Lbes
TR .~y

.

It : erti that t '~ embodied in this
dissertatior itled, very Proci ssing in Distributed
Database Sy subm t by B.D. Badgaiyan, an M.Tech.
student of bSinool of ymputer and Systems Sciences,

Jawaharlal Nehru University, New Delhi, is original and has
not been submitted in any other university or institute for

any degree or diploma.

Date: JANUARY 1988
\\\\\‘\w/ S
DR. Y.K.SHARMA , ' DR. G.V.
[ADDITIONAL DIRECTOR, | [ASSOC. PROFESSOR,
NATIONAL - INFORMATICS CENTRE, SCHOOL OF COMPUTER AND
DEPARTMENT OF ELECTRONICS, " SYSTEMS SCIENCES,
GOVT. OF INDIA, NEW DELHI] J.N.U., NEW DELHI ]

PROFESSOR KARMESHU
[ DEAN
SCHOOL OF COMPUTER AND SYSTEMS SCIENCES,
JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI]




ACKNOWLEDGEMENT

I express my deep gratitude to Dr.G.V. Singh,

Associate Professor .School of Computer and Systems
Sciences, for providing me constant encouragement and
guidance.

I am deeply indebted to Dr.  Y.K. Sharma,
Additional Director, National Informatics Centre, Department
of Electronics, Govt. of India for kindly allowihg me to

work in the Systems Software Group, N.I.C. for this project.

I thank all the members of the S.5.G. for their
help. * I thank specially to Mr. Sujit Verma, Mr. Joshy

Joseph and Mr. Santosh Kumar.

My special thanks are also to Prof. Karmeshu,
Dean, School of Computer and System Sciences, J.N.U. New

Delhi for his keen interest in my work.

@W
(B.D/BADGAIYAN)



Chapter I
Chapter II
Chapter iII

Chapter 1V

Appendix A
Appendix B

Appendix C

CONTENTS

Introduction
The Query Language - SQL
Optimisation of Query Decomposition

Design and implementation of Parser
for SQL

Listing of the Program for Parser
Illustrations

List of Keywords etc. in SQL

&
Sé

%9



CHAPTER - I

INTRODUCTION

In recent years, distributed databases have become
lon important area of information processing. The reasbn for
this are both organisational and technological. On the
organisational side the motivations for having a distributed
database system are many - first of all distributed database
fits more naturally with the decentralised character of most
organizations, where the data is dispersed geographically
across the organizatione Secondly, distributed databases
.(DDB) are also natural solutions when several databases are
already existing in the organization and the necessity of
performing a global application arises. Thirdly, as~
compared to a centralised database {DDB] also reduces
communication «cost as most applications can be satisfied
locally. Fourthly, it is also relatively easier to add new
organizational wunit (with new database) to the existing
units then in the case of a «centralised database. The
technological reasons are first, the emergence of low co§t.
relativély small mini and microcomputers in 70s, which makes

it possible and feasible to distribute large number of such



computers  a:ross the organization. Secondly, the
development of computer network technology has facilitated
the growth of distributed systems. The other advantages of
a distributed system are increase of performance through a
high degree of parallelism, a higher degree of reliability

against system failures as there are many processors.

Formally, we <can define a distributed database
as [ 1 }:- "A distributed database system is a collection of
data which are distributed over different computers of a
computer network. Each site of the network has autonomous
'processing capability and can perform local applications.
Each side also participates in the execution of atleast one
global application, which requires accessing data at several

sites using a communication system.

The entire data residing in the DDB system can be
manipulated wusing a simple, userfriendly Data Ménipulation
Language (DML). Thus to retrieve data from the system a
user simply frames his query in terms of easy to understand
constructs of the underlying DML/query language. Also _the
user may frame his queries as if the database were; not

distributed at all. In general a user's query’ﬁay involve



data stcred at several sites and supported by different
DBMSs . Thus to satisfy a query we must have an appropriate
strategy so that we —an carry out the above mentioned task
in a «cost effective manner. It is the objective of the
present study to discuss such an optimal strategy for query
processing for a heterogenous DDB system with special
attention to data retrieving queries. At the backdrop of
our study 1is the proposed National Informatics Centre
Network (NICNET) which is to cover all the 438 districts of
our country. The typology of the network is based on a
site-to-site model. The distributed environment supported
by the network 1is heterogenous 1i.e ~}here are several

databses supported by different DBMSs located at different

sites. Also a single relation is allowed to be fragmented
over several sites. But the fragmentation 1is only
horizontal, and it 1is based on-a distribution «criterion

(fragmentation predicate)- which may be a condition on the
key field of a relation. Further, there is no duplicafion

of fragments i.e. a fragment exists at only one site.

