
AUTO BEAM

AN EXPERT SYSTEM TO ANALYSE AND
DESIGN R.C.C. BEAMS

Dissertation submitted to the Jawaharlal Nehru University

in partial fulfilment of the requirements for

the award of the Degree of

MASTER OF TECHNOLOGY

v.p

JAGADESH . P . NANISETTY

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI

February 1988

TO

p R O.L 0 G

C E R T I F I C A T E

This work, embodied in the dissertation titled,

AUTO BEAM

AN EXPERT SYSTEM TO ANALYSE AND DESIGN R.C.C. BEAMS

has been carried out hy Mr'. .Jagadesh. P. Narr-i<setty bo:::•r,.;d= ied

student c•f Schoc:ol of Computer and Systems

Jawaharlal Nehru University, New Delhi.

This work is original and has not been submitted

for any degree or diploma in any other University or

Institute.

~~~ 
Prof. Karroeshu 
Dean 

_pr.S.Balasundaram 
n~~~-t. Pt•o:,fesSOr' 
Sch.::•c-1 eo~"' Computt>r·· and 
Sy~::;.t .. _,;ns E;ciences 
J a \-'J ;,~ .... , .:H' l a l Ne!Tr' l..\ u.,-, i vet''-"' it y 
New De-> 1 hi . 

Schoc·l of cc•rn•~·ut·.f?l·-· and Syst£0rns Sciey-,ces 
J a wah at' 1 ;;;~ 1 Nt:-e h·r '' ~ .. :·n :i. VP~'~::; :i. t y 
New Delhi 



ACKNOWLEDGEMENT 

I ar11 VE'"r'Y much i Y1debted to 9'-' ide, 

Dr.S.Balasundaram, Asst. Professor, who has been extremely 

helpful encouraging through out the proJect, 

which l.t would have be(;y, ve;y difficult to complete the 

pt'OJ ect. 
Dr. Ashok Gupta, Asst. Professor, Indian Institute 

of Technology, New Delhi, has played a very significant role 

by giving his timely and extremely useful suggestions and 

sparing his precious time disscussing with us. 

I thank Mr. D.Jagadesh, Mr. Seshu, Mr. Pinakapani 

for their help and auvices. 

I also thank Mr.Fateh Singh, 

officer of our scho0l for his cooperation. 

T _, thank our dean Prof. Karmeshu 

encouraging through out this proJect. 

Adrn in i. <:::.·':.: r""·a t: :i. ve 

whc:. •/:-.•r'Y 



SYNOPSIS 

The quest to aut~omate the civil engineering design 
process has lead the designer to opt for computers. Civil 
engineering design problems characterised by their inherent~ 
impression, paucity incompleteness of· data, and heavy 
relience on expert views, defys the algorithmic appro~ch, 
s1nce the experience and intutive judgement form an 
important role in the design process. So the need of a 
software which poss~ses :the knowledge of an expert is 
inevitable, which guid-es th.'e designer towards the solution. 

The Expert systJems are the computer programs which 
were built into the knowledge and are capable to operat~e at 
-tl:w t~xpP.rtJ level. The Expert System naturally conta.ins large 
and varied knowledge about; a specific area, from which the 
infm··euee mechanism infers the context based inferences. 

PHOLOG has a inbuilt backward chaining inference 
medtl1nism, capRbl e of n'!presenting tht~ fuzzy and j mpn~ci se 
knowledge and capble of exploring the parallel processing 
arch:i.Leeuu~!;, promotes 11. t.o develop Expert Systems. 

T~w problem of designing the reinforced- concrete 
beams demands r:igorous numerical computation to arwly!>e the 
beam and a knowledge base containing the knowledge and the 
rules, formulae and spf~ci ficati ons of design, and a 
inference mechanism whieh infers context h1:1sed eonclusion!:;. 

It is not~ easy to impl ementJ bo1.h th(~ sywbo 1 i c and 
numerienl eomputations using a single pro~rrami nt~ lan{Jua{1e. 
PROLOG is used to implement the symbolic coJnpuLaLinns and 
PASCAL used to implement the numerical r~omputations. The 
linking and data transfer is thr<lUIJll r_·(~ :fi}(-~S~ T~le 
nemerical computations routine implemen1A~d j n PASCAL is 
executed in PROLOG environment. 

This program posseses all the knowlfo:dgr~ needed to 
analyse and design any of the cantilever, :;·imply support~ed, 
over hangining and fixed beams wi t.b any number or poinL or 
uniformly distributed loads. 

Analysis part of the program implemented in PASCAL 
analyses all the loads and displays the output graphically 
and transfers the data into a file. This data file is read 
in PROLOG environment and the data is stored in the 
knowledge base as context based facts. The design, 
implemented in PROI~ is based on the IS-456 codal 
specifications. The section of the beam and the 
reinforcemen1. details which are satisfactory to the user and 
not contradiet:ing the code is arrived at. All the drawing 
are displayed graphically. 



CONTENTS 

L THE NgED OF EXPERT SYSTEMS. 

2. INTRODUCTION TO EXPERT SYSTEMS. 

3. SUTABil..ITY OF PROLOG TO IMPLEMENT EXPERT SYSTEMS. 

4. RULES IN THE KNOWLEDGE BASE. 

5. THEORY OF DESIGN. 

6. IMPLEMENTATION. 

6.1 IMPLEMENTATION OF ANALYSIS. 

6.2 LINKING PASCAL AND PROLOG. 

6.3 IMPLEMENTATION OF DESIGN. 

6.4 GRAPHICAL DISPLAY. 

7. PROGRAM LISTINGS. 

,. 



CHAPTER. 1 . THE NEED OF EXPER'f SYSTEM 

The present civil engineer is confronted with new 

challenges in the design process due to the increasing 

interest of the pubic towards a complicated geometry and 

architecture's' which are still encoura-ged by. the improving 

construction techniques and materials of use. The quest to 

automate the design process had lead the designer to opt 

for computers to cope with the limited time provided for 

the design. Algorithms were developed to design problems, 

but here are aspects of design however which seems to defy 

algorithmic approach. 

is 

One technique t.h,'i t. has !J,.:;r:~n around for de!:.ign and 

seri,)usly l• c· 
;::) optimization 

Consid~~ring the geometry of the struct.re iP 

columns, slabs etc. a penalty functon which, if m i li i m i =::. (':· 1 

the optimized solution is arrived at, is id·~rdil'i·.·<l. 

Generally in civil engineering problems cost is the u·.~·n ,tlt .. 

function, but can be the construction time also. 

The constraints which the structre must saLJ~fy 

viz. limiting stress, deflection and moment of resistance 

etc. which are governed by the code of practice and also 

the structure design feasibility of the complexity are 

identified. 

There can be many solutions which satisfy the 

constraints, out of which one has to be opted, this 

ubvic,usly requires experience and precise knowledge of· the 



area, rigorous numerical computations 

many such designs should be prepared and finally t•:.> get 

optimum solution satisfying 

In the inital 

alternatives are compared 

all the constraints. 

stage of design ,vialble 

and one selected. An 

inappropr~~te solution often le13_t:!_~ to severe consequenc~s. 

It is quite natural ~hat the problem is ill defined since 

the requirements are often finite and the vague factors are 

to be fixed, depending on the design fulfilling the 

constraints. 

It needs a vast amount of experience and heuristic 

knowledge for the design. Analytical solutions given by the 

conve~tional software do not help much, since a conceptual 

procedure is desireJ. 

A quite natural problem the designer faces in the 

design proc·ess is th0 discontinuous constranits, if the 

are discontinuous and liable to change wit.h 

·>•dt . L::·::;;ign will obviou.sly need an experienced heurist.ic 

It 1s bet.ter t.o have a knowledge base which 

•:::ont.,,d r1:3 the knowledge of the specified field and e:1 

inf0ronce mechanism which can act upon the KB and pick up 

the relevent rules and infer the best possible conclusions. 

The experience and heuristic knowledge is still 

indispensible and not possesed by all. Thus the need of 

software which contains the knowledge of an experienced 

engineer is evitable. If not, a fulfledged but a softw0re 

which can help, advice and guide the designer ~o better 

solution and design. 



CBAPTER.·3. INTRODUCTION TO EXPERTS SYSTEMS 
'. 

'· 

ES is a 'computerprogram that has built into the 

knowledge ~nd capability that will allow it to operate at 

the expert~ le~e.l. ES naturally contain large amount of 
. . i 

varied knowledge rnd rules of the specific area and not only 

the rules and-~owledge also but the heuristic knowledge 

which is -the kno~ledge-of the practical experience. 
I 

Expert system op~rate particularly well where the 

thinking is mostl>' reasoning not calculating, and that means 

most of the world knowledge. Even though a lot of 

professional work seems to be expressed in mathematical 

formulae, in facty, except· in mB:_thematically based sciences, 
I 
I 

the difficult choices,.the matters that set experts· apart· . '. 
from beginners, are .symbolic and _inferential, which are 

rooted in experimential ··knowledge. Human ·experts have 

acquired their expertise riot.only from explicit knowledge . . ' 

found in textbooks arid leqtures~ but also from experience by 
' ' 

doing things·again and_again, failing, succeeding, wasting 

time and effort, then learning to save them, getting a feel 
r--

for a problem. L~arning when, to go-by the book and when to 

break the rules'~ They therefore build up a teri tory of 
1', .-1. . 

working rules o.f thumb, or "heuristics" that, combined with 

book knowoledge, make them expert practitioners. 

Perhaps the largest single group ~f expert systems 
! 

is centered in medic.ine. · The most k,owledge-intensive 

INTERNIST CADUCEUS system 
! 
I 

the: creation of a 

expert system in exis.tence ~~s, :the_ 
- _.. r ,__ .- - . -

the Unive;rsji.ty· of·· Pittsburgh, at 

physician, Jack Meyers, and a computer scientist, Harry 



Pople. .INTERNIST CADUCEUS does diagnoses in internal 

medicine at a level_of expertise that allows it to ~olve 

most of the CPCs?' or clinical pathological conferences,. 

INTERNIST covers ; more than 80 percent of all int~rnal 

medicine; its knowledge. base encompasses about 500 

and more than 3 ,,500 ·manifestations of disease. 

diseases ,. ~ ... . .. 
' ~' . 

Although INTERNIST CADUCEUS was .. designed to aid 

skilled internists in complicated medical problems, . the 

program will probably have a future life as a diagnostic aid 

to physician assistanisd and in rural health clinics, in 

military medicine, and in space travel. 
. .. ~ 

At Stanford !Jniversity, several medical expert 

systems have been designed. MYCIN diagnoses blood and 

maningitis infections, then · advises the physician on 

antibiotic therapies for treating ·the iqfections. Like 
I 
I 

every other expert system·. MYCIN acts as a consultant, 

having a convers~tiin_,.w,ith its user. the I physicia. The · · r . " .. ",, ,. · ·; , . , · 1 

physician supplies :th~- pai~-e~t 'history and laboratory test 

results-external df.ta the computer couldn't possibly 
' . ' 

and then the program ·begins to reason about possible 
? : ' . . . 

diagnoses. If the physician is uncertain why the program 
. ' ~- ' 

has arrived. at a'glven diagnosis, or why certain drugs have . . ' .. 

been suggested .a_s ·therapy,_ he can ask the program for · its 

line of reasoning•. ·. 

There is. no on~lspe~ilist who expert i.se spans the whole 
' ' ~ 

• \. ~ . i':- \ 

problem. It canr. only be solved by the interaction , of 

several specilist and the interaction of several specialists 

and the intelligenf,;fllsfon of.they seperate expertise. Not 

;'Y t 



always but some~ime expert system can manage the intrinsic 
I 

it is complexity of problems better than human expert. It 
r 

is this is s~ecifically true of problems that are 
I 

combinational involving a great deal of trial an error. 

Trying out combination of problems elements systematically. 

Problems of design and configuaration examples as are 

problems of data analysis hypothesis and diagnosis. 

DEC enginee~s use a configuration expert system to plan 

and manufacture their VAX computers. The systems is 

reported to plan corruptly in more than 99 perc~nt of the 

gases. ''Prospector" expert system is used by the geologist 

advising them in exploration of minerals. 

ANOTOKY OF EXPERT SYSTEM 

An expert system can contain knowledge-base, 

inference mecharism, contest, user, interface, 

explanation facility and knowledge elicitation facility. 

USeR 

£)tP&.ANAl%C)N 

FAcJ'11TV 

I 

ltt.sctt&.fDee 
Ac4UIUUON'PI'-----~ .. 

FAC.I&.nY 

· · CONT&XT 

and 



KNOWLEDGE-BASE: The knowledge base contains knowledge 

specific to the domain of the problem. The knowledge is of 

two types 

(1) The facts of the domain, a widely shared knowledge, 

commonly agreed among practitioners that is written in test 

books and generals of the field. 

(2) The heuristic knowledge, which is a knowl~dge of good 

practice and gooq judgement in a field it is basically 

knowledge of experience which is acquired over years of 

practice. This heuristic knowledge gives good guessing 

which avoids unnecessary such and calculation and leads to 

thE! solution. The knowledge base should contain both 

the knowledge 

specified above. Expert system containing facts doesn't 

mean a fulfledged expert system because expert system is 
' 

supposed to contain the knowledge of the expert, exp~rt 

becomes an expert if he can judge or guess correctly wlthuut 

trying all possible solutions and picking up t.b8 C•VLiruum 

one. 

In addition to knowledge, an expert system needs an 

inference procedure a method of of reasoning used to 

understand and act .~pon the combination of knowledge and 
! 

problem data. The inference procedures, or problem-solving 

methods, used by trn:bwledge engineers do not need to be 

arcane or Even simple methods, used in 

commonsense reasoning or taught in first course in logic, 

are adequate. In fact, there is a virtue in employing 

simple inference procedures since they are easily understood 



Now we are able to be more precise about the problem 

of machine learning~ and with this increased precision has 

come a new term, knowledge acquisition research. 
0 ~ 
I 

This is the most important of the central problems <:.d 

' artificial intelligence research. The reason is simple: th~-:: 

power to enhance or amplify the programance of Al programs 

resides in the specific knowledge of the problem domain that 

can be brought to bear. Thus, efficient knowledge bases 

must be large and oflhigh quality. 

This knowledge is currentl'y acquired in a very 
! 

painstaking way, individual computer scientists work with 

individual experts lto explicate the experts heuristics 

domins those jewels of knowledge out of thei~ heads one by 

one. If applied Al is to be important in the decades to 

come and we believe it must dev8lop more automatic means for 

what is currently a very tedious, time consuming and 

expensive procedures. Right now, the problem cd knowledge 

acquisition is the critical bottle neck in artificial 

intellig-ence. 



updated in terms of· its features and proper·ties and tfp·l. c 

relationships with each other in a knowledge base? Thesa 
and other tasks need to be done automatically within the 

system. 
In sum, scientific issues central to artificial 

intelligence underl1ine knowledge engineering and can be 

enumerated as the parts of an exper·t system~ First it the 
T 

problem of knowledge: representation. How shall the knowledge 

of a domain of work pe represented as data structures in the 

memory of the computer in a manner in which they can be 

conveniently accessed for problem solving? 

$econd is the problem of knowledge utilization. 

How can this knowledge be used in problem solving? In other 

words, how should the inference engine be designed? 
Third, th& most important, is the question of 

knowledge acquisition. How is it possible to acquire the 

knowledge so important for problem solving automatically, or 

at least semiautomatically, in a way in which the computer 

eases the transfer of expertise from human to the symbolic 

data structures that ~onstitute the knowledge representation 

in the machine? Knowledge acquisition is a long-standing 

problem of Al. Like [intelligence'. learning has proven to be 

a catchall term that's too vague to be useful in creating 

intelligent computer programs. It served no better purpose 

to ask whether a machine really could be said to 'learn' 

than to ask whether a machine really could be said 'think' 

even when it i~proved its behaviour by experiQnce (as one of 
I 

the earliest programs isn artificial intelligence had done, 

a program that eventfally played championship checkers)_ 
i 



far as possible. This principle is cailed 
commitment princi~e because variables are 1ot 

the least 
insta11tiated 

until more information about the problem space is avaiL=..tble. 

Constraint Handlihg. : If the. subgoals of , the 
! 

hierarchial 

planning do not injteract with each other, they can be solved 
. . . ! . 

independently. However, ·in practice these 
interact. The interaction between subgoals can 
constraint · 'satisf(iction method. Constraint 
methods , i involve' the determination of problem 
satisfy i' given set" of constraints. Essentially 
utilizes, constraints to determine the values of 
a completely -specified· problem. · . 

c MANAGING THE KNOWLEDGE 
. . I 

subgoals do 
be handled by 
satisfaction 
states that 
this method 
param~ter in 

For ·exampfe' one simple form of reasoning that is 
I 

commonly used is gbal-directed backward chaining, t.he common 

mental strategy of\ "working backward" from a desired goal to 

what you know about_achieving it at your starting point. 

Al researchers have identified, dissected, and then 

replicated many such procedures that human beings use all 

the time, and knowledge engineers, who build expert systems, 

are skilled at .choosing the right set of inference 

procedures for the type of program they are writing. 

An expert _ system also requires methods of 

representing the knowledge it is to contain. This is a 
technical issue and a matter of some professional dispute, 

but essentially it means that both a logical structure and 

a set of appropriate data structured are necessary, through 

which the special knowledge in the knowledge base can find 

its way into the m~mory of a computer. 

There is also a formidable problem of knowledge-base 

management, analogous to data-base management. How shall 

knowledge be organized, controlled propagated, as well as 



and used to find an operator most relevent to reducing this 

difference. If the operator is not directly applicable to 

the current situation, then the problem state is changed by 

,.~:;~~se-zting 

~~~f~ an operator has been applied the current state 

up sub goals, so that the operator can be applied.

