity act as a filter. The frequency and the amplitude at which this air vibrates depend on the shape of the container which is the supralayngeal vocal tract.

The supralaryngeal vocal tract, which contains the oral cavity, the nasal cavity and the pharyngeal cavity, acts like a tube which can produce resonance. Hence, when the air stream moves through this tract, it gets modified by the shape of these three cavities and produces resonant frequencies which is responsible for the quality of a vowel. This resonance leads to the formation of formants, F1, F2, F3...during the production of vowels. So, we can say that the source is the energy input to the system, and is associated with vocal cord vibration. The filter is associated with the shape of the supralaryngeal vocal tract, and modifies the source energy.

It has been mentioned earlier that the two components-source and filter are independent of each other. The independence of vocal cord activity and supralaryngeal activity permits the independent control of pitch through fundamental frequency, and of vowel quality (i.e. the production of different vowels) through formant frequencies. It allows us to say different vowels on the same pitch, and say the same vowel with different pitches. For example, we can change the first vowel in 'faster' and make it 'foster'. But, when we utter 'faster' at different pitches in sentences like, 'I ran faster than him' and 'do you want me to speak faster', there is also a difference.

The independence of these two components can also be seen in the articulation of consonants. For example, in production of the alveolar plosives [t] and [d], the filter, or supralaryngeal vocal tract, is the same for both consonants with constriction at the alveolar ridge, but in [d] the vocal cords are vibrating supplying a periodic energy source at the glottis, while in [t] the cords are not vibrating, and there is no periodic energy source at the glottis. (Rose, 2002)

We must now recollect the factors which are responsible for uniqueness in human speech, as suggested by Cain. The first factor takes into account the shape and size of the vocal cords and the resonators, i.e., oral cavity, pharyngeal cavity and the nasal cavity which are different for different people. The second factor which determines the uniqueness of human voice is the manner in which the articulators produce speech. Cain has tried to capture the physical component of human speech.

On the other hand, Laver talks about the social component of human speech. He has defined voice as a emblem of a speaker. He says that with the help of voice, we can not only communicate our messages from one person to another, but it also acts as our
individual, physical and psychological identity. It is a marker of our mood and it also conforms that we are members of a particular society.

What is a Spectrogram?

Now when we know that human voice is unique for every individual, we try to analyze it. We can study human voices visually. A sound spectrogram is a visual representation of an acoustic signal. It is a convenient way to diagram the changes in a sound's spectrum overtime. In a spectrogram, the horizontal axis represents time and the vertical axis corresponds to frequency. The relative intensity of the sound at any particular time and frequency is indicated by the color of the spectrogram at that point. Darker areas show higher amplitudes in comparison to the lighter ones.

Chapter summary

Forensic speaker identification is about attempting to discriminate between samespeaker and different-speaker voice samples. Voices are characterisable in an exceedingly large number of dimensions, and, because it is likely that they occupy separate regions in multidimensional speaker space, it is also likely that speakers of a given language all have different voices. However, the reduction in dimension number, and increase in within-speaker variation that is imposed by the realities of forensic-phonetic investigation mean that discrimination is not absolute, but must be probabilistic. The probabilities refer to the evidence. That is, one attempts to say how much more probable the observed difference between questioned and suspect samples is, assuming that they have come from the same speaker, and assuming they have come from different speakers. Further limitations obtain as a function of the amount of questioned and suspect data available for comparison, and whether separate unknown samples can be pooled. These limitations all affect the strength of the evidence.

Chapter 3 Research Methodology

3.1 Introduction

This chapter is going to discuss the different approaches and methods used for the current research work. The chapter is going to discuss every important factor for the following research including the profile of the participants of this research. At the end of this chapter various ethical concerns concerning this research will be elaborated.

3.1.1 What is Research ?

There have been many definitions around about what is research? From " quest for knowledge" to " a scientific investigation" people have defined research in various ways. The word research is derived from Middle French "recherche", which means "to go about seeking", the term itself being derived from the Old French term "recerchier" a compound word from "re-" + "cerchier", or "sercher", meaning 'search'. Godwin Colibao defined research as "In the broadest sense of the word, the definition of research includes any gathering of data, information, and facts for the advancement of knowledge". John W. Creswell states that a "Research is a process of steps used to collect and analyse information to increase our understanding of a topic or issue". It consists of three steps: Pose a question, collect data to answer the question, and present an answer to the question.

All these definitions have one thing in common which is every single one of them states that research is a "search for new information".

Just like the definitions there are enormous numbers of viewpoints on how a research should be conducted and how what kind of research it should be?

To answer these questions, the first thing a researcher should postulate is that what is the purpose of the current research. There can be infinite number of reasons to conduct a research. but there are certain general objectives to conduct a research which are mentioned below:

1. Exploratory or Formulative Research Study: To gain familiarity with the phenomenon or to gain insights into it.
2. Descriptive Research Study: to portray accurately the characteristics of an individual, a group or a situation.
3. Diagnostic Research Study: to determine the frequency with which something occurs or with which it is associated with something else.
4. Hypothesis testing Research Study : to test a hypothesis of a causal relationship between variables

3.1.2 Types of Research

I. Descriptive vs Analytical: Descriptive research involves a descriptions of affairs as it exists at present. The major point in this research is that the researchers has no control over the variables, he or she can only present what has happened or what is happening. In social sciences and business this kind of research is called Ex Post Facto Research. Some examples of this kind of research is current trends in market, the most spoken language etc. the methods involved in descriptive research are survey methods of all kinds. In analytical research on the other the researcher has to use the information available and analyze that information to make the critical claim regarding it.
II. Applied Vs Fundamental: applied research aims to finding a solution for an immediate problem faced by the society or any particular industry. Whereas fundamental research is concerned with the theories and generalizations. Research conducted for only knowledge's sake is fundamental research for example, research related to the study of human behavior etc. whereas if a research requires any particular kind of conclusions it is called applied research. Research to identify any particular trends which may affect the current marketing strategy is one of the examples of applied research.
III. Quantitative Vs Qualitative: Quantitative research is based on the quantitative measurements of certain characteristics whereas Qualitative research asserts the qualitative phenomenon. For example, if the research is trying to figure out the motives behind certain behavior it will be considered qualitative research. There are many techniques employed in qualitative research for example, depth interviews, sentence completion tests, word association tests etc.
IV. Conceptual Vs Empirical : Conceptual research is generally used by philosopher or thinkers to develop new concepts or theories in their areas or to reinterpret
the existing idea. This kind of research is related to abstract ideas or theories. The empirical research only accounts for the observations or experience, it often disregards the existing system or theory. It is a data based research. This kind of research comes up with the conclusions which can be further verified by experiments and observations.

3.2 A brief Historical Perspective on Methods Employed for Present Study

As mentioned in chapter one the current research in analytical study of the role of first three spectral peaks of the vowel spectrogram of a recorded voice. These three spectral peaks involve, fundamental frequency (F0) , F1 and F2. F1 and F2 have always been used to identify vowels. Even though F1 and F2 helps us a lot deciding between two vowels, but there are some occurrences when these two readings are similar for two different vowel.

The role of F0 in vowel recognition has been widely analyzed and discussed in many papers presented by the experts. Umeda and Teranishi (1966) showed that vocal tract length has to be correlated with the F0 to preserve the naturalness of the vowel quality. Fujisaki and Kawashima (1968) the perceptual boundary of F1 shifts upwards as the F0 is raised in Japanese $/ \mathrm{u} /-/ \mathrm{e} /$ and $/ \mathrm{o} /-/ \mathrm{a} /$ continua and that the boundary shifts are much larger when the F0 and the third formant vary concurrently. Fant (1974) reported that the same formant structure can result in the perception of two different vowels, depending on the F0. Scott(1976) found the perceptual boundary between /i/ and /I/ shifts towards /I/ when F0 increases. Traunmuller (1981) showed that the distance between F1 and F2 is critical in Bark to phonetic judgement related to the vowel openness in a Bavarian dialect. Di Benedetto ($1987 \mathrm{a}, \mathrm{b}$) also reported that perceptual boundary between /i/ and /e/ is affected by F0 in American English.

Analytical study of natural vowels also show that correlation between F0 and formants (Peterson and Barney, 1952) i.e the higher the F0s are the higher the higher the vowel formant frequencies. The analysis of the singers' voices also shows that the they adjust their jaw opening in accordance with the F0 so as to preserve the vowel intelligibility. Gottfried and Chwe (1986) showed that the octave change in F0 show less than 10\% increase in F1. All these studied both perceptual and analytical shows that F0 plays a very important role in vowel recognition.

Syrdal (1985) and Syrdal and Gopal (1986) , reported that the Bark- Difference scale (a frequency scale on which equal distances correspond with perceptually equal distances. Above about 500 Hz this scale is more or less equal to a logarithmic frequency axis. Below 500 Hz the Bark scale becomes more and more linear.), F1-F0 vs F3-F2 offers a powerful and comprehensive means to classify vowels.

All these studies show the three main important features in vowel recognition studies. The present study is going to further address the importance of these three features and how these features can help us improvise the field of Speaker identification through recorded voice.

The next section is going to describe how this current research has been organized.

3.3 Overview of Research Design

the current research was conducted using Sampling Method i.e a small group of participants were selected and they were considered as the representatives of their respective communities. These participants were selected on the basis of many parameters. Their age groups, their knowledge of the given variety of the language, their knowledge of the dominant language in the area they belong to, their literacy etc. were the few of the parameters which affected the selection of the participants.

3.3.1 Tools and Instruments

There are many data gathering tools which can be used for the purpose of a research. Selection of the proper tools can help a researcher to test his or her hypothesis for the given research. For the purpose of this research two word list were constructed. Since all the participants understood the dominant language i.e. Hindi ; word lists in Hindi were developed and they were asked to translate those words in their own variety of Marwari. The major goal of this questionnaire was to acquire words which involved a specific vowel, in between two stop consonants. A pilot study was done with four participants in order to create a very specific word list. The pilot study involved a long conversational interview of the four participants, two from each community, and specific words(which served the purpose of the current research) were chosen from their conversations. Since there were many constant variables which needed to be satisfied in order to conduct this experiment, the word lists only involved those words which had the translations resulting a vowel in a medial position ,between two stops.

For example the participants were requested to translate the word $/ \mathrm{k} /$ (crow) which gives the translation of $/ \mathrm{kaglo} /$ the $/ \mathrm{a} /$ vowel here is in a nuclear position having $/ \mathrm{k} /$ as an onset and $/ \mathrm{g} /$ as a coda. The main purpose of this study is to acknowledge the importance of the first three formants of a given vowel sound and the test whether the difference between them remains constant. Since the two different varieties were taken, two separate word lists were created.

The word list was presented to the participants in the interview method. They were asked to translate the word in their own variety and speak it clearly in front of the recording device. To ensure the clarity of the sound each participant was asked to utter the translated word three times.

Instrument : the instruments used in the current study are:

- A portable voice recorder (Sony Stealodeal SO-ICD-PX440 4 GB Voice Recorder (2.5 inch Display)
- Praat Analyzer

3.3.2 Data Elicitation

As mentioned in chapter 1, this is study of two different varieties of Marwari spoken in Bikaner District (Rajasthan, India). These two varieties are based on the caste distinction of the speakers i.e. Speakers from a particular ethnic group (Caste) speaks a distinct variety of Marwari. Two different Ethnic groups chosen for this study are, Bishnoi and Brahmins. The study was conducted on the data acquired from the speakers of these two ethnic groups' recorded voices.

For the current research, which is determining the role of F0, F1 and F2 in speaker identification, a primary data was collected from these two ethnic groups. There are many methods which can be used for primary data collection, observation method, interview method, through questionnaire or schedules etc. For the current study a questionnaire based on the observational data collection method was developed. This questionnaire was later answered by the participants in through the help of interview method.

As mentioned before, this study is done in the domain of Forensic speaker identification, the current study incorporates a question sample or a subject sample. This is an analytical data based study which will use the observations and conclusions to help the field of Forensic speaker identification, to become more reliable. The
purpose of this research is to highlight a particular feature which can be very crucial in speaker identification.
The task of data elicitation was done in Bikaner district. Voice samples were collected from 40 speakers, 20 from each ethnic group. The choice of Finite universe was made for the collection, which is in line with the forensic enquiries. The choice of 40 speakers was to create a rich corpus for an analytical enquiry.

To start any research the first step is to establish the research plan. This plan we help the researcher to deal with all the possible confusions and failures in the given research. The first step to start a research is writing the objectives and the scope of research. Every other possible step comes after the researcher knows, what he or she is try to find through the research. Kothari (2004) in his book Research Methodology has laid down 10 questions which must be answered by the researcher for carrying out any research. The questions are given below :
(i) What is the study about?
(ii) Why is the study being made?
(iii) Where will the study be carried out?
(iv) What type of data is required?
(v) Where can the required data be found?
(vi) What periods of time will the study include?
(vii) What will be the sample design?
(viii) What techniques of data collection will be used?
(ix) How will the data be analyzed?
(x) In what style will the report be prepared?

Any research design works as the blueprint for the collection, measurement and analysis of data. The following section, thus, discusses the answers to the above questions in order to prepare a proper overview for the current research.

The present research, as mentioned in the title "Role of F0, F1 and F2 in Forensic Speaker Identification", deals with the acoustic aspects of speech sounds in the domain of Forensic Speaker Identification. The research methods employed by the previous researchers have reviewed and followed by the researcher for the present study. After reviewing all the previously used research methods a research design has been constructed which suits the needs of current research.

The main goal of forensic speaker identification is to compare two sets of samples together, the first set is called question sample, i.e. a set of speech sounds acquired by the investigator, from the offender. Question samples are usually acquired without the knowledge of the offender, so it might contain long conversation, telephonic or face to face. The Second set of data is called suspect samples, Suspect samples are obtained by the researcher, in a artificially modified environment. A predetermined conversation or a questionnaire is developed by the researcher which is usually based on the question sample. Obtaining suspect sample is a complicated job, because investigator first has to listen and notice all the particular speaker specific features from the question samples. Then a script is prepared which might contain some words or the entire conversation from the question sample. This script should contain all the peculiarities which will help us mark the speaker specific verification. These peculiarities might contain, pitch, any specific word or any other specific feature of the offender. In India, the CFSL, which is the major forensic laboratory that deals with most gruesome and important criminal enquiries of the country, the script which is prepared as suspect sample contains the entire question sample repeated. This kind of script is avoided by lots of researchers because there might be cases where the suspect, who himself/herself is the offender modifies his or her speech after hearing the exact conversation again. For example, while giving the voice recording as a suspect the real offender might make his or her voice more nasalized, which will make it harder for the researcher to determine the perfect match between two samples.

To avoid any manipulation sometimes investigators create an environment where the suspect has to interact with others, so that an environment is created where they talk fluently and without any modification. In the present study such environments were created by the researcher. While getting the Suspect sample, the researcher also asked them some personal questions about their lives. The Question Sample for the current study was retrieved this way. The speech produced in this manner is often spontaneous and has very little modification risks.

Once the sound recordings are obtained, Question sample and Suspect Samples are fed to the computer for further analysis. Every institute has their own software for analysis purposes. For the purpose of current study Praat was used.

Then the process of voice analysis begins with auditory analysis being the first stage of it. For the purpose of auditory analysis, researcher listens to the samples carefully and
then marks the auditory feature step by step. These auditory features are later compared to the question samples. The features used for auditory analysis usually includes, pitch, loudness, speech rate, fluency, nasality etc. The current study used the standardized list provided by the CFSL for any forensic linguistic investigation. The table of the auditory features made by CFSL is given below;

S.No.	PARAMETERS	EXHIBIT	EXHIBIT	EXHIBIT	EXHIBIT	EXHIBIT
1.	Sex					
2.	Speaking Mode i. Disguised ii. Normal					
3.	Stylistic Feature i. Simple ii. Polite iii. Emotional iv. Expressive v. Ironical					
4.	Respiratory Form i. Nasal ii. Oral					
5.	Pitch Level i. High ii. Normal iii. Low					
6.	Striking Features of Voice i. Coarse ii. Hoarse iii. Creak iv. Pressed voice v. Normal voice					
7.	Fluency i. Hasty ii. Very fluent iii. Normal fluent iv. Sluggish v. Stopping 					
8.	Understandability i. Easily ii. Hard iii. Hardly					
9.	Loudness i. Very loud ii. Loud iii. Medium iv. Soft					
10.	Speech Rate i. Very fast ii. Fast iii. Medium					

	iv. v.	Slow Very Slow				

Table 3.1 Parameters For Auditory Analysis

The auditory analysis provides an idea about identical or atleast similar sounding utterances in both SS and QS (For the purpose of economy, the current study is often going to use SS for Suspect Sample and QS for Question Sample). The similar sounding utterance are further taken for the acoustic analysis. In acoustic analysis, spectrograms of extracted utterances are acquired with the help of voice analysis software. As mentioned earlier, Praat was the software used for the present study. After this SS is compared with the QS for different parameters set by the researcher. These parameters can be, fundamental frequency, formant frequency distribution, amplitude, duration, etc. Acoustic analysis makes a very vivid and detailed comparison of two different samples, which makes it scientifically reliable.

The probability of two voice samples belonging to the sample speaker increases when the two spectrogram match with each other and on the other hand, the probability decreases for the dissimilar spectrograms. The speech analysis research is still not that developed, that one can be 100 percent sure about the accuracy of the results.

The methods used in the current study was learnt by the researcher from the Central Forensic Science Lab, New Delhi. The researcher worked with the CFSL for a limited time period and learned how to conduct any forensic investigation. While solving the cases for CFSL, she learnt a great deal from their team. The difference between the methods used in the CFSL and the current is research is that for suspect sample, CFSL sometimes provides the entire copy of the script to the suspect. There are some cases where suspect refuses to provide the samples after looking at the exact same conversations, or sometimes they might intentionally start modifying the speech. So, to avoid these modifications a spontaneous conversation was choses and vowels were extracted from it.

The research design for the current study was same as mentioned above. Both Suspect Sample and Question samples were obtained and later compared by the researcher. The voice samples were acquired in the mp3 format, which is readable in Praat and later the extracted sounds were saved as 32 bit .wav files. The "Sony Stealodeal SO-ICD-PX440 4 GB Voice Recorder" was used for recording the data. All the QS files were jumbled by another fellow linguist, to avoid any biases since the recordings were taken by the researcher herself and she knew which question sample belonged to whom. The
extracted question sample were jumbled and assigned new names by the same fellow linguist. The aim of the current study is to identify the Suspect Sample and match it to respective Question Sample. Both auditory and acoustic analysis methods mentioned above are going to help in this investigation.

Difficulties Faced in Data Elicitation :Data collection was a tedious task for the researcher. She faced problems in convincing people to participate in her data elicitation process. There were also a few people who grew skeptical about their voices being recorded, on the other hand there were some who were excited on this very idea of their voice being recorded and used in a research work. Since the Bishnoi Participants belonged to rural areas, letting them know why the following research is being conducted was very difficult.

A common question that the researcher faced was "what will you do with my voice sample?" It was not an easy task for the researcher to satisfy the participants with an answer because the participants failed to understand what a spectrogram is. They were also very skeptical about the fact their voice was being compared to this particular variety Most of them had probably no idea about formants, resonance, fundamental frequency, etc. The researcher tried to explain to them in a simplistic way, but they were keen to know the technicalities involved in a forensic speaker identification process. As a result, many people simply refused to participate in the research.

The researcher met more and more people and tried to convince them. Finally, she managed to collect data from 40 participants.

The voice samples were to be recorded under controlled conditions. Hence, all the voice samples were recorded in a closed room with fans and mobile phones switched off. The researcher received immense support from her mother and her friends in looking for subjects for her research. Though she was a little nervous before the recording session, it was a proud moment for her when the participants exclaimed with wonder that such research was being carried out by a girl on their variety. The participants showed great excitement and enthusiasm which helped in motivating the researcher.

It is not that only the researcher was nervous, but the participants too grew very nervous before the recording sessions. The next problem was to ask them translate the word list in Marwari. Some words chosen by the researcher were very variety specific and out of use by the current youth. The participants being above forty, knew those words but were either hesitant or laughing at them the researcher tried to calm them down. She
explained it to them that laughing in between the recording might affect the quality of voice, so please stay as calm as possible while the recorder is on.

3.3.3 Selection of the participants

Rajasthan is located in the western side of india. This state of india i nhabits large groups of different religious groups speaking different varieties of Marwari. But in this work the focus is on two varieties that is the brahmans and the bishnois.

Bishnoi or "Vishnoi" is a religious group that is different from other groups in terms of language and religious customs that they follow. They are also referred to as nature worshippers. They have to follow 29 tenets which was prescribed by Guru Jambheshwar, the founder of this group. These tenets were documented for which the Nagri script known as the Shabdwani was used. This script has 120 shabds. These tenets are formed keeping in mind certain basic rules like out of 29 tenets 10 of them deals with personal hygiene and how one should maintain good health of one's own and seven tenets talks about healthy social behaviour. The remaining eight tenets directs towards ways to preserve bio-diversity and encourages good animal-husbandry i.e. ban on killing animals and cutting down of green trees and providing protection to all kind of life forms. The community also makes sure that when they use firewoods then they are devoid of small insects. They are also prohibited from wearing blue clothes as they are dyed by cutting a large quantity of shrubs. This group is also known for playing the most important part in Chipko movement where young or old men or women, married or unmarried stood to protect the trees.

Brahmins are another religious group that speak the Brahmin variety of marwadi. This group is involved into worshipping and performing spiritual rites. During the British raj these groups were formed. The brahmins secured the number one slot in the table. The brahmins are further known by different names like Dadheechs, Pareeks, Saraswats etc. Though initially they were involved into religious rituals in temples but later they were found involved into other sectors like agriculture, warriors etc. The Rajasthani Brahmans are involved into either religious ritual or they get into academics.

All the participants selected for the current research are monolinguals. All these participants have spoken that particular variety of Marwari throughout their lives. Everyone one of them falls under the age group of, above 40. This particular age limit was established because, the frequent migrations and other kinds of interactions with the other ethnic groups has resulted in a new variety of Marwari in the present youth. People who are above usually didn't get affected by this change and still protect their monolithic variety of Marwari.

Ten male and ten female participants were chosen from each ethnic group. Even though all these participants are from Bikaner district, most of the Bishnoi speakers still reside in small villages of the district, whereas the Brahmin participants have migrated to the main city.

Most of the male participants were high school graduates whereas most of the female participants are uneducated or have acquired primary level education.

There were many parameters which were required for the purpose of the participant selections. These parameters are given in the following table.

Inclusion of the Participants	Exclusion of the Participants
1. Age : above 40	1. Multilinguals 2. Gender : both 3. Education : primary (female) Secondary (male)
4. Highly educated (which includes 4. Ethnicity : Bishnoi and Brahmin matriculation)	
5. Place : Bikaner	3. Age : Below 40

Table 3.2 Participants Information
A survey questionnaire was given to the participants prior to the interview. This questionnaire was created in order to acquire the background information on the participants. The questionnaire involved a table to check their linguistics background, a series of general questions about their personal backgrounds, involving whether they belong to a rural area or an urban area, which ethnic group they belong to, their educational qualifications etc. The questionnaire is included in the appendix section of the current research.

On the basis of this a participant background information were acquired from them. These Information are summed up in a tabular form and attached to the appendix section of the research work.

3.3.4 Data Assessment

In the case of experimental data or a survey, researchers has to depend on the estimation of the values of known parameters of the subjects and deduct a hypothesis out of it in order to draw some inferences. Analysis can be categorized as descriptive analysis and inferential analysis. Descriptive analysis is largely the study of distributions of one variable. For example, in some linguistic studies, researchers try to find the availability
of a particular feature in a given age group and its distribution among male and female. This feature can have different variant in different groups, for example, the usage of the colloquial word 'Yeah'. It has been noticed that the word 'yeah' has different representations in different age groups, which varies from 'Yes' to 'Yo'. This a unidimensional research aims at finding only a specific variable or only one type of a variable among a group of speakers, among people of different age groups, social class, or any other group. When the research is done in respect of two or more than two variables respectively it is called bivariate or multivariate respectively.

Sometimes, research requires that variables are compared or correlated to figure out the amount of correlation between two or more variables. Such analysis is called correlation analysis. In some other cases, researchers look into the effect of a variable on other dependent variables. It is thus a study of functional relationships existing between two or more variables. This type of analysis is termed Causal analysis. This analysis can be termed as regression analysis. Causal analysis is considered relatively more important in experimental researches, whereas in most social and business researches our interest lies in understanding and controlling relationships between variables then with determining causes per se and as such we consider correlation analysis as relatively more important.

The present research is largely correlational analysis, where the researcher is interested in gauging the accuracy of results found through different variables. the correlation analysis of the data is involved here as we try to establish the relationship between different parameters in order to find which parameters together will help in finding more accurate results. Further, we have discussed the analysis process in brief here and we will describe it in detail in the next chapter.

Analysis of speech samples for speaker identification is generally done at the word level.But for the present study the analysis was done at the syllable level. So, there was a need for some software that could help slice sentences and words into disparate audio files. The software, namely Praat, have the option of clipping audio samples into small files. Therefore, It was used to clip out the particular vowels from their words. The words selected for comparison will be extracted from the sentences and will be saved as .WAV files. Praat will also be used for generating spectrograms of the extracted words and with the help of the software, voice, resonance and manner features like pitch, frequency, duration, intensity, formant values and others will be measured. A
comparison of these features, as the researcher believes, will help in identifying the relationship between the voice, resonance and manner features and this may have implications for speaker identification. In the next chapter, we have discussed the process of segmentation of sentences, words, sounds and their analysis using Praat in detail.

3.3.5 Ethical Considerations:

While conducting the data, collection process a consent form was prepared by the researcher to ensure the ethics of the research process. The participants were supposed to sign the consent form before any kind of data was collected from them. The copy of the consent form is attached to the appendix section of the research. The form talks about the purpose of the research and it also explains the role of the participants in the research. To ensure the identity of the participants in the research, a close has been added which promises them that their identity will be kept confidential from everyone. It also assures them that their speech samples will only be used for the academic purposes. Researcher made sure that the informed consent was taken from each participant before collecting any data.

Participants were not offered any monetary incentive to avoid any wrong expectation or modification of the sample. All the participants were aware at the time about the motive of the research and that this research was solely based on the academic grounds, and would not be used to acquire any kind of profit.

Participants were informed beforehand that they can withdraw their participation from the research any time they want and that it is completely voluntary work. They were also informed by the researcher that they can withdraw their data or participation, if they had any objection with the work or the way research was being conducted.

Though this is not stated in the consent form, the participants were informally conveyed that they could ask the researcher not to use their data if they had any objection to the use of their voice samples.

The contact details of researcher's supervisor were also shared with the participants, to make them feel confidence on the subject and the researcher and she asked them to contact her supervisor, if they had any issues with any aspect of the research. The next chapter is going to examine step by step analysis of the voice samples collected from 40 speakers. The acoustic parameters which include, pitch, and manner parameters, will be listed down and their values will be measured with the help of Praat
for different speakers. The following chapter also gives a detailed analysis of each acoustic parameter and discusses their information potential. On the basis of these parameters, an attempt will be made to identify the speakers in the Suspect sample and to match them with the speakers in the Question sample. The accuracy with which these parameters identify the suspects will help us answer the importance of F1 and F2 in forensic speaker identification.

Chapter 4 Analysis

This chapter includes the auditory and acoustic analysis of the voice samples acquired from the participants. The samples were analysed on the basis of auditory parameters set by CFSL, by another fellow Scholar, Miss Stuti Bhagat, who after marking the characteristics of every participant, jumbled the data altogether. This was done to ensure that no further biases were involved in the given research. Since the researcher, herself collected the entire data set, she knew what was said by which speaker, So, jumbling of the data helped her avoid these factors.
After auditory analysis, a match set for each participant was created, which involved one question sample and one suspect sample. It was hypothesized that the particular SS belongs to the respective QS.

Acoustic Analysis was conducted to check the accuracy rate of auditory analysis and it also helped making the data more scientifically presentable.

4.1 Pilot Study

A pilot study was conducted on four people, two from each variety; one male and one female. Participants were asked to translated words from Hindi basic word list given to them, to Marwari. Each participant was supposed to translate the word in Marwari and then utter the translation three times. Out of these words, thirty-five words from each variety was chosen for further enquiry. Another set of vowel sounds were extracted from the same participants, from the conversational manner. These selections were made on the basis of the position of vowels. In every word, the vowel had to occupy the medial position where, it is both followed and preceded by a stop consonant. An auditory and acoustical analysis was conducted on the seventy words from the basic word list and the vowels extracted from the random conversations. As mentioned earlier, the first set of data, which is retrieved in a controlled environment, where the investigator has the control over all the variables, is called the suspect sample and the second set of data which is context dependent and cannot be controlled by the investigator is called question sample. Auditory analysis, which was conducted on the basis of chart given by Central Forensic Science Laboratory (CFSL), showed that the Brahmin variety has more nasalized and rounded vowels whereas the no nasalization was visible in Bishnoi variety. The Acoustical analysis showed that the in Both Brahmin and Bishnoi Variety the F2 values for each vowel from suspect sample showed the minimal distinction to the mean F2 value from the question sample. This
consistency was not visible in the other formants. A hypothesis was created on the basis of this enquiry. Which is given below;
"The values of F2 and F2-F1 determine the position of vowels in the vocal cavity. Changing this position consciously is very difficult, which means that F2 and F2-F1 should be unchanging for every individual. Considering the constancy of these measures (negligible change which is statistically non-existent), improvement in the accuracy of speaker identification is possible by checking for these. By looking at the acoustic analysis of speech data of two distinct ethnic groups of Marwari speakers, we will attempt to justify the hypothesis."

The hypothesis is going be tested in the present study, which as mentioned earlier is conducted on 40 Marwari speakers from two different varieties. The two varieties belong to different ethnic groups, Bishnoi and Brahmins.

4.2 General research Question

We have discussed this field and all the problems associated with it in great extent. So far, the discussion has pointed out that Voice pattern of every human is unique. There are genetically hardwired features which makes it a unique .These genetically hardwired features have major impact on our speech production. No matter what our condition is, changing these features is not possible. When a vowel is produced there are three components which are responsible for its form; height, length and position. When we analyze a vowel acoustically, F1 represents the height of the vowel and F2 represents the position. The difference between F2 and F1 represents how back the vowel is. The current study will look deep into the vowels produced by Marwari speakers at different syllable positions and analyze the change in formant frequencies. There are many articulatory factors which can affect the production of a vowel. Nasalized vowels are one of them. These vowels along with their articulatory modifications we will see whether their formant frequencies have changed. The features like pitch, tone and accent can easily be modified but a person cannot change his or her articulator. These formant harmonics are the representation of the filters which are affecting voice productions. These formant frequencies should be unchangeable. This study will try to identify formant values for vowels and see if we change the pitch, tone these formants remains constant or not. Phone recordings will also be taken into account in order to check the variations in formant frequencies.

The relevant research questions for the proposed dissertation are :
7. How do the genetically hardwired features make the voice pattern of every human unique?
8. What aspects of F1 and F2 are helpful in identifying language specific or variety specific sections of an ethnic group?
9. How does F2-F1measure help in increasing the accuracy of identifying these ethnic groups?
10. How do parameters like amplitude, vowel duration and syllable duration affect F1 and F2 in case of the given ethnic groups?
11. Is the formant frequencies affected by the position of vowels (syllable positions)?
12. What is the role of fundamental frequency in increasing the accuracy of speaker identification?

Hypothesis

The values of F2 and F2-F1 determine the position of vowels in the vocal cavity. Changing this position consciously is very difficult, which means that F2 and F2-F1 should be unchanging for every individual. Considering the constancy of these measures (negligible change which is statistically non-existent), improvement in the accuracy of speaker identification is possible by checking for these. By looking at the acoustic analysis of speech data of two distinct ethnic groups of Marwari speakers, we will attempt to justify the hypothesis.

4.3 Analysis

This chapter is going to discuss the auditory and acoustic parameters, which were used for the following study. As mentioned earlier, the following study is comparison of two varieties of Marwari, with reference to their question samples and suspect samples. A question sample was acquired by the interview method and a suspect sample was acquired on the basis of questionnaire provided to the participants in a quite environment. The present study tries to find out the importance of the F2 in Forensic Speaker Identification, in order to do that, a comparative method was developed, where each suspect sample was compared to the entire question sample and the nearest possible match was deducted.

As mentioned by the guideline of Indian Supreme Court, an auditory analysis was conducted first and then it was followed by the acoustic analysis. For the purpose of auditory analysis, the parameters provided by the Central Forensic Science Laboratory (CFSL) were used. Even though these parameters do not focus on sociolinguistics cues of the speaker, in order to avoid going off track, the preliminary analysis showed the Brahmin variety had more rounded and nasalized vowels. The sociolinguistic cues are avoided by the investigators because it has been noticed that these cues, such as tone, accent etc. can be easily be modified. Even though they are articulatory features, a conscious modification is possible for them. For example, a Bishnoi can speak with high intonation, which is a prominent marker of Brahmin variety. So, exclusively depending on the auditory analysis for the purpose of variety distinction is not reliable. This makes the acoustic analysis important. The second half of this chapter is going to deal with that. Since, the main aim of this study is to find out the importance of F2 in Speaker Identification, there are few parameters, which will play an important role in the current study. To determine the importance of F2, first the acoustic space charts for all the suspect samples and question samples were created and compared. Then to determine the role of F2, the values of F2, F2-F1, F3-F2 were tabulated and compared with the question samples, which were found to be the nearest match to the question sample and the previous results were re-examined. A separate comparison of F0 was conducted to see the effect of F0 on F2.

4.3.1 Auditory Analysis

During the auditory analysis, all the known sample i.e. The suspect samples were listed carefully and remarks were made by the listener. Since the research knew all the suspects personally, these remarks were conducted by two other different linguists, in order to avoid any predetermined biases. These biases can affect the remarks on suspects, in a way that the suspect might be more talkative or outspoken but while giving the recording he or she became more conscious. This kind of situation might result to researcher writing his or her own remarks, rather than being true to the recording. This problem was because the analysis was conducted by other linguists. The recordings were played for the researchers and they were asked to assign the auditory details given in the table for each participant. This analysis was conducted for both suspect sample and question sample.

The auditory analysis was divided into four tables. The first table represents the auditory analysis of known Brahmin speakers. The second table represents the Auditory Analysis of known Bishnoi Speakers. Both of these tables contain data from twenty speakers from each variety. The data is divided into ten categories, the sex of the speaker, Speaking Mode, Stylistic Feature, Respiratory Form, Pitch Level, Striking Features of Voice, Fluency, Understandability, Loudness, Speech Rate. The table is arranged in such a way that, the first ten speakers are male and the other ten speakers are females, for each variety.

The next two tables contain the question samples obtained by random conversations from each speaker. The third table, has all the question samples for the male participants, the forth table has the auditory analysis of question samples of all the female speakers.

The parameters designed by the CFSL, gives an extensive overview of auditory features of the speakers.