The query originates at any site and is formulated
in terms of the global query language - SQL with global

referents. The query may be satisfied locally (for which it



is checked first) or may require access to other sites.
Broadly speaking any particular strategy for query
processing must address itself to the following problems:-~
Firstly suitable sites where processing needs to be done
should be selected. Secondly, appropriate subqueries should
be generated and be distributed to the respective sites.
Thirdly, partial results generated at the processing sites

should be collected and be transferred to the site of

origin of request.

Now, since to satisfy a given query in general
there can be several different ways we should choose the one
which is best with respect to the optimising «criterion
selected. In literature several methods of query processing
have been suggested [2,3,4]. Most of them seek to minimise
them transmission cost. But they differ mainly in their
evaluation strategy, particularly with respect to the
evaluation of joins. Wong [2] has described an algorithm
which is used by SDD-1 ( a system for distributed data
processing - Roth [5]}. It optimizes anly the transmission
cost and is true only for a site-to-site model of network.
It also assumes that relations do not span more than one

site. In this method after performing all one variable



restrictions the fragments are moved to the site with most
data where the remaining processing (join etc.) takes place.

After processing the result is moved to the destination

site.

Hevner and Yao [3] have also proposed an algorithm

which is based on Wong's work and is valid only for a site-

to-site model and assumes no fragmentation of relations. It
consisders two different optimization:~ (1) minimising
transmission cost and (2) minimising network delay.  The

algorithm begins like that of Wong's algorithm by pe;forming
all 1local processing first but in looking for an optimum
solution it examines moré alternatives than Wong's work.
Thus it finds an equal or better solution than Wong's
selution. Wong's algorithm 1is a “greedy" algorithm that
optimises for the current processing step without regard to
the ‘"“global" optimization. On the other hand Hevner and
Ygo‘s algorithm does an exhaustive search for solution. But
it 1is not ~lear how the algorithm can be extended to allow

multiple fragments of a relation on multiple sites [6].

Stonebroker [4] has suggested an algorithm which

-
-'is used in distributed version of INGRESS. This algorithm




is essentially an extension of ‘'query decomposition
technique" suggested by Wong (7] for optimization in
centralised databases to the rase of a distributed
environment. Buf again this algorithm does only "local"
optimization as it is primarlily oriented towards finding a

sequence of subqueries which if run will "advantageous" as

compared to the given query.

We shall discuss in detail the algorithm proposed
by Epstein [6]. This algorithm is valid for both site-to-
site and broadcost type of network. Since the underlying

network (NICNET) 1is based on site-to-site model we shall

confine ourselves only to this model. The algorithm allows
for a possible fragmentation of relations. It can be
extended to perform exhaustive search . of possible

alternatives of partitioning the given query into

subqueries.

The preéent work is organised as follows:-

In chapter 2 we give a description of the query language SQL

in terms of which queries are formulated.

In chapter 3 we discuss the algorithm mentioned above for

-

generating the'bptimal sequence of subqueries.



In chapter 4 we discuss the design and implementation of
Parser for the language SQL. As we shall see later the
Parser 1is an essential input for the implementation of a
query processing strategy. Particularly in heterogenous DDB
system Parser is needed also to translate SQL queries 1into

the DML of local DBMS.

Appendix A contains a listing of the program for the Parser

which has been written in 'C' language on a NEC - S5/1000

system.

Appendix B contains illustrations which explain the output

of Parser.

Appendix C contains the list of keywords, symbols and

constants in the language SQL.



CHAPTER 11
The Query Language - SQL

In this chapter we shall discuss the UNIFY
implementation of SQL [8] - as this version is going to be
supported en the proposed distributed processing network
(NICNET). SQL was developed at the IBM Research Centre as a
relational inquiry and data manipulation language based on
an English keyword syntax. Its structure was refined
through extensive testing to produce a language easy enough
for nonspecialists to use, yet powerful enough for data
processing professionals. SQL is fast becoming the
standard relational query language on all sizes of

computers.

This implementation of SQL 1is Dbased on the
language description given by D.D. Chamberlin et.al. [ 10].
In order to adapt it to supermicros and the operating system

environment, some changes have been made to the syntax.

