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CHAPTER - I 

INTRODUCTION 

A variety of disperse systems constitute our 

environment. The well known examples are colloids and 

aerosols. Colloids are characterized by homogeneous liquid 

gaseous 

or solid 

media with dispersed particles and aerosols with a 

medium in which the liquids (fog, mist, etc.) 

~ubstances (dust, smoke, etc.) may be dispersed. 

headings: Classification of aerosols can be made under two 

(i) Dispersion aerosols, which are formed by atomisation of 

solids and liquids and; (ii) condensation aerosols, formed 

by condensation of super saturated vapour or due to chemical 

reaction in the gas phase. 

Size and shape of the dispersed particles determine the 

properties and behaviour of colloids and aerosols. Aer'osols 

in general are polydisperse i.e. , the particles have 

different sizes. Particles having same sizes are termed as 

monodisperse aerosols. The sizes of colloidal particles 

vary in the range 1-500 nm. In the case of aerosol 

particles the sizes are apprdximately in the range 0.01-100 

lJm. Particles with sizes greater than 100 lJ m settle down 

fast and therefore are not of much interest. Particles of 

sizes >10 wm affect the visibility and consequently the 
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biological energy conversion (e.g., photosynthesis). 

Particles <5-10 wm size can affect health and are of 

physiological interest. A brief summary of health hazards 

is given in Appendix 'A'. 

Since particle size is the single most important 

physical parameter which determines the dispersion of 

aerosols and hence their effect on health, visibility and 

climate, a great deal of attention has been paid to the 

studies pertaining to particle size measurements during last 

couple of decades (e.g., Chu and Churchil, 1955; 

al. 1973; Cowen et al. 1973; Cowen et al. 1981; 

1960; Spumy, 1986). 

Cohen et 

Pendorff, 

The early work on scattering of light by particles, was 

initiated by Rayleigh, mainly to study the blueness of ski. 

For particles having diameter very less than wave-length of 

light, the scattering - Rayleigh scattering, studies were 

done by Rayleigh (1918) and Cabarnes (1929). Oster (1948) 

reviewed the work of Rayleigh. Mie (1908) studied the 

scattering of particles of diameter comparable to 

wavelength, using Maxwell's equations with appropriate 

boundary conditions. van de Hulst (1957) gave a good 

treatment for light scattering by small particles. 

this a number of calculations have been done 
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refractive indices and absorption coefficients appropriate 

to different aerosols.' 

Scattered intensity distribution for a spherical 

particle of radius 'r' depends on size parameter a(= 2Tir/A). 

For opaque metallic spheres, Geise (1959) and for 

spheres relevant to atmospheric scattering 

particles, Penndorf (1960), Deirmendjian et al. 

Curcio (1961) made the scattering calculations. 

absorbing 

by dust 

(19610 and 

Olaf and 

Roback (1961) performed extensive Mie calculations on the 

angular 

spheres, 

distribution of light scattered by absorbing 

for a = 2, 8, 14, 20 and 26. These calculations 

covered aerosol particles from 0.3 - 0.5 wm diameter and the 

range of refractive and absorption indices includes values 

appropriate to coal and rock dusts. The angular 

distribution curves of scattered light intensity for opaque 

particles agree quite closely with curves computed by a 

simple addition of diffracted and externally reflected 

light; leaving evaluation by exact Mie theory by Olaf et al. 

( 1963). Penndorf (1958, 1959, 1962) described an 

approximate method of calculating the total scattering 

coefficient for transparent spheres, which is valid for all 

particle- sizes when n < 2. Ellison and Peetz ( 1959) 

calculated the intensity of scattered light in forward 

direction using an approximate method applicable to large 

particles, good enough to be treated by geometrical optics. 
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Measurements of goo scattering by plastic latex spheres 
{ 

using polarized light were made by Heller et al. (1962). 

They evaluated the depolarization ratio. The results 

obtained using Mie theory agreed well with direct size 

moo O'lTT'omon+ c h-,:T 
..... --~'"" ..... -.~ .................... o...J -v electron m; r"'4~r'\O,....I""\'Y'\"lT 

aL.i ...i.... '-' _... .._, "-' '-' ..._, 1_, ..J • 

Experiments on suspended particles (polystyrene latex 

in water) have been performed by Bateman, Weneck and Eshler 

(1959). They measured specific extinction using 

spectrophotometer and calculated the particle size from its 

variation with the "'ave length of light. Angular 

distribution function based on Mie coefficients have been 

defined by Chu (1955) and Churchill (1957), which is easier 

to handle than the usual form involving Mie functions. 

Angular distribution upto a = 30 can be calculated with 

these functions. Intensity of light scattered by aerosol 

droplet of diameters- between 1.4-3 urn suspended freely 

between two charged condenser plates have also been measured 

by Gucker and his associates (1960, 1961) . For angles 

between 40° and 140° from the forward direction, there was 

good agreement with theoretical intensities calculated from 

Mie theory. 

If the light scattered by one particle is intercepted 

by other particles, it is called multiple scattering. A 
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theory for this type of scattering was developed by 

Churchill and his associates (1955, 1958, 1960). With dense 

suspensions of monodisperse latex particles (0.8-1.7 wm) 

satisfactory results were obtained experimentally. 

In the above mentioned studies the particles were 

ass med to be spherical and of uniform size. However, many 

of the naturally occurring aerosols are of irregular shape 

and variable size. Stevenson et al. (1961) considered the 

effect of the particles being unequal in size for_a = 25.2. 

It was found that unimodal and positively skew size 

distribution can be defined from measurements of 

depolarization ratio. Methods for finding the size 

distribution from turbidity measurements at different 

wavelengths were developed by Wallach et al. (1961). Chin 

et al. (1955) gave a method of finding size distribution 

based on the angular variation of the scattered light at 

very small angles. Experimental data on scattering of fogs 

has been summarized by Spencer (1960). He devel~ped a. 

scattering function which is valid over a wide range of 

conditions from thin to dense fogs. At about the same time 

Went (1960) showed that it is scattering by aerosols of 

sizes 0.1 wm or less consisting aggregates of condensed 

molecules, which is responsible for blue atmospheric haze. 

Experiments with quartz dust suspended in liquid were done. 
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Ellison (1957) found that the forward scattered light for 

the quartz dust was appr~ximately the same as scattering 

calculated for spheres of the same refractive index and the 

size distribution. Due to assumption of sphericity and 

transparency of quartz, his results could not be applied 

immediately to opaque and ncnspherical airborne dust. Later 

Berry (1962) studied the scattering by non-spherical 

particles, like silver bromide crystals (0.1-1 urn). 

In the last two decades a number of studies have been 

done to determine the sizes of nonspherical particles based 

on Mie theory, Holland and Guage (1970); Pinnick et al. 

(1976); 

(1978); 

Chylek (1977); Zerull et al. (1977); Perry et al. 

Janzen (1980). Jaggard et al. (1981) compared the 

experimental data for latex spheres of regular shape and 

amonium sulphate and soil dust particle of irregular shape 

with theoretical Mie calculations. Mie theory was in 

complete agreement for latex spheres, also applicable to 

small and resonant ~ized amonium sulphate particles not 

spherical but regular in shape. They concluded that as the 

particles become larger or more irregular or the particle 

distribution becomes more peaked the difference between ~1ie 

theory calculations and experimental data goes on increasing. 

Light scattering of a colloidal suspension of iron oxide 

particles is studied in a very recent experiment by Benzamin 

6 



Chu et al. (1987). Their results were consistent with 

electron microscope measurements. 

In view of the scarce data on aerosols of smbke and 

spray using laser scattering technique, we have attempted to 

determine the size of aerosols of smoke of cigarettes and 

cosmetic sprays. In the later part of thesis, we have also 

reviewed the photon correlatiom technique with a view to 

determine the particle size. 
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CHAPTER - I.I 

MIE THEORY 

[ 2. 1 ] INTRODUCTION 

Mie gave a general mathematical theory for computing 

scattering functions that describe the light scattered or 

absorbed by a particle. Although Mie's theory was 

formulated for spherical particles, experiments by Napper 

and Ottewill (1964) and Berry (1962, 1966) indicate that 

angular scattering patterns and extinction predictions for 

isometric particles such as cubes or octrahedra differ very 

little from those for spherical particles of same equivalent 

size. 

[ 2 . 2 l THEORETICAL ANALYSIS AND DERIVATION OF MIE 

SCATTERING FUNCTIONS 

Mie solved the Maxwell equations for scattering of 

light by a sphere of diameter comparable to wavelength of 

incident light using appropriate boundary conditions. 