·:f co.ti~1sponds
•, u Ji to a modified state. Means-ends analysis

· -., -~~~~:h~izes the forward and the backwarding techniques .
. • ' • _. , "1'- '';A/

- • . _..:..:.,.:7

Problem reduction : Problem reduction involves factoring

problems into smaller subproblems. The problem is

represented by means of an AND-OR graph. An AND node

consists of arcs pointing to a number of succesor nodes, all
'(
I

of which must be solved for the. AND node to .be true. For an

OR node, it is sufficient for one of the succesor nodes to
I

<J-9 be solved, an OR node indicates that a number of alternative
vY
d) solutions exist for the problem. In many cases, backward

--0
chaining is used to solve the AND-OR graph.

Hierarchial Planning The concept of hierarchial planning

involves developing a plan at succesive levels of

abstraction. In the design of complex systems, t.hr,: ch::::-ie;n

space is divided into a set of levels where th·::, lli t.>:hu·

levels are abstractions of details at lower leveJs,th0

problem is hierarchially decomposed into loosly ()(>ttpled

subsyst.ems. A number of solutions may exist for each sub

sys·tem. However, enough information may not be available to

assertain various variables of the subsystem. Further, the
?
I

solution to one su~problem may depend on the decisions made

in the solution rof another subsystem. To minimize this

dependency, it is :important to defr~r bindlng decisions as
1'

by end-users, the people being assisted by expert. systems.

When these users are reviewing the syst.~m' s J i rt•_· ,-,f

reasoning. End-users will not come to trust the reas•:.ui 11g .-,f

an expert system, and therefore will not use it. Un J •:::s::-;

they can easily understand what it is doing_

PROBLEM SOLVING STRATAGIES

Problem solving involves the search for a

solution T
through a state space by the application of

operators, where '[the state space consists of an initial

state, a goal state and intermediate states. The solution
y

consists of all : states that lead from the initial

state to goal state .

. Forward chaining:. A system is said to exibit forward

chaining also called as botton-up, data-driven, antecedent-

driven, if it works from as initial state of known facts to

a goal state. Hera all facts ate input to the system and

the system deduces the almost appropriate hypothesis or

goal state that fits the facts. The main drawback of his

strategy is that it is extremely wasteful to require as

input data all the possible facts for all conditions in many

circumstances all possible facts are not knowm or relevent.

Some times the problem solving strategy mechanism is

guided by the forrrd chaining is called event-driven. The

forward chaining strategy is not appropriate for a design

problem if possible goal states of the design problems are

not easily represented by a discrete nember of hypothesis.

Backward chaining: A system chaing said to exibit backward

chaining also called consequent driven,

driven, if it tries to support agoal stae or hyupothesis by

checking known facts in the context. IF the f.::\ct:: i th·.::

cinte.xt do not' support the hypothesis, then

precinditions that are needed for he hypothesis ar set up

as subgoals. Essentially, the process can be viewed as a

search in teh sate space going from teh goal state to

the initial staste
i

by the applicat,ion o inverse

operators and involves depthj firat search. he concept -of

I
backward chaining ~ay be applied to the decomposition of the

tasks in enginee~ing design. If the ucrront state of the

context is not in the proper form, for th ~ompletion of a

task, the task may be decomposed into subtasks. In this way

the ovreall design task may be decomposed into several

subtasks and backward chaianing may be applied to each

subt.ask.
y

Backtracking The 'problem reduction approach is applicable

to problems that can be subdivided into a tree of fixed sub-

problems. However, in a number of practical problems, it may

not be possible to decompose problems into a fixed sat of

problems. A number of alternative approaches may exist. In

backtracking, the problem solver backs up to other nodes, at

the same level of starting node, if no solution is found

along the curren~ path. Backtracking is inbuilt in AI

language Prolog.

l1eans-ends analysis : In means-ends analysis, the difference

between the current state and the goal state is determined

I THE SUITABILITY OF PROLOG

The rexpert system is expested to contain
I

knowledge, inference mechanism
i

and context based decisions

are to be takenl avoiding unnessasary search this mechanism

cannot be implemented by the conventional languages like

BASIC, FORTRAN, PASCAL. In the conventional languages the

CPU works its way through a sequence of operations in a

predefined way. It can make choices which allow it to

follow different paths through the program but only those
'•'

which the programmer has forseen. This fits well for a

numerical problem which are easy t.o program and can be

implemented manually by hand but highly unsuitable to

implement and work with knowledge, which is represented by

rules.

In conventional languages used for engineering and

Scientific work the flow of control is predefined by the
I

programmer. So the programme will be executed in the same

sequence of steps. To implement more logical problems using

conventional languages calls for a complicated IF THEN ELSE

rules and loops, moreover the program is not extendable,

additions to the programme is not easy to implement.

1)

i

THE DISAD~~~AGE~ OF THE CONVENTION~L

The program, is· executed in a predefin d

by t~e autJ~z. .. : ,. . . · .'.';, . · 1 -

LANGUAGES

pattern defined

2) Addition tq the progr~ is not easy to imph:Iuent.
'

3) Implementation of complex logic calls for complicated
!

loops and IF THEN ELSE rules.

4) The state of variables change with time, so a statement

means different depending when it is called.

5) Verifications of the program,to ensure the desired route

is taken and }he result is achieved is very difficult.
i

6) Intutive judgement cannot be implemented using

conventional 'languages like BASIC, FORTRAN, PASCAL.

Civil engineering design problems characterised by

their inherent imprecision, the paucity and incompleteness

of data, and heavy reliance on expert views.
!

Since
i

experience and intutive judgement form and !important role in

the des~gn _proces1::.:·:: · .;L.,·:',"t

A lansU:a~~-~hfch cari implement
r

is needed to i~plement designing of

problems. Art~ficial intelligence
!

I
I
I

heuristic knowle1ge

civil engineering

languages li.ke

LISP, PROLOG are the promising languages to implement

knowledge and symbolic computations.

SUITABILITY OF PROLOG TO BUILD EXPERT SYSTEMS

Th_e PROL~G provides a uniform data structure called

TERM, out of which all data as well as Prolog programs· are

constructed. A ~~OLOG program consist of a set of clauses

where each clau~ is either a fact about the given
I

information
I

or a 'rule about how the solution may relate or

be infered from a given facts. Thus Prolog can be viewed as

first step towards the ultimate goal of "Programming in

logic".

Prolog can be viewed as a discriptive language as

well as a perspective one. The prolog approach is rather to

to prescribe the sequence of steps taken by the computer to

solve the problem. When a computer is programmed in Prolog,

the actual way t~e computer carries out the computations is

specified partly by logical semantics of prolog, partly what

new facts prol9'g can infer from the given one and only
:

partly be explicit controlling from information supplied by
Q.

the programmer. I.

Imprecision underlines many of the fundamental

principles of the subject. Hence our factor of safety,

which are quite large because we do·not kn?w accurately

magnitude of .some .o:,the q~atities we hate to use.

Exl'ert . jS.~""'sf •.. ~artiCul.arly · thfse writtren

Prolog, may all;ow us· to incorporate imprecision intc•
"

the

in

'.Jl.l r

design process d~rectly; rather than indirectly. It is not

suggested that al!I design could benefit from this approach,

but in certain · structural applications where an

·understanding .of .. the probabilities of failure is required,

it would certainly be of benefit.

Impre~isi<>'f can be incorporated directly into our
.,

reasoning in the following way. Instead of the
I

precise

statement

P is true if Q is true and R is true

Prolog allo~s us to writ~ an imprecise version of the

same rule as

P is true with support x if
Q is ·true with suport y and
R is true.with support z and
Y combined with z gives x

The last clause, which has been deliberately left vague,

is used to define some relationship between the support

quantities x, y, and z. It may· :l?e a clause which is

specific to the problem ip hand, but more likely, 'it will.be
.

a clause written in terms of a standard theory, su_ch as

probability or fuzzy logic. Expert systems have already

been written i~ this way, for example the MYCIN project

looking at med~cal
i

diagnosis and much work is both

underway and
i•

remains tp be done before practical

applications can be. made in our fields. Not the least of

these is the problem of obtaining the basic data for the

values of support in the first place. I
I

PROL~'is_a logi<:,programming lafguage.

sound mathematilcal t basis.; · the ··first I order

It has a

. l' . ;· ·. ·. . . ! predicate

calculus. Wide :range of world facts can be represont(;d. by

1
first order predi'cate calculus, which can be implement.ed on

a computer. ThJ language predicate calculus consists of a

number of compo'nents .such as predicate symbols, variable

symbols, function' symbols. and constant symbols. These

features alone_, give _program an edge over the other

declarative

extremely

systems is

Japanese

generation

parallel

lantages such -as PRUF and FRIL. Another

valid !re~son ·for promoting for prolog for expe-rt

the ex1ected revolutionary changes to come due to
i .

Fifth t generation project (FGCS). I . . The fifth

languages ~ill be capable of exploring the highly
. . . . !---

comput,{ition . architectures
I .

to come. This

architectures support-many central processing units and each·

CPU simultaneously executes the subdivided problem, which

are independent, not sharing the same data or the input is

ready from other CPU for it by the time starts execution.

Prolog can efficiently support the use of parallel

processing.

The inference engine in-Prolog is essentially a

theorem prover, which tries to prove the goal by proving

each of the subgoals starting

first mabner. Hence.,

from the leftmost subgoal in_a.

depth
I
I

'

the depth first strategy is

built into the control mechanism. However, other problem

solving strategies can be easily programmed. If any of the

subgoals are not satisfied for a particular binding of

variables, then the system backtracks; and the program
!

continues with a new set of variable~ bindings. These

i
variable ·bindings·· ·are ·,available .in tJ:?.e database;

• . . ·1 · . · .· · .. I
the

variable bindings_·can also be provided ihrough some user

defined function~.

TOOL/LANGUAGE

OPS5
EMYCIN
HEARSEAY-III
EXPERT
ROSIE
KSlOO
AGE
KAS
KMS
KEE
Rll
PSRl
LOOPS
C PROLOG·

r
1 .

DEVELOPER

. . CMU
.STANFORD
OSC-ISI
RUTGRS .
RAND CORP.

· TECKNOWLWDGE
j STANFORD
' SRI Int.
r: MARYLAND

REPRESENTATION
SCHEME

Rules
Rules
Rules
Rules
Rules
Rules
Rules

Intelligentics
.·STANFORD .

Rules
Rules/Frames
Rules/Frames
Frames
Frames
Rules&Frames
Logi"c

CMO
XEROX-PARC

·Edinburgh

! . ADVANTAGES OF USING PROLOG

IMPLEMENTATION
LANGUAGE

LISP/BLISS
INTERLISP
INTERLISP
FORTRAN
INTERLISP
INTERLISP
INTERLISP

LISP
INTERLISP
INTERLISP
INTERLISP
INTERLISP
c

1) Prolog is very powerful in manupulating exp_~essions.

2) It has an inbuilt depth first inference engine.

3) Prolog programmes are capable of modelling to some extent

the human cognitive ability.

4) Prolog is very dynamic language it can be easily

extended.

5) Prolog is easyly readable.

6) ·Prolog programes are very easy to debug using the built

1'
in "Trace" predlicate.

I

7) Recurssion using lists, Prolog can simulate all the

functions available in the numerical computation language.

8) Prolog programming can be data directed style, this

feature makes prolog dynamic and easy to change.

9) Fuzzy logic and i~precision data can b~ used in Prolog,
' . i

Develoment of ES requires flexibility and case of
!

modification .. The~ pr,;ce~u~al interpretatio~ of Prolog makes
I

the Prolog program. entirely modular. Consider the follo";: ·,g

set of knowledge-b~sic rules.

:
R if B and;C are true. then A is true.

R ·i"f D and E are true. then B is true.

The equivalent Prolog clauses

c

c

.A if B ard c.

.B· if D and E
~ • s

Note . that ~he Prolog clauses are in fact

1.
identical to the fatural language rules themselves

that the conclusioh precedes the conditions. The two
i
I

exist as ind~pen~ent Prolog clauses. Each clause

mdified or used as an independent procedure.

almost

except

rules

can be

The

independent status of clauses makes the Prolog program

entirely modular Modularity of programs coupled - with the

interpretive implementation of most Prolog systems. makes

them easy to modify~

ES programs must be able to explain their ·line of
~ : t . •

' ' 0

reasoning and Protog.fulfi.ls this·requirement by
< <

prov~ding

an inbuil t ·. inference system a . Prolog . shell. ESs are

develoed

cycles.

inoreme1tally through modification and refinement

This indreases the possibility of inconsistencies

creeping into the :data and knowledge-base. Being a purely

logic-based system .. Prolog has a much better chance of
t$

being able to detect these inconsistencies.

following set of Prolog clauses:

Cl: A if not B
C2: B if c
C3:

~~
if c

C4:

Consider the

C4 states t~at C is true from C2 and C3, it t.h·~n~:L · ~·e
I

follows that A and B are true. However, C2 states that A is

• t true only if B 1s tnot .true, Thus the set of clauses stated

are inconsistent, '·which :Pro log will immediately spot. Prolog

does not make any,distinction between data and knowledge,

but providies a uniform formalism for the representation of

both the data and Tknowled~e-bases.

RULES IN THE KNOWLEDGE BASE

The Kpowledge base of the expert system contains

the knowledge in the forms of rules or in the form of dat,a.

This expert system is furnished with the following rules

which are of th~ form of rules and data. The design of the

beams strictly follows IS-456. the rules which are relevent

and incorporated in the program are listed below.

4.2 Effective span

Simply suported Beam :The effective span of a member that is
1'

not build integraly with its support shall be taken as clear

span plus the e~fective depth of slab or centre to
I

of suppports, whichever is
j'

Continuous Beami : In the
I

less.

case of continuous beam,

centre

if the

width of the support is less than 1/12 of the clear span,

shall be as above. If the supports are wider than 1/12 the

clear span or 600 mm whichever is less, the effective span

shall be taken as under.

1. For the span with one end fixed and the other continuous

or for intermediate spans, the effective span shall be the

clear span between supports and

2.For end span with one end free and the other continuous,

the effective span shall be equal to the clear span plus

half the effective depth of the beam or slab or the clear

span plus half the width of the discontinuous support,

whichever is lesr.

4.4.1 Arrangement of live loads:

a)Consideration may be limited to combinations of:

l.Design dead loads on all spans with full design live loads

on two adjacent spans, and
y

2.Design dead loads on all spans with full design live

loads on alternate spans.

b)When design live load does not exceed three-fourth of the

design dead load the load arrangemets may be design dead

load and design live load on all the spans.

22.2 Control of deflection:

The deflection of a structre or part there off shall not

adversly
y

aff~ct the appearance or efficiency of

structure or f~nishes or partitions.
i

the

The deflection~ shall genarally be limited to the following:

a) The f~nal deflection due to all loads including the
!

effects of t~mperature, creep and shrinkage and measured

from the as-cast level of the supports of floors, roofs and

all other horizontal members, should not exceed span/250.

b) The deflection including the effects of

temperature, c~eep and shrinkage occurring after- erection of

partitions and the application of finishes should not

normally exceed span/350 or 20 mm whichever is less.

4.2.1 For beams and slabs, the vertical deflection limits

may generally be assumed to be satisfied provided that the

span to depth ratios are not greater than the values

obtained as below:

a)

spans up

Basic values of

to 10lmeters:

span to effective depth ratios

I •
cant~ lever
Simply supported
Continuous

7
20
26

for

b) For spans above 10 m, the values in (a) may be
•,·

multiplied by 10/span in metres, except for cantilever in

which case defle.ction calculations should be made.

c) Depending on the area and the type of steel for .
tension reinforcement, the values in (a) or (b) shall be

modified .as per Fig. 4.1.

2·0

1·8

1-6

a: 1· 4
0 ...
(.)

-t 1•2
II..

z 1·0 0 ...
-t o.e (.) -II..
0 0·6 0
~

0·4

1\\ \
\\ '

"
MILO. STEEL BARS

\ [\

['..._ I
i\\ ~ ~ r-....._
'\ -t--

"' ~

h ~ t---1--

I I
1/ !HIGH STRENGTH BARS GRADE F• 415

HIGH STRENGTH BARS GRADE F• 500
0.2

0
0·4 0·8 1·2 1·15 2·0 2·8 3.0

PERCENTAGE TENSION REINFORCEMENT

FIG.4.1

d) Depending on the area of compression reinforcement,

the value of span to depth ratio be further modified as per

Fig. 4.2 .

•. s

! '"' ...
u
<(

1-J ...
z
~ ... t·2 c
Sl ...
0 1•1
0
2

;...-- P""'

~
v

/ v
.-"

/
v

/
v

v , 1·0
0 O·SO f·OO ,.,o 2·00 2-50 l-00

PeJK:tNUGE COMPREiiiON REt..,FORCEMENT

FIG.4.2.

4.3 Slenderness ~imits for Beams to Ensure Lateral Stability

A simply suppoil.ed or continuous beam shall be proportioned

that the clear distance between the lateral restraints does

not exceed 60 ~ or 250 b**2/d whichever is less, where

is the effectivr depth of the beam and b the breadth of

compression face midway between the lateral restraints.
'

'd'

the

For a cantiliever, the clear distance from the

free end of the cantilever to the lateral restraint shall

not exceed 25 b or 100*b**2/d whichever is less.