SQL Query Facilities

A query consists of "phrases" (also called
clauses), each of which is preceded by a keyword. These
keywords have special meaning to SQL, and so cannot be used

for record type or field names.



Some of the phrases are optional, and some of them

are required. The required phrases are:
Select | some data ( a list of field names)
From some place ( a list of record types)
The optional phrases are:
Where a condition (a true/false statement)
Group by some data ( a list of field names)

Having a group condition ( a true/false statement)

Into a file

The following sections take each of the phrases
and show some possible queries. The example given are based

- on the following database :-

emp, (Number, Name, Dept_No. job, manager, salary,

commission)
dept (Number, Name, Location).

Select From Clause

g

The simplest kind of SQL query includes both a

select clause and a from clause. The select clause lists

the fields to printed, while the from clause tells which



Vv

record type (or types) the fields are to come from. The

fields to be selected must be in the record types listed 1in

the from clause.

Example:Select all the fields for each record of the emp
record type. This will show the entire contents of the emp

records. The "*" is shorthand for all the fields.

select
from emp/

Example 2 List the employee number, job, name, and salary

for every employee.

select number. Job, Name, Salary
from emp/

Where Clause

Since we rarely want to I'ist the entire contents
of a specific record type, the where clause is provided to
specify selection criteria. The where clause compares a .
field with a constant, expression, or the results of andther
select clause. These nested queries will be described 1in
more detail later. The where clause can also contain a
complex Dboolean expression composed of selectidn criteria

connected by and and or operators.



Example (3): List the name and location of department
number 70. This 1illustrates comparing a field with a

numeric constant.

select'Name. Location

from dept.
where Number = 70/

Example (4):List the name, job, salary and commission for

employees whose commission exceeds their salary.
select Name, Job, Salary, Commission

from emp
where Commission™$ salary/

The standard boolean operators and and or can be
used to connect simple comparisions to form complex

expressions.

Example (5): List the name, job, salary and 'department
number for the employees who work in department 10 and

are either clerks or make less than or equal to $1200.
select Name, Job, Salary, Dept_ No
from emp

where Dept_ No = 10 and



(job = 'clerk' or salary & = 1200}/

Boolean expression can be negated in whole or 1in

part to select those records that do not match a specified

criterio.

Example (6): List the name, job and salary of all employees
who are not salesmen or (&ho make less than $ 2000. This

uses the not operator to negate an entire expression.

select Name, job, Salary

from emp

where not (job = 'salesman' or salary » = 2000)/

Set Inclusion

In many queries we may want to compare a field to
a list of values, not just a single value. For example, let
us consider selecting all the employees who are in
departments 10, 20, 30 or 40. With the standard operators,

this becomes a sequence of equalities connected by ORs, such

as

Dept_No = 10 or Dept _ No =20 or Dept _ No = 30

SQL._provides a set inclusion notation to make this kind

of query easier.



'3

Example (7): List the name, job and department number for

employees in departmentsVZO. 30 or 40.

select Name, Job, Dept _ No

from emp

where Dept No in & 20,30,40 3/

Unique Operator

If a query doesn't select a primary key field from
one of the record types, 1t is possible for that query to
produce rows that are exact duplicates of each other. This
is Dbecause only the primary key is required to be unique.
Sometimes, these duplicates are not desired. The unique

operator is provided to suppress duplicate information in a

query result.

Example (8): List the different job titles in the company.

select unique job

from emp/

Order by Clause

4

All the previous queries returned their results in
. e
an order determined by SQL. Even though the unique operator
sorts its output, we are still not able to direct the order

of output. The order by clause lets us explicitly specify



1

the sequence of the rows that result from a query. The
default sort sequence is ascending (ase), with STRING fields

sorted in alphabetic order from A to Z.

Example (9): List every employees number, name and job,

sorted by employee number.

Select Number, Name, Job
from emp

order by Number/

One can sort also by more than one field, and
specify the direction, whether ascending (asc) or descending

(desc), for each field in the sort.

Example (10): List every employee's department number, name

and job, by ascending name within descending department

number.

select ﬁept _ No, Name, Job

from emp

order by Dept No desc, Name asc/

Aggregate Functions

SQL provides 5 different- built-in aggregate
functions to allow calculation of aggregate items in a query
result. The functions are count (¥}, min, max, sum and avg.

Aggregate functions are dnly valid when used in select or



M)

having clauses. One cannot wuse an aggregate function
directly in a where clause, although we csually achieve the
same effect by using a nested query. An aggregate function
only applies to a group of records with a common

characteristics for example the average salary of employees

in department 10.