\cdots	\cdots	－	4	＋	ω	N	－	$\bigcirc \sim$
							¢	麘
EASILY	NORMAL	NORMAL	HIGH	ORAL	SIMPLE	NORMAL	M	－
EASILY	NORMAL	CREAK	NORMAL	NASAL	EXPRESSIVE	NORMAL	M	N
EASILY	NORMAL	CREAK	NORMAL	NASAL	EXPRESSIVE	NORMAL	M	ω
EASILY	FLUENT	CREAK	NORMAL	NASAL	POLITE	NORMAL	M	＋
EASILY	NORMAL	NORMAL	NORMAL	ORAL	EXPRESSIVE	NORMAL	M	u
EASILY	NORMAL	NORMAL	NORMAL	ORAL	EXPRESSIVE	NORMAL	M	9
EASILY	NORMAL	HOARSE	NORMAL	ORAL	SIMPLE	NORMAL	M	\checkmark
EASILY	HASTY	NORMAL	HIGH	NASAL	IRONICAL	NORMAL	M	∞
EASILY	HASTY	NORMAL	HIGH	ORAL	POLITE	NORMAL	M	\checkmark
EASILY	FLUENT	NORMAL	HIGH	NASAL	EXPRESSIVE	NORMAL	M	三
EASILY	NORMAL	NORMAL	HIGH	ORAL	EXPRESSIVE	NORMAL	F	$=$
EASILY	NORMAL	NORMAL	NORMAL	NASAL	EXPRESSIVE	NORMAL	F	む
EASILY	NORMAL	NORMAL	NORMAL	NASAL	SIMPLE	NORMAL	F	む
EASILY	FLUENT	NORMAL	NORMAL	ORAL	POLITE	NORMAL	F	\pm
EASILY	NORMAL	NORMAL	NORMAL	ORAL	SIMPLE	NORMAL	F	行
EASILY	NORMAL	NORMAL	NORMAL	ORAL	SIMPLE	NORMAL	F	σ
EASILY	FLUENT	NORMAL	NORMAL	ORAL	EXPRESSIVE	NORMAL	F	Ξ
EASILY	FLUENT	PRESSED	NORMAL	ORAL	POLITE	NORMAL	F	\varnothing
EASILY	NORMAL	NORMAL	NORMAL	ORAL	SIMPLE	NORMAL	F	\square
EASILY	NORMAL	NORMAL	NORMAL	ORAL	SIMPLE	NORMAL	F	N

9.	Loudness Very loud Loud Medium Soft	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\sum_{\substack{5}}^{\sum_{2}}$	$\begin{aligned} & \sum \\ & \vdots \\ & \\ & \end{aligned}$		$\frac{\sum}{\substack{7}}$	$\begin{aligned} & 3 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\frac{\sum}{\sum}$	$\begin{aligned} & 3 \\ & 0 \\ & 2 \\ & 2 \\ & 1 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \sum \\ & \sum_{n}^{n} \\ & \end{aligned}$	$\begin{aligned} & \sum \\ & \vdots \\ & \\ & \end{aligned}$	$\begin{aligned} & \sum \\ & \sum_{n}^{5} \\ & \end{aligned}$	$\stackrel{S}{0}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$				$\begin{gathered} \sum \\ \sum_{n}^{n} \\ \end{gathered}$
$\begin{aligned} & 1 \mathrm{zz} \\ & \mathrm{zo.} \end{aligned}$		$\begin{aligned} & \sum \\ & \frac{1}{2} \\ & \end{aligned}$	$\begin{aligned} & \sum_{\overline{1}}^{5} \\ & \stackrel{y}{n} \end{aligned}$	$\sum_{i=1}^{\sum}$	$\stackrel{5}{x}$	気	$\begin{aligned} & \sum \\ & =0 \\ & \text { in } \\ & \end{aligned}$	$\begin{aligned} & \sum \sum \\ & \stackrel{y}{\hat{M}} \end{aligned}$	$\begin{aligned} & \sum \\ & \sum_{i=1}^{E} \\ & \sum_{2} \end{aligned}$		$\stackrel{5}{\Sigma}$				$\sum_{i=1}^{\sum}$	$\begin{aligned} & \sum_{i}^{n} \\ & =\hat{y} \\ & \stackrel{y}{\mid c} \end{aligned}$	$\begin{aligned} & \sum_{i}^{n} \\ & =\hat{y} \\ & \sum_{n}^{n} \end{aligned}$		$\begin{aligned} & \sum \\ & \sum_{i=1}^{n} \\ & \hline \end{aligned}$		

Table 4.1 : Auditory Analysis of Known Brahmin Speakers (Brahmin Suspect Samples)

Observations:

1. The most important feature in this variety is that, many speakers had a nasalized voice. This feature is prominent in many Brahmin variety across the IndoAryan language families.
2. The loudness feature is medium for most of the speakers. Which is going to be an important distinction between Bishnoi and Brahmin variety.

∞	\cdots	0	4	+	ω	+	-	3
		(1)					¢	
EASILY	HASTY	HOARSE	HIGH	ORAL	EXPRESSIVE	NORMAL	M	\cdots
EASILY	HASTY	HOARSE	HIGH	ORAL	EXPRESSIVE	NORMAL	M	N
EASILY	NORMAL	NORMAL	HIGH	ORAL	EXPRESSIVE	NORMAL	M	\%
EASILY	NORMAL	PRESSED	HIGH	ORAL	SIMPLE	NORMAL	M	
EASILY	NORMAL	NORMAL	HIGH	ORAL	SIMPLE	NORMAL	M	\%
EASILY	NORMAL	NORMAL	NORMAL	ORAL	EXPRESSIVE	NORMAL	M	N
EASILY	NORMAL	NORMAL	HIGH	ORAL	POLITE	NORMAL	M	N
EASILY	NORMAL	NORMAL	HIGH	ORAL	EXPRESSIVE	NORMAL	M	\%
EASILY	NORMAL	NORMAL	HIGH	ORAL	SIMPLE	NORMAL	M	๕
EASILY	NORMAL	NORMAL	HIGH	ORAL	IRONICAL	NORMAL	M	\mathscr{C}
EASILY	FLUENT	NORMAL	HIGH	ORAL	EXPRESSIVE	NORMAL	F	$\stackrel{\sim}{\square}$
EASILY	FLUENT	NORMAL	HIGH	ORAL	EXPRESSIVE	NORMAL	F	¢
EASILY	NORMAL	NORMAL	HIGH	NASAL	EXPRESSIVE	NORMAL	F	¢
EASILY	NORMAL	NORMAL	HIGH	ORAL	EXPRESSIVE	NORMAL	F	Ψ
EASILY	NORMAL	NORMAL	HIGH	ORAL	EXPRESSIVE	NORMAL	F	出
EASILY	NORMAL	NORMAL	NORMAL	ORAL	SIMPLE	NORMAL	F	\%
EASILY	NORMAL	NORMAL	NORMAL	ORAL	EXPRESSIVE	NORMAL	F	$\stackrel{\sim}{3}$
EASILY	FLUENT	PRESSED	HIGH	ORAL	EXPRESSIVE	NORMAL	F	$\stackrel{\sim}{\infty}$
EASILY	NORMAL	NORMAL	NORMAL	ORAL	EXPRESSIVE	NORMAL	F	¢
EASILY	NORMAL	PRESSED	HIGH	ORAL	EXPRESSIVE	NORMAL	F	t

Table 4.2 : Auditory Analysis of known Bishnoi Speakers (Suspect Samples)

Observations:

1. There is only one nasalized voice identified by the listener for this variety.
2. There are only two voices which is identified with medium tempo of loudness.

The Bishnoi speakers tend to sound very loud in recorded voice.
3. The Speech rate is fast or very fast for Bishnoi speakers, which was normal for the Brahmin speakers.

∞	\cdots	0	4	+	ω	+	-	3
		(1)					¢	
EASILY	NORMAL	NORMAL	HIGH	ORAL	SIMPLE	NORMAL	M	ω
EASILY	NORMAL	CREAK	NORMAL	NASAL	EXPRESSIVE	NORMAL	M	$\stackrel{\square}{5}$
EASILY	NORMAL	CREAK	NORMAL	NASAL	EXPRESSIVE	NORMAL	M	\checkmark
EASILY	FLUENT	CREAK	NORMAL	NASAL	POLITE	NORMAL	M	\cdots
EASILY	NORMAL	NORMAL	NORMAL	ORAL	EXPRESSIVE	NORMAL	M	\checkmark
EASILY	NORMAL	NORMAL	NORMAL	ORAL	EXPRESSIVE	NORMAL	M	N
EASILY	NORMAL	HOARSE	NORMAL	ORAL	SIMPLE	NORMAL	M	∞
EASILY	HASTY	NORMAL	HIGH	NASAL	IRONICAL	NORMAL	M	u
EASILY	HASTY	NORMAL	HIGH	ORAL	POLITE	NORMAL	M	\checkmark
EASILY	FLUENT	NORMAL	HIGH	NASAL	EXPRESSIVE	NORMAL	M	+
EASILY	HASTY	HOARSE	HIGH	ORAL	EXPRESSIVE	NORMAL	M	N
EASILY	HASTY	HOARSE	HIGH	ORAL	EXPRESSIVE	NORMAL	M	N
EASILY	NORMAL	NORMAL	HIGH	ORAL	EXPRESSIVE	NORMAL	M	N
EASILY	NORMAL	PRESSED	HIGH	ORAL	SIMPLE	NORMAL	M	~
EASILY	NORMAL	NORMAL	HIGH	ORAL	SIMPLE	NORMAL	M	$\underset{\sim}{N}$
EASILY	NORMAL	NORMAL	NORMAL	ORAL	EXPRESSIVE	NORMAL	M	$\stackrel{\square}{\square}$
EASILY	NORMAL	NORMAL	HIGH	ORAL	POLITE	NORMAL	M	®
EASILY	NORMAL	NORMAL	HIGH	ORAL	EXPRESSIVE	NORMAL	M	\%
EASILY	NORMAL	NORMAL	HIGH	ORAL	SIMPLE	NORMAL	M	\%
EASILY	NORMAL	NORMAL	HIGH	ORAL	IRONICAL	NORMAL	M	$\underline{5}$

9.	Loudness Very loud Loud Medium Soft	8 0 0 2 3 3	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\frac{\sum}{\sum_{i}^{2}}$			$\begin{aligned} & 3 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{gathered} \sum \\ \underset{\lambda}{n} \\ \end{gathered}$	$\begin{aligned} & \mathrm{S} \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	8 0 0 2 $\frac{2}{1}$	8 0 0 2 3	8 0 $\stackrel{8}{1}$		$\begin{aligned} & \mathrm{S} \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & y \end{aligned}$		$\sum_{\substack{i=1}}^{\substack{i n}}$	交
10.	Speech Rate Very fast Fast Medium Slow Very Slow		$\underset{\substack{n}}{\sum}$		$\underset{y}{5}$	$\stackrel{5}{4}$		$\begin{aligned} & \sum_{i=1}^{n} \\ & \sum \end{aligned}$			$\frac{5}{4}$			$\begin{aligned} & \sum \\ & \stackrel{y}{n} \\ & \stackrel{y}{n} \end{aligned}$	$\underset{y}{5}$	$\stackrel{5}{4}$			$$	$\begin{aligned} & \sum \\ & \frac{y}{y} \\ & \frac{y}{4} \end{aligned}$	気

Table 4.3 : Auditory Analysis of 20 Unknown Male Speakers (Question Samples)

Observations:

1. Speaker SS $1,2,3,4,5,6,7,8,9$, and 10 belongs to the Brahmin variety. Their closest match identified in QS by the linguist are, 3, 10, 1, 6, 9, 2,8, 5, 7 and 4 respectively.
2. Speaker SS 21, 22, 23, 24, 25, 26, 27, 28, 29 and 30 belongs to the Bishnoi Variety. Their closes match identified in QS are, 22, 26, 27, 23, 21, 30, 29,25, 28 , and 24.
3. Just like the SS of Brahmin speakers, QS also showed highly nasalized voice. And similarly, just like SS of Bishnoi speakers, QS were identified as very loud and fast by the researcher.
4. There were some speaker specific features, like the speaker $3,4,5$ had a creaky voice for SS samples and their counter parts, had the same features in their.

∞	\cdots	\bigcirc	4	＋	ω	＋	－	z
							¢	
EASILY	NORMAL	NORMAL	HIGH	ORAL	EXPRESSIVE	NORMAL	F	む
EASILY	NORMAL	NORMAL	NORMAL	NASAL	EXPRESSIVE	NORMAL	F	\pm
EASILY	NORMAL	NORMAL	NORMAL	NASAL	SIMPLE	NORMAL	F	\checkmark
EASILY	FLUENT	NORMAL	NORMAL	ORAL	POLITE	NORMAL	F	σ
EASILY	NORMAL	NORMAL	NORMAL	ORAL	SIMPLE	NORMAL	F	\pm
EASILY	NORMAL	NORMAL	NORMAL	ORAL	SIMPLE	NORMAL	F	屯
EASILY	FLUENT	NORMAL	NORMAL	ORAL	EXPRESSIVE	NORMAL	F	un
EASILY	FLUENT	PRESSED	NORMAL	ORAL	POLITE	NORMAL	F	∞
EASILY	NORMAL	NORMAL	NORMAL	ORAL	SIMPLE	NORMAL	F	6
EASILY	NORMAL	NORMAL	NORMAL	ORAL	SIMPLE	NORMAL	F	N
EASILY	FLUENT	NORMAL	HIGH	ORAL	EXPRESSIVE	NORMAL	F	$\stackrel{\sim}{\omega}$
EASILY	FLUENT	NORMAL	HIGH	ORAL	EXPRESSIVE	NORMAL	F	岁
EASILY	NORMAL	NORMAL	HIGH	NASAL	EXPRESSIVE	NORMAL	F	\pm
EASILY	NORMAL	NORMAL	HIGH	ORAL	EXPRESSIVE	NORMAL	F	－
EASILY	NORMAL	NORMAL	HIGH	ORAL	EXPRESSIVE	NORMAL	F	H
EASILY	NORMAL	NORMAL	NORMAL	ORAL	SIMPLE	NORMAL	F	$\stackrel{\sim}{\square}$
EASILY	NORMAL	NORMAL	NORMAL	ORAL	EXPRESSIVE	NORMAL	F	${ }_{\sim}^{\circ}$
EASILY	FLUENT	PRESSED	HIGH	ORAL	EXPRESSIVE	NORMAL	F	岕
EASILY	NORMAL	NORMAL	NORMAL	ORAL	EXPRESSIVE	NORMAL	F	\％
EASILY	NORMAL	PRESSED	HIGH	ORAL	EXPRESSIVE	NORMAL	F	$\stackrel{+}{+}$

9.	Loudness Very loud Loud Medium Soft	3 0 3 3 3 3	$\sum_{\substack{5}}^{\substack{1}}$	$\frac{\sum}{2}$	$\sum_{\substack{5}}^{\substack{n}}$	$\begin{aligned} & 3 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & \hline \end{aligned}$					$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 2 \\ & \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$$	0	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$$	$\underset{y}{\sum}$	気
10.	Speech Rate Very fast Fast Medium Slow Very Slow			$\begin{aligned} & \sum \\ & \stackrel{y}{n} \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \sum_{n}^{D} \\ & \text { Mn } \end{aligned}$		$\begin{aligned} & \sum \\ & \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \sum \\ & \sum_{i}^{2} \\ & \sum \end{aligned}$		$\begin{aligned} & \sum \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$			$$		$\begin{aligned} & \text { n } \\ & \text { In } \\ & \frac{\pi}{1} \\ & \hline \end{aligned}$	$\stackrel{5}{x}$	$\underset{y}{5}$	$\stackrel{5}{4}$	$\underset{y}{5}$	$\stackrel{5}{x}$	唇

Table 4.4 : Auditory Analysis of 20 Unknown Female Speakers (Question Samples)

Observations:

1. Brahmin female speakers, unlike male speaker showed a fewer number of nsalaized voice. Two to be exact.
2. Unlike male Bishnoi speaker, female speaker's voice was identified as loud. But it is still one tempo higher than Brahmin females.

Discussion

1. The data was analyzed in such a way that, speaker, 1 to 10 from suspect samples were Brahmin males, and speaker 11 to 20 twenty were Brahmin Females. Similarly, speaker 21 to 30 were Bishnoi males and 31 to 40 were Bishnoi females.
2. The primary analysis done by the fellow linguist had good results, she almost matched every SS to its respective QS. But there were some problems. For example, a lot of voices had similar features for more than two of them. An individual assessment can give a plot to start our research but concluding 100 percent accurate result is not possible with auditory analysis. Speaker 11 and 12 from Suspect Sample and 14 and 17 from Question sample had only one auditory difference marked between them. The researcher marked the number 11/14 as expressive, which is a subjective feature. So, a researcher can never solely depend on the auditory analysis of any voice sample.
3. The 'very loud' or 'loud' feature was very dominating in Bishnoi variety. Which is helpful in differentiating between two varieties. But, marking individual speaker's voices on the basis of that is very difficult. Some additional information is required.
4. Auditory analysis helped us differentiating the two varieties, and their voices separately. It also helped identifying the usable and unusable sounds from the entire set of recorded data. Which means that, not all sounds can be taken further for forensic enquiry, some sounds have extra background noise, so are extremely slow, and some might be so nasalized that extracting vowel out of them can be next to impossible. Auditory helped differentiation those unwanted elements from other. There are individual characteristics which can be marked by auditory analysis, but conducting a full forensic study on it in not wise. Auditory analysis should be the first step of many steps of Forensic Speaker Identification. Which should be followed by the pitch analysis of a person.

Auditory analysis helped creating a new hypothesis which was based on the data acquired through auditory investigation. The matches found through the auditory analysis is going by treated as the preliminary data and would be further analyzed acoustically to see the accuracy of the results.

The next section is going to talk about the pitch or F0 of the suspects. The researcher has tried matching two separate F0, one from SS and one from QS, on the basis of their mean F0, their speaker specific F0 and its standard deviation.

SUSPECT SAMPLE 1	168.5980458
SUSPECT SAMPLE 2	153.5932177
SUSPECT SAMPLE 3	107.2371207
SUSPECT SAMPLE 4	107.1278928
SUSPECT SAMPLE 5	148.8725529
SUSPECT SAMPLE 6	191.3015512
SUSPECT SAMPLE 7	137.1995728
SUSPECT SAMPLE 8	163.245018
SUSPECT SAMPLE 9	177.1379419
SUSPECT SAMPLE 10	170.1728775
SUSPECT SAMPLE 11	166.4968299
SUSPECT SAMPLE 12	231.8832411
SUSPECT SAMPLE 13	215.1516555
SUSPECT SAMPLE 14	198.4419609
SUSPECT SAMPLE 15	165.3266804
SUSPECT SAMPLE 16	240.3425258
SUSPECT SAMPLE 17	234.6983841
SUSPECT SAMPLE 18	269.7167526
SUSPECT SAMPLE 19	274.9273508
SUSPECT SAMPLE 20	235.2649086

SUSPECT SAMPLE 1	168.5980458
SUSPECT SAMPLE 2	153.5932177
SUSPECT SAMPLE 3	107.2371207
SUSPECT SAMPLE 4	107.1278928
SUSPECT SAMPLE 5	148.8725529
SUSPECT SAMPLE 6	191.3015512
SUSPECT SAMPLE 7	137.1995728
SUSPECT SAMPLE 8	163.245018
SUSPECT SAMPLE 9	177.1379419
SUSPECT SAMPLE 10	170.1728775
SUSPECT SAMPLE 11	166.4968299
SUSPECT SAMPLE 12	231.8832411
SUSPECT SAMPLE 13	215.1516555
SUSPECT SAMPLE 14	198.4419609
SUSPECT SAMPLE 15	165.3266804
SUSPECT SAMPLE 16	240.3425258
SUSPECT SAMPLE 17	234.6983841
SUSPECT SAMPLE 18	269.7167526
SUSPECT SAMPLE 19	274.9273508
SUSPECT SAMPLE 20	235.2649086

Table 4.5 Mean Pitch of Suspect Sample Brahmin Variety

SUSPECT SAMPLE 1	168.5980458
SUSPECT SAMPLE 2	153.5932177
SUSPECT SAMPLE 3	107.2371207
SUSPECT SAMPLE 4	107.1278928
SUSPECT SAMPLE 5	148.8725529
SUSPECT SAMPLE 6	191.3015512
SUSPECT SAMPLE 7	137.1995728
SUSPECT SAMPLE 8	163.245018
SUSPECT SAMPLE 9	177.1379419
SUSPECT SAMPLE 10	170.1728775
SUSPECT SAMPLE 11	166.4968299
SUSPECT SAMPLE 12	231.8832411
SUSPECT SAMPLE 13	215.1516555
SUSPECT SAMPLE 14	198.4419609
SUSPECT SAMPLE 15	165.3266804
SUSPECT SAMPLE 16	240.3425258
SUSPECT SAMPLE 17	234.6983841
SUSPECT SAMPLE 18	269.7167526
SUSPECT SAMPLE 19	274.9273508
SUSPECT SAMPLE 20	235.2649086

Table 4.6 Mean Pitch of Suspect Sample Bishnoi Variety

SUSPECT SAMPLE 1	168.5980458
SUSPECT SAMPLE 2	153.5932177
SUSPECT SAMPLE 3	107.2371207
SUSPECT SAMPLE 4	107.1278928
SUSPECT SAMPLE 5	148.8725529
SUSPECT SAMPLE 6	191.3015512
SUSPECT SAMPLE 7	137.1995728
SUSPECT SAMPLE 8	163.245018
SUSPECT SAMPLE 9	177.1379419
SUSPECT SAMPLE 10	170.1728775
SUSPECT SAMPLE 11	166.4968299
SUSPECT SAMPLE 12	231.8832411
SUSPECT SAMPLE 13	215.1516555
SUSPECT SAMPLE 14	198.4419609
SUSPECT SAMPLE 15	165.3266804
SUSPECT SAMPLE 16	240.3425258
SUSPECT SAMPLE 17	234.6983841
SUSPECT SAMPLE 18	269.7167526
SUSPECT SAMPLE 19	274.9273508
SUSPECT SAMPLE 20	235.2649086

The above tables are important to distinguish between male and female speakers. This observation helps the researcher in a way that, now the investigation will only precede between two male speakers or between two female samples.

4.3.2 Acoustic Analysis

For acoustic analysis seven vowels were selected which were common for both the varieties. Every speaker had to utter five words of the given vowel, from the questionnaire provided by the researcher and the recording was made. The same seven vowels were also extracted from the same speakers, as question samples, out of their random conversation with the researcher. These question samples were extracted by another linguist in such a way that; the researcher did not know the identity of their speakers. To check the possibility of identifying unknown speakers from known speakers, these random question sample were compared with the suspect samples and then the accuracy rate was checked. The seven vowels which were selected for the purpose of following study are; five cardinal vowels, [i], [e],[u],[o] and [a] and two central vowels, [I], [ə]. two separate word lists were prepared for both varieties in order to achieve accurate results. These two varieties have lexical and morphemic differences for a lot words, and asking them to read out the same word list would result in a conscious and modified utterance. The two separate word lists were prepared to avoid these modifications. The Word lists are given in the table below,

Brahmin Variety	English	Bishnoi Variaty	English
ped ${ }^{\text {b }}$ ar	To study	kiti	ant
$\operatorname{ket}^{\text {m }} \mathrm{E}$	Where	kit ${ }^{\text {²}}$	where
betano	To say	bit ${ }^{\text {a }}$	there
pekgjo	To ripe	nindi	Terrace walll
beddo	Big	brds	seeds
taber	Kid	etik	This much
bap	Father		spicy
mat ${ }^{\text {b }}$ 。	Head	dziko	that
naco	Cot	bifnoi	Bishnoi
kaglo	Crow	dziai	Like that
gitno	To eat	ket	Kind of seed
t1kki	Bindi	kero	how
d3iko	That	bero	That＇s how
dsiti	That much	$t^{\mathbf{2}} \mathrm{t}^{\text {b }}$	All the way
kitta	How much	ret ${ }^{\text {a }}$	sand
$\mathbf{t r k}^{\text {b }}$ 。	Spicy	beddo	big
prt ${ }^{\text {² }}$	Back	bed ${ }^{\text {b }}$ arno	To cut
brl	Type of fruit	ped ${ }^{\text {a }}$ jora	educated
$\mathbf{k}^{\mathbf{2}}$ rero	Porridge	petekno	To drop
dxgo	Tall	$\mathrm{d}^{\text {b }}$ ever	Fog
pet	Tummy	taber	Kid
peac	Money	badelvai	Clouds
kevo	To talk	mand30	cot
ben	That guyl gir	kaglo	Crow
kes	Hair	bap	Father
$0^{\text {b }}$ ode	To leave	bodo	Old
$\mathrm{b}^{\text {b }}$ ogel	Door knob	chotak	Small
tokri	Basket	dob ${ }^{\text {b }}{ }^{\text {a }}$	Eyes
pot ${ }^{\text {H }}{ }^{\text {i }}$	Book	motok	Fat／big
coti	Braid	$\mathbf{k}^{\mathbf{L}}$ odano	To dig
duk $^{\text {b }} \boldsymbol{E}$	To pain	dud ${ }^{\text {a }}$	Milk
dud ${ }^{\text {b }}$	Milk	kud	To jump
1ut	To steal	$\mathrm{p}^{\text {bul }}$	Flower
$t^{\text {²uk }}$	spit	kutę̧	To smash
риса⿰ৃо	To ask	sut ${ }^{\text {a }}$	dress

Table 4．9 Word list
In order to analyse the voice samples，Praat was used．First，the recordings were opened in the Praat by using the command，＂Read from File＂．This command listed all the voice
samples as Praat objects. The next step was, using the command "View and Edit". A

Figure 4.1 Praat Window
The left half of the window was majorly used for the purpose of this study. This half represents the Praat object window, where we can read sound files, and analyse them. The right half of the window is called Praat object window. Spectrograms for the sound files can be drawn on this side of the software.

Figure 4.2 spectrogram of full conversation done with speaker 'Kamla'

The image above shows a spectrogram of complete voice sample, taken from a speaker called Kamla. There are three visible layers in this window. The first layer represents the entire conversation; each peak is a representation of a syllable. The second layer represents the same sound file along with the noises which were surrounding it. The first layer tries to reduce the noise and other problems as much as possible. The third layer contains and demonstrates the formants, pitch listing and other important features. The third half also represents the spectrogram of the sound wave.

In order to extract vowel, each word was sliced out of the wave files and then the word was repeated again and again in order to find out the starting and ending point of the vowel required. Then the vowel was segregated out of it and analysed. The required features like, Formant listings, pitch listing and spectrograms were segregated and saved.

Figure 4.3 kamla/kaglo/ spectrogram

Figure 4.4 kamla/a/Kaglo/spectrogram

Figure 3 is the Praat picture of 'Kamla' uttering word /kaglo/ i.e. crow in Marwari. The Figure 4 is the /a/ vowel and its spectrogram extracted from the word /kaglo/ . Every sound was extracted the same way for the rest of the forty speakers. After all the vowels were the same way, from both question sample and suspect sample they were analysed
based on the parameters set by the researcher. The values for every parameter was extracted from Praat. The master excel sheet containing both Question Samples and Suspect samples is attached in the Appendix.

Once all the values were noted on MS Excel, they were analysed in order to match the suspect sample to their respective question samples. Four lists were created which contained, F3-F2, F2-F1, F2 and F1 values of every speaker. Two separate lists were also created to draw acoustic spaces for every speaker. These lists contain the negative F1 and negative F2-F1 which is required to form an acoustic space chart for any speaker. To narrow down the search each acoustic chart of the suspect sample was compared to the same charts for the question samples. The subjects, which showed the same or similar charts were grouped together. Their values from the later lists were then analysed. Each list was analysed one by one and matched with their relative subjects. As mentioned in the auditory analysis, the suspect sample was divided into two lists, first contain the values from Brahmin variety and the later has the values from the Bishnoi variety. Each list is organized in such a way that the first ten speakers are male and the next ten speakers are females.

The parameters used to identify each subject is given below;
F0 (Pitch) : As discussed earlier F0 is a voice feature, which according to the previous studies carries the genetic information about the speakers. F0 represents the frequency at which the vocal cords start vibrating. Which depends on the length, shape and mass of vocal cord. Every speaker has his or his own unique dimensions of vocal cords, so the values of F0 can be the marker of a genetically endowed feature. For this the mean pitch of every speaker was measured and then the standard deviation for this was calculated. Standard deviation is calculated by the distance of each observation from the mean and then squared. The First parameter which was selected to match suspect sample with question sample is mean pitch and its standard deviation.

Observations:

The observations made by the above four charts are as Fellow;

1. In Figure 1 we can see that there is a difference between first ten speakers and the next ten speakers. This male and female distinction is visible with the fact that males are showing lower mean for F0 whereas the female speakers are showing the higher F).
2. The minimum F0 for speakers 1. 2. 5. 6, 8 and 10 is almost same. The SD is also similar for these speakers. Whereas speakers $12,13,14,16,17,19$ and 20 show the similar SD and minimum pitch. This was helpful in creating distinction between male and female speakers

Chart 4.2 Standard deviation and Mean first Brahmin Males

Chart 4.3 Standard Deviation and Mean QS 1-10

Chart 4.4 SD and Mean Pitch(Brahmin Female)

Chart 4.5 SD and Mean pitch QS (11-20 speakers)

Observations:

1. On the basis of this distinction two separate graphs were created for speaker 1 to 10 and 11 to 20
2. The F0 of Suspect sample 2 and Question sample 10 shows similar mean values and the standard deviation.
3. The F0 values of Suspect Samples 8, 9, 10 and Question Samples 5, 7, 4 have similar values for Standard deviation and mean pitch. Their minimum and maximum mean pitch values also match with each other.
4. The F0 values and SD of Suspect Sample 12, 13, 14, 15, 16, 17, 18 and 19 are showing the similar values to Question Sample 14, 17, 16, 11,13,15,18 and 19.
5. Suspect Sample 2 and Question Sample 10 has been placed on the similar positions because both of these values are not matching to any other speaker profile.
6. Suspect Sample 11 and 20 have similar SD and mean values to Question Sample 12 and 20 respectively. But both of these speakers are showing different values for minimum and maximum F0 with their respective Question Samples.

Chart 4.6 SD and Mean Of Suspect Samples (Bishnoi Speakers)

Observations:

The observations made by the above four charts are as Fellow;

1. In Figure 1 we can see that there is a difference between first ten speakers and the next ten speakers. This male and female distinction is visible with the fact that males are showing lower mean for F 0 whereas the female speakers are showing the higher F).
2. The minimum F0 for speakers $21,23,25,26,27$ and 30 is almost same. The SD is also similar for these speakers. Whereas speakers $31,34,35,36,37,38,39$, and 40 show the similar SD and minimum pitch. This was helpful in creating distinction between male and female speakers

Chart 4.7 Standard deviation and Mean first Bishnoi Males

Chart 4.8 Standard Deviation and Mean QS 20-30

Chart 4.9 SD and Mean Pitch (Brahmin Female)

Chart 4.10 SD and Mean pitch QS (1120 speakers)

Observations:

1. On the basis of this distinction two separate graphs were created for speaker 20 to 30 and 30 to 40
2. The F0 of Suspect sample 22 and Question sample 26 shows similar mean values and the standard deviation.
3. The F0 values of Suspect Sample 21, 23,24,25 and Question Sample 22, 27,23 and 21 have similar values for Standard deviation and mean pitch. Their minimum and maximum mean pitch values also match with each other.
4. The F0 values of Suspect Sample 32,33,34,35,36,37,38,39,40 and Question Sample 35,40,3739,31,38,32,36,34 have similar values for Standard deviation and mean pitch. But their F0 minimum and maximum gap is very high.
5. Speaker 31 and speaker 33 are put at the matching position because they are not matching to any other speaker's SD and mean.

Discussion:

Suspect Sample is retrieved in a controlled environment and Question Samples are retrieved from a, everyday conversations. Which makes it very difficult to analyse data. This can also develop the biases in any investigator. The F0 analysis gives an investigator a platform to divided these samples acoustically. The similar values of mean F0 shows that sound belongs to the same person. F0 analyses serves as the founding factor for any forensic query. The results of this F0 analysis has also once again proven the previous studies, F0 is one of the most important governing factor while doing any Forensic Phonetic enquiry. From the given study following conclusions can be made;

1. The average means of both varieties, Brahmin and Bishnoi were 152.44858 220.17699, 163.0643-246.84121 for male and female respectively.
2. Bishnoi Speakers showed a slightly higher mean values than that of Brahmin Speakers
3. The minimum to maximum range for F 0 was higher for Bishnois than that of Brahmins.
4. Only mean F0 or Standard deviation separately failed to give any clue about the speaker identification. It was the combination of both along with the minimum and maximum pitch values, which provided the conclusive results.

This way of comparing Suspect Sample and Question samples is giving positive results. But there are some speakers who didn't provide the expected outcomes. The reason can be both, bad recording or the sound belongs to different speakers. But to achieve irrefutable results we need to look at the other factors as well. The next section is going look at the acoustic space of every participants along with the question samples matched individually based on the previous enquires.

Chart 4.11 : Acoustic Space of Speaker 1

Chart 4.12 : Acoustic Space of Question Sample 3

The Acoustic Space of SS1 and QS is almost the same.

Chart 4.13 : Acoustic Space of Speaker 2

Chart 4.14: Acoustic Space of Question Sample 10

The Acoustic Space of SS2 and QS10 is almost the same, with some variation between the cardinal /i/and centralized/I/

Chart 4.15 : Acoustic Space of Speaker 3

Chart 4.16 : Acoustic Space of Question Sample 1

The Acoustic Space of SS3 and QS1 is almost the same. The values of vowel/o/and/u/ in suspect sample shows a little variation, which is negligible.

Chart 4.17: Acoustic Space of Speaker 4

Chart 4.18: Acoustic Space of Question Sample 6

The Acoustic Space of SS4 and QS6 does not look the same because their /i/ and /I/ values have some differences.

Chart 4.19 : Acoustic Space of Speaker 5

Chart 4.20 : Acoustic Space of Question Sample 9

The Acoustic Space of SS5 and QS9 is almost the same.

Chart 4.21 : Acoustic Space of Speaker 6

Chart 4.22 : Acoustic Space of Question Sample 2

The Acoustic Space of SS6 and QS2 are the nearest match to each other.

Chart 4.22: Acoustic Space of Speaker 7

Chart 4.23: Acoustic Space of Question Sample 8

The Acoustic Space of SS7 and QS8 is almost the same. The position of /i/ is little different for both of them.

The Acoustic Space of SS8 and QS9 is almost the same.

Chart 4.26 : Acoustic Space of Speaker 9

Chart 4.27: Acoustic Space of Question Sample 7

The Acoustic Space of SS9 and QS7 is almost the same. The /a/ vowel is little lower for QS7.

Chart 4.28 : Acoustic Space of Speaker 10

Chart 4.29 : Acoustic Space of Question Sample 4

The Acoustic Space of SS10 and QS4 is almost the same. The /i/ is at different position for both of them.

Chart 4.30 : Acoustic Space of Speaker 11

Chart 4.31 : Acoustic Space of Question Sample 12

The Acoustic Space of SS11 and QS12 is almost the same. Even though they look different, while looking closely at the values we can see they have similar characteristics.

Chart 4.32 : Acoustic Space of Speaker 12 Chart 4.33: Acoustic Space of Question Sample 14
The Acoustic Space of SS12 and QS14 is almost the same. The /i/ vowel is again different for these two samples

Chart 4.34 : Acoustic Space of Speaker 13

Chart 4.35: Acoustic Space of Question Sample 17

The Acoustic Space of SS13 and QS17 is almost the same. The /a/ vowel is at the lower position for QS17

Chart 4.36 : Acoustic Space of Speaker 10

Chart 4.37 : Acoustic Space of Question Sample 16

The Acoustic Space of SS13 and QS16 is almost the same.

Chart 4.38 : Acoustic Space of Speaker 15

Chart 4.39 : Acoustic Space of Question Sample 11

The Acoustic Space of SS15 and QS11 is almost the same. Other than the /i/vowel every other vowel appears to be at the identical positions in both samples.

Chart 4.40 : Acoustic Space of Speaker 16

Chart 4.41: Acoustic Space of Question Sample 13

The Acoustic Space of SS10 and QS4 is almost the same.

Chart 4.42 : Acoustic Space of Speaker 17
Chart 4.43 : Acoustic Space of Question Sample 15

The Acoustic Space of SS17 and QS15 is almost the same.

Chart 4. 44 : Acoustic Space of Speaker 10

Chart 4.45: Acoustic Space of Question Sample 4

The Acoustic Space of SS18 and QS18 appears to be, not matching with each other. But other than the /o/vowel every other vowel is placed at the similar position to its counterpart in another chart.

Chart 4.46: Acoustic Space of Speaker 19

Chart 4.47: Acoustic Space of Question Sample 19

The Acoustic Space of SS19 and QS19 is almost the same, with /a/ being the exceptionally different values for SS and QS

Chart 4.48 : Acoustic Space of Speaker 20

Chart 4.49: Acoustic Space of Question Sample 20

The Acoustic Space of SS20 and QS20 is almost the same.

Observations :

Vowel /i/ And /I/are not matching for many speakers. At some positions, vowel/a/ was lower than expected. All these are individual characteristics of the speakers. This might help us differentiate two speakers apart from each other. Other four vowels were usually constant with reference to their positions in the chart. Both Question samples and Suspect Samples of individual speakers occupied the similar positions in the charts.