In presence of a medium Maxwell's equations can be 

expressed in the form of : 
+ 

+ + (JB 

IJ X E = ( 2 . 1 ) 
at 
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+ + 
\I X H 

+ + 
\I • D 

+ + 
'iJ . B 

+ 
= J + ( 2 . 2 ) 

at 

= p ( 2 . 3 ) 

"" 0 ( 2 e 4) 

where, E is the electric field intensity; D, the dielectric 

displacement; H, the magnetic field intensity; B, the 

magnetic inductionj J, the current density, and p is the 

charge density. 

The field equations are supplemented by the following 

equations in order to allow a unique determination of the 

field vectors from a given distribution of current and 

charge. 

+ -+ 
J = a E ( 2. 5) 

-+ -+ 
D E E ( 2. 6) 

+ -+ 
B = ]J H ( 2. 7) 

The factors a , E and 1J are the specific conductance, the 

electric inductive capacity and magnetic inductive capacity, 

respectively. 
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Maxwell's equations are valid for regions of space 

through which the ,physical properties of the medium as 

characterized by o,E and w are continuous. 

conditions across the two surfaces are: 

I -1 \ 
\ I J 

= 

continuous 

0 

The boundary 

( 2. 8) 

(2) There is a discontinuity in the normal component of D 

equivalent to K, the surface cha'rge density 

-+ -+ -+ 
(D2 - D1 ) . n = K ( 2. 9) 

-+ 
( 3 ) The tangential component of E is continuous 

-+ -+ -+ 
(E2 - E1 ) X n = 0 (2.10)' 

( 4) There is a discontinuity in the tangential component of 
-+ -+ 
H. equal to L, the surface current density 

-+ -+ -+ -+ 
(H2 H1 ) x ·n = L (2.11) 

From Maxwell's equations one can easily obtain 

-+ 
a2 i 

v2i 
C3E 

- 0 w - E l-1 ~~2 = 0 (2.12) 
t 

and 

1 0 



-+ aH 
= 0 (2.13) 

at 

In nondissipative media, where a = 0, the second term 

drops out and we have 

v
2i 

a
2i 

- E ]J 
~~2 

= 0 (2.14) 

and 

v2H" 
a2f! 

- E]J . 

~~2 = 0 (2.15) 

Now we proceed directly to the exact solution of the 

scattering of a plane electromagnetic wave by an isotropic, 

homogeneous sphere of arbitrary size. 

Whenever a plane wave is incident upon an object 

possessing a discrete boundary and with optical constants 

different from those of medium, a scattered wave is 

generated. The field vectors which describe the 

electromagnetic properties of space may be resolved into 
-+ -+ 

three parts- the incident wave E., H., the wave inside the 
l l 

particle, 
-+ 
E ' r 

-+ -+ 
H and the scattered wave E , r s 

quantities satisfy the vector wave equations 

-+ 
H . s 

(2.12) 

These 

and 

(2.13). A particular solution of the vector wave equation • 
-+ -+ 

is sought for which the field inside the object, E , H and 
r r 

1 1 



+ + + + 
the external field, E.+E , H.+H , 

l s l s satisfy the boundary 

conditions formulat~d by (2.8) to ( 2. 11 ) . Once this 

solution is obtained, not only is the ,scattered wave 

completely defined, but the electromagnetic conditions 

inside within- the object are known as well. For a sphere, 

spherical coordinates r, 8, ¢provide a natural coordinate 

system. Geometry of scattering is shown in Fig.(2.1 ). 

Rather than dealing directly with the vector wave equation 

(2.12) and (2.13), it is possible to work with the scalar 

wave equation (2.16) 

2 
IJ u - 0)..1 

dU 
= 0 (2.16) 

at 

where the scalar quantity u may represent one of the 
+ + 

components of E or H. 

One device 

functions, the electric 
+ 

Hertz vector, TI 2 I which 

+ + 
B1 = )..I £ \} XdTI 1 /o 

+ + + 
E1 = 1/ I IJ TI1 -

+ + 

is to introduce 
+ 

Hertz vector, TI 1 I 

may be defined by 

t 

a2 + 
d t 2 

)..I E: TI1/ 

02 = - )..I E: IJ X dTI
2
/()t 

+ + + - \} 2 + 
d t 2 

H2 = 1/ • IJ TI )..I E: TI2/ - 0 )..I 2 

1 2 

two auxiliary 

and the magnetic 

(2.17) 

(2.18) 

(2.19) 

+ 

TI2 (2.20) 



z 
t 

X 

I 
I 

I 
I 

I 

I 
I 

I 

Fig. 2.1: Geometry for scattering. Incident wave 

travels along positive z-axis with electric 

vector polarized along x-axis. Particle 

with radius a has its center at the origin. 

Direction of scattered wave is defined by 

polar angles e and ¢ . 



These 1T 1 and 1T 2_ satisfy the following forms of the 

wave equation: 

2 + 

v2 
a 1T1 a 1T1 p 

1T1 Of.l --- - E J.l 
-3~2 

= 
;~ t 0 

E 
0 

') 

v2 
a1T2 a~1T2 + 

1T2 -Of.l --- -
-~~2 

= M 
0 at 

0 

+ + 

vector 

(2.21) 

( 2. 22) 

where P and M, the electric and magnetic polarization 

vectors are defined as: 

+ + + 
p = D E E 

0 
( 2. 23) 

+ 1 + + 
M = (--) B - H ( 2. 24) 

J.lo 

and arise from respective distributions of electric and 

magnetic dipoles. 

capacities. 

E , J.l are the free space inductive 
0 0 

The Hertz vectors can be defined as: 

+ + 
- lj • 1T1 = 1T1 (2.25) 

+ + 
lj 1T2 = 1T2 ( 2. 26) 

where TI 1 and TI 2 , the Hertz Debye potentials, are solutions 

of the scalar wave equation. 

1 3 



In terms of the Debye potentials, the components 

of the field vectors. in spherical coordinates are given by 

(Kerker, 1969). 

where 

and 

E 
r 

Ee 

E¢> 

H 
r 

the 

K2 

K1 = 

K2 = 

= 

= 

= 

= 

= 

= 

E1e + E2 e 

E1 ¢> + E2 ¢> 

propagation 

- K1 K2 

iw t: + 0 

iw 

= 

= 

(2.27) 

1 
2 

1 (r TI2) a (rn1) a 
- ------- + K2 ----- ------- ( 2. 28) 
2 a r ae r sine a<t> 

2 
a (rn,) a ( r TI 2 ) 

------ ------- - K2 - ------- (2.29) 
r sine a r a¢ r ae 

1 

(2.30) 

a(rTT
1

) 
------ ------ + 

2 
1 a ( rn 2) 
- ------- (2.31) 

r sine a¢> r a r ae 

2 2 

ae 

a (r n
2

) 
+ ------ --------- (2.32) 

r sine a r Cl<P 

constant 

(2.33) 

(2.34) 

(2.35) 

1 4 



t 

since all media are considered to be nonmagnetic has been 

dropped. 

For sinusoidal time dependence, iwt e ,, the non-

homogeneous scalar wave equation(2.16) reduces to the 

homogeneous form: 

= 0 (2.36) 

where 

u = u' e 
iwt (2.37) 

The Hertz-Debye potentials are solutions of this equation, 

which can be solved by method of separation of variables. 

In spherical coordinates, the wave equation becomes 

1 2 
d dTT 1 d 

2 
TT d rn 

2 ---2- + _2 _____ (sine --) + 2---:--28 3¢2 + K TT= 0 
r ar r sine ae ae sln 

( 2. 38) 

Here the exponential time factor has been factored out of 

the potential function. 

By variable separable method we get the general 

solution as 

oo n 
rTT = I I 

n=O m=-n 
C I±' ( Kr) + d X ( Kr)} { P ( m) (cos e ) } 

n n n n n 

{a cos(m¢) b sin (m¢ )} (2.39) 
m m 

1 5 
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where q; 
n' X are Ricatti-Bessel functions and P (m) 

n n is 

associated legendre P,Olynomial. 

' The isotropic homogeneous sphere is characterized 

by a propagation constant K1 which may or may not be 

complex. The isotropic homogeneous medium will be 

considered to be a dielectric so that its propagation 

constant, K2 is real. The ratio of these quantities defines 

the relative refractive index. 

( 2. 4 0) 

The particle of radius a is located at the origin 

of the spherical coordinate system so that its boundary 

corresponds to the constant cordinate surface, r = a. The 

geometry is shown in Fig. 2.1. The plane polarized wave 

propagating along the positive Z-axis, has its electric 

vector of unit amplitude along X-axis. 