REQUIREMENTS GOVERNING REINFORCEMENT.

General: Reinforcing steel of same type and grade shall be

used as main reinforcement in a structural member. However
simultaneius use"of two different types of grades of steel

for main and secondary reinforcement respectively is

permissible.

Bars may be arranged singly or in pairs in contact, or

in groups of three or four bars bundled in contact. Bundles

shall not be used in a member without stirrups. Bundled bars

shall be tied together to ensure the bars remaining

together. Bars J;·arger than 36mm diameter shall not be

bundled, except in columns.

Development of stress in reinforcement

The calculated tension or compression in any bar

at any section shall be developed on each side of the

section by an appropiate development length·or anchorage or

by a combination thereof.

Development length of bars: The development length Ld is

given by Ld = Phi*S/(4*T')

where Phi = The nominal diameter of the bar.

S = the stress in the bar at the section considered

at the design load, and

T' = design bond stress given below.

Design bond stres's in limit state method for plain bars in

tension shall be a1 below.

Grade of concrete M15 M20 1125 1130 M35 M40
·r

Design bond stress ' 1.0 1.2 1.4 1.5 1.7 1.9

For deformed bar~ confirming to ~S: 1786 -1979 or IS:1139

1966.

These values shall be increased by 60% for bars in

compresssion the values of bond stress for bars in tension

shall be increased by 25% .

Bars bundled in contact: The development length of each bar

of bundled bars shall be that for the individual bars,

increased by 10% for two bars in contact, 20% for three

bars in contact , and 33% for four bars in contact.

Anchoring reinforcing bars in tesion :

a) Deformed ybars may be used without end anchorages

provided the development length requirement is satisfied.

Hooks should normally be provided for plain bars in tesion .

b) Bends and hooks shall confirm to IS-2502-1963

1) Bends The anchorage value of bend shall be taken and

four times the diameter of the bar for ~ach 45 degrees of

bend subject to a maximum of sixteen times the diameter of

the bar.

2) Hooks: The anchorage value of a standard U type hook

shall be equal to 16 times the diameter of the bar.

Anchoring bars ·in compression: The anchorage length of

straight bars in compression shall be equal to development

length of bars in compression as specified above. The

projected length of hooks, bends and straight length beyond

bends if prov~ded for a bar in compression, shall be

considered for development length.

Anchoring shearJreinforcement :

a) Inclined ba~s: The development shall be as for bars in

tension this length shall be measured a under:

1) In tension zone, from the end of the sloping or

inclined portion of the bar and

2) In the compression zone in the mid depth of the beam.

b) Stirrups : Not withstanding any of the provision of this

standard in cas~ of secondary reinforcemnt such as stirrups
I

'
and transverse ties complete development length and

anchorage shall be deemed to be priovided when the bar is

bent to an angle of at least 90 degrees round a bar of

atleast of its own diameter and is continued beyond the end

of the curve for a length of atleast 8 diameters or the bar
'

is bent through an angle of 135 degrees and is continued

beyond the end of curve for atleast six bar diameters or the
'

bar is bent thr~ugh an angle of 180 degrees and is continued
'!

beyond the end of curve for a length of atlest four bar

diameters .

Bearing stresses at bends : The bearing stress in
for bends and hooks described in IS-2502-1963 need

concrete
not be

checked. The beaing stress inside a bend on any other bend

shall be calculated as given below.

~earing stress = Fbt/(R*Phi)
I

'
where Fbt = Tinsile force due to design loads in bar or

group of bars,

R = Int~rnal radius of the bend and

Phi = size of the bar or, in bundle, the size of bar
of equivalent area.

For limit state method of design this stress shall not

exceed 1.5*Fck/(1+2*Phi/a) where. Fck is the

characteristic strength of concrete and 'a', for a

particular bar ··or a group of bars shall be taken as Lhe

center to centre distance between bar of the group of bars

perpendicular to the plane of the bend; for a bar or a

group of bars adjecent to the face of the member 'a' shall

be taken as the cover plus size of bar (Phi).

If a change in direction in tension or compression
y

reinforcement induces a resultant force acting outward
I

tending to splitrthe concrete, such.force should be taken up

by additional links or stirrups. Best tension bar at a
r

reentrant angle ~hould pe avoided.

Curtailment of tension reinforcement in flexural members:

For curtailment, reinforcement shall extend beyond

the point at which it is no longer requried to resist the

flexure for a distance equal to the effective depth of the

member or twelye times the bar diameter, whichever is

greater except at simple support or end of cantilever.

a) The shear at the cut-off point does not exceed

two-thirds than permitted, including the shear strength of

web reinforcement provided.

b) Stirrups area in excess of that required for shear and

torsion is provided along each terminated bar over a

distance from tpe cut-off point equal to three-fourths the
:

effective depth of the member. The excess stirrup area shall

not be less than 0.4*b*S/f,where 'b' is the breadth of

beam,'S' is the spacing and 'f' is the characteristic

strength of reinforcement in N/rnm. The resulting spacing

shall not exceed d/8 where 'd'is the ratio of the area of
'

the bars cut off to the total area of bars at the section,

and d is the effective depth.

c) For 36mm and.smaller bars, the continuing bars provide

double the area required for flexible at the cut-off point

and the shear does not exceed three-fourths that permitted.

Positive moment reinforcement

a) At the one-third the positive moment reinforcement in

simple members and the one-fourth the positive moment

reinforcement in continuous members shall extend along the

same face of the member into the support, to a length equal

to:

b) When a flexural member is part of the primary lateral

load resisting system, the positive reinforcement required

to be extended into the support as described in (a) shall be

anchored to develop its design stress in tension at the face

of the support. ,.
!

c) At simple supports and at points of inflection, positive

moment tension reinforcement shall be limited to a diameter
'

such that computed for by 4.2.1 does not exceed

where ml = moment of resistance of the section assuming all

reinforcement at the section to be stres~ed to:

f = 0.87 in ther case of limit state design and the

permissible stress in the case of working stress design;

V = shear force at the section due to design loads;

1 = sum of the anchorage beyond the centrer of the support

and the equivalent at simple support, and at a point of

inflection, is limited to the effective depth of the members

or 12, whichever is greater.

Negative moment reinf0rcemnet: At least one-third of the

total reinforcement provide for negative moment at the

support shall extend beyond the point of inflection for a

distance not less than the effective depth of the member or

'12' or one-sixteenth of the clear span whichever is

greater.

Curtailment of bundled bars-Bars in a bundle shall terminate

at different points apart by not less than 40 times the bar

diameter except for bundles stopping at a support.

Special members-Adequate end anchorage shall be provided for

tension reinforcement in flexural members where

reinforcement stress is not directly proportional to moment,

such as sloped,stressed or tapered footings, brackets, deep

beams, and members in which the tension reinforcement is not

paral~··l to the compression face.

Reinforcemnet splicing- Where splices are provided in the

reinforcement bars, they shall as far as possible be away

from the sections of maximum stress and be staggered. It is

recommended that splices in structural members should not be

at sections where the bending moment is more than 50% of the

moment of the resistance, and not more than half the bars

shall be spliced at a section.

Where more than one half of the bars are spliced

at a section are where splices are made at points of maximum

stress, special precautions shall be taken, such as

increasing the length of lap and/or using spirals or closely

spaced stirrups around the length of the splice.

4.3 Spacing of reinforcement :

4.3.1 Minimum distance between individual bars :
-~

a) The horizontal distance between two parallel main

reinforcement bars shall usually not less than the greatest

of the following -

1. The diameter of the bar, if the diameters are equal.

2. The diameter of the larger bar if the diameters are

unequal'and

3. 5mm more than the nominal maximum size of coarse

aggregate.

b) Greater horiz6ntal distance than the maximum specified
'

in (a) should be provided wherever possible. However when

needle vibrators are used, the horizontal distance between

the bars of a groove may be reduced to two thirds the

nominal maximum size of the force aggregate, provided that

sufficient space is left between groves of bars to enable

the vibrator to be immersed.

c) Where there are two or more rows of bars, the bars

shall be vertically in line and the minimum vertical

distance between the bars shall be 15mm, two thirds the

nominal maximum size of aggregate of the maximum size of

bar, which ever is geratest.

4.3.2 Minimum distance between bars in tension- Unless the

calculation of crack widths shows that a greater space is

acceptable, the following rule shall be applied to flexural

members in normal internal and exrenal conditions of expose.

a) Beams :The horizontal distance between parallel

reinforcement bars or groves, neRr the tension face of the

beam shall not be greater the value given in the table below

depending on the amount of redistribution carried out in

analysis and the characteristic strength of t.he

reinforcement.

Fy Percentage redistribution

-30 -15 0 15 30
------------------------------------~-------------------

Clear distance between bars

N/mm~2 mm mm mm mm mm

250. 215 260 300 300 300

415 125 155 180 210 235

500 105 130 150 175 195
--

Table 4.4

Cover to reinforcement

4.4.1 Reinforcement sha~J have concrete cover and thickness

of such cover excluding the plaster and other decorative

finish shall be as follows

a) At each end of the reinforcing bar not less than 25mm,

nor less than twice the diameter of such bar.

b) For longitudinal reinforcing in a beam not less than

25mm nor less than the diameter of such bar.

c) For any other reinforcement not less than 15mm, nor

less than the diameter of such bar

4.4.2 Increase cover thickness may be provided when surface

of concrete members are exposed to the action of harmful

chemicals, in such increase of cover may be between 15mm and

50mm beyond the figures given in 4.4.1 4.4.2.1 For

reinforcement concrete members, periodically immerced in s. 1

water are subject to sea spray,space the cover of concrete

shall be 50mm more than that specified in 4.4.1

4.4 .. 3. For concrete of the grade M25 or above the

additional thickness of cover specified in 4.4.2 to 4.4.2.1

may be reduced to half. In all such cases the cover should

not exceed 75mm.
~

4.5 Requirements of reinforcement for structural members

4.5.1 Beams

Minimum tension reinforcement :The minimum area of

tension reinforcement shall not be less than that given by

the following

As/bd = 0.85/Fy

where As minimum area of tension reinforcement

b - breadth of the beam

d - effective depth

Fy - characteristic strength of reinforcement

b) Maximum tension reinforcement : The maximum area of

tension reinforcement shall not exceed 0.04 * b * D

Compression reinforcement The maximum area of

compression reinforcement shall not exceed 0.04 * b * D.

Compression reinforcement in beams shall be enclosed by

stirrups for effective lateral restraint.

Side face reinforcements Where the depth of the web

exceeds 750mm in a beam, side face reinforcement shall be

provided along the two faces. The total area of such

reinforcement shall be not less than 0.1% of the web area

and shall be distributed equally on two faces at a spacing

not exceeding 300mm or web thickness whichever is less.

Transvers reinforcement in beams for shear and torsion

The transfer reinforcement in beams shall be taken around

the outer most tension and compression bars.

Maximum spacing of shear reinforcement : The maximum spacing

of shear reinforcement measured along the axis of the member
~

shall not exceed 0.75*d for vertical stirrups and 'd' for

inclined stirrups at 45 degrees, where 'd' is the effective

depth of the section under consideration. In no case shall

the spacing exceed 450mm.

Minimum shear reinforcement: The minimum shear reinforcement.

in the form of stirrups shall be provided such that

Asv/(b*Sv) >= 0.4/Fy

where Asv - total cross-sectional area of stirr1ps legs

effective in shear.

sv = stirrup spacing along the length of ~he member,

b = breadth of the beam or breadth of the web of

flanged beam,and

Fy = characteristic strength of the stirrup
.

reinforcement in N/mm which sahll not be taken greater than

415 N/mm*mm.

However, in members of minor structural importance such

as lintels or where the maximum shear stress calculated is

less than of the permissible value.

Distribution of torsion reinforcement: When a member is

designed for the torsion reinforcement shall be provided as

below.
a) The transverse reinforcement for torsion shall be

rectangular closed stirrups placed parpendicular to the

axis of the member. The spacing of the stirrups shall not

exceed the least of the Xl, (Xl+Yl)/4 and 300 mm, where Xl

and Y1 are respectively the short and long dimensions of the

stirrups.

THEORY OF DESIGN

The expert system implements the design by

'Ultimate flexural strength' design theory,also called as

'Limit state' of design.The following asssumptions were made

in the ultimate flexural strength design. 1. Plane sections

normal to the plane of bending remain plane after

bending.

2. The strain in concrete at the outermost compression fibre

reaches a specified value only at failure.

3. The distribution of compressive stress in concrete at

failure is defined by an idealised stress strain curve.

4. The tensile stress in concrete is

5. The stress in the reinforcement

totally ignored.

is derived from

representative stress strain diagram of the steel used.

The first assumption stipulates linear strain

profile across the depth, that is the strains in concrete

and reinforcement are directly proportional to the distance

from neutral axis at which the strain is zero.The ultimate

strain in concrete varies between wide limits. The ultim3te

flexural strength is not appreciably influenced by it. A

value of the order of 0.003-0.0035 is generally adopted for

the purposes of design.

The stress-strain relation recommended in the Code is

shown in Fig.5.1 with the maximum compressive stress at

0.67 Fck (Fck=Fcu) .The compressive stress distribution in

the beam is defined as the stress block and can be readily

traced as shown in Fig.5.2 in which X=Ecu*D/(Zcu+E8) from

similar triangles and 0 in Fig.5.1 corresponds to the

neutral axis.

Fig 5.1

The total compression C = B * Area OABD

and the moment of resistance Mu= C(d-K2*X)

where K2*X is the distance of the centroid of the

stress block from the outermost compression fibre.

')

• •
FIG.5.2

The actual shape of the stress block is not

important and in fact the Code permits rectangular,

parabolic or other shapes to be used which provides

reasonable agreement with test results. The equivalence can

be ·easily established. We can deduce the equivalent

rectangular stress block for the parabolic shape in

Fig.5.3b.

With d-0.375*X = d-0.5*a,we get the hypothetical

depth
a = 0.75*X in Fig.5.3c.

letting Cp - Cr, we get

2*A'*Fck*b*X/3 = B'*Fck*b*a
B' = 2*X/(3*a) - S*X/9.

FIG .5.3

Again

The depth 'a' is not the depth of the neutral

axis. The stress block is very conveniently expressed with

the aid of the following three parameters.

Kl =Area OABD/Area OEBD in Fig.5.1, and

k2- Area OABD/Area(x.DB) in Fig.5.2,

The values of K1 and K2 for Fig.5.1 are derived in the

following:

AreaOABD - AreaOAF + AreaABDF = 2*4*0D*BD/(3*7)+3*0D*BD/7
- 17*Area SOEBD/21,

Kl - 1,7/21 = 0.8095 = 0.81.
K2 - 0.416=0.42.

The compressive force in Fig.5.2

The moment of resistance

Mu = C(d -k2*X)

- Kl*k3*Fck*b*d*d(x/d)(l-0.42(x/d))

2.1

2.2

The choice of k3 =0.67 in the Code provides a

factor of safety of 3.36 against failure in concrete as

illustrated in Section 11.2.2.2.

Recommendations of IS-456

The general expressions, 5.1 and 5.2 are readily

modified for design by incorporting the partial safety

factors Grns and Gmc. The derivations are summarised with

reference to Figs 5.4 and 5.5

rms=l-:15, rmc=l.

k1=17/21, k2=0.42 and k3 =0.67.

0

I
I

I.

~--- J o.(,, t ,, 1~~

. / ' /. A

-~

o.oooz.. o·.oo~~

FIG.5.4.

using

The Code· stipulates that at failure the strain in

reinforcement should not be less than Es=0.002+(0.87Fy/Es)

thereby ensuring a stress of 0.87*Fy in Fig. 5.7

--
,__ _____ 0 .,,J,

~s
FIG 5.5

Referring to Fig.5.6, the maximum value

Xl urn= (Xu/d)max = 0.0035*Es/(0.0055*Es + 0.87*Fy).

= 805/(1265+Fy) 5.3

The compressive force in cqncrete

Cc = 17*0.67*Fck*b*Xu/(21*1.50)

The derivations for the moment of resistance of

rectangular section is given below.

RECTANGULAR BEAM WITH TENSION REINFORCEMENT

Fig.5.6c

Assigning

'o
• •
"St.

'

~ .. '" • • •

Asc = 0, equilibrium

-*- o.oo3S'
c'
~

0. 00)."\" 0•\1 \._I;. .
FIG.5.~.)

Cc - T

of forces

X' = Xu/d - 0.87*FY*Ast/(0.36*Fck*B*D)
= 2.417*P*Fy/Fck

in

where p = Ast/bd and the limiting value of X',

X' lim is given by eq.5.3. Three possible cases are

examined.

Case 1: X' < X'lim

For this case the moment of resistance is conveniently

expressed as

Mu =
=
=

Td(l-0. 42*X')
0.87*Fy*p*b*d*d(1-(0.42*2.417*p*fy/Fck))
0.87*FY*P*b*d*d(l-(1.015 P*fy/Fck))
0.87*Fy*p*b*d*d(l-pfy/Fck)
0~87*Fy*Ast(d-(Fy*Ast/Fck*b))

Case 2 : Xl = Xl lim

Compression Cc = 0.36*Fck*b*d*X'lim and

Tension T = 0.B7*FY*b*d*plim = Cc

The moment of resistance

Mulim = 0.36*Fck*b*d*d(1-(0.42*X'lim)X'lim -- 5.4

is the limiting value and corresponds to the balanced state

in Working Stress Method

Case 3 xl > xl lim

For this case P > Plim and the section should be

redesigned for economy implying thereby that increase over

Mulim is not permitted for P > Plim.

