
I t ··er t 1 that t w~~ embodied in this

dissertatior 1 t led. uery Pro ·sing in Distributed

Database S~ ·'· s tbm t by B.D·. Badgaiyan. an M.Tech.

student oJ .,~_. .Jo l Jf •mputer and Systems Sciences.

Jawaharlal Nehru University. New Delhi. is original and has

not been submitted in any other university or institute for

any degree or diploma.

Date: JANUARY 1988

DR. Y.K.SHARMA
[ADDITIONAL DIRECTOR,

NATIONAL - INFORMATICS CENTRE,
DEPARTMENT OF ELECTRONICS,
GOVT. OF INDIA, NEW DELHI]

DR. G.V -:
[ASSOC. PRO

SCHOOL OF COMPU R AND
SYSTEMS SCIENCES,

J.N.U., NEW DELHI]

PROFESSOR KARMESHU
[DEAN

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES,
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI]

ACKNOWLHDGHMHNT

I express my deep gratitude to Dr.G.V. Singh,

Associate Professor ,School of Computer and Systems

Sciences, for providing me constant encouragement and

guidance.

I am deeply indebted to Dr. Y.K. Sharma,

Additional Director, National Informatics Centre, Department

of Electronics, Govt. of India for kindly allowing me to

work in the Systems Software Group, N.I.C. for this project.

I thank all the members of the S.S.G. for their

help. • I thank specially to Mr. Suji t Verma, Mr. Joshy

Joseph and Mr. Santosh Kumar.

My special thanks are also to Prof. Karmeshu,

Dean, School of Computer and System Sciences, J.N.U. New

Delhi for ~is keen interest in my work.

~-M~~
(B.D.~AN)

Chapter I

Chapter II

Chapter III

Chapter IV

Appendix A

Appendix B

Appendix C

CONTENTS

· Introduction

The Query Language - SQL

Optimisation of Query Decomposition

Design and impl~mentation of Parser
for SQL

Listing of the Program for Parser

Illustrations

List of Keywords etc. in SQL

CHAPTER - I

INTRODUCTION

In recent years, distributed databases have become

o.n important area of information processing. The reason for

this are both organisational and technological. On the

organisational side the motivations for having a distributed

database system are many - first of all distributed database

fits more naturally with the decentralised character of most

organizations, where the data is dispersed geographically

acr.oss the organization • Se;~ondly, distributed databases

(DDB) are also natural solutions when several databases are

already existing in the organization and the necessity of

performing a global application arises. Thirdly, as

compared to a centralised database ~DDBf also reduces

communication ~~ost as most applications can be satisfied

locally. Fourthly, it is also relatively easier to add new

organizational unit (with new database) to the existing

units then in the case of a 1:entralised database. The

technological reasons are first, the emergence of low cost,

relatively small mini and micro•:omputers in 70s: which makes·

it possible and feasible to distribute large number of such

~~ompu ters the organization. Secondly, the

development of ~~omputer network technology has facilitated

the growth of distributed systems. The other advantages of

a distributed system are increase of performance through a

high degree of parallelism, a higher degree of reliability

against system failures as there are many processors.

Formally, we can define a distributed database

as [1]:- ~A distributed database system is a collection of

data which are distributed over different computers of a

computer network. Each site of the network has autonomous

processing capability and can perform local applications.

Each si~e also participates in the execution of atleast one

global application, which requires accessing data at several

sites using a communication system. ~

The entire data residing in the DDB system can be

manipulated using a simple, userfriendly Data M~nipulation

Language (DML) . Thus to retrieve data from the system a

user simply frames his query in terms of easy to understand

constructs of the underlying DML/query language. Also the

user may frame his queries as if the database were not

distributed at all. In general a user's query_,..~~y involve

'L.

data str~red at several sites and supported by different

DBMSs. Thus to satisfy a query we must have an appropriate

strategy so that we ·:an ·:arry out the above mentioned task

in a cost effective manner. It is the objective of the

present study to discuss such an optimal strategy for query

processing for a heterogenous DDB system with special

attention to data retrieving queries. At the backdrop of

our study is the proposed National Informatics Centre

Network (NICNET) which is to cover all the 438 districts of

our country. The typology of the network is based on a

site-to-site model. The distributed environment supported

by the network is heterogenous i.e there are several

databses supported by different DBMSs located at different

sites. Also a single relation is allowed to be fragmented

over several sites. But the fragmentation is only

horizontal, and it is based on a distribution criterion

(fragmentation predicate)- which may be a t:ondition on the

key field of a relation. Further, there is no duplication

of fragments i.e. a fragment exists at only one site.

The query originates at any site and is formulated

in terms of the global query language - SQL with global

referents. The query may be satisfied locally (for which it

)

is checked first) or may require access to other sites.

Broadly speaking any particular strategy for query

processing must address itself to the following

Firstly suitable sites where processing needs to

problems:

be done

should be selected. Secondly, appropriate subqueries should

be generated and be distributed to the respective sites.

Thirdly, partial results generated at the processing sites

should be collected and be transferred to the site of

origin of request.

Now, since to satisfy a given query in general

there can be several different ways we should choose the one

which is best with respect to the optimising !;ri terion

selected. In literature several methods of query processing

have been suggested [2,3,4]. Most of them seek to minimise

them transmission cost. But they differ mainly in their

evaluation strategy, particularly with respect to the

evaluation of joins. Wong [2] has described an algorithm

which is used by SDD-1 (a system for distributed data

processing- Roth [5]). It optimizes only the transmission

cost and is true only for a site-to-site model of hetwo~k.

It also assumes that relations do not span more than one

site. In this method after performing all one variable

restrict ions the fragments are moved to the site with most

data where the remaining processing (join etc.) takes place.

After processing the result is moved to the destination

site.

Hevner and Yao [3] have also proposed an algorithm

which is based on Wong's work and is valid only for a site-

to-site model and assumes no fragmentation of relations. It

consiaders two different optimization:- (1) minimising

transmission cost and (2) minimising network delay. The

algorithm begins like that of Wong's algorithm by performing .
all local processing first but in looking for an optimum

solution it examines more alternatives than Wong's work.

Thus it finds an equal or better solution than Wong's

se-lution. Wong's algorithm is a "greedy" algorithm that

optimises for the current processing step without regard to

the ''global" optimization. On the other hand Hevner and
'

Y~o's algorithm does an exhaustive search for solution. But

i t i s no t ·- l ear how t he a 1 g or i t hm can be ex t ended t o a 1 1 ow

multiple fragments of a relation on multiple sites [6).

Stonebraker [4] has suggested an algorithm which
_,/

-·is used in distributed version of INGRESS. This algorithm

is essentially an extension of "query decomposition

technique'' suggested by Wong [7] for optimization in

centralised databases to the r:ase of a distributed

environment. B u t a g a i n t hi s a 1 go r i t hm does on l y " l o c a 1 ''

optimization as it is primarlily oriented towards finding a

sequence of subqueries which if run will "advantageous" as

compared to the given query.

We shall discuss in detail the algorithm proposed

by Epstein [6]. This algorithm is valid for both site-to-

site and broadcast type of network. Since the underlying

network (NICNET) is based on site-to-site model we shall

confine ourselves only to this model. The algorithm allows

for a possible fragmentation of relations. It can be

extended to perform exhaustive search of possible

alternatives of partitioning the given query into

subqueries.

The present work is organised as follows:-

In chapter 2 we give a description oi the query language SQL

in terms of which queries are formulated.

In chapter 3 we discuss th~ algorithm mentioned above for

generating the optimal sequence of subqueries.

In chapter

Parser for

7

4 we discuss the design and implementation of

the language SQL. As we shall see later the

Parser is an essential input for the implementation of a

query processing strategy. Particularly in heterogenous DDS

system Parser is needed also to translate SQL queries into

the DML of local DBMS.

Appendix A contains a listing of the program for the Parser

which has been written in 'C' language on a NEC - S/1000

system.

Appendix B contains illustrations which explain the output

of Parser.

Appendix C contains the list of keywords, symbols and

constants in the language SQL.

CHAPTER II

The Query Language - SQL

In this chapter we shall discuss the UNIFY

implementation of SQL [9] - as this version is going to be

supported en the proposed distributed processing network

(NICNET). SQL was developed at the IBM Research Centre as a

relational inquiry and data manipulation language based on

an English keyword syntax. Its structure was refined

enough

data

through extensive testing to produce a language easy

for nonspecialists to use, yet powerful enough for

processing professionals. SQL is fast becoming

standard relational query language on all sizes

the

of

computers.

This implementation of SQL is based on the

language description given by D.D. Chamberli~ et.al. 10].

In order to adapt it to supermicros and the operating system

environment, some changes have been made to the syntax.

SQL Query Facilities

A query consists of 11 phrases" .. .J-also

clauses), each of which is preceded by a keyword.

called

These

keywords have special meaning to SQL, and so cannot be used

for record type or field names.

Some of the phrases are optional, and some of them

are required. The required phrases are:

Select some data (a list of field names)

From some place (a list of record types)

The optional phrases are:

Where a condition (a true/false statement)

Group by some data (a list of field names)

Having a group condition (a true/false statement)

Into a file

The following sections take each of the phrases

and show s.ome possible queries. The example given are based

on the following database

emp, (Number, Name, Dept_No, job~ manager, salary,
-:"\.

commission)

dept (Number, Name, Location).

Select From Clause

The simplest kind of SQL query includes both a

select clause and a from clause. The select clause lists

the fields to printed, while the from clause tells which

record type (or types) the fields ate to come from. The

fields to be selected must be in the record types listed in

the from clause.

Example:Select all the fields for each record of the emp

record type. This will show the entire contents of th~ emp

records. The "*" is shorthand for all the fields.

* select

from emp/

Example ~ List the employee number~ job, name, and salary

for every employee.

select number. Job, Name, Salary

from emp/

Where Clause

Since we rarely want to tist the entire contents

of a spacific record type, the where clause is provided to

specify selection criteria. The where clause compares a

field with a constant, expression, or the results of another

select clause. These nested queries will be described in

more detail later. The where clause can also contain a

complex boolean expression composed of selection criteria

connected by and and or operators.

I I

Example (3): List the name and location of department

number 70. This illustrates comparing a field with a

numeric constant.

select Name, Location

from dept.

where Number ~ 70/

Example (4):List the name, job, salary and commission for

employees whose commission exceeds their salary.

select Name, Job, Salary, Commission

from emp

where Commission-,. salary/

The standard boolean operators and and or can be

used to connect simple comparisions to form complex

expressions.

Example (5): List the name, job, salary and de-partment

number for the employees who work in department 10 and

are either t:lerks or make less than or equal to $1200.

select Name, Job, Salary, Dept_No

from emp

where Dept No ~ 10 and

iL

(job = 'cletk' Ot salaty L = 1200)/

Boolean exptession can be negated in whole OL in

patt to select those leCOtdS that do not match a specified

Ctiterio.

Example (6): List the name, job and salaly of all employees

who are not salesmen or ~ho make less than $ 2000. This

uses the not operator to negate an entire expression.

select Name, job, Salaly

ftom emp

where not (job = 'salesman' Ot salaty) = 2000)/

Set Inclusion

In many queries we may want to compare a field to

a list of values, not just a single value. For example, let

us consider selecting all the employees who are in

departments 10, 20, 30 or 40. With the st~ndard operators,
~

this becomes a sequence of equalities connected by ORs, such

as

Dept_No = 10 or Dept No =20 or Dept No= 30 ''"

SQ~/plovides a set inclusion notation to make this kind

of quely easiet.

Example (7): List the name, job and department number for

employees in departments 20, 30 or 40.

select Name, Job, Dept _ No

from emp

where Dept No in ~20,30,40)'/

Unique Operator

If a query doesn't select a primary ,key field from

one of the record types, it is possible for that query to

produce rows that are exact duplicates of each other. This

is because only the primary key is required to be unique.

Sometimes, these duplicates are not desired. The unique

operator is provided to suppress duplicate information in a

query result.

Example {8): List the different job titles in the company.

select unique job
\

from emp/

Order by Clause

All the pre~ious queries returned their results in
//

an order determined by SQL. Even though the unique operator

sorts its ~utput, we are still not able to direct the order

of output. The order by clause lets us explicitly specify

the sequence of the rows that result from a query. The

default sort sequence is ascending (ase), with STRING fields

sorted in alphabetic order from A to Z.

Example (9): List every employees number, name and job,

sorted by employee number.

Select Number, Name, Job

from emp

order by Number/

One can sort also by more than one field, and

specify the direction, whether ascending (asc) or descending

(desc), for each field in the sort.

Example (10): List every employee's department number, name

and job, by ascending name within descending department

number.

select Dept No, Name, Job

from emp

order by Dept_No desc, Name asc/

Aggregate Functions

SQL provides 5 different built-in
./

aggregate

functions to allow calculation of aggregate items in a query

result. The functions a~e- count (*), min, max, sum and avg.

Aggregate functions are only valid when used in select or

()

having clauses. One cannot use an aggregate function

directly in a where clause, although we usually achieve the

same effect by using a nested query. An aggregate function

only applies to a group of records with a common

characteristics for example the average salary of employees

in department 10.

Aggregate functions are most commonly used in

conjunction with the group by clause. A group by clause

explicitly paritions the selected records into groups for

which the indicated aggregate functions are computed. If

there is no explicit group by, than any aggregate functions

are assumed to apply to the entire set of selected records.

Example (11): Compute in list the total number of employees

in department 10.

select count (*}
\

from emp

where Dept No =10/

Example (12): List the job and average of salary plus

commission for all salesmen. The job can be listed in t'his

>-' example because all the selected records have th~ ~arne job -

salesman. select Job, avg (Salary + Commission}

from emp

I~

where job ='salesman' I

Group By Clause

The group by clause is provided to allow

computation of aggregate functions on groups of records that

have common characteristics. Thus using a group by clause

without an aggregate function has no meaning. The effect of

a group by is to sort the selected rows by the indicated

fields, and then perform the aggregate functions at each

level break. This results in the output being sorted also.

Example

number,

(13):

count

commission.

For

of

each department,

employees and

list the department

sum of salary plus

select Dept_No, count(*), sum(salary +Commission)

from emp

group by Dept No/

Aggregate functions can also be applied to the

result of other aggregate functions. This lets us compute

such items as the maximum average or the averagae count.