Chart 4.50 : Acoustic Space of Speaker 21 Chart 4.51: Acoustic Space of Question Sample 22

The Acoustic Space of SS21 and QS22 is almost the same.

The Acoustic Space of SS20 and QS20 is almost the match.

Chart 4.54 : Acoustic Space of Speaker 23

Chart 4.55: Acoustic Space of Question Sample 27

The Acoustic Space of SS20 and QS20 is almost the same.

The Acoustic Space of SS24 and QS23 is almost the same.

Chart 4.60: Acoustic Space of Speaker 25

Chart 4.61 : Acoustic Space of Question Sample 21

The Acoustic Space of SS25 and QS21 is almost the same.

Chart 4.62: Acoustic Space of Speaker 26

The Acoustic Space of SS20 and QS20 is almost the same.

Chart 4.64: Acoustic Space of Speaker 27 Chart 4.65: Acoustic Space of Question Sample 29
The Acoustic Space of SS27 and QS29 doesn't appear to be matching..

Chart 4.66: Acoustic Space of Speaker 28

Question Sample 25

Chart 4.67: Acoustic Space of Question Sample 25

The Acoustic Space of SS28 and QS25 is almost the same.

Chart 4.68: Acoustic Space of Speaker 29

Question Sample 28

Chart 4.69: Acoustic Space of Question Sample 28

The Acoustic Space of SS29 and QS28 is almost the same.

The Acoustic Space of SS30 and QS24 is almost the same.

Chart 4.72: Acoustic Space of Speaker 31

Chart 4.73: Acoustic Space of Question Sample 33

The Acoustic Space of SS31 and QS33 is almost the same.

The Acoustic Space of SS32 and QS35 is almost the same.

Chart 4.76: Acoustic Space of Speaker 33

Chart 4.77: Acoustic Space of Question Sample 40

The Acoustic Space of SS33 and QS40 is almost the same.

Chart 4.78: Acoustic Space of Speaker 34 Chart 4.79: Acoustic Space of Question Sample 37

The Acoustic Space of SS34 and QS37 is almost the same.

Chart 4.80: Acoustic Space of Speaker 35

Chart 4.81: Acoustic Space of Question Sample 39

The Acoustic Space of SS35 and QS39 is almost the same.

Chart 4.82: Acoustic Space of Speaker 36 Chart 4.83: Acoustic Space of Question Sample 31
The Acoustic Space of SS36 and QS31 is almost the same.

Chart 4.84: Acoustic Space of Speaker 37

Chart 4.85: Acoustic Space of Question Sample 38

The Acoustic Space of SS37 and QS38 is almost the same.

Chart 4.86: Acoustic Space of Speaker 38

Chart 4.87: Acoustic Space of Question Sample 32

The Acoustic Space of SS38 and QS32 is almost the same.

Chart 4.88: Acoustic Space of Speaker 39

Question Sample 36

Chart 4.89: Acoustic Space of Question Sample 36

The Acoustic Space of SS39 and QS36 is almost the same.

Chart 4.90: Acoustic Space of Speaker 40

Chart 4.91: Acoustic Space of Question Sample 34

The Acoustic Space of SS40 and QS34 is almost the same.

Observations:

Unlike Brahmin Variety, the speakers of Bishnoi variety had far too many abnormalities, when it come to the vowel position. Their values were constantly mismatching for the Question sample and Suspect Sample. Suspect sample 24, 29 and 27 were looking different from their respective questions samples, but when looked closely at the values, it was deducted that there were slight changes of values in the chart. But all three were able to be positioned at entire acoustic space of the Variety vowel charts. As mentioned earlier, Bishnoi speakers were speaking very fast, this might affect the extraction of question samples, as they are derived from a conversation.

Discussion
The Acoustic space has been an important factor in any phonetic investigation. It helps the researcher determine the area in our mouth, which the language occupies and This section investigates the size of vowel spaces used by speakers i.e. the size of the "working" vowel space (in the Fl x F2 plane) used by the Brahmin and Bishnoi speakers while pronouncing their vowels. A vowel space is defined as speaker's F1 and F2 frequency. Identification of vowels is done on the basis of patterns formed by their formants within the given acoustic space. As discussed earlier the F1 shows the height of the vowels and F2 or F2- F1 shows the front/back-ness of vowel.

Vowel Space or vowel limit is associated by Catford (1988), with the cardinal vowels of Danial Jones(1917). According to him any vowel production should be limited to a fixed space. Either the vowel should take the approximant space of the vowel itself or it should position at in the vowel space. The acoustic space of both varieties gave us a rough idea about the acoustic space of Brahmin and Bishnoi Vowels. For Brahmin Speakers, the difference between /i/ and /I/ was very low, and because of that the acoustic space derived from it looked at somewhat similar position.

Bishnoi Variety speakers' speaking speed affected the Question Samples drastically, resulting in slightly different graphs for certain vowels, for some people.

The next section is going to analyse the other remaining formants of the speakers. A plot was created in order to find out the importance of these harmonics. These graphs include the F1, F2, F3, F2-F1 and F3- F1. The particular graph template was created to see the role of F2 and F1 in forensic speaker identification of the speakers.

Chart 4.92 : A comparison of F1, F2, F2-F1, F3-F2 between SS1 and QS3 along with language mean values and Standard Deviation
Observation

1. F1, F2 and F2-F1 values are remaining consant for vowel, $2,3,4,5,6$, and 7 . Vowel 1 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F3 is changing.

Chart 4.93 : A comparison of F1, F2, F2-F1, F3-F2 between SS2 and QS10 along with language mean values and Standard Deviation Observation

1. F1, F2 and F2-F1 values are remaining consant for vowel, $2,4,5,6$, and 7 . Vowel 1and 3 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F3 is changing. The F2- F1 difference is still matching for the two speakers for some vowels.

Chart 4.94 : A comparison of F1, F2, F2-F1, F3-F2 between SS3 and QS1 along with language mean values and Standard Deviation Observation

1. F1 and F2 values are remaining consant for all seven vowels, for this speaker the difference between two sample's $\mathfrak{f} 2$ - f 1 is very low.
2. The F3- F1 is different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F3 is changing.

Chart 4.95 : A comparison of F1, F2, F2-F1, F3-F2 between SS4 and QS6 along with language mean values and Standard Deviation Observation

1. F1, F2 and F2-F1 values are remaining consant for vowel for all sevel vowels.
2. The and F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.96 : A comparison of F1, F2, F2-F1, F3-F2 between SS5 and QS9 along with language mean values and Standard Deviation Observation

1. F1, F2 and F2-F1 values are remaining consant for all seven vowels.
2. The and F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F3 is constantly changing.

Chart 4.97 A comparison of F1, F2, F2-F1, F3-F2 between SS6 and QS2 along with language mean values and Standard Deviation Observation

1. F1,F2 and F2-F1 values are remaining consant for all seven vowel.
2. The and F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is constantly changing.

Chart 4.98 : A comparison of F1, F2, F2-F1, F3-F2 between SS7 and QS8 along with language mean values and Standard Deviation Observation

1. F1,F2 and F2-F1 values are remaining consant for vowel, $2,3,4,5,6$ and 7 .Vowel 1 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F3 is changing.

Chart 4.99: A comparison of F1, F2, F2-F1, F3-F2 between SS8 and QS5 along with language mean values and Standard Deviation

1. F1, F2 and F2-F1 values are remaining consant for all seven vowels.
2. The F3- F1 is different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F3 is changing.

Chart 4.100: A comparison of F1, F2, F2-F1, F3-F2 between SS9 and QS7 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, 3, 4, 5, 6, and 7. Vowels 1 and 2 are showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 is different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.101: A comparison of F1, F2, F2-F1, F3-F2 between SS10 and QS 4 along with language mean values and Standard Deviation

1. F1, F2 and F2-F1 values are remaining consant for vowel, 1,2, 3, 4, 5, and 7. Vowel 6 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 is different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F3 is changing.

Chart 4.102 : A comparison of F1, F2, F2-F1, F3-F2 between SS11 and QS12 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, 5, 6, and 7. Vowels $1,2,3$ and 4 are showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.103: A comparison of F1, F2, F2-F1, F3-F2 between SS12 and QS14 along with language mean values and Standard Deviation

1. F1, F2 and F2-F1 values are remaining consant for vowel, $1,4,5,6$, and 7 . Vowel 2 and 3 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.104: A comparison of F1, F2, F2-F1, F3-F2 between SS13 and QS17 along with language mean values and Standard Deviation

1. F1, F2 and F2-F1 values are remaining consant for vowel, $2,3,4,5,6$, and 7 . Vowel 1 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.105: A comparison of F1, F2, F2-F1, F3-F2 between SS14 and QS16 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for all seven vowels.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.106 : A comparison of F1, F2, F2-F1, F3-F2 between SS15 and QS16 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, 2, 3, 4, 5, 6, and 7. Vowel 1 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 is different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.106 : A comparison of F1, F2, F2-F1, F3-F2 between SS16 and QS13 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for all seven vowels. Vowel 6 is showing high Standard deviation values than other vowels. Which can be considered as speaker specific feature.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.107: A comparison of F1, F2, F2-F1, F3-F2 between SS17 and QS15 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, 2, 3, 5, 6, and 7. Vowels 1 and 4 are showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.108 : A comparison of F1, F2, F2-F1, F3-F2 between SS18 and QS18 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for all the seven vowels.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4,109: A comparison of F1, F2, F2-F1, F3-F2 between SS19 and QS19 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, 1,2, 3, 4, 5, and 6 . Vowel 7 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.110: A comparison of F1, F2, F2-F1, F3-F2 between SS20 and QS20 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, 2, 3, 4, 5, 6, and 7. Vowel 1 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.111 : A comparison of F1, F2, F2-F1, F3-F2 between SS21 and QS22 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, 2, 3, 4, 5, 6, and 7. Vowel 1 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F3 is changing.

Chart 4.112: A comparison of F1, F2, F2-F1, F3-F2 between SS22 and QS26 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, 2, 4, 5, 6, and 7. Vowel 3 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F3 is changing.

Chart 4.113 : A comparison of F1, F2, F2-F1, F3-F2 between SS23 and QS27 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, 2, 3, 4, 5, 6, and 7. Vowel 1 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F3 is changing.

Chart 4.114: A comparison of F1, F2, F2-F1, F3-F2 between SS24 and QS23 along with language mean values and Standard Deviation

1. $\mathrm{F} 1, \mathrm{~F} 2$ and $\mathrm{F} 2-\mathrm{F} 1$ values are remaining consant for all seven vowels.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.115 : A comparison of F1, F2, F2-F1, F3-F2 between SS25 and QS21 along with language mean values and Standard Deviation

1. F1, F2 and F2-F1 values are remaining consant for vowel, $2,3,4,5,6$, and 7 . Vowel 1 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.116 : A comparison of F1, F2, F2-F1, F3-F2 between SS26 and QS30 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for all seven vowels.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.117: A comparison of F1, F2, F2-F1, F3-F2 between SS27 and QS29 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, 2, 3, 4, 5, 6, and 7. Vowel 1 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F3 is changing.

Chart 4.118 : A comparison of F1, F2, F2-F1, F3-F2 between SS28 and QS25 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, $1,3,4,5,6$, and 7 . Vowel 2 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.119: A comparison of F1, F2, F2-F1, F3-F2 between SS29 and QS28 along with language mean values and Standard Deviation

1. F1, F2, and F2-F1 values are remaining consant for vowel, 1, 2, 4, 5, 6, and 7. Vowel 3 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.120 : A comparison of F1, F2, F2-F1, F3-F2 between SS30 and QS24 along with language mean values and Standard Deviation

1. F1,F2 and F2- F1 values are remaining consant for vowel, $2,3,4,5,6$, and 7 . Vowel 1 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.121: A comparison of F1, F2, F2-F1, F3-F2 between SS31 and QS67 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel $1,2,3,4,5$, and 6 . Vowel 7 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4,122: A comparison of F1, F2, F2-F1, F3-F2 between SS32 and QS35 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel,1, 2, 3, 4, 5, and 6. Vowel 7 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.123: A comparison of F1, F2, F2-F1, F3-F2 between SS33 and QS40 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, 2, 3, 4, 5, 6, and 7. Vowel 1 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.124: A comparison of F1, F2, F2-F1, F3-F2 between SS34 and QS37 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, $1,3,4,5,6$, and 7 . Vowel 2 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.125: A comparison of F1, F2, F2-F1, F3-F2 between SS35 and QS39 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for all seven vowels.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F3 is changing.

Chart 4.126: A comparison of F1, F2, F2-F1, F3-F2 between SS36 and QS31 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, $1,3,4,5,6$, and 7 . Vowel 2 is showing very high margin between SS and QS. This can be a speaker specific feature.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.127: A comparison of F1, F2, F2-F1, F3-F2 between SS37 and QS38 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, $3,4,5,6$, and 7 . Vowels 1 and 2 are showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F3 is changing.

Chart 4.128: A comparison of F1, F2, F2-F1, F3-F2 between SS38 and QS32 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, 1, 3, 4, 6, and 7. Vowels 1 and 5 are showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

Chart 4.129 : A comparison of F1, F2, F2-F1, F3-F2 between SS39 and QS36 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, 4, 5, 6, and 7. Vowels 1, 2, and 3 is showing some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F3 is changing.

Chart 4.130: A comparison of F1, F2, F2-F1, F3-F2 between SS40 and QS34 along with language mean values and Standard Deviation

1. F1,F2 and F2-F1 values are remaining consant for vowel, 3, 4, and 6 . Vowels $1,2,5$, and 7 showed some differences in Question Sample and Suspect Sample.
2. The F3- F1 are different for two speakers, for almost every vowel. Since the F2 is consistent, the changing difference values shows that F 3 is changing.

4.4 Results

After all the required acoustic analyses were conducted, the accuracy of the results was checked. As mentioned in the chapter Research Methodology, two sets of data were created for the purpose of current research. The known sample which is marked as the suspect sample and the unknown sample which is called Question Sample in forensic terms. The suspect sample was retrieved from an ideal environment created by the researchers. They were given a word list and the participants were asked to utter those words. For the second set, Question sample researcher extracted sounds in an interview manner and they were jumbled by another researcher in order to avoid any predetermined biases. But the original data was also kept aside to check the accuracy results later on. Once the entire analysis was conducted the accuracy was checked.
4.4.1 Effects of Nasalization on Vowel Formants Nasalization has spectral effects on modifying vowels heights. A person's nasalized voice has often showed acoustic graphs similar to a graph made by a voice, where speaker consciously modifies his or her own voice. Vowel heights are often affected by nasalization of the vowel. Nasalization of vowel happens when the velum is lowered and the air passes through the nasal cavity. A nasalized vowel has quality of changed vowel height. As mentioned earlier, vowel height is perceived with F1 in spectral analysis. The current study had few speakers, whose voices were identified as nasal voice. This section is going to look into the voice analysis of these people, and what effect, if any, did nasalization laid on these particular samples.

Suspect Sample, 2, 3, 4, 8, 10, 12, and 13 from Brahmin Variety and Speaker, 33 from Bishnoi Speakers very identified as nasal voice from the suspect samples and Question

Sample, 10, 1, 6, 5, 414 and 17 from Brahmin Variety and Speaker 40 from Bishnoi Variety were identified as nasal voices.

The major effects of vowel nasalization which were notification in these samples were;

1. Difference between vowel height in suspect sample and question for vowel /i/ in all the speakers which were identified as nasal by the listeners. (See chart 4.13, 4.14, 4.15,4.16,4.17, 4.18,4.24,4.25,4.28,4.29,4.32,4.33,4.34,4.35)
2. Vowel /a/ showed height difference between suspect sample and question sample for most of the speakers. (See chart 4.13, 4.14, 4.15,4.16,4.17, 4.18,4.24,4.25,4.28,4.29,4.32,4.33,4.34,4.35
3. The same difference is visible in suspect sample 33 and 40 of Bishnoi speakers. (See chart 4.76)
4. The vowel height is considerably low for these speakers, comparing to other speakers from the same variety. Which is clearly visible in their SD and mean F1 charts. Even though the values of QS and SS are matching in most of them the values are lower than the rest of the speakers' F1.
5. The vowel height has also affected, F2-F1 for these speakers.

Acoustic theory of vowel nasalization states that F1 in an oral vowel is replaced by the shifted nasal vowel F1'(Fant. 1960: FUjimura \& Lindqvist. 1971: Stevens. Fant, \& Hawkins. 1986), this effects shifts the F1 frequency and which results in decrease of vowel height. The current pattern of decrease in vowel height of Marwari speakers can be explained with this theory. An investigation conducted by Wright (Wright, 1975, 1986) also showed that the presence of a nasal formant affects the vowel height of the perceived nasal formant height.

According to the original sets the following results were discovered;

1. Suspect Sample 1 was Question Sample 3
2. Suspect Sample 2 was Question Sample 10
3. Suspect Sample 3 was Question Sample 1
4. Suspect Sample 4 was Question Sample 6
5. Suspect Sample 5 was Question Sample 9
6. Suspect Sample 6 was Question Sample 2
7. Suspect Sample 7 was Question Sample 8
8. Suspect Sample 8 was Question Sample 5
9. Suspect Sample 9 was Question Sample 7
10. Suspect Sample 10 was Question Sample 4
11. Suspect Sample 11 was Question Sample 12
12. Suspect Sample 12 was Question Sample 14
13. Suspect Sample 13 was Question Sample 17
14. Suspect Sample 14 was Question Sample 16
15. Suspect Sample 15 was Question Sample 11
16. Suspect Sample 16 was Question Sample 13
17. Suspect Sample 17 was Question Sample 15
18. Suspect Sample 18 was Question Sample 18
19. Suspect Sample 19 was Question Sample 19
20. Suspect Sample 20 was Question Sample 20
21. Suspect Sample 21 was Question Sample 22
22. Suspect Sample 22 was Question Sample 26
23. Suspect Sample 23 was Question Sample 27
24. Suspect Sample 24 was Question Sample 23
25. Suspect Sample 25 was Question Sample 21
26. Suspect Sample 26 was Question Sample 30
27. Suspect Sample 27 was Question Sample 29
28. Suspect Sample 28 was Question Sample 25
29. Suspect Sample 29 was Question Sample 28
30. Suspect Sample 30 was Question Sample 24
31. Suspect Sample 31 was Question Sample 33
32. Suspect Sample 32 was Question Sample 35
33. Suspect Sample 33 was Question Sample 40
34. Suspect Sample 34 was Question Sample 37
35. Suspect Sample 35 was Question Sample 39
36. Suspect Sample 36 was Question Sample 31
37. Suspect Sample 37 was Question Sample 38
38. Suspect Sample 38 was Question Sample 32
39. Suspect Sample 39 was Question Sample 36
40. Suspect Sample 40 was Question Sample 34

When each and every parameter was observed carefully, following conclusions were made;

The auditory comparison showed us that in a simple conversation, listener can identify the voice of the speaker by their profile. A new hypothesis was formed on the basis of that which included the list of participants, along with their expected question samples. The hypothesis was tested through the help of the acoustic parameters and every participant was individually tested on the basis of various factors. After the analysis, it was revealed that, the accuracy of auditory analysis was not hundred percent for the current research. There was one case when the listener identified the voice of female 82 -year-old lady speaker as a male participants. This research was conducted on a very ideal environment, so the results of auditory analysis were quite positive. But in a criminal enquiry, the investigator cannot fully depend on the auditory analysis. Because sometimes the suspects modify their voices intentionally as well.

1. The mean F0 of speakers from varieties helped identifying the gender differences acoustically.

2. The comparison of F 0 within the variety helped marking the individual samples to their respective counterparts in the QS. The Speaker 31 and speaker 33 are put at the matching position because they are not matching to any other speaker's SD and mean. Similarly, there were some speakers who showed high range of maximum to minimum F0 values, and different from their Question Samples. This proved that only depending on SD and Mean F0 can be problematic for any forensic enquiry.
3. Almost every acoustic space chart had the vowels occupying the mean vowel space of the language. Even though there were few acoustic space charts which didn't match with their respective QSs.
4. The most conclusive results were acquired with the help of Formant charts, which included F1, F2, F3 diff F2- F1 and diff F3-F2. With almost 90 percent accuracy, the Suspect Samples and Question Samples matched with each other for the F1, F2 and F2-F1 values. Some vowels had a slight difference in their F1 and F2 values but the accuracy of other six vowels made it negligible. All the Suspect Samples matched with their respective Question Samples, on the basis of this.
5. The standard deviation was also constant and minimum for almost all the vowels.

Discussion:

Speaker Identification is an evolving field. People have been working on it for around half century now, but researchers have not achieved hundred percent accuracy in it. People keep comparing voice identification to fingerprint identification, but we have to understand these are two completely different fields. The later has a very few factors which can affect its outcomes but human voice identification is as difficult as finding the same fish in the ocean. There are n number of factors which can affect its results. Human mood, emotions, age, gender, height and even as simple factor as wind can affect voice recording and modify it or damage it drastically. So, a simple method of voice recognition is never going to be good enough for any voice investigation. This research is trying to find out one of those important factor, so that it can strengthen the voice identification process. F0 or pitch analysis has been there since the beginning of voice recognition researches. The importance of vowel height has also been established by the researchers for the forensic speaker queries. The current study takes the formant research one step further by looking at the frontness and backness of vowel identification. F2 or frontback characteristics of vowel depends on the consonant preceding it or following it. The research has been conducted on the grounds that even with all the variables in voice identification, it is F 2 which remains constant or at least gives the positive outcomes while comparing two speaker's voices.

Chapter 5 Conclusion

5.1 Area of Study:

This chapter is going to summarize the experiments conducted in chapter four "Analysis" and the results of those experiments. The hypothesis written in the chapter one, section 1.7 is going to be re-examined in the lights of newly achieved results. To reproduce the reference of the hypothesis, the section has been repeated below;

As mentioned earlier, Speaker Identification had always been an area with numerous applications but the major component in any speaker identification study is to believe and try to prove that voice is unique for every individual. This proof is required to make speaker identification a valid field, so that voice samples can be treated as admissible evidence.

Among the various applications of speaker identification, is speaker profiling. Just by hearing the voice we can deduce the age, gender, height etc. This type of profiling helps in a criminal case where the identity of speaker is unknown and the only known thing we have about speaker is his or her voice.

5.1.1 Scope for current research

Voice analysis has many parameters but the first step was to divide these parameters on the basis of auditory parameters and acoustic parameters. Auditory analyses consisted of various features, for example: speaking mode of the speaker, speaker's respiratory form or pitch level etc. On the other hand, in acoustic analysis the focus is on the visual representation of the voice. When analysing voice acoustically we focused on the pitch, frequency and formant harmonics.

The current acceptable mode of voice identification is to combine both auditory and acoustic parameters. The current research combined both auditory and acoustic parameters. Auditory analysis preceded the acoustic analysis. For current research the set parameters for the auditory analysis were analysed first. After that we moved towards the acoustic parameters. The main aim of this research was to find out the one unique feature which can improve the accuracy of forensic speaker identification. After distinguishing proper auditory parameters, we looked into the acoustic parameters. The formant frequencies of vowels were the focus of current study.
This research was going to help us develop a proper analysing method for voice recognition. Vowel analysis has always been an important factor in forensic speaker identification. This research will contribute to the vast history of vowel analysis. By
combining both auditory and acoustic parameters, the probability of improvement will increase. This can help us narrow down the features which might help in future forensic speaker identification.

5.1.2 Objective of Research

as mentioned in chapter one, many scholars have argued that changing the vowel pattern while uttering a sound is very difficult. Consonants can easily be modified but vowels are very speaker specific. Numerous researches have been conducted on the following topic. The objective of current research was to develop on the findings from previous researches by combining two different approaches together.

The research revolved around the question that which features of voice are important for forensic speaker identification. Both auditory and acoustic analysis will be conducted on the voice samples of the subjects to find out the answers to these questions.

If every individual has a unique articulatory manoeuvre, then the filters i.e. different articulators should always produce similar results. The formant frequencies will always have the similar results. The genetic features are like the shape of our vocal tract whereas the acquired features are like phonology of our L1, individual acquired articulation habits. Manner of articulation also changes with age. Socio-psychological factors can also affect the way a person utters a particular sound. There are so many factors which can affect our speech production. This research checked one of these factors i.e. what are features that remains constant while producing a same or similar speech samples in different contexts.

5.1.3 General research Question

We have discussed this field and all the problems associated with it in great extent. So far, the discussion has pointed out that Voice pattern of every human is unique. There are genetically hardwired features which makes it a unique. These genetically hardwired features have major impact on our speech production. No matter what our condition is, changing these features is not possible. When a vowel is produced, there are three components which are responsible for its form; height, length and position. F1 represented the height of the vowel and F2 represented the position. The difference between F2 and F1 represented how back the vowel is. The current study looked deeply into the vowels produced by Marwari speakers at different syllable positions and
analyzed the change in formant frequencies. There are many articulatory factors which affected the production of a vowel. Nasalized vowels are one of them. These vowels along with their articulatory modifications we saw whether that their formant frequencies have changed. The features like pitch, tone and accent can easily be modified but a person cannot change his or her articulator. These formant harmonics are the representation of the filters which are affecting voice productions. These formant frequencies should be unchangeable. This study tried to identify formant values for vowels and see if we change the pitch and other formants remains constant or not. The relevant research questions for the proposed dissertation are:

1. How do the genetically hardwired features make the voice pattern of every human unique?
2. What aspects of F1 and F2 are helpful in identifying language specific or variety specific sections of an ethnic group?
3. How does F0 measure help in increasing the accuracy of identifying these ethnic groups?
4. How do parameters vowel height, vowel position and nasalization can affect the identification process of the given ethnic groups?
5. Are the formant frequencies affected by the position of vowels (syllable positions)?
6. What is the role of F2 and F2-F1 in increasing the accuracy of speaker identification?

Hypothesis

The values of F2 and F2-F1 determine the position of vowels in the vocal cavity. Changing this position consciously is very difficult, which means that F2 and F2-F1 should be unchanging for every individual. Considering the constancy of these measures (negligible change which is statistically non-existent), improvement in the accuracy of speaker identification is possible by checking for these. By looking at the acoustic analysis of speech data of two distinct ethnic groups of Marwari speakers, we will attempt to justify the hypothesis.

5.2 Conclusion

The F0 and other formants have been the marker of vowel height, position and length. F0 represents the starting frequency of any sound, when it is produced in a human vocal
cavity. It has been proven that every human has his or her own dimensions, shape and a very unique vocal tract. So, when any sound wave is produced by human vocal tract, it gets affected by the person's unique speech mechanisms. The shape of vocal chords, the length of the wind pipe, the shape of oral or nasal cavity etc., all these things are very speaker specific. So, it has been assumed that any sound wave, which is produced by a human should have a unique print associated with it. Which can help the investigator to differentiate it from other's voices. Forensic Speaker Identification is a process which is primarily based on this ideology of voice being speaker specific. The current study was an attempt to see the importance of vowel formants in forensic speaker identification. As explained in the hypothesis, the major aspect of this study was to deal with the role of F2, and F2-F1 and see if it remains constant for the speaker in every context. The two contexts, which were taken for this study were, sound taken by the known speakers in an ideal environment, where there is not disturbance and the participants are provided with a world list and sounds taken by the unknown speakers in a conversation based environment where sounds are extracted from a normal conversation. The differences in these two environments were that, one of them had very few variables and the investigator knew the identity of the participants and in the second one the variables which can affect the quality of selected sound, were way to high and there were chances of the sound being distorted and unusable for the study. Both samples were compared acoustically along with auditory analysis, to see the resemblance and common factors in these samples. And look for the importance of F2 and F2-F1 in these analyses. The pitch analysis and acoustic space analysis was also conducted on the speakers to identify the gender and variety specific features. Standard deviation of every vowel was analyzed with respect to the standard deviation of the entire language's mean vowel frequencies. The closest matches were further analyzed and put in a graphical representation to make it easier to understand. The results found in this study are given below;

1. The first step was, auditory comparison which showed that in a simple conversation, listener can identify the voice of the speaker by their profile. The accuracy of auditory analysis was almost hundred percent for the current research. There was one case when the listener identified the voice of female 82 -year-old lady as male speaker. This research was conducted on a very ideal environment, so the results of auditory analysis were quite positive. But in a
criminal enquiry, the investigator cannot fully depend on the auditory analysis. Because sometimes the suspects modify their voices intentionally as well.
2. The mean F0 of speakers from varieties helped identifying the gender differences acoustically.
3. The comparison of F 0 within the variety helped marking the individual samples to their respective counterparts in the QS. The Speaker 31 and speaker 33 are put at the matching position because they are not matching to any other speaker's SD and mean. Similarly, there were some speakers who showed high range of maximum to minimum F0 values, and different from their Question Samples. This proved that only depending on SD and Mean F0 can be problematic for any forensic enquiry.
4. Almost every acoustic space chart had the vowels occupying the mean vowel space of the language. Even though there were few acoustic space charts which didn't match with their respective QSs.
5. The most conclusive results were acquired with the help of Formant charts, which included F1, F2, F3 diff F2- F1 and diff F3-F2. With almost 90 percent accuracy, the Suspect Samples and Question Samples matched with each other for the F1, F2 and F2-F1 values. Some vowels had a slight difference in their F1 and F2 values but the accuracy of other six vowels made it negligible. All the Suspect Samples matched with their respective Question Samples, on the basis of this.
6. The standard deviation was also constant and minimum for almost all the vowels.
7. There was difference between vowel height in suspect sample and question sample for vowel /i/ in all the speakers which were identified as nasal by the listeners.
8. Vowel /a/ showed height difference between suspect sample and question sample for most of the speakers who were identified as having a nasalized voice. The same difference is visible in suspect sample 33 and 40 of Bishnoi speakers.
9. The vowel height is considerably low for these speakers, comparing to other speakers from the same variety. Which is clearly visible in their SD and mean F1 charts. Even though the values of QS and SS are matching in most of them the values are lower than the rest of the speakers' F1.
10. Because of the nasalization of the speech the vowel height has also affected F2F1 for the speakers.

The overall conclusion from the current study is that the speakers of the Brahmin variety had a general nasalized tone for almost 8 speakers. The Bishnoi speakers on the hand had a loud voice. The acoustic analysis for these varieties showed that the vowel /i/ and /I/ occupied a very close position in a vowel chart for the Brahmin variety and because of the nasalization, it becomes very difficult to differentiate between these two. Bishnoi speakers' loud and fast voice output created a higher mean pitch for the variety than that of Brahmin speakers.

Nasalization affected the F1 values of Brahmin speaker a lot. But in all these cases, the F2 remained somewhat unchangeable and provided positive results. In forensic speaker identification, for a nasalized voice it is better to look for the F2, which depicts the position of vowel in the mouth, i.e. how back or front the vowel is. So, we can say that through the help of the current study, it can be shown that F2 shows the highest level of accuracy for a nasalized voice and for a non-nasal oral voice, both F2 and F1 should be taken into consideration and to achieve more accurate results, the analysis should contain both auditory and acoustic analysis.

5.3 Limitations of the Present Study

The current research work has provided a great deal of learning experience to the researcher and hopefully, it will be as helpful for the reader as well. Even though the research was conducted in a very planned manner and with a lot of determination, there are some points which needs improvement. The first point is that, the data set used for the present research was huge and researcher has tried her best to analyse it in a given period of time. But there still a lot which can be done with the given set of data. The second limitation is that to acquire the Question Samples, researcher had to talk to them on random topics, and since the participants didn't know the researcher personally, they were little hesitant, which might affect the spontaneous purpose of the Question Sample. In real life, the accused are usually unware that they are being recorded so they are careless while speaking.

5.4 Future Scope

Though the current study has tried to cover every possible way of analysing the given data and looking for the role of F2 and F2- F1 in it, there were some possible analytical
modules which were not included in it. The most important thing which is missing from the data is the T-testing of the hypothesis, through a statistical programme. Vowel duration and amplitude analysis was also excluded from the research because of the time limitation. The large number of participants and analysing their data made it very difficult to cover every possible way of analysis on for this research.

In future, the researcher can also look for the likelihood ratio for the current study and make it statistically more accurate. LR can improve the strength of the data along with making it more scientifically accurate. One more addition which can be done to this research is that, the context in which the question sample has been collected can be increased, for example, to ensure the authenticity of the recording, a recorded speech from telephone conversation can be used as a question sample.

As it is said earlier there is always a scope of improvement in any study. The future researchers can take these suggestions or choose any other topic from the field of Forensic Speaker Identification, which will help improving the accuracy of voice recording in court and might make it as admissible as finger print. Every research done on this topic takes us to one step closer to the ultimate goal, which is "Making Voice Analysis as reliable as Finger Print Identification".

I. Bibliography

Fujimura, O., 1967. On the second spectral peak of front vowels: a perceptual study of the role of the second and third formants. Language and Speech, 10(3), pp.181-193.

Lindblom, B., Diehl, R. and Creeger, C., 2009. Do 'Dominant Frequencies' explain the listener's response to formant and spectrum shape variations?. Speech communication, 51(7), pp.622-629.

Kiefte, M., Enright, T. and Marshall, L., 2010. The role of formant amplitude in the perception of/i/and/u. The Journal of the Acoustical Society of America, 127(4), pp.2611-2621.

Assgari, A.A. and Stilp, C.E., 2015. Talker information influences spectral contrast effects in speech categorizationa). The Journal of the Acoustical Society of America, 138(5), pp.3023-3032.

Fujisaki, H. and Kawashima, T., 1968. The roles of pitch and higher formants in the perception of vowels. IEEE transactions on audio and electroacoustics, 16(1), pp.7377.

Fitch, W.T., 2000. The evolution of speech: a comparative review. Trends in cognitive sciences, 4(7), pp.258-267.

Fujisaki, H. and Kawashima, T., 1968. The roles of pitch and higher formants in the perception of vowels. IEEE transactions on audio and electroacoustics, 16(1), pp.7377.

Halberstam, B. and Raphael, L.J., 2004. Vowel normalization: the role of fundamental frequency and upper formants. Journal of Phonetics, 32(3), pp.423-434.

Champod, C. and Meuwly, D., 2000. The inference of identity in forensic speaker recognition. Speech communication, 31(2), pp.193-203.

Rose, P., 2006. Technical forensic speaker recognition: Evaluation, types and testing of evidence. Computer Speech \& Language, 20(2), pp.159-191.

Gonzalez-Rodriguez, J., Drygajlo, A., Ramos-Castro, D., Garcia-Gomar, M. and Ortega-Garcia, J., 2006. Robust estimation, interpretation and assessment of likelihood ratios in forensic speaker recognition. Computer Speech \& Language, 20(2), pp.331355.

Rodman, R., McAllister, D., Bitzer, D., Cepeda, L. and Abbitt, P., 2002. Forensic speaker identification based on spectral moments. Forensic Linguistics, 9, pp.22-43.

Labov, W., 2006. A sociolinguistic perspective on sociophonetic research. Journal of phonetics, 34(4), pp.500-515.

Becker, Timo, Michael Jessen, and Catalin Grigoras. "Forensic speaker verification using formant features and Gaussian mixture models." Interspeech. 2008.

Künzel, H. and Gonzalez-Rodriguez, J., 2003, August. Combining automatic and phonetic-acoustic speaker recognition techniques for forensic applications. In Proceedings of the 15th International Congress of Phonetic Sciences (pp. 1619-1622).

Zhang, C., Morrison, G.S., Ochoa, F. and Enzinger, E., 2013. Reliability of humansupervised formant-trajectory measurement for forensic voice comparison. The Journal of the Acoustical Society of America, 133(1), pp.EL54-EL60.

Dellwo, V., Leemann, A. and Kolly, M.J., 2012. Speaker idiosyncratic rhythmic features in the speech signal. In INTERSPEECH (pp. 1584-1587).

Hay, J., Warren, P. and Drager, K., 2006. Factors influencing speech perception in the context of a merger-in-progress. Journal of Phonetics, 34(4), pp.458-484.

Rose, P., 2003. Forensic speaker identification. CRC Press.
Loakes, D., 2006. A forensic phonetic investigation into the speech patterns of identical and non-identical twins (pp. 691-4). University of Melbourne, School of Languages.