+· 
El =I exp (-iK 2 Z) I = 1 (2.41) 

when this is expanded in the form of equation (2.39), it 

becomes 

( K2r) P n ( 1 ) (cos 8 ) cos <P ( 2. 42) 

1 6 



where p ( 1 ) (cos 8 
n 

'¥ 
n 

sin¢ (2.43) 

is the associated legendre f~nction of 

the first kind. The functions Xn(K2r) have been dropped 

from this expression since they become infinite at the 

origin through which the incident wave must pass. 

Therefore, only the Ricatti-Bassel function 

utilized. The above equations describe the unperturbed 

incident wave. 

In order to match these potentials with those of 

the internal and scattered waves, the latter must be 

expressed in a series of simiiar form but with arbitrary 

coefficients. Again, only the function '¥n(K1r) may be used 

in the expression for the potential inside the particle 

since Xn(K1r) becomes infinite at the origin. On the other 

hand, the scattered wave must vanish at infinity and the 

Hankel functions, 

impart precisely this property. Accordingly, it will be 

used in the expression of the scattered wave, so that 

00 2n+ 1 s I . n-1 (K
2
r)Pn( 1 )(cos8) cos¢ (2.44) r TI1 = --2 l ------ anz: n 

K2 n=1 n(n+1) 

00 2n+ 1 s 
I . n-1 

------b (K 2r) p ( 1 ) (cos 8 ) sin <P (2.45) r TI2 = --.2 l nc;;n 
K2 n=1 n ( n+ 1 ) n 

1 7 



and 

oo 2n+ 1 
= --5 I in-1 ------

K ~ n=1 n(n+1) 
1 

en ll' n ( K1 r) P n ( 1 ) (cos 8) sin¢ ( 2. 4 7) 

The boundary conditions are that the tangential components 

of E & H be continuous across the spherical surface r = a. 

From (2.27) through (2.32), it is apparent that for the 

Debye potential it is equivalent to 

a i s a r 
(--) [ r ( 7T 1 + 7T 1 ) ] = (--) [r 7T 1 ] 

ar ar 

a [ r ( i s a r ( --) 7T2 + 7T2 )] = (--) [ r TI 2 ] 
ar a 

K ( 2) i 7T 1 s) K1 
( 1 ) r 

1 r 7T 1 + = r 7T1 

K ( 2) i s ( 1 ) r 
2 r 7T2 + 7T 2 ) = K2 r 7T2 

which give 

· m [ \fl ' (K a) - a 
n 2 n 

m [ \fl ' 
n 

1 8 

d 
n 

\fl ' 
n 

\fl ' n 

( 2. 48) 

( 2. 4 9) 

( 2. 50) 

(2.51) 



2 m· 

The relative complex refractive 

' in these .... --~~- .1.....! --- -1-t.--~ •• ~t.- ~-~--~ 
t::!l..jUCl.L.LUll::> L1LLVU':::J11 .L '-;::, 

constants by 

K1 m1Ko; K1 
( 1 ) 

0 2K = = lm1 0; 

and 

K2 K2 
( 1 ) 0 2 

= m2Ko; = 1m2 K
0

; 

d 
n 

index of 

relation 

K2 
( 1 ) 

= 

K2 
( 2 ) 

= 

the 

-~--~ 
L-V 

iK 

iK 

(2.54) 

(2.55) 

sphere appears 

-1-"h~ ........ ._ ...... ._..._,-v-.4-.;-~ 
L..1.1C::: .tJ.L Ut:Jct'::10. \......J..V.1.1 

0 
(2.56) 

0 
( 2. 57) 

where, as usual, K = 2 nj A is the propagation constant in 
0 0 

free space. 

These equations can now be solved for the four sets 

of coefficients a , b , c and d . Only the first two are n n n n 

of interest here, and these are given by 

a 
n 

b 
n 

If! (a) If! ' (B) - mi±J (B) If! ' (a 
n n n n 

= ----------------------------------
r (a) If! ' (B) - mi±J (B) r ' (a) 
"'n n n "'n 

mi±J(a) If! '(B) -If! (B) If! '(a) n n n n 
= ----------------------------------

m sn ( a )" If! n ' ( B ) - If! n ( B ) s n ' ( a ) 

ais called size parameter. 

1 9 
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Here A is the wavelength in vacuo, 
0 

A is the wavelength in 

the medium and m=m,1 /m2 is the refractive index of the 

particle relative to that of the medium. The addition of a 

prime to the Ricatti-Bessel functions denotes 

differentiation with respect to their arguments. 

We now consider the scattered field at distances 

sufficiently far from the particle so that K2r >>n where n 

is the order of Ricatti-Bassel function. The Hankel 

functions in ( 2 .·44). and ( 2. 45) reduce as follows: 

(2.62) 

and 

(2.63) 

A further simplification in the far-field zone 

results from the scattered wave becoming a transverse wave 

as a result of the rapid decay of the longitudinal 

component. The transverse components of the field vectors 

(E 8 E¢ 1 He 1 H¢ _decay with A/r in accordance with 

inverse square dependence of a spherical wave upon the 

radial distance. The radial components E and H fall off 
r r 

2 
as A /r) so that they may be neglected in the far-field 

zone. The final result is: 

He i exp(-iK
2
r) 00 2n+1 

E¢ = ---- = - ------------ sin¢ L ------.. 

( m2) K2 n=1 n(n+1 ) 

20 



H¢ 
E = 

(m2) 

x {a 
n 

= -

X { a n 

i 

p ( 1 ) (cos 8) 
n 

sine 

exp(-iK2r) 
------------

K2-

dP < 
1 ) < cos e) 

n ------------
d8 

+ b n 

cos¢ 
00 

I 

dP ( 1 ) (cos 8) 
n 

de 

2n+1 
------

n=1 n ( n+ 1 ) 

p ( 1 ) (cos 8) 
b 

n 
+ -----------n sin e 

(2.64) 

} ( 2. 65) 

The inverse dependence upon r indicates that in 

the radiation zone, the scattered wave is, usual type of 

spherical wave. Since the phase relation between the two 

complex quantities ~ and E¢ is arbitrary, the scattered 

wave will, in general, be elliptically polarized. It will 

be convenient to designate the quantities in the brackets 

above as the amplitude functions. 

00 2n+1 
s1 = I ------ { a IT (cos 8) 

n=1 n ( n+ 1 ) n n 

00 2n+ 1 
s2 = L: ------ { a T ( cos8 ) 

n=1 n ( n+ 1 ) n n 

where the angular functions are: 

IT <cos e ) = 
n 

p ( 1 ) (cos 8) 
n 

sin 8 
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+ b T (COS e l } ( 2. 66) n n 

+ b IT (COS 8 ) } (2.67) n n 

( 2. 68) 



T (COS 8 ) = 
n 

d 

d8 
p ( 1 ) (cos 8 ) 

n 

\ 

( 2. 69) 

Now, using Poynting's theorem, the energy flow in the 

scattered wave is given by 

( 2. 70) 

where the asterisk denotes the complex conjugate. The 

intensity of · scattered radiation polarized in 8 and¢ 

azimuths is 

,\2 
2 . 2¢ = ---2--2 I 8 1! s1n 

4 7T r 

,\2 

= ---2--2 
4 7T r 

= 

. 2¢ i. s1n 
l 

2 i . cos <P 
l 

(2.71) 

(2.72) 

where i
1 

and i
2 

will be called the intensity functions. 

These components are perpendicular and parallel, 

respectively, to the sacttering plane. This plane contains 

the incident direction and the direction of the scattered 

wave ( 8 , ¢ ) • 

There will be a phase difference between these 

components of the scattered beam given by: 
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(2.73} 

.. <:::ce Re and Im designate the real and imaginary , parts of 

~ 2 indicated complex amplitude functions. 

When yz is chosen as th~ scattering plane so that 

the direction of the electric vector of the incident 

radiation is perpendicular to this plane,~= 90°, and 

= I1 = (2.74) 

On the other hand, with xz as the scattering plane, the 

incident radiation has its elec~~ic vector parallel to the 

plane ~ = 0 0 , and 

= (2.75) 

So, ·for unpolarized incident.radiation of unit intensity, 

the intensity of scattered light in the direction 8 at a 

distance from the aerosol particle .is given by (Penndorf, 

1962a) 

(2.76} 

w;1e:c:; _, :C:t is the refractive index of the medi urn. 

The above result shows that the scattered 
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radiation is always polarized even if the incident radiation 

is unpolarized. 

\ 

And the degree of polarization is given by 

p = 
I i

1 
- i

2 
.L------

The intensity functions derived by Mie are: 

2 00 

=ls 1 1 =III ( 2m+ 1 ) 

00 

1 I (2m+ 1 l 

2 
(a n + b 1 ll m m m m 

2 
(am 1m + bm n: m) I . 