When used in this way, aggregate functions require a group

by clause. The result is computed as follows. First, all-

qualifying records are selected using the where clause, if

any. Then, they are sorted according to the fields in the

I)

group by clause, and the inner aggregate function is

computed. The outer function is then applied to these

results. Since this second level of computation removes all

identity from the groups, a nested query is required to list

fields other than the function result.

Example (14): List the maximum average monthly salary for

all jobs, except for the job of 11 President 11
• It should be

noted that if we wanted to see what job this was, we would

have to perform a nested query.

select max(avg(Salary)

from emp

where Job A::: 1 president 1

group by job/

Nested Queries

Nested queries allow us to answer a whole new set

of questions that cannot be answered using the capabilities
\

of SQL presented so far. Nesting lets us use the results of

one query as input to another, so we can use the results of

one question in answering another one.

Example (15):Flnd the name and job iof the employee who"

makes the maximum sa 1 ary plus comrni (~-ion.

select Name, Job

from emp

I~

where (salary + commission) =

select max (salary + commission)

from emp/

This query works by first evaluating the inner

query to get a value for the maximum salary plus commission.

This value is then used as a constant to the outer query

which finds the employees (there could be more than one

who make that amount.

Queries can be nested to any level. The following

four-level query finds the person with the second highest

compensation. The method is to find the name of the person

with the maximum compenBation, and the find the maximum

compensation among those left. This also shows that we can

compare an expression with the results of a nested query.

Example (16): List the department number, name, job, and
' ' salary plus commissi.on of the person with the second highest

compensation.

select Dept_No, Name, Job, Salary + Commission

from emp

where salary + commision =

select max (Salary + Commission)

from emp

where Name A-::.

select Name

from emp

where Salary + Commission =
Se.le.ct '»"AR~+ ~)
from emp/

Nested queries can also be used as part of more

complex expression. In this case, the inner query must be

ended with a semicolon(;}, so SQL can figure out where the

nested query ends and the rest of the boolean expression

begins.

Example (17}:List the department number, name, job, total

compensation and commission for the salesman with the

maximum total compensation, and for all the salesmen in

department 20. Sort the result by salary within commission

in descending sequenve, so the high earners come first.

select Dept_No, Name, Salary + Commission, Commission

from emp

where Salary + Commission=

select max (Salary + Commission}

from emp

where Job = 'salesman•:

or (job = •salesman• and Dept No =20)

order by Commission desc, Salary desc/

Having Clause

The having clause lets us select some of the

groups formed by a previous group by clause and reject

others, based on the results of another selction using one

or more aggregate functions. This gives us capability

equivalent to using an aggregate function in a where clause,

which is not allowed.

Example (li}:List the department number and average salary

for departments having an average salary over $2000.

select Dept_No, avg(Salary}

from emp

group by Dept_No

having avg(Salary} ~ 2000/

cluase,

When a query contains both a having and a where

the query is evaluated as follows: First the where

clause is applied to select qualifying records, then the

groups indicated by the group by claus6 are formed; then the

having clause is applied to select qualifying groups.

The having clause can also contain nested queries.

A query nested in a having clause is evaluated in the same

way as a query nested in a where clause.

<1-)

Nested queries can be used in both the where and

having clauses at the same time.

Join Queries

Up until now, all the queries we have been doing

involved only a single record type. However, an SQL

statement may list fields from any number of record types in

a single query. Queries that list fields from several

record types are calied join queries, because they combine,

or "join", the different record types together. The

different record types to be involved in the query are

listed in the from clause, in any convenient order. SQL then

determines what is the most efficient method of performing

the selection and qualification.

The fundamental concept underlying join queries is

that of the Cartesian product. Conceptually, a join query

first forms the cartesian product bf the record types, and

then "filters" the results by the conditions in the where

clause. Thus a join query without a where clause does in

fact list the Cartesian product of the record types.

Example (1J): List the employee name and all the fields from

the department that the employee works in.

~~:~'
ct}'--- ~""' it ii ... ;;', s~lect emp.Name, dept. ·' ~~,,:18 '"~\ f

·:_ .. ,.,;,. ... _, __ ." __ ~
-~ •• "!'Q"!>.

from.emp, dept

where Dept No = dept, Number/

The where clause in a join query can contain

expressions

invo'l ved in

that use fields from any of the

the join. The expression is not

being an equality.

Self Join

record types

limited to

Sometimes it is necessary to join a record type

with itself. In our sample data base, the emp record type

contains a field that indicates who the employee's manager

is. This is simply the number of another employee. We

could therefore join the emp record type to itself, using

the employee's number and number of his manager.

The best way to think of queries like this is to

imagine that there are two copies of the emp repord type

one that contains employees, and one that contains managers.

SQL doesn't really make a copy, but achieves the same effect

by letting us give record type a temporary name. We are

free to join these record types just like "real" ones .. ·The

following query uses the record types emp and mgr~ The name

mgr is merely a temporary name given to the emp record type.

Example (19):List the employees' name and salary, and their

manager's name and salary, for employees who make more than

their manager.

select emp.Name, emp.Salary, mgr.Name, mgr.Salary

from emp, emp mgr

where emp.Salary) = mgr.Salary and

emp.Manager = mgr.Number/

CHAPTER III

Optimisation of query decomposition

Befo~e we p~oceed with the actual strategy. let us

first examine the architecture of a typical distributed

database system. The following figure (fig.1) shows the

elements of a typical DDB system!IJ.

At the top level is the global schema. It defines

all the data which are contained in the DDB as if the

database were not distributed at all. Using the relation

model [8]. the global schema consists of a set of global

relations.

At the next level is the fragmentation schema.

This defines the mapping between the relations and their

fragments. This mapping is one to many i.e. several

fragments correspond to one global ~elation. but only one

global relation corresponds to one fragment.

The allocation schema defines at which site(s) a

fragment is located. If we have a single fragment available

at more than one site. then we have what is called a

LOLJ) L

1\.ffii>PIN <';1

SC.H t:l\1 A 0 ~
S.i T E i

PT'-::. IYJS. Oi

.sili 1

Le--e.:~
\)I; -~ ,.11--

. '-''-

~LC'~A L

Sc..Hf NJA

---,
ALLCX-1) TICJ rJ l
SC}j~fv?A li

i"'-----.111~

-

UXAL

''VflWP I 1\1 ~
-XflEMA Oi
s.; Tf 2

·DgM~ e-;.

~2

J
i-------__

-

l-u--vJI:
cGJ-e~- '4 (J:;

.s,Ji2.

- - -

redundant DDB, otherwise the DDB system is set to be non

redundant.

The local mapping schema serves to map the

fragments at a particular site to the object in local DBMS,

and it depends on the local DBMS- thus for a heterogenous

system we have different types of local mapping at different

sites.

At the next level of the architecture we have the

local DBMSs with their associated local databases.

Only the top three layers are site independent and

they serve to define the distributed database much in the

same way that a global directory does for a centralised

database.

The abovementioned architecture has the advantage

that it provides for location as well as fragmentation

transparency i.e. a user works only on

without being t;oncerned about with

fragmentation aspects.

global relations

the location and

tl

In the light of the above architecture we shall

now give an outline of the steps involved in query

processing in a 008 system.

A user formulates his query at any node of the

network in a global query language. A query may possibly

involve a set of data stored over several nodes. To process

such a query the local system at access node has to a.

analyse• the distribution of the requested data and

consequently decompose the query into a set of subqueries;

each of them is a query for local data. The local system

perform the subqueries and send back the requested data, if

any, to the requesting node. (It is possible that for

performing subqueries some data may need to be transferred

from oth~r sites). The access node finally synthesises all

local results to provide the user with global response to

the query. The overall mechanism is illustrated in the

foll~wing figure (fig.2)

Thus query pro;:essing in a 008 corresponds to the

translation of requests, formulated in a high level language

on one computer of the network, into a sequence. of

elementary instructions which retrieve data stored in the

distf"'ibuted database. The following figure (fig.3) shows

DDI3

lSI P V - &~ ,fay Ni5

~ L.Di - ~ ...f<, lt.c_.J tiS '<k-~~ ;_

lbJ!.,(- ~ ~c~ Q l3Lj)i

G, ~ - C; \..v-{,..,J 'TVJ.f'v"">vu. hi: ~ D ()
. LSI -- L.,~ ~

LDP'Il.~ ·- lc--c_,;..J. U..V.><:Vl.<l. eLk· ~ ~

F-1~ 2

'fta:le i

LS l

---LDD!k

-----...

'----r-r------n~~~-
~-------- '--

LVDB~

the main softwaf'e module which implement this evolution of

the quef'y [I;Y].

&Nex~ 0\r r-~...<..& lir) ..s ~ L

I

! I 0 }:m;~:t.?.1.·~n . (--b ~·~
I. clo U.)Yl\~)(1~~

,:- ..

\
N\:_hv-c'r'k y•r$ '0 ot_, . .:_ ~

t.

1\le.h~-yk viv{; "V{tv1:..:

t
1

l~YWJ.!"G.-r Ti

1

J

~

I
l

~

vn l.cvS (.t')v'~
__,l;~1"v&J~ .

vT) -~c.J. wJi
-'v..-~·\Nt~ .

'---------;.1-. --~-.---.""~) t:.tv"N·~M .ts !Jl\0\i'>-1

.£.·1-(~-e.

The optimisation process produces as output a

sequence of operational commands to the local databases,

which are optimal according to the optimisation strategy.

Accordingly subqueries are generated and are distributed by

the network. The translator Tl translates the subqueries

into the language (DML) of the local DBMS. Each command is

then further analysed by the local DBMS of the remote

computer and the optional local data retrieval strategy is

performed. The execution of these commands may however be

postponed if there is a need for receiving data from other

computers.

We shall now discuss the specific problems of

query processing optimisation.

Optimisation

The optimisation of query processing consists of

decomposing the query into subqueries and determining a

sequencing of the subqueries so that the obtained strategy

is optimal with respect to the selected cost function.

The cost function:- It reflects the requirements of . the

system and may be obtained by weighting the following

factors:-

7)

(a) Total response time

(b) Total usage of local resources (CPU utilisation, I/0

operations)

(c) Network traffic

(d) Parallel load distribution on the computers of the DDB.

Of course these factors are not independent (in fact,

some of them are contradicting) therefore, it is not

possible to subdivide the problem and to optimise each

factor separately. The optimisation algorithm that

have been created for a centralised environment usually

weight in the cost function the elapsed CPU time and

the I/0 operations. The problems in distributed

environment are more complex - e.g. increase in

parallelism in processing leads to increase in network

traffic while increase in parallelism helps to cut down

the response time. But the major bottleneck in DDB

system has been found to be the inter-computer

communications - as the network transmission speed is

very slow as r:ompared to local processing speeds,

hence most of the algorithm in literature take only

communication cost in their optimisation algorithm.

Let us now discuss the specific optimisation ·method

mentioned earlier.

An algorithm for Optimisation of query decomposition:- We

will confine nurselves mainly to minimisation of the amount

of data transferred between nodes. In the end we will relax

our optimisation a bit using a heuristic to allow for

increase in parallelism- without unduly increasing the

amount of data transferred. Also we shall work in an

overall relational model of DDB system. It is assumed that

a copy of global schema, fragmentation schema, and

allocation. schema is available at every site.

site has a copy of fragmentation criterion.

Also every

Further, the

transmission cost between each node has been taken to be

equal.

Before applying any specific optimisation technique

the first step that we must perform is to parse the query.

After parsing we know what all are the clauses present in

the query, and also what relations are involved in it. We

can then refer to the schemas mentioned above and find out

what sites and what fragments are involved in the query.

A simple query like

select name

from emp #

which does not involve any condition (no where clause) can

be directly sent to the sites involved in the form of

appropriate subqueries.

But if the query contains the where clause we

first convert the conditions into a Conjunctive Normal Form.

This is done so that we can eliminate portion of data which

do not satisfy even one of the conditions from further

consideration. We then look for one variable restrictions

on field(s} which serve to define the fragmentation. A site

for which any of these conditions is false is ruled out from

further consideration.

The main optimisation is required in the

evaluation of joins since the relations involved in the join

may be distributed and to evaluate the join the relation

fragments must be transferred ~~one site to another.

The strategy that we ar~ considering

fragmented processing technique [6],

- called the

reduces both

transmission cost as well as response time. Response time

is reduced by increasing the degree of parallelism and it

can be shown that this method results ·in less transfe< ·of

data because of judicious choice ~f processing sites.

We shall assume that our query involves join

between n relations such that all the joins are connected

i.e. we don't have disconnected joins like R1 joined with R2

and R3 joined with R4. We shall confine ourselves to the

site-to-site model of network.

The technique ~ssentially consist of choosing one

relation (Rp) which is not moved (i.e. i t remains

fragmented) and choosing k processing sites. The remaining

relations , Ri,it p, are moved to the k processing sites.

Processing then begins on all k sites and the result is the

result of union of results on the K sites. The basic

question here is how to choose Rp and K. This requires an

analysis of communication costs involved. Evidently

following transfers of data must be made in our strategy:-

J
(i) for each processing site Sj, R~~pmust be moved to all

other K-1 processing sites.

(ii) for each nonprocessing site Sj>i~c+p must be moved to

the K processing sites and g~ must be moved to one

processing site.

For simplicity, we will number the processing

sites to be 51, 52 ----5k. The formula for the number of

bytes which must be moved is then:-

K ..

Co-mm -=- f:- ck-t l ?- \ Ri I]
J=l t:fJ:>

N .
+ 2 ck [~ \ ~i \]

j::.ktl Lfp

N .
~C,[IRrlJ

J=\(+1
+

~ c.\(. u. .i:k.t. c.ars.t bi. ~. do.h.. ~ l(siW
The first term comes from (1) above. The (ii) and (iii)

come from (2) above.

Epstein [6] has shown that for a site-to-site

model of network the above communication cost is minimised

by choosing Rp and K in the following manner:-

(i) choosing Rp to be maxffRl.\J (i.e. the relation with the

highest cardinality) and choosing every site 5j to be a

'·
processing site for which

L: I R.l.\ L-. ~\ R[\
i.J:p l.

(i.e. for the site j the amount of data required to be

brought in when it is made a pro~~essing site is less . than

the data to be moved out if it were to be a non-processing
/

site).