Aggregate functions are most commonly wused in
conjunction with the group by clause. A group by clause
explicitly paritions the selected records into groups for
which the indicated aggregate functions are computed. If
there is no explicit group by, thcn any aggregate functions

are assumed to apply to the entire set of selected records.

Example (11): Compute in list the total number of employees

in department 10.

select count (%)
from emp

where Dept _ No =10/

Example (12): List the job and average of salary plus
commission for all salesmen. The job can be listed 1n‘fhis
example because all the selected records have thggégme job -
salesman. select Job, avg (Salary + Commission)

from emp



where job ='salesman' /

Group By Clause

The group by clause 1is provided to allow
computation of aggregate functions on groups of fecords that
have common characteristics. Thus using a group by clause
without an éggregate function has no meaning. The effect of
a group by is to sort the selected rows by the indicated
fields, and then perform the aggregate functions at each

level break. This results in the output being sorted also.

Example (13): For each department, 1list the department
number, count of employees and sum of salary plus
commission.

select Dept_No, count(*), sum(salary + Commission)

from emp

group by Dept No/

Aggregate functions can also be applied to the
result of other aggregate functions. This lets us compute
such items as the maximum average or the averagae count.
When wused in this way, aggregate functions reduire a groub
by clause. The result is computed as follows. First, all
qualifying records are selected'using the where clause, if

any. Then, they are sorted according to the fields in the



group by clause, and the inner aggregate function Iis

computed. The outer function is then applied to these

results. Since this second level of computation removes all
identity from the groups; a nested query is required to list

fields other than the'function result.

Example (14): List the maximum average monthly salary for

all jobs, except for the job of "President". It should be

noted that if we wanted to see what job this was, we would

have to perform a nested query.
select max(avg(Salary)
from emp
where Job M= 'president’

group by job/

Nested Queries

Nested queries allow us to answer a whole new set
of questions that cannot be answereq‘ using the capabilities
_of SQL presented so far. Nesting 1efs us use the results of
one query as input to another, so we can use the results of

one question in answering another one.

Example (15):Find the name and job iof the employee who’
makes the maximum salary plus commifsion.
select Name, Job

from emp



where (salary + commission) =

select max (salary + commission)

from emp/

This query works by first evaluating the inner
query to get a value for the maximum salary plus commission.
This wvalue 1is then used as a constant to the outer query

which finds the employees (there could be more than one )

who make that amount.

Queries can be nested to any level. The following
four-level query finds the person with the second highest
compensation. The method is to find the name of the person
with the maximum compensation, and the find the maximum
compensétion among those left. This also shows that we can

compare an expression with the results of a nested query.

Example (16): List the department number, name, job, and

salary plus commission of the person with the second highest

compensation.

. select Dept_No, Name, Job, Salary + Commission
from emp
where salary + commision =

select max (Salary + Commission)

from emp

where Name A -



select Name

from emp

where Sélary + Commission =
Select Mox( g+ Comaniion)
from emp/

Nested queries can also be used as part of more
complex expression. In this case, the inner query must be
ended with a semicolon (:), so SQL can figure out where the

nested query ends and the rest of the boolean expression

begins.

Example (17):List the department number, name, job, total
compensation and commission fof the salesman with thé
maximum total compensation, and for all -the saiesmen in
department 20. Sort the result by salary within commission

in descending sequenve, so the high earners come first.

select Dept No, Name, Salary + Commission, Commission
from emp
where Salary + Commissions=

select max (Salary + Commission)

from emp
"where Job = 'salesman';
or (job = 'salesman' and Dept_No =20)

order by Commission desc, Salary desc/



Having Clause

The having clause lets us select some of the
groups formed by a previous group by <clause and reject
others, based on the results of another selction using one
or more aggregate functions. This gives us capability

equivalent to using an aggregate function in a where clause,

which is not allowed.

Example (13):List the department number and average salary

for departments having an average salary over $2000.

select Dept No, avg(Salary)
from emp
group by Dept_ No

having avg(Salary) » 2000/

When a query contains both a having and a where
Ccluase, the query is evaluated as follows: First the where
clause 1is applied to select qualifying records, then the
groups indicated by the group by clausé are formed; then the

having clause is applied to select qualifying groups.

The having clause can also contain nested queries.
A query nested in a having clause is evaluated in the same

way as a query nested in a where clause.



[L92 € - W\

2

Nested queries can be used in both the where and

having clauses at the same time.