(2.77) 

(2.78a) 

(2.78b) 

Solution of equation (2.78) gives the scattered 

field as a spherical wave composed of two sets of partial 

waves, one.the electrical wave a for which radial component 
m 

of the magnetic vector in the incident wave is zero and the 

other magnetic wave b m 

electric vector is zero. 

for which radial component of 

Mie coefficient a and b depend on n, the m m 

refractive index and a , the size parameter. The partial 

wave can be considred as coming from an electric or magnetic 

multipole field. Hence, the first partial wave comes from a 

dipole; the second from a quadrupole and so on. 
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The coefficients IT and IT in equation m m (2.78) 

denote the angular. functions independent of n and a, 

depending only on the scattering angle 8 . Variation of 

calculated intensity function with the scattering angle for 

parallel polarization is shown in figs.(2.2)-(2.10), which 

were obtained by Pinnick et al.(1973) for various values 

using equation (2.78). 

( 2 • 3 ] APPROXIMATION FORMULAE FOR FORWARD AND SMALL ANGLE 

SCATTERING 

The exact scattering theory gives for the 

amplitude 

S ( 0 } = Re S ( 0 } + i I m S ( 0 } (2.79) 

From equation (2.78), amplitude in forward direction 

s { o }= s
1 

{ 8} = s
2 

{ 8 } ( 2. 80) 

and 
00 

s1 = I (2m+ 1 ) [ IT m Re (am) + T m Re ( bm) + i IT I (a ) 
m m m 

+ i T I (a ) m m m 

Now, we define two coefficients. 

Angular Mie scattering coefficient 
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(2.81) 

Fir-st the 

( 2. 82) 
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Figs. 2.6 & 2.7: Theoretical plots 
Vs. scattering angle from 
for homogeneous spheres 
respectively. 

of scattered intensity 
Mie theory calculations 
for a = 5.8 & 6.5 
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and the second phase function 

(2.83) 

According to the cross-section theorem 

o= n r 2 K (e) = ( 4 n /K 2 ) Re S { 0 } = ( A 2 /n) Re { S ( 0)} ( 2. 84) 

i.e., the total extinction corss-section is proportional 

to the real part of the scalar amplitude of the scttering in 

forward direction. this theorem follows directly from the 

exact solution of scattering theory and applies to all types 

of refrative indices (real and imaginary). 

In equation (2.84) K(e) denotes the extinction 

coefficient. For nonabsorbing aerosols 

K(e) = K 

i.e. , extinction coefficient is identical with the 

scattering coefficient. 

In case of forward scattering, 

Tim = Tm = 1/2 

Since Re(a ) and Re(b ) consist of positive terms only while m m 

Im (am) and Im(bm) consist of positive and negative terms, 
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therefore in equation (2.79) 

.. 
i-Re S {0} I >> I Im S { 0} I: (2.85) 

This inequality is true only for above a certain lower 

limit. 

Hence, 

For a> 5, I S { 0} becomes negligible. 
m 

s ' = Re S { 0 } 1 
(2.86) 

Prime indicates that parameters are based on 

validity of euqation (2.85). 

The approximated intensity function is obtained by 

inserting equation (2.86) into equation(2.79) 

(2. ·87) 

From the cross-section theorem 

Re S { 0 } (2.88) 
4 

Replacing Re S { 0}. in equation (2.87) by left hand side of 

equation (2.70) gives 

(2.89) 
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Using the definition given in equation (2.80) equation 

(2.89) follows 

= a 2 
K

2 I 1 6 1T 

Therefore from equation (2.81) 

p I 

M = 

(2.90) 

(2.91) 

PM' is called approximated phase function. K approaches the 

value 2 for very large a and the relationship expressed by 

equation (2.69) becomes 

lim P' = 1/2 a2 
M 

(2.92) 

which is in perfect agreement with diffraction theory. So 

for angular variation of scattered intensity at small angles 

by a sphere, we can write 

J 
1 

( a sin 8 ) 
2 ---·-------- ] (2.93) 

a sin .e 

A number of workers have verified experimentally 

the Mie theory given above, e.g. LaMer and Sinclair (1943), 

Gucker and Rowell (1960), Gumprecht and Sliepcevich (1951 ), 

Kratohvil and Smart (1965), Michael Lang (1976) and Cowen et 

al. (1981). 
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set up. 



CHAPTER III 

EXPERIMENTAL SET UP 

[3.1] EXPERIMENTAL ARRANGEMENT 

The set up which we used for laser light scattering lS 

shown schematically in Fig. (3.1). It consists of mainly 

three parts, namely a laser source, detection system and a 

sample mount. A He-Ne laser tube (Melles-Griot) with 

maximum output power 7 mW was used to produce a laser beam 

at wavelength ·A= 632.8 nm. The detection system comprises 

of photomultiplier tube (IP-28) in conjunction with a 

counting system (Preamplifier, amplifier, discriminator, 

counter) or a digital multimeter. For intensity 

measurements two types of arrangement were employed. In the 

ECIL) first, PMT was followed by a preamplifier (HA505, 

amplifier (PA521, ECIL), discriminator (PD-621, Aplab) and a 

counter (1101, Aplab). In the second arrangement current 

from the PMT was measured by a digital multimeter. The 

sample mount is shown in Fig. (3.2). We have used a 

polariser (tvlelles-Griot) to get the parallel polarized 

light. For a well focussed and perfectly aligned laser be~m 

slit and lenses were used. 

The peformance of PM tube with biased voltage is shown 

in Fig. ( 3. 3) . The plateau voltage is found to be 480 V. 
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Fig. 3.2: Photograph of Rotating Armed Mount 



......... 
Q_ 

E 
<! 

E 

f-
z 
w 
cr 
0:: 
::::J 
u 

0 ·60 

0 •50 

0•40 

0 •30 

0•10~----~------~----~------~----~------~----~ 

340 380 420 460 500 540 580 620 

VOLTAGE (Volts) 

Fig. 3.3: Variation of current with voltage showing 

the characteristics of the PM tube. 



-' 

[ 3 . 2 ] Procedure 

First the alignment of laser beam is done. For this, 

levelling of the mount and the arm attached to • it was 

checked by a spirit level. After this, the slits and lenses 

were used for aligning the laser beam. After alignment, 

i.e., when the tube is aligned along the incident beam 

direction (at 0°) laser beam falls on the window of PMT. 

For focussing the position of lenses were adjusted in such a 

fashion that the focus lies at the window of PMT for the 

scattered laser beam. 

Every instrument is switched on for 15 to 20 minutes 

before starting the experiment. PMT is kept at the plateau 

voltage. PMT takes around thirty minutes to stabilize if it 

is being used regularly otherwise takes two to three hours. 

[3.2.1] Calibration of the Experimental Set ~: Now the 

experimental set up is calibrated for forward scattering 

approximation theory, which we have used for determining the 

size of aerosols, by doing experiments with particles of 

known sizes. 

Ferric hydroxide sol was prepared by taking a known 

weight of ferrous sulphate and boiling it with distilled 

water for an hour. It was then allowed to cool at the room 

temperature. The sample thus prepared was diluted 100 

times. The Ferric hydroxide sol was chosen because of being 
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hydrophilic sol which is a good example of idealized problem 

of separated particles in a homogeneous medium. 

The 100 ml of this solution was tak~n into Attenberg 

cylinder and diluted again to the mark. It was shaken well 

and after each interval of time the samples of various sizes 

were taken out from the cylinder for the scattering 

experiment. The weight of Ferrous-sulphate was chosen such 

that after final dilution its concentration should not 

increase more than 10- 6 grns/lit. 

The sedimentation analysis is based on STOKE'S LAW; 

which states the law of settling velocity as 

2 D1 - Dz 
v - c1' ------- rz - "" 

. 
9 ll 

where v =particle velocity (ern sec-1} 

g = Gravity acceleration (981 em sec- 2 } 

D1 = Density of the falling sphere (grn em- 3 } 

Dz = Density of the sedimentation liquid (gm cm- 3 ) 

Tl = Viscosity of liquid (grn em- 1 sec- 1) 

r = Radius of sphere (em} 

Fall time for a given diameter of particle is 

h 
t = 

v 

where h = Fall height of suspended column 

v = settling velocity for a given diameter in em/sec. 
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Keeping the sample suspended in water for a longer time 

may create problems ·like coagulation. To check this 

Hydrogen Peroxide (H202) was used as dispersant. H202 

affects the substances in two ways. It oxidises the organic 

materials which often inhibit dispersion. In addition H202 

generates oxygen in the pore space of the substances, which 

in effect pushes individual particles away from each other. 

One does not need to keep the trace of concentration of H202 

as on heating .it completely dissociates into water and 

oxygen. 