31

or

(ii) if the above condition is found to be not true for all

sites, then, choose only one site Sj as a processing

site which has

W\O.Xj [~ \ Rt \]
(i.e. the site containing the largest amount of data).

We can illustrate the method of fragmented processing

technique by means of the following example:-

Suppose we have two relations:-

Supplier (sno, sname, city)

Supply (sno, jno, amount)

Let the relations be fragmented (horizontally) as

follows:-

site 1 site 2 site 3 site 4

No. of tuples 200 25 300
of relation
supplier

No.of tuples of
relation supply 100 100 50

Let there be a query :- "find the names of all

suppliers which figure in. the supply 1 is t " In SQL this

query would be . .;···'

select sname

from supplier, supply

where supplier. sno = supply. sno t

We shall evaluate this equijoin using the

technique mentioned above.

We shall first decide on relation Rp. Clearly

cardinality of supplier (550) is greater than cardinality of

supply (250), so supplier is Rp.

Now to choose processing sites we used a criterion

mentioned above. We have

For site 1 ~IRtl = 300
l.

since 2. \RL\ site 1 is a processing

site.
c. f.p

For site 2 r-1«71 = 125
L

This is not a processing site.

For s i t e 3 ~t Ri I = 3 0 0
(.,

This also is a processing site.

Site 4 is not considered as Relation Rp is not present

there.

Let us now compute the cost of evaluation of the join:-

For site 1, cost = 100+50+25 (we have moved contents of

Rp at site 2 to site 1)

For site 2, cost = 100 + 100 = 200

Therefore total cost = 375.

If we now evaluate the cost by transferring all

the data to one site (site with maximum data - site 3 in our

case) we get

cost = 300 + 125 = 425.

Clearly our method is less costly. Of course, in

our •:ase the result of join is fragmented at site 1 and site

3 so an additional transfer is required . But that will be

the case even for the crude method if the query originates

at site 1 or site 2. It is possible that the join may blow

up the resultant relation.

Yet another level of optimisation in communication

cost is possible for the case of queries involving· joins

between more than two relations. This is done through a

method called query splitting tactic [6] . The essential

idea is to look for an intermediate result which is such

that if this result were evaluated first and used in

subsequent evaluations, the overall communication cost will

be 1 east. In this method the query q is split into two

parts q' and q''. q" uses the outcome of q'. q' successively

contains all the combinations (from i=2 to i = n -1) of the

relations involved in query q. For each case we estimate

the size of resultant relation and the cost of evaluating q'

using fragmented processing technique. Also we use the

estimate of resultant relation and calculate the 1:ost of

evaluating q" using FPT.

the sum of the two costs.

The total communication cost is

Out of all possible total costs

thus calculated we pick up the lowest one and do the

corresponding splitting of the query and proceed with

further processing.

A possible modification of the tactics is
_

to

evaluate the q" cost using the query splitting tactics

again. This would be an exhaustive search.

It should be noted that correct estimation of

result-size, plays an important role in this tactics. But

while an extensive statistics about the data can not be

stored, it

information

is nevertheless necessary to store

about the data. Usually a one bit

some

of

information is stored in the global schema which tells

whether a domain is nearly a primary key or not.

Yet another way would be to decide on further

processing

that an

strategy after the evaluation of every step

accurate knowledge about the result-size

so

is

available. But this method increases processing time. Also

it is not possible to revert the decisions if it turns out

that the strategy has been expensive enough.

Having identified as to how the query is to be

split (if at all} and also the relations to be moved, we now

concentrate on the actual sites where data is to be picked

up for transfer. Our objective here is to pick up only

relevant data. For this we perform following operations at

each site before transfer:-

(i} Apply all one variable conditions applicable for the

fragments on that site.

(ii} Project only those fields from the relation fragments,

which:-

{a) either are in the target list {i.e. in select

clause)

{b) or are involved as joining fields in the joins in

the query.

Processing of Aggregates

Some optimisation specific to aggregate functions

can be done~ For example, the aggregates that range over

only one relation are processed on individual sites and the

aggregated results are transmitted back to the requesting

site and they are combined to produce the final result.

Aggregates which involve more than one relation

can be performed by first retrieving the values to be

aggregated into a distributed temporary relation and then

aggregating on that temporary relation.

Minimising response time

Increase in parallelism can decrease processing time

but it increases the communication cost. But still we can use

some heuristic to improve response time by inGreasing

parallelism. Thus for the model presented we ~~an change the

equation.

'

L \ RL \ < ~ \ ~t \
t:f=p (

lb"
. j

T i_ I R; I < ~ I Rll
itt> ..

Where T is a heuristic value between 0 and 1 . When T = 1

communication costs are minimised. When T = 0 all sites

become processing sites. We can choose a suitable value of

T after some experimentation.

CHAPTER - IV

Design and implementation of Parser for the SQL .

The parser we have developed supports almost all

the features of the language SQL as discussed in chapter II

(it does not include set inclusion). The implementation of

a Parser requires the execution of following two phases:-

(i) the lexical analyser

(ii) the syntax analyser

The lexical analyser reads the input character by

character (from left to right) and generates tokens as soon

as a valid construct has been encountered.

The

correctness

correct, it

syntax analyser checks for the syntactical

of the sequence of tokens· generated and if

builds the corresponding parsed tree i.e. it

stores the input in an appropriate strucutre.

We have combined the above two phases into one

pass. The syntax analyser calls the lexical analyser as and

when it needs a taken. Also our parser works in a top-to-

bottom fashion using a recursive descent procedure.

The output of the parser is a pointer to the root

of the tree.

We will now discuss each phase separately.

(1) The lexical analyser:- A valid token returned by the

lexical analyser is one of the following:

(i) a keyword

(ii) an identifier

(iii) a constant

(iv) a symbol

The list of keywords, symbols and constants is

given in appendix C.

An identifier is a string of alphabets and digits,

starting with an alphabet. Also the identifier may contain

a dot (.) (to represent constru~ts like emp. name- where

emp denotes the relation which has attirbute name)

For recognising the various tokens the adjacent

transition diagram has been used.

The above transition diagram has been implemented

in the form of a transition table, with input symbols

after mapping them to integer values - representing coloumns

and states representing rows. Each table entry represents

rJ / (U~ ~) ~(ll

l----------~~~ -9-,~--------·~) -· ·-

·~

+-------·-@!

-~
t--------7{2.1

1----/--;@

~---(----:~

)
1-------·:.Mz.{;

®

-~·

----------~)GD·----'-~~¥_t ____ ~~

the next state of transition with the given inital statu

represented by the row number and with given input symbol

represented by the coloumn number.

We start with the state 0 and as characters are

read we move from one state to the next. At the same time

we keep storing the characters in a string. On reaching a

final state the transition process stops. We use this final

state for mapping the given string of characters to a token.

Every token returned by the lexical analyser has

three attributes - the name of the token i.e. the actual

input, the token number and the precedence number associated

with the token (the precedence number is needed as we shall

see later for building the parsed tree.

The precedence associated with various tokens are

given in Appendix (C). What is actually returned by the

lexical analyser to the syntax analyser is the address of

the location where the given token with all its attributes

is stored. For this purpose we maintain four separate

tables for keywords, symbols, identifiers and constants.

All the keywords are a priori stored in the

keyword table. A string of alphabets is first checked for a

keyword. If it is a keyword we return the address of the

corresponding keyword table entry. If the given string is

not a keyword, then like for any identifier we check for its

presence in the identifier table, if present, we return the

corresponding identifier table entry address, otherwise we

install the new identifier in the table and return its

address.

A constant is similarly checked for its presence

and installed in the constant table, if necessary.

A symbol is matched against the symbol table

entries (which has all symbols installed in it) and the

address of its match is returned.

The following program (in pseudo code) sketches

the working of lexical analyser (it is not exhaustive).

Program Lexical Analyser

Begin

s =

state

I •
•

= 0

[Initialise S to an empty string]

[Initial state]

C = GETCHAR; [Get one t~haracter from input]

S =SCAT C; [concatinate C with S]
CASE C OF

Alphabet: While (state ~ final state)

Begin

C = GETCHAR;

S = S CAT C;

state = nextstate; [nextstate is

the state resulting from a

transition to a new state, on

input J

end;

CASE STATE OF

Fl Lookup (Keytab); [F1

corresponds to a string

of alphabets]

If (found)

return (6 keytab (entry));

else

begin

lookup (idtab);

if (found) return (6idtab (entry));

else

Digit:

F2

end;

begin

instal (idtab);

return (6 idtab (entry));

end;

lookup (idtab); F2

corresponds to

a string of

alphabets and

digits]

If (found) return (a idtab (entry));

else

begin

install (idtab);

return (6 idtab (entry));

end;

While (state ~ final state)

Begin

end;

C = GETCHAR;

S = S CAT C;

CASE STATE OF

F3 Canst-type integer;

End.

(2)

lookup (constab);

If (found) return(8constab (entry));

else

begin

install (constab);

return (8 constab (entry));

end;

F4 Canst-type = real;

[then do the same as above]

Symbols: While (state ~ final state)

Begin

end;

C = GETCHAR;

S = S CAT C;

lookup (symtab);

return (8 symtab (entry))

We shall now discuss the working of syntax analyser.

Syntax Analyser: For checking the grammatical

correctness of the query and for building the

corresponding parsed tree (if gramatically Gorrect) we

follow a left to right recursive descent procedure.

In this method, we have one recursive procedure

for each nonterminal U, in the gramma.r which parses phrases

for U. We begin by looking for a phrase for some starting

nonterminal (query in our cas~). The procedure finds its

phrase by comparing the input at the point indicated with

right part of rules for U, calling other procedures to

recognise subgoals when necessary [1!2.].

Thus with reference to the grammar given (below),

we begin by looking for a phrase for query. For this, we

first look for presence of the item SELECT in the input, if

present we now try to satisfy the expression subgoal. For

this we compare the input portion of program (after SELECTO

with the right parts of rules for expression. Satisfaction

of this subsubgoal may require comparision with the righ;

hand side of the rules for other nonterminals). If this

subgoal is satisfied we look for the presence of FROM in

the query, if present, we look for the presence of a list of

relation names in the query and so on.

It should be noted that as a particular subgoal is

satisfied the routines called also build the corresponding

parsed structure.

Before going into the details of the actual

implementation of the syntax analyser let us formally write

down the gramma.r for the SQL . With reference to the the

language~ defined in chapt~r II we have the following

production rules:

<.query)-? SELECT (unique] <:El'> FROM (.rellist>

(label] (WHERE <EZ>J [GROUP BY <(field

list) HAVING (E3/] (ORDER BY <field list>] [ASC or DESC]

[INTO <(_filename)]/

.(querY,>? SELECT (unique].c.E1)f''ROM(.rel - list>

(label] [WHERE i_E2;:? [GROUP BY .:::_field

list(! [ORDER BY(field list>l (ASC or ESSC] [INTOCfilename))/

Where indicates that the enclosed item is

optional and may be leLt out. This rule says that a query

~ starts with a select clause continues with a form clause and

tll(:H1 in1:ludos nuno, UJlO or IIIIJ!'O opllnnal r;laus!~S. The

clausos must occur in tllo order given, even though some of

them may be omitted in a specific query ..

must end with a/.

Also the query

We now consider rules for each of the nonterminal

present in the ruli 1.

L_EI) --=) <El> <OPI> <..tl/

L £:1/ --~

<t.l) ------:>

LE\ '>
f

·--7

(Op\"? --=7

zlL.> ·-?

<l::.2) ·-:>

z_t:'21 --3>

<t'L'/ __ _:.>

t'._:_Ofz.> ·-=:>

<OP·~ / ·--7>

I

·b-t~lcL \ ~l· tY&-l&. \ f_trrdJ;v<'L(\ ~<J · ft,t '~6>"\Z ({_ C: i ;>)

(zJ:.\;>)

(-(E l>)

·-t \ - \ ?(II

Z.E:.I')
. ~I!. < OfJ2/ <(l: 1 /

Z:..t2) ~op·s? <:::..f-2>

Ntrt::..£2?

(.(_ 0_ /)