Bonastre, J.F., Bimbot, F., Boë, L.J., Campbell, J.P., Reynolds, D.A. and MagrinChagnolleau, I., 2003, September. Person authentication by voice: a need for caution. In INTERSPEECH.

Hennebert, J., Melin, H., Petrovska, D. and Genoud, D., 2000. POLYCOST: A telephone-speech database for speaker recognition. Speech communication, 31(2), pp.265-270.

Johnson, K., 2006. Resonance in an exemplar-based lexicon: The emergence of social identity and phonology. Journal of phonetics, 34(4), pp.485-499.

Hollien, H., 1990. The acoustics of crime. Applied Psycholinguistics and Communication Disorders, p. 370 .

Hirahara, T. and Kato, H., 1992. The Effect of FO on Vowel Identification. Speech perception, production, and linguistic structure, pp.89-112.
von Helmholtz, H. "On the Sensation of Tone.(trans. AJ Ellis)." (1885).
Fry, Dennis B., et al. "The identification and discrimination of synthetic vowels." Language and speech 5.4 (1962): 171-189.

Krakow, R.A., Beddor, P.S., Goldstein, L.M. and Fowler, C.A., 1988. Coarticulatory influences on the perceived height of nasal vowels. The Journal of the Acoustical Society of America, 83(3), pp.1146-1158.
Wright, J. T. (1975). Effects of vowel nasalization on the perception of vowel height. In C. A. Ferguson,
L. M. Hyman, \& J. J. Ohala (Eds.), Nasalfest: Papers from a symposium on nasals and nasalization. (Language Universals Project, Stanford University, Stanford, CA),
pp.373-388.
Wright, J. T. 1986. The Behavior of Nasalized Vowels in the Perceptual Vowel Space. In J. J. Ohala \& J. J. Jaeger (Eds.), Experimental phonology (pp.45-67). Orlando, FL: Academic Press.
II. Appendix

Acoustic Space chart Brahmin Males

sub jec t	vo we 1	sf0	sf1	sf2	sf3	sdiff f2- f1	sdiff f3- f2	qf0	qf1	qf2	qf3	$\begin{aligned} & \text { difff } \\ & \text { 3-f2 } \end{aligned}$	$\begin{aligned} & \text { difff } \\ & \text { 3-f2 } \end{aligned}$
1	I	$\begin{aligned} & 145.1 \\ & 87881 \\ & 2 \end{aligned}$	$\begin{aligned} & 363.8 \\ & 04751 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2264 . \\ & 27134 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2837 . \\ & 56157 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1900 . \\ & 46659 \\ & 4 \end{aligned}$	$\begin{aligned} & 573.2 \\ & 90228 \end{aligned}$	$\begin{aligned} & 165.3 \\ & 59352 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 352.0 \\ & 90420 \\ & 9 \end{aligned}$	$\begin{aligned} & 2364 . \\ & 66550 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3113 . \\ & 85321 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2012 . \\ & 57508 \\ & 4 \end{aligned}$	$\begin{aligned} & 749.1 \\ & 87708 \\ & \hline \end{aligned}$
1	i:	$\begin{aligned} & 175.9 \\ & 03096 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 410.2 \\ & 21808 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2374 . \\ & 11371 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 3197 . \\ & 78259 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1963 . \\ & 89190 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 823.6 \\ & 68882 \end{aligned}$	$\begin{aligned} & 168.6 \\ & 76762 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 413.5 \\ & 54139 \\ & 5 \end{aligned}$	$\begin{aligned} & 1926 . \\ & 25855 \\ & \hline \end{aligned}$	$\begin{aligned} & 2909 . \\ & 05582 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1512 . \\ & 70441 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 982.7 \\ & 97272 \\ & \hline \end{aligned}$
1	ε	$\begin{aligned} & 175.9 \\ & 03096 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline 475.3 \\ & 67358 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2123 . \\ & 75413 \\ & 8 \end{aligned}$	$\begin{aligned} & \hline 2733 . \\ & 69613 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1648 . \\ & 38678 \end{aligned}$	$\begin{aligned} & 609.9 \\ & 41995 \end{aligned}$	$\begin{aligned} & \hline 166.4 \\ & 76110 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 531.2 \\ & 68719 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1557 . \\ & 29610 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2715 . \\ & 94986 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1026 . \\ & 02739 \end{aligned}$	$\begin{aligned} & 1158 . \\ & 65375 \\ & 9 \\ & \hline \end{aligned}$
1	$\boldsymbol{\theta}$	$\begin{aligned} & 180.7 \\ & 03867 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 600.9 \\ & 13993 \\ & 6 \end{aligned}$	$\begin{aligned} & 1378 . \\ & 03136 \\ & 3 \end{aligned}$	$\begin{aligned} & 2500 . \\ & 92656 \end{aligned}$	$\begin{aligned} & 777.1 \\ & 17369 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1122 . \\ & 89519 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 148.4 \\ & 42605 \\ & 6 \end{aligned}$	$\begin{aligned} & 591.9 \\ & 82417 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1280 . \\ & 77118 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2525 . \\ & 50726 \end{aligned}$	$\begin{aligned} & \hline 688.7 \\ & 88763 \\ & 3 \end{aligned}$	$\begin{aligned} & 1244 . \\ & 73607 \\ & 9 \end{aligned}$
1	a	$\begin{aligned} & 145.1 \\ & 87881 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 766.1 \\ & 22135 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1239 . \\ & 34267 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2428 . \\ & 36411 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 473.2 \\ & 20536 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1189 . \\ & 02144 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 135.3 \\ & 73393 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 704.4 \\ & 09273 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1227 . \\ & 12746 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2456 . \\ & 84080 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 522.7 \\ & 18188 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1229 . \\ & 71334 \\ & 7 \\ & \hline \end{aligned}$
1	0	$\begin{array}{\|l\|} \hline 171.1 \\ 42098 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 514.3 \\ & 93429 \\ & 1 \end{aligned}$	$\begin{aligned} & 991.0 \\ & 74986 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 2444 . \\ & 43575 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 476.6 \\ & 81557 \\ & 4 \end{aligned}$	$\begin{aligned} & 1453 . \\ & 36076 \\ & 8 \end{aligned}$	$\begin{aligned} & 148.1 \\ & 53386 \end{aligned}$	$\begin{aligned} & \hline 541.8 \\ & 97904 \\ & 8 \end{aligned}$	$\begin{aligned} & 1100 . \\ & 5972 \\ & \hline \end{aligned}$	$\begin{aligned} & 2448 . \\ & 17805 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 558.6 \\ & 99295 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1347 . \\ & 58085 \\ & 9 \end{aligned}$
1	u	$\begin{aligned} & 186.1 \\ & 58399 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 409.5 \\ & 32029 \\ & \hline \end{aligned}$	$\begin{aligned} & 992.7 \\ & 78136 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2460 . \\ & 47410 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 583.2 \\ & 46107 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1467 . \\ & 69597 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 164.4 \\ & 80646 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 437.8 \\ & 05526 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1140 . \\ & 91496 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2492 . \\ & 16901 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 703.1 \\ & 09436 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1351 . \\ & 25405 \\ & 1 \\ & \hline \end{aligned}$
2	I	$\begin{aligned} & 143.8 \\ & 46490 \\ & 5 \end{aligned}$	$\begin{aligned} & 416.9 \\ & 87821 \\ & 5 \end{aligned}$	$\begin{aligned} & 1972 . \\ & 81067 \\ & 5 \end{aligned}$	$\begin{aligned} & 2390 . \\ & 65222 \\ & 3 \end{aligned}$	$\begin{aligned} & 1555 . \\ & 82285 \\ & 4 \end{aligned}$	$\begin{aligned} & 417.8 \\ & 41548 \end{aligned}$	$\begin{aligned} & 168.5 \\ & 12455 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 423.8 \\ & 67102 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1714 . \\ & 44601 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2318 . \\ & 71923 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1290 . \\ & 57891 \\ & 4 \end{aligned}$	$\begin{aligned} & 604.2 \\ & 73217 \end{aligned}$
2	i:	$\begin{aligned} & 150.3 \\ & 21919 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 413.3 \\ & 20258 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2012 . \\ & 20706 \\ & 5 \end{aligned}$	$\begin{aligned} & 2425 . \\ & 14846 \\ & 1 \end{aligned}$	$\begin{aligned} & 1598 . \\ & 88680 \\ & 7 \end{aligned}$	$\begin{aligned} & 412.9 \\ & 41396 \end{aligned}$	$\begin{aligned} & 129.9 \\ & 04775 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 403.0 \\ & 41536 \\ & 6 \end{aligned}$	$\begin{aligned} & 1941 . \\ & 55524 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2303 . \\ & 82258 \\ & 4 \end{aligned}$	$\begin{aligned} & 1538 . \\ & 51370 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 362.2 \\ & 67343 \\ & \hline \end{aligned}$
2	ε	$\begin{aligned} & 193.3 \\ & 01666 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 613.7 \\ & 07853 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1846 . \\ & 60360 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2448 . \\ & 82724 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1232 . \\ & 89574 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 602.2 \\ & 23645 \\ & \hline \end{aligned}$	$\begin{aligned} & 104.6 \\ & 17206 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 594.5 \\ & 00958 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1520 . \\ & 69791 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2518 . \\ & 17606 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 926.1 \\ & 96960 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 997.4 \\ & 78146 \\ & \hline \end{aligned}$
2	$\boldsymbol{\partial}$	$\begin{aligned} & 163.9 \\ & 02073 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 598.9 \\ & 66800 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1323 . \\ & 03762 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2475 . \\ & 56165 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 724.0 \\ & 70820 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1152 . \\ & 52403 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 152.2 \\ & 28336 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 582.7 \\ & 58294 \\ & \hline \end{aligned}$	$\begin{aligned} & 1149 . \\ & 90740 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2555 . \\ & 93183 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 567.1 \\ & 49114 \end{aligned}$	$\begin{aligned} & 1406 . \\ & 02443 \\ & 1 \\ & \hline \end{aligned}$
2	a	$\begin{aligned} & 131.2 \\ & 34740 \\ & 8 \end{aligned}$	$\begin{aligned} & 659.2 \\ & 80870 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1175 . \\ & 83922 \\ & 5 \end{aligned}$	$\begin{aligned} & 2540 . \\ & 27774 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 516.5 \\ & 58354 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1364 . \\ & 43852 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 129.1 \\ & 18348 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 645.7 \\ & 95028 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1256 . \\ & 74119 \\ & 5 \end{aligned}$	$\begin{aligned} & 2626 . \\ & 55280 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 610.9 \\ & 46166 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1369 . \\ & 81160 \\ & 6 \\ & \hline \end{aligned}$
2	0	$\begin{aligned} & 139.6 \\ & 91389 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 499.3 \\ & 57237 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1028 . \\ & 61131 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2481 . \\ & 25987 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 529.2 \\ & 54073 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1452 . \\ & 64856 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 136.6 \\ & 27697 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 572.1 \\ & 29115 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 977.7 \\ & 24043 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2552 . \\ & 04501 \\ & \hline \end{aligned}$	$\begin{aligned} & 405.5 \\ & 94928 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1574 . \\ & 32096 \\ & 6 \\ & \hline \end{aligned}$
2	\mathbf{u}	$\begin{aligned} & 152.8 \\ & 54242 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 515.1 \\ & 11639 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 875.4 \\ & 08382 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2644 . \\ & 55904 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 360.2 \\ & 96743 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1769 . \\ & 15066 \end{aligned}$	$\begin{aligned} & 159.2 \\ & 30221 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 574.6 \\ & 86528 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1427 . \\ & 48989 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2646 . \\ & 31271 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 852.8 \\ & 03370 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1218 . \\ & 82281 \\ & 3 \\ & \hline \end{aligned}$
3	I	$\begin{aligned} & 87.34 \\ & 60533 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 344.5 \\ & 83627 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2046 . \\ & 21047 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2610 . \\ & 10437 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1701 . \\ & 62685 \\ & \hline \end{aligned}$	$\begin{aligned} & 563.8 \\ & 93898 \\ & \hline \end{aligned}$	$\begin{aligned} & 205.1 \\ & 31158 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 397.8 \\ & 93526 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1822 . \\ & 78920 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2565 . \\ & 03237 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1424 . \\ & 89567 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 742.2 \\ & 4317 \\ & \hline \end{aligned}$
3	i:	$\begin{aligned} & 91.02 \\ & 58690 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 351.3 \\ & 04720 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2145 . \\ & 17146 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2806 . \\ & 99313 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1793 . \\ & 86674 \\ & \hline \end{aligned}$	$\begin{aligned} & 661.8 \\ & 21675 \\ & \hline \end{aligned}$	$\begin{aligned} & 90.39 \\ & 97678 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 362.8 \\ & 29644 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2217 . \\ & 53702 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2708 . \\ & 17974 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1854 . \\ & 70738 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 490.6 \\ & 42721 \\ & \hline \end{aligned}$
3	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 82.31 \\ & 26974 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 470.4 \\ & 06788 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2001 . \\ & 36740 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2574 . \\ & 56042 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1530 . \\ & 96061 \\ & 9 \end{aligned}$	$\begin{aligned} & 573.1 \\ & 93014 \end{aligned}$	$\begin{aligned} & 151.3 \\ & 14166 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 522.9 \\ & 44297 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1889 . \\ & 68790 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2588 . \\ & 36443 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1366 . \\ & 74360 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 698.6 \\ & 76529 \\ & \hline \end{aligned}$
3	$\boldsymbol{\theta}$	$\begin{aligned} & 132.4 \\ & 71288 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 531.3 \\ & 67987 \\ & \hline \end{aligned}$	$\begin{aligned} & 1435 . \\ & 67671 \\ & 9 \end{aligned}$	$\begin{aligned} & 2609 . \\ & 38442 \\ & \hline \end{aligned}$	$\begin{aligned} & 904.3 \\ & 08732 \\ & \hline \end{aligned}$	$\begin{aligned} & 1173 . \\ & 70770 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 217.3 \\ & 09111 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 633.6 \\ & 43760 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1503 . \\ & 57406 \\ & \hline \end{aligned}$	$\begin{aligned} & 2741 . \\ & 07680 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 869.9 \\ & 30299 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1237 . \\ & 50274 \\ & 2 \\ & \hline \end{aligned}$
3	a	$\begin{aligned} & 89.68 \\ & 82395 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 731.8 \\ & 18369 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1314 . \\ & 10454 \\ & \hline \end{aligned}$	$\begin{aligned} & 2580 . \\ & 18566 \\ & \hline \end{aligned}$	$\begin{aligned} & 582.2 \\ & 86170 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1266 . \\ & 08112 \end{aligned}$	$\begin{aligned} & 161.1 \\ & 65650 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 689.8 \\ & 38968 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1377 . \\ & 96967 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2558 . \\ & 39448 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 688.1 \\ & 30707 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1180 . \\ & 42480 \\ & 8 \\ & \hline \end{aligned}$
3	0	$\begin{aligned} & 82.95 \\ & 91039 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 443.0 \\ & 30782 \\ & 3 \end{aligned}$	$\begin{aligned} & 1190 . \\ & 64817 \\ & 3 \end{aligned}$	$\begin{aligned} & 2576 . \\ & 41160 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 747.6 \\ & 17390 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1385 . \\ & 76343 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 79.24 \\ & 13205 \end{aligned}$	$\begin{aligned} & 406.4 \\ & 50895 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1134 . \\ & 28916 \\ & 9 \end{aligned}$	$\begin{aligned} & 2484 . \\ & 49301 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 727.8 \\ & 38273 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1350 . \\ & 20384 \\ & 3 \end{aligned}$
3	\mathbf{u}	$\begin{aligned} & 184.8 \\ & 56592 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 421.6 \\ & 48574 \end{aligned}$	$\begin{aligned} & 1120 . \\ & 57552 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2763 . \\ & 61113 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 698.9 \\ & 2695 \\ & \hline \end{aligned}$	$\begin{aligned} & 1643 . \\ & 03561 \\ & 4 \end{aligned}$	$\begin{aligned} & 170.1 \\ & 11258 \\ & \hline \end{aligned}$	$\begin{aligned} & 370.8 \\ & 75876 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1285 . \\ & 64793 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2651 . \\ & 41397 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 914.7 \\ & 72061 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1365 . \\ & 76603 \\ & 4 \\ & \hline \end{aligned}$
4	I	$\begin{aligned} & 106.6 \\ & 69161 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 354.2 \\ & 71868 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2208 . \\ & 04246 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2734 . \\ & 62186 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1853 . \\ & 77059 \\ & 8 \end{aligned}$	526.5 794	$\begin{aligned} & 119.2 \\ & 46164 \end{aligned}$	$\begin{aligned} & 523.2 \\ & 47047 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2088 . \\ & 45305 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 3141 . \\ & 62716 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1565 . \\ & 20600 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1053 . \\ & 17411 \\ & 5 \\ & \hline \end{aligned}$
4	i:	$\begin{aligned} & 111.0 \\ & 94766 \\ & 2 \end{aligned}$	$\begin{aligned} & 349.8 \\ & 36238 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2211 . \\ & 04502 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2715 . \\ & 52485 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1861 . \\ & 20878 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 504.4 \\ & 7983 \\ & \hline \end{aligned}$	$\begin{aligned} & 117.7 \\ & 40811 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 370.3 \\ & 31416 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2044 . \\ & 86070 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2734 . \\ & 27677 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1674 . \\ & 52929 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 689.4 \\ & 16062 \\ & \hline \end{aligned}$
4	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 107.4 \\ & 19092 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 489.5 \\ & 60614 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1768 . \\ & 28435 \\ & 5 \end{aligned}$	$\begin{aligned} & 2730 . \\ & 36919 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1278 . \\ & 72374 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 962.0 \\ & 84844 \end{aligned}$	$\begin{aligned} & 88.76 \\ & 16770 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 423.8 \\ & 45129 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1977 . \\ & 14343 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2806 . \\ & 98715 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1553 . \\ & 29830 \\ & 8 \end{aligned}$	$\begin{aligned} & 829.8 \\ & 43714 \end{aligned}$
4	$\boldsymbol{\theta}$	$\begin{aligned} & 106.6 \\ & 28001 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 539.1 \\ & 40143 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1314 . \\ & 28564 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2640 . \\ & 15746 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 775.1 \\ & 45503 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1325 . \\ & 87181 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 132.9 \\ & 67760 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 588.9 \\ & 09230 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1590 . \\ & 15380 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2764 . \\ & 25056 \\ & \hline \end{aligned}$	$\begin{aligned} & 1001 . \\ & 24457 \\ & \hline \end{aligned}$	$\begin{aligned} & 1174 . \\ & 09675 \\ & 9 \\ & \hline \end{aligned}$

4	a	$\begin{aligned} & \hline 101.8 \\ & 15947 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline 698.8 \\ 34805 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 1261 . \\ & 24346 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2767 . \\ & 71444 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 562.4 \\ & 08655 \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline 1506 . \\ 47098 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & \hline 121.9 \\ & 99493 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 671.2 \\ & 02104 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1438 . \\ & 31599 \\ & 1 \end{aligned}$	$\begin{aligned} & 2719 . \\ & 67296 \end{aligned}$	$\begin{aligned} & 767.1 \\ & 13886 \\ & 3 \end{aligned}$	$\begin{aligned} & 1281 . \\ & 35696 \\ & 9 \end{aligned}$
4	0	$\begin{aligned} & 105.8 \\ & 29110 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 498.0 \\ & 30355 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1044 . \\ & 82199 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2803 . \\ & 30316 \\ & 9 \end{aligned}$	$\begin{aligned} & 546.7 \\ & 91637 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1758 . \\ & 48117 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 102.7 \\ & 03847 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 492.9 \\ & 70968 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1087 . \\ & 41643 \end{aligned}$	$\begin{aligned} & 2929 . \\ & 47982 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 594.4 \\ & 45461 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1842 . \\ & 06339 \\ & 5 \end{aligned}$
4	u	$\begin{aligned} & 110.4 \\ & 3917 \\ & \hline \end{aligned}$	$\begin{aligned} & 423.3 \\ & 17544 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1028 . \\ & 35536 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2945 . \\ & 55323 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 605.0 \\ & 37818 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1917 . \\ & 19787 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 105.3 \\ & 71761 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 426.4 \\ & 00513 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 912.0 \\ & 26791 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2884 . \\ & 79602 \\ & 6 \end{aligned}$	$\begin{aligned} & 485.6 \\ & 26278 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1972 . \\ & 76923 \\ & 4 \\ & \hline \end{aligned}$
5	I	$\begin{aligned} & 166.2 \\ & 80292 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 613.1 \\ & 21712 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1753 . \\ & 26064 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2681 . \\ & 26319 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1140 . \\ & 13893 \\ & 7 \\ & \hline \end{aligned}$	928.0 02548	$\begin{aligned} & 121.7 \\ & 62035 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 952.5 \\ & 72122 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1790 . \\ & 62756 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2949 . \\ & 44886 \\ & 5 \end{aligned}$	$\begin{aligned} & 838.0 \\ & 55440 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1158 . \\ & 82130 \\ & 2 \\ & \hline \end{aligned}$
5	i:	$\begin{aligned} & 156.8 \\ & 40984 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 440.0 \\ & 73683 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1913 . \\ & 64795 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2546 . \\ & 06648 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1473 . \\ & 57427 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 632.4 \\ & 1853 \end{aligned}$	$\begin{aligned} & 132.3 \\ & 70441 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 493.6 \\ & 82867 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1533 . \\ & 42392 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2513 . \\ & 09725 \end{aligned}$	$\begin{aligned} & 1039 . \\ & 74105 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 979.6 \\ & 73329 \end{aligned}$
5	ε	$\begin{aligned} & 143.8 \\ & 45018 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 559.7 \\ & 06556 \\ & 9 \end{aligned}$	$\begin{aligned} & 1562 . \\ & 23190 \\ & 6 \end{aligned}$	$\begin{aligned} & 2770 . \\ & 74798 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1002 . \\ & 52534 \\ & 9 \end{aligned}$	$\begin{aligned} & 1208 . \\ & 51607 \\ & 6 \end{aligned}$	$\begin{aligned} & 128.8 \\ & 94390 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 511.9 \\ & 38317 \\ & 9 \end{aligned}$	$\begin{aligned} & 1652 . \\ & 31108 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2552 . \\ & 85578 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1140 . \\ & 37276 \\ & 9 \end{aligned}$	$\begin{aligned} & 900.5 \\ & 44698 \end{aligned}$
5	\boldsymbol{O}	$\begin{aligned} & 136.7 \\ & 49650 \end{aligned}$	$\begin{aligned} & \hline 599.9 \\ & 41897 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1463 . \\ & 77838 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2507 . \\ & 53848 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 863.8 \\ & 36484 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1043 . \\ & 7601 \\ & \hline \end{aligned}$	$\begin{aligned} & 154.9 \\ & 54515 \end{aligned}$	$\begin{aligned} & 743.1 \\ & 95162 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1513 . \\ & 08931 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2764 . \\ & 77021 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 769.8 \\ & 94155 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1251 . \\ & 68089 \\ & 6 \\ & \hline \end{aligned}$
5	a	$\begin{aligned} & \hline 138.7 \\ & 02620 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 732.7 \\ & 34978 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1274 . \\ & 48540 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2747 . \\ & 52025 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 541.7 \\ & 50430 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1473 . \\ & 03484 \\ & 9 \\ & \hline \end{aligned}$	130.0 12883 139.2	$\begin{aligned} & 617.2 \\ & 07284 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1213 . \\ & 57297 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2884 . \\ & 98293 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 596.3 \\ & 65691 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1671 . \\ & 40996 \\ & 1 \\ & \hline \end{aligned}$
5	0	$\begin{aligned} & 147.2 \\ & 18947 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 577.4 \\ & 12432 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1181 . \\ & 15256 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2662 . \\ & 85218 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 603.7 \\ & 40129 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1481 . \\ & 69962 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 139.2 \\ & 91923 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 597.0 \\ & 63810 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1082 . \\ & 52160 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2691 . \\ & 01166 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 485.4 \\ & 57793 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1608 . \\ & 49006 \\ & 4 \\ & \hline \end{aligned}$
5	u	$\begin{aligned} & \hline 152.4 \\ & 70356 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 489.6 \\ & 51417 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1154 . \\ & 63354 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2576 . \\ & 76432 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 664.9 \\ & 82128 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1422 . \\ & 13078 \\ & \hline \end{aligned}$	$\begin{aligned} & 130.9 \\ & 87335 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 593.3 \\ & 82291 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1266 . \\ & 03521 \\ & \hline \end{aligned}$	$\begin{aligned} & 2592 . \\ & 02549 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 672.6 \\ & 52918 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1325 . \\ & 99028 \\ & 1 \\ & \hline \end{aligned}$
6	I	$\begin{array}{\|l\|} \hline 187.4 \\ 84827 \\ \hline \end{array}$	$\begin{aligned} & 952.5 \\ & 72122 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1790 . \\ & 62756 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2949 . \\ & 44886 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 838.0 \\ & 55440 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1158 . \\ & 82130 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 176.8 \\ & 87475 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 381.9 \\ & 97569 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1790 . \\ & 09845 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2858 . \\ & 57779 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1408 . \\ & 10088 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1068 . \\ & 47933 \\ & 4 \\ & \hline \end{aligned}$
6	i:	$\begin{aligned} & \hline 224.6 \\ & 81251 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 493.6 \\ & 82867 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1533 . \\ & 42392 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2513 . \\ & 09725 \end{aligned}$	$\begin{aligned} & 1039 . \\ & 74105 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 979.6 \\ & 73329 \\ & \hline \end{aligned}$	$\begin{aligned} & 175.9 \\ & 68622 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 409.4 \\ & 56690 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1546 . \\ & 20986 \\ & 3 \end{aligned}$	$\begin{aligned} & 2658 . \\ & 56125 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1136 . \\ & 75317 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1112 . \\ & 35139 \end{aligned}$
6	ε	$\begin{aligned} & 209.2 \\ & 95383 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 511.9 \\ & 38317 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1652 . \\ & 31108 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2552 . \\ & 85578 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1140 . \\ & 37276 \\ & 9 \end{aligned}$		$\begin{aligned} & 168.9 \\ & 39501 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 655.1 \\ & 02690 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1834 . \\ & 79803 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2630 . \\ & 11915 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1179 . \\ & 69534 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 795.3 \\ & 21121 \\ & \hline \end{aligned}$
6	$\boldsymbol{\theta}$	$\begin{aligned} & 144.0 \\ & 96954 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 743.1 \\ & 95162 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1513 . \\ & 08931 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2764 . \\ & 77021 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 769.8 \\ & 94155 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1251 . \\ & 68089 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 154.4 \\ & 28822 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 744.3 \\ & 42318 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1343 . \\ & 19517 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2665 . \\ & 61083 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 598.8 \\ & 52854 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1322 . \\ & 41566 \\ & 6 \\ & \hline \end{aligned}$
6	a	$\begin{aligned} & \hline 175.1 \\ & 82976 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 617.2 \\ & 07284 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1213 . \\ & 57297 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2884 . \\ & 98293 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 596.3 \\ & 65691 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1671 . \\ & 40996 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 190.8 \\ & 96795 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 682.8 \\ & 23598 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1062 . \\ & 60787 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2672 . \\ & 53681 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 379.7 \\ & 84272 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1609 . \\ & 92894 \\ & 1 \\ & \hline \end{aligned}$
6	0	$\begin{aligned} & 187.9 \\ & 87007 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 597.0 \\ & 63810 \\ & 7 \end{aligned}$	$\begin{aligned} & 1082 . \\ & 52160 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2691 . \\ & 01166 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 485.4 \\ & 57793 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1608 . \\ & 49006 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 183.7 \\ & 96020 \\ & 9 \end{aligned}$	$\begin{aligned} & 587.1 \\ & 97789 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1045 . \\ & 54357 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2937 . \\ & 22801 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 458.3 \\ & 45786 \end{aligned}$	$\begin{aligned} & 1891 . \\ & 68443 \\ & 6 \\ & \hline \end{aligned}$
6	u	$\begin{aligned} & 210.3 \\ & 82458 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 593.3 \\ & 82291 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1266 . \\ & 03521 \\ & \hline \end{aligned}$	$\begin{aligned} & 2592 . \\ & 02549 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 672.6 \\ & 52918 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1325 . \\ & 99028 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 80.91 \\ & 40370 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 549.8 \\ & 80395 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1371 . \\ & 18846 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2715 . \\ & 91961 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 821.3 \\ & 08071 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1344 . \\ & 73114 \\ & 8 \\ & \hline \end{aligned}$
7	I	$\begin{aligned} & 131.4 \\ & 25075 \\ & 2 \end{aligned}$	$\begin{aligned} & 395.9 \\ & 59967 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2038 . \\ & 47532 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2745 . \\ & 66409 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1642 . \\ & 51536 \end{aligned}$	$\begin{aligned} & 707.1 \\ & 88766 \end{aligned}$	$\begin{aligned} & 150.7 \\ & 31332 \\ & 7 \end{aligned}$	$\begin{aligned} & 452.5 \\ & 81963 \\ & 5 \end{aligned}$	$\begin{aligned} & 1610 . \\ & 4683 \end{aligned}$	$\begin{aligned} & 2316 . \\ & 26744 \end{aligned}$	$\begin{aligned} & 1157 . \\ & 88633 \\ & 7 \end{aligned}$	$\begin{aligned} & 705.7 \\ & 9914 \end{aligned}$
7	i:	$\begin{aligned} & 144.4 \\ & 34005 \\ & 4 \end{aligned}$	$\begin{aligned} & 518.3 \\ & 41165 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2118 . \\ & 79757 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2868 . \\ & 69154 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1600 . \\ & 45641 \\ & 1 \end{aligned}$	$\begin{aligned} & 749.8 \\ & 93972 \end{aligned}$	$\begin{aligned} & 139.5 \\ & 82755 \\ & 5 \end{aligned}$	$\begin{aligned} & 421.0 \\ & 44659 \\ & 2 \end{aligned}$	$\begin{aligned} & 2187 . \\ & 58770 \\ & 5 \end{aligned}$	$\begin{aligned} & 2523 . \\ & 59118 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1766 . \\ & 54304 \\ & 6 \end{aligned}$	$\begin{aligned} & 336.0 \\ & 03482 \end{aligned}$
7	ε	$\begin{aligned} & 132.6 \\ & 76213 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 527.6 \\ & 66002 \\ & \hline \end{aligned}$	$\begin{aligned} & 1911 . \\ & 24817 \\ & \hline \end{aligned}$	$\begin{aligned} & 2819 . \\ & 57728 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1383 . \\ & 58216 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 908.3 \\ & 29111 \\ & \hline \end{aligned}$	$\begin{aligned} & 153.4 \\ & 72495 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 515.4 \\ & 72937 \\ & \hline \end{aligned}$	$\begin{aligned} & 1872 . \\ & 00051 \\ & \hline \end{aligned}$	$\begin{aligned} & 2648 . \\ & 02953 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1356 . \\ & 52757 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 776.0 \\ & 29021 \\ & \hline \end{aligned}$
7	$\boldsymbol{\theta}$	$\begin{aligned} & 130.6 \\ & 17791 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 671.6 \\ & 80873 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1412 . \\ & 34550 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2522 . \\ & 69353 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 740.6 \\ & 64633 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1110 . \\ & 34802 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 146.8 \\ & 55034 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 710.2 \\ & 11971 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1464 . \\ & 71486 \\ & \hline \end{aligned}$	$\begin{aligned} & 2320 . \\ & 43930 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 754.5 \\ & 02888 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 855.7 \\ & 24443 \\ & \hline \end{aligned}$
7	a	$\begin{aligned} & 124.8 \\ & 35291 \\ & 2 \end{aligned}$	$\begin{aligned} & 803.6 \\ & 13829 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1335 . \\ & 55913 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2746 . \\ & 67770 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 531.9 \\ & 45303 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1411 . \\ & 11857 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 156.0 \\ & 63191 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 678.6 \\ & 82924 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1234 . \\ & 22637 \\ & \hline \end{aligned}$	$\begin{aligned} & 2465 . \\ & 89310 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 555.5 \\ & 43445 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1231 . \\ & 66673 \\ & 6 \\ & \hline \end{aligned}$
7	0	$\begin{aligned} & 141.2 \\ & 25412 \\ & 5 \end{aligned}$	$\begin{aligned} & 539.5 \\ & 75232 \\ & 5 \end{aligned}$	$\begin{aligned} & 1067 . \\ & 72309 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2778 . \\ & 97208 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 528.1 \\ & 47863 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1711 . \\ & 24898 \\ & 9 \end{aligned}$	$\begin{aligned} & 164.1 \\ & 89145 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 491.0 \\ & 57072 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1012 . \\ & 34748 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2547 . \\ & 41419 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 521.2 \\ & 90410 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1535 . \\ & 06671 \\ & 1 \\ & \hline \end{aligned}$
7	u	$\begin{aligned} & 155.1 \\ & 83219 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 471.6 \\ & 29191 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1095 . \\ & 23839 \end{aligned}$	$\begin{aligned} & 2847 . \\ & 63869 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 623.6 \\ & 09198 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1752 . \\ & 40030 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 157.5 \\ & 06947 \end{aligned}$	$\begin{aligned} & 449.5 \\ & 92697 \end{aligned}$	$\begin{aligned} & 913.1 \\ & 90030 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2371 . \\ & 11328 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 463.5 \\ & 97333 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1457 . \\ & 92325 \\ & 1 \\ & \hline \end{aligned}$
8	I	$\begin{aligned} & 154.1 \\ & 35705 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 420.6 \\ & 13408 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1999 . \\ & 14887 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2543 . \\ & 44011 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1578 . \\ & 53547 \end{aligned}$	$\begin{aligned} & 544.2 \\ & 91238 \\ & \hline \end{aligned}$	$\begin{aligned} & 120.9 \\ & 83046 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 381.7 \\ & 83684 \end{aligned}$	$\begin{aligned} & 1851 . \\ & 11254 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2457 . \\ & 70832 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1469 . \\ & 32886 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 606.5 \\ & 95776 \\ & \hline \end{aligned}$
8	i:	$\begin{aligned} & 183.4 \\ & 16963 \\ & \hline \end{aligned}$	$\begin{aligned} & 370.8 \\ & 03480 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2237 . \\ & 63616 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2653 . \\ & 46233 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1866 . \\ & 83268 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 415.8 \\ & 26169 \\ & \hline \end{aligned}$	$\begin{aligned} & 205.4 \\ & 56055 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 420.5 \\ & 74848 \\ & 4 \end{aligned}$	$\begin{aligned} & 2198 . \\ & 44029 \\ & 7 \end{aligned}$	$\begin{aligned} & 2650 . \\ & 83768 \end{aligned}$	$\begin{aligned} & 1777 . \\ & 86544 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 452.3 \\ & 97383 \\ & \hline \end{aligned}$