RECTANGULAR BEAM WITH COMPRESSION REINFORCEMENT

Such reinforcement would be required when the

applied moment 'Mua' on a seciJion is larger than Mulim given

by eq.5.4.

The difference is carried by additional tensile

reinforcement Ast, compression reinforcement Asc.

Referring to Fig.5.6b, the strain in compression

reinforcement Esc = 0.0035(Xu max -d')/Xumax for which let

the corresponding stress, read off from the stress-strain

curve, be denoted by Fsc.

Asc = Mua - Mu lim /Fsc (d-dl)

Ass = Mua/0.87*FY -Mulim /(d-dl) = Asc Fsc/0.87*Fy

The total tensile reinforcement is given by

Ast = Plim*b*d + AS2

The presence of Asc is neglected in the

computation of Mulim as the modification is not appreciable.

IMPLEMENTATION OF ANALYSIS IN PASCAL

The implementation of the expert system to design

beams and structures is two fold, one is the analysis and

the other is the design. First the beam has to be analyzed

and the moments produced by the loads are computed which is

called the analysis. In the design, the section which can
_,

safely handle the loads in the worst circumstances the

structure is most likely to be submitted.

All the analysis of the beam is implemented in the

programming language Pascal and the designing, which is more

logical and complicated in which the need of the heuristics

arise is implemented in Prolog. The designer must opt for

only one section, where there can be infinite sections which

can satisfy the momen~s induced. Here the experience and

efficiency is demanded to opt for the best of all satisfing

the constraints specified.

I confined myself to the problem of analyzing the
beams of four types:

1. Cantilever beam
2. Simply supported beam
3. Over hanging beam and
4. Fixed beam

Two types of loadings l.Point load and 2.Uniformly

distributed load were considered. In the analysis of the

beams, there can be any number of loads either point load or

UDL, and the moments induced by them can be precisely

computed. The section of the beam which can safely handle

the loads following IS-456 specifications is decided in the

designing part of the p~ogaram which is implemented in

Prolog.

ANALYSIS

In the analysis of the beam,it is necessery to

compute the moments induced by the loads at every point of

length of the beam. So the beam is divided into 100 equal

parts which can be represented by an array of dimension 100

and the corresponding moments and forces are stored in the

array. --The advantage of using the array~is that, the moment

at any point on the beam can be accessed dynamically by

accessing the corresponding array position at any stage of

execution. Instead of using the arrays, packed arrays are

used to save the memory space of the computer.

All the computations and variable values are

~stored and retrieved by using the array C of dimension

10x100. This array C[i,l] where i varies from 0 to 100,

contains values representing the whole length of the beam.

Each segment contains the value of 1/100 of length, i.e. if

the length of the beam is 12 metres,then C[0,1] is assigned

zero, C[l,l] contains 12 and C[2,1] contains 24 and so on.

So the array C[i,l] contains the length of the beam in

centimeters. Proper care has been taken in the computations

to change this units to meters. C[i,2],C(i,3],C[i,4] contain

the intermediate values and C[i,5] contains the final

bending moments induced by a single load. Many variables,

mostly real, strings which read the answers for the queries

and flags which are boolean and text files to write the

output were used in the program. All the variables are

assigned to zero.

The flag OVER which initiates the major while loop

in the program is set to true.This flag is false if the user

responds N to the question "Any other loads[y/n] ".The loads

are analized one by one and finally added to get the final

moments induced. When this ANALYSIS.PAS is called by the

DESIGN.PRO ,the query "Which type of beam you like to

design" appears on the screen. The user is :required to enter

"cl", "ss", "oh", "fx" to design a cantilever beam, simply

supported, over hanging and fixed beams respectively.The

responsed of the user is stored in BMTYPE. If the user by

mistake opts for none of these, he will be prompted again.It

is assumed that the beam is horizontal and all the loads are

acting in the downward direction and the supports in the

upward direction. This message is displayed on the screen

and-the user is requested to enter the loads on the beam one

after the other. There are two options available point load

and UDL. The user is requested to enter "1" for point load

and "2" for the UDL.The first option sets the PTFLAG to TRUE

which will later initialize the routines which analyze the

point load and the second option sets the UDL flag to true.

Now the program splits into two parts, one for calculating

the moments and the other for calculating the shear forces

for all the four types of beams.

The grade of the steel the user is going to use

for the reinforcement has to be specified by the user. If

not specified appropriate values are assumed as per IS-456.

Three grades of steel FE-500, FE-415 and FE-250 which are

·HYSDsteel, ribbed tar steel and mild steel respectively. The

user is requested to enter 1,2 or 3 to opt for the steel

specified as above. If the grade of steel selected is found

unsatisfactory later in the design, the user is requested to

change the option simultaneously advising the best suited.

If the user still insists on using the same grade of steel,

other possible changes satisfying the constraints are

- -"deemed. Next the user is requested tc> enter -the- --grade of

concrete he prefers ranging from M10 to M40. The user can

not opt other than these. Next the user is requested to

enter the length of the beam in meters, which is assigned to

the variable LENGTH. Depending on the option.for the beam

type, four separate routines were provided to fix the end

conditions. Except in the case of over hanging beam, for all

the other three, the support conditions are x=0 and y=length

where x is the left support and y is the right support

measured from the left. x should never be less than zero and

y not greater than the length. A small routine is provided

to check these conditions.

If FXflag is true, this flag is assigned true

if the user designs a fixed beam, x is assigned zero and y

length. It is necessery in case of fixed beam to check the

sinking of the supports, which may induce large amount of

moments. If any of the supports sink due to construction of

foundation inaccuracies, they induce extra moments other

than the loads. The user is questioned whether there is any

sinking of supports. If the response is 'N' , the analysis

of loads starts. If not,a routine which computes the moments

induced due to sinking is run.

The user is requested to enter the values of 'E'

and 'I' and to specify left or right support which has sunk

and also the sinking in centimeters which is assigned to

SNK.The moment induced

Sl = 6 * E * I * SNK I (LENGTH * LENGTH)

At both the ends equal rnagintude of moment is

induced, but in opposite .Sirection.The moment at the--support

which sinked down is assumed as positive and the other as

negative. Since the moment changes linearly from positive to

negative, it is easy to implement. The first array segment

corresponding to the one end of the beam is assigned the

moment computed 'before i.e Sl. The last segment also

assigned Sl with the opposite sign. All the intermediate

values are computed by linear interpolation and saved in the

array H[i].

Sl = 6 * E * I * SNK I (LENGTH * LENGTH)
S2 = S1 I 50 ; z = Sl
FOR i = 1 to 100 DO

BEGIN
H[I] := Z;
Z := Z- S2;

END

The sinking moment is calcul~ted and stored in the

intermediate array H[i]. Later it is added to the final

moment induced by the loads.

The flag ENTRY is set to true which initiates the

major loop. All the intermediate values ,arrays are assigned

zero. The array contains the values calculated for a single

load and to arrive at the final moments all of them are

added. Immediately after entering the major while entry

loop, assuming at least one load on the beam, the entry falg

is set to false. This falg will be assigned true only if

tyhe user responds 'Y' to the question 'any other loads' .Now

the user is requested to enter 1 or 2 to opt for point load

or UDL. The user is requested to enter the location of the

point load which is assigned to 'distance' and the magnitude

od the load assigned to ' intensity'.

CANTILEVER BEAM

A message is printed that the cantilever is

assumed to be fixed at the left end. We need such minor

restrictions, Otherwise the user has to enter more data. The

shear force induced by the load

Sh = Intensity

moment ml = distance * intensjty

The moment is zero from the right end upto the

location of the point load and linearly increases to ml upto

support. Since the variation js linear it is easy to

implement using arrays and interpolation.

C[i,5] contains the bending moment values and

C[i,6] contains the shear force values.

OVERHANGING BEAM

Simply supported beam is assumed as the over

hanging beam with no over hanging. spans and a fixed beam is

assumed as as simply supported beam with fixed ends, the

fixed end moments are separately computed and later super

imposed. A single routine developed to analize over hanging

beam can be used for simply supported beam as well as fixed

beam. The location of the point load can be

1. In between the supports and

2. On the over hanging span.

In case 1, no bending moment is induced beyond the

supports.

magnitude

The shear force induced in the supports is the

of the force itself but in opposite signs at the

two supports .. Implementation is quite .simp~,e. The value

intensity is stored beginning from the location where

load is located to the support. The same is repeated on

other side with opposite sign.

of

the

the

If a = distance between the load and the support

1 = distance between the supports

b = 1-a

i - magnitude of the load

then the momebt induced just beneath the load

m = i * a * b I 1

and the moment at both the supports is zero.The

implementation is done by linear interpolation.

analysis

beginning

'distance'

UDL

If the user responds with '2', opting for

of the UDL, the user is requested to enter

of the UDL from left and this is assigned

and the point wherte the UDL ends and this

the

the

to

is

assigned to 'span' and the intensity of UDL to 'intensity'.

Cantilever with UDL

To analize the cantilever loaded with UDL, let us

consider the complicated case of the UDL spanning as shown

in the figure above. The shear force is zero between 'b' and

'c' and parabolically increases between 'b' and 'a' and

linearly increasesd between 'a' and support. Numerically

Shear force at b : 0
Shear force at a : (a - b) * intensity
Shear force at support (a - b) * intensity
The bending moment

between b and c : 0
At any point between b and a :

intensity * (b - x) * (b - x) I 2
a and s~pport :

i * (b- a) I 2 + ((a -x)+(b-a)l2)
where x is the point at which moment is

computed,measured from the left.
The computation of the moment between 'a' and 'b' is

facilitated by FOR loop accessig from 'a' to 'b' .The

coresponding array location to 'a' is assigned

i * (52-distance) * (S2-distance)l2 and

S2 is decremented by lengthl100 each iteration.The

value computed is assigned to the immediate next array

location representing the moment at that point.

To computet the moment from support to a the same

procedure of using a for loop is used. The location

corresponding to the support is assigned

i * b - a *(distance between center uf UDL and

location where moment is computed). The xis decremented by

lengthl100 and this value thus obtained to the immediate

next location and so on. To compute the shear force induced

in the beam, one part computing between 'b' and 'a' and

other 'a' and support. A for loop accessing from a to b is

defined as

FOR i trunc(round(distance*1001length)) to
trun(round(span *1001length)) do

Array locations corresponding to distance to span

one after the other. The computation is done in this loop

and assigned the corresponding array location

systematically.

Simply supported beam : This beam is analyzed as a

overhanging beam with no over hanging spans. If the user

opts for a simply supported beam, the same routine analyzing

overhanging bean is called with the value of x and y

assigned to 0 and distance.

Over hanging beam : The analysis of over hanging beam with

UDL is the most complicated case of all the cases. To

compute the shear force, the problem is subdivided into

three parts for clarity.

easel Span <= y

FIG
The first step is to calculate the reactions

of the supports 'b' and 'c'. In this case of 'span<= y' the

moments about 'c' were computed. For example, considering

the moments about 'c'

i*(c-a)*(c-a)l2+b*(c-b) = 0
b = i * (c-a) * (c-a) I 2 I (c-b) = Rl
R2 = (Intensity* (C-A)) - Rl

To compute the shear force over the nbeam 3 arrays

C[I,6], C[i,7], C[i~8J were reserved, C[i,7], C[i,8] storing

the intermediate vriables and C[i,6] containing the final

shear force values. The shear induced by another load is

added to this C[i,6] in each iteration the analysis, finally

at the termination of this analysis routine this array

contains the total shear force values induced by all the

loads.

if (span <= y) then
begin

Rl ((span-distance) *intensity *

end

zs
(y-distance-(span-distance)/2))/(y-x);
(span-distance)*intensity I
(100/(length/(span-distance)));

zh1:=0; gl:=gl+rl;
for i := trunc(round(distance*100/length)) to

trunc(round(span*l00/length)) do
begin

c[i,7]:=zh1;
zh1:=c[i,7]+zs;

end;
for B:=trunc(round(span*l00/length))+l to 100 do

c[i,7]:=zh1;

Here ZS is the loading on the .01 of the beam

span. A FOR loop accessing from 'distance' to 'span'

assigns 'ZS' to the location corresponding to the

'distance' and increment that by 'ZS' and assigns to the

immediate next location and so on upto the location

accessing the 'span', this simulates the loading over the

span. The remaiining span is assigned the maximum value

that is (Distance-Span)*intensity.

Another FOR loop from 'b' to 'd' assigns Rl to

all the array location, and another FOR loop adds R2 to the

array from C to D, So now C[i,8] arry corresponding from 'b'

to 'c' contains the Rl and from '.c' to 'd' contains Rl + R2,

this is exactly simulates the shear resitane of the

supports. This values when subtracted from the shear induced

by the loads gives the resultant shear force induced in

which we are intrested. C[i,7] is cantaining the shear

induced by the loads, So C[i,7]-C[i,8] gives the resultant

shear induced.

The instruction C[i,6]:= C[i,6]+C[i,7]-C[i,8]

assures the total shear induced by all the loads.

Case 2 : (Span > Y) and (Distance >= Y)
I
1
I

~'

FIG
In this case the UDL is placed over the right over

l1anging span of the beam. This case needs a seperate routine

only to compute the reactions, if reactions at both the

supports are obtained the same routine above is used to

compute the shear.

To compute the reaction, moments about the support

C are cosidered

Rl=((Span-distance)*intensity)-(Span-Y-(Span- Distance)/2)

R2=(Span - Distance)* intensity - Rl

Case 3 : (Distance <= Y and (Span >= Y

In this case the udl starts from a point before

the support and spans beyond the support as shown in the

figure below.

c. cm•r
FIG ~1.

The reaction of the left support Rl and the

reaction of the right support R2 are computed as below.

Rl = (Intensity*((Y-Distance)-2)/2/(Y-X) -
{(Span-Y)-2)*intensity/2/(Y-X)

R2 = (Span-distance)*intensity -Rl
The same routine as in Casel is used to compute

the shear forces.

At this stage, it is neccesary to check the

direction of the supports assumed before are correct or not,

It is assumed that the loads are acting downwards and the

the supports are in upward direction, but in the case of

overhanging beams if the loads act over the overhahging span

the far support should be in the downwards direction, as

shown below.

\.,

~\..
FIG

This can be very easyly checked by using the Rl

and.R2 vlaues. Since R1 and R2 are computed asssuming that

the direction of the supports is upwards, and Rl and R2 must

be a positive values if the direction assumed is correct,

but if the R1 is negetive means the left supprt should be

downwards, else if R2 is negetive R2 must act downwards.

The user is intimated about this direction changes

and proceeded.

Bending moment

A single routine is developed to compute the

moment of the overhanging beam, this is simple since the

reaction of the supports are computed already. The moment at

any point X on the beam be arrived at by taking the net of

the moments acting at the point. Arrays C[i,2] and C[i,4]

were used solely for this computatioins. For convienience

M,N are defined, these are the integers which correspond to

'Distance' and 'Span' array locations.

L1 100 * distance/length
L2 span * 100 /length;
M trunc(round{l1)) ; N := trunc(round(l2));

z:= 0;
for i:= m ton do

begin
c[i,2] := z;
z := (z+intensity *length/100);

end;
for i:= n+1 to 100 do
c[i,2] :=intensity *(span-distance);

for i := 0 to 100 do
c[i,4]:= -(c[i,2]*

{C[I,l]/100-distance)/2);
for i := trunc{round(l00*x/length))

to trunc(round(y*100/length)) do
begin

if c[i,1] < span*100 then
c[i,4] := rl *(c[i,l]/100-x)

-c[i,2]*(c[i,l]/100-distance)/ 2
else if c[i,1] >= span*l00 then

c[i,4] := rl *(c[i,1]/100-x}
-c[i,2] * (c[i,l]/100-distance
-(span-distance}/2);

end;
for i:=trunc(round(100*y/length))to100 do

begin
if c[i,l] < span*100 then

c[i,4] rl *(c[i,l]/100-x)
+R2 * (C[i,l]/100-Y)
-c[i,2]*(c[i,1]/100
-distance)/ 2

else if c[i,l] >= span then
c[i,4] := rl *(c[i,l]/100-x)

+ r2*(c[i,1]/100 -y)
-c[i,2]*(c[i,l]/100

-distance-(span-distance)/2)~
Fixed Beam

For the fixed beam extra fixed end moments are

computed, considering every load and finally adding to get

the total moment. THe net moment is arrived at by

subtracting this end moments from the moments induced by the

loads, That is the advanage of using a fixed beam than a

simply supported beam, because net moment induced in the

fixed beam is less.

To compute the fixed end moments due to a UDL

'Area moment method' is used. According to Mohr's theorem

"The area of the free and fixed bending moment are

numerically equal or the resultant area of the bending

moment is zero

This leads to the equation

A' = (M1-M2)/2 + L
A'X'' = LA2(Ml+2*M2)/6

where Ml,M2 : moments at the ends
L length of the beam
A' area of the Fixed momemt diagram
X'' distance of C.G.

Substituting the other values and Solving both
this equations the values of Ml and M2 are arrived at.