>\ ~ \ :::) ~ \ ~/ \ < /

•
P~D) o~

L. L l > -h Qg Uv_ &.Jfl'.-Z nJ.z_l) tl), -b-vy <t:::. l) .:_ 1K ~-N" J./)])-vJ.e { 2.) (It:(< E I/)

~~~~ ~~-~~ ~J ~~ e .. IJ-e-vv'-'2 ,Q b-tY < t I// 

,--:._) 

<.. ~\..d .kJ.: l ~ ·-;N_I\.y__.h.ffi. {~dJ /<:::.. .{:;-uL,.U~t > 

<::: -tJ.-u}.oJ tvJ.-- / --~ NWt~)j --trU l::l 



We now give an outline of the implementation of 

the syntax analyser (in pseudo code). It is only a sketch 

of the actual routine and is not exhaustive. 

Program Syntax Analyser 

Begin 

LEX; [LEX is a call to the lexical analyser for getting 

the next token] 

If nexttoken = "select": [nexttoken stores the token 

returned by LEX] 

then EXPR( 1); [EXPR(l) parses arithmatic expressions 

valid for the select clause]. 

LEX; 

If nexttoken = "from" 

then REL-LIST; [The REL-LIST checks for presence of 

relations list and stores them if found] 

LEX; 

If nexttoken = "where" 

then WH-CLAUSE; [WH-CLAUSE parses the remaining query 

once the item where has been found] · 

Else if nexttoken = "Group By" 

then GP-CLAUSE; [GP-CLAUSE parses the remaining query 



End. 

once the item Group By has been found] 
Else if nexttoken = .. Order By .. 

then ORD-CLAUSE; [ORO-CLAUSE parses the remaining query 

once the item Order By has been found] 

Else if nexttoken = .. Into" 

then INTO-CLAUSE; [INTO-CLAUSE parses the remaining query 

once the item Into has been found] 

Else if nexttoken = "/ .. 

then exit; ["I" marks the end of the query]. 

Else error; 

Let us consider the procedures called above, one by one. 

Procedure WH-CLAUSH 

Begin 

EXPR(2); [EXPR(2} parses boolean expressions, which do 

not contain agg.function as agg.functions are 

not allowed in WHERE clause] 

If next token = "Group By"; 

then GP-CLAUSE; 

Else if nexttoken "Order By" 



then ORO-CLAUSE; 

Else if next token = "Into" 

Then INTO-CLAUSE; 

Else i f next token = "!" 

Then exit. 

Else error; 

End. 

Procedure GP-CLAUSE 

Begin 

Field-List; [Field-list checks for the presence of 

list of fields and if present it stores 

them] 

If nexttoken = "Having" 

then HAVING-CLAUSE; [Having-Clause parses the remaining 

query once the item having has occurred] 

Else if nexttoken = "Order By" 

Then ORO-CLAUSE; 

Else if nexttoken = "Into" 

Then INTO-CLAUSE; 

Else if nextoken = "/" 



Then exit; 

Else error; 

End. 
Procedure HAVING-CLAUSE 

Begin 

EXPR(3); [EXPR(3) parses boolean expressions which may 

contain aggregate function as agg.functions 

are allowed in Having Clause] 

If nexttoken = "Order By" 

then ORD-CLAUSE; 

Else if nexttoken = "Into" 

then INTO-CLAUSE; 

Else if nexttoken = "!" 

then exit; 

Else error; 

End. 

Procedure ORD-CLAUSE 

Begin 

Field list; 

If nexttoken = "Into" 

then INTO-CLAUSE; 

Else if nexttoken = "!" 



End. 

then exit; 

Else error; 

Procedure INTO-CLAUSE 

Begin 

End. 

filename; [filename checks for a valid filename and 

stores it if present] 

if nexttoken f. "!" 

then error; 

Else exit; 

Now we consider the routine for parsing expressions. 

Procedure EXPR(n) 

Begin 

LEX; 

if {n::=l) 

then if ((nexttoken"' "OPR") or {nexttoken"' "OPL")) 

then error; [The select clause cannot have relational 

{OPR) or logical {OPL) operators] 

if (n::=2) 

then if {nexttoken"' "agg.function name") 



then error; [The where clause cannot contain an 

aggregate function] 

if (flag = 0) 

then if (nexttoken = "an identifier or a constant or an 

agg.function name or "(" ") 

then begin [flag is a global variable indicating 
. 

the start of an expression. In$tially it 

is set to 0 and is used for checking the 

valid tokens at the begining of an 

expression. On9ce the expression has 

started it is set tot$. 

postfix; Postfix is a procedure which converts 

the input stream into a postfix notation. 

EXPR( n); 

flag = 1; 

previous token = nexttoken; [previous token stores the 

current token] 

Else if (flag=l) 

begin 

if (next token = "I" or "Group By" or "Order By" or 

"Into") then bre.ak; [if any of these tokens occur we 

exit from the EXPR(n) routine] 



[the following lines do syntactical checking by 

comparing the previous token with the nexttoken]. 

if (previous token= "Identifier or a constant") 

then if (nexttoken -1 "Operater" or ")" ) 

then error; 

else begin 

postfix; 

previous token = nexttoken; 

EXPR( n); 

end; 

else if (previous token = "Operater") 

then if (nexttoken -1 an identifier or a constant 

or an agg.function name or "(" ) then error; 

else begin 

postfix; 

previous token=nexttoken; 

EXPR( n); 

end; 

else i f (previous token = II ) If ) 

then i f (next token -1 "operater" or II ) It ) 

then error; 

else begin 

postfix; 

previous token = next token; 



EXPR ( n) ; 

then end; 

else if (previous token = "(" ) 

then if (nexttoken t: "(" or "an identifier" or a 

"constant" or an "agg.function name") then error; 

else begin 

postfix; 

previous token = nexttoken; 

EXPR( n); 

end. 

else if (previous token = "an aggregate function name") 

then if (nexttoken 1 "(" ) then error; 

else begin 

postfix; 

previous token = nexttoken; 

EXPR( n); 

end; 

Emptystack (stack); [this procedure empties the contents of 

stack onto an output stream] 

Build_expression (output stream); [after converting tne 

input sequence (if correct) to postfix 

we call the procedure "build expression" 

which builds the tree for the expression 
~:j)v_~~ ~ \6~\.n~ 



Procedure Postfix 

Begin 

0 = II II • s = II II • [0 is the output stream which will 
' ' 

finally have the postfix form of 

expression. s is the Stack. 

Initially both are empty] 

i = 1· j = 1· 
' ' 

If (nexttoken = 11 identifier or constant"); 

then begin 

0 [i] = nexttoken: 

i = i+l; 

else if (nexttoken = "operator") 

then begin 

if (S = empty) 

then begin 

S[j] = nexttoken: 

j = j+l; 

end; 

else begin 

while (nexttoken.precedence~ S[t-JJ.precedence) 

O[i++] = S[j--]; 

S[++j] = nexttoken: 

end; 



end. 
Procedure ~mptystack(s) 

Begin 

end. 

wh i l e ( j ~ 1) ; 

O[i++] = S[j--]; 

Procedure Build_expression (0) 

Begin 

t = 0; l=O; [we keep storing the tokens of the 

output stream, 0 in locations 

exp(l) till we get an operator. On 

getting an operator, we store it 

and link it with the preceeding two 

locations - exp(l-1) and exp(l-2) 

as respectively the right and left 

1 ink. We repeat the above process 

till the output stream is 

exhausted.] 

while (t L k) 

begin 

while (O[t] -1 "Operator") 

begin 

exp(l++) = O(t++); 



end. 

exp(l) - left =NULL; 

exp(l) - right =NULL; 

end 

exp(l) = O[t]; 

exp(l) -

exp(l) -

1 = 1-2; 

right = exp(l-1); 

left = exp(l-2); 

Semantic check: The parser that we have developed here does 

only syntactical checking and builds the corresponding 

parsed tree if the input query is grammatically correct. 

Semantic checking is done by another routine which takes the 

output of Parser as the input and has an access to the 

global schema. It checks for the validity of fields and 

relations referred in the query and also looks into the 

problem of type matching. 

Within the framework of distributed processing 

strategy that we discussed earl·ier the parser plays an 

important role. It is used at two levels. First at the top 

level where the given query is pased so that it could be 

properly partitioned. Secondly, once the partitioning of 

the query has taken place and subqueries have been 

distributed to local sites parser is used for translating 



the query which is in SOL to the DML of the local DBMS. In 

this process parser is an essential intermediate step. The 

output of the parser is taken by the respective translating 

routines. These routines then generate the appropriate code 

in the local DML. 



APPENDIX A 

The following pages contain a listing of the 

program (in 'C'} for parser for SOL. 



I• IN THF MAIN ROUTINE WE ~~T i~E INPUT ~UERY INTO A FILE AND CA~L THE 
ROUTINE PARSE() WHicH IS A rnP LEVEL ROUTINE AND I1 SUBSEGUENT~Y CALLS 
OTHER ROUTINES AS IT READS iHE INPUT AND BUILDS THE CORRESPONDING . 
STRUCTURE. THE STRUCTURFS i~~ERRED TO HERE HAVE BEEN DEfiNED IN THE 
FILE /DHARSDEEP/EXTRA *I 

#INCLUDE <STDio.H> 
#INCLUDE "/DHARSDEEP/EXTRA;,:· 

STRUCT ~EL-S *B'*A; 
STRUCT FROM.s *Rt*V; 
STRUCT GPBY-S *M1•Ui 

)STRUCT oRDBY~S *E' *W: 
s T R u c T T 0 K E N * w H E R E 1 ( ) I * G R 0 II p 1 ( ) I * H A v P.l r, 1 ( ) I * 0 R D E R 1 ( ) I * I N T 0 1 ( ) ; 