Samples of hydrosols with sizes 2, 3 and 5 microns 

(i.e.' a = 9.92; 14.88 and 24.81) were obtained at various 

intervals of time using sedimentation technique. The 

experimentally observed scattered angular intensities as a 

function of the scattering angle for various paticle sizes 

(a= 9.9, 14.9 and 24.8} are shoHn in Figs. (3.4), (3.5), and 

(3.6). The smooth curves plotted in Figs. (3.4} - (3.6) are 

obtained from the theoretical calculations of intensities 

using eqn.(2.95) for a= 9.9, 14.9, 424.8 respectively. The 

theoretical angular intensity ratio as a function of 8 for 

various values of a are given in Tables (1-6). 

From Figs. (3.4)-(3.6) it is evident that the 

experimental ratios of angular intensities when compared 

with those obtained from approximation forHard scattering 
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Angle 1 8 1 

(degrees) 

[A] 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Sin 6 

[ B] 

0.0174 

0.0348 

0.0523 

0.0697 

0.0871 

0.1045 

0.1218 

0.1391 

0.1564 

0.1736 

TABLE 1 

a Sin 6 J
1 

(aSin 6) 

[ c l [ D] 

0.0872 0.04 

0.1745 0.087 

0.2617 0.1287 

0.3488 0.172 

0.4357 0.214 

0.5226 0.250 

0.609 0.290 

0.6595 0.3112 

0. 7 82 0.360 

0.868 0.3939 
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J
1 

(aSin6) 
a Sin e 

[ E] 

0.4597 

0.4971 

0.495 

0.4914 

0.4976 

0.4807 

0.4754 

0.4715 

0.4603 

0.4538 

T '1'\ ' IT -
1\IJJ/J.U 

[ F ] 

0.2113 

0.2471 

0.2450 

0.2415 

0.2476 

0.2311 

0.2260 

0.2223 

0.2119 

0.2059 



[A] [ B] [ c l 

1 0.0174 0.174 

2 0.0348 0.348 

3 0.0523 0.523 

4 0.0697 0.697 

5 0.0871 0.871 

6 0. 1045 1.045 

7 0.1218 1.218 

8 0.1391 1.391 

a 0.1564 1.564 / 

10 0.1736 1.736 

TABLE 2 

[ d: IOJ 

[ D] 

0.087 

0.172 

0.250 

0.328 

0.3939 

0.455 

0.503 

0.54 

0.564 

0.578 
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[ E] [ F ] 

0.5 0.25 

0.4942 0.2442 

0.4780 0.2284 

0.4705 0.2214 

0.4522 0.2045 

0.4354 0.1895 

0.4129 0.1705 

0.3882 0.1507 

0.3606 0.1300 

0.3329 0.1108 



TABLE 3 

[c{= 15] 

[A] [B) [ c ] [ D] [ E] [ F ] 

1 0.0174 0.261 0.1286 0.4927 0.2427 

2 0.0348 0. 5.2 2 0.2511 0.4810 0.2313 

3 0.0523 0.784 0.3608 0.4625 0.2139 

4 0.0697 1.0455 0.4523 0.4349 0.1892 

5 0.0871 1.3065 0.522 0.4015 0.1612 

6 0.1045 1.5675 0.5650 0.3622 0.1312 

7 0.1218 1.827 0.5814 0.3194 0. 1020 

8 0.1391 2.0865 0.5699 0.2739 0.0750 

9 0.1564 2.346 0.5319 0.2273 0.0516 

10 0.1736 2.604 0.4708 0.1810 0.0328 

35 



[A] [ B] [ c] 

1 0.0174 0.435 

2 0.0348 0.87 

3 0.0523 1.3075 

4 0.0697 1.7425 

5 0.0871 2.177 

6 0.1045 2.6125 

7 0.1218 3.045 

8 0.1391 3.477 

TABLE 4 

(cl.:~S] 

[ D] 

0.2098 

0.3947 

0.5220 

0.5786 

0.5669 

0.4671 

0.3237 

0.1498 
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[ E] [ F ] 

0.4824 0.2327 

0.4537 0.2058 

0.4015 0.1612 

0.3325 0.1105 

0.2612 0.0682 

0.1789 0.0320 

0. 1064 0.0113 

0.0432 0.0018 



[A] [ B] [ C] 

1 0.0174 0.348 

2 0.0348 0.6967 

3 0.0523 1. 046 

6. 0.0697 1.394 

5 0.0871 1.742 

6 0.1045 2.09 

7 0.1218 2.436 

8 0.1391 2.782 

TABLE 5 · 

[o(::20] 

[ D] [E) [ F] 

----------------------

0.172 0.4942 0.2442 

0.3289 0.4720 0.2228 

'0. 452 0.4346 0.1889 

0.5419 0.3898 0.1519 

0.5792 0.3328 0.1108 

0.5692 0.2723 0.0741 

0.5131 0.2111 0.0446 

0.4160 0.1~99 0.0224 
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[A] [ B] [ c] 

1 0.0174 0.522 

2 0.0348 1.044 

3 0.0523 1.569 

4 0.0697 2.091 

5 0.0871 2.613 

6 0.1045 3.135 

7 0.1218 3.654 

TABLE 6 

(c!:30] 

[ D] 

0.250 

0.4523 

0.5662 

0.5682 

0.4678 

0.2890 

0.0746 
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[ E] [ F ] 

0.4807 0.2311 

0.4349 0.1892 

0.3606 0. 1300 

0.2705 0.0732 

0.1792 0.0321 

0.0923 0.0085 

0.0204 0.0042 



formula agrees well in the range of scattering angles 4-8o. 

For our experimental set up, the range of scattering angle 

over which we need to obtain the experimental ratios of 

intensities to determine the particle sizes of unknown 

samples was chosen to be between 4-8°. 

The apparent disagreement between _experiment and theory 

in the range 1-3° is due to contributions of light other 

than scattering reaching the P.M. tube. 

close to the forward direction (i.e. 

for angles very 

8 = 0) ' it is 

impossible to limit the contributions, other than the actual 

scattered light due to finite beam width of laser. 

our experiments, the contributions due to 

Also .1n 

internal 

reflections in the range 1-3° can not be ruled out because 

of the construction of the window of the P.M. tube. 

[3.2.2] Sample and its mounting: The sample preparation 

does not involve any process. We have ready-made samples 

cigarettes and sprays, which need lighting and pressing. 

Cigarette 1s lighted and kept in petridish which is then 

mounted on the prism table of mount for scattering. For 

sprays we press the atomiser keeping it in such a way that 

laser light intercepts the spray. 

To measure the scattered intensity due to aerosols of 

smoke we waited for sometime till the regular flow of smoke 
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Of 
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was achieved. Then the intensity of light was measured at 

°C. Then the arm at which the PMT was mounted, was rotated 

each time by an angle of 1° and the scattered intens~ty was 

measured. 

To chek the spreading of smoke and for dispersal of the 

particles we clamp the collecting apparatus shown in Fig. 

( 3 0 7 ) above the petridish whose one end is fitted with 

suction pump. We adjust the height of the clamp so that the 

laser light passes through the smoke in air. Thus we get 

the scattering of particulates suspended in air. 

[ 3. 3 J PRECAUTIONS: 

To minimise the error due to vibrations the set up was 

kept on a heavy one-inch thick steel plate. To avoid light 

from other sources the set up was covered with a black 

wooden box with one side opening widnow. Vaccum cleaner was 

used to keep the experimental chamber dust free as the dust 

may add to the scattering. After each reading the PM tube 

was shifted to next angle and kept there for two to 

minutes for stabilization. 

five 

Before taking the scattering measurements of smoke 

aerosols we checked that the flow of smoke is regular and 

linear. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

Experimentally measured values for 

intensity were obtained at various angular 

scattered 

positions. 

Intensity as a function of scttering angle is plotted for 

various samples of smoke and spray. Results are shown in 

Figs. ( 4. 1)- ( 4. 5) (for smoke) and in Fig. ( 4. 6) (for. spray) . 

Five sets of readings at every angle for each sample have 

been t~ken. Mean of the five values at a particular angle 

is taken as the value of scattered intensity at that angle. 

Bar has been put across the mean points to show the spread 

of radings. 

In Fig.(4.1) also plotted are the theoretical values 

for a =15 and a= 16. Experimental points lie between these 

two values. Now the deviation of experimental points has 

been calculated Hith a= 1 5 . 1 ' 15.2,---,16. !Vlinimum 

deviation is obtained for a= 15.2, so it is taken as the 

value for the sample, Hhich gives particle diameter as 3.06 

JJ m. 