·Ml is assigned to the left most point and M2 to

the right most point and the i::•termediate values are

interpolated leniarly, as

for i := 0 to 99 do
begin

zl:=z;
z:=z+(c[i,5]+c[i+1,5])/2

* (length/100);
end;

uarea:=zl;
This routine above compues the total area of the

bending moment induced by the loads, and this is assigned to

'UAREA' , this corre,spond to h in the equatons above. _,

z:=0;
for i:= 0 to 99 do

-begin
z:=z+(c[i,4]+c[i+1,4])/2*length/100 *

(c[i,1]/100+length/200);
zl:=z;

end;
umax: =zl;

The routine above
bending moment diagram,
corresponding to A'X''.

computes the moment area of the
this assigned to 'UMAX',

The fixed end moments are computed bt the routine.
zl 4*uarea/length-umax*6/length/length;
z2 2*uarea/length-z1;
ml ml+zl;
m2 m2+z2;

The intermediate values are interpolated and

assignd to the corresponding locations, and assigned to G[i]

and the net bending moment to F[i] as

z : = ml;
for i:= 0 to 100 do

begin
g[i]:=z;
z:=z+(m2-ml)/100;
fl: =g[i]-c[i, 5];
f[i] :=-(f[i]+fl);

end;

After analysis of loads the n~xt step is to

display the analysis by a graphic routine. Infact the

bending moment diagrams are better appreciated by the

graphical display. This is explained clearly later.

DEAD LOAD MOMENT

Besides the shear for-ce a...-.d bending rnomer.t ir,duced

by the loads, some amount of be'rtd ir•g mc•ment wi 11 be induced

due to the dead load of the beam. To compute the moment

induced by the dead loads, first the s~ction of the beam has

to be decided. The fial sect iort i's decided later after ar•

ir.teractive sessior. between the user ar•d the krtowledge base.

At the moment in the pascal environment, the dimensions of

the beam are ...-.ot available to compute the moment due tc• dead

load. Sirtce the design of the beam is based or. the IS-456

codal speci ficat ior.s, unless user specifies his owr. sect ioY•,

even if user specifies the section, the validity and safety

of the sectior. is checked against IS-456 specific~tions.

Since calling once again 'analysis.pas' to co'mpute ther

morner.t i...-.duced by the dead loads. in the Prolog' envirortrtler.t

·!- , ..
ar.d thus the data trar.sfer through I/0 files ;may slow dowr.

l\ '
;

the process of execut ior,. So it is betterl~ t'o estimate

approximately the dead load in the pascal itself

strictly following IS-456 specifications.

f<nc•wi ng the length o.f the beam, by

codalspecifications, the minimum depth and breadth to be

provided is computed ar.d thus the dead load artd the moment.

The moments induced by tythe loads is stored in C[i,SJ ar.d

the moment ·i...-.diced~ by the derad laod is separately stor,ad in
~ ~ :t ...

,J

C[i,9J and fir•ally added and graphically displayed.

LINKING PROLOG AND PASCAl

The expert system to analyze and design ~eams

should be capable of performing both the complex numerical

computations and also the symbolic computations working with

the krsowledge base. It is not ar. easy task to implement both

numerical and symbolic coroputat ions using a single

{2rogramming language like Pascal or Prolog. If only- Pascal

is used, the knowledge and rules may be simulated and

implemented but extendirsg the program, adding few mc•re rules

is very difficult. If only prolog is used~ it is easy to

implemer•t symbolic cornputatior.s, but the simulation of

sybolic cxornputation like arrays by lists and recursion

makes the program very complicated and unreadable. The only

possible solution is to use both the symbolic computation

language and numerical computation language and build an

effective link between them to transfer data. The 1 irsking

car. bve dorse in many ways, but bere files were used to

transfer data from Pascal to Prolog. The Pascal program

'analysis.pas' is callec· in prolog environment and executed.

'Ar,alysis. pas' reads the input of beams and

ar.alyzes them and wr~ites the data ir, a text file 'data.dat'

arsd displays graphically the ar.alysis and terminates. Later

this file is opened ir• Prolog environment and the data is

read from 'Data.dat'. Prolog has an inbuilt predicate

'system("DOS commar.d">', this predicate transfers control to

the operating system and executes the DOS commar•d giver• in

the quotes and regains the control. Turbo Pascal has a

provision to create an executable file, the executable file

'ar.alysis. com' of 'analysis.pas' is created and the predicate

'system ("ar.alysis. com")' executes the file "analysis. corn' ~

which analyzes the beam and creates the file 'data.dat' in

Pro 1 og er•v i ror.mer.t.

The disadvantage of this technique of transfering

data through I/0 files is relatively slow compared to

transfer of data by 1inki~g of~routines, but still the data

transfer through files is prefered due to it's simplicity

flexibility. Moreover the data trar.sfer is performed

only once. The data read from the 'data.dat' is stored in the

knowledge base which car. be referred at any stage of

execut i or ••

The grade of cocrete, the grade of steel and the

diameter of the bars, the type of beam and loadir.g

specifications were read by interaction in 'analysis.pas'

and the loads are analyzed and all this data is written in

data. dat.

specified

The grade of the cor.crete ar.d the grade of steel

by the user are checked for the safe design. If

they are found to be unsafe, and changes are need~d. This is

intimated to the user and requested to change the

speci fictions. If still the user insists in using the same

grades, other alternatives are considered. A small rout ir.e

is used to pick up the maximum and minimum shear force and

bending moment values and the moments at di fferer.t points

were picked up ar.d alc•ng with other data were written in

'data.dat'.

GRAPHICAL DISPLAY

The analysis is better appreciated by the user if

the output is displayed graphically. Obviously the variations

of the moment and shear should be displayed graphically

rather than numerically. The graphics routine is called if

the usser wants the output graphically. If the beam loaded

with heavy l<?_~ds, the momer.t values are high ar.d low -if

loaded with relatively low inter.s ity of loads. The bending

moment diagram shc•uld not be so small if the loads are of

low magrtitude beyond the comprehensior• of the humar• eye artd

should not be very large abnormally also. So a relative

diagram is displayed. The maximum value of bending moment is

picked and 40 pixels were alloted to represent that vlaue

ar.d all orther values are displayed relatively. So a beam

~oaded with UDL it's full length with 1. 0. T /m, 10. T/r11, 100. T /m

will display exaxctly the same bending moment diagram. The

actual implementation is
begir•

graphcolormode;
r:=O;
for i:= 0 to 100 do

if abs(c[i,5J) > r then r:=abs(c[i,5J)
i f r <> 0 t her•

begir•
J:=48;
draw (50,50,248,50, 1>;
for i:= 1 to 100 do

begi r•
1:= trunc<round(c[i,SJ/ r * 40.0));
J :=J+2;
k:=50-l ;
draw<J,SO,J,k,2>

end;

In case of fixed beam, first the moment diagram is

displayed and over it,the separately computed fixed end

moments are super imposed ar.d fi r,a 11 y below it, the resu 1 tant

of both the moments is dispalyed. A single routine is used to

display the bm diagram for all the four types of beams.

if fxflag=true then
begin

J:=49;
draw (50,90,250,90, 1>;
for i:= 0 to 100 do

begin
1:= trunc(roundCg(iJ/ r * 40.0));
J:=j+2;
k:=50-l ;
drawCj,50,J,k,9);

er.d;
j:=49;

for i:= 0 to 100 do
begirt

begi y,

1:= trunc<round(f(iJ/ r * 40.0));
J==J+2;
k:=90-l ;
drawCJ,90,j,k,2>;

er.d;
r:=O;

for i:= 1 to 100 do
if abs(c[i,6J) > r then r:=abs(c[i,6J)

if r 0 0 then
begirt

j:=48; •
draw <50, 160,248,160,1)
for i:= 1 to 100 do

end;

begin
1:= trunc<round(c[i,6J/ r * 40.0))
j:=j+2;
k :=160-1 ;
draw<J,160,j,k,2>

end;

DESIGN IMPLEMENTATION IN PROLOG

The design part of the program has been

implemented om Prolog. This section clearly explains the

techniques used for the implementation. Prolog programs are

basically a declarative. The decleration were made in the

'Domains',' Predicates', 'Clauses'.
_,

Domains ''mf" is declared as a file and later

assigned to data.dat and opened to read.

Data base : data base contains the facts which are

computed and generated during the process of execution.The

computed values which are needed many times during the

execution are also stored as facts. This technique of

storing the variables as facts may increase the 'search' in

the program. But transfering many variables from one

predicate to the other makes the program look complicated.

In the progarms which are relat1vely small, it is better to

store the variables in the knowledge base and later

extracted. The beam(string), steel(integer), stldia(real),

length(real), pbmd(real).'J'he length of the beam is extracted

from length(X), X is bounded to the real value of

length(real).The safe breadth and depth computed as per IS-

456 are stored as safe_breadth(real),safe_depth(real) and

the final breadth and depth which is decided later by

interaction as a final_breadth(real) and final_depth(real).

Predicates The predicate section is declared with

numerous predicates each contributing a solution for the

small divided problem of the major task of designing the

beam. The flow of control and data is described clearly in

1

the flow-chart.

Start : The predicate start is the first and at the top of

the hierarchy. In fact, the goal of the program is to

the predicate 'start' true. This predicate triggers

other predicates. This predicate tries to prove 'True'

the predicates.

prove

all

all

_, start :- write ("Lets start"), open read (mf, "data. dat"),

readdevice(mf),readln(Beam), readreal(LENGTH), readln(CC),

readint(SS), readreal(NB), Nbmd=1.5*Nb, readreal(PB),

Pbmd=Pb*l.5, readreal(Shl~, Sl=Shl*1.5, readreal{Sh2),

S2=Sh2*1.5, readreal(Stldia), readreal(Depth),

readreal(Breadth), closefile(mf), asserta(beam(Beam)),

asserta(concrete(CC)),asserta(steel(SS)),asserta(nshr(Sh1)),

asserta(pshr Sh2)), asserta(length (LENGTH)),

asserta(nbmd NBMD)), asserta(pbmd (PBMD)),

asserta(pascald(Depth)), asserta (pascalb(Breadth)),

asserta(stldia(Stldia)), window, bmfactor, ! , cone, ! , stl,

cvr(Stldia), safe_section(Length), option, breadth, design.

This predicate first tries to prove true a write

statement and prints the message of introduction. The next

predicate is 'system("analysis.com")'. This is a very

important predicate as explained before which links Pascal

and Prolog. By executing the single predicate, all the task

of reading the input and loads analyzing the loads and

displaying it graphically and creating a file of data. The

next task is to open the data file 'data.dat' created by

'analysis.com' and read the data and store them in the data

base.

The values witten in the file were read and stored

in the knowledge base by using the predicate

"asserta (length(Length))", this predicate asserts the

characters in the quotes as a clause to the program. The

shear force and bending moment values were multiplied by

1.5 the <partial safety factor ~o correspond to the limit

state of design. The next predicate creates a window

the header 'Auto beam" in reverse video. All

interactions and input out put is through this window.

with

the

The

predicate 'bmfactor' decides a factor which is the maximum

ratio of length and depth of the beam section. This gives

the minimum depth to be provided for the safety against the

deflection of the beam under loading. IS-456 clearly

specfies the minimum ratios of length and depth to be

provided for safety. This factor is computed by this

predicate and assertas in the database 'bmfac(Factor)'. The

next predicate to be satisfied is 'cone', this predicate

asserts ther flexural strength of concrete given the grade

of concrete, and the precdicate I stl I 1 asserts

'stlgrd(Grade)' and also asserts a variable xlim(X) which

is derived by the grade of steel and needed later for

computations. The 'cover' predicate decides the minimum

cover to be provide depending on the diameter of the bars to

be used for reinforcement. This diameter is specifed by the

user, if not it is arrived at by knowing the length and the

depth is estimated, from which the diameter is assumed. The

next predicate triggered is the 'safe_section' predicate,

this decdes the safe section dimensions for the beam as per

IS-456. The predicate 'option' writes the message that ~l•e

expert system designs a singly reinforced section if the

user does not specify the dimensions of the beam. This is

necessary because the user may specify the loading, the

grade of steel and concrete he likes to use and lever other

details to the system itself then the user must be informed

that the beam going to be designed is a singly reinforced

but not doubly reinforced.

Breadth The predicate breadth decides the

section of the beam. There can be infinite sections which

can safely handle the loads and moments thereby induced, but

only one section can be opted for. The program displays six

possible sections which can safely handle the loads with

different depth breadth ratios varying from 1.5 to 4. This

acts as a guidance to the user if he wants to specify the

section. Next ~he user is questioned if he wants to

depth/ breadth or both. If the user specifies the

breadth is decided else if breadth specified,

specify

depth, the

depth is

decided and if both the dimensions were specified by the

user, the validity and safety of the section is checked. If

the section specified is proved unsafe, other changes in the

design are made. This predicates breadth displays this

information and calls decide_depth predicate.

The decide_depth predicate computes the sections

with depth/breadth ratios varying from 1.5 to 4 and displays

them and triggers 'dcd'. The 'dcd' predicate reads the

response of ther user and calls 'dcdl(Reply)'.

dcdl(N): A message is prited that the design is

based on IS-456 specifications and a single reinforcement

beam is going to be designed and triggers 'prelim_design'.

dcdl(Y): This predicate reads the breadth or depth

the user wants to specify and calls decide_b(Depth) if depth

is specified or decide_d (Breadth) if breadt-h is -specified.

decide_b(D) This predicate has to decide the

breadth. The predicates length(L),x_lim(X) etc. when tried

to prove true, prolog searches the knowledge base and binds

'L' and 'X'. This is how we can regain the variable values

from the knowledge base. The breadth is arrived by

substituting other values in the equation.

M = 0.36 * Fck * B * D * D (1 - 0.42 *X) *X

where B and D are breadth and depth of the beam. The

breadth computed by this equation is rounded and a clear cut

data of the situation is presented to the user by prin~ing

the values of the design moment 'M', depth specified by the

user 'D', bredth which can safely handle the loads 'B' and

the minimum breadth to be provided as per IS-456. The

greater of both the breadths is selected for design and the

user is questioned" Is the section satisfactory?". The

response of the user is bound to the Reply and 'hml(Reply)'

is triggered.

decide_d(B) : This predicate decides the depth of

the beam section io the user specifies the breadth and depth

to be decide by the system. This predcate as 'decide_b' not

only computes the other dimension but also gives the minimum

depth should be povided by considering the modification

factors into account. The depth provisions in IS-456 can be

further modified considering the modification factors which

makes the design more economical. The predicate 'modfac' is

called ,which approximately computes the percentage of steel

in the section and reads the corresponding value for the

grade of steel from the data base as below.

modfac_tsn(0.0,2.100,2.400,3.000).
modfac_tsn(0.2,1.350,1.600,2.300).
modfac_tsn(0.4,1.075,1.280,2.100).
modfac_tsn(0.6,0.950,1.100,1.730).
modfac_tsn(0.8,0.900,1.025,1.525).
modfac_tsn(1.0,0.850,0.950,1.415).
modfac_tsn(l.2,0.825,0.925,1.320).
modfac_tsn(1.4,0.810,0.900,1.285).
modfac_tsn(l.6,0.800,0.880,1.215).
modfac_tsn(1.8,0.790,0.860,1.150).
modfac_tsn(2.0,0.775,0.840,1.125).
modfac_tsn(2.2,0.760,0.820,1.100).
modfac_tsn(2.4,0.745,0.800,1.085).
modfac_tsn(2.6,0.730,0.785,1.065).
modfac_tsn(2.8,0.715,0.770,1.045).
modfac_tsn(3.0,0.700,0.755,1.025).

Knowing the grade of steel and the percentage of

steel the corresponding ratio is computed by interpolation

of the two nearest values. After the displ:,y of the section

if the user in satisfied the predicate gm1,gm2 are called as

explained in the predicate 'decide_b'.

hml(Reply) If the Reply is 'y', the user is

thanked for considering the advice of the system and

proceeded to design. Since the breadth and depth are

decided. The reply is 'N', the message to specify the

breadth or depth have to be changed. The response is bound

to A and hm2(A) is called.

hm2(A) : If A is equal to 'D', then the user is

requested to enter the depth he prefers which is bound to

'D'. At this stage, the user wants to change the depth he

specified first. So once again the predicate 'decide_b(D)'

is called else if A is 'B', the breadth is read and bound to

'B'. At this stage, the user first specified the depth and

later specified the breadth considering the data displayed.

So the expert system is provided with both the dimensions.

The next step is to chech the validity of that section.

Perilim_design(B,D) is called.

prelim_design(B,D) : This predicate decides if the

breaths and depth are capable of handling the loads

specified by a singlly reinforced section. If not safe, the

user is questioned if the design can be for a doubly

reinforced beam. iF the rersponse is 'Y', 'double(B,D)' is

called.If the response is 'N' the predicate, means the user

does not want the beam to be design a doubly reinforced. So

the program is backtracked to the predicate 'breadth', once

agin teh user is facilitated to chage the the dimensions of

the section.

The user after deciding the section, and the

sectioon is proved safe satisfying all the codal

specifications the predicate 'design' is triggered.This

predicate designs the final design and the percentage of

steel and the steel details are fixed y the predecate

'stl_cal'. The knowledge base is furnished with the safe and

minimum percentages to be satisfied as below.

max~prsnt_rnf_sngl(15,250,1.32).
max_prsnt_rnf_sngl(15,415,0.72).

max_prsnt_rnf_sngl(15,500,0.57).
max_prsnt_rnf_sngl(20,250,1.76).
max_prsnt_rnf_sngl(20,415,0.96).
max_prsnt_rnf_sngl(20,500,0.76).

max_prsnt_rnf_sngl(25,250,2.20).
max_prsnt_rnf_sngl(25,415,1.19).
max_prsnt_rnf_sngl(25,500,0.94).

max_prsnt_rnf_sngl(30,250,2.64).
max_prsnt_rnf_sngl(30,415,1.43).
max_prsnt_rnf_sngl(30,500,1.13).