STRUCT QRY.S *QSR,*QQQI 

MAIN<) 
* SMARKER = 0: TAG ~ O!MARKER = Q; SEL = O; CT 

p R I N T F ( ,, F N T F R y 0 u R Q u E I( y : \ N " ) ; 
= O; UNI = O; 

* 

F P = f 0 P F N C ;, ~ ; i F " ~ " W'' ) ; 
DO ........... 
* CF : GFTC~AR{); 

FPUTCCCF .. FP); 
* WHILE CC~ i: i\\'); 

FCLOSE(FPl: 
IF (( F P ; F n p f: N C '' B U F " , I• R •1) ) = = N U L U 

* p R 1 N T F ( i, R u F N 0 T 0 p E N E D \ N " ) ; E X I T ( 0 ) ; * 
QSR,; PARSEC):· 
RETURN(QSR) i 

• T - ' o ~ 

STRUCT GRY-S ~PARSE() /* THIS IS THE MAIN ROUTINE *I 
STRUCT QRy.:_s ,1,c~: 
INT GRP,ORR,HAV~TNoi 
GRP ; OiORR = n: HAV = o; !NO = o; 
IF (CC~>TKN>i; i~ 
D ; l:Ex1(); 

IF CCD~)TKN);=i ** c~:>TKN)=:1) 
* SEL ; 1; '* IF THE FrRsr 1·-r~M rs sE·_Ecr wE sTART RUI!..DING THE 

STRUCTURF */ 

Q = (STRuCi ~R~:~ *j MALL~C(SIZEOF(STRUCT QRY_S)); 
Q.: > s = NuL,- .: Q.:; F ; NuLL : Q.., > w :; NuL u Q- > ~ ::: NuLL ; 
Q~>G ~ NULLJ Q:;o ; NULL:Q~)UNIQUE = o; 
siRcPY(Q.:>INin~~~~); 
a_= <STRucr sF~:~ •> MALL0cCsiZEOFCSTRUtT SEL_S)); 
Q ... >s = s; 
a.:>s-EXP = E~Pc1~i 
I* EXP(1) PARS~S ~RiiHEMATiC EXPRESSIONS ~ WE EXPECT ONLY 

ARITHEMATTC E~P. IN SELr,CT CLAUSE.THE VARioUS DIFFERENT 
ITEMS IN iH~ (rST ARE SjORED IN A LINKED LIST */ . 

IF CUNI ;: 1) I* rHIS IS FoR THE CASE WHEN UNIQUE IS 
PRESENT *l 

* Q-)UNIQUE ; ~.:;;~N; 
B•)s:ExP ; ~XPC1); UNI = n; 



* 
WHI~E ((~·;iKN~ i; 3i 
* A ; (STRUCi ~EL:s *) MALLOC(SIZEOF(STRUCT SEL.S)); 

- . . . ' - '"' ., 

B->SLTNK - A: 

A•>S~EXP = F~P(1); --
B = A: 

B•>SLTNK = N!JLL; 

I* ONCE THE ~i~~ FROM HA~ OCCURED WE STORE THE RELATION 
NAMES OCCIJRTNf. IN A LINKED LIST */ 

R ~ (STRUCT FROM~S *' MAI.LOC(SIZEOF(STHUCT FROM ... S)); 
Qt->F = Ri 
D ; ~Exi<): 
IF ((D~)TKN);;~~) STRCPYCR~>REL~NM,D->NAME); 

ELSE* PRINTF("REI~ATTnN NAME E'<pECTED IN FROM CLAUSE\N");EXIT();* 
D ~ LEX1C); 
IF ((D;>TKN);;~z) 
* STRCPY(R~iLA~~~.D:>NAME~;D = LEX1();* 
ELSE SrRCpy CR.;.;,:ABEL~,"EMPTY"); 
WHIL~ ((D;iiKNi ;:: 26) 

* D = LEX1{); 

* 

IF C(D;>TKN) ;; 34) 
* v = csrRucr FROM:s •> MALLOC<SizeoF<STRucr FROM-S>>; 

R,:.>FLir~K; i/i 
STRCPYcv:)R'tr.NM~D.;.>N~ME); 

* EL~E * PRiN~FC~RFL~NAME ExPECTED IN FROM CLAUSE\N'');EXlT()J* 
D = LEX1n.:· 
IF (D .. )TKN ;; ~Z> 
*STRCPY<v:)~A~~~,o;>NAME); D = LEX1()~~ 

E L S E S T R C P Y C \} : ; L A B E L • " E M P T Y '' ) ; 
R = V ; 

.... - .., ..., . 
R•>FLINK :: NUl I : 

C = D ; 

I '* I F T H E f N D 0 F r H F Q tl F R Y I • E ,. ,-, \ '' H A S N 0 T 0 C C U R E D W E I N V 0 K E 
THE APPROPRIATF R~Ui~~E DEPEN;ING ON THE NEXT ITEM IN THE 
QUERY~THIS PRO~E~UR~ ~S REPEATED AFTER PARSING OF THE 
NEXT Cl-AUSE 'iN Tf,U:: ~ii~R·r<FoR tACH CLAUSE THERE IS A MARKER 
WHICH ENSURES THAT THE SAME CLAUSE DOES NOT OCCUR TWICE (AT 
THE SAME LEVELi IN TH~ QUERY~ */ 

I* MARKER AND SMARK~R ~~~E BEEN -JsED FOR TAGGING A NeSTED QUERY *I 

If «c.:.>rKN> != 27 && CMARKFR. ~ 1) && (C,;.>TKN>!= 25) 

* S~TTCHCC~)T~N)* 
CASE 4! WHEREi {Q) !BREAK; 
CASE~= f.RP ~ 1; t,ROUP1(Q);BREAK 
CASE 7! ORR~ 1: 1RDER1(Q);BREAK 
CASE R! TF {GRP <= 0) 

* p ;; T N T F ( " H A v t N G N 0 T p R E c '" B y G R 0 u p B y \ N ,, ) ; E X 1 T ( } ; 



* 

~;SE * HAV = 1; HAVlNG1(Q);*BREAK; 
~A~~~~ ¥~0; 1; lNT01(Q);BREAK; 
D E F A 1J 1- T-; p R I N T F ( " E R R 0 R \ N '' ) ; 8 R E ~ K ; 

TF ((C~>TKNj!;27 ~~ l~~~KER <1) && <t->TKN)!= 25) 
* SWITCH(C~>TKN)* 

c A s E 5 ! l f ( G R p = ; 1 ) p R I N T ~ { j, ~ R R .. 2 G R p 8 y \ N " ) ; E L s E * G R p = 1 ; G R 0 u p 1 ( Q ) ; * B R E A K ~ 
CASE 7:, If (0RR=;1> PRlNTFli'~RR"'2 ORO Ry\N");ELSE *ORR=1; ORDER1(Q)i*BREAK1 
CASE 8! lF CHAV=;;1) PR1NT~l"~RR.;,2 HAVI'~G\N"); I 

ELSE IF (GRP <= Ol 
* PRINTFC"HAV~NG Nor PRECFEDED BY GROUP sy\N">;Exrr<>; * 
~LSE * HAV = i:HA0IN~;CQ); * BREAK; 

cAsE 9! l F ( I N 0 =;; 1 j p R I NT F ( ,, ~ R R,.. 2 IN T 0 \ N" ) ; ELsE *I N 0 = 1 ; IN T 0 1 ( Q ) ; * 8 REA K; 
DE FA LJ Cl-7 pRINT f ("ERR 0 R \ N"); EXIT ();ARE A K; 

* 
TF (CC~>TKN>!;27 ~~ tMARKER < 1) && (C•>TKN)!= 25) 

* SWITCH(C:;TKNi• 
C A S E 7 : J f ( 0 R R ;; ; 1 ) P R I N T F C I• ~ R R ,.. 2 0 R D 11 Y \ N " ) ; E L S E * O'R R = 1 ; 0 R D E R 1 ( Q ) ; * B R E A K ; 
CASE 8-;- rF (HAV=;;1) PRINT~c!•f:;;R ... 2 HAVI"JG\N")i 

* 

F,LSE IF CGRP <= 0) 
* P R I N T F C '' H A V I N G N o T p R E C E E D E D 8 Y G R 0 U P 8 Y \ N " ) ; E X I T ( ) ; * 
ELSE * HAV = ~;MA~~N~;(Qj;* BREAK; 

l'l E FA U 1~ r-;' P R IN T F ( ''ERR 0 R \ N" ) ; EXIT ( ) ; BREAK; 

* TF Ccc:>TKN>!; ?7 ~i tMARKER < 1) && (C~>TKN>!= 25) 

SWJTCH(C,:.)TKN)* 
CASE 7-;-IF CORR==1> PRtNTFc,.•F-i?R::z oRo BY\N">;Et..SE •ORI{=1;0RoER1<G>;•BREAKi 

(INO==~) PRtNTFl"ERR:2~NTO\N'');ELSE *INo=1~INT01(Q);*BREAKi CASE 9!IF 
o E F Au~~ ·r-; p R I N r F < •• E R R oR , N ~~ > ; E x r r < > ; a R e A K ; 

* If ((C~>TKN)j;~] ~~ tMARKER < 1) && (C->TKN)!=25) 

* SWITCH(C,:.)TKN)• 
CASE 9;IF (INO==i> PRINJF(~~~R=2 INTO\~~);ElSE •IN0=1iiNT01(G);•BREAK; 

,; E F A u 1- T-; p R I N T F ( ., E R R 0 R \ N ,, ) ; E X l T ( ) ; B R E A K ; 

* 

I 

IF ((C,:.>iKNii;?~ ~~ (MARKEQ < 1) && (C->TKN)!=25) 
PRINTFt•'•\\ IS MISSING\N"); 

ELSE •Tf ((C,:.>TKN);; ~7) M~~~ER = 2;ELSE IF ((C .. >TKN>==25) SMARKER ; .... 1 

r. • I 

ELSE * TF ((C~>TKN) == 
..... ~. 

27l MARKER = ( { c ... > T K N ) = = 2 5 ) s M.A R K E R ~ 2 ; * I * 

* ELSE * IF <<c~>TKN> -- ?7) MAR~ER = z;ELSE IF ccc->TKN> == 25> SMARKER =?; 

* ELSE * IF <cc~>TKN> -- 27) MARKER = z;ELSE IF <<c~>TKN> == 25> SMARKER~ ~; 

* 

* ELSE * I~ ((C,:.>TKNj == ?7) MAi~ER = z;ELSE IF ((C->TKN) == 25) SMARKER ;?;· 



ELSE * PRINTF<i•sFLECT ts Mr~~rNC..\N">:EXrT<>; * 
R~TURN(Q); I* IT RFTIJRNS THE POlNTER TO THR ROOT OF THE TREE */ 

STRUCT TOK~N •WH~RE1CQ) 
I* THIS ROtiT.TNE PARSES THE WHERE CLAUSE *I 
STRUCT QRY~s •G: 

* Q~)w ~ ~xPC;\; 
RETURNCf:): 

* 
STRUCT TOK~N •H~~iNG~(Q) '* THIS ROUTINF PARSES THE HAVING CLAUSE *' 
STRUCT QJH~S •G: 
* Q"")H ; FXPC~); 

RETURNCr)i 

STRUCT TOKEN •TNTn1CQ) '* rHrs RoUTrN~ s~~~ES rHE F~LE 
FILE NAME is A ~~LID ONE . 

STRUCT GRV.s *Q; 
* D;: LEx1o: 

* 

IF cco:>rKN) ;= 34> 
STRCPYCQ~;INTo,D~>NAME); 
ECSE P~!NiFt~INVALID F~LE 
D = LEX1(); 
c = o; 
RETURNtc): 

srRucT roK~N .r.~oiiP1 cG> 

NAME IN INTO CLAUSE IF THE 
•I 

NAME \N")i 

I• THIS ROtJT.INE ~TORES THE ITEMS IN GROUP BY CLAUSE IN A 

(INKED ~IST *' 
STRUCT QRY:s •Q! 

* CHA~ REF~1~1~~TTC13JJ 
D = LFX1(): 
IF C(D~;TKN) !; 6) 

* P R I N T F ( ;, B Y I s ~~ I S S I N G t N G R 0 U P B Y C L A U S E \ N '' ) ; E X 1 T ( ) ; * 
ELSE 

* D = LFidn!· 
IF C(D~iTKN) ~= 34 ** (D->TKN) ==35) 

* M ; CSTRUCT r,psy~S •) MALLOC(SizEOF(~TRUCT GPBY-S)); 
Q->G = M; 
IF ((D:iTK~~ ~; ~5) 

* SjRCP~CRF~~~ONREL(D·iNAME)); 
SrRCPvcM:;(;p.REL,RE~>; 
SrRCPYCATT~(ONATR(D-)NAME)); 
STRCPVCM~ir.P.ATR,ATT); 

* ELSE 
* STRCPV(M.:;r,p·~REL~"$"); 

STRCPVCM,:;~~=ATR~D->~AME); 

* 



. - - ..... 
0 = LFX1ll! 

WHILE (CD~)rK~) ;; 34 ** <D->TKN) == 35 *•<D->TKN) =~ ~n> 
* If CCo~>TKN)i=2o) 
* U; (STRliCT r,psy_$ *) MALLOC(SizEOf(STRUCT GPBY-S)); 

M,;,:)GLINK; ;i; 
IF <<D~)rKN) ;: ~~> 

* STRCPY(U~>G~=~EL#CONREL(D~>NAME)); 
STRCPYCU,;,)G~=~TR#CONATR(D~>NAME)); 

* 

* 

* 
* 

* 

* ELSE * s T R c p y ( i i.:.;;; p ·~ R E L, ,, $" ) ; 

* 
STRCPvcu~;~P.ATR,D~~NAME); 

M = u; 

D ; LEXie)! 

c = o; 
RETURNti:)i 

srRucr roKFN ... aRoER1<a> 
I* THIS ROUTIN~ ~TORES TH~ ITEMS IN ORDER BY CLAUSE IN A 

LINKFD Ltsr:~i ALSO CHECKS AND SyORES ANY EXPLICIT 
ORDERING (~~~~ ASC OR DESC ) PRESENT. 

STRUCT QRV~S •a; 
* 0 = LEX1(); 

IF CCD,;.>TKN\i;6) 
* PRINTfC"RY ·T~ MISSING IN ORDER BY CLAUSE\N");EXIT(); * 

ELSE 
* o = LEx1c); 

IF C<D~>TKN\;;34 ** c~.:.>rKN) ==35) 
* E = CSTRiiCT nRDBv:s *) MALl,OC(SIZEOF<STRUCT ORDBY_S)); 

Q.:.>o = E: 
IF CcD.:.>rKNl ;; ~5) 

* ~TRCPY(~.:.;oR~=~EL~CONRECCD->NAME)); 
STRCPV(E.:.)oRn:ATR#CONATR(O~>NAME)); 

* ELSE 
... s r R c p v c E:; o R n : R e L ... " t·" ) : 

STRCPYCE~)OR~~ATR,..Dp>~AME); 

* o = l.Ex1c).: 
iF ((~->!~N)~~ ~9 ** (~;>TKN)== 40) 

* F•>OKEV = D~>TK~- 39; D = LEX1(); * 
ELSE 

E"")OKFY; n;' 
WHIC~ ((O~;i~~j;;~4 *+ (D->TKN>==35 ** <D~>TKN) == 26) 

* IF ((D~)TKN) f= 26> 
* W ; (STRU~T riR~BY.S *~ MALlOC<SIZEOF(STRUCT ORDBY.S)); 

E'"'>OLINK = ~i 



IF ((D·>TKN\ ;: 35) 
* STRCPYCW~)ORn~REL,CONRFL(D->NAME)); 

STRCPYCw:)oR~:ATR,C0N4TR(D->NAME)); 

* 
~LSE 

* STRCPvcw.:.)oR~.REL,"$"); 
STRCPvcw.:.)oi~.ATR,D->NAME); 

* - - . 
D;:: LFX1Cl; 

IF t(D~)TKN~ == ~7 ** co:;TKN) -- ~) * W•>OKEY = 39;E = W;BREAK; * 
IF CCD~;TKN);= 39 ** (D~>TKN)== 40~ 

* 
* 
* 
* 

* w:>OK~Y ; ~->TKN - 39; * 