8	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 180.0 \\ & 33887 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 535.2 \\ & 61347 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1864 . \\ & 49418 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2554 . \\ & 21006 \\ & 5 \end{aligned}$	$\begin{aligned} & 1329 . \\ & 23284 \end{aligned}$	$\begin{aligned} & 689.7 \\ & 15877 \end{aligned}$	$\begin{aligned} & 176.6 \\ & 22105 \\ & 9 \end{aligned}$	$\begin{aligned} & 402.8 \\ & 71274 \\ & 8 \end{aligned}$	$\begin{aligned} & 1899 . \\ & 78951 \\ & 2 \end{aligned}$	$\begin{aligned} & 2598 . \\ & 94236 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1496 . \\ & 91823 \\ & 7 \end{aligned}$	$\begin{aligned} & 699.1 \\ & 52855 \end{aligned}$
8	$\boldsymbol{\theta}$	$\begin{aligned} & \hline 137.5 \\ & 92764 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 570.0 \\ & 49115 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1495 . \\ & 59921 \\ & 8 \end{aligned}$	$\begin{aligned} & 2333 . \\ & 80950 \\ & 8 \end{aligned}$	$\begin{aligned} & 925.5 \\ & 50102 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 838.2 \\ & 1029 \\ & \hline \end{aligned}$	$\begin{aligned} & 145.9 \\ & 33029 \\ & \hline \end{aligned}$	$\begin{aligned} & 531.9 \\ & 82300 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1552 . \\ & 06800 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2319 . \\ & 64905 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1020 . \\ & 08570 \\ & 3 \end{aligned}$	$\begin{aligned} & 767.5 \\ & 81056 \end{aligned}$
8	a	$\begin{aligned} & 142.7 \\ & 71583 \\ & \hline \end{aligned}$	$\begin{aligned} & 770.1 \\ & 81115 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1385 . \\ & 17757 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2451 . \\ & 35224 \\ & \hline \end{aligned}$	$\begin{aligned} & 614.9 \\ & 96460 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1066 . \\ & 17466 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 176.8 \\ & 36756 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 699.0 \\ & 41090 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1403 . \\ & 82098 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2616 . \\ & 72890 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 704.7 \\ & 79892 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1212 . \\ & 90792 \\ & \hline \end{aligned}$
8	0	$\begin{aligned} & 162.7 \\ & 11370 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 486.9 \\ & 91482 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1110 . \\ & 19174 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2476 . \\ & 76958 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 623.2 \\ & 00265 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1366 . \\ & 57783 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 189.8 \\ & 10037 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 474.4 \\ & 92205 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 964.9 \\ & 03543 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2614 . \\ & 44703 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 490.4 \\ & 11338 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1649 . \\ & 54349 \\ & 2 \\ & \hline \end{aligned}$
8	u	$\begin{aligned} & 182.0 \\ & 52852 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 414.5 \\ & 73893 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1032 . \\ & 13745 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2581 . \\ & 79744 \\ & 2 \end{aligned}$	$\begin{aligned} & 617.5 \\ & 63564 \\ & 2 \end{aligned}$	$\begin{aligned} & 1549 . \\ & 65998 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 173.8 \\ & 76143 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 491.1 \\ & 78851 \\ & 3 \end{aligned}$	$\begin{aligned} & 859.8 \\ & 84954 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2537 . \\ & 74661 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 368.7 \\ & 06103 \end{aligned}$	$\begin{aligned} & 1677 . \\ & 86166 \\ & 3 \\ & \hline \end{aligned}$
9	I	$\begin{aligned} & 176.5 \\ & 57032 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 359.1 \\ & 13142 \\ & 2 \end{aligned}$	$\begin{aligned} & 2138 . \\ & 22906 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2619 . \\ & 11119 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1779 . \\ & 11592 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 480.8 \\ & 82124 \end{aligned}$	$\begin{aligned} & 167.8 \\ & 96307 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 388.5 \\ & 90931 \\ & 3 \end{aligned}$	$\begin{aligned} & 1904 . \\ & 40598 \\ & 5 \end{aligned}$	$\begin{aligned} & 2766 . \\ & 47553 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1515 . \\ & 81505 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 862.0 \\ & 69551 \end{aligned}$
9	i:	$\begin{aligned} & \hline 198.2 \\ & 19231 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 381.0 \\ & 42205 \\ & 8 \end{aligned}$	$\begin{aligned} & 2180 . \\ & 35776 \\ & \hline \end{aligned}$	$\begin{aligned} & 2665 . \\ & 86719 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1799 . \\ & 31555 \\ & 4 \end{aligned}$	$\begin{aligned} & 485.5 \\ & 09431 \\ & \hline \end{aligned}$	$\begin{aligned} & 164.5 \\ & 29253 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 362.7 \\ & 59923 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1993 . \\ & 28308 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2845 . \\ & 83610 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1630 . \\ & 52316 \end{aligned}$	$\begin{aligned} & 852.5 \\ & 53022 \\ & \hline \end{aligned}$
9	ε	$\begin{aligned} & 179.0 \\ & 83700 \\ & 7 \end{aligned}$	$\begin{aligned} & \hline 531.8 \\ & 77175 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1847 . \\ & 20402 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2434 . \\ & 29008 \\ & 2 \end{aligned}$	$\begin{aligned} & 1315 . \\ & 32684 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 587.0 \\ & 86061 \end{aligned}$	$\begin{aligned} & \hline 171.8 \\ & 57826 \\ & 6 \end{aligned}$	$\begin{aligned} & 599.6 \\ & 02722 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1927 . \\ & 03515 \end{aligned}$	$\begin{aligned} & 2304 . \\ & 76109 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1327 . \\ & 43242 \\ & 8 \end{aligned}$	$\begin{aligned} & 377.7 \\ & 25942 \end{aligned}$
9	\boldsymbol{O}	$\begin{aligned} & \hline 167.4 \\ & 94287 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 583.0 \\ & 87934 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1400 . \\ & 83735 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2265 . \\ & 60984 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 817.7 \\ & 49423 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 864.7 \\ & 72485 \end{aligned}$	$\begin{aligned} & 80.16 \\ & 25042 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 581.8 \\ & 88675 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1433 . \\ & 41382 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2536 . \\ & 34861 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 851.5 \\ & 25148 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1102 . \\ & 93478 \\ & 7 \\ & \hline \end{aligned}$
9	a	$\begin{aligned} & 167.7 \\ & 96569 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 771.1 \\ & 04134 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1265 . \\ & 93795 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2474 . \\ & 55142 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 494.8 \\ & 33822 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1208 . \\ & 61346 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 166.9 \\ & 91812 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 605.2 \\ & 55151 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1269 . \\ & 45287 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2436 . \\ & 61764 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 664.1 \\ & 97719 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1167 . \\ & 16477 \\ & 6 \\ & \hline \end{aligned}$
9	0	$\begin{aligned} & \hline 170.8 \\ & 97133 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 449.7 \\ & 70482 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 907.6 \\ & 19469 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2501 . \\ & 05612 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 457.8 \\ & 48986 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1593 . \\ & 43665 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 152.7 \\ & 61762 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 549.6 \\ & 16059 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1061 . \\ & 15543 \end{aligned}$	$\begin{aligned} & 2616 . \\ & 59847 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 511.5 \\ & 39370 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1555 . \\ & 44304 \\ & 5 \\ & \hline \end{aligned}$
9	u	$\begin{aligned} & \hline 179.9 \\ & 17637 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 383.8 \\ & 40152 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 918.9 \\ & 86231 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2468 . \\ & 96656 \end{aligned}$	$\begin{aligned} & 535.1 \\ & 46079 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1549 . \\ & 98032 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 172.7 \\ & 98430 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 369.6 \\ & 37959 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 849.3 \\ & 69547 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2778 . \\ & 54856 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 479.7 \\ & 31588 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1929 . \\ & 17902 \\ & 2 \\ & \hline \end{aligned}$
10	I	$\begin{aligned} & 160.1 \\ & 78508 \\ & 7 \end{aligned}$	$\begin{aligned} & 448.2 \\ & 03341 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1882 . \\ & 43701 \\ & \hline \end{aligned}$	$\begin{aligned} & 2658 . \\ & 09518 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1434 . \\ & 23366 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 775.6 \\ & 58176 \\ & \hline \end{aligned}$	$\begin{aligned} & 156.2 \\ & 99068 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 455.6 \\ & 63935 \\ & \hline \end{aligned}$	$\begin{aligned} & 1772 . \\ & 69736 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2457 . \\ & 98185 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1317 . \\ & 03343 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 685.2 \\ & 84486 \\ & \hline \end{aligned}$
10	i:	$\begin{aligned} & 183.3 \\ & 40474 \end{aligned}$	$\begin{aligned} & 421.4 \\ & 90954 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2083 . \\ & 53304 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2722 . \\ & 48760 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1662 . \\ & 04209 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 638.9 \\ & 5456 \\ & \hline \end{aligned}$	$\begin{aligned} & 162.9 \\ & 03230 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 524.2 \\ & 81770 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1965 . \\ & 75411 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2948 . \\ & 30691 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1441 . \\ & 47234 \\ & 5 \end{aligned}$	$\begin{aligned} & 982.5 \\ & 52796 \\ & \hline \end{aligned}$
10	$\boldsymbol{\varepsilon}$	$\begin{aligned} & \hline 179.5 \\ & 38172 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 490.6 \\ & 29359 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1877 . \\ & 00048 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2517 . \\ & 51271 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1386 . \\ & 37112 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 640.5 \\ & 12222 \end{aligned}$	$\begin{aligned} & 181.2 \\ & 71495 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 578.7 \\ & 91241 \\ & \hline \end{aligned}$	$\begin{aligned} & 1590 . \\ & 09589 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2296 . \\ & 99074 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1011 . \\ & 30465 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 706.8 \\ & 9485 \\ & \hline \end{aligned}$
10	$\boldsymbol{\partial}$	$\begin{aligned} & 153.6 \\ & 75061 \end{aligned}$	$\begin{aligned} & 593.5 \\ & 97843 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1430 . \\ & 70092 \\ & 5 \end{aligned}$	$\begin{aligned} & 2444 . \\ & 85089 \\ & 9 \end{aligned}$	$\begin{aligned} & 837.1 \\ & 03081 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1014 . \\ & 14997 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 159.7 \\ & 46732 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 499.4 \\ & 26208 \\ & 3 \end{aligned}$	$\begin{aligned} & 1375 . \\ & 71957 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2929 . \\ & 11818 \end{aligned}$ 6	$\begin{aligned} & 876.2 \\ & 93368 \\ & 7 \end{aligned}$	$\begin{aligned} & 1553 . \\ & 39860 \\ & 9 \\ & \hline \end{aligned}$
10	a	$\begin{aligned} & 159.1 \\ & 48751 \end{aligned}$	$\begin{aligned} & 759.6 \\ & 15242 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1252 . \\ & 34354 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2543 . \\ & 38049 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 492.7 \\ & 28303 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1291 . \\ & 03695 \end{aligned}$	$\begin{aligned} & 125.9 \\ & 88131 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 695.1 \\ & 29690 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1356 . \\ & 30802 \end{aligned}$	$\begin{aligned} & 2589 . \\ & 68671 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 661.1 \\ & 78329 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1233 . \\ & 37869 \\ & 3 \end{aligned}$
10	0	$\begin{aligned} & 164.7 \\ & 98421 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 480.4 \\ & 93319 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 993.6 \\ & 13951 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2452 . \\ & 67681 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 513.1 \\ & 20631 \\ & 9 \end{aligned}$	$\begin{aligned} & 1459 . \\ & 06286 \\ & 3 \end{aligned}$	$\begin{aligned} & 188.9 \\ & 66820 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 551.7 \\ & 33807 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1218 . \\ & 66878 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2687 . \\ & 32126 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 666.9 \\ & 34981 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1468 . \\ & 65247 \\ & 5 \\ & \hline \end{aligned}$
10	u	$\begin{aligned} & \hline 190.5 \\ & 30754 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 436.7 \\ & 14523 \\ & 5 \end{aligned}$	$\begin{aligned} & 1105 . \\ & 20418 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2649 . \\ & 68872 \\ & 5 \end{aligned}$	$\begin{aligned} & 668.4 \\ & 89664 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1544 . \\ & 48453 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 203.5 \\ & 65227 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 429.6 \\ & 86742 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1080 . \\ & 35159 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2694 . \\ & 38222 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 650.6 \\ & 64848 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1614 . \\ & 03063 \\ & 7 \\ & \hline \end{aligned}$
11	I	$\begin{array}{\|l\|} \hline 160.1 \\ 78508 \\ 7 \\ \hline \end{array}$	$\begin{aligned} & 477.1 \\ & 76164 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1919 . \\ & 66648 \end{aligned}$	$\begin{aligned} & 2516 . \\ & 08240 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1442 . \\ & 49031 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 596.4 \\ & 15925 \\ & \hline \end{aligned}$	$\begin{aligned} & 157.1 \\ & 62990 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 409.2 \\ & 09201 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2699 . \\ & 96614 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3100 . \\ & 45562 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2290 . \\ & 75694 \\ & \hline \end{aligned}$	$\begin{aligned} & 400.4 \\ & 8948 \\ & \hline \end{aligned}$
11	i:	$\begin{aligned} & 183.3 \\ & 40474 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 407.2 \\ & 49918 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2023 . \\ & 34670 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2517 . \\ & 51763 \\ & 6 \end{aligned}$	$\begin{aligned} & 1616 . \\ & 09679 \\ & \hline \end{aligned}$	$\begin{aligned} & 494.1 \\ & 70928 \end{aligned}$	$\begin{aligned} & 163.4 \\ & 18993 \\ & \hline \end{aligned}$	$\begin{aligned} & 392.6 \\ & 16765 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2166 . \\ & 23552 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2717 . \\ & 95285 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1773 . \\ & 61876 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 551.7 \\ & 17326 \\ & \hline \end{aligned}$
11	$\boldsymbol{\varepsilon}$	$\begin{aligned} & \hline 179.5 \\ & 38172 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 531.1 \\ & 27360 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1882 . \\ & 18330 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2498 . \\ & 44287 \end{aligned}$	$\begin{aligned} & 1351 . \\ & 05594 \\ & 2 \end{aligned}$	$\begin{aligned} & 616.2 \\ & 59568 \end{aligned}$	$\begin{aligned} & 179.6 \\ & 30357 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 661.8 \\ & 09908 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1504 . \\ & 66119 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2090 . \\ & 84906 \end{aligned}$	$\begin{aligned} & 842.8 \\ & 51286 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 586.1 \\ & 87865 \\ & \hline \end{aligned}$
11	$\boldsymbol{\theta}$	$\begin{aligned} & 153.6 \\ & 75061 \end{aligned}$	$\begin{aligned} & 576.7 \\ & 82698 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1436 . \\ & 45690 \\ & 3 \end{aligned}$	$\begin{aligned} & 2409 . \\ & 13404 \\ & 2 \end{aligned}$	$\begin{aligned} & 859.6 \\ & 74204 \\ & 9 \\ & \hline \end{aligned}$	972.6 77139	$\begin{aligned} & 159.7 \\ & 37879 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 667.7 \\ & 06083 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1879 . \\ & 03181 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2232 . \\ & 15510 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1211 . \\ & 32573 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 353.1 \\ & 23288 \\ & \hline \end{aligned}$
11	a	$\begin{aligned} & 159.1 \\ & 48751 \\ & \hline \end{aligned}$	$\begin{aligned} & 721.4 \\ & 94308 \end{aligned}$	$\begin{aligned} & 1371 . \\ & 57025 \\ & 2 \end{aligned}$	$\begin{aligned} & 2586 . \\ & 57081 \\ & 9 \end{aligned}$	$\begin{aligned} & 650.0 \\ & 75944 \end{aligned}$	$\begin{aligned} & 1215 . \\ & 00056 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 125.7 \\ & 50603 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 862.6 \\ & 71630 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1372 . \\ & 90434 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2661 . \\ & 44351 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 510.2 \\ & 32713 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1288 . \\ & 53916 \\ & 8 \end{aligned}$
11	0	$\begin{aligned} & 164.7 \\ & 98421 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 538.6 \\ & 82188 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1095 . \\ & 81426 \\ & 4 \end{aligned}$	$\begin{aligned} & 2469 . \\ & 64117 \end{aligned}$	$\begin{aligned} & 557.1 \\ & 32075 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1373 . \\ & 82690 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 187.8 \\ & 77997 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 578.1 \\ & 11194 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1046 . \\ & 23516 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2384 . \\ & 49377 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 468.1 \\ & 23971 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1338 . \\ & 25860 \\ & 8 \\ & \hline \end{aligned}$
11	u	$\begin{aligned} & 164.7 \\ & 98421 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 538.6 \\ & 82188 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1095 . \\ & 81426 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2469 . \\ & 64117 \end{aligned}$	$\begin{aligned} & 557.1 \\ & 32075 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1373 . \\ & 82690 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 204.8 \\ & 09724 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 519.4 \\ & 17506 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1134 . \\ & 61560 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2691 . \\ & 19884 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 615.1 \\ & 98096 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1556 . \\ & 58324 \\ & 4 \\ & \hline \end{aligned}$

12	I	$\begin{aligned} & \hline 254.1 \\ & 92249 \\ & 3 \end{aligned}$	$\begin{array}{\|l} \hline 475.3 \\ 55955 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & \hline 2217 . \\ & 95706 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2885 . \\ & 13562 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline 1742 . \\ & 60111 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 667.1 \\ & 78559 \end{aligned}$	$\begin{aligned} & 232.0 \\ & 07986 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 587.8 \\ & 60263 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2095 . \\ & 04277 \\ & 4 \end{aligned}$	$\begin{array}{\|l\|} \hline 2744 . \\ 09713 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & 1507 . \\ & 18251 \\ & 1 \end{aligned}$	$\begin{aligned} & 649.0 \\ & 54358 \end{aligned}$
12	i:	$\begin{aligned} & 284.3 \\ & 83934 \end{aligned}$	$\begin{aligned} & \hline 417.6 \\ & 92124 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2332 . \\ & 83956 \end{aligned}$	$\begin{aligned} & 2888 . \\ & 26433 \\ & 9 \end{aligned}$	$\begin{aligned} & 1915 . \\ & 14743 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 555.4 \\ & 24779 \end{aligned}$	$\begin{aligned} & 218.1 \\ & 42746 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 484.1 \\ & 86807 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1761 . \\ & 51561 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2776 . \\ & 59686 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1277 . \\ & 32881 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1015 . \\ & 08124 \\ & 8 \end{aligned}$
12	ε	$\begin{aligned} & 271.2 \\ & 1228 \\ & \hline \end{aligned}$	$\begin{aligned} & 635.6 \\ & 80686 \\ & \hline \end{aligned}$	$\begin{aligned} & 2154 . \\ & 62813 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2442 . \\ & 45317 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1518 . \\ & 94744 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 287.8 \\ & 25042 \\ & \hline \end{aligned}$	$\begin{aligned} & 215.4 \\ & 42686 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 693.1 \\ & 19251 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1968 . \\ & 41004 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2642 . \\ & 16460 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1275 . \\ & 29079 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 673.7 \\ & 54556 \\ & \hline \end{aligned}$
12	$\boldsymbol{\partial}$	$\begin{aligned} & 223.2 \\ & 38237 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 663.1 \\ & 10900 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1615 . \\ & 53122 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2394 . \\ & 86743 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 952.4 \\ & 20324 \\ & 7 \\ & \hline \end{aligned}$	779.3 3621	$\begin{aligned} & 235.6 \\ & 36480 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 703.7 \\ & 20749 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1705 . \\ & 35501 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2178 . \\ & 65411 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1001 . \\ & 63426 \\ & 9 \end{aligned}$	$\begin{aligned} & 473.2 \\ & 99099 \end{aligned}$
12	a	$\begin{aligned} & 233.8 \\ & 54577 \end{aligned}$	$\begin{aligned} & 895.4 \\ & 51851 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1502 . \\ & 87235 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2494 . \\ & 16901 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 607.4 \\ & 20500 \\ & 9 \end{aligned}$	991.2 96662	$\begin{aligned} & 199.0 \\ & 95503 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 907.2 \\ & 28971 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1418 . \\ & 60477 \\ & 9 \end{aligned}$	$\begin{aligned} & 2139 . \\ & 55165 \end{aligned}$	$\begin{aligned} & 511.3 \\ & 75807 \\ & 2 \end{aligned}$	$\begin{aligned} & 720.9 \\ & 46874 \end{aligned}$
12	0	$\begin{aligned} & 164.8 \\ & 96727 \\ & 6 \end{aligned}$	$\begin{array}{\|l\|} \hline 524.8 \\ 05449 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & 1102 . \\ & 81446 \\ & 2 \end{aligned}$	$\begin{aligned} & 2484 . \\ & 33861 \end{aligned}$	$\begin{aligned} & 578.0 \\ & 09012 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1381 . \\ & 52414 \\ & 8 \end{aligned}$	$\begin{aligned} & 111.2 \\ & 72447 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 661.4 \\ & 44530 \\ & 9 \end{aligned}$	$\begin{aligned} & 1161 . \\ & 51203 \\ & 7 \end{aligned}$	$\begin{aligned} & 3219 . \\ & 26290 \\ & 2 \end{aligned}$	$\begin{aligned} & 500.0 \\ & 67506 \\ & 1 \end{aligned}$	$\begin{aligned} & 2057 . \\ & 75086 \\ & 5 \end{aligned}$
12	u	$\begin{aligned} & 191.4 \\ & 04681 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 479.1 \\ & 64926 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1065 . \\ & 44076 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2666 . \\ & 43929 \\ & 9 \end{aligned}$	$\begin{aligned} & 586.2 \\ & 75835 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1600 . \\ & 99853 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 221.5 \\ & 90245 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 515.4 \\ & 57627 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1300 . \\ & 01263 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2575 . \\ & 41272 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 784.5 \\ & 55009 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1275 . \\ & 40008 \\ & 4 \end{aligned}$
13	I	$\begin{aligned} & 234.6 \\ & 19870 \\ & 8 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 577.4 \\ 74646 \\ \hline \end{array}$	$\begin{aligned} & 1923 . \\ & 16175 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2950 . \\ & 49792 \\ & \hline \end{aligned}$	$\begin{aligned} & 1345 . \\ & 68710 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1027 . \\ & 33616 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 224.0 \\ & 76355 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 408.6 \\ & 73952 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2306 . \\ & 51070 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2662 . \\ & 59737 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1897 . \\ & 83675 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 356.0 \\ & 86669 \\ & \hline \end{aligned}$
13	i:	$\begin{aligned} & \hline 235.5 \\ & 56250 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 625.2 \\ & 67862 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2361 . \\ & 76654 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3095 . \\ & 67886 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1736 . \\ & 49867 \\ & 8 \end{aligned}$	$\begin{aligned} & 733.9 \\ & 12327 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 198.0 \\ & 64863 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 407.7 \\ & 50076 \end{aligned}$	$\begin{aligned} & 1858 . \\ & 97342 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2660 . \\ & 00944 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1451 . \\ & 22334 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 801.0 \\ & 36017 \end{aligned}$
13	ε	$\begin{aligned} & \hline 224.8 \\ & 13435 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 602.0 \\ & 09070 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2213 . \\ & 52907 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2971 . \\ & 33559 \\ & \hline \end{aligned}$	$\begin{aligned} & 1611 . \\ & 52000 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 757.8 \\ & 06514 \\ & \hline \end{aligned}$	$\begin{aligned} & 198.7 \\ & 34926 \\ & 2 \end{aligned}$	$\begin{aligned} & 611.4 \\ & 06269 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2087 . \\ & 05784 \end{aligned}$	$\begin{aligned} & 2802 . \\ & 85246 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1475 . \\ & 65157 \end{aligned}$	$\begin{aligned} & 715.7 \\ & 94628 \end{aligned}$
13	$\boldsymbol{\partial}$	$\begin{aligned} & \hline 230.4 \\ & 58573 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 707.5 \\ & 85252 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1711 . \\ & 43308 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2699 . \\ & 63820 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1003 . \\ & 84783 \\ & \hline \end{aligned}$		$\begin{aligned} & 191.4 \\ & 40533 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 705.4 \\ & 70181 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1662 . \\ & 12167 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2745 . \\ & 23087 \\ & \hline \end{aligned}$	$\begin{aligned} & 956.6 \\ & 51496 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1083 . \\ & 10919 \\ & 2 \\ & \hline \end{aligned}$
13	a	$\begin{aligned} & 195.9 \\ & 30925 \\ & 1 \end{aligned}$	$\begin{aligned} & 964.0 \\ & 32827 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1517 . \\ & 27994 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2793 . \\ & 42219 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 553.2 \\ & 47117 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1276 . \\ & 14225 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 198.9 \\ & 44841 \\ & 3 \end{aligned}$	$\begin{aligned} & 698.6 \\ & 06997 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1576 . \\ & 02557 \\ & \hline \end{aligned}$	$\begin{aligned} & 2824 . \\ & 01392 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 877.4 \\ & 18572 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1247 . \\ & 98835 \\ & 4 \\ & \hline \end{aligned}$
13	0	$\begin{aligned} & 196.8 \\ & 79623 \\ & \hline \end{aligned}$	$\begin{aligned} & 558.6 \\ & 68781 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1184 . \\ & 60932 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2751 . \\ & 88895 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 625.9 \\ & 40541 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1567 . \\ & 27963 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 182.6 \\ & 95598 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 536.1 \\ & 74560 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1369 . \\ & 52523 \\ & 3 \end{aligned}$	$\begin{aligned} & 2642 . \\ & 22065 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 833.3 \\ & 50672 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1272 . \\ & 69542 \\ & 3 \\ & \hline \end{aligned}$
13	u	$\begin{aligned} & 187.8 \\ & 02910 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 529.6 \\ & 94876 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1323 . \\ & 47617 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2584 . \\ & 65346 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 793.7 \\ & 81300 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1261 . \\ & 17728 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 193.9 \\ & 70135 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 421.9 \\ & 09366 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1213 . \\ & 51457 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2507 . \\ & 46116 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 791.6 \\ & 05208 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1293 . \\ & 94658 \\ & 6 \\ & \hline \end{aligned}$
14	I	$\begin{aligned} & \hline 249.3 \\ & 64618 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 603.3 \\ & 62819 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1993 . \\ & 32970 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2788 . \\ & 94164 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1389 . \\ & 96688 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 795.6 \\ & 11942 \end{aligned}$	$\begin{aligned} & 122.9 \\ & 21546 \end{aligned}$	$\begin{aligned} & 434.8 \\ & 81972 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2141 . \\ & 39015 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2598 . \\ & 52752 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1706 . \\ & 50817 \\ & 9 \end{aligned}$	$\begin{aligned} & 457.1 \\ & 37373 \\ & \hline \end{aligned}$
14	i:	$\begin{aligned} & \hline 187.5 \\ & 79822 \\ & 4 \\ & \hline \end{aligned}$		$\begin{aligned} & 1952 . \\ & 33440 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2742 . \\ & 77482 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1501 . \\ & 03122 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 790.4 \\ & 40415 \end{aligned}$	$\begin{aligned} & 123.3 \\ & 61656 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 432.2 \\ & 74441 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2118 . \\ & 12479 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2576 . \\ & 24861 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1685 . \\ & 85035 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 458.1 \\ & 23817 \\ & \hline \end{aligned}$
14	$\boldsymbol{\varepsilon}$	$\begin{aligned} & \hline 197.4 \\ & 76625 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 542.0 \\ & 89675 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2122 . \\ & 08608 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2809 . \\ & 11663 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1579 . \\ & 99641 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 687.0 \\ & 30546 \\ & \hline \end{aligned}$	$\begin{aligned} & 146.4 \\ & 64207 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 574.0 \\ & 02471 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1886 . \\ & 27212 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2499 . \\ & 17862 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1312 . \\ & 26965 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 612.9 \\ & 06501 \\ & \hline \end{aligned}$
14	$\boldsymbol{\theta}$	$\begin{aligned} & 186.4 \\ & 00242 \\ & 5 \end{aligned}$	$\begin{aligned} & 598.4 \\ & 41884 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1547 . \\ & 72185 \\ & 9 \end{aligned}$	$\begin{aligned} & 2702 . \\ & 25158 \\ & 3 \end{aligned}$	$\begin{aligned} & 949.2 \\ & 79974 \\ & 9 \end{aligned}$	$\begin{aligned} & 1154 . \\ & 52972 \\ & 4 \end{aligned}$	$\begin{aligned} & 148.9 \\ & 63908 \\ & 5 \end{aligned}$	$\begin{aligned} & 531.1 \\ & 09245 \\ & 9 \end{aligned}$	$\begin{aligned} & 1826 . \\ & 07536 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2756 . \\ & 71618 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1294 . \\ & 96612 \end{aligned}$	$\begin{aligned} & 930.6 \\ & 40817 \end{aligned}$
14	a	$\begin{aligned} & 180.3 \\ & 13662 \\ & 7 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 843.0 \\ 01297 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & 1473 . \\ & 86142 \end{aligned}$	$\begin{aligned} & 3024 . \\ & 10830 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 630.8 \\ & 60122 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1550 . \\ & 24688 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 159.7 \\ & 68516 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 695.1 \\ & 29690 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1156 . \\ & 30802 \\ & \hline \end{aligned}$	$\begin{aligned} & 2589 . \\ & 68671 \\ & 3 \end{aligned}$	$\begin{aligned} & 461.1 \\ & 78329 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1433 . \\ & 37869 \\ & 3 \\ & \hline \end{aligned}$
14	0	$\begin{aligned} & \hline 189.3 \\ & 01870 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 522.3 \\ & 10295 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1352 . \\ & 85278 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2677 . \\ & 84634 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 830.5 \\ & 42492 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1324 . \\ & 99355 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 111.0 \\ & 33147 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 492.3 \\ & 53285 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1064 . \\ & 38147 \\ & \hline \end{aligned}$	$\begin{aligned} & 2708 . \\ & 62991 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 572.0 \\ & 28184 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1644 . \\ & 24844 \\ & 1 \\ & \hline \end{aligned}$
14	u	$\begin{aligned} & 198.6 \\ & 56884 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 450.6 \\ & 59284 \\ & \hline \end{aligned}$	$\begin{aligned} & 1251 . \\ & 83679 \\ & \hline \end{aligned}$	$\begin{aligned} & 2690 . \\ & 89732 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 801.1 \\ & 77506 \\ & \hline \end{aligned}$	$\begin{aligned} & 1439 . \\ & 06053 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 149.4 \\ & 13299 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 438.6 \\ & 60800 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1277 . \\ & 49006 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2745 . \\ & 70243 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 838.8 \\ & 29260 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1468 . \\ & 21237 \\ & 4 \end{aligned}$
15	I	$\begin{aligned} & \hline 147.7 \\ & 77021 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 423.2 \\ & 08688 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2258 . \\ & 32443 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2634 . \\ & 08166 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1835 . \\ & 11574 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 375.7 \\ & 57233 \end{aligned}$	$\begin{aligned} & 262.1 \\ & 28338 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 410.1 \\ & 92659 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1644 . \\ & 66483 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2751 . \\ & 96124 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1234 . \\ & 47217 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1107 . \\ & 29640 \\ & 5 \\ & \hline \end{aligned}$
15	i:	$\begin{aligned} & 183.1 \\ & 80540 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 382.7 \\ & 29494 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2330 . \\ & 05888 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2760 . \\ & 62852 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1947 . \\ & 32938 \\ & 9 \end{aligned}$	$\begin{aligned} & 430.5 \\ & 69642 \\ & \hline \end{aligned}$	$\begin{aligned} & 236.2 \\ & 82274 \\ & \hline \end{aligned}$	$\begin{aligned} & 466.1 \\ & 21383 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1917 . \\ & 58381 \\ & 5 \end{aligned}$	$\begin{aligned} & 2497 . \\ & 12484 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1451 . \\ & 46243 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 579.5 \\ & 41034 \\ & \hline \end{aligned}$
15	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 168.6 \\ & 34371 \\ & 3 \end{aligned}$	$\begin{array}{\|l} \hline 527.4 \\ 52537 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 2024 . \\ & 15866 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2567 . \\ & 79096 \\ & 9 \end{aligned}$	$\begin{aligned} & 1496 . \\ & 70612 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 543.6 \\ & 32303 \end{aligned}$	$\begin{aligned} & 155.0 \\ & 61468 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 607.3 \\ & 63442 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1938 . \\ & 21398 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3012 . \\ & 89852 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1330 . \\ & 85054 \\ & 3 \end{aligned}$	$\begin{aligned} & 1074 . \\ & 68454 \end{aligned}$
15	$\boldsymbol{\partial}$	$\begin{aligned} & 168.8 \\ & 60672 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 615.9 \\ & 27194 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1495 . \\ & 43444 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2353 . \\ & 68144 \\ & 4 \end{aligned}$	$\begin{aligned} & 879.5 \\ & 07249 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 858.2 \\ & 47 \\ & \hline \end{aligned}$	$\begin{aligned} & 210.0 \\ & 85745 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 649.8 \\ & 80994 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1581 . \\ & 83731 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2579 . \\ & 13574 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 931.9 \\ & 56317 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 997.2 \\ & 98433 \\ & \hline \end{aligned}$
15	a	$\begin{array}{\|l\|} \hline 154.4 \\ 81829 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & 772.9 \\ & 73439 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1460 . \\ & 58729 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2536 . \\ & 49703 \\ & 3 \end{aligned}$	$\begin{aligned} & 687.6 \\ & 13857 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1075 . \\ & 90973 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 193.2 \\ & 67881 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 841.3 \\ & 10934 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1501 . \\ & 64883 \\ & 2 \end{aligned}$	$\begin{aligned} & 2110 . \\ & 22634 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 660.3 \\ & 37897 \\ & 3 \end{aligned}$	$\begin{aligned} & 608.5 \\ & 77509 \\ & \hline \end{aligned}$