Join Queries

Up wuntil now, all the queries we have been doing
involved only a single record type. However, an SQL
statement may list fields from any number of record types in
a single query. Queries that list fields from several
record types are called join queries, because they combine,
or "join", the different record types together. The
different record types to be involved in the query are
listed in the from clause, in any convenient order. SQL then
determines what.is the most efficient method of performing

the selection and qualification.

The fundamental concept underlying join queries is
that of the Cartesian product. Conceptually, a join query
first forms the cartesian productXOf the record types, and
then "filters" the results by the conditions in the where
clause. Thus a join query without a where clause does in

fact list the Cartesian product of the record types.

Example (13): List the employee name and all the fields from

the department that the employee works in.




from.emp, dept

where Dept No = dept, Number/

The where clause 1in a join query can contain
expressions that wuse fields from any of the record types

involved 1in the join. The expression is not limited to

being an equality.
Self Join

- Sometimes it 1s necessary to join a record type
with itself. In our sample data base, the emp record type
contains a field that indicates who the employee's manager
is. This 1is simply the number of another employee. We
could therefore join the emp record type to itself, ﬁsing

the employee's number and number of his manager.

The best way to think of queries like this is to
imagine that there are two copies of the emp regord type -
one that contains employees, and one that contaiﬂé managers.
SQL doesn't really make a copy, but achieves the same effect
by letting us give record type a temporary name. We are
free to join these record types just like "real“ dnes., " The
following query uses the record types‘emp and mgr-. The name

mgr is merely a temporary name given to the emp record type.



=3

Example (19):List the employees' name and salary, and their
manager's name and salary, for employees who make more than

their manager.

select emp.Name, emp.Salary, mgr.Name, mgr.Salary

from emp, emp mgr

where emp.Salary » mgr.Salary and

emp.Manager mgr .Number/



CHAPTER III

Optimisation of query decomposition

Before we proceed with the actual strategy, let us
first examine the architecture of a typical distributed
database system. The following figure (fig.1) shows the

elements of a typical DDB systemli])

At the top level is the global schema. It defines
all the data which are contained in the DDB as 1if the
database were not distributed at all. Using the relation
model [8], the global schema consists of a set of global

relations.

At the next level is the fragmentation schema.
This defines the mapping between the relations and their
fragments. This mapping 1is one to many 1i.e. several
frégments correspond to one global relation. but only one

global relation corresponds to one fragment.

The allocation schema defines at which site(s) a
fragment is located. If we have a single fragment available

at more than one site, then we have what is called a



GLOBA L
SCHEMA

FRAGWMENTA TIeN
SCHEMA

ALLLATIGN
SCHEMA

LoCh L
MAPAIN G,
Stemp of

SITE

Sxkz !

Fig-1

23

LoCnL
MAPPin G
ApemA o
SiTE 2

DEM¢ ¢
i o

Lot
Clﬂx)t’\iju ({k
She 2

.N\"\.________.//



redundant DDB, otherwise the DDB system is set to be non-

redundant.

The 1local mapping schema serves to map the
fragments at a particular site to the object in local DBMS,
and it depends on the local DBMS - thus for a heterogenous

system we have different types of local mapping at different

sites.

At the next level of the architecture we have the

local DBMSs with their associated local databases.

Only the top three layers are site independent and
they serve to define the distributed database much in the

same way that a global directory does for a centralised

database.

The abovementioned architecture has the advantage
that it provides for location as well as fragmentation
transparency 1i.e. a wuser works only on global relations
without being «concerned about with the location and

fragmentation aspects.



4

In the light of the above architecture we shall
now give an outline of the steps involved 1in query

processing in a DDB system.

A user formulates his query at any node of the
network in a global query language. A query may possibly
involve a set of data stored over several nodes. To process
such a query the local system at access node has to &=
analysed the distribution of the requested data and
consequently decompose the query into a set of subqueries;
each of them is a query for local data. The local system
perform the subqueries and send back the requested data, if
any, to the requesting node. (It is possible that for
performing subqueries some data may need to be transferred
from other sites). The access node finally synthesises all
local results to provide the user with global response to

the query. The overall mechanism is illustrated in the

following figure (fig.2)

Thus query pro:essing in a DDB corresponds to the
translation of requests, formulated in a high level language
on one computer of the network, into a sequence  of
elementary "instructions which retrieve data stored in the

distfibuted database. The following figure (fig.3) shows



Ls)

2%

nede i £<\~*"

T DB

»O R LR

89D~ Quiry dov DI
SUPE ~ Qinevy ey Locd DR e mode ©
BRU ~ Lovdd weapoes b BLD;

GR — Glrbaf reappma: & 3 Dp

LS - Loead Sl
LopRL - letal @lan ad swdle o

&g 2

LSz

Tiede 3

7

CoDaY



the main software module which implement this evolution of

the query [B].