ELSE 
W->OKFV = 0: 
E = W: 

C = D; 
RETURNer): 



-

STRUCT TOKEN *C•*D; 
STRUCT QRY.S *PARSEC>: 
lNT TAG,FLA~,MARKER~Ci,s~L~UNi~SMARK~Ri 

I* TH~ FOLLOWING ROUTINES CoNREL AND CON~TQ EvTRACT THE R~LATION AND 
ATTRIBUTE PARi OF AN !~PUT (IKE EM~:N~ME •I 

CHAR *CONREL(S) 
CHAR S(2tNAME~S~ZE]; 

. . 

,)o. * 1 NT I, n 
CHAR CREL(NAMEftSIZEj; 

* 

I = Oi J = Oi 
WHILE (SCIJ !; t.i) 

CREL[J++J = S(I++Ji 
CREL(JJ ='\o't; 
RETURN(CREL); 

CHAR •CONATR($) 
CHAR SE2*NAME8S~zEj; 
* lNT l•Ji 

CHAR CATRCNAME.SlzE1; 
I = Oi J= Qi 
WHILE CSEIJ !; ~.i) 1;;; 
++I; 

.-. WHILE CS[lJ) 
CATR(J++J = Sri++J; 
CATRCJJ = 1 \0.Ii 
RETURN(CATR); 

I* THE FOLLOWING ROUTI~E PAiSE~ AN EX~i~~sioN *I 

* 

STRUCT EXP.S •eXP(N) 
lNT N; 

STRUCT TOKFN OCSnJ~s[~OJi 
STRUCT EXP:s •z,.X[SQj; 
STRUCT AGRFN:s *PTRi 
STRUCT QRy:s *PSR; 
SrRUCy QRY:s *PP~; 
CHAR RE[NAME:SIZ~J,ATrNAM~-SIZE~; 

INT P[SQJ; 
INT J,K,I,F,T~A,LP,RP,[O~OP~RELoP,~E~:(HAR~ER; 

J;11K~o;I=Q;f=QJLP = oi Rp ~ o: sCoi~PR~r ; ~1JRELOP = o:IOGOP = nisEc;;; 
L. f-1 A R K E R . = 0 ; 

I* LEX1<S ROUTINP IS I~ CAL[ED ilL~ A~ ~:~R~S~!ON DELIMITFR IS E~~~UTE~~~ 
IF THERE IS SVNTACTICA( ~RRriR WE E~Ii ~ROM THE ROUTINE *I 

WHILE (CC=LEX1();!; NUtL &~ (C~>TKN)i;~ ~& <r•)TKN>l=s &2 
(C•>TKN)I=7 && cC;>TK~)!; ~5 && (C•>i~~:i; 2~ && (Ce>rKNi!= 26 :i 
Cc~>T~N>!= 9 && (C•iTKN)f: 8) 



I* N ~ 1 CORRESPoNDS TO THE eXPRESSIO~S ~N SE~ECi CLAUSE *I 

* IF ( N ;;;;; 1) 
IF ((CC•>TKN)>;28 ~& (C;>TKNl<=33) ** ;c·~>TKN)>~16 && tC~>TKN~<;18>) 
p R I NT F ( " 0 N l. y A L G • E X p : A L L 0 w E D I N s E 1- E ;. ~ c L A l i s E A N 0 I N f tiN • A R G, \ N '' ) ; 

I* N = 2 CORRESPONDS To THE EXPRESSIONS ~N WHERE CLAUSe •I 

lf (N == 2) 
IF ((C•>TKN) >= 10 &i Cc•)TKN) <; 1Z) 

)-- P R HH F { "A G G " F UN • NoT A L 1~ 0 WE D I N W HE Q E r L- US F. \ N " ) ; 

I* THE TOKENS ARE STOR~o IN AN ARRAY AS ;H. Y ARE GENERATE~ */ 

p[ttlJ = (C~>TKN); 
I* NOW WE LOOK FOR 

TAKE APPROPRIATE 
INFIX TO POSTFIX 
IN POSTFIX F0Rt<1 

TOK~NS WiTH ~HICH ~~ ~i~RE~SioN CAN BEGIN (f;~) AND 
ACTTON·~s IS THE STAC~ WHICH IS USED FOR CONVE~TrNG 
FORM~O l~ AN ARRAY w~;~H FINA(LY CONTAINS THE E~P. 

*' 
lF (f<=O) 

*I F c C ... > T K N > = 3 4 & & c .. ; T K N <: ~ 3 g)* o [ K + ~ i; * i': P R 1 NT F < "% s '',or ..... K J • N ·;.. r.: r. > ; K +;; * 
ELSE IF (C~>TKN =~18) *S[J++J; *Ci* 
ELSE IF CC•>TKN;~23) * srj++J ; •C;tF ;1 G )0 } t+LP; * 
ELSE IF CC->TKN~=20)•~TRCPYCSr]i.NAM~~~=~)JSrJj:TKN=2o;srJ].PRE~;ij:J++;. 
~LSE IF ((C•>TKN) >= 10 && CC;;>TKNl <; 14) 
* O[K++i= •C: PRlNTF<~%~~N~~or;;;Kj~N~M~~i;+Ki+iiAG; 

* 

PTR = (STRUCT AGRFN:s *) MA[COCCSI7EOitSTRUCi AGRFN:s>}; 
PTR~>FN-KEY = AGTEC:>rKN1; 
IF (CC~>TKN) ;~ 13> CT; 1i 
PTR•>ARG = EXP(1); 

ELSE ~F ((C~>TKN>;= 21 && ~EL==1) t nr~;;; = *C:t 
ELSE lf((C->TKN>==2) * UNI : 1; BR~~Ki * 
E l. s E * p R I N T f ( II E R R 0 R \ N ... ) : p X I T ( ) ; * 
f;:;1; 

* I* NOW ciEPfNDING ON THE PREVIOtiS TOKE~ ~~ i~K~ i~PROPRIAT~ ACTIO~ ~S 
THE NEXT TOKEN iS REC~IVED FROM THE C~~J~AL iNALYSER.IN CASE OF A 

SYNTAX ERROR WE EXIT FROM THE ROUTINE *I 

ELSE 
JF ((P[··IJ >=3~ && PriJ <;38i ** (Pr¥~:;~0 ~~ ~[lJ<=i4) ** P[I~c;24) 
* IF ((C->TKN)>;28 ~~ (C;;>TKNicc3j) ;;R~~oP: 

IF ((C•>TKN) ~= 16 ** cc:>TKN) ;~ 17) ++Cof,opi 
SitJITCH<C ... >TKN)* 

CA~E 24: ••J;WHILE tST~CMPC~rJJ~N~~~~~(~)) 
* O[K++) = S(J;~];PRI~TF(''iS"~O(~•K]:N~~~~;K;+;• IF (TAG >0) +~!PiARE~Ki 

CASE 25: EXlTC);BREAK; 
-·~ CASE 18:; 

CASE 20:; 
CASE 21:: 
CASE 22;; 
CASE 29: ;· 



CASE 30:; 
CASE 31:; 
CASE 33:; 
CASE 32:; 
CASE 28:; 
CASE 19:: 
CASE 17:; 
CASE 16: 

lF CCC;>PR~C) > CSr;~Jj~p~~~;) 
* sc++JJ = *c:J++;* . 
ELSE *WHtLf <sC]J.PREC ) c:;~R~C) *OrK++J=SCJ:~J: 
pRINiFC"XS~,or-~K]:NAME);~t;;* S(;tjj: tC; J+;;*BREA:: 

DEFAULT: PRINTF("ERiOR~N~>;~xlT();~~~~~i 

* I++i 

* El.SE 
IF (P(lj:n=23> 

*SWITCH(C·>TKN)* 
c A s E 2 4 :'I F ( T A G = = 2 ) *.:. .. j : w H I L E ( s T R i: ~. p ( s [ .J j ·~ ~:l AN E , II c " ) ' 

*0[K++1 = ~[J.:.-~;PRtNTF<~~~~~~r.:.~~J:NAME);Kt+i~ 

* 

CASE 
CASE 
CASE 
CASE 
CASE 
CASE 

CASE 
CASe 
CASE 
CASE 
CASE 
CASE 
CASE 
cASE 

* ELSE PRINTFC"ERROR\Nu);E;rr{)iBR~AK: 
21iiFCCT~=1) ~(J;+~ ~ tC;ECS~ ~;¥ .Tft"E~~OR\N~);~REAKI 
1 0 ; ; 
11 ;; 
12 ;; 
13 ;; 
14 : ttTAG:IFCTAG (~ ~~ 

* oCK++J = *c:PRINTFC···%s\N:.~;;c .. :K5:NAME>:K+:: 
PTR = CSTRUCT AGRFN~S ~) MA~LQC(SIZEOF(~TRUCT 

PTR~)FN~KEY = AGrrC~>TKN5i 
PTR~>ARG = EXP(1); 
* RREAK; 

. ' .... -- .... t .. 

23 : S[J++J;; •C:IF (TAG >0) ++t e>: BRFAK; 
34 :; 
35 ; ; 
ri :; 
38 :; 
36 :; O[K++J ; •C;~RINiFC"%~~:or: Kl:NAME);K+tiBiEAKI · 
20; *STRCPYCS[JJ~NAME~~~'')JSrii"i N=~0;S(JJ.PREC;9;J++J: 
18 ;IF c<c~>PREcS i <~r-~JJ:~R~~ii 

*SC++JJ~ •C;J++;* 
ELSE •OCK~+J:SrJ~isrJJ; .~i~~;;* 

DEFAULT I PRINTFC~ER~OR\N~); E~Iicii~-EA~: 
BREAKi 

* l+t; 

ELSE If (P[1J=;16 **P[Ij=;17l 
'l'rSWITCH(C .. >TKN)* 

CASE 10-d 
CASE 11--:-; 
CASE 12:; 
CASE 1 3 -~-; 
CASE 14: ++TAG:lF CTAG <; ?) 



* 

* O(K++j ;; *c; 
PTR = (STRUCT AGIHN.:_S *:) MAi'i;;ccsiZEOFCSTRUC.f AGRFN.,~'); 
PTR~>FN-KfY ; c~>TKN; 
PTR~>ARG ~ EXPC1); * BREAKi 

CASE 34 :; 
CASE 35 :; 
CASE 36:; 
CASE 38:; 
CASE 37: O[K++j;; *~:PRlNTFc~%S~#or::~~:NA~E):K+t18REA~; 
CASE 23: SCJ++J ; •C;aReAK: 
CASE 18 :lF C(C~>PREC) ) <sr:~JJ~p~~r)) 

* S[++JJ= *CJ i++:• . 
ELSE *O(K++J=S[JJiSrjJ; *~iPRINT~C~is~~Or~~Kj.NAME>;]++IK++~*~REA~; 

DEFAULT I PRINT F (''ERR 0 R \ N '') i EXIT ( ) : R P F. t1 K; . 
* 
l++; 

ELSE IF C P[IJ >~ 28 && PriJ <= 33) 
* SWITCH(C•>TKN) * 

* 

CASE 10si 
CASE 11:; 
CASE 12:; 
CASE 131; 
CASE 14: ++TAG; IF (TAG <= ?) 

* OCK+;1 ; •C: 
PTR ; CSTRUC~ AGRFN:s •' MAiLOCCSIZEOF(~TRUCT ~~i~N.Sj~; 
PTR•iFN:KEY ; c~>TK~i 
PT~~iARG ; E~~(1);* ~i~ ·K: 

CASE 34:-; 
CASE 35i; 
CASE 3 () :· 1 
CASE 38:; 
CASE 37: O[K;~i = •C:PRiNT~f~%~"~~r==~~~N~ME);K++IBRE~K; 
CASE 23: S(J;+J ~ •C;BR~AK; 
CASE 20~ STRCPVCS[JJ.NAME,~:'');srJj:~iFC ; ij;sCJ].TKN =2Q;J.~;~REA~; 
c A s E 1 : 0 [ K + +, = * c ; p R I NT F ( " X s" ~ 0 c.;,;. K ; ~ N A f•i!! ~ ; K + +; 

PSR e PARSEC); I• CASE OF NESTF~ GiiERV *' 
BREAK: 

D E F A U L T : P R I NT F C '' E R R 0 R \ N " ) £ E )( I T C ) i ~ FH.! A K ! 
* 
l ++; 

ELSE lf CPCIJ== 1l 
* SWITCH(C~>TKN)* 

CASE 16 :'; 
c A s E 1 7 : · o C K + + :l ;; s c .:. ; J 1 = s r .i + t 1 = * ;. ; ~ R I N r Fl '' " s " , o c -- j( J • N A l\1 E ~ ; J( + + ; 

++LOGOP;BREAK; 
D E F A U L T = P R IrH F ( " E R R 0 R \ N " ) :- B R E A K :-

* I++; 

* ELSE IF (P(lJ ;e 21 ~& CT ~= 1> 
* SWITCH<C•>TKN)* 

CASE 24= -~JJWHI~E cSiRCMP(S[Jj=~~~~~~(~}) 
* OCK++) ; SrJ;~J;pRINiFC~~~~~~or.:.:Kj.NAME)I K++;* ~;ip;BR~~ 



* 

l++i 
* ELSE 

•SWlTCHCC·>TKNl* 
CASE 10;; 
CASE 11:~; 
CASE 12:; 
CASE 13i"i 
CASE 14i ++TAGl IF (TAG <= ,, 

* O(Kt+J ;; *Ci 
PTR ; (STRUCT AiRFN:S •> M~(~ri. csiz~OF(STRUCT AGRFN:~ii: 
PTR·>FN-KEV = C~>TKNi 
PyR~)ARG = EXP<i>; * BREAKi 

CASE 34 ;; 
CASE 3 5 :·; 
CASE 36·:·; 

CASe 38ii 
CASE 37: O[K++J= t~iPRINT~f~XS~~or::;i:NA~E)iK++iBREA~; 
CASE 23 : S[J++J = *C; If ciAG >0 i ;;LP;~REAK; 
CASE 20 :STRCPYC~[~j@NA~E#~;'');sr1~:~iEC=~J$(JJ.TKN=2oiJ++;~~FAKI 

DEFAULT : PRINTF<"ERROR~~~) eXiT(liBREAK; 
* I++; 

* 
IF (LP>O && RP>Ol 

IF (LP ~= RP> * ::rAG:BRFAK;* 

l.f (MARKER > 1> BREAK: 
ELSE If (SMARKER i1i 
* PPp = PSR)LMARKER ~ ~M~RK~iiSMAR~~~ ;; o; 
* 

If (( PCIJ>=16 && P[iJc:2~> ** ( P[i~;;~a && PCIJcc 33li 
If (P[lJ==21 ~~ (CT==1 ** SFL :; 1)) *p INTF("\N")i• 
E 1.. S E P R I NT f ( " I N V A L I D E X p R E S S I 0 N \ N '' ) : 

CT ::: o; SEL = O; 

If ((N~;2) ** (N:;3j) 
IF CRELOP c= Q)PRINTFt"ERR~NO REL~OPE~i;ri l~ ~AVING OR WHERE C~AUSE\N~;;; 

WHILE (J > 1) * O[KJ ;Sr~:JliPRINTFC~;~~~O(~j.NAME);K++:* 
O(KJ.yKN = •2: 

T = Q; A c 0 ; 

I* THE FOLLOWING PART ~UILDS THE STRUcriiRE FRof\1 THE EXP ... IN POSr';'ix 
LQRM I.E. IT READS FROM THE ARRAY ocj ANn UiiDs THE TREE *' 

WHILE <T < K) 
* WHILE ((O[TJ.TKN) > ~3 ** Ccocrj~T~N~ ~= 1A ~~ (OCTJ.iKN) <;~Zi ** 



(O(Tj.TKN) ==~> 
*X(AJ = CSTRUCT EXP~S 

IF ((O(TJ.TKN);~1) 
t) MAt-L0C(Sl7FO~(~TRliCT EXP .. S))i 

I* NESi~~ QuER~ t/ 
* X[AJw>KEY = 2; 

* 

* 

IF (U!ARKER > 1) 
* IF <SEC <;l 1) 
* X(AJN>DATA.GLINK ; PPP: SEC = ;,; 
* 
ELSE 
XCAJ•>OATA~QLINK • PSJU 

* ECSE 
XcAJ•>DATA~QLINK ~ PSR; 

* E(se IF <<oCTJ.T~~~i=~o && corr~:;~~:c=;4j 
* XCAJ•>KEY = 5; 

X(AJ~>DATA.AGRFN ~ *PTR; 
* 
et:sE IF<corTJ.TK~~;; ~4 ** corri:;~~~;= 3~i 
* XCAJ->KEY ~ 4; 

If {(OCri.rKN);~ 35) 
* STRCPYCRE,cONREL(O[T~:NAMESii 
STRCPY(X[AJ~>DArA.FlELD:REL~RE)i 
STRCPY(AT~CONAT~(OCTi.NAME)); 
STRCPY(X(AJ~>DATA~FlELD:ATR~AT~i 

* 