15	0	$\begin{aligned} & 163.2 \\ & 59639 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 488.3 \\ & 64675 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1087 . \\ & 88070 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2520 . \\ & 61803 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 599.5 \\ & 16031 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1432 . \\ & 73732 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 216.1 \\ & 80278 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 670.5 \\ & 75410 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1237 . \\ & 78665 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2971 . \\ & 49145 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 567.2 \\ & 11247 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1733 . \\ & 70479 \\ & 6 \\ & \hline \end{aligned}$
15	\mathbf{u}	$\begin{aligned} & 171.0 \\ & 92688 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 455.3 \\ & 83347 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1086 . \\ & 43774 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2721 . \\ & 21469 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 631.0 \\ & 54395 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1634 . \\ & 77695 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 226.6 \\ & 75703 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 454.9 \\ & 67521 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1137 . \\ & 46158 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 3122 . \\ & 74151 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 682.4 \\ & 94060 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1985 . \\ & 27993 \\ & \hline \end{aligned}$
16	I	$\begin{aligned} & 250.2 \\ & 42124 \\ & \hline \end{aligned}$	$\begin{aligned} & 434.1 \\ & 09923 \\ & \hline \end{aligned}$	$\begin{aligned} & 1980 . \\ & 66827 \\ & 5 \end{aligned}$	$\begin{aligned} & 2645 . \\ & 29458 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1546 . \\ & 55835 \\ & 2 \end{aligned}$	$\begin{aligned} & 664.6 \\ & 26306 \end{aligned}$	$\begin{aligned} & 262.1 \\ & 28338 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 514.4 \\ & 92613 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2135 . \\ & 79371 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2657 . \\ & 09361 \\ & 9 \end{aligned}$	$\begin{aligned} & 1621 . \\ & 3011 \end{aligned}$	$\begin{aligned} & 521.2 \\ & 99906 \\ & \hline \end{aligned}$
16	i:	$\begin{aligned} & \hline 257.8 \\ & 44520 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 443.5 \\ & 48426 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2141 . \\ & 01654 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2756 . \\ & 39437 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1697 . \\ & 46812 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 615.3 \\ & 77831 \\ & \hline \end{aligned}$	$\begin{aligned} & 241.8 \\ & 59971 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 472.9 \\ & 70211 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1879 . \\ & 23276 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2816 . \\ & 74111 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1406 . \\ & 26254 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 937.5 \\ & 08353 \end{aligned}$
16	ε	$\begin{aligned} & 247.1 \\ & 38362 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 567.0 \\ & 87430 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1750 . \\ & 72890 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2580 . \\ & 93726 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1183 . \\ & 64147 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 830.2 \\ & 08354 \\ & \hline \end{aligned}$	$\begin{aligned} & 227.6 \\ & 80510 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 635.4 \\ & 36287 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1782 . \\ & 27732 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2358 . \\ & 54249 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1146 . \\ & 84103 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 576.2 \\ & 65173 \\ & \hline \end{aligned}$
16	$\boldsymbol{\theta}$	$\begin{aligned} & 214.9 \\ & 51740 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 606.8 \\ & 53568 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1567 . \\ & 06398 \end{aligned}$	$\begin{aligned} & 2643 . \\ & 78850 \\ & 5 \end{aligned}$	$\begin{aligned} & 960.2 \\ & 10411 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1076 . \\ & 72452 \\ & 5 \end{aligned}$	$\begin{aligned} & 225.7 \\ & 45814 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 728.7 \\ & 16711 \\ & 5 \end{aligned}$	$\begin{aligned} & 1724 . \\ & 25977 \\ & 4 \end{aligned}$	$\begin{aligned} & 2395 . \\ & 79322 \\ & 3 \end{aligned}$	$\begin{aligned} & 995.5 \\ & 43062 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 671.5 \\ & 33449 \\ & \hline \end{aligned}$
16	a	$\begin{aligned} & 211.5 \\ & 05003 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 816.0 \\ & 19462 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1478 . \\ & 33863 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2315 . \\ & 68929 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 662.3 \\ & 19171 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 837.3 \\ & 50661 \end{aligned}$	$\begin{aligned} & 241.8 \\ & 73577 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 685.2 \\ & 78073 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1477 . \\ & 72174 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2611 . \\ & 44023 \\ & \hline \end{aligned}$	$\begin{aligned} & 792.4 \\ & 43672 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1133 . \\ & 71848 \\ & 4 \\ & \hline \end{aligned}$
16	0	$\begin{aligned} & 238.9 \\ & 79519 \\ & 4 \end{aligned}$	$\begin{aligned} & 471.4 \\ & 13999 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1027 . \\ & 92079 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2999 . \\ & 24175 \end{aligned}$	$\begin{aligned} & 556.5 \\ & 06799 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1971 . \\ & 32095 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 192.3 \\ & 65961 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 620.9 \\ & 93653 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1224 . \\ & 19817 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2538 . \\ & 33339 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 603.2 \\ & 04523 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1314 . \\ & 13521 \\ & 8 \\ & \hline \end{aligned}$
16	u	$\begin{aligned} & 261.7 \\ & 36410 \\ & 4 \end{aligned}$	$\begin{aligned} & 465.2 \\ & 02973 \\ & 2 \end{aligned}$	$\begin{aligned} & 1039 . \\ & 43869 \\ & 2 \end{aligned}$	$\begin{aligned} & 3056 . \\ & 13817 \\ & 2 \end{aligned}$	$\begin{aligned} & 574.2 \\ & 35718 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2016 . \\ & 69948 \end{aligned}$	$\begin{aligned} & 230.2 \\ & 93141 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 488.0 \\ & 26688 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1084 . \\ & 36456 \\ & 4 \end{aligned}$	$\begin{aligned} & 2546 . \\ & 09236 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 596.3 \\ & 37875 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1461 . \\ & 72780 \\ & 4 \end{aligned}$
17	I	$\begin{aligned} & \hline 244.4 \\ & 12044 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 455.4 \\ & 08075 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2028 . \\ & 90666 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2715 . \\ & 27827 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1573 . \\ & 49859 \end{aligned}$	$\begin{aligned} & 686.3 \\ & 71606 \\ & \hline \end{aligned}$	$\begin{aligned} & 253.9 \\ & 51775 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 487.7 \\ & 98999 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2253 . \\ & 36116 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2576 . \\ & 30000 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1765 . \\ & 56216 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 322.9 \\ & 38838 \\ & \hline \end{aligned}$
17	i:	$\begin{aligned} & \hline 254.8 \\ & 13756 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 421.7 \\ & 89176 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2248 . \\ & 38352 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2932 . \\ & 68767 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1826 . \\ & 59434 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 684.3 \\ & 04151 \\ & \hline \end{aligned}$	$\begin{aligned} & 234.1 \\ & 84380 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 460.6 \\ & 49637 \\ & \hline \end{aligned}$	$\begin{aligned} & 2076 . \\ & 18997 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2653 . \\ & 09728 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1615 . \\ & 54033 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 576.9 \\ & 07314 \\ & \hline \end{aligned}$
17	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 228.6 \\ & 95084 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 606.6 \\ & 55520 \\ & 3 \end{aligned}$	$\begin{aligned} & 2008 . \\ & 27192 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2796 . \\ & 87565 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1401 . \\ & 61640 \\ & 5 \end{aligned}$	$\begin{aligned} & 788.6 \\ & 03726 \end{aligned}$	$\begin{aligned} & 218.8 \\ & 76524 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 576.7 \\ & 26097 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1758 . \\ & 69392 \end{aligned}$	$\begin{aligned} & 2788 . \\ & 21260 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1181 . \\ & 96782 \\ & 3 \end{aligned}$	$\begin{aligned} & 1029 . \\ & 51868 \\ & 4 \end{aligned}$
17	$\boldsymbol{\theta}$	$\begin{aligned} & \hline 227.5 \\ & 44199 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 629.0 \\ & 59355 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1519 . \\ & 33561 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2244 . \\ & 85532 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 890.2 \\ & 76260 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 725.5 \\ & 19707 \end{aligned}$	$\begin{aligned} & 218.9 \\ & 91574 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 597.3 \\ & 53239 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1407 . \\ & 922 \end{aligned}$	$\begin{aligned} & 2749 . \\ & 07649 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 810.5 \\ & 68760 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1341 . \\ & 15449 \\ & 4 \\ & \hline \end{aligned}$
17	a	$\begin{aligned} & 187.0 \\ & 87446 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 853.4 \\ & 91111 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1437 . \\ & 66530 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2308 . \\ & 84251 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 584.1 \\ & 74193 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 871.1 \\ & 77208 \\ & \hline \end{aligned}$	$\begin{aligned} & 202.3 \\ & 38090 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 786.3 \\ & 97762 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1550 . \\ & 62373 \\ & \hline \end{aligned}$	$\begin{aligned} & 3005 . \\ & 35159 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 764.2 \\ & 25967 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1454 . \\ & 72786 \\ & 4 \\ & \hline \end{aligned}$
17	0	$\begin{aligned} & 240.7 \\ & 39929 \\ & 8 \end{aligned}$	$\begin{aligned} & 496.9 \\ & 73693 \\ & \hline \end{aligned}$	$\begin{aligned} & 1052 . \\ & 74144 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2447 . \\ & 08940 \\ & 3 \end{aligned}$	$\begin{aligned} & 555.7 \\ & 67750 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1394 . \\ & 34795 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 209.3 \\ & 65301 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 551.1 \\ & 81387 \\ & \hline \end{aligned}$	$\begin{aligned} & 1236 . \\ & 56724 \end{aligned}$	$\begin{aligned} & 3094 . \\ & 37657 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 685.3 \\ & 85853 \\ & \hline \end{aligned}$	$\begin{aligned} & 1857 . \\ & 80933 \\ & 3 \end{aligned}$
17	u	$\begin{aligned} & 259.5 \\ & 96226 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 501.1 \\ & 02173 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1025 . \\ & 33048 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2525 . \\ & 82288 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 524.2 \\ & 28309 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1500 . \\ & 49240 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 245.2 \\ & 96383 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 502.8 \\ & 26684 \end{aligned}$	$\begin{aligned} & 1138 . \\ & 57602 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2970 . \\ & 32968 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 635.7 \\ & 49344 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1831 . \\ & 75365 \\ & 2 \\ & \hline \end{aligned}$
18	I	$\begin{aligned} & 268.0 \\ & 25086 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 471.7 \\ & 67551 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2288 . \\ & 65926 \\ & \hline \end{aligned}$	$\begin{aligned} & 2881 . \\ & 79834 \\ & 1 \end{aligned}$	$\begin{aligned} & 1816 . \\ & 89170 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 593.1 \\ & 39081 \\ & \hline \end{aligned}$	$\begin{aligned} & 312.5 \\ & 70011 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 439.5 \\ & 78750 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2202 . \\ & 38726 \\ & \hline \end{aligned}$	$\begin{aligned} & 2689 . \\ & 88556 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1762 . \\ & 80850 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 487.4 \\ & 98306 \\ & \hline \end{aligned}$
18	i:	$\begin{aligned} & 295.1 \\ & 09309 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 476.2 \\ & 27514 \\ & 9 \end{aligned}$	$\begin{aligned} & 2245 . \\ & 35236 \\ & 1 \end{aligned}$	$\begin{aligned} & 2760 . \\ & 69103 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1769 . \\ & 12484 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 515.3 \\ & 38677 \end{aligned}$	$\begin{aligned} & 261.5 \\ & 96940 \\ & 2 \end{aligned}$	$\begin{aligned} & 539.2 \\ & 74505 \\ & 2 \end{aligned}$	$\begin{aligned} & 1929 . \\ & 39667 \\ & 6 \end{aligned}$	$\begin{aligned} & 2812 . \\ & 88460 \\ & 4 \end{aligned}$	$\begin{aligned} & 1390 . \\ & 12217 \\ & 1 \end{aligned}$	$\begin{aligned} & 883.4 \\ & 87928 \end{aligned}$
18	$\boldsymbol{\varepsilon}$	$\begin{aligned} & \hline 258.0 \\ & 07269 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 532.9 \\ & 86182 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1979 . \\ & 52595 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2723 . \\ & 88400 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1446 . \\ & 53977 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 744.3 \\ & 58048 \end{aligned}$	$\begin{aligned} & 276.7 \\ & 99807 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 684.3 \\ & 71764 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1820 . \\ & 60915 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2580 . \\ & 22522 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1136 . \\ & 23738 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 759.6 \\ & 16069 \\ & \hline \end{aligned}$
18	$\boldsymbol{\theta}$	$\begin{aligned} & 265.0 \\ & 55527 \end{aligned}$	$\begin{aligned} & 632.1 \\ & 80244 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1436 . \\ & 58797 \end{aligned}$	$\begin{aligned} & 2524 . \\ & 15299 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 804.4 \\ & 07725 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1087 . \\ & 56502 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 244.4 \\ & 50847 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 709.9 \\ & 25566 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1538 . \\ & 45699 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2856 . \\ & 79463 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 828.5 \\ & 31432 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1318 . \\ & 33763 \\ & 4 \\ & \hline \end{aligned}$
18	a	$\begin{aligned} & 250.1 \\ & 45180 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 773.5 \\ & 57197 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1331 . \\ & 31782 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2478 . \\ & 56572 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 557.7 \\ & 60629 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1147 . \\ & 24789 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 116.1 \\ & 43964 \\ & \hline \end{aligned}$	$\begin{aligned} & 784.9 \\ & 27213 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1382 . \\ & 55963 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1987 . \\ & 82802 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 597.6 \\ & 32422 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 605.2 \\ & 68386 \\ & \hline \end{aligned}$
18	0	$\begin{aligned} & \hline 244.1 \\ & 42447 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 515.4 \\ & 88955 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1089 . \\ & 63771 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2818 . \\ & 31713 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 574.1 \\ & 48758 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1728 . \\ & 67942 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 289.2 \\ & 98454 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 762.1 \\ & 73819 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1264 . \\ & 79639 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3378 . \\ & 27202 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 502.6 \\ & 22573 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2113 . \\ & 47563 \\ & 6 \\ & \hline \end{aligned}$
18	\mathbf{u}	$\begin{aligned} & 307.5 \\ & 32447 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 512.8 \\ & 3794 \end{aligned}$	$\begin{aligned} & 996.9 \\ & 55607 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 3009 . \\ & 45482 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 484.1 \\ & 17667 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2012 . \\ & 49921 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 276.4 \\ & 36406 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 596.1 \\ & 19515 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1232 . \\ & 95045 \\ & 3 \end{aligned}$	$\begin{aligned} & 3097 . \\ & 11412 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 636.8 \\ & 30937 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1864 . \\ & 16366 \\ & 9 \\ & \hline \end{aligned}$
19	I	$\begin{aligned} & 243.1 \\ & 97111 \\ & 3 \end{aligned}$	$\begin{aligned} & 428.7 \\ & 13064 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2238 . \\ & 42711 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2841 . \\ & 26674 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1809 . \\ & 71405 \\ & \hline \end{aligned}$	$\begin{aligned} & 602.8 \\ & 3963 \end{aligned}$	$\begin{aligned} & 194.2 \\ & 51447 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 430.3 \\ & 89726 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1873 . \\ & 26695 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2490 . \\ & 66987 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1442 . \\ & 87723 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 617.4 \\ & 02922 \\ & \hline \end{aligned}$
19	i:	$\begin{aligned} & \hline 236.7 \\ & 04937 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 394.9 \\ & 86256 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2256 . \\ & 22655 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2733 . \\ & 01974 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1861 . \\ & 2403 \\ & \hline \end{aligned}$	$\begin{aligned} & 476.7 \\ & 93192 \\ & \hline \end{aligned}$	$\begin{aligned} & 210.1 \\ & 46002 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 428.4 \\ & 16854 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2125 . \\ & 80169 \\ & \hline \end{aligned}$	$\begin{aligned} & 2534 . \\ & 14683 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1697 . \\ & 38483 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 408.3 \\ & 45149 \\ & \hline \end{aligned}$
19	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 209.1 \\ & 47887 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 694.9 \\ & 57401 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1706 . \\ & 42721 \\ & \hline \end{aligned}$	$\begin{aligned} & 2388 . \\ & 07204 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1011 . \\ & 46980 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 681.6 \\ & 44837 \end{aligned}$	$\begin{aligned} & 216.7 \\ & 62981 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 572.3 \\ & 49158 \end{aligned}$	$\begin{aligned} & 2140 . \\ & 72693 \\ & \hline \end{aligned}$	$\begin{aligned} & 2599 . \\ & 66315 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1568 . \\ & 37777 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 458.9 \\ & 36226 \\ & \hline \end{aligned}$

19	$\boldsymbol{\theta}$	$\begin{aligned} & 174.8 \\ & 92526 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 686.3 \\ & 86677 \\ & 7 \end{aligned}$	$\begin{aligned} & \hline 1584 . \\ & 19025 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2613 . \\ & 20240 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 897.8 \\ & 03579 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1029 . \\ & 01215 \end{aligned}$	$\begin{aligned} & 229.4 \\ & 83528 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 679.5 \\ & 10807 \\ & 5 \end{aligned}$	$\begin{aligned} & 1565 . \\ & 82901 \\ & 4 \end{aligned}$	$\begin{aligned} & 2197 . \\ & 02288 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 886.3 \\ & 18206 \\ & 5 \end{aligned}$	$\begin{aligned} & 631.1 \\ & 93873 \end{aligned}$
19	a	$\begin{aligned} & 185.1 \\ & 73867 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 918.6 \\ & 44845 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1461 . \\ & 70331 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2674 . \\ & 69838 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 543.0 \\ & 58468 \\ & 6 \end{aligned}$	$\begin{aligned} & 1212 . \\ & 99507 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 185.1 \\ & 47052 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 640.5 \\ & 73119 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1178 . \\ & 25226 \\ & 4 \end{aligned}$	$\begin{aligned} & 2510 . \\ & 36043 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 537.6 \\ & 79144 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1332 . \\ & 10817 \\ & 4 \\ & \hline \end{aligned}$
19	0	$\begin{aligned} & 202.5 \\ & 08529 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 601.9 \\ & 94439 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1213 . \\ & 42118 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2869 . \\ & 76904 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 611.4 \\ & 26745 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1656 . \\ & 34786 \\ & \hline \end{aligned}$	$\begin{aligned} & 193.7 \\ & 10056 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 531.6 \\ & 97990 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 975.5 \\ & 70196 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2474 . \\ & 21902 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 443.8 \\ & 72205 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1498 . \\ & 64882 \\ & 8 \\ & \hline \end{aligned}$
19	\mathbf{u}	$\begin{aligned} & 235.8 \\ & 87229 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 440.4 \\ & 65969 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1086 . \\ & 19736 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3107 . \\ & 78473 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 645.7 \\ & 31393 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2021 . \\ & 58736 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 211.8 \\ & 26155 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 451.2 \\ & 15729 \\ & 8 \end{aligned}$	$\begin{aligned} & 1503 . \\ & 20437 \end{aligned}$	$\begin{aligned} & 2781 . \\ & 84499 \\ & 5 \end{aligned}$	$\begin{aligned} & 1051 . \\ & 98864 \end{aligned}$	$\begin{aligned} & 1278 . \\ & 64062 \\ & 5 \\ & \hline \end{aligned}$
20	I	$\begin{aligned} & 233.0 \\ & 33420 \\ & 3 \end{aligned}$	$\begin{aligned} & 416.2 \\ & 02209 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1933 . \\ & 34939 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2915 . \\ & 52541 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1517 . \\ & 14719 \end{aligned}$	982.1 7602	$\begin{aligned} & 271.7 \\ & 03511 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 407.6 \\ & 27886 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2118 . \\ & 88067 \\ & 4 \end{aligned}$	$\begin{aligned} & 3022 . \\ & 44993 \\ & 9 \end{aligned}$	$\begin{aligned} & 1711 . \\ & 25278 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 903.5 \\ & 69265 \\ & \hline \end{aligned}$
20	i:	$\begin{aligned} & 240.1 \\ & 04530 \\ & 4 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 389.7 \\ 86927 \\ 7 \\ \hline \end{array}$	$\begin{aligned} & 2094 . \\ & 70335 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2921 . \\ & 65453 \\ & 9 \end{aligned}$	$\begin{aligned} & 1704 . \\ & 91642 \\ & 3 \end{aligned}$	$\begin{aligned} & 826.9 \\ & 51188 \end{aligned}$	$\begin{aligned} & 120.4 \\ & 37423 \\ & 3 \end{aligned}$	$\begin{aligned} & 439.7 \\ & 70382 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2116 . \\ & 42379 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2804 . \\ & 14328 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1676 . \\ & 65341 \end{aligned}$	$\begin{aligned} & 687.7 \\ & 19494 \end{aligned}$
20	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 210.1 \\ & 16620 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 603.3 \\ & 23300 \\ & 4 \end{aligned}$	$\begin{aligned} & 2012 . \\ & 15312 \\ & 9 \end{aligned}$	$\begin{aligned} & 2747 . \\ & 04846 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1408 . \\ & 82982 \\ & 9 \end{aligned}$	$\begin{aligned} & 734.8 \\ & 95339 \end{aligned}$	$\begin{aligned} & \hline 260.3 \\ & 53148 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 551.6 \\ & 77413 \end{aligned}$	$\begin{aligned} & 1864 . \\ & 62313 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2226 . \\ & 65037 \\ & 9 \end{aligned}$	$\begin{aligned} & 1312 . \\ & 94572 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 362.0 \\ & 27244 \end{aligned}$
20	\boldsymbol{O}	$\begin{aligned} & 207.1 \\ & 21534 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 643.0 \\ & 14399 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1702 . \\ & 54775 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2693 . \\ & 08359 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1059 . \\ & 53335 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 990.5 \\ & 35841 \\ & \hline \end{aligned}$	$\begin{aligned} & 148.4 \\ & 75377 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 686.9 \\ & 95062 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1494 . \\ & 72919 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2201 . \\ & 07987 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 807.7 \\ & 34131 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 706.3 \\ & 50682 \\ & \hline \end{aligned}$
20	a	$\begin{aligned} & 233.0 \\ & 33420 \\ & 3 \end{aligned}$	$\begin{aligned} & 805.4 \\ & 02833 \\ & 2 \end{aligned}$	$\begin{aligned} & 1509 . \\ & 35971 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2797 . \\ & 58566 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 703.9 \\ & 56885 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1288 . \\ & 22594 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 354.6 \\ & 96366 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 987.6 \\ & 08118 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1327 . \\ & 89514 \\ & 5 \end{aligned}$	$\begin{aligned} & 2555 . \\ & 99617 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 340.2 \\ & 87026 \\ & 6 \end{aligned}$	$\begin{aligned} & 1228 . \\ & 10103 \\ & \hline \end{aligned}$
20	0	$\begin{aligned} & 255.3 \\ & 32332 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 527.3 \\ & 84726 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1135 . \\ & 80846 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2971 . \\ & 45255 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 608.4 \\ & 23740 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1835 . \\ & 64409 \end{aligned}$	$\begin{aligned} & 302.5 \\ & 41196 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 688.3 \\ & 55641 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1106 . \\ & 24989 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2035 . \\ & 71651 \end{aligned}$	$\begin{aligned} & 417.8 \\ & 94254 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 929.4 \\ & 66614 \\ & \hline \end{aligned}$
20	u	$\begin{aligned} & \hline 268.1 \\ & 12502 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 396.7 \\ & 90630 \\ & 9 \\ & \hline \end{aligned}$		$\begin{aligned} & 2797 . \\ & 99796 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 875.6 \\ & 36149 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1525 . \\ & 57118 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 291.9 \\ & 02000 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 489.0 \\ & 36418 \\ & \hline \end{aligned}$	$\begin{aligned} & 1226 . \\ & 88386 \\ & \hline \end{aligned}$	$\begin{aligned} & 2916 . \\ & 78856 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 737.8 \\ & 47442 \\ & \hline \end{aligned}$	$\begin{aligned} & 1689 . \\ & 90470 \\ & 1 \\ & \hline \end{aligned}$
21	I	$\begin{aligned} & 154.5 \\ & 44813 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 412.5 \\ & 00959 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1853 . \\ & 36436 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2418 . \\ & 57676 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1440 . \\ & 86340 \\ & 5 \end{aligned}$	$\begin{aligned} & 565.2 \\ & 12401 \\ & \hline \end{aligned}$	$\begin{aligned} & 164.2 \\ & 16482 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 385.7 \\ & 70654 \\ & 3 \end{aligned}$	$\begin{aligned} & 2001 . \\ & 0169 \\ & \hline \end{aligned}$	$\begin{aligned} & 2099 . \\ & 89983 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1615 . \\ & 24624 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 98.88 \\ & 2934 \\ & \hline \end{aligned}$
21	i:	$\begin{aligned} & 166.3 \\ & 95317 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 403.1 \\ & 62237 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1955 . \\ & 80368 \\ & \hline \end{aligned}$	$\begin{aligned} & 2540 . \\ & 67473 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1552 . \\ & 64144 \\ & 2 \\ & \hline \end{aligned}$	584.8 71055	$\begin{aligned} & 134.3 \\ & 48136 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 361.2 \\ & 02278 \\ & \hline \end{aligned}$	$\begin{aligned} & 2056 . \\ & 64919 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2334 . \\ & 63038 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1695 . \\ & 44691 \\ & 9 \end{aligned}$	$\begin{aligned} & 277.9 \\ & 81187 \\ & \hline \end{aligned}$
21	ε	$\begin{aligned} & 140.7 \\ & 30601 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 478.5 \\ & 96720 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1782 . \\ & 21167 \\ & 9 \end{aligned}$	$\begin{aligned} & 2317 . \\ & 34839 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1303 . \\ & 61495 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 535.1 \\ & 36714 \\ & \hline \end{aligned}$	$\begin{aligned} & 147.5 \\ & 27969 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 452.3 \\ & 62888 \\ & \hline \end{aligned}$	$\begin{aligned} & 1363 . \\ & 73433 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2467 . \\ & 99511 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 911.3 \\ & 7145 \\ & \hline \end{aligned}$	$\begin{aligned} & 1104 . \\ & 26077 \\ & 6 \\ & \hline \end{aligned}$
21	$\boldsymbol{\theta}$	$\begin{aligned} & 127.3 \\ & 26484 \end{aligned}$	$\begin{aligned} & \hline 515.1 \\ & 40708 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1299 . \\ & 60763 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2480 . \\ & 53954 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 784.4 \\ & 66922 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1180 . \\ & 93191 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 112.6 \\ & 28497 \\ & 6 \end{aligned}$	$\begin{aligned} & 421.3 \\ & 24814 \end{aligned}$	$\begin{aligned} & 1624 . \\ & 27344 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2709 . \\ & 74377 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1202 . \\ & 94863 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1085 . \\ & 47032 \\ & 7 \\ & \hline \end{aligned}$
21	a	$\begin{aligned} & 125.4 \\ & 00058 \\ & 6 \end{aligned}$	$\begin{aligned} & 617.5 \\ & 42450 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1175 . \\ & 68152 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2430 . \\ & 03617 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 558.1 \\ & 39073 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1254 . \\ & 35464 \\ & 9 \end{aligned}$	$\begin{aligned} & 135.5 \\ & 27969 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 595.3 \\ & 09537 \\ & \hline \end{aligned}$	$\begin{aligned} & 1229 . \\ & 27995 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2529 . \\ & 78387 \\ & \hline \end{aligned}$	$\begin{aligned} & 633.9 \\ & 70414 \end{aligned}$	$\begin{aligned} & 1300 . \\ & 50391 \\ & 9 \end{aligned}$
21	0	$\begin{aligned} & 132.8 \\ & 23457 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 514.5 \\ & 43627 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1089 . \\ & 42195 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2673 . \\ & 94912 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 574.8 \\ & 78325 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1584 . \\ & 52717 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 148.8 \\ & 67479 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 458.1 \\ & 23765 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1017 . \\ & 83550 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2954 . \\ & 14385 \\ & \hline \end{aligned}$	$\begin{aligned} & 559.7 \\ & 11739 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1936 . \\ & 30834 \\ & 5 \\ & \hline \end{aligned}$
21	u	$\begin{aligned} & 147.1 \\ & 60254 \\ & 1 \end{aligned}$	$\begin{aligned} & 437.8 \\ & 7261 \end{aligned}$	$\begin{aligned} & 915.0 \\ & 11210 \end{aligned}$	$\begin{aligned} & 2638 . \\ & 54137 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 477.1 \\ & 38600 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1723 . \\ & 53016 \\ & 4 \end{aligned}$	$\begin{aligned} & 138.8 \\ & 23679 \end{aligned}$	$\begin{aligned} & \hline 455.1 \\ & 54277 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 918.3 \\ & 73667 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2552 . \\ & 90458 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 463.2 \\ & 1939 \\ & \hline \end{aligned}$	$\begin{aligned} & 1634 . \\ & 53091 \\ & 3 \end{aligned}$
22	I	$\begin{aligned} & 264.5 \\ & 27055 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 524.4 \\ & 97593 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1953 . \\ & 90414 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2535 . \\ & 48941 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1429 . \\ & 40655 \end{aligned}$ 1	$\begin{aligned} & 581.5 \\ & 8527 \\ & \hline \end{aligned}$	$\begin{aligned} & 261.0 \\ & 93032 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 537.8 \\ & 29945 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1744 . \\ & 78055 \end{aligned}$	$\begin{aligned} & 2769 . \\ & 74108 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1206 . \\ & 95060 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1024 . \\ & 96053 \\ & 7 \\ & \hline \end{aligned}$
22	i:	$\begin{aligned} & \hline 260.4 \\ & 97913 \\ & 8 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 529.1 \\ 58327 \\ 7 \\ \hline \end{array}$	$\begin{aligned} & 1891 . \\ & 77586 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2598 . \\ & 71449 \\ & \hline \end{aligned}$	$\begin{aligned} & 1362 . \\ & 61753 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 706.9 \\ & 38629 \\ & \hline \end{aligned}$	$\begin{aligned} & 194.7 \\ & 07192 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 494.1 \\ & 94919 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1952 . \\ & 51114 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2871 . \\ & 06194 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1458 . \\ & 31622 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 918.5 \\ & 50798 \\ & \hline \end{aligned}$
22	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 243.2 \\ & 41496 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 605.5 \\ 05359 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 1588 . \\ & 43891 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2247 . \\ & 75344 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 982.9 \\ & 33553 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 659.3 \\ & 14533 \\ & \hline \end{aligned}$	$\begin{aligned} & 239.3 \\ & 92848 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 565.2 \\ & 61355 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1881 . \\ & 92104 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2504 . \\ & 06533 \\ & \hline \end{aligned}$	$\begin{aligned} & 1316 . \\ & 65968 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 622.1 \\ & 44286 \\ & \hline \end{aligned}$
22	$\boldsymbol{\theta}$	$\begin{aligned} & 192.5 \\ & 29158 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 663.5 \\ 60091 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & 1292 . \\ & 90472 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2340 . \\ & 10667 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 629.3 \\ & 44633 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1047 . \\ & 20195 \\ & 2 \end{aligned}$	$\begin{aligned} & 184.6 \\ & 43069 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 654.3 \\ & 92689 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1237 . \\ & 16211 \\ & 6 \end{aligned}$	$\begin{aligned} & 2449 . \\ & 82251 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 582.7 \\ & 69426 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1212 . \\ & 66039 \\ & 6 \\ & \hline \end{aligned}$
22	a	$\begin{aligned} & 197.1 \\ & 10647 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 783.6 \\ & 35322 \\ & 9 \end{aligned}$	$\begin{aligned} & 1324 . \\ & 49761 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2639 . \\ & 44046 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 540.8 \\ & 62288 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1314 . \\ & 94285 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 175.0 \\ & 07185 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 750.1 \\ & 62543 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1255 . \\ & 37472 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2716 . \\ & 94671 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 505.2 \\ & 12180 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1461 . \\ & 57198 \\ & 8 \\ & \hline \end{aligned}$
22	0	$\begin{aligned} & \hline 212.5 \\ & 35624 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 589.8 \\ & 67091 \end{aligned}$	$\begin{aligned} & 1080 . \\ & 30174 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2396 . \\ & 48005 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 490.4 \\ & 34655 \end{aligned}$	$\begin{aligned} & 1316 . \\ & 17830 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 190.6 \\ & 65183 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 631.7 \\ & 41709 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 954.8 \\ & 53791 \\ & 8 \end{aligned}$	$\begin{aligned} & 2396 . \\ & 38436 \\ & 3 \end{aligned}$	$\begin{aligned} & 323.1 \\ & 12082 \end{aligned}$	$\begin{aligned} & 1441 . \\ & 53057 \\ & 1 \end{aligned}$
22	u	$\begin{aligned} & 240.7 \\ & 81693 \\ & 5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 495.6 \\ 31213 \\ \hline \end{array}$	$\begin{aligned} & 1027 . \\ & 56922 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2468 . \\ & 78065 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 531.9 \\ & 38009 \\ & \hline \end{aligned}$	$\begin{aligned} & 1441 . \\ & 21143 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 184.1 \\ & 52127 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 672.7 \\ & 72806 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1421 . \\ & 12158 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2649 . \\ & 93126 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 748.3 \\ & 48774 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1228 . \\ & 80968 \\ & 2 \\ & \hline \end{aligned}$
23	I	$\begin{aligned} & 148.7 \\ & 00486 \end{aligned}$	$\begin{array}{\|l\|} \hline 418.1 \\ 78674 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & 1995 . \\ & 95426 \\ & 9 \end{aligned}$	$\begin{aligned} & 2526 . \\ & 54912 \\ & 3 \end{aligned}$	$\begin{aligned} & 1577 . \\ & 77559 \\ & 5 \end{aligned}$	$\begin{aligned} & 530.5 \\ & 94854 \end{aligned}$	$\begin{aligned} & 171.6 \\ & 83951 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 521.3 \\ & 14978 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1462 . \\ & 96824 \\ & 7 \end{aligned}$	$\begin{aligned} & 2629 . \\ & 26730 \\ & 7 \end{aligned}$	$\begin{aligned} & 941.6 \\ & 53268 \\ & 6 \end{aligned}$	$\begin{aligned} & 1166 . \\ & 29906 \end{aligned}$