In Figs. ( 4. 2) and ( 4. 3) experimental points are shoHn 

to lie between a= 16 and a= 17. Minimum deviation is 

obtained for a= 16 in Fig. (4.2). The corresponding 

diameter is 3.22 JJm. But for the Fig. (4.3), a=l6.8, is 
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the value for which the minimum deviation is obtained, so 

the value of diameter comes out to be 3.38 wm. 

a= 19 and a= 20 are the theoretical values ' between 

which experimental points lie in Fig.(4.4). a= 19.7 gives 

the minimum deviation with experimental points so it is 

taken as the value for the sample and gives the particle 

diameter as 3.97 wm. 

Similarly, in Fig.(4.5), minimum deviation is obtained 

for a= 21.6 and in Fig.(4.6) for a= 26.5. These values of a 

give particle diameters as 4.35 wm and 5.43 wm. The results 

can be summarized as follows : 

Sample a-value Diameter (wm) 

Cigarette 

( i ) 555 15.2 3.063235 + 0.006578 

( i i ) PANAMA 16.0 3.224458 + 0.006250 

( i i i ) SELECT 16.8 3.385681 + 0.005952 

( i v) WILLS 19.7 3.970114 + 0.005076 

( v) CHARMS 21.6 4.353019 + 0.004629 

Spray 

Old Spice 26.5. 5.340509 + 0.003773 

We have obtained very high value for diameter of 

tobacco smoke aerosols than the standard. This can be 

explained as being due to two reasons. First, the 
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temperature of the tip of the burning cigarette remains 600-

8000C. The smoke ejected at such a high temperature passes 

through the air at room temperature. Knowing the 

hydrophilic nature of tobacco smoke, it is but natural to 

infer the high diameter as a consequence of condensation of 

atmospheric vapour. Second, the Mie formula which we have 

used to calculate the diameter of particles is obtained on 

the assumption that the particles are non-interacting but 

for our sample, i.e. cigarette smoke, we can not say safely 

that the particles are independent and do not interact with 

other particles. 
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CHAPTER - V 

PHOTO-CORRELATION SPECTROSCOPY 

5.1 INTRODUCTION: 

The term photo-correlation spectroscopy (PCS) or 

intensity correlation spectroscopy (ICS) designates the 

technique by which relevant properties of a scattering 

medium illustrated by a light beam are derived from the 

measurement of c6rrelation functioh of the intensity of the 

scattered light. 

Prior to about 1956, nearly all measurements in optics 

were based on mean light intensity. Although the techniques 

of fast pulse photoelectronics had been known for some 

years, it was not until the successful demonstration by 

Hanbury Brown and Twiss on the feasibility of photo-

electric correlation measurements, that they began to be 

donsidered and applied in practice to 

experiments. 

In the first experiments the 

light scattering 

outputs of the 

photodetectors were treated and processed as continuous 

signals, but in later experiments optical correlation was 

also demonstrated by the techniques of photon counting. 

Thus it was shown that if two photomultilpliers are 
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illuminated by two mutually coherent beams of light and 

their pulses are fed to a coincidence circuit, the rate of 

coincidence 

pulses. It 

counting exceeds the expected rate 

was first demonstrated by Hanbury 

of random 

Brown and 

Twiss that photoelectric correlation techniques could be 

applied to the determination of angular sizes of distant 

stellar sources, by an extension of the Michelson Stellar 

interferometer. Later it was pointed out that the 

correlation methods could be applied to the determination of 

very narrow spectral distributions, such as in some Brillouin 

scattering experiments, polarization properties of light and 

coherence properties of laser beams. 

In the study of scattering of light by fluids, 

thermodynamic variables describing the system constantly 

fluctuate as it is fundamental to statistical mechanics, 

that a system of many particles never exhibit perfect 

uniformity. 

fluctuations 

The light beams can be used to detect these 

and to measure their characteristic 

frequencies and life times. The light source required must 

have high intensity and monochromaticity - such chracteri-

sties are provided by continuous wave lasers. In order to 

analyze these fluctuations it is necessary to carry out 

either spectrum analysis or correlation analysis of the 

scattered light. Since these fluctuations are very slow 

compared to frequency of light wave, very high resolution 

45 



spectrometers are required. The resolution needed is so 

high that conventional _optical spectroscopy fails. We have 

to use correlation techniques as it 1s well known, the 

optical spectrometers can not resolve spectrum components 

narrower than lOMHz. Howev~r, the thermal fluctuations of 

dieletric constant of the medium can produce spectrum lines 

with width as narrow as 10Hz. 

The spectral information of the scattered light can be 

obtained by optical mixing spectroscopy but the digital 

intensity correlation techniques have the advantage of being 

faster and giving much better statistical accuracy. 

In the last few years res has found many areas of 

applications in physics, chemistry, biology, and 

engineering. Its understanding requires an acquaintance 

with the statistics of light fields, theories of light 

scattering, and some knowledge of optical and electronic 

instrumentation. We shall discuss here a fews important 

points, with the aim of making clear the basic principles of 

res. 

(5.2) THEORY 

(5.2.1) Properties of eorrlation Functions 

The statistical properties of any random process 

as an optical field) can be characterized by 
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probability distributions or (and) correlation functions of 

any order. In prac~ical cases relevant information on 

optical fields is obtained by measuring only the lowest 
\ 

order correlation functions G<I> and G< 2 > defined as 

follows: 

G < 1 > ( 
-+ -+ 

= <E+(r1,t) E(r2,t+T )> ( 5 . 1 ) 

and 

G (2 > ( ( 5. 2) 

Where E and I =IEI 2 are respectively the electric field and 

the intensity of the optical beam. 

Quite generally it can be said that the spatial 

properties of correlation functions reflect merely the 

geometry of the source (the scattering volume in a light 

scattering experim~nt). We are here more interested in 

time dependence of G<I> and G<2> which contains information 

about the dynamics of source fluctuations. We put therefore 

-+ -+ 
r1 = .r2. Furthermore, we consider only stationary fields, so 

that G<I> and G<2> depend only on the time delay T 

Properties of G<t>c T> 

G< 1 >(0) =<I>; IG(l>( T) 1.5.. G < I > ( 0) ; 1 im G < 1 > ( T ) = 0 

Properties of G< 2 >cT> 

QC2l(O) = (12>; lim G<2>(T) = <I>2; 
T-¥00 

G< 2>(T)- <I>2I.5_G<2) (0)- <I>2 
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We recall also the definition of the optical spectrum 8< 1 > ( 

S ( 1 ) ( w) = f G ( 1 ) ( T ) e iW T d T ( 5. 3) 

If s< 1 >~ > is a symmetric function with respect to the 

central fequency wo, and we write the field as 

E(t) = Eo(t)e-i£Wot+~(t)l (Eo(t) real) 

the correlation functions can be expressed as: 

Q(l) (T) = <1> e 1 WoT f(T ( 5 • 4 ) 

Q(2) (T) = <I>2 (1+g(T )) ( 5 . 5 ) 

Where f ( T ) and g ( T ) are real. 

The following relation holds for gaussian fields 

g ( T) = f 2 ( T ( 5 . 6 ) 

It should be noted that knowledge of G< 2 > does not give 

completely G< 1 > even for gaussian fields. The information 

about the central frequency wo is lost. 

(5.2.2) Light Scattering: Generalities: 

A schematic light scattering experiment is sketched in 

Fig. 5.1. A monochromatic plane wave, linearly polarized is 

incident upon a perfectly uniform transparent medium. 

An optical detector in position P reveals the presence 

of a nonzero light intensity, generally weak, propagating in 
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directions other than that of reflected and refracted beam. 

This is what is called ·scattered light. 

In Fig. 5. 1, the incident beam propagates along the 

Y-axis and is linearly polarized along the Z-axis; wo and Io 

are respectively its angular frequency and its intensity. 

The scattered light is observed at th~ point P having polar 

coordinates (R, e,y). 
-+ -+ 

8 is the angle between Ko and Ks. 

The effective volume V which contributes to the scattered 

field collected at P does not include the entire sample, but 

is rather defined by cross-section of incident beam and the 

detection optics. The distance R is taken to be much larger 

than the linear size of the scattering volume V. 

The physical origin of the scattering process can be 

understood in the following way. The illuminated medium 

interacts with the incident electric field at optical 

frequency through an electric polarizability per unit volume 

-+ 
X ( r, t). For the sake of simplicity the medium is assumed 

to be optically isotropic (X is a scaler quantity) and linear 

(X is independent of amplitude of the incident field). The 

field radiated by each volume element follows the well-known 

dipole radiation pattern. The field collected by a detector 

placed in the position P is the sum, with appropriate phases 

of the contributions from each volume element. It is easy 
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to show that if X ~,t) is independent of + r, we get 

destructive interference in any direction, apart from that 

of the refracted beam. If, however, X is a fluctuating 

+ 
function of r, all the elementary contributions to the 

scattered field will not completely cancel out, and we do 

expect a nonzero scattered intensity. 