ELSE 
* STRCPYCXrAJ•~DATA:FIELD~REL.~~~~; 

STRCPY<XrA)-)oATA~fiELD:ATR,Orri:NAME\; 

* 
ECSE If(Corrj.TKN)); ~6 ~~ corri:~vNi<=~8) 
* X[AJ ... >KEY = 3; 

* 

XCAJ~>DATA.CONST~KEY ;::: ntTi~TKN : 35; 
lF ((OCTi.rKN) ~; 3~) 
XCAJ•>DATA.CON~T:~AR.I ; ATOIC~r;~~NA~Ej: 
IF ({Q[TJ.TKN) ;; 38) 
STRCPYCXrAJ•>DATA:CoNsi:VAR.S~~r;~_NAMEjJ 

X[AJ•>LEFT = NULi; 
X[AJ->RlGHT ; NULL; 

A+t; 
T+t; 

IF ((O[T].PREC >= 9) ** CrirTJ~TKN ;; iR>i I• UNARY MiNUS OR ~ ~OT *' 
* Z = (STRUCT E~P~s *j MALLOC(ST7~0FCSrRUrT EXP-S)\; 

Z•>KEY ; 1; . 
Z•>DATA.KEY:o~ ; MPT[O[T].TK~~; 
2->RIGHr = xc:;Ai; 
Z·>LEFT ;:: NULL: 
T+t; 

XCA:J = z; A++: 
* ECSE IF ((K==1> && COrTJ~TKN) ;; ;1\ 
* z = csrRucr EX~-~ ti MACCoccsi,~~~fST~u~i EXP.s>>: 



* 

* 

z•>KEY :: 4; 
STRCPY<z~>DA~A:Fi~LD~ATR,O(Tj=~~~~~; 
z->RlGHr = NULC; 
z,..>LEFT ; NULL; 
T++J 

ELSE IF CK;;;=1) 
* z = xc~~AJ; T++J 
* ELSE 
* Z ; (STRUCT EiP:~ •> ~ALLOCC~~?~O;csi~U~T EXP .. S)i; 

Z->KEY :: 1i 

* 

Z•>DATA:KEY:o~ :: MPT[OrT):TK~i; 
z~>RlGHT = xc:~A1; 
Z•>LEFT :: X-r~:AJ; 
T+ti 
X[AJ = z; A++J 

IF (LOGOP ) 0) 
* +~LOGOP; IF <RE~OP != LoioPj Pii~;~(~l~VAClD BOOLE~N EXP.~N~>; * 
RETURNCZ)i /* Z is tHE RooT OF TH~ T~EE */ 



It THIS PART OF THE PRciGRAM ~~~~EMENTS THE LEXICAL ANALYSER. 
THE NAME OF THE Fl~E CONTA~~iNG THIS PART IS /DHARSDEEP/FEYNMAN~ 
BEFORE DEFINING THE RriUTIN~ (EX1() WYICH GENERATES TOKENS 
NECESSARY INITIALISATION OF ~EYWORD-TABLE,SYM80L~TABLE, 
AND TRANSITION TAB~E ~AVF ~~~N DONE */ -

#DEFINE NAME-SIZE 1~ 
#DEFINE TAB.SIZE ioo 
STRUCT roKEN * I* TOKEN IS A 

CHAR NAMEr~*NAMF~S~7El: NA~E:STORES 
lNT TKNi TK~; STORES 
INT PRECi PREc:sTORES 
*IDiABCTAs:s~zFi:~~~STAB[TAq:SIZEJi 

STRUCTURE WlTH FIELDS: 
THE CONTENT OF THE TOKEN 
THE TOKE NUMBER 
PRECEDENCE NO~OF TOKEN *I 

I* IDTA~~CONSTAB ARE ~DENii~~~~ AND CO~STANT TABLE RESPECTIVELY *I 

I• WE NOW FORM TH~ TRANSITION r~A~E.THE ROWS REPRESENT STATES WHILE 
THE COLOUMNS REPRESENT THE INPUT CHA~ACTERS AFTER BEING MAPPED To 
INTEGERS *I 

. JNT TRANSTAAr1~J(19J = * 
•19~20~21,zz,23~z4:z~,26,27,1,2,28,3,4,s,6,-1,-2,-1*, 

~ -1~·1~~1,-1,~1~~1~~1~~1~•1t-11-1fe11-1,•1,•1,7,-1,-2 •1*, 
•9,9,9,9,9,9,9~9~9~9,:2,9,9,9#9#919,-2,9*' 
*32,32132,32,32,3?~~2~32,32,32,32,30,~1,31,32,32,32,-2,32,*' 
•33,33,33,33~33~~~~~i~33,33,1n,33,29,33,33,33~33,33,~2,33•, 
•34,34,34,34,34,34,~4~34,34,8,34,34,34,34,s~5,s,-z,34~, 
*36,36,36,36,36,3n~'6:36,36,11,36,36,36,36,36~6,36,-2,36•, 
•3?,37,37,3?,3?,3i,~i~3?,37,37,3?,37,3?,37,5717,37,~2,37*, 
•-1~-~~~o,-1,-1,-i~~1~-1,-1,-1~-1,-1,-1,-1,i0;,o,,o,-2,-1*, 
*919191919191919~9,Q,~81919191919f91e2,9*1 
*35,35,~5,3S,3S,~~~~s:3s,3S,35,3S,35,3S,35,10t10'10,-2,35•, 
•-1,-1,-1,~1,-1,~1,~1~-1,-1,~1,"1'~1,-1,-1,-~~12,-1,-2,-1*t 
*37,37,37,3?,3?,37~~7~37,3?,37,3?,37,3?,37,57,12,37,-2,37,**; 

INr ~ = o; Y = o; · 
FILE *FP~•F0PENC):/• FP IS Po'ir~TER TO TilE FILE CONTAINING THE INPUT 

QUERY *' 
STRUCT TOKEN KEYT~8(2Qj = .~s~[~CT~,1,0, 

;, U N :; ~ ! j E " , 2 , 0 , 
;, F R n M ;, 1 3 , 0 1 

;, w H ~ R ~ " I 4 , 0 , 
;, G R 0 II P 11 , S , 0 , 
"nvr'·~i,,o, 
••oRn~R",?,o, 
,·, H A \/ .,.. ~~ G 1, , 8 , 0 , 
,, I N T ~ ;, , 9 , 0 , 
,·,MA;.;.:,o~o, 

11 COIJNT",13'0' 
"SUM!'~ 14,0, 
;, -~ N '' ~ 1 5 , o , 

I* THIS lS THE 

INSTAlLATION 

OF 

KEYWORD-TABlE 

*' 



;, A N ~ ;, ~ 1 6 ~ 1 , 
;, o R ;, ~ 1 7 6 1 , 
;,Nor'·~1s,z, 
"Asr'•'.39,o, 
;, i">F s i: ,', , 4 0 , 0 

*Z 
STRUCT TOKEN SVMTA~r~~~ ; .~;~~,~9,4; 

;, : ,, ' 2 0 , 4 ' 
.... "621,51 
If I " , 2 2 , 5 , 
''t",z3,o, 
;, ) ,, , ?. 4 ' 0 , 
~~ i '1 I ') 5 I 0 I 
;, ~ ,, , 2 6 , 0 , 
;, \ \ II I 2 7 / 0 I 

;,;,-.,zs,3, 
;, ; = ,, ~ 2 9 , 3 , 
;,<="~30'3' 
,-, < > ,, , 3 1 , 3 , 
;, < ,, 6 3 2 , 3 , 
j, ) 11 II 3 3 II 3 I 

.... : 

I* THIS IS THE 

INSTALLATION 

OF 

SYMBOL-TABLE 

*I 

I• THE FOLLOWING ROUTINE C~~it) READS TH~ INPUT CHARACTER By CHARACTER 
AND RFTURNS THE ADDREss oF THE APPROPRIATE TOKEN *' 

STRUCT TOKEN *LEX1() 

* ~ !NT STATE,x,K,J6T,I,p,~,~~E~~i 
CHAR srz•NAME~StZEJ; 

~ 

l' = 19; 
wHILE ((~ ; i~ETC(FP)} := 32 ** C == '\N'); 

I * S K I P P 'r N G R '-: A ~ ~ ~ A N D N E '·I L 1 N E C H A R A C T E R * I 
UNi.ETi.(C,FP); 
Si~T~ ; o; I• INITIAL STATE = 0 *I 
8 = 0! 

'* FTNAL SiATES ARF ~REATER THAN 18 *' 
WHILE (STATE ;; 0 && STATE < 19) 
* r ~~f.~TC<FP); 

srH;;; = c ; 
I• S STORES THF INPiiT STRING •I 

I* WE Now MA~ iH~ 1~PUT CHARACTERS TO INTEGER VALUES •/ 

iF t·isALPHA<C)) 
I = 14; 

FLSF iF CISDIGiTCC)) 
1 = 15; 

F I SF 

* Swr'rCH(C) * 
rASE I+ I I=OiBREAKi 
r.ASE ' ... ' : I =1iBREAKi 
r.ASE I* I . I=2iBREAK; 

~ 

r:ASE I I I . I=3;8REAI<i 
rASE t ( I Jc4;8REAKi 
r.ASE I ) I : I =SiBREAK; 



rASE ' . ' , . I=6iBREAKi 
r:ASE I I I I=7iBREAKi 
rASE ! \ \ I 

·- I=8iBREAK; : 
r:ASE I \ " t . I=9iBREAKi • 

I II I - I=10 iBReAKi r.ASE . 
r:ASF I: I I = 11 ;BREAK~ 

rASE I ( I : I=12 iBREAKi 
rASE t) I : 1=13 iBREAK; 
r.ASE ' I - 1=16 iBREAKi .. : 
rASE EOF : 1=17 iBREAK~ 
nEFAULT : I =18;BREAK; 

* 
* 

STATE ; TRAN~TAnrS1ATEJ[Ti; 
I* THIS STATEMFNT nEFINES TYE TRANSITION FROM ONE STATE TO 

THE NEXT *' 
* IF (STATF >; ~j ~~ STATE < 38) 

uNGETC(r~FPii 
IF (STATE >~ 19 &~ STATE <~ 33) 

RETURNC~~YMi~~rST~TE~1Qi); 
I• THIS RETURNS THE ADDRE~S Of THE APPROPRIATE SYMBOL~TABLE 

ENTRY *' 
IF (STATE ;; ~R) 

S[B]; •\o-tJ 
ELsE sr-:sj = t\n;: 

I* A ~ANDIDA~F F~R ~N IDENTIFIER IS FIRST CHECKED TO SEE 
IF IT IS A kFVWnRD .IF YES THEN CORRESPONDING KEYWORD
TABLE ENTRYtS An~RFSS IS RETURNED,ELSE ~T IS COMPARED 
TO SEE WHETHER iT HAS BEEN ALREADY INSTALLED IN IDTAB. 
IF YES~ THEN CriR~ESPONDIG ADDRESS IS RETURNED ELSE THE 
INPUT STRIN~ I~ INSALLED rN IDTAB AND THE ADDRESS 
RETURNED. *I 

IF (STAT~ =; ~Z ** SiATE == 35) 
* p = o: 

WHILE (C~TRCMPl~:~EYiAB[Pl:NAME)) !=0 && P <= T) 
P++; 
IF (P <; T) 
RETURN(&KEViARr~;;; 
ELSE 

* IF CL<= 0) 
* STRCPY(IDTARrLi:NAME~S); 

IDTA8[Lj~TKN ; ~rATE; 
IDTAB[Lj:pRF~ ; ~i 
RETURN(&IDTARr~;;~); 

ELSE 
* Q = O; ~""' ; 

WHILE (Q <; ,~) 

* IF (STRCMPCS~~~~~Brai.NA~E)) Q++; 
ELSE BREAK; 

* ); 
IF {Q <; L) 



* 

* _ ++l~;RFTtJRNl~TDrABfQ]); * 
F=LSE 

* STRCPY(IDTABF++Ii:NAME~S); 
IDTABCLi~TKN ; S~~TE; 
lDTAB[LJ~PREr ; ni 
RETURN(&IDiA~r~;;;); 

* 
* 
* 

I* A CONSiANT IS ~i~Sr ~HE~KED To SEE IF IT HA~ BEEN ALREDY 
INSTALLED rN coNSTAR~ IF YES,rHE coRRESPONDING TABLE-ENTRY'S 
ADDRESS IS RETURNEn ~LSE IT ts INSTALLED AND THE ADDRESS 
RETURNED */ 

IF (STAi~ ;=~~ ~~ STATE <= 38) 
IF CY <; O) 

* STRCPY(CQNSTAArvi~NAME,S); 
CONSTABrYJ.TKN ; ~TATEi 
CONSTAB[Y)~PRFC ; O; 
RETURN(&CONSTABrv:+j); 

* ELSE 
* x = o: .. -v: 

WHILE C X <; n 
* IF (STRCM~CS~~riNSTAB[X1:NAME)) Xt+; 

ELSE BRFAK; 

* IF (X <= V) 
* ++Y; RFiUR~tiCONSTAB(x]); * 
ELsE 

* STRCPYCCO~STABr;;yj~NAME,s); 
CONSTABfYl~TKN ; STATE: 

* 
* 

CONSTAACYi~~RE~ ; O; 
RETURN(~CONSTARrv+tJ); 

IF ( STATF ;; :1) 
* PRINTFC''INVALID ~TRING\N"); RETURNCNULL>; * 

I* THE INPUT S T R t N r. IS N 0 T A 1~ L 0 WED 8 Y THE LANGUAGE *I 



I* THIS PART OF THE pR~GAAM sui(DS TH~ ~fu TU~E FOR EXPRE~SIONS: 
THE NAME OF THE FIL~ CONiAINING THIS ~S ID~AR!DEEPIEXTiA. 
THIS FILE ALSO CONTAINS THE oECLARAr'roN. OF VARIOUS STRUCTURE~ 
USED 'k/ 

# I N C L U D E " I D H A R $ o E E P I F ~ Y N r4 A N '' 
#DEFINE NAME.SlZE i3 
#DEFINE FN-LEN 6 
#DEFINE STR-LEN 256 
UNION CoNST.U ,., -

* !NT U 
FLOAT RJ 
CHAR SCS.Y:R~LENj; 

*; 
I* THIS STORES THE CON~TANT IN APPROPRIATE Fl~L~ *' 
STRUCT CONST .. S 

* !NT KEY: 
UNION CO~~r:u VARJ 

I* KEY is CODE FOR cON~TANT~=~~ IS 1 FOR i~fE~ERSA2 FOR R~AL AND ~ ~OR 
STRING CONSTANTS t/ 

STRUCT REL .. S 
* CHAR RELC~AM~.SIZ~~; 

CHAR ATRCNAME.SlZF-1; 

STRUCT AGRFN.S 
* lNT FN.KEvi 

STRUCT EX~:s *~RGi 
*; 

I* THIS STORES THE AGGiEG~T~ f~NCTION: 
FN.KEY IS THE CODE FOR AGGREGATE Fii~I~Tr'oN'~*/ 

UNION DATA.:_U 
* INT Kev.:..op; 

STR11CT QRv.:.s *OLINKi 
STRUCT CONsr:s CONST; 
STRUCT REC.s FiELD; 
STRucr AGRFN.:.s AGRFN: .. ; 

I* DATA:u IS THE DATA ~o~iA~NED IN fH~ ~ri~. 0~ THE TREE.Ii IS ON~ nF 
THE FOL~OWING~AN OPFRATOR· OR A POINT~~ TO A QUERRY CFO~ NESTE~ QUERvs\ 
OR A CONSTANT OR A FIELD NAME OR AN AG R.FUNCTION *' 

STRUCT EXP.S 
* INr Kev: 

* ; 

UNION DATA~U DAT~~ 
STRUCT EXP_S *LEFT; 
STRUCT ExP.:.s *RIGHT; 



I* IT SrORES AN FXPRESSION.KEY tS AN TN~~EQ WHICH INDlCAT~S WHAT T~ 
STORED .DATA IS THE ACTUAL DATA STORF;~l EF; AND RJGHT ARE RES~ECTIVELv 
~EFT AND RIGHT LINKS *' 
STRUCT SEL. .. S 

* STRUCT EX~:s tS-~iP: 
STRuCT SE(:s •SLY~K; 

*. 
I* IT SfoRE~ THE CONTENTS 0~ THE SE(~~i ~(~US~ iN THE FORM OF A ~r~i. 

THE LIST CONSISTS 0~ EiPRESSIONS *I 