This data is asper IS-456 and gives the extreme

values of the reinforcement.

DROGRAM Anlysis(input,output>;
VAR

c ~pacr<ed

arrayC0 .• 100,1 .. 10J u, real;
g,f,h packed array[0 •• 10J of real;
11, 12, s1, s2, g1, shl, sh2, g2, g3, g'+, :zs, zhl, i 1, i2 :real;
r 1 , r2, x, y, p, z , a 1 , a2, r, m 1 , ro2, z 1 , z 2, f 1 , e 1 : rea 1 ;
i,J,m,n,l,k,grade :integer;
answere,bmtype :string[2];
concgrd,reply :string[3J;
over,entry,flag,ssflag,o~flag,cl~lag

fxflag,pt~lag, udlf:ag,sd~lau

Rlr~t~Lir.t,spar-t, i(tter-,sit./, ~.~.:or·r(~~:~,"1 -::.L::--.tc-Jr-;c-e

pat-·ea, uarea, pi!1C:•><, •.t••'"-' ·..:, :;;n-c. r1•. '·' •J ·., ,, ~.-~, m•::•c: f ac
breadth,depth,stidl?

:boo lear,;
: bc~c·l ear_,;
: r~ea.i.;
:r--ea~t;

: r··ea 1;
:text; fill, fil2

procedure rndf;
var

A : pac~eo arr-ay[1.. 16, 1.. 4] of real;
z1,z2,p
i.,z3

:r--eal;
: integer~;

begin
p:=O;
for i:= 0 to 16 do

begin
a(i, 1J
p

:=
:=

p· . .,
p+0.2;

ertd;

a [1, 2J
a[2,2J
a[3,2J
a[4,2J

a[5,2J
a[6,2J
a[7,2J
a£8,2]

a[9,2J
a[10,2J
a [11, 2]
a[12,2J

a [13, 2J
a(14,2J
a C15, 2J
a[16,2J

:=2. 100; a(i, 3]
:=1.350; a[2,3J
:=1.075; a[3,3J
:=0.950; a[4,3)

:=0.900; a(5,3J
:=0.850; a[5,3J
:=0.825; a[7,3J
:=0. 810; a EB, 3]

:=0.800; a[9,3J
:=0.790; a(10,3J
:=0.775; aU1,3J
:=0.750; a[12,3J

:=0.745; a[13,3J
:=0.730; a(14,3J
:=0.715; a(15,3J
: =0. 700; a [1 E., 3J

z3 := truroc(rat/0.21;
z1:= a(z3+1,grade+1J;
z2:= a(z3+2,grade+11;

:=2.400; a[1,4J:=3.000;
:=1.600; a[2,4J:=2.300;
:=1.280; a(3,4J:=2. 100;
: = 1 • 1 00; a [4, 4 J : = 1. 7 30 ;

:=1.025; aC5,4J:=1.525;
:=0.950; a[6,4J:=1.415;
:=0.925; aC7,4J:=1.320;
:=0.900; a[B,4J:=1.285;

:=0.880; a[9,4J :=1~215;~­

: =0. 860 ; a (1 0, 4 J : = 1. 150;
:=0.840; a[11,4J:=1.125;
:=0. 820; a [12~ 4]: =1. 100;

:=0.800; a[13,4J:=1.085;
:=0.785; a[14,4J:=1.065;
:=0.770; a(15,4J:=1.045;
:=0.755; a[16,4J:=1.025;

modfac:= zl+ <zl-~2) * (rat-a[z3+1,1l)/0.2;
writeln<' modigfic~tioon factor: ',modfacl;

end;

prc•cedure cal;

begin
p:= 0;
for i:= 0 to 100 do

begin

end;
p:=O;

c[i,1J :=p;
p:=p+length;

for i:= 0 to 100 deo
begin

c [i' 2] : = p;
p := ddudl*c[i, 1JlE-c[i, lJ/20000.0;

end;
z:=ddudl*length/2;
p:=O;
for i:= 0 to 100 do

begin
C [i, 9] : = (Z*C [i, 1 J I _1 00)

er.d;
(c [i' 2]) ; -

end;
begir-,

clrscr;
over := tt~ue;
while over=true do·

begin
over := false;
for I:= 0 to 100 deo

begirt
c [i' 1 J: =0;
c[i,2J:=O;
c [i' 3]: =0;
cEi,4J:=O;
c[i, SJ: =0;

er.d;
clflag:=false;ssflag:= false;
ohflag:= false;fxflag:=false;
ptflag:=false;udlflag:=false;

flag : = true;
writeln;
writeln ('Which type of beam you like to design'>;

while flag= true do
begin

flag:= false;
writeln;
writelnC'The following options
writeln('Cantilever beam
writelnC'Simply supported beam
writelnC'Over hanging beam

are avilable');
EclJ'>;
(ss]' >;
EohJ');

writeln<'Fixed beam [·fxJ~);

writeln;
write<'Enter your selected option by entering the'>;
write<' characters in the braces : '>;
readln Canswere);bmtype :=answere;
if<< answere ='ss') or Canswere ='SS'))

then ssflag:= true
else if(Canswere='oh')or(answere='OH'))

then ohflag:= true

end;·
flag:= true;

else if C(answere='fx' }or(answere='FX' }}
then fxflag := true

else if Canswere='cl') or Canswere='CL'
then clflag:=true

else
begi y,

write<' Ir.valid optior• ');
write(' please try again'>;
writeln;
flag:=true;

er.d;

while flag = true do
begi y,

flag := false;
clt~scr;

write(' Which grade of steel'>;
wtiteln(' is used for reinforcement'>;
wri tel r.;
writelr,(' The foil owi ·ng options are available'};
wt~iteln('Type 1 " for FE 500 gr'ade steeD;

•

write<' Type " 2 " for FE 415 gr--aue steel --') ;
Wl"~ite(' Ribbed Tco:w');

writelnC'Type 3 FE
writeln;
write('What 1s y•.::•ur·- optior, :'
if (i = 1) Cot"· c.·} Co,~ i

then gt~ade:=i

else
begi r•

250 gr-ade steel') ;

) ; read< i)

= 3)

wt~i tel n (' Sorry invalid option try again');
wt~i tel r•;
f 1.:. Q : = t ·r··u e ;

er.d;
wri tel y,;
write<' Specify the diameter of the steel'>;
write(' bars[y/nJ '>;readln<answere);
if <answere='y') or (a~swere='V') then
begirt

flag:=true;
while flag=true

begi Y•

flag:=false;
write<'Enter the diameter of bars :'>;

3

read 1 y-, (s t 1 d i a} ;
if stldia=O then flag:=true;

er.d;
er.d;

if Canswere='n') or Canswere='N'>
begi y,

er.d;
flag:= tt~ue;

sdflag:=true;
stldia:=1.8;

end;

while flag = true do
begir•

flag := false;
clrscr;
writeln;

ther•

writeln<'Which grade of concrete you prefer '>;
wri telY•;
WRITELN<'The following
writeln<'M10 ,M15 ,M20

options are available'>;
,M25 ,M30 ,M35 ,M40') ;

wri tel y,;
write (' Er.t et~ your selected opt ior,: ') ;
readlr.Creply);
if (reply = 'm10') Ctt"" (reply = 't-1110')

(reply = 'm15') ot~ <t~epl y = 't-1115')
<reply = 'm20') c.-r (r-eply 'M20')
(reply = 'm25') ot~ (r-eply = 'M25~)
<reply = 'm30'} C•l"-.. (r-eply 'M30')
(reply = 'm35 1) o..-~ (t-eply == 'M35' >
<reply = 'm40' } or Ct-epl y = 'M40')

then concgrd :=t·-eply
else

begiY"•

at~

or
or
or
or
or

wri tel Y• (' Sorry invalid c•ptic•n try agair•')

er•d;
clrscr;
writeln;

wri tel n;
flag := true;

end;

writeln<'The suppports are assumed to act '>;
writeln ('in the upward direction');;
writeln('and the loads in the downward direction'>;
writeln ;
write<'Please enter the length of the beam Cmts) :'>;
readln<length>;

ther-. depth := lemgth/7 ; if Cbmtype ='cl') or (bmtyP.e='Cl')
if <bmtype ='ss') or (bmtype='SS'>
if (bmtype ='oh') or (bmtype='OH'>
if (bmtype ='fx'> or Cbmtype='FX'}

the·n depth := length/20;
then depth := length/26;
ther. depth := length/26;

{ if depth-trunc(depth>>0.5 then depth := trunc<depth>+0.5;
if depth-trunc(depth) {0.5 then depth := trunc(depth);}
breadth:=depth/2;
writelr. ('The expert opinion is to have ');

writeln('Maximun depth [mtsJ : ', depth>;
writeln('Maximum breadth[mtsJ: ',breadth>;
write<'This approximate depth and breadth satisfactory '>;
read 1 n <a r.swere > ;
if < ar.swere=' n') or (ar.swere=' N' } then
begin

write(' Do you have any commitments regarding');
write<' the breadth or depth of the beam[y/nJ');
read 1 Y• < answere) ;
if (answere ~'y'} or <answere='Y') the~

begi y-,

write<'Breadth or Depth [b/dJ'>;
readln(reply);
if (reply= 'b') or (reply='B'> then

begin
write('Enter the breadth of the beam specified: ');
readln<breadth>;

ey-od;
if (reply= 'd'> or Creply='D') then

begin
write<'Enter the depth of the beam specified: '>;
readlY"s(depth>;

end;
eY"od;

ertd;
ddudl:=breadth*depth*2.5;

cal;< calling the procedure

writeln;
writeln;
if clflag= true then

begi Y•

x:=O;
y::::: ler.gth;

.L -
!,.,f_l calculate dead load moment }

writeln('Now please enter the loads'>;
wri tel r.;

end;
if ssflag= true then

begin
X :.=0;
y::::: length;
writeln('Now please enter the loads');
writeln;

eY"1d;
if ohflag= true then

begin
flag := true;
while flag = true do

begi y,

flag:=false;
write<' Please er~er the left support');
write (' of the beam from 1 ef't (mt s) ; ') ;
read I·..-, (x } ;
if <x> length) or (x ((I)

begin
writeln;
write('Left support beyond span'>;
write(' please check'>;
flag:=true;

end;
end;

writeln ;flag := true;
while flag = true do

begin
flag:=false;
write<'Please enter right support(mts>:'>;
readln-<y>;
if Cy>length) or Cy<x> then

er.d;
p:= 0;

begin
if y> length then writeln(' Right support'>;
wri~e('exceedsthe beam span please check'>;
if y<x then writelnC' Right support is'>;
write<' left of left support please check'>;
write<' and try again'>;
flag:=true;

end;

for i:= 0 to 100 do
begi r•

c[i, lJ := p;
p:=p+ler.gth;

er-.d;
writeln('Please enter the the loads. '>;

er•d;
if fxflag= true then

begin
x:=O;
y: = ler.gth;
wri tel y-,;
writelnC'Please enter the the loads from the left.'>;
write<' Any sinking of any the two supports(y/nJ :');

readln(answere};
if C (answere=' y') or (ar,swere=' Y') } ther•

begi r, __

c
\..!

writelYJ ('Give the values
of E & I unit kg/m'>;

write<' E:') ;readln<El>;
write (' I:') ; re~d 1 n <I 1> ;
flag:=true;
while flag=true do
.begin

flag:=false;
write('reply[L/RJ:');
readln(answere>;
if (answere=' r') c•r (ar•swere=' R')

or (answere= 'L' >or
(answere=' l')then
write (' ')

p:= 0;

else

er-.d;

begin
write<'Sorry try again'>;
writeln;
flag := true;

end;

write<' Enter the sinking in Cms :');
readln(snk>;
s1 :=6*e1*I1*snk/length/length;
s2 := sl/50;
z:==s1;
for i:= 1 to 100 do

begin
h[iJ:=z;
z:=z-s2;

ertd;
if Canswere='r') or (answere=' R' lthen

fori:= 0 to 100 do h[iJ:=-h[iJ;
for i:= 0 to 100 do writeln(h(iJ);

er-.d;

for i:= 0 to 100 do
begi y-,

er-,d;

c(i, 1] := p;
p:=p+ler-.gth;

er-.t ry :==true;
parea:=O;uarea:=O;m1:=0;m2:=0;f1:=0;z:=O; g1:=0;g2:=0;
for i:= 0 to 100 do

begin
c [i' 6]

c [i' 7]

c [i, 8]

end;

:=0;
:=0;
:=(J;

while entry =true do
begi y,

for i:= 0 to 100

entry := false;
flag:== true;

de•

while flag = true do
begin

flag := false;
Wt'i tel n;

begin
c [i' 2J :=0;
c[i, 3J :=0;
c [i' 4] :=0;
f(i] :=0;
g (i) :=0;

ey,d;

WRITELN<'The following load options are available');

wri tel n <'Type
wri tel rt ('Type
wri tel r.;

II 1 II

fl 2 II

for cc•flcentrated load' ;
for distributed load'>;

write ('What is your option :' >;readln(answere);
;
if (answere = '1'>

then writeln
or (ar.swere = ' 2')

e...-.d;

else
begin

writeln;
writelr•<' Sorry iYwalid optior. try again');
flag := true;

if answere ='2' then udlflag := true;
if answere = '1' then

begin
flag := true;
ptflag:=true;
while flag =true do

begirt
write<'Enter the load from left<mts) :');
readln(distance);
wl'-i tel n;
flag:= false;
if distance) length then

begin

e...-.d;

writeln('Load exceeds the span try again')
f l a g : = h·-u e ;

end;

write<'Magnitude of the load :'>;
readln(intensity>;
writeln;
g1 := gl + intensity*<y-distance>;
g2 := g2 + intensity;

if clflag=true then
begi r•

e...-.d;

z : =0 ; z 1 : =0;
for- i:=trur.c<round <dista...-.ce*100/length>}

dowr.to 0 do
begin

c(i,9J:=c[i,9J+z;
z:=z+intensity*length/100;
c[i,10J:=c[i, 10J+intensity;

e...-.d;
for i:= 0 to 100 do

begii'"l
c (i' 5J : ::::c [i' 9] ;
c(i,6J:=c[i,10J;

if <distance } x) and <distance < y) then

8

begin
for i:= trunc(~oundCdistance*100/length))+1

to 100 do
c [i , 8] : = i nt er.s it y ;

for i:= 0 to 100 do
begin

c[i,7J := cCi,7l +c[i,SJ;
cCi, 8J :=0;

end;
lint := (intensity/100 *Cdistance-x>*

(y-distance)/(y-x>>
/((distance-x)/length>;

z:=O;
for i:=trunc(round <100 *x/length> > to

trunc(round(distance /length*100>> do
begin

cCi,2J:=z;
z :=z+l i r•t;

end;
Rint := Cintensity/100 *(distance -x) *

<y-distance)/(y-x))/
<<y-distance)/length);

z:=O;
for I:= trunc<round(100 * y/length>> downto

er•d;

trunc<roundCdistance /length*lOO>>do
begin

c[i, 2J := z ;
z :=z + rint ;

end;

if (distance C x > or <distance > y > then
begin

if distance < x then
begir•

for i:=trunc(round(distance*100/length>>+1
to 100 do

c[i,8J := intensity;
for i:= 0 to 100 do

begin
c[i,7J := cCi,7l +c[i,BJ;
c [i ' 8] : ,:::::0;

end;

z:=O;
lint := intensity/100*<x-distance) I

((x-distance)/length>; ·
for I:= trunc(round(distance /length*lOO>>

to truncCroundClOO* x/length>> do
begir•

c[i, 2J := -z;
z :=z+l ir.t;

er.d;
writelr.(z);
lint := intensity/100*<x-distance)/

'3

< <y-x> /ler.gth> ;
z:=O;
for I:=trunc<roundC100*y/length>> downto

trunc<roundC100* x/length>> do
begin

c [i , 2J : =-z ;
z:=z+lint;

end;
end;

if distance > y then
begin

for i: =trunc C rou~d <d i st ance*l 00/1 er.gth > > ~1
~-to too do

c[i,8J := intensity;
for i:= 0 to 100 do

begin
c [i , 7] : = c [i , 7] +c [L, 8 J ;
c(i, 8]: =0;

end;

rint := intensity/100*Cdistance-y) I
((distance-y>/length>;

z :=0;
for I:= trunc<round(100* distance/length>>

downto trunc<round(y /length*100>> do
begi rr

c[i, 2] := -z;
z:=z+rint;

end;
z:=O;
rint :=

for I:=

begiYI

intensity/100*(distance-y)/
((y-x > /ler.gth > ;

trunc<round<100*x/length>> to
trunc(round(y /length*100)) do

c[i,2] := -z;
z:=z+rint;

end;
end;

end;
if clflag=false then
begin

end;

for I:= 0 to 100 do
begin

cCi,4J
c(i, 5J

end;

:= c[i,4J +c[i,2J;
:= c[i,SJ +c[i,4J;

if fxflag=true then
begin

if ptflag=true then
begin

for i:=trunc(round<distance*100/length>>+1
to 100 do

c[i,8J := intensity;