23	i:	$\begin{aligned} & 162.6 \\ & 84886 \\ & \hline \end{aligned}$	$\begin{aligned} & 425.2 \\ & 93021 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1928 . \\ & 37208 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2527 . \\ & 03480 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1503 . \\ & 07906 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 598.6 \\ & 62724 \\ & \hline \end{aligned}$	$\begin{aligned} & 152.0 \\ & 71267 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 337.2 \\ & 01894 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2166 . \\ & 15437 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2786 . \\ & 04283 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1828 . \\ & 95248 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 619.8 \\ & 88462 \end{aligned}$
23	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 138.3 \\ & 76821 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 541.7 \\ & 13623 \\ & \hline \end{aligned}$	$\begin{aligned} & 1728 . \\ & 81812 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2312 . \\ & 445 \\ & \hline \end{aligned}$	$\begin{aligned} & 1187 . \\ & 10449 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 583.6 \\ & 26878 \\ & \hline \end{aligned}$	$\begin{aligned} & 199.8 \\ & 95798 \\ & 8 \end{aligned}$	$\begin{aligned} & 559.8 \\ & 24432 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1449 . \\ & 97400 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2341 . \\ & 95151 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 890.1 \\ & 49574 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 891.9 \\ & 77512 \\ & \hline \end{aligned}$
23	$\boldsymbol{\partial}$	$\begin{aligned} & 139.2 \\ & 64197 \end{aligned}$	$\begin{aligned} & 581.7 \\ & 83895 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1421 . \\ & 92929 \\ & 9 \end{aligned}$	$\begin{aligned} & 2468 . \\ & 02331 \end{aligned}$	$\begin{aligned} & \hline 840.1 \\ & 45403 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1046 . \\ & 09401 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 126.1 \\ & 05419 \\ & 9 \end{aligned}$	$\begin{aligned} & 520.2 \\ & 65943 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1485 . \\ & 74158 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2879 . \\ & 04328 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 965.4 \\ & 75640 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1393 . \\ & 30170 \\ & 4 \\ & \hline \end{aligned}$
23	a	$\begin{aligned} & 126.6 \\ & 14385 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 692.5 \\ & 45087 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1258 . \\ & 8858 \\ & \hline \end{aligned}$	$\begin{aligned} & 2334 . \\ & 07014 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 566.3 \\ & 40712 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1075 . \\ & 18434 \\ & 6 \end{aligned}$	$\begin{aligned} & 136.1 \\ & 98947 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 828.7 \\ & 27486 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1358 . \\ & 54322 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2332 . \\ & 44277 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 529.8 \\ & 15737 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 973.8 \\ & 99551 \end{aligned}$
23	0	$\begin{aligned} & 136.2 \\ & 26051 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 576.3 \\ & 46163 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1161 . \\ & 41357 \\ & \hline \end{aligned}$	$\begin{aligned} & 2468 . \\ & 31606 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 585.0 \\ & 67406 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1306 . \\ & 90249 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 117.7 \\ & 29911 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 545.2 \\ & 61331 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1490 . \\ & 96643 \\ & \hline \end{aligned}$	$\begin{aligned} & 2462 . \\ & 22457 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 945.7 \\ & 05098 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 971.2 \\ & 58142 \\ & \hline \end{aligned}$
23	u	$\begin{aligned} & 154.3 \\ & 01656 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 459.7 \\ & 45780 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1106 . \\ & 94283 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2507 . \\ & 39444 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 647.1 \\ & 97050 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1400 . \\ & 45161 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 210.5 \\ & 29584 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 538.2 \\ & 88127 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1319 . \\ & 9188 \\ & \hline \end{aligned}$	$\begin{aligned} & 2390 . \\ & 15312 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 781.6 \\ & 30672 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1070 . \\ & 23432 \\ & 7 \\ & \hline \end{aligned}$
24	I	$\begin{aligned} & \hline 207.7 \\ & 75958 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 446.2 \\ & 8179 \\ & \hline \end{aligned}$	$\begin{aligned} & 1809 . \\ & 61603 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2461 . \\ & 63222 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1363 . \\ & 33424 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 652.0 \\ & 16188 \\ & \hline \end{aligned}$	$\begin{aligned} & 191.2 \\ & 40817 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 424.2 \\ & 81026 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1678 . \\ & 07351 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2550 . \\ & 09129 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1253 . \\ & 79248 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 872.0 \\ & 17784 \\ & \hline \end{aligned}$
24	i:	$\begin{aligned} & 197.1 \\ & 51229 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 412.4 \\ & 49423 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1783 . \\ & 98155 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2726 . \\ & 33641 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1371 . \\ & 53213 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 942.3 \\ & 54859 \end{aligned}$	$\begin{aligned} & 173.2 \\ & 16688 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 369.8 \\ & 51383 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1703 . \\ & 72168 \end{aligned}$	$\begin{aligned} & 2637 . \\ & 88063 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1333 . \\ & 87029 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 934.1 \\ & 58957 \end{aligned}$
24	ε	$\begin{aligned} & 202.5 \\ & 35434 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 526.0 \\ & 48250 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1635 . \\ & 73906 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2159 . \\ & 69846 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1109 . \\ & 69081 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 523.9 \\ & 59399 \\ & \hline \end{aligned}$	193.3 10712 181.	$\begin{aligned} & 518.0 \\ & 47766 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1691 . \\ & 39765 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2223 . \\ & 59979 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1173 . \\ & 34989 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 532.2 \\ & 02136 \\ & \hline \end{aligned}$
24	$\boldsymbol{\theta}$	$\begin{aligned} & 184.9 \\ & 42575 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 570.2 \\ & 00696 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1270 . \\ & 02603 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2080 . \\ & 62790 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 699.8 \\ & 25338 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 810.6 \\ & 01871 \\ & \hline \end{aligned}$	$\begin{aligned} & 181.1 \\ & 37361 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 439.2 \\ & 37981 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1307 . \\ & 55476 \\ & 8 \end{aligned}$	$\begin{aligned} & 2539 . \\ & 84540 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 868.3 \\ & 16786 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1232 . \\ & 29063 \\ & 7 \\ & \hline \end{aligned}$
24	a	$\begin{aligned} & \hline 189.1 \\ & 28805 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 721.8 \\ & 22315 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1233 . \\ & 85870 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2350 . \\ & 15837 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 512.0 \\ & 36392 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1116 . \\ & 29966 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 178.4 \\ & 34912 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 662.7 \\ & 32610 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1091 . \\ & 88468 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2418 . \\ & 56397 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 429.1 \\ & 52072 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1326 . \\ & 67929 \\ & 3 \\ & \hline \end{aligned}$
24	0	$\begin{aligned} & 187.7 \\ & 40852 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 549.8 \\ & 77427 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 946.5 \\ & 53133 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2277 . \\ & 85629 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 396.6 \\ & 75705 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1331 . \\ & 30316 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 173.4 \\ & 56966 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 632.1 \\ & 53725 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1081 . \\ & 63507 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2522 . \\ & 42986 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 449.4 \\ & 81351 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1440 . \\ & 79479 \\ & \hline \end{aligned}$
24	u	$\begin{aligned} & 201.6 \\ & 79777 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 424.2 \\ & 49377 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 917.3 \\ & 87789 \end{aligned}$	$\begin{aligned} & 2145 . \\ & 6887 \\ & \hline \end{aligned}$	$\begin{aligned} & 493.1 \\ & 38411 \\ & 2 \end{aligned}$	$\begin{aligned} & 1228 . \\ & 30091 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 196.2 \\ & 61395 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 462.5 \\ & 99920 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 982.2 \\ & 33559 \\ & 4 \end{aligned}$	$\begin{aligned} & 2113 . \\ & 30892 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 519.6 \\ & 33639 \end{aligned}$	$\begin{aligned} & 1131 . \\ & 07536 \\ & 2 \end{aligned}$
25	I	$\begin{aligned} & 170.7 \\ & 35517 \\ & 5 \end{aligned}$	$\begin{aligned} & 449.0 \\ & 20755 \\ & 5 \end{aligned}$	$\begin{aligned} & 2013 . \\ & 02421 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2599 . \\ & 92313 \\ & 3 \end{aligned}$	$\begin{aligned} & 1564 . \\ & 00345 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 586.8 \\ & 98919 \end{aligned}$	$\begin{aligned} & 168.2 \\ & 35691 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 437.9 \\ & 61066 \\ & 9 \end{aligned}$	$\begin{aligned} & 1521 . \\ & 57994 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2553 . \\ & 67599 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1083 . \\ & 61888 \end{aligned}$	$\begin{aligned} & 1032 . \\ & 09604 \\ & 4 \end{aligned}$
25	i:	$\begin{aligned} & 177.7 \\ & 87502 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 377.3 \\ & 69847 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2234 . \\ & 43903 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2719 . \\ & 93089 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1857 . \\ & 06918 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 485.4 \\ & 91863 \\ & \hline \end{aligned}$	$\begin{aligned} & 143.3 \\ & 81369 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 344.7 \\ & 48540 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2411 . \\ & 01240 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2894 . \\ & 38416 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2066 . \\ & 26386 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 483.3 \\ & 71765 \\ & \hline \end{aligned}$
25	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 166.0 \\ & 30679 \\ & 9 \end{aligned}$	$\begin{aligned} & 495.8 \\ & 54105 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1800 . \\ & 00224 \\ & 5 \end{aligned}$	$\begin{aligned} & 2316 . \\ & 28739 \\ & 5 \end{aligned}$	$\begin{aligned} & 1304 . \\ & 14814 \end{aligned}$	$\begin{aligned} & 516.2 \\ & 8515 \end{aligned}$	$\begin{aligned} & 142.7 \\ & 49164 \\ & 9 \end{aligned}$	$\begin{aligned} & 468.3 \\ & 50478 \\ & 2 \end{aligned}$	$\begin{aligned} & 2113 . \\ & 87894 \end{aligned}$	$\begin{aligned} & 2597 . \\ & 35853 \\ & 8 \end{aligned}$	$\begin{aligned} & 1645 . \\ & 52846 \\ & 2 \end{aligned}$	$\begin{aligned} & 483.4 \\ & 79598 \end{aligned}$
25	\boldsymbol{O}	$\begin{aligned} & 155.2 \\ & 59280 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 585.5 \\ & 05528 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1439 . \\ & 66165 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2590 . \\ & 04348 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 854.1 \\ & 56125 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1150 . \\ & 38183 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 179.4 \\ & 14801 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 537.3 \\ & 18799 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1674 . \\ & 78221 \\ & 9 \end{aligned}$	$\begin{aligned} & 3688 . \\ & 42497 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1137 . \\ & 46341 \\ & 9 \end{aligned}$	$\begin{aligned} & 2013 . \\ & 64275 \\ & 6 \\ & \hline \end{aligned}$
25	a	$\begin{aligned} & 154.1 \\ & 07932 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 665.7 \\ & 51198 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1236 . \\ & 35049 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2347 . \\ & 03394 \\ & \hline \end{aligned}$	$\begin{aligned} & 570.5 \\ & 99298 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1110 . \\ & 68344 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 170.2 \\ & 04482 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 763.6 \\ & 98393 \\ & \hline \end{aligned}$	$\begin{aligned} & 1386 . \\ & 63645 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2332 . \\ & 91346 \\ & 6 \end{aligned}$	$\begin{aligned} & 622.9 \\ & 38059 \\ & \hline \end{aligned}$	$\begin{aligned} & 946.2 \\ & 77014 \\ & \hline \end{aligned}$
25	0	$\begin{aligned} & 160.3 \\ & 47299 \\ & \hline \end{aligned}$	$\begin{aligned} & 482.8 \\ & 41231 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1077 . \\ & 39167 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2667 . \\ & 51185 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 594.5 \\ & 50447 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1590 . \\ & 12018 \\ & \hline \end{aligned}$	$\begin{aligned} & 166.0 \\ & 77928 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 499.1 \\ & 09222 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1102 . \\ & 46224 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2388 . \\ & 82443 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 603.3 \\ & 53022 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1286 . \\ & 36218 \\ & 6 \\ & \hline \end{aligned}$
25	u	$\begin{aligned} & 164.5 \\ & 65679 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 434.8 \\ & 79648 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 984.7 \\ & 40020 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2577 . \\ & 58544 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 549.8 \\ & 60371 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1592 . \\ & 84542 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 172.1 \\ & 58382 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 399.7 \\ & 51483 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 898.8 \\ & 20289 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2626 . \\ & 50706 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 499.0 \\ & 68806 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1727 . \\ & 68677 \\ & 8 \\ & \hline \end{aligned}$
26	I	$\begin{array}{\|l\|} \hline 141.9 \\ 57837 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & 424.7 \\ & 12069 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1876 . \\ & 60786 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2686 . \\ & 85337 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1451 . \\ & 89579 \\ & 9 \\ & \hline \end{aligned}$	810.2 45507	$\begin{aligned} & 143.7 \\ & 85535 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 424.3 \\ & 12260 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1608 . \\ & 30886 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2512 . \\ & 02372 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1183 . \\ & 99660 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 903.7 \\ & 14855 \\ & \hline \end{aligned}$
26	i:	$\begin{aligned} & 138.1 \\ & 43871 \\ & 6 \end{aligned}$	$\begin{aligned} & 446.3 \\ & 78771 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1921 . \\ & 50737 \\ & 4 \end{aligned}$	$\begin{aligned} & 2744 . \\ & 51683 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1475 . \\ & 12860 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 823.0 \\ & 09462 \end{aligned}$	$\begin{aligned} & 138.3 \\ & 51920 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 395.4 \\ & 42314 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1997 . \\ & 78671 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 3377 . \\ & 36473 \\ & 0 \end{aligned}$	$\begin{aligned} & 1602 . \\ & 34440 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1379 . \\ & 57802 \\ & 3 \end{aligned}$
26	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 132.1 \\ & 87713 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 509.9 \\ & 81751 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1683 . \\ & 06019 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2264 . \\ & 73224 \\ & \hline \end{aligned}$	$\begin{aligned} & 1173 . \\ & 07844 \\ & \hline \end{aligned}$	$\begin{aligned} & 581.6 \\ & 72048 \end{aligned}$	$\begin{aligned} & 132.6 \\ & 37372 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 518.0 \\ & 52277 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1821 . \\ & 57113 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2480 . \\ & 69598 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1303 . \\ & 51886 \\ & \hline \end{aligned}$	$\begin{aligned} & 659.1 \\ & 24851 \\ & \hline \end{aligned}$
26	$\boldsymbol{\theta}$	$\begin{aligned} & 131.4 \\ & 48040 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 547.4 \\ & 98002 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1385 . \\ & 26486 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2384 . \\ & 93960 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 837.7 \\ & 66864 \\ & 1 \end{aligned}$	999.6 74734 1245	$\begin{aligned} & 128.3 \\ & 76036 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 550.4 \\ & 20940 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1300 . \\ & 28500 \\ & 9 \end{aligned}$	$\begin{aligned} & 2231 . \\ & 53270 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 749.8 \\ & 64068 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 931.2 \\ & 47692 \\ & \hline \end{aligned}$
26	a	$\begin{array}{\|l\|} \hline 135.9 \\ 05666 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & \hline 665.6 \\ & 16182 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1280 . \\ & 05482 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2521 . \\ & 26769 \\ & 8 \end{aligned}$	$\begin{aligned} & 614.4 \\ & 38644 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1241 . \\ & 21287 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 131.0 \\ & 22963 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 559.2 \\ & 44908 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1286 . \\ & 10264 \\ & 9 \end{aligned}$	$\begin{aligned} & 2597 . \\ & 53599 \\ & 5 \end{aligned}$	$\begin{aligned} & 726.8 \\ & 57740 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1311 . \\ & 43334 \\ & 6 \end{aligned}$
26	0	$\begin{aligned} & 130.0 \\ & 53755 \\ & \hline \end{aligned}$	$\begin{aligned} & 557.7 \\ & 04471 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1155 . \\ & 89688 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2492 . \\ & 38089 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 598.1 \\ & 92413 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1336 . \\ & 48401 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 128.6 \\ & 66930 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 497.6 \\ & 25948 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1059 . \\ & 65816 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2466 . \\ & 51422 \\ & \hline \end{aligned}$	$\begin{aligned} & 562.0 \\ & 32218 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1406 . \\ & 85605 \\ & 3 \\ & \hline \end{aligned}$

26	\mathbf{u}	$\begin{aligned} & 138.4 \\ & 12976 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 450.4 \\ & 69217 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1042 . \\ & 35720 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2508 . \\ & 82406 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 591.8 \\ & 87983 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1466 . \\ & 46686 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 124.7 \\ & 26377 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 464.6 \\ & 26646 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1361 . \\ & 91672 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2649 . \\ & 52119 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 897.2 \\ & 90082 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1287 . \\ & 60446 \\ & 7 \\ & \hline \end{aligned}$
27	I	$\begin{aligned} & 152.5 \\ & 02042 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 438.0 \\ & 90695 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1683 . \\ & 86108 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2319 . \\ & 53368 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1245 . \\ & 77039 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 635.6 \\ & 72601 \\ & \hline \end{aligned}$	$\begin{aligned} & 131.7 \\ & 54011 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 401.0 \\ & 71449 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1511 . \\ & 99097 \\ & \hline \end{aligned}$	$\begin{aligned} & 2632 . \\ & 03885 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1110 . \\ & 91952 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1120 . \\ & 04788 \\ & 8 \\ & \hline \end{aligned}$
27	i:	$\begin{aligned} & 142.7 \\ & 50380 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 451.5 \\ & 52551 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1798 . \\ & 02225 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2560 . \\ & 12973 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1346 . \\ & 46970 \\ & 3 \end{aligned}$	$\begin{aligned} & 762.1 \\ & 07484 \end{aligned}$	$\begin{aligned} & 179.6 \\ & 81412 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 476.4 \\ & 56145 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1917 . \\ & 66995 \\ & 4 \end{aligned}$	$\begin{aligned} & 2478 . \\ & 27106 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1441 . \\ & 21380 \\ & 8 \end{aligned}$	$\begin{aligned} & 560.6 \\ & 01114 \end{aligned}$
27	ε	$\begin{aligned} & 150.4 \\ & 67684 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 482.7 \\ & 19972 \end{aligned}$	$\begin{aligned} & 1568 . \\ & 08321 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2213 . \\ & 14622 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1085 . \\ & 36324 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 645.0 \\ & 63006 \end{aligned}$	$\begin{aligned} & 155.0 \\ & 96310 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 471.3 \\ & 10574 \\ & \hline \end{aligned}$	$\begin{aligned} & 1669 . \\ & 40473 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2264 . \\ & 14245 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1198 . \\ & 09416 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 594.7 \\ & 37717 \\ & \hline \end{aligned}$
27	$\boldsymbol{\theta}$	$\begin{aligned} & 130.5 \\ & 28580 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 503.5 \\ & 88388 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1263 . \\ & 59167 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2336 . \\ & 83183 \\ & 3 \end{aligned}$	$\begin{aligned} & 760.0 \\ & 03282 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1073 . \\ & 24016 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 150.5 \\ & 48813 \end{aligned}$	$\begin{aligned} & 587.0 \\ & 15979 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1235 . \\ & 72100 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2625 . \\ & 17430 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 648.7 \\ & 05021 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1389 . \\ & 45330 \\ & 2 \\ & \hline \end{aligned}$
27	a	$\begin{aligned} & 138.0 \\ & 74669 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 649.7 \\ & 75995 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1211 . \\ & 56288 \\ & \hline \end{aligned}$	$\begin{aligned} & 2613 . \\ & 89975 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 561.7 \\ & 86884 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1402 . \\ & 33687 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 239.3 \\ & 92848 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 693.6 \\ & 12558 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1881 . \\ & 92104 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2504 . \\ & 06533 \\ & \hline \end{aligned}$	$\begin{aligned} & 1188 . \\ & 30848 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 622.1 \\ & 44286 \\ & \hline \end{aligned}$
27	0	$\begin{aligned} & 144.7 \\ & 51540 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 504.6 \\ & 28412 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1062 . \\ & 94593 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2471 . \\ & 03629 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 558.3 \\ & 17520 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1408 . \\ & 09036 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 117.0 \\ & 41509 \\ & \hline \end{aligned}$	$\begin{aligned} & 575.1 \\ & 95154 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1381 . \\ & 04752 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2528 . \\ & 90552 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 805.8 \\ & 52372 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1147 . \\ & 85799 \\ & 9 \\ & \hline \end{aligned}$
27	\mathbf{u}	$\begin{aligned} & 147.0 \\ & 69797 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 419.7 \\ & 69188 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1065 . \\ & 86545 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2433 . \\ & 19202 \\ & 3 \end{aligned}$	$\begin{aligned} & 646.0 \\ & 96268 \\ & 9 \end{aligned}$	$\begin{aligned} & 1367 . \\ & 32656 \\ & 6 \end{aligned}$	$\begin{aligned} & 150.4 \\ & 91613 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 644.5 \\ & 53482 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1388 . \\ & 14972 \\ & \hline \end{aligned}$	$\begin{aligned} & 2561 . \\ & 51316 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 743.5 \\ & 96237 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1173 . \\ & 36344 \\ & 5 \end{aligned}$
28	I	$\begin{aligned} & \hline 227.2 \\ & 47247 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 382.3 \\ & 78261 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2105 . \\ & 15349 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2579 . \\ & 92668 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1722 . \\ & 77523 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 474.7 \\ & 73186 \\ & \hline \end{aligned}$	$\begin{aligned} & 220.7 \\ & 98180 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 371.9 \\ & 15885 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1984 . \\ & 09364 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2590 . \\ & 31238 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1612 . \\ & 17776 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 606.2 \\ & 1874 \\ & \hline \end{aligned}$
28	i:	$\begin{aligned} & 206.8 \\ & 92474 \\ & 8 \end{aligned}$	$\begin{aligned} & 378.2 \\ & 56475 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2289 . \\ & 45587 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2888 . \\ & 51401 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1911 . \\ & 19939 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 599.0 \\ & 58142 \end{aligned}$	$\begin{aligned} & 169.6 \\ & 28471 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 511.7 \\ & 87249 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1799 . \\ & 56591 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2520 . \\ & 56373 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1287 . \\ & 77866 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 720.9 \\ & 97815 \\ & \hline \end{aligned}$
28	ε	$\begin{aligned} & 194.4 \\ & 42811 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 475.3 \\ & 82714 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1959 . \\ & 85593 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2337 . \\ & 14765 \\ & 7 \end{aligned}$	$\begin{aligned} & 1484 . \\ & 47322 \end{aligned}$	$\begin{aligned} & 377.2 \\ & 91723 \\ & \hline \end{aligned}$	$\begin{aligned} & 189.9 \\ & 95335 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 524.7 \\ & 65391 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1772 . \\ & 59611 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2480 . \\ & 43278 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1247 . \\ & 83072 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 707.8 \\ & 36672 \end{aligned}$
28	$\boldsymbol{\theta}$	$\begin{aligned} & 186.3 \\ & 36384 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 555.7 \\ & 11280 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1366 . \\ & 99865 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2499 . \\ & 45229 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 811.2 \\ & 87372 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1132 . \\ & 45364 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 157.0 \\ & 61518 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 474.1 \\ & 55307 \\ & \hline \end{aligned}$	$\begin{aligned} & 1213 . \\ & 96624 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2188 . \\ & 58485 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 739.8 \\ & 10939 \\ & \hline \end{aligned}$	$\begin{aligned} & 974.6 \\ & 18611 \\ & \hline \end{aligned}$
28	a	$\begin{aligned} & 169.0 \\ & 66566 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 716.3 \\ & 97448 \\ & \hline \end{aligned}$	$\begin{aligned} & 1211 . \\ & 75374 \\ & \hline \end{aligned}$	$\begin{aligned} & 2572 . \\ & 53471 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 495.3 \\ & 56292 \\ & \hline \end{aligned}$	$\begin{aligned} & 1360 . \\ & 78097 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 184.6 \\ & 03911 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 605.9 \\ & 53191 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1391 . \\ & 74238 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2253 . \\ & 45951 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 785.7 \\ & 89193 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 861.7 \\ & 17132 \end{aligned}$
28	0	$\begin{aligned} & \hline 203.5 \\ & 73028 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 515.1 \\ & 22718 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 959.9 \\ & 91607 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2672 . \\ & 21227 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 444.8 \\ & 68889 \end{aligned}$	$\begin{aligned} & 1712 . \\ & 22067 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 180.4 \\ & 30435 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 508.5 \\ & 60873 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1216 . \\ & 45574 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2086 . \\ & 52743 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 707.8 \\ & 94872 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 870.0 \\ & 71688 \end{aligned}$
28	\mathbf{u}	$\begin{aligned} & 231.0 \\ & 31594 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 392.7 \\ & 73447 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 920.2 \\ & 86188 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2628 . \\ & 41693 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 527.5 \\ & 12740 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1708 . \\ & 13074 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 216.8 \\ & 64605 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 404.6 \\ & 80835 \\ & \hline \end{aligned}$	$\begin{aligned} & 1406 . \\ & 94468 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2351 . \\ & 84894 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1002 . \\ & 26384 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 944.9 \\ & 04266 \\ & \hline \end{aligned}$
29	I	$\begin{aligned} & 234.3 \\ & 33815 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 422.6 \\ & 43531 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1871 . \\ & 99819 \\ & 1 \end{aligned}$	$\begin{aligned} & 2418 . \\ & 08212 \end{aligned}$	$\begin{aligned} & 1449 . \\ & 35466 \end{aligned}$	$\begin{aligned} & 546.0 \\ & 83929 \end{aligned}$	$\begin{aligned} & 133.2 \\ & 85269 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 455.4 \\ & 74006 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1972 . \\ & 61424 \\ & 9 \end{aligned}$	$\begin{aligned} & 2406 . \\ & 60507 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1517 . \\ & 14024 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 433.9 \\ & 90822 \end{aligned}$
29	i:	$\begin{aligned} & 259.4 \\ & 20787 \\ & \hline \end{aligned}$	$\begin{aligned} & 374.7 \\ & 40891 \end{aligned}$	$\begin{aligned} & 2180 . \\ & 05312 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2625 . \\ & 21771 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1805 . \\ & 31223 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 445.1 \\ & 64588 \end{aligned}$	$\begin{aligned} & 131.4 \\ & 22528 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 420.9 \\ & 82770 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1995 . \\ & 59409 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2386 . \\ & 03189 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1574 . \\ & 61132 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 390.4 \\ & 37808 \end{aligned}$
29	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 255.4 \\ & 88297 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 580.3 \\ & 34214 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1648 . \\ & 35037 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2190 . \\ & 77977 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1068 . \\ & 01616 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 542.4 \\ & 29396 \\ & \hline \end{aligned}$	$\begin{aligned} & 139.5 \\ & 92936 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 555.7 \\ & 11886 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1754 . \\ & 77132 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2292 . \\ & 9779 \\ & \hline \end{aligned}$	$\begin{aligned} & 1199 . \\ & 05943 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 538.2 \\ & 06576 \\ & \hline \end{aligned}$
29	$\boldsymbol{\theta}$	$\begin{aligned} & \hline 254.3 \\ & 20076 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 650.0 \\ & 27170 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1471 . \\ & 49615 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2411 . \\ & 44686 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 821.4 \\ & 68987 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 939.9 \\ & 50711 \\ & \hline \end{aligned}$	$\begin{aligned} & 146.1 \\ & 68248 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 592.5 \\ & 61284 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1405 . \\ & 21305 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2045 . \\ & 89269 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 812.6 \\ & 51768 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 640.6 \\ & 79638 \\ & \hline \end{aligned}$
29	a	$\begin{aligned} & 250.3 \\ & 27173 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 684.6 \\ & 66651 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1308 . \\ & 18975 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2395 . \\ & 26589 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 623.5 \\ & 23106 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1087 . \\ & 07613 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 142.1 \\ & 35321 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 727.2 \\ & 97135 \end{aligned}$	$\begin{aligned} & 1332 . \\ & 16700 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2236 . \\ & 48701 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 604.8 \\ & 69871 \end{aligned}$	$\begin{aligned} & 904.3 \\ & 20012 \end{aligned}$
29	0	$\begin{aligned} & \hline 238.8 \\ & 36033 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 593.6 \\ & 95872 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1201 . \\ & 75690 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2418 . \\ & 80695 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 608.0 } \\ & 61035 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1217 . \\ & 05004 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 131.4 \\ & 89430 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 542.0 \\ & 73347 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1316 . \\ & 32890 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2438 . \\ & 08469 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 774.2 \\ & 55556 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1121 . \\ & 75578 \\ & 8 \\ & \hline \end{aligned}$
29	\mathbf{u}	$\begin{aligned} & 222.6 \\ & 05652 \\ & 6 \\ & \hline \end{aligned}$	608.9 13625 335.7	$\begin{aligned} & 1605 . \\ & 71821 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2797 . \\ & 52623 \\ & 1 \\ & \hline \end{aligned}$	996.8 04588 1570.	$\begin{aligned} & 1191 . \\ & 80801 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 150.2 \\ & 79381 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 585.2 \\ & 93695 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1626 . \\ & 41058 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2573 . \\ & 82570 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1041 . \\ & 11688 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 947.4 \\ & 15119 \\ & \hline \end{aligned}$
30	I	$\begin{aligned} & 163.5 \\ & 54488 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 335.7 \\ & 23529 \\ & 5 \end{aligned}$	$\begin{aligned} & 1906 . \\ & 25181 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2482 . \\ & 21365 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1570 . \\ & 52828 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 575.9 \\ & 61836 \\ & \hline \end{aligned}$	$\begin{aligned} & 159.4 \\ & 01604 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 321.7 \\ & 45014 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2159 . \\ & 06743 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2413 . \\ & 19661 \end{aligned}$	$\begin{aligned} & 1837 . \\ & 32241 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 254.1 \\ & 29178 \end{aligned}$
30	i:	$\begin{aligned} & 156.1 \\ & 46776 \\ & \hline \end{aligned}$	$\begin{aligned} & 377.5 \\ & 57359 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1972 . \\ & 94045 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2598 . \\ & 70423 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1595 . \\ & 38309 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 625.7 \\ & 63782 \end{aligned}$	$\begin{aligned} & 157.8 \\ & 02757 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 331.9 \\ & 84897 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2321 . \\ & 03777 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2612 . \\ & 71836 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1989 . \\ & 05287 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 291.6 \\ & 80593 \\ & \hline \end{aligned}$
30	ε	$\begin{aligned} & 158.3 \\ & 91291 \\ & 8 \end{aligned}$	$\begin{aligned} & 431.4 \\ & 51577 \\ & 3 \\ & \hline \end{aligned}$	1841. 30474 1595	$\begin{aligned} & 2335 . \\ & 48953 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1409 . \\ & 85316 \\ & 3 \\ & \hline \end{aligned}$	494.1 84797	$\begin{aligned} & 230.8 \\ & 39793 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 440.9 \\ & 12963 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2084 . \\ & 81543 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2713 . \\ & 88890 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1643 . \\ & 90247 \\ & 2 \\ & \hline \end{aligned}$	629.0 7347
30	\boldsymbol{O}	$\begin{aligned} & 127.8 \\ & 55710 \\ & 7 \end{aligned}$	$\begin{aligned} & 521.1 \\ & 05565 \\ & 9 \end{aligned}$	$\begin{aligned} & 1595 . \\ & 22136 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2560 . \\ & 41507 \end{aligned}$	$\begin{aligned} & 1074 . \\ & 11579 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 965.1 \\ & 93706 \\ & \hline \end{aligned}$	$\begin{aligned} & 130.4 \\ & 19757 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 498.0 \\ & 94943 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1133 . \\ & 51812 \\ & 6 \end{aligned}$	$\begin{aligned} & 2532 . \\ & 14340 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 635.4 \\ & 23182 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1398 . \\ & 62528 \\ & 3 \\ & \hline \end{aligned}$

30	a	$\begin{aligned} & 136.4 \\ & 45992 \\ & 9 \end{aligned}$	$\begin{aligned} & 564.4 \\ & 14980 \end{aligned}$	$\begin{aligned} & 1362 . \\ & 44483 \\ & 9 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2529 . \\ 43032 \\ 7 \\ \hline \end{array}$	$\begin{aligned} & 798.0 \\ & 29858 \\ & 9 \end{aligned}$	$\begin{array}{\|l\|} \hline 1166 . \\ 98548 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & 163.6 \\ & 41205 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 657.8 \\ & 03839 \\ & 9 \end{aligned}$	$\begin{aligned} & 1469 . \\ & 96279 \\ & 5 \end{aligned}$	$\begin{aligned} & 3136 . \\ & 85418 \\ & 8 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 812.1 \\ 58955 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 1666 . \\ & 89139 \\ & 3 \\ & \hline \end{aligned}$
30	0	$\begin{aligned} & 143.9 \\ & 57625 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 479.1 \\ & 88910 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1240 . \\ & 00552 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2488 . \\ & 47631 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 760.8 \\ & 16616 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1248 . \\ & 47079 \\ & 2 \end{aligned}$	$\begin{aligned} & 130.9 \\ & 11222 \\ & 3 \end{aligned}$	$\begin{aligned} & 473.2 \\ & 34839 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1248 . \\ & 24513 \\ & 2 \end{aligned}$	$\begin{aligned} & 2602 . \\ & 07766 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 775.0 \\ & 10292 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1353 . \\ & 83253 \\ & 6 \\ & \hline \end{aligned}$
30	u	$\begin{aligned} & 153.0 \\ & 20252 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 392.4 \\ 10518 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & 1345 . \\ & 45011 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2505 . \\ & 29021 \\ & \hline \end{aligned}$	$\begin{aligned} & 953.0 \\ & 39597 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1159 . \\ & 84009 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 141.0 \\ & 58421 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 426.6 \\ & 78186 \end{aligned}$ 1	$\begin{aligned} & 1218 . \\ & 03824 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2430 . \\ & 25527 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 791.3 \\ & 60060 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1212 . \\ & 21702 \\ & 4 \\ & \hline \end{aligned}$
31	I	$\begin{aligned} & 292.1 \\ & 30012 \\ & \hline \end{aligned}$	$\begin{aligned} & 468.9 \\ & 40582 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2114 . \\ & 70070 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2816 . \\ & 48772 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1645 . \\ & 76012 \\ & \hline \end{aligned}$	$\begin{aligned} & 701.7 \\ & 87022 \\ & \hline \end{aligned}$	$\begin{aligned} & 130.2 \\ & 61653 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 534.3 \\ & 58743 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1740 . \\ & 62236 \\ & \hline \end{aligned}$	$\begin{aligned} & 2654 . \\ & 47973 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1206 . \\ & 26361 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 913.8 \\ & 57374 \\ & \hline \end{aligned}$
31	i:	$\begin{aligned} & \hline 310.1 \\ & 80485 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 435.9 \\ & 95927 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2249 . \\ & 40476 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2874 . \\ & 18903 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1813 . \\ & 40884 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 624.7 \\ & 84266 \\ & \hline \end{aligned}$	$\begin{aligned} & 313.6 \\ & 28695 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 364.9 \\ & 57678 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1951 . \\ & 24262 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2863 . \\ & 10750 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1586 . \\ & 28494 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 911.8 \\ & 64881 \\ & \hline \end{aligned}$
31	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 282.1 \\ & 45014 \end{aligned}$	$\begin{aligned} & 610.6 \\ & 30687 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1724 . \\ & 73316 \\ & 9 \end{aligned}$	$\begin{aligned} & 2522 . \\ & 08359 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1114 . \\ & 10248 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 797.3 \\ & 50424 \end{aligned}$	$\begin{aligned} & 294.0 \\ & 72135 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 622.0 \\ & 76434 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1823 . \\ & 72071 \\ & 3 \end{aligned}$	$\begin{aligned} & 2701 . \\ & 56909 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1201 . \\ & 64427 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 877.8 \\ & 48385 \end{aligned}$
31	$\boldsymbol{\partial}$	$\begin{aligned} & 229.7 \\ & 69149 \\ & 5 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 666.4 \\ 19683 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & 1261 . \\ & 73655 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2288 . \\ & 42782 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 595.3 \\ & 16874 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1026 . \\ & 69126 \\ & 3 \end{aligned}$	$\begin{aligned} & 191.3 \\ & 74244 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 695.7 \\ & 95090 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1420 . \\ & 55968 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2765 . \\ & 97362 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 724.7 \\ & 64594 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1345 . \\ & 41393 \\ & 7 \\ & \hline \end{aligned}$
31	a	$\begin{aligned} & 237.5 \\ & 45147 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 745.1 \\ 32406 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & 1275 . \\ & 91470 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2672 . \\ & 24913 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 530.7 \\ & 82300 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1396 . \\ & 33442 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 215.5 \\ & 41698 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 728.7 \\ & 82103 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1291 . \\ & 19687 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2650 . \\ & 32136 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 562.4 \\ & 14770 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1359 . \\ & 12449 \\ & 4 \\ & \hline \end{aligned}$
31	0	$\begin{aligned} & 253.2 \\ & 74408 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 563.5 \\ & 72196 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1032 . \\ & 44381 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2682 . \\ & 89622 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 468.8 \\ & 71614 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1650 . \\ & 45241 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 189.5 \\ & 18387 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 537.8 \\ & 88901 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1102 . \\ & 02974 \\ & 9 \end{aligned}$	$\begin{aligned} & 2688 . \\ & 93254 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 564.1 \\ & 40847 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1586 . \\ & 90279 \\ & 3 \end{aligned}$
31	u	$\begin{aligned} & \hline 291.0 \\ & 15929 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 493.4 \\ & 71979 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 941.1 \\ & 28239 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2735 . \\ & 76556 \\ & 9 \end{aligned}$	$\begin{aligned} & 447.6 \\ & 56259 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1794 . \\ & 63733 \\ & \hline \end{aligned}$	$\begin{aligned} & 215.4 \\ & 51260 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 451.3 \\ & 30171 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1328 . \\ & 23524 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2243 . \\ & 67646 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 876.9 \\ & 05070 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 915.4 \\ & 41221 \\ & \hline \end{aligned}$
32	I	$\begin{aligned} & \hline 184.8 \\ & 26146 \\ & 8 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 439.9 \\ 90794 \\ 9 \\ \hline \end{array}$	$\begin{aligned} & 1952 . \\ & 08772 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2829 . \\ & 69043 \\ & \hline \end{aligned}$	$\begin{aligned} & 1512 . \\ & 09693 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 877.6 \\ & 02703 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 199.0 \\ & 31617 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 513.7 \\ & 10455 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1709 . \\ & 62081 \\ & \hline \end{aligned}$	$\begin{aligned} & 2684 . \\ & 02720 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1195 . \\ & 91035 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 974.4 \\ & 06395 \\ & \hline \end{aligned}$
32	i:	$\begin{aligned} & 187.8 \\ & 59368 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 411.7 \\ & 65951 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1980 . \\ & 40357 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2875 . \\ & 95608 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1568 . \\ & 63762 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 895.5 \\ & 52508 \\ & \hline \end{aligned}$	$\begin{aligned} & 180.7 \\ & 3609 \\ & \hline \end{aligned}$	$\begin{aligned} & 382.4 \\ & 42091 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1934 . \\ & 58778 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2789 . \\ & 18591 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1552 . \\ & 14569 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 854.5 \\ & 98125 \\ & \hline \end{aligned}$
32	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 178.0 \\ & 93934 \\ & 4 \end{aligned}$	$\begin{aligned} & 518.4 \\ & 44430 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2027 . \\ & 54657 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2935 . \\ & 98912 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1509 . \\ & 10214 \\ & 3 \end{aligned}$	908.4 42555 1124	$\begin{aligned} & 212.1 \\ & 59199 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 623.3 \\ & 98129 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1974 . \\ & 71359 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 3031 . \\ & 68623 \\ & \hline \end{aligned}$	$\begin{aligned} & 1351 . \\ & 31546 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1056 . \\ & 97263 \\ & 3 \\ & \hline \end{aligned}$
32	$\boldsymbol{\theta}$	$\begin{aligned} & 176.8 \\ & 75066 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 643.7 \\ 05071 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & 1525 . \\ & 08271 \\ & 2 \end{aligned}$	$\begin{aligned} & 2649 . \\ & 84747 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 881.3 \\ & 77640 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1124 . \\ & 76476 \\ & 3 \end{aligned}$	$\begin{aligned} & 184.9 \\ & 93980 \\ & 3 \end{aligned}$	$\begin{aligned} & 645.9 \\ & 01429 \\ & 5 \end{aligned}$	$\begin{aligned} & 1302 . \\ & 61934 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2550 . \\ & 02107 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 656.7 \\ & 17918 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1247 . \\ & 40172 \\ & 8 \end{aligned}$
32	a	$\begin{aligned} & 184.8 \\ & 14284 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 774.4 \\ & 83365 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1327 . \\ & 74277 \end{aligned}$	$\begin{aligned} & 2899 . \\ & 58978 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 553.2 \\ & 59404 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1571 . \\ & 84701 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 219.0 \\ & 77832 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 821.3 \\ & 27955 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1323 . \\ & 68075 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2938 . \\ & 15421 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 502.3 \\ & 52799 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1614 . \\ & 47345 \\ & 6 \\ & \hline \end{aligned}$
32	0	$\begin{aligned} & 171.6 \\ & 04814 \\ & 8 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 579.6 \\ 03538 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & 1228 . \\ & 00460 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2569 . \\ & 43581 \\ & 3 \end{aligned}$	$\begin{aligned} & 648.4 \\ & 01063 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1341 . \\ & 43121 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 182.4 \\ & 58167 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 544.7 \\ & 01578 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1248 . \\ & 72786 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2498 . \\ & 88559 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 704.0 \\ & 26288 \\ & 9 \end{aligned}$	$\begin{aligned} & 1250 . \\ & 15772 \\ & 7 \\ & \hline \end{aligned}$
32	u	$\begin{aligned} & 168.7 \\ & 84441 \\ & 7 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 498.7 \\ 15455 \\ 7 \\ \hline \end{array}$	$\begin{aligned} & 1118 . \\ & 50841 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2615 . \\ & 69244 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 619.7 \\ & 92955 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1497 . \\ & 18403 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 189.5 \\ & 94293 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 697.3 \\ & 00653 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1652 . \\ & 29922 \end{aligned}$	$\begin{aligned} & 2787 . \\ & 01712 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 954.9 \\ & 98566 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1134 . \\ & 71790 \\ & 8 \end{aligned}$
33	I	$\begin{aligned} & 243.0 \\ & 60348 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 502.9 \\ & 16982 \\ & 9 \end{aligned}$	$\begin{aligned} & 2443 . \\ & 45351 \end{aligned}$	$\begin{aligned} & 3005 . \\ & 62548 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1940 . \\ & 53652 \\ & 7 \end{aligned}$	$\begin{aligned} & 562.1 \\ & 71975 \end{aligned}$	$\begin{aligned} & 209.6 \\ & 5477 \\ & \hline \end{aligned}$	$\begin{aligned} & 440.3 \\ & 32856 \\ & 9 \end{aligned}$	$\begin{aligned} & 1788 . \\ & 97817 \\ & 9 \end{aligned}$	$\begin{aligned} & 2568 . \\ & 02500 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1348 . \\ & 64532 \\ & 2 \end{aligned}$	$\begin{aligned} & 779.0 \\ & 46826 \end{aligned}$
33	i:	$\begin{aligned} & \hline 196.5 \\ & 01479 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 479.1 \\ & 86510 \\ & 7 \end{aligned}$	$\begin{aligned} & 2481 . \\ & 47737 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2953 . \\ & 79978 \\ & 1 \end{aligned}$	$\begin{aligned} & 2002 . \\ & 29086 \\ & \hline \end{aligned}$	$\begin{aligned} & 472.3 \\ & 2241 \\ & \hline \end{aligned}$	$\begin{array}{r} 102.4 \\ 98134 \\ \hline \end{array}$	$\begin{aligned} & 578.0 \\ & 92912 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2398 . \\ & 15576 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2998 . \\ & 43321 \\ & \hline \end{aligned}$	$\begin{aligned} & 1820 . \\ & 06285 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 600.2 \\ & 77441 \\ & \hline \end{aligned}$
33	$\boldsymbol{\varepsilon}$	$\begin{aligned} & \hline 204.8 \\ & 43463 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 542.0 \\ & 84088 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2281 . \\ & 17485 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2844 . \\ & 18642 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1739 . \\ & 09076 \\ & 4 \\ & \hline \end{aligned}$	563.0 1157	$\begin{aligned} & 105.3 \\ & 34642 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 468.4 \\ & 28731 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2376 . \\ & 73841 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2987 . \\ & 38555 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1908 . \\ & 30968 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 610.6 \\ & 47144 \\ & \hline \end{aligned}$
33	$\boldsymbol{\theta}$	$\begin{aligned} & 203.0 \\ & 76287 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 621.9 \\ & 94657 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1600 . \\ & 67307 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2595 . \\ & 18239 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 978.6 \\ & 78419 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 994.5 \\ & 09318 \end{aligned}$	$\begin{aligned} & 224.5 \\ & 38058 \\ & \hline \end{aligned}$	$\begin{aligned} & 487.6 \\ & 61237 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1785 . \\ & 80025 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3030 . \\ & 10328 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1298 . \\ & 13901 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1244 . \\ & 30303 \\ & 7 \\ & \hline \end{aligned}$
33	a	$\begin{aligned} & 153.5 \\ & 45141 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 854.9 \\ & 36083 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1587 . \\ & 53853 \end{aligned}$	$\begin{aligned} & 2768 . \\ & 44052 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 732.6 \\ & 02446 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1180 . \\ & 90199 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 224.5 \\ & 38058 \\ & \hline \end{aligned}$	$\begin{aligned} & 672.6 \\ & 85481 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1679 . \\ & 51597 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2939 . \\ & 18255 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1006 . \\ & 83049 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1259 . \\ & 66657 \\ & 7 \\ & \hline \end{aligned}$
33	0	$\begin{aligned} & 204.5 \\ & 15925 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 590.6 \\ 21354 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 1242 . \\ & 71044 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2962 . \\ & 05507 \end{aligned}$	$\begin{aligned} & 652.0 \\ & 89091 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1719 . \\ & 34462 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 224.5 \\ & 38058 \end{aligned}$	$\begin{aligned} & 684.2 \\ & 03445 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1466 . \\ & 83189 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 3049 . \\ & 66176 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 782.6 \\ & 28452 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1582 . \\ & 82987 \\ & \hline \end{aligned}$
33	\mathbf{u}	$\begin{aligned} & 240.8 \\ & 23376 \\ & 9 \end{aligned}$	$\begin{aligned} & 537.3 \\ & 65239 \end{aligned}$	$\begin{aligned} & 987.3 \\ & 99443 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 3032 . \\ & 28658 \\ & 9 \end{aligned}$	$\begin{aligned} & 450.0 \\ & 34204 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2044 . \\ & 88714 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 146.7 \\ & 34041 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 465.9 \\ & 65214 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1036 . \\ & 02746 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2671 . \\ & 49029 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 570.0 \\ & 62247 \\ & 3 \end{aligned}$	$\begin{aligned} & 1635 . \\ & 46283 \\ & 5 \\ & \hline \end{aligned}$
34	I	$\begin{aligned} & 238.6 \\ & 18598 \\ & \hline \end{aligned}$	$\begin{aligned} & 397.0 \\ & 75063 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2041 . \\ & 12341 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2747 . \\ & 87204 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1644 . \\ & 04834 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 706.7 \\ & 4863 \\ & \hline \end{aligned}$	$\begin{aligned} & 238.8 \\ & 24065 \\ & 9 \end{aligned}$	$\begin{aligned} & 449.9 \\ & 48402 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2180 . \\ & 62758 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2819 . \\ & 46134 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1730 . \\ & 67918 \\ & \hline \end{aligned}$	$\begin{aligned} & 638.8 \\ & 33763 \\ & \hline \end{aligned}$
34	i:	$\begin{aligned} & \hline 223.6 \\ & 58808 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 408.5 \\ & 30637 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2380 . \\ & 77612 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2886 . \\ & 47266 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1972 . \\ & 24549 \\ & \hline \end{aligned}$	$\begin{aligned} & 505.6 \\ & 96535 \\ & \hline \end{aligned}$	$\begin{aligned} & 215.1 \\ & 61729 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 493.2 \\ & 52111 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1907 . \\ & 53375 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2770 . \\ & 18939 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1414 . \\ & 28164 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 862.6 \\ & 55637 \\ & \hline \end{aligned}$