) STRUCT FR0r4.S 
* CHAR ReL:NMtNAM~:sizeJ: 

CHAR LASELr1oj; 
STRUcT FRoM:s *FLINK; 

*; 
I* IT SfoRES THE CoNiENTS 0~ THE FRoM rt AU E ~N THE FORM ~F A Lr~i: 

THE (IST CONSISTS oi R~LATiriN;NAME~ :iHFRE MAY BE A LABEL Fo; ~ 
RELATION (fOR SELF•JO!N) *I 

STRUCT GPBY .. S 
* STRUCT REL~~ G~: 

STRUcT GPBY-5 *GLlNK; 
•; 

I* IT SioRES THE CoNTENfs 0~ GRoUP BY ~;AU~E ~N THE FORM riF A Li~i: 
THE LIST CONSISTS 0~ FrE(o NAMEs. •I 

,_ STRUCT ORbBY.,S 
* STRUCr 

nn 
STRUCi· 

REL.S oRo; 
OKEv; 

oRoav .. s •OL.tNK; 

I* IT SfoRES THE CONTENTS 0~ OR~ER 8~ ~;~u~E ~N THE FORM ~F A L~~f: 
THE LIST CONSISTS OF Fr~L~ NAMES:oK~V ~foRE~ iHE ASC. 0~ oESC~ 

*. " , 

GUALlLIFICATION •I 

STRUCr QRy .. s 
* STRUCT SEL-~ •s: 

. 

I NT UN I Q iJ E ; 
STRUCT FROM:S *F; 
STRUCT EXP .. s *w; 
STRUC~ GPav:s *Gi 
STRUCi EXP.S •H: 
STRUCT ORPBv:s *o; 
CHAR tNiOCN~ME:sizE~i 

*' I* ~RY.s STORES THE POJ.NTR TO ALL THE ciiiu~ES EXCEPT UNIGiiE AND ~Nro. 
IF UNIQUE IS pRESENT rrS FLAG IS SFr:~NTO ~TORES THE FTLE NAM~ TN 
IN THE INTO C~AUSE *I 

INT MPTc~4j= •o,o,o,o,o,o,o,o,n,A,A,o~o,o~a,o,~,3.1,14,f~,i2,1~'~' 
... o,o,o~o,4,7~9,~~~~6*; 
I* IT MAPS THE OPERATOiS rO THEIR RES~~~ii~E ~ODE NOS. *' 

rNT AGrrisJ ; .o,o,n,o,o,o,o,~,A:~:s,z,i,2,3*; 
I* IT MAPS THE AGG.FUN(:TyoNs TO THEIR R~~PECT~VE CODE ~os: *I 



APPENDIX B 

The following pages contain illustratibns whict 

show the output of parser. We traverse the parsed tree i~ 

the order of occurarice of the clauses in the query. Th~ 

tree for expressions is traversed in the preorder. 



(f) 

u 

·,· 

' .... 
< 
;t: 
0 .-
[ ·• 
...:' .. 

s E L E c T N A r., E , .l 0 R ~ s A ,· A R y ~ D ~ p T N n 
FROM EMP . - - ·-
WHERF (DFPTNO = 1n AND Sd~dR~ ~- 1?n0l \ 
TRAVERSIN~ THF iR~F 
S E L E C T C 1: A U S E 
ATTR,~NAM~ NAMJ; 
ATTR.NAtH JOR 
ATTR~NAM~ .. DEPTNO 
FROM CLAII'E 

RELATION EMP 
W H E R F: C L A 1. I S E 
OpERATOR r.ODF = ? 
OPERATOR r.ODE = 4 
ATTR.NAM~ DEPTNO 
CONSTANT 10 . 
OPERATOR r.ODF = 9 
ATTR.NAMF SALARY 
CONSTANT 1200 



z 

SELECT NUM8ER,NAME 1 J08 
FHOM U~r 

ORDER Uy NUMOER \ 

TRAVERSitiG TilE THEE 
SELECT CLAUSE 
ATTR.NAME NUMBER 
A T T R • N A r1 E N A 11 E 
A T T R • N A 11 E J 0 0 
FROM CLAUSE 

R E l. A T I 0 N E r·1 P 
OHDEH Ry CLP1USE 
ATR NtJr'1BER 

.. , 
_, .... ·. 

,;.·~ 

~ . .. 



z. 
0 

SELECT ~FPTNO~AV~tSALA~Yi 
F R Of~ E Mp 
GROUP By nEPTNn 
H A V I N G A il(; ( S A L A R Y ) ; ? 0 0 n \ 

·- .. 
TRAVERS!Nf. THE TRFF 
s E L E c T . c 1- A u s E 
ATTR.NAMF DEPTNO . ' . -
AGGR.FN KFY = 1 
ATTR.NAME .. SALARY 
FROM CLAll~E 

RELATION EMP . 
GROUP By CLAUSF 
ATR DEPTNO 
HAVING CLAUSF. 
OPERATOR CODE = 6 
AGGR~FN KFY ;: 1 
ATTR.NAME SALARY 
CONSTANT ?000 



~~ <; .• 
~·~ 

.... 
f .... 
~ ,_ 
~ 
C!t.: 
(.) 
r.: .. 
z. ..... 

SELECT D~~TNo.~0GtSALARYi 
FR0~1 EMP 
GROUP By riEPTNO 
HAVING A0r,(SALARY) < 

SE~ECT A0GtSALARYi 
FROM FMP \ 

TRAVFRS!Nr, THF TRF~ 
S E L E C T C ,- A U S E 
ATTR.NAMF. DEPTNO 
AGGR.FN KFY = 1 
ATTR~NAMF SALA~Y 
FROM CLAIJ~E 

RELATION EMP 
GROUP !3y CLAUS!= 
ATR DEPTNO 
HAVING C:l AUSE 
OPERATOR cODE = 8 
A G G R ·~ F N ~ E Y = 1 
ATTR.NA~~ SA~ARY 
NESTING 
SELECT Cl-AUSE 
AGGR.FN KF.Y = 1 
ATTR.NAMF, SALARY 
FROM CLAIJSE 

RELATION Ef"ip 



1-k) 
~ 
!
z 
w 
u 
en 
u -f-
--r: ·-· 2:. 
~ 

0 
1.1:~ • 

z 

rz.l 
c:: 
f
z 
'-'.l 
u 
C/) 

'U -f-
-< ,_ 

. rk~·: 

ex: 
0 
kt.. 
z. 

z 

S E L E C T N A ~1 E, SA 1- A R y 
FROM EMP 
WHERE DEPTNO = 

SELECT DEPTNO 
FROM. EMP 
GROUP GY DFPTNO 
H~VING AVGtSAlARYi ; 

SELFCT MAXCAV~(~~(ARY~) 
FROM r:MP 
GROiJP BY DFJ..lTNO \ 

TRAVERSING THE TREE 
S E L E C T C I~ AU S E 
ATTRuNAr~E NAME 
ATTR.NAMF SALARY 
FROM CLAI!SE 
RELATION E~1P 
WHERE CLAUSE 
OPERATOR CODE = 4 
ATTR.NAMF DEPTNO 
IJ EST IN G 
SELECT C ,·AU S E 

ATTR.NAMF DEPTNO 
FROfVI CLAIISE 
RELATION EMP 
GROUP LlY CLAUSE 
ATH DEPTNO 
H A V I N G C 1: A U S E 
OPERATOR CODE ; 4 
AGGR.FN J(EY = 1 
ATTR.NAME SALARY 
NESTING 
S E L E C T C ly A U S E 
AGGR.FN KEY ::: 5 
AGGf~~FN KEY = 1 
ATTR.NAME SALARY 
F R 0 M ·C L A II S E 
RELAT!Ot,J Er~P 

GROUP By CLAUSF 
ATR DEP 



{! 

t..J 
C': 
f. .. 
z ·~ 

w 
<..; 

Cf'J 
u 
,.!,.'1 

f-
-<t 
~ 
0:: 
0 
l-. 
z 
""'"' 
~ 
< z 
0 -p.... 
~ 
z 

SELECT fl/\f'lt 
r R Ot1 Ui p 
vJ If [ R [ S A L A R Y + C (J f'1 H • = 

S E L E C T f;1 1\ X ( S A L + r 0 ~I ~i ., ) 

fROM Ef''lp 

lJ H E R E J 0 f3 = I s A L r: s ' : 
OR ( J013 ='SALES' fi.!·D OEPT~j() :2 30) \ 

TRAVERS!f.JG THE Tr~EE 
SELI:.CT CLAUSE 
AT T R • ~;A r·: E t.l A ~'IE 
F R 011 C U, IJ S l 
f? E L 1\ T I 0 r' r. ~~ r 
~~ 11 c rq: c 1. r, u s l 
0 P [ fi /1 T 0 r: C U 0 E :::: :5 
0 P [ llf, T 0 1: C 0 D E = 4 

OPEf~t,TOr CODE ·• 14 
AT T I< • iJ /1. r; [ SAL A :1 y 
A T T R • N M'; r-: C 0 f·H1 
NEST lll G 
SELECT Cl/1USE 
A(-, G f{ • f I~ f, l y = ,. 

J 

OPERATOr; COD[ = 1 4 
A T T P • r; 1\ f~ [ SA Lfl. ;, Y 
A T T f< • fJ An E C Of'\11'1 
FROM Clt,USE 
RELfqJOi: EI'1P 
WH[I<[ C U1U S [ 
OPCI-1 /,TOJ; CODE = '· A T T fi • l·1 A t ~ [ JOD 
C 0 ~J S T /\ tJ T "SALIS" 
o f' r f: r, r G r; COO[ = z 
OP[R/\TOp CODE = ,, 
AT T R w r; A f~ l J OD 
C V tJ S T r, ~JT "SALES'' 
OPER/',TOr, COPE = 1., 

A T T R .. t: f\r; r. DEPT·;O 
C 0 rJ S T f, NT 30 



APPENDIX C 

LIST OF KEYWORDS IN SQL 

SELECT, UNIQUE, FROM, WHERE, GROUP BY, HAVING, ORDER BY, 

INTO, AND, OR, NOT, ASC, DESC, MAX, MIN, AVG, SUM, COUNT. 

LIST OF SYMBOLS 

(, ), +, - * /, .... ... ~)>,\ 

CONSTANTS 

We have Integer, Real and String constants. 

The precedence number associated with various tokens are as 

follows : 

+ 

I 

AND 

OR 

0 

0 

'-t 

lt 

5 

5 



NOT 2. 

RELATI 01\1 ~ L. Ol'eMlDR.S -3 

All other tokens have precedence number zero. 

When a unary minus is detected, we increase the precedence 

of C-) to 9. 



REFERENCES 

1. s. Ceri and G.Pelagatti, Distributed Database 

Principies and Systems, McGrawHill Book Company 1984. 

2. Wong . 
• " R e t r i e v i n g D i s p e r s e d D a t a f rom S D D 1 " , Pro c . oj 

the second Berkley workshop on Distributed Dati 
I 

Management and Computer Networks. 

3. Hevner and Yao, "Query Processing in Distributed Dat1 

Base Systems 11
, IEEE Trasactions on So f twarq 

Engineering. 

4. Stonbroker et. al., "A Distributed Version of INGRESS",\ 

Berkley workshop on Distributed Data Management and 

5. 

6. 

Computer Networks, 1977. 

({ 0 ll \ c t . a J • ' " /\ n o v () r j o w o r t h e l J r e 1 i m i n a r y De s i g n o f \ 

SDD-1-A system for Distributed Database", 
I 

Berkley\ 

workshop on distributed Data Management and computer\ 

network, Larence Berkley Laboratory, May 1977. 

Epstein R.' "Query processing techniques for 

Distributed, Relational Database System", UMI, 

Research Press. 



7. Wong E. 5 Youssefi K. "Decomposition a strategy 

query processing'', ACMTODS, Vol~ No. 3, 1976. 

H. Date C.J. "An introrlucti.on to Database Systems" 

Addison - Wesley, 1~U1 

9. Unify Relational Database Management System, Tutori~ 
Manual. 

I 

10. Chamberlinet. al., "Sequel2; A unified approach t 

Data Defination, Manipulati.on <!lld control", IBM Journa 

of Research and Development, 1976. 

ll. J.W. Uraff<Jil, dild 1•'. 

(edited), Cambridge University press. 

12. D.Gries, "Compiler Construction for Digital Computers"! 

John Wiley and Sons, Inc. 1971 


	TH23670001
	TH23670002
	TH23670003
	TH23670004
	TH23670005
	TH23670006
	TH23670007
	TH23670008
	TH23670009
	TH23670010
	TH23670011
	TH23670012
	TH23670013
	TH23670014
	TH23670015
	TH23670016
	TH23670017
	TH23670018
	TH23670019
	TH23670020
	TH23670021
	TH23670022
	TH23670023
	TH23670024
	TH23670025
	TH23670026
	TH23670027
	TH23670028
	TH23670029
	TH23670030
	TH23670031
	TH23670032
	TH23670033
	TH23670034
	TH23670035
	TH23670036
	TH23670037
	TH23670038
	TH23670039
	TH23670040
	TH23670041
	TH23670042
	TH23670043
	TH23670044
	TH23670045
	TH23670046
	TH23670047
	TH23670048
	TH23670049
	TH23670050
	TH23670051
	TH23670052
	TH23670053
	TH23670054
	TH23670055
	TH23670056
	TH23670057
	TH23670058
	TH23670059
	TH23670060
	TH23670061
	TH23670062
	TH23670063
	TH23670064
	TH23670065
	TH23670066
	TH23670067
	TH23670068
	TH23670069
	TH23670070
	TH23670071
	TH23670072
	TH23670073
	TH23670074
	TH23670075
	TH23670076
	TH23670077
	TH23670078
	TH23670079
	TH23670080
	TH23670081
	TH23670082
	TH23670083
	TH23670084
	TH23670085
	TH23670086
	TH23670087
	TH23670088
	TH23670089
	TH23670090
	TH23670091
	TH23670092
	TH23670093
	TH23670094
	TH23670095
	TH23670096
	TH23670097
	TH23670098
	TH23670099