10

end;

for i:= 0 to 100 do
begi r,

c(i,7J := c[i,7J +c[i,BJ;
c[i,BJ:=O;

er.d;

z1 :=ir.ter.sity+distc:mce * < length-distar.ce) *
Clength-distance)/(length*length>;

z2:=intensity * distance * distance *
<length-distance) I Clength*length>;

m1:=m1+z1;
m2:=m2+z2;
z:=m1;
ai := (m2-m1> /100;

for i:= 0 to 100 dti

end;

begi r.
g[iJ:=z;
z:=z+a1;
f1: =g [i J -c (i, 5J;
f(i] :=-(f(i]+f1>;

er•d;

writeC'Any other loads ?[y/n] :'>;
readln<answere>;;writeln;

if ((answere='y'>or(answere='Y'>> then entry :=true
else

end;

if clflag <>true then
begi r.

entry:=false;

er.d;

g3 := gl/(y-x>;
g4 := g2 -g3 ;
for i:= trunc<round(x+100/length))+1

to 100 de•
c(i,8] := g3;

for i:= trunc(roundCy+100/length))+1
to 100 do

c[i,BJ :=c[i,8J+g4;
sh1:=0;sh2:=0;

for i:= 0 to 100 do
begin

c[i,6J :=c[i,6J+c[i,8J-c(i,7J;
if c[i,6J}sh2 then sh2:=c[i,6J;
if c[i,6J<sh1 then sh1:=c[i,6J;

end;

--+)
while udlflag =true do

begin
flag := true;
while flag =true do

begi r•
flag := false;

writeln;
write<'
write<'

Please give the point from left
where the udl starts(meters) :' >;

readln<distance>;
if distance <O then

begin

') ;

writeln(' loading beyond the limits of'>;
write<' beam check and try again');
flag : = true;

end;
end;.

flag:=true;
while flag =true do

begi r.
flag := false;
wri tel Y•;
wri tel r.;
write(' please give where the udl ends'>;
write(' from left(meters) : '>;
readly,(span);
if span >length then

begin
write<'The udl spans beyond the beam'>;
write<' please check and try again'>;
flag := true;

end;
end;

writeln;
write ('
write<'

Please give the intensity of the'>;
udl (tor.s/meter) : ');

readlnCintensity>;
if clflag=true then

beg i r•
11:=distance;
12:=1ength/100;
z:=<span-distance}*intensity*

(span-dlstance}/2;
zl:=intensity*length/100;
sl:=(span-distance)*intensity;
s2: =spar.;
for i := trLmc(round Cdistance*100/length>) to

trunc(roundCspan*lOO/length)} do
begi ro

c[i,9J :=c(i,9J+z;
z:=Cs2-distance>*intensity

*<s2-distance)/2;
s2:=s2-12;
c[i, 10] :=c[i, 10J+s1;
sl :=sl-zl;

er•d;
z:=O; sl:=<span-distance)*intensity;
for i:=trunc(round(distance*lOO/length))-1

downto 0 do
begin

z:= sl*(span-11>12;

12

end;

c[i,9J :=c(i,9J+z;
11:==11-12;
c[i, 10] :=c(i, 10J+s1;

errd;

for i:= 0 to 100 do
begir•

end;

c [i, 5J : =c [i, 9] ;
c [i , 6J : =c [i , 10] ;

if (span
begin

R1 :=

<= y> ther,

Cspan-dista~ce) *intensity *
y-d istance- (spar.-distance) /2}) I <y-x>;

zs:=Cspan-distance)*intensity I
C100/(length/Cspan-distance>>>;

zh1:=0;
g1:=g1+r1;
for i:=trunc<round(distance*100/1ength>> to

trunc(roundCspan*100/length>> do
begin

c [i, 7J : =zh 1 ;
zh1:=c[i,7J+zs;

end;
for i:=trunc<round<span*100/length>>+1

to 100 do

errd
else

begin

c [i, 7J : =zh 1 ;

if distance>= y then
begi Yr

R1:==-((span-distance>*<span -distance)/2)*
ir.tensity;

zs:=Cspan-distance>*intensity I
<100/Clength/Cspan-distance>>>;

zh1:=0;
g1:=g1+r1;
for i:=trunc(round(distance*100/length>>

to trunc(round<span*100/length>> do
begi y,

c [i, 7J : =zh 1 ;
zh1:=c[i,7J+zs;

end ;
for i:=trunc(round(span*lOO/length>>

to 100 do
c [i, 7J : =zh 1 ;

end;
if distance<y then

begin

13

Rl:= ((intensity* <y-distance>*
(y-distance> /2)/
Cy-x))-((span-y)*(span- y>*
intensity /2 /Cy-x>>;

end;
ertd;

zs:=(span-distance>*intensity I
(100/(length/(span-distance>>>;

zhl:=O;
g1:=g1+r1;
for i:=trunc(round(distance*100/length>>

to trunc(round(span*100/lengthJ) do
begin

c [i, 7J: =zh 1;
zh1:=c(i,7J+zs;

end ;
for i:=trunc<round(span*100/length>>

to 100 do
c[i, 7] :=zhl;

R2 := (span
if (rl (0)

distance >*intensity - R1;
or (r2 (0) then

begin
if rl<O then write<' The left support'>;

write('should in downward direction'>;
if R2<0 then write<' The right support'>;

write<'should downward direction'>;
write(' Don't worry it is assumed that the'>;
write(' support is in opposite direction'>;

end; z:=O;
L1 := 100 * distance/length ;
L2 :~ span * 100 /length;
m :=trunc (rourod < 11 >) ;n := trunc(round (12))

z:= 0;
for i:= m to n do

begin
c (i' 2] := z;
z := iz+intensity *length/100>;

end;
for i:= n+l to 100 do
c[i,2J :=intensity *(span-distance>;

for i := 0 to 100 do
c(i,4J := - Cc[i,2]* <CCI, 1]/100-distance)/2

fori := tr~nc(round(lOO*x/length))
to trunc(round(y*lOO/length>> do

begin
if c (i, 1] { sparr*100 them

c[i, 4J := r1 * (c[i, lJ/100-x)
- c(i,2J*< c(i,lJ/100-distance>l 2
else if c(i,1J >= span*100 then

c (i , 4 J : = r 1 * (c (i, 1 J I 1 00- >< >
- c [i, 2] *

(c (i, 1] /100-di staYtce- (spaYr-d i stance> /2) ;
ertd;

fori := trunc(roundClOO*y/length>> to 100 do
begirt

:4

if c (i, 1J < sparo*100 ther,
c(i,4J := r1 *<cCi, 1J/100-x)

+R2 * <CEi,lJ/100-Y>
c[i,2J•<cEi,1J/100-distance)/ 2

else if c(i,1J >=span then

erld;

c (i , 4 J : = r 1 * (c [i, 1 J I 1 00- >< >
+ r2*(c[i,1J/100 -y>
- c[i,2J•< c[i,1J/100-distance
-<span-distance)/2 >;

if clflag=false then
for i := 0 to 100 do c[i,5J:=c[i,5J+ c(i,4J;
writeln;
if fxflag=true then

begin
if udlflag=true then

begi r,
zs: = (spq_r,-d istar.ce) •i r.tensi ty I

(100/(length/Cspan-distance>>>;
zhl:=O;

for i:=trunc(round(distance*lOO/length)) to
trunc<round(span*lOO/length>> do

begi r.
c [i, 7J : =zh 1 ;
zh1:=c[i,7J+zs;

er•d;
for i:=trunc(round<span*100/length}) to 100 do

c[i, 7J :=zh1;
.z:=O;
for i := 0 to 99 do

begi r,
zl:=z;
z:=z+(c[i,5J+c[i+1,5J)/2

* <length/100>;
end;

uarea:=.zl;
z:=O;
for i:= 0 to 99 do

begin
z:=z+(c[i,4J+c[i+1,4J>I2*length/100 *

(c[i,1J/100+1ength/200};
zl:=z;

end;
umax:=z1;
z1 := 4*uarea/length-uma><*6/length/length;
z2:= 2*uarea/length-z1;
m1:=m1+z1;
m2:=m2+z2;
z:=ml;
for i:= 0 to 100 do

end;

15

begin
g[iJ:=z;
z:=z+(m2-m1)/100;
f1:=g[i]-c[i,5J;
f[i] :=-< f(iJ+f1);

end;

end;

write<' Any other loads ?(y/nJ: '>;
udlflag:=false;
readln(answere>;;
if ((answere='y'>OR<answere='Y'>>then entry :=true

else
if clflag <> true then

begin
entry:=false;
g2:=g2+<span-distance)*intensity;
g3 := g2 -g1
for i:= trunc(round(x*100/length))+1

to 100 do.
c[i,8J := gl;

for i:= trunc(round(y*100/length))+1
to 100 do

c[i,8J :=c[i,8J+g3;
sh1:=0;sh2:=0;
for i:= 0 to 100 do

end;
end;

end;

begi r,

end;

c[i, 6] :=c[i, 6J+c[i, 8]-c(i, 7J;
if c(i,6J)sh2 then sh2:=c[i,6J;
if c(i,6J<sh1 then sh1:=cCi,6J;

for i:=O to 100 do c(i,9J:=c[i,9J+c[i,5J;

--}
11:=0;12:=0;
for i:= 0 to 99 do

begirt
if c(i,SJ< 11 then 11:=c(i,5J;
if c[i,5J> 12 ther. l2:=c[i,5J;

end;
assign<fil1, 'data.dat' >;
rewrite(filt>;
writeln(fil1,bmtype);
writeln(fil1,length*1000.0>;
writelnCfil1,concgrd);
writeln<fill,grade>;
writeln(fil1,11*10000000.0>;
writeln(fil1, 12*10000000.0>;
writeln(fill,sh1*1000000.0>;
writelnCfil1,sh2*1000000.C>;
writeln(fil1,stldia*10);
writeln(fil1,depth*1000.0);
writelnCfi11,breadth*1000.0);
c 1 ose (f i 1 1) ;

-- }

. ~ ...

clrscr;
write<'Would you like to see the graphical output[y/nJ :'>;
read (ar.swere>;

if <<answere='y')OR<answere='Y'>>then
begin

graphcolormode;
r:=O·;
for i:= 0 to 100 do

if abs(c[i,5J) > r then r:=abs(c[i,5])
if r 0 0 then
begir•

J:=48;
draw <50,50,248,50, 1>;
for i:= 1 to 100 do

begin

er•d;

1:= trunc(round(c[~,SJ/ r * 40.0))
J:=j+2;
k:=50-l ;
drawCj,50,J,k,2)

if fxflag=true then
begin

j:=4'3;

end;
r:=O;

draw (50,'30,250,90,1)
for i:= 0 to 100 do

begin
1:= trunc(round(g[iJ/ r * 40.0>>;
J:=J+2;
k:=50-1 ;
draw<J,50,J,k,'3>;

end;
J:=49;
for i:= 0 to 100 do

begin

end;

begin

end;

1:= trunc(round(f(i]/ r * 40.0>>;
j:=J+2;
k:='30-1 ;
draw<J,90,j,k,2>;

for i:= 1 to 100 do
if abs(c[i,6J) > r then r:=abs(c[i,6J);

if r 0 0 then
begi Y•

J:=48;
draw (50, 160,248,160,1>;
for i:= 1 to 100 do

begin
1:= trunc(round(c(i,6J/ r * 40.0>>;
j:=j+2;
k:=160-l ,

draw(J, 160, J, k,2)

end;
end;

write('Like to see the combined graphical [y/nJ :'>;
read(answere>;
if ((answere='y'>OR(answere='Y'>>then

begin
clrscr;
graphcolormode;
r:=O;

end;
er.d;

ersd;

for i:= 0 to 100 do
if abs(c[i,9J> > r then r:=abs(c[i,9J>;
if r 0 0 then

begin
J:=48;
draw (50,50,248,50, 1>;
for i := 1 to 100 de•

ersd;

begin
1:= trunc(round(c(i,9J/ r * 40.0))
J:=J+2;
1<:=50-1 ;
draw<J,50,J,k,2)

end;

code=2635
nowarnings
domains

file=mf
database

beam<string>

PROGRAM DESIGN.PRO

steel (integer)
stldia(real)
mir.depth (real>
safe_depth <real)
safe breadth(real>
Bmfac(real)
length(real)
pbmd(real>
nbmd<real)
design_moment<real)
pshr (real)
nshr (rea 1)
minbreadth<real>
x lim(real)
mu lim(real}
m load(real}
pascald(real)
pascalb<real)
clear_depth<real>
finalbreadth(real>
fir,aldepth (real)
eff _depth (real)
cover(real)
dpth_section(real>
concrete<symbol)
concgrd(real>

st 1 grd (real)
predicates

start
wr2<real,real,real>
wir.dow
option
breadth
dcd
gm1(real,symbol>
gm2(real,syrnbol)
hml(real,symbol>
he2<real,sy-bo,)
dcdl <symbol)
dcd2<symbol>
decide
decide b(real>
decide d(real}
cvr (real}
bmfactor
roundit(real,real)
gr(real,real,real)

goal

less(real,real,real)
cone
b(real)
checkCreal,real,real>
sare_section(real)
stl
stlrnf(real,real,real>
design
dsgn (real,real,real,real,real,real,real>
prelim_dsgn(real,real).
max_prsnt_rnf_sngl(real,real,real>
lim_mom_rest<real,real,real)
modfac_tsn(real,real,real,real)
modfac_comp(real,real)
stlcal(real,real,real)
decide_depth(real,real,real,real,real,real,real)

start •
clauses

modfac_tsn<0.0,2. 100,2.400,3.000).
modfac_tsn(0.2,1.350,1.600,2.300).
modfac_tsn(0.4,1.075, 1.280,2. 100).
modfac_tsn<0.6,0.950,1. 100, 1.730).
modfac_tsn<0~8,0.900,1.025, 1.525>.
modfac_tsn<1.0,0.850,0.950, 1.415>.
modfac_tsn<1.2,0.825,0.925,1.320>.
modfac_tsn(1.4,0.810,0.900, 1.285>.
modfac_tsn(1.6,0.800,0.880, 1.215>.
modfac_tsn<1.8,0.790,0.860, 1.150).
modfac_tsn<2.0,0.775,0.840, 1. 125>.
modfac_tsn(2.2,0.760,0.820, 1.100).
modfac_tsn(2.4,0.745,0.800, 1.085).
modfac_tsn<2.6,0.730,0.785, 1.065>.
modfac_tsn(2.8,0.715,0.770, 1.045).
modfac_tsn<3.0,0.700,0.755, 1.025).

modfac_comp<O.OO,O.OO>.
modfac_comp<0.25,0.70>.
modfac_comp(0.50, 1.14>.

modfac_compC0.75, 1.20>.
modfac_comp<t.OO, 1.24>.
modfac_comp(1.25, 1.285).

modfac_comp(1.50, 1.33).
modfac_compC1.75, 1.36>.
modfac_comp(2.00, 1.40).

modfac_compC2.25, 1.42>.
modfac_comp(2.50, 1.455).
modfac_comp(2.75, 1.48).
modfac_comp<3.00, 1.51).

max_prsnt_rnf_sngl (15,250, 1.32>.
max_prsnt_rnf_snglC15,415,0.72>.

ma~_prsnt_rnf_sngl(15,500,~.57>.

ma~_prsnt_rnf_sng1(20,250, 1.76>.
ma~_prsnt_rnf_sng1<20,415,0.96).

ma~_prsy,t_rnf _sng1 <20, 500, 0. 76>.

ma~_prsnt_rnf_sngl<25,250,2.20>.

ma~_prsnt_rnf_sngl<25,415,1.19>.

ma~_prsnt_rnf_sngl<25,500,0.94>.

ma~_prsnt_rnf_sng1<30,250,2.64>.

ma~_prsnt_rnf_sng1(30,415,1.43).

ma~_prsnt_rnf_sng1<30,500,1.13>.

lim_mom_rest<15,250,2.24>.
lim_mom_rest<15,415,2.07>.
1im_mom_rest(15,500,2.00>.

1im_mom_rest(20,250,2.98>.
lim_morn_rest<20,415,2.76>.
1 im_rnom_rest <20, 500, 2. 66>.

1im_mom_rest<25,250,3.73>.
1im_morn_rest<25,415,3.45>.
1im_mom_rest<25,500,3.33>.