The polarizability X can always be ·written as 

X (r,t) = <x > + ox(r,t) 

+ 
where <X> is the average part, independent of r and t for a 

homogeneous medium in stationary conditions, and ox(r,t) is 

the fluctuating part, which has zero average. From the 

intuitive considerations given above, it is clear that 

scattering + 
is produced by oX (r,t). 

The theoretical computation gives 

-+ 
expression for the scattered field Es(R,t) 

+ + 
1 + + -+ 

VeiCKsR- u.QtJ 

the 

-+ 
Es(R,tl = 

<€> 
Ks.(Ks.Eo) -----~--------oE(K,t) 

4 TIR 

where € = 1 + X is the relative dielectric constant of the 

-+ 
medium, V is the volume, Ks is the wave vector of the 

scattered field, 
+ 

and O€ (K,t) is defined by the Fourier 

transformation : 
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-+ oe: ( K, t) = 
1 -+ f oq r, t) 
v v 

. -+ -+ e-•K.r 

-+ 
The vector K, as shown in Fig.[5.2], is defined by: 

-+ 

( 5 . 8 ) 

K 
-+ 
Ks 

-+ 
Ko ( 5. 9) 

Equations (5.7 - 5.9) indicate that of all the Fourier 

components of the fluctuation in dielectric constant only 

that particular component whose wave vector is the 

difference between the wave vectors of the scattered and the 

incident light is responsible for scattering in the 

direction of observation. 

Equation (5.7) has been derived by using a perturbation 

+ 
approach which takes ox (r, t) to be small compared to < X > 

and which assumes the attenuation of the incident field to 

be negligible over the whole length of the scattering 

volume. Multiple scattering effects are, therefore, assumed 

to be very weak. 

-+ 
The scattered field Es (R,t) is a random function of 

position and time with a zero average. The time dependent 

fluctuations of Es exactly mirror the fluctuations in 

dielectric constant 
-+ 

of wave vector K. Fluctuations in 

dielectric constant are generally much slower than an 
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optical period, that is, the energy associated with an 

elementary excitation 1n the medium is much smaller than the 

energy of incident optical photon. As a consequenpe, the 

energy conservation theorem tells us that the energy of the 

scattered photon is practically the same as that of the 

incident one. By putting = Ko, the 

conservation relation (5.9) gives K = 2Ko sinW2 = 

momentum 
47Tn 
---sin8/2 

A 
where n is the refractive index of the medium and 8 is the 

-+ -+ 
angle between Ko and Ks. 

-+ 
The space dependent fluctuations of Es depend only, in 

usual cases on the geometry of the experiment. Indeed, if 

-+ 
h'e compare E s 

-+ -+ -+ 
with Es(R+ o R,t), Hhere oR is a 

displacement on the sphere of radius R centered at the 

origin of the coordinate syst~m, we find that both amplitude 
-+ 

and phase of Es are different since the relative phases of 

the scattered fields from each volume element change by 

-+ -+ -+ 
moving from R to R+OR. The coherence area Ac of the 

scattered field is qualitatively defined as the area (on the 

sphere of radius R) over which the scattered field is 

appreciably uniform in amplitude and phase. A more precise 

definition would imply the use of spatial correlation 

function for the scattered field. The coherence area is 

given by: 
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Ac ( 5. 10) 
As ( 8, y) 

where As (8, y) is the area intersected on the scattering 

volume by a plane perpendicular to R and passing through the 

center of the scattering volume. It is evident from this 

definition that Ac depends upon the observation direction, 

that is the angles 8 andy. The ratio \ 2 /As is called the 

coherence solid angle. Equation (5.10) can be interpreted as 

an extension of the well-known resGlt of the one dimensional 

grating of size a, which gives a diffraction angle \/a and, 

therefore, a spot size AR/a at a distance R. 

-+ -+ 
The scattered field Es(R,t) at a given point is a 

random function of time. A complete characterization of it 

is given by the set of correlation functions: 

where m runs from 1 to infinity. By using equation (5.7), a 

one to one correspondence between the correlation functions 

of the field and those of the dielectric constant can be 

established. 

( 5 . 2 . 3 ) Light Scattering: Macromolecular solutions 

In a macroscopic system. in thermal equilibrium at a 

temperature T, local fluctuations of the dielectric constant 
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are caused by fluctuations in the thermodynamic parameters 

describing the state of the system. For instance, in a pure 

fluid the value of OE -+ (r,t) is mainly determined by local 

density fluctuations. We will discuss now a specific 

example, that is light scattering from a suspension of 

noninteracting macromolecules, small compared with the 

wavelength of light. For such a system, containing Ns 

macromolecules in the scattering volume 

-+ 
os{r,t) = 

Ns 
6Er L o (r- r;{t)] 

i=l 
( 5 . 1 1 ) 

where 6Er is the difference in.relative dielectric constant 

between a macromolecule and solvent, and r; ( t) 

position of macromolecule 

-+ -+ 
becomes (taking Ks Eo) 

-+ -+ 
Es(R,t) = 

4TT<E>R 

-+ -+ 
ei(KsR-

-+. 
1 at time t . Equation 

Ns 
\ -+ -+ 
L exp [ iK. r; ( t) J 
i=l 

is the 

( 5 . 7 ) 

( 5 . 1 2 ) 

This result can also be obtained directly by regarding 

each macromolecule as an elementary dipole radiator. The 

electric field correlation function is given by 

!fEo 2 ) !Ko 4 6Er2 
G ( 1 ) ( 1' ) = ------------- e ; Wo 1' L I -+ -+ 

<exp { iK[r;(t)-rj(t+-r) J}> 
16 TT 2 < E > 2 R 2 

( 5 . 1 3 ) 

For independent scatters, the position of particle i will at 

all times be uncorrelated with the position of particle j. 
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Thus only the terms for i = j will contribute to the double 

sum of Eq.(5.13). For random walk diffusion under the 

influence of Brownian motion it is easy to show that 

Q(l>(-r) = <Is> exp ( i Wo T ) exp (-DK 2 T } (5.14) 

where <Is> is the average scattered intensity and D is the 

translational diffusion coefficient of the macromolecule. 

An intuitive justification of this result comes from the 

fact that (DIP ) - 1 is roughly the time taken by a 

macromolecule to diffuse a distance 1/K. If Ns is not too 

small, the scattered field, being the superposition of many 

statistically independent contributions, is gaussian. The 

intensity correlation function is therefore immediately 

derived from Eqs. (5.14) and (5.6) and reads 

G C 2 l ( T ) GC1l(o)2 + I G(ll T ) I 2 

= < I s > 2 [ 1 +ex p ( - 2 DIP T ) ] ( 5 . 1 5 ) 

( 5 . 3 ) Particle slze determination 

We define, 

T c = ( 2DK 2 ) - 1 ( 5 . 1 6 ) 

as the characteristic relaxation time for the decay of the 

correlation function, which can be obtained by photon 
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correlators. Thus, getting Tc experimentally, D can be 

found out putting the value of K which is known. 

Now, D the mutual diffusion coefficient, in th~ limit 

of infinite dilution is given by the well known Einstein-

Stoke's relation 

KnT 
Do = -------- ( 5 • 1 7 ) 

6 TT n r 

where Do = Diffusion coefficient at infinite dilution 

Kn = Boltzmann constant 

T = Absolute temperature 

n = Viscosity of the solvent. 

r = Radius of the particle. 

Therefore, 

Kn T 
r = -------- ( 5 . 1 8 ) 

6TTnDo 

5.4 Photon Correlators 

There are numerous techniques for determining the 

intensity correlation function of the light beam. Here we 

shall describe two of them: the first, the so called 

clipping technique which is quite simple but usually valid 

for thermal light and the second which involves use of time 
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to amplitude converter is more general and is valid for all 

kinds of light beams. 

5. 4. 1 Clipping technique 

The most convenient approach is to count the number of 

detections occurring during continuous sample times of 

duration T chosen to be short compared with the correlation 

times under study. The normalized autocorrelation function 

of photon countitig fl~ctuations in·this time can be written 

as 

R ( 1 ) = ( 5 . 1 9 ) 

where nr(t) is the number of detections occurring during a 

sample time t and t+T. 

There is however, a difficulty in taking the product 

nr(t) nr(t+1) associated with the fact that multiplication 

of numbers greater than one is time consuming and therefore 

limits the ultimate speed of such a correlator. To overcome 

this a clip level K is selected so that the clipped signal 

nx(t) follows the conditions 

nK(t) = 1 if n(t) > K 

= 0 if n(t) < K 

57 



And gates 

5\ore 

Fig. 5. 3: A block diagram of the clipping 

correlator. 