34	ε	$\begin{aligned} & 228.4 \\ & 18325 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 504.9 \\ & 85367 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2102 . \\ & 85142 \end{aligned}$	$\begin{aligned} & 2567 . \\ & 62989 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1597 . \\ & 86605 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 464.7 \\ & 78472 \end{aligned}$	$\begin{aligned} & 310.3 \\ & 2674 \\ & \hline \end{aligned}$	$\begin{aligned} & 636.7 \\ & 05257 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1887 . \\ & 27624 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2907 . \\ & 48103 \end{aligned}$	$\begin{aligned} & 1250 . \\ & 57098 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1020 . \\ & 20478 \\ & 9 \\ & \hline \end{aligned}$
34	\boldsymbol{O}	$\begin{aligned} & 230.6 \\ & 65078 \\ & \hline \end{aligned}$	$\begin{aligned} & 645.5 \\ & 40941 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1388 . \\ & 53754 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2844 . \\ & 06679 \\ & 4 \end{aligned}$	$\begin{aligned} & 742.9 \\ & 96603 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1455 . \\ & 52924 \\ & 9 \end{aligned}$	$\begin{aligned} & 230.6 \\ & 91023 \\ & \hline \end{aligned}$	$\begin{aligned} & 544.0 \\ & 25144 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1783 . \\ & 85077 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2908 . \\ & 48092 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1239 . \\ & 82563 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1124 . \\ & 63014 \\ & 4 \\ & \hline \end{aligned}$
34	a	$\begin{aligned} & 232.0 \\ & 67768 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 822.0 \\ & 88943 \\ & 3 \end{aligned}$	$\begin{aligned} & 1347 . \\ & 51977 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2999 . \\ & 84328 \\ & 2 \end{aligned}$	$\begin{aligned} & 525.4 \\ & 30831 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1652 . \\ & 32350 \\ & 7 \\ & \hline \end{aligned}$	278.4 83284	922.1 54661	$\begin{aligned} & 1275 . \\ & 77748 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2349 . \\ & 70425 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 353.6 \\ & 22823 \end{aligned}$	$\begin{aligned} & 1073 . \\ & 92676 \\ & 8 \\ & \hline \end{aligned}$
34	0	$\begin{aligned} & 231.9 \\ & 42659 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 569.0 \\ & 80018 \\ & \hline \end{aligned}$	$\begin{aligned} & 1062 . \\ & 32971 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2901 . \\ & 54431 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 493.2 \\ & 49693 \end{aligned}$	$\begin{aligned} & 1839 . \\ & 21460 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 228.3 \\ & 56841 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 607.8 \\ & 85162 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1281 . \\ & 72954 \end{aligned}$	$\begin{aligned} & 3088 . \\ & 83645 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 673.8 \\ & 44377 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1807 . \\ & 10691 \\ & 4 \\ & \hline \end{aligned}$
34	\mathbf{u}	$\begin{aligned} & 231.5 \\ & 23457 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 445.9 \\ & 28489 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 998.8 \\ & 42782 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2472 . \\ & 18000 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 552.9 \\ & 14292 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1473 . \\ & 33722 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 245.2 \\ & 01943 \\ & \hline \end{aligned}$	$\begin{aligned} & 502.2 \\ & 21216 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1281 . \\ & 65996 \\ & 3 \end{aligned}$	$\begin{aligned} & 2621 . \\ & 78558 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 779.4 \\ & 38746 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1340 . \\ & 12561 \\ & 9 \\ & \hline \end{aligned}$
35	I	$\begin{aligned} & 241.3 \\ & 12705 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 454.5 \\ & 72322 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2051 . \\ & 95258 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2850 . \\ & 39579 \\ & 9 \end{aligned}$	$\begin{aligned} & 1597 . \\ & 38026 \\ & 2 \end{aligned}$	$\begin{aligned} & 798.4 \\ & 43214 \end{aligned}$	$\begin{aligned} & 191.0 \\ & 45936 \end{aligned}$	$\begin{aligned} & 441.1 \\ & 02457 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2022 . \\ & 26431 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 3035 . \\ & 79248 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1581 . \\ & 16185 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1013 . \\ & 52817 \\ & 3 \\ & \hline \end{aligned}$
35	i:	$\begin{aligned} & 243.8 \\ & 79996 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 486.7 \\ & 59102 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2014 . \\ & 83361 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2749 . \\ & 25965 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1528 . \\ & 07451 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 734.4 \\ & 2604 \\ & \hline \end{aligned}$	$\begin{aligned} & 237.9 \\ & 34199 \\ & \hline \end{aligned}$	$\begin{aligned} & 404.7 \\ & 47535 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2190 . \\ & 26983 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2779 . \\ & 49435 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1785 . \\ & 52229 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 589.2 \\ & 24525 \\ & \hline \end{aligned}$
35	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 246.4 \\ & 00557 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 497.6 \\ & 37287 \\ & \hline \end{aligned}$	$\begin{aligned} & 2112 . \\ & 91564 \end{aligned}$	$\begin{aligned} & 2767 . \\ & 70218 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1615 . \\ & 27835 \\ & 3 \end{aligned}$	$\begin{aligned} & 654.7 \\ & 86545 \end{aligned}$	$\begin{aligned} & 213.5 \\ & 53683 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 514.5 \\ & 45231 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1863 . \\ & 76211 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2686 . \\ & 07696 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1349 . \\ & 21688 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 822.3 \\ & 1485 \\ & \hline \end{aligned}$
35	$\boldsymbol{\theta}$	$\begin{aligned} & 248.3 \\ & 24780 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 626.7 \\ & 50575 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1718 . \\ & 39547 \\ & \hline \end{aligned}$	$\begin{aligned} & 2810 . \\ & 32025 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1091 . \\ & 64489 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1091 . \\ & 92478 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 188.0 \\ & 76348 \\ & \hline \end{aligned}$	$\begin{aligned} & 435.9 \\ & 39216 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1526 . \\ & 01390 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2673 . \\ & 78923 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1090 . \\ & 07468 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1147 . \\ & 77533 \\ & 3 \\ & \hline \end{aligned}$
35	a	$\begin{aligned} & 250.6 \\ & 21653 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 800.0 \\ & 58623 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1547 . \\ & 38788 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2706 . \\ & 20273 \\ & \hline \end{aligned}$	$\begin{aligned} & 747.3 \\ & 29261 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1158 . \\ & 81484 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 234.5 \\ & 49146 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 765.1 \\ & 57882 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1760 . \\ & 28412 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2461 . \\ & 92711 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 995.1 \\ & 26245 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 701.6 \\ & 42988 \\ & \hline \end{aligned}$
35	0	$\begin{aligned} & 251.5 \\ & 45283 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 533.9 \\ & 32736 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1216 . \\ & 40361 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2962 . \\ & 75801 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 682.4 \\ & 70875 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1746 . \\ & 3544 \\ & \hline \end{aligned}$	$\begin{aligned} & 234.5 \\ & 49146 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 500.0 \\ & 92283 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1232 . \\ & 18151 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3125 . \\ & 66236 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 732.0 \\ & 89227 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1893 . \\ & 48085 \\ & 2 \\ & \hline \end{aligned}$
35	\mathbf{u}	$\begin{aligned} & 251.0 \\ & 00844 \\ & \hline \end{aligned}$	$\begin{aligned} & 459.4 \\ & 60218 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1197 . \\ & 32597 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2546 . \\ & 88490 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 737.8 \\ & 65752 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1349 . \\ & 55893 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 211.9 \\ & 01666 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 447.3 \\ & 82446 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1264 . \\ & 87893 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2542 . \\ & 02610 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 817.4 \\ & 96489 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1277 . \\ & 14716 \\ & 5 \\ & \hline \end{aligned}$
36	I	$\begin{aligned} & 327.2 \\ & 99486 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 481.6 \\ & 37240 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2257 . \\ & 25121 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 3017 . \\ & 52382 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1775 . \\ & 61397 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 760.2 \\ & 72614 \\ & \hline \end{aligned}$	$\begin{aligned} & 242.1 \\ & 71370 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 514.2 \\ & 29999 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2198 . \\ & 28995 \\ & \hline \end{aligned}$	$\begin{aligned} & 2793 . \\ & 12893 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1684 . \\ & 05995 \\ & \hline \end{aligned}$	$\begin{aligned} & 594.8 \\ & 38982 \\ & \hline \end{aligned}$
36	i:	$\begin{aligned} & 282.9 \\ & 08856 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 507.2 \\ & 60639 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2404 . \\ & 84026 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 3091 . \\ & 88220 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1897 . \\ & 57962 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 687.0 \\ & 41941 \end{aligned}$	$\begin{aligned} & 303.3 \\ & 07070 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 528.9 \\ & 82914 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1685 . \\ & 82715 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2752 . \\ & 40496 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1156 . \\ & 84423 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1066 . \\ & 57781 \\ & 5 \\ & \hline \end{aligned}$
36	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 253.0 \\ & 06638 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 563.7 \\ & 46340 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2238 . \\ & 14012 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3044 . \\ & 56944 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1674 . \\ & 39378 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 806.4 \\ & 29324 \\ & \hline \end{aligned}$	$\begin{aligned} & 228.3 \\ & 62739 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 710.0 \\ & 39532 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1869 . \\ & 71273 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2699 . \\ & 75189 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1159 . \\ & 67319 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 830.0 \\ & 39164 \\ & \hline \end{aligned}$
36	\boldsymbol{O}	$\begin{aligned} & 260.0 \\ & 93152 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 617.0 \\ & 44270 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1655 . \\ & 42222 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2565 . \\ & 43470 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1038 . \\ & 37795 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 910.0 \\ & 12487 \end{aligned}$	$\begin{aligned} & 217.5 \\ & 22419 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 678.4 \\ & 85884 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1471 . \\ & 16572 \end{aligned}$	$\begin{aligned} & 2227 . \\ & 40032 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 792.6 \\ & 79836 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 756.2 \\ & 34608 \end{aligned}$
36	a	$\begin{aligned} & 232.7 \\ & 93287 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 886.1 \\ & 67647 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1541 . \\ & 63767 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2646 . \\ & 96556 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 655.4 \\ & 70029 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1105 . \\ & 32789 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 224.3 \\ & 27573 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 888.6 \\ & 66150 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1375 . \\ & 69775 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2061 . \\ & 62966 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 487.0 \\ & 31601 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 685.9 \\ & 31913 \end{aligned}$
36	0	$\begin{aligned} & 254.5 \\ & 09772 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 587.7 \\ & 40875 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1169 . \\ & 78601 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2878 . \\ & 10769 \\ & \hline \end{aligned}$	$\begin{aligned} & 582.0 \\ & 45136 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1708 . \\ & 32167 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 111.6 \\ & 62058 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 599.6 \\ & 50679 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1259 . \\ & 55071 \\ & \hline \end{aligned}$	$\begin{aligned} & 2190 . \\ & 59345 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 659.9 \\ & 00030 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 931.0 \\ & 42741 \\ & \hline \end{aligned}$
36	\mathbf{u}	$\begin{aligned} & 257.5 \\ & 50032 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 531.3 \\ & 79014 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1151 . \\ & 95312 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2818 . \\ & 32963 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 620.5 \\ & 74106 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1666 . \\ & 37651 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 242.6 \\ & 80859 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 490.9 \\ & 30601 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1460 . \\ & 40118 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2687 . \\ & 47979 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 969.4 \\ & 70585 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1227 . \\ & 07860 \\ & 9 \\ & \hline \end{aligned}$
37	I	$\begin{aligned} & 222.1 \\ & 76096 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 516.6 \\ & 10196 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2387 . \\ & 92329 \\ & 9 \end{aligned}$	$\begin{aligned} & 2813 . \\ & 40575 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1871 . \\ & 31310 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 425.4 \\ & 82453 \\ & \hline \end{aligned}$	$\begin{aligned} & 203.5 \\ & 6268 \\ & \hline \end{aligned}$	$\begin{aligned} & 486.0 \\ & 62987 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1389 . \\ & 77275 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2657 . \\ & 31185 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 903.7 \\ & 09769 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1267 . \\ & 53910 \\ & 1 \\ & \hline \end{aligned}$
37	i:	$\begin{aligned} & 224.3 \\ & 52610 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 478.3 \\ & 08129 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2401 . \\ & 36894 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2851 . \\ & 85542 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1923 . \\ & 06081 \\ & 9 \\ & \hline \end{aligned}$	450.4 8648	$\begin{aligned} & 130.5 \\ & 40104 \\ & \hline \end{aligned}$	$\begin{aligned} & 431.0 \\ & 10649 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1823 . \\ & 92743 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2451 . \\ & 90424 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1392 . \\ & 91678 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 627.9 \\ & 76816 \\ & \hline \end{aligned}$
37	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 226.6 \\ & 65408 \end{aligned}$	$\begin{aligned} & 511.2 \\ & 29215 \end{aligned}$	$\begin{aligned} & 2181 . \\ & 54917 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2665 . \\ & 42301 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1670 . \\ & 31995 \\ & 9 \end{aligned}$	483.8 73842	$\begin{aligned} & 199.6 \\ & 52845 \end{aligned}$	$\begin{aligned} & 649.7 \\ & 57122 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2158 . \\ & 03487 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2916 . \\ & 26489 \\ & \hline \end{aligned}$	$\begin{aligned} & 1508 . \\ & 27775 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 758.2 \\ & 30013 \end{aligned}$
37	\boldsymbol{O}	$\begin{aligned} & 229.0 \\ & 09351 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 680.4 \\ & 98391 \\ & 9 \end{aligned}$	$\begin{aligned} & 1629 . \\ & 64948 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2471 . \\ & 86009 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 949.1 \\ & 51093 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 842.2 \\ & 10606 \end{aligned}$	$\begin{aligned} & 129.0 \\ & 95472 \\ & \hline \end{aligned}$	$\begin{aligned} & 609.9 \\ & 54114 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1926 . \\ & 4958 \end{aligned}$	$\begin{aligned} & 2171 . \\ & 88127 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1316 . \\ & 54168 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 245.3 \\ & 85477 \\ & \hline \end{aligned}$
37	a	$\begin{aligned} & 230.6 \\ & 8897 \\ & \hline \end{aligned}$	$\begin{aligned} & 893.1 \\ & 35803 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1530 . \\ & 67935 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2397 . \\ & 37699 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 637.5 \\ & 43547 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 866.6 \\ & 97646 \end{aligned}$	$\begin{aligned} & 217.5 \\ & 0232 \end{aligned}$	$\begin{aligned} & 835.9 \\ & 55099 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1747 . \\ & 27197 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2154 . \\ & 60541 \end{aligned}$	$\begin{aligned} & 911.3 \\ & 16879 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 407.3 \\ & 33431 \end{aligned}$
37	0	$\begin{aligned} & 231.4 \\ & 17370 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 600.7 \\ & 51264 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1252 . \\ & 62339 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2686 . \\ & 75822 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 651.8 \\ & 72130 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1434 . \\ & 13483 \end{aligned}$	$\begin{aligned} & 204.6 \\ & 04895 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 585.4 \\ & 21247 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1220 . \\ & 62600 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2508 . \\ & 40253 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 635.2 \\ & 04758 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1287 . \\ & 77652 \\ & 6 \\ & \hline \end{aligned}$
37	\mathbf{u}	$\begin{aligned} & \hline 231.9 \\ & 02083 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 465.1 \\ & 97229 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1136 . \\ & 84774 \\ & 2 \end{aligned}$	$\begin{aligned} & 2620 . \\ & 73062 \end{aligned}$	$\begin{aligned} & 671.6 \\ & 50512 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1483 . \\ & 88287 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 228.4 \\ & 04961 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 474.5 \\ & 41072 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1064 . \\ & 12119 \\ & 6 \end{aligned}$	$\begin{aligned} & 2587 . \\ & 25761 \\ & \hline \end{aligned}$	$\begin{aligned} & 589.5 \\ & 80123 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1523 . \\ & 13641 \\ & 4 \end{aligned}$

38	I	$\begin{aligned} & 237.4 \\ & 38396 \\ & \hline \end{aligned}$	$\begin{aligned} & 524.1 \\ & 09585 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2164 . \\ & 53978 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2765 . \\ & 50683 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1640 . \\ & 4302 \\ & \hline \end{aligned}$	$\begin{aligned} & 600.9 \\ & 67053 \\ & \hline \end{aligned}$	$\begin{aligned} & 244.1 \\ & 26606 \\ & \hline \end{aligned}$	$\begin{aligned} & 501.2 \\ & 05880 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2306 . \\ & 36936 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2880 . \\ & 01763 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1805 . \\ & 16348 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 573.6 \\ & 48273 \\ & \hline \end{aligned}$
38	i:	$\begin{aligned} & 273.2 \\ & 35557 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 489.8 \\ & 79846 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2404 . \\ & 02425 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2797 . \\ & 43231 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1914 . \\ & 14440 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 393.4 \\ & 08058 \\ & \hline \end{aligned}$	$\begin{aligned} & 224.9 \\ & 25921 \\ & \hline \end{aligned}$	$\begin{aligned} & 582.6 \\ & 30565 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1764 . \\ & 95930 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2666 . \\ & 86162 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1182 . \\ & 32873 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 901.9 \\ & 02317 \end{aligned}$
38	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 248.1 \\ & 62410 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 559.3 \\ & 57912 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2230 . \\ & 09524 \end{aligned}$	$\begin{aligned} & 2747 . \\ & 98275 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1670 . \\ & 73732 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 517.8 \\ & 87512 \\ & \hline \end{aligned}$	$\begin{aligned} & 277.9 \\ & 58350 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 587.0 \\ & 70413 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2216 . \\ & 65015 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2654 . \\ & 93062 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1629 . \\ & 57974 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 438.2 \\ & 80473 \\ & \hline \end{aligned}$
38	\boldsymbol{O}	$\begin{aligned} & 278.7 \\ & 75731 \end{aligned}$	$\begin{aligned} & 653.6 \\ & 76263 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1506 . \\ & 51303 \end{aligned}$	$\begin{aligned} & 2447 . \\ & 72131 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 852.8 \\ & 36766 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 941.2 \\ & 08288 \end{aligned}$	$\begin{aligned} & 230.7 \\ & 62041 \end{aligned}$	$\begin{aligned} & 700.0 \\ & 61532 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1797 . \\ & 03601 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2611 . \\ & 78298 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1096 . \\ & 97448 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 814.7 \\ & 46967 \\ & \hline \end{aligned}$
38	a	$\begin{aligned} & 299.0 \\ & 34999 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 859.2 \\ & 10485 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1446 . \\ & 33800 \\ & 9 \end{aligned}$	$\begin{aligned} & 2641 . \\ & 96439 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 587.1 \\ & 27523 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1195 . \\ & 62638 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 251.6 \\ & 13194 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 501.2 \\ & 05880 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2306 . \\ & 36936 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2880 . \\ & 01763 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1805 . \\ & 16348 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 573.6 \\ & 48273 \\ & \hline \end{aligned}$
38	0	$\begin{aligned} & 305.8 \\ & 36266 \\ & \hline \end{aligned}$	$\begin{aligned} & 571.0 \\ & 34797 \\ & \hline \end{aligned}$	$\begin{aligned} & 1210 . \\ & 51337 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2535 . \\ & 64180 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 639.4 \\ & 78576 \\ & \hline \end{aligned}$	$\begin{aligned} & 1325 . \\ & 12843 \\ & 5 \end{aligned}$	$\begin{aligned} & 234.6 \\ & 13632 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 714.3 \\ & 93317 \\ & \hline \end{aligned}$	$\begin{aligned} & 1531 . \\ & 90256 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2836 . \\ & 51425 \\ & 9 \end{aligned}$	$\begin{aligned} & 817.5 \\ & 09247 \end{aligned}$	$\begin{aligned} & 1304 . \\ & 61169 \\ & 5 \\ & \hline \end{aligned}$
38	u		$\begin{aligned} & 575.4 \\ & 90023 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1016 . \\ & 24034 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2657 . \\ & 44173 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 440.7 \\ & 50325 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1641 . \\ & 20138 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 271.8 \\ & 63078 \\ & \hline \end{aligned}$	$\begin{aligned} & 542.6 \\ & 49413 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1166 . \\ & 96904 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2685 . \\ & 38938 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 624.3 \\ & 19630 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1518 . \\ & 42034 \\ & 4 \\ & \hline \end{aligned}$
39	I	$\begin{aligned} & 282.1 \\ & 08530 \\ & 2 \end{aligned}$	$\begin{aligned} & 492.0 \\ & 21217 \\ & 1 \end{aligned}$	$\begin{aligned} & 2046 . \\ & 73571 \end{aligned}$	$\begin{aligned} & 2761 . \\ & 51795 \\ & 8 \end{aligned}$	$\begin{aligned} & 1554 . \\ & 71449 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 714.7 \\ & 82248 \end{aligned}$	$\begin{aligned} & 238.5 \\ & 71886 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 474.8 \\ & 37218 \end{aligned}$	$\begin{aligned} & 1242 . \\ & 47194 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2626 . \\ & 76076 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 767.6 \\ & 34729 \end{aligned}$	$\begin{aligned} & 1384 . \\ & 28881 \\ & 8 \end{aligned}$
39	i:	$\begin{aligned} & 285.4 \\ & 41684 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 488.3 \\ & 17258 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1946 . \\ & 09279 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2708 . \\ & 19602 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1457 . \\ & 77553 \\ & 9 \end{aligned}$	$\begin{aligned} & 762.1 \\ & 03229 \end{aligned}$	$\begin{aligned} & 241.8 \\ & 32305 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 485.6 \\ & 04387 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1496 . \\ & 09471 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2752 . \\ & 63653 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1010 . \\ & 49032 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1256 . \\ & 54181 \\ & 5 \\ & \hline \end{aligned}$
39	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 288.0 \\ & 74426 \\ & 8 \\ & \hline \end{aligned}$		$\begin{aligned} & 2048 . \\ & 75532 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2608 . \\ & 32908 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1484 . \\ & 24709 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 559.5 \\ & 73763 \\ & \hline \end{aligned}$	$\begin{aligned} & 220.9 \\ & 62965 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 519.1 \\ & 62211 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1498 . \\ & 11727 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2579 . \\ & 59455 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 978.9 \\ & 55062 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1081 . \\ & 47728 \\ & 2 \\ & \hline \end{aligned}$
39	$\boldsymbol{\theta}$	$\begin{aligned} & 287.3 \\ & 69675 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 581.8 \\ & 90752 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1511 . \\ & 07109 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 2378 . \\ & 57362 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 929.1 \\ & 80343 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 867.5 \\ & 02527 \end{aligned}$	$\begin{aligned} & 235.0 \\ & 88080 \\ & 3 \end{aligned}$	$\begin{aligned} & 575.3 \\ & 56952 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1623 . \\ & 73913 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2479 . \\ & 28299 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1048 . \\ & 38218 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 855.5 \\ & 43857 \end{aligned}$
39	a	$\begin{aligned} & 286.9 \\ & 08261 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 792.9 \\ & 07847 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1522 . \\ & 77207 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2208 . \\ & 75190 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 729.8 \\ & 64223 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 685.9 \\ & 79836 \\ & \hline \end{aligned}$	$\begin{aligned} & 210.8 \\ & 53953 \\ & 1 \end{aligned}$	$\begin{aligned} & 744.3 \\ & 16767 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1592 . \\ & 58402 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2562 . \\ & 47605 \\ & 4 \end{aligned}$	$\begin{aligned} & 848.2 \\ & 67259 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 969.8 \\ & 92027 \\ & \hline \end{aligned}$
39	0	$\begin{aligned} & 285.0 \\ & 90543 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 599.5 \\ & 96062 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1316 . \\ & 72569 \\ & 9 \end{aligned}$	$\begin{aligned} & 2419 . \\ & 85273 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 717.1 \\ & 29636 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1103 . \\ & 12703 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 214.7 \\ & 34928 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 589.0 \\ & 31930 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1241 . \\ & 40012 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2345 . \\ & 58790 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 652.3 \\ & 68190 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1104 . \\ & 18778 \\ & 6 \\ & \hline \end{aligned}$
39	\mathbf{u}	$\begin{aligned} & 284.1 \\ & 31550 \\ & 8 \end{aligned}$	$\begin{aligned} & 489.9 \\ & 12114 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1183 . \\ & 00577 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2490 . \\ & 44169 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 693.0 \\ & 93662 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1307 . \\ & 43591 \\ & 4 \end{aligned}$	$\begin{aligned} & 233.0 \\ & 75113 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 471.1 \\ & 78920 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1362 . \\ & 41173 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2512 . \\ & 01364 \end{aligned}$	$\begin{aligned} & 891.2 \\ & 32811 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1149 . \\ & 60190 \\ & 8 \\ & \hline \end{aligned}$
40	I	$\begin{aligned} & 302.6 \\ & 39641 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 356.3 \\ & 65173 \\ & \hline \end{aligned}$	$\begin{aligned} & 2410 . \\ & 50047 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2895 . \\ & 09848 \end{aligned}$	$\begin{aligned} & 2054 . \\ & 13529 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 484.5 \\ & 98008 \\ & \hline \end{aligned}$	$\begin{aligned} & 282.8 \\ & 98927 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 397.5 \\ & 48666 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2721 . \\ & 67186 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3276 . \\ & 29790 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2324 . \\ & 12319 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 554.6 \\ & 26045 \\ & \hline \end{aligned}$
40	i:	$\begin{aligned} & 287.0 \\ & 47393 \\ & 9 \end{aligned}$	$\begin{aligned} & 360.5 \\ & 94318 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2460 . \\ & 14906 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2942 . \\ & 62018 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2099 . \\ & 55474 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 482.4 \\ & 71125 \\ & \hline \end{aligned}$	$\begin{aligned} & 282.0 \\ & 53183 \\ & 2 \end{aligned}$	$\begin{aligned} & 477.0 \\ & 98297 \\ & 4 \end{aligned}$	$\begin{aligned} & 2417 . \\ & 68199 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3194 . \\ & 22755 \\ & 2 \end{aligned}$	$\begin{aligned} & 1940 . \\ & 58369 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 776.5 \\ & 45561 \end{aligned}$
40	$\boldsymbol{\varepsilon}$	$\begin{aligned} & 281.5 \\ & 44445 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 568.2 \\ & 91722 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2098 . \\ & 39464 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2798 . \\ & 33755 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1530 . \\ & 10292 \\ & 3 \end{aligned}$	$\begin{aligned} & 699.9 \\ & 42912 \end{aligned}$	$\begin{aligned} & 275.5 \\ & 41087 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 558.7 \\ & 55250 \\ & 9 \end{aligned}$	$\begin{aligned} & 2148 . \\ & 20337 \\ & 5 \end{aligned}$	$\begin{aligned} & 2976 . \\ & 77033 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1589 . \\ & 44812 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 828.5 \\ & 66963 \end{aligned}$
40	$\boldsymbol{\partial}$	$\begin{aligned} & 271.2 \\ & 85657 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 537.3 \\ & 29663 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1627 . \\ & 17878 \\ & 5 \end{aligned}$	$\begin{aligned} & 2683 . \\ & 17415 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1089 . \\ & 84912 \\ & 2 \end{aligned}$	$\begin{aligned} & 1055 . \\ & 99537 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 288.6 \\ & 78634 \\ & 6 \end{aligned}$	$\begin{aligned} & 625.3 \\ & 04177 \\ & 2 \end{aligned}$	$\begin{aligned} & 1662 . \\ & 21639 \\ & 8 \end{aligned}$	$\begin{aligned} & 2590 . \\ & 33954 \\ & 2 \end{aligned}$	$\begin{aligned} & 1036 . \\ & 91222 \\ & 1 \end{aligned}$	$\begin{aligned} & 928.1 \\ & 23144 \end{aligned}$
40	a	$\begin{aligned} & 263.4 \\ & 41175 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 877.5 \\ & 64599 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1578 . \\ & 02044 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 2857 . \\ & 93149 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 700.4 \\ & 55848 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1279 . \\ & 91104 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 296.7 \\ & 80770 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 881.7 \\ & 66045 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1746 . \\ & 61960 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2583 . \\ & 99225 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 864.8 \\ & 53559 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 837.3 \\ & 72646 \\ & \hline \end{aligned}$
40	0	$\begin{aligned} & 275.8 \\ & 20768 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 553.1 \\ & 23275 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1312 . \\ & 81522 \end{aligned}$	$\begin{aligned} & 2690 . \\ & 80669 \\ & 3 \end{aligned}$	$\begin{aligned} & 759.6 \\ & 91944 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1377 . \\ & 99147 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 273.5 \\ & 01463 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 550.7 \\ & 25909 \end{aligned}$	$\begin{aligned} & 1267 . \\ & 84405 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2884 . \\ & 88732 \\ & 2 \end{aligned}$	$\begin{aligned} & 717.1 \\ & 18145 \end{aligned}$	$\begin{aligned} & 1617 . \\ & 04326 \\ & 8 \\ & \hline \end{aligned}$
40	u	$\begin{aligned} & 285.8 \\ & 50209 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 488.1 \\ & 78192 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 988.5 \\ & 34518 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 2697 . \\ & 25436 \end{aligned}$	$\begin{aligned} & 500.3 \\ & 56326 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1708 . \\ & 71984 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 283.2 \\ & 6806 \end{aligned}$	$\begin{aligned} & 457.2 \\ & 81143 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1231 . \\ & 29027 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2723 . \\ & 39252 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 774.0 \\ & 09133 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1492 . \\ & 10224 \\ & 6 \\ & \hline \end{aligned}$

Participants Background Infomation

1. Name of the Participants:
2. Age
3. Gender
4. Cast
5. Educational Qualification
6. Medium Of Education :
7. The Participant belongs to
(a) Rural area
(b) Urban area
i) (if Urban) : How long have he/she been staying in the city :

Linguistic background

	Listening	Speaking	Reading	Writing
Bishnoi Marwari				
Brahman Marwari				
Hindi				
Other regional Varieties				

*Please sign the following consent before you proceed.
I certify that the study has been explained to me, and that participation is absolutely voluntary, that my identity will remain confidential. I agree under no coercion to participate in this study.

Researcher's signature
Participant's signature
Name Nikita Suthar
Name \qquad

Institution JNU, New Delhi
School

Date \qquad Date -------