1irn_mom_rest<30,250,4.47>.
1im_mom_rest<30,415,4. 14>.
1 im_mom_·rest (30, 500, 3. 9'3>.

start :- write("Lets start">,

\

openread(mf, "data.dat">,readdevice(mf>,
read1n<Beam>,
readrea1CLENGTH>,
read 1 y, <CC>,
read i nt <SS>,
readreal(NB>,Nbmd=l.S*Nb,
readreal<PB>,Pbmd=Pb*1.5,
readrea1<Sh1),S1=Sh1*1.5,
readrea1<Sh2>,S2=Sh2*1.5,
readrea1<Stldia>,
readreal <Depth>,
readrea1<Breadth>,
closefi le <mf),
asserta(beam<Beam>>,
asserta(concrete<CC>>,
asserta<steel<SS>>,
asserta(nshr(Shl>>,
asserta(pshr(Sh2>>,
asserta(1ength<LENGTH>>,
asserta (r,bmd <NBMD> >,
asserta(pbmd<PBMD>>,
asserta<pascald<Depth>>,
asserta(pascalb<Breadth>>,
asserta<stldia<Stldia>>,window,

21

window
option

cone
cone

-cone--'
cone
cone
cone
cone
coroc

stl

stl

stl

bmfactor
bmfactor
bmfactor
bmfc.,::tor

:-

:-.
:-
:-
.
.
.
.
.
.
.

bmfactor, !,cone, •,stl, !,cvrCStldiaJ,
safe_sect ion (Ler-.gth), opt ior-o, breadth,
design.

rnakewi ndow <2, 1, 112, "Auto Beam", 0, 0, 25, 80) , nl, nl, nl.
write<" This expert system by default designs">,
write(" a singly reinforced beam, if you de• r.ot "),
write< "specify di111ensions of the bearn section."),
write("but it opts for a"J,nl,
wr.ite("doubly reinforced beam if the section you">,
write(" specified cannot safely har-odle the loads.").
concrete<m10J,asserta<concgrd(10J>.
concrete(m15J,asserta<concgrd(15J).
concrete<m20>·, assert a <conegrd <20> >.
concrete(m25), assert a (corocgrd (25)).
concrete(m30J,asserta(concgrd(30J>.
concrete<m35J,asserta<concgrdC35>>.
concrete(m40J,asserta(concgrd(40JJ.
concrete(m50J,asserta(concgrd(45>>.

steel<l>,asserta(stlgrdCSOO>>,A=(805/C1265+500>>,
asserta<x_lim<A>>.
steel(2),asserta(stlgrd(415>>,A=C805/C1265+415J>,
asserta<x_lim<A>>.
steel<3>,asserta(stlgrd(250>>,A=<B05/C1265+250>>,
asserta(x lim<A>>.

:- beam(cl>,asserta(bmfa~(7.0>>.
beam<ssJ,asserta(bmfac(20.0JJ.
bearn(fxJ,asserta(bmfac(26.0J).
beam CohJ, asserta(brnfac (26. OJ).

safe_sect ion <L> :-bmfac <F>, D=L/F, Bl=L/60, B2=sqrt.<L*D/250J,
gr(Bl,B2,B3J,write(" safe D,B" ,D," ",83J,rol,
asserta(safe_depth<D>>,asserta(safe_breadth<B3JJ.

cvr(DiaJ
cvr(DiaJ

DiaJ25,asserta(cover(Dia> I.
assertaCcover(25JJ.

breadth:­
concgrdCFCK>,pascald(D>,><_lim<X>,stldia(SDJ,cover(CJ,pbrnd(MlJ,
nbmdCM2J,M3=absCM2J,gr<Ml,M3,MJ,
assert a (desi gn_momer-ot (MJ J, ,..,l,
write<" There can be inFinite sections which can safely ">,
write("handle the loads here ar~ few and opt for one">,nl,nl,
write(" The moment ir"·rduced by the specified loading :",MJ,nl,nl,
write(" Eff_D/Breadth Clear Depth Breadth Eff_depth Lim_Moment ">,
! , decide_depth <FCK, D, X, SD, C, M, 1. 5>, '.
decide_depth<FCK,D,X,SD,C,M, 1.5>:- •,
nl,Bd2= (1.5*M> I <0.36*FCK*(1-<0.42*X)l*X>, D1=ln<Bd2J/3,
D2=exp<D1J, D4=D2+C+<Sd/2J,Dm=D4/10,
roundit<Dm,OnJ,D5=10*Dn,D6=ro~..tnd<D5-C-<Sd/2J>,

D7=round(D5/1.5J,
Mom= C0.36*Fck*D7*D6*D6*< 1-<0.42*X>>*X>,

write(.. 1.5 .. ,,05, n ",D7," " 1 06, 11 u,Mom>,nl,

decide_depth <FCK, D, X, SO, C, M, 2>, 1•
decide_depth<FCK,D,X,SO,C,M,2>:- _,
Bd2= 2*M I (0. 36*FCK*< 1-<0. 42*X> l *Xl, Dl=lrr<Bd2l 13,
02=exp<01>, 04=D2+C+<Sdl2l,Drn=D41100,
Roundi t <Om, On), 05=100*Dra, D6=round <DS-C- <Sdl2>),
07=round<0612>,Mom =< 0.36*Fck*06*06*06*< 1-<0.42*Xll*XI2>,
write (.. 2. 0 11

' If II, 05, II II' D7' .. n' 06, ff

decide_depth <FCK, D, X, SO, c, M, 2. 5>, 1 •

decide_depth<FCK,D,X,SO,C,M,2.5>:- !,
Bd2=2.5*M I <0.36*FCK•<1-(0.42*Xll*Xl, 01=ln<Bd2>13,
02=exp<01>, 04=02+C+<Sdi2>,0rn=D41100,
roundit<Om,Dn>,OS=100*0n,D6=round<DS-C-<Sdl2>>,
07=round(06/2.S>,Morn =< 0.36•Fck*06*D6*D6*< 1-<0.42*X>>*X12.5>,
write< •• 2. 5 ~~~, " .. , D5, , D7, " 11

, D6, "
-decide_depth <FCK, 0~ X, SO, C, M, 3)~,!.
decide_depth<FCK,O,X,SD,C,M,3>:- !,
Bd2= 3*M I <0.36*FCK•<1-<0.42*X>>*X>, 01=ln(Bd2>13,
02=exp<01>, 04=D2+C+<Sdi2>,0rn=D4/100,
roundit(Om,On>,DS=100*Dn,D6=round<D5-C-<Sd/2)),
D7=round<0613>,Mom =<0.36•Fck*06*D6*06*< 1-(0.42*X>>*XI3>,
write(" 3.0 ", 11

.. ,D5," .. ,D7, 11
.. ,D6, u

decide_depth <FCK, O, X, SO, C, M, 3. 5>, ! •
decide_depth<FCK,O,X,SD,C,M,3.5>:- !,
Bd2= 3.5*M I (0.36*FCK*<l-<0.42*X>>*X>, D1=ln<Bd2>13,
D2=exp<01>, 04=D2+C+<Sd/2>,0rn=D4/100,
roundit<Om,Dn>,DS=100•0n,D6=round<D5-C-<Sd/2)),
07=round<06/3.5>,Morn =<0.36•Fck•06*06*D6*< 1-<0.42*Xll*X/3.5>,
write(.. 3.5 .. ,.. ..,05,'1

.. ,071
11

.. ,06, 11

decide_depth<Fck,D,X,SD,C,M,4>, !.
decide_depth<FCK,D,X,SD,C,M,4>:- _,
Bd2= 4*M I <0.36*FCK•<1-<0.42•X>>*X>, D1=ln<Bd2)13,
D2=exp (01 >, 04=D2+C+ <Sd/2), Orn=D41 100,
roundit<Dm,Dn>,05=100*Dn,D6=round<DS-C-<Sdl2>>,
07=round <06/4), Mc•rn = <O. 36•Fck*D6*D6*D6* (1- < 0. 42*X > > *XI4),
write(.. 4 .. 0 .. , " .. ,DS, n ",D7, II .. ,D6, n

dcd, 1•

dcd
write(" Do you want to specify breadth
write (" both d irnensior1s of the beam
readln(Reply>, dcdl <Replyl, 1.
dcdl <R> :-

or depth Ot'"),

section [y/nJ:"J,

R="n",nl,rll,write(" This systerns desigr, is based on ">,
write("the IS-45E. codal specificatiorrs">,safe_depth<O>,
safe_breadth<Bl,preliru_dsgn<B,Dl.
dcd1 <R> :- R="y",

write<" Enter 'b' to specify Breadth"l,nl,
write<" Enter 'd' to specify Depth ">,nl,
write(" Enter 'bo' to specify Both "l,nl,
write(• d I b I bo : "l,readln<Reply>,dcd2<Reply>.

dcd2<R> :-
R="d",write<" Enter the depth(MmJ: "l,readreal<01l,nl,
decide_~;~ <Dl >.

dcd2<R> :- R="b",write<" Errter the breadth(MmJ: ">,
readreal, decide d.

",Mom>, Yal,

",Mom>,nl,

", Morn> , Ytl,

",Moml,nl,

.. , Mc·rn>, r-.1,

dcd2<R> :- R="bo",decide.

decide_d:­
length<L>,design_moment<M>,concgrdCFCK>,x_lim(X>,
stldia<SD>,cover<C>,safe_depth<Safe>,

D = sqrtCM I (0.36*FCK*B*<1-<0.42*X>>*X>>,
gr<D,Safe,D1>,D2=D1/10, roundit<D2,D3>,
D4=03*10,D5=D4-C-<Sdl2>,
Mom =<0.36*Fck*D5*D5*B*< 1-(0.42*X>>*X>,
write<" The moment induced by loads: ",M," N-rnm"),nl,
write<" Breadth you specified [MmJ : ", B>, nl,
write(" Depth which can sustain the specifed"),
write<" loading [Mml : ", 0), nl,
write(" The depth satisfyiYtg IS-456 ",Safe),nl,
w·rite(" The greater eff-depth ",01," cosidered • ">,nl,
write (" The moment of resi ster.ce :",Mom)., nl, Mm=MomiM,
write<" The factor of safety ", Mm>, nl,
w-.-~i te <" Is this sect ion satisfactory to you [ylr,J: ">,
·readlr,(Reply>,
hm1 <B, Reply>, prel im_dsgr• <B, 04).

decide b(D) :- safe_depth<Safe),S1=Safei4,0C=S1,
write(" The depth given is not at all safe"},
write("for a siY•gly reinfofrced beam.").

decide b(D) :-length<L>,design_moment<M>,concgrd<FCK>,x_lim(X),
stldia<SO>,cover<C>,D1=D-C-<Sdl2>,safe_depth<Safe>,
B = M I <0.36*FCK*Dl*D1*<1-(0.42*X>>*X>,Bb=B/10,
roundit<Bb,B1>,B2=B1*10,
Bm=LI60, Br.=sqrt <L*DI250>, gr CBrn, Br,, B3>, gr <B2, B3, B4) ,
Mom =<0.36*Fck*D1*D1*B4*< 1-<0.42*X>>*X>,
write<" The mome-nt ir.duced by loads: ",M," N-mrn">,nl,
write<" Depth you specified[MmJ :",D),nl,
write(" Breadth which can sustain the specifed">,
write(" loadiy,g[Mrnl :",B>,rd,
write(" The breadth satisfyir.g IS-455 ",B4>,nl,
write(" The greater breadth is cc•sidered • ") ,r,I,
write (" The moment of res i st ence : ", Morn> , r.l , Mm=Morn/ M,
write<" The factor of safety ",Mm>,-nl,
write<" Is this section satisfactory to you[ylnJ: "),
readlnCReply>,gml<DJ,Reply).

hml<B,R> ·- R="y",
write<" Thank you for concidering my advice. ">,nl.

hml <B, R> :- R="n",
write<" Which has to be changed breadth or depth [bid]: ">,

readln<A>,hm2<B,A>.
hrn2<B,A> :- A="d",write(" Enter the depth you prefer[rnrnl :">,

readreal<D>,prelim_dsgn<B,O).
hm2<B,A> :- A="b",dcd2("b">.

grnl <D, R>
R="y", write (" Thanks for cor.sidering roy advice. ") , rtl.

gml <D, R> :- R="n",
write(" Which has to be char•ged breadth c•r depth [b/d]: "),

readln<A>,gm2<D,A>.
gm2<D,A> :-

A="b",write(11 Enter the breadth you prefer(mml :">,
readreal,prelim_dsgn<B,D>.

gm2<D,R> :- R="d",dcd2C"d">.

wr2<B1,B,B2>

decide :-

·­. sare_breadth,gr<B,B1,B2>.

pascaldCD>,write<" The e~pert ·is of the opinion that ">,
write(" the depth should in no case should be less ">,
write<"than ",D," this depth doesnot include"),
write<"modification factor the minimum depth ">,
write(" can be further reduced if the modification ">,
write(" factor is cor.sidered ">, nl, nl,
write(" The e~pert also wants to advice you that r.arrow"),
write(" and deep beam are economical and posses">,
write(" greater stiffness and better lateral stability ">,nl,
write(" Now please enter your preferable depth and ">,
write("breadth use the above data guidelines"),nl,
write(" Er.ter the clear depth you prefer : "),
readreal(Reply>,b<Reply).

b<D> • lengthCL>,Bl=L/60,B2=sqrt<L•D/250>,grCB1,B2,B3>,
write(" The breadth should not be less ·than ",B3>,nl,
write(" Please er.ter the breadth you prefer:"),
readrealCB5},check(B3,B5,D).
checkCMb,B,D> ·-

B<Mb,write(" This depth violates IS-456. codal">,
write<" specifications, Try again ">,
nl,bCD>.

check<M,B,D> :- Bl=D/B, B1<2.0,
write<" The breadth depth ratio is ">,
writeC"less than 2.0 ,The section may not be economical ">,
r•l, b <D>.

check<Mb,B,D> :- Bl=D/B,B1>5,
write (" The depth breadth ratio is too">,

write<" much please try again">,r.I,b<D>.
checkCMb,B,D> :-

writ~<" AIL-the codal specifications regarding ">,
write("the depth ard breadth are satisfied 11),
!,dsgn<M,Fck,X,Sd,C,B,D>.

prelim_dsgn<B,D>:-write<B,D>.
dsgn <B, D> : -concgrd CF>, x_l im (X>, desi gn_Mc•ment <M>,

write(" EfFective depth
write(" Effective breadth :
Mlim= 0.36*F*B*D*D*< 1-<0.42*X>>*X,nl,

",D>,nl,
",B>,nl,

write<" LimiMting moment of the section : ",Mlim),rd,
Mlirn>M,

st leal <D, M, F>.
dsgnCM,Fck,X,Sd,C,B,D>:­

safe_depth<D>,safe_breadthCB>,Dl=D/10,B1=B/10,
rour.dit <Dt, 02), round it (Bl, B2), B3=B2*10, D3=D2•10, ! ,
dsgnCM,Fck,X,Sd,C,B3,D3>.
design:-write(" The design starts.").

stlcal<D,M,Fck> :- stlgrd<Fy>,Al=-Fck*D*D/2,
A2=M*D*Fck/2*<0.B7*Fy>,R1=<-Al+sqrt(A1*A1-4*Fy*A2>>1<2*Fy>,
R2=<-A1-sqrt<A1*A1-4*Fy*A2>>1<2*Fy>,
write(" Roots of the equation ",Rl," ",R2>.

stlrnf(A,B, D>.

stlrnf<A,B,D>:­
readln<Reply>,Reply="y";Reply="Y",
write(" Enter the dia of bars">,
readreal<Fai)./* decice the bars and number*/

gr<A,B,C>
gr<A,B,C>

:- A>=B,C=A. . -.
less<A,B,C>
less<A,B,C>

roundit<A,B>
roundit<A,B>

C=B .

·­.

·­.

A <= B, C=A.
C=B.

C=round<A>-A, C>=O, B=round<A>.
B=round<A>+O.S.

ACKNOWLEDGEMENT

I much indebted to my guide,

nr.S.Balasundaram, Asst~ Professor, who has been extremely

and encouraging through out the proJect, without

wh i ch--o it wo~f~ have been very difficult to complete the

Dr. Ashok Gupta, Asst. Professor, Indian Institute

of Technology, New Delhi, has played a very significant role

by giving his timely and extremely useful suggestions

I thank Mr. D.Jagadesh, Mr. Seshu, Mr. Pinakapani

for their help and advices.

I Mr. Fateh Singh, Ac:im i .,.., i si::-l-''C:\t :i. ve

officer of our school for his cooperation.

thank our ~ean Prof. Karmeshu who iS VE~l~y

encouragi~g through out this prOJect.

Jagadesh.P.Nanis~tty

	TH23690001
	TH23690002
	TH23690003
	TH23690004
	TH23690005
	TH23690006
	TH23690007
	TH23690008
	TH23690009
	TH23690010
	TH23690011
	TH23690012
	TH23690013
	TH23690014
	TH23690015
	TH23690016
	TH23690017
	TH23690018
	TH23690019
	TH23690020
	TH23690021
	TH23690022
	TH23690023
	TH23690024
	TH23690025
	TH23690026
	TH23690027
	TH23690028
	TH23690029
	TH23690030
	TH23690031
	TH23690032
	TH23690033
	TH23690034
	TH23690035
	TH23690036
	TH23690037
	TH23690038
	TH23690039
	TH23690040
	TH23690041
	TH23690042
	TH23690043
	TH23690044
	TH23690045
	TH23690046
	TH23690047
	TH23690048
	TH23690049
	TH23690050
	TH23690051
	TH23690052
	TH23690053
	TH23690054
	TH23690055
	TH23690056
	TH23690057
	TH23690058
	TH23690059
	TH23690060
	TH23690061
	TH23690062
	TH23690063
	TH23690064
	TH23690065
	TH23690066
	TH23690067
	TH23690068
	TH23690069
	TH23690070
	TH23690071
	TH23690072
	TH23690073
	TH23690074
	TH23690075
	TH23690076
	TH23690077
	TH23690078
	TH23690079
	TH23690080
	TH23690081
	TH23690082
	TH23690083
	TH23690084
	TH23690085
	TH23690086
	TH23690087
	TH23690088
	TH23690089
	TH23690090
	TH23690091
	TH23690092
	TH23690093
	TH23690094
	TH23690095
	TH23690096
	TH23690097
	TH23690098
	TH23690099
	TH23690100
	TH23690101