By using the one bit quantized clipped signal only in 

delay channel, the complexity of the multiplication is 

reduced to a gating function as shown in Fig.(5.3]. Since 

multiplication of n(t) by n~(t+T) is equivalent to gating 

n ( o ) by n K( T ) • This reduction in complexity leads to 

considerable increase in operating speed. The single 

clipped auto correlation function RK(T) for delay T is given 

by 

<ndT)n(o)> 
= ~----~--------- ( 5. 20) 

<ndo)><n(o}> 

from where we can have 

l+K 
RK( T ) = 1 + f IRd T) I 2 

l+<nT> 

Hhere RE( T is the norfualized amplitude correlation 

function and f is the correlation factor affecting the ratio 

of the spectral term to the background. A commercial 

correlator using this technique is nohl available. 

5.4.2 Use of time to amplitude converter 

Time resolved photoelectric correlation measurements 

are most easily carried out with the help of a combination 

of a time to amplitude converter and pulse height analyser 

as shown in Fig.[5.4]. The. light beam to be studied is 

split into two parts by partially silvered mirrors and beams 
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fall on two separate phototubes. The photoelectric pulses 

from the two detectors after suitable amplification and 

shaping are fed to the start and inputs of time to amplitude 

convertor (TAC). This is an electronic device in which the 

start pulse initiates a ramp wave form which is cut off when 

the stop pulse is received. The output from TAC lS 

therefore a pulse whose amplitude is proportional to the 

time interval between the two input pulses, and the various 

output pulses are sorted, into appropriate channels by a 

multichannel pulse height analyier. The distribution of 

pulse heights registered by the analyzer is therefore a 

measure of the distribution of time 

photoelectric pulses. 

intervals 

Nevertheless, this probability distribution can not be 

immediately identified with the expression for G< 2 J<TJ· In 

order that an event corresponding to the time interval t to 

t+T shall be registered by the TAC, it is necessary not only 

that a start pulse is received at time t and a stop pulse at 

time t+ T , but also that no other stop pulse appear~ in 

between. This makes the extraction of intensity correlation 

function little complicated by the fact that for making 

straight forward mea~urement of G< 2 J(T) one has to keep the 

counting rates low, thus affecting the statistical accuracy 

of the measurement. A considerable modification of this 

technique using elaborate electronics exists. 
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Now-a-days, simple, cheap microprocessor-controlled 

photon correlators ba~ed on the principle of measuring the 

arrival times of photo electrons are also available. These 

are equally applicable to guassian as well as non-guassian 

radiation. 

60 



CHAPTER VI 

CONCLUSION 

First, we verified approximation formula for 

forward and small angle scattering obtained from Mie theory 

of scattering which assumes particles to be spherical and 

noninteracting. For verification, we have used known sizes 

of hydrosols of Ferric hydroxide which is a hydrophilic sol 

and is a good example of idealized situation of separated 

particles in a homogeneous medium. Hydrosols of sizes 2.3 

and 5 microns were obtained using sedimentation technique. 

The variation of the experimentally observed scattered 

intensity as a function of 8 agreed well with that obtained 

from theory. 

The verification of Mie theory confirms the 

suitability of our experimental system for scattering 

experiments. Experiments were done on smoke and spray 

aerosol samples. Five sets of readings were taken for each 

sample. An experimental curve for scattering intensity 

ratio i.e. i (8)/i(O) vs. scattering angle is obtained with • 
mean experimental points. Comparison of this curve with the 

theoretical curve gives the size parameter and consequently 

the diameter of aerosol particles. The typical sizes for 

smoke and spray aerosols were found to be 3.06 wrn, 3.22 wm, 

3.38 wm, 3.97 wm, 4.35 wm and 5.34 wm. 
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The diameter of the smoke particles are found to be 

much greater than those reported in standard tables. But 

the consistency of our experiment with theory indicates that 

there are other reasons than the nonapplicability of Mie 

scattering theory to smoke particles. the probable reasons 

for this discrepancy may be condensation of atmospheric 

vapour, nonspherical and interacting nature of particles. 

Finally we have reviewed the photon 

technique in which the temporal relation of 

photons is used to determine the properties 

correlator 

scattered 

of the 

scattering material. From the correlation curve, the 

characteristic decay time can be inferred which can be used 

to determine particle size. It is a very sensitive and 

accurate technique for determining the particle size. 

Experiments based on the applications of this technique for 

the particle size determination are planned for future work. 
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APPENDIX A 

·Health Effects 

The hazards of inhaling particulate matter, greatly 

depend on the concentration of deposits at specific sites 

or regions of the lung, their reterition time and toxicity. 

Although fine particles are chemically diverse, their 

penetration and point of ultimate deposition are mostly 

determined by their physical size. The "aerodynamic 

diameter" (diameter equivalent to that .of a spherical 

particle that settles at the same rate as the particle 

considered) which is dependent on particle size and 

diameter, largely determines the fate of inhaled aerosols. 

The first s1ze related factor in the deposition of 

particles 

(Fig. 1). 

lS the penetration into the respiratory system 

Unlike large particles, fine particulates easily 

reach the lower lung. It is well known that all but a small 

fraction of particles larger than 10 micrometers in 

aerodynamic diameter are trapped in the nasal passages and 

prevented from entering the lung. But if the aerodynamic 

diameter is less than 5 micrometers, a particle can 

penetrate deeply into the respiratory system (Lippman, 1977~ 

Marrow, 1973; Yeh et al., 1976). 

Fine particles easily penetrate to all parts of the 

respiratory· system and get deposited in each of its parts. 
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Fig. 2 shows the theoretical deposition efficiencies of 

particles in three respiratory compartments. Particles 

greater than 10 pm are almost all deposited in the 

nasopharyngeal system with only a small fraction retained in 

the pulmonary region. Maximum efficiency of deposition is 

seen 1n the alveoli or pulmonary region for particles 

smaller than 2 micrometers (Wilson and Mer, 1948; Palm, 

1965; Committee on the Inter-national Radiological 

Protection, 1966). Retention time, that is, the interval of 

time that particles remain in th~ lung, differs by site of 

deposition. 

Removal of deposited particles from the pulmonary 

region may vary widely according to the solubility and 

reactivity of the particulate material. For example, 

soluble particles are believed to enter the pulmonary blood 

within minutes, whereas insoluble particles are removed at a 

very slow rate with clearence·time a month or more. 

Comparison of the clearance rate of insoluble 

particles from the various compartments of the lung showed 

striking differences. Exposure of experimental animals to 

insoluble dye particles showed clearance of particles of 2 

micrometers to be markedly slower than for those of 6 

micrometers. The larger particles were cleared six times as .:. 
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rapidly as the small particulaes of 2 micrometers. The 

toxicity of particles retained in the lungs varies with 

chemical composition·. However, a particle, which is 

chemically inert, by its physical presence in the lung it 

may interfere with and retard the clearance of toxic 

material present in other deposited particles. It may act 

as a carrier pa~ticle for gaseous . pollutants a~d can 

therefore, produce synergistic effects ~armful to human 

health. Carbon or 'soot' , for example, is a common 

particulate pollutant with demonstrated absorbent qualities. 

Table given below summ~rizes possible biological 

responses following deposition of particles in respiratory 

tract (Shannon et al., 1974; Corn, 1972). 
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Possible Effects Produced hY Inhaled Particulate Matter After Deposition 
·,. _. 

:t.' 

in Respiratory Tract Compartments 

Compartment in which 
deposition occurs Soluble particle 

Nasopharyngeal 1. Damage to mucosa and 
paralysis of cilia 

tracheobronchial 

PulmonarY 

2. Allergic Response 

1. Reflex bronchoconstri­
ction 

2. Allergic response· 

3. Damage to mucosa and 
paralysis of bilia 

4. Succeptibility to infection 

5. Potentiation if gas (S021 
NOi10J1 etc.) exposure 
present. 

1. Damage to alveolar 
epithelium 

2. Peripheral respiratory 
unit constriction 

3. Potentiation if gas· 
(SOz 1 NOz ,OJ 1 etc.) 
exposure present 

May lead to release of 
proteolytic enzymes and 
eventual emphysema with 
alevolar destruction. 
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Insoluble particle 

1. Transferred to gas­
trointe:n.stinal tract 

2. Removed with sputum 

3. Allergic Response 

1. Short term clearance 
to gastrointenstinal 
tract -

2. Removed with sputum 

Long term retention: 
1. React with tissue to 

cause local effects 

2. ~emain in tissue 
(inert) 

3. Transported to lymph 
nodes. 

Short-term retention: 
Phagocytized and trans­
ported to terminal bron­
chioles with subsequent· 
clearance from tracheo­
bronchial compartment. 
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