Quexny ¢xpresicd vny SQL

<

Ob’rum/(/mj/xefn & C(/i/ur‘\)
Az ecompaadam

WJ

D&;I,LWL; R 06 ‘r’”‘}-’i‘f“lﬂ\a&n

1 3

(' 4

Nefwryk  wndr Yo

N

Tkl AT

By Ly PN/M ko d ey
' Arogsie

Vg miedsr T2

X Q.\/\;:/Yj iL?\"PNmA “h L&’CJ w\l;
. ixyywﬁa~

A4lﬁtﬂ ﬁQUunQ

l Fraracewn dareoGd & man
Shooio¢

FiG3



3'.:

The optimisation process produces as output a
sequence of operational commands to the local databases,
which are optimal according to the optimisation strategy.
Accordingly subqueries are generated and are distributed by
the network. The translator T1 translates the subqueries
into the language (DML) of the local DBMS. Each command is
then further analysed by the local DBMS of the remote
computer and the optional local data retrieval strategy is
performed. The execution of these commands may however be

postponed if there is a need for receiving data from other

computers.

We shall now discuss the specific problems of

query processing optimisation.

Optimisation

The optimisation of query processing consists of
decomposing the query into subqueries and determining a
sequencing of the subqueries so that the obtained strategy

is optimal with respect to the selected cost function.

The cost function:- It reflects the requirements of | the
system and may be obtained by weighting the following

factors: -



(a)
(b)

(c)
(d)

3)

Total response time
Total wusage of local resources (CPU wutilisation, 1/0
operations)

Network traffic

Parallel load distribution on the computers of the DDB.
Of course these factors are not independent (in fact,
some of them are contradicting) therefore, it is not
possible to subdivide the problem and to optimise each
factor separately. The optimisation algorithm that
have been created for a centralised environment usually
weight 1in ' the cost function the elapsed CPU time and
the I/0 operations. The problems in distributed
environment are more complex - e.g. increase in
parallelism in processing leads to increase in network
traffic while increase in parallelism helps to cut down
the response time. But the major bottleneck in DDB
system has been found to be the inter-computer
communications - as the network transmission speed 1is
very slow as compared to local processing speeds,
hence most of the algorithm in literature take only
communication cost in their optimisation algorithm.
Let us now discﬁss the specific optimisation ~me}hod

mentioned earlier.



I

An algorithm for Optimisation of query decomposition:- We
will confine ourselves mainly to minimisation of the amount
of data transferred between nodes. In the end we will relax
our optimisation a bit wusing a heuristic to allow for
increase in parallelism - without wunduly incréasing the
amount of data transferred. Also we shall work 1in an
overall relational model of DDB system. It is assumed that
a copy of global schema, fragmentation schema, and
allocation . schema is available at every site. Also every
site has a copy of fragmentation <criterion. Further, the

transmission cost between each node has been taken to Dbe

equal.

Before applying any specific optimisation technique
the .first step that we must perform is to parse the query.
After parsing we know what all are the clauses present in
the query, and also what relations are involved in it. We
can then refer to the schemas mentioned above and find out

what sites and what fragments are involved in the query.
A simple query like

select name

from emp £



33

which does not involve any condition ( no where clause) can

be directly sent to the sites involved in the form of

appropriate subqueries.

But if vthe query contains the where clause we
first convert the conditions into a Conjunctive Normal Form.
This is done so that we can eliminate portion of data which
do not satisfy even one of the conditions from further
consideration. We then look for one variable restrictions
on field(s) which serve to define the fragmentation. A site
for which any of these conditions is false is ruled out from

further consideration.

The main optimisation 1is required in the
evaluation of joins since the relations involved in the join
may be distributed and to evaluate the join the relation

fragments must be transferred fiom one site to another.

The strategy that we are considering - called the
fragmgnted processing technique [ 6 1], reduces both
transmission cost as well as response time. Response time

is reduced by increasing the degree of parallelism and it

can be shown that this method results in less transfer ‘of

data because of judicious choice -6f processing sites.



y

We shall assume that our query 1involves join
between n relations such that all the joins are connected
i.e. we don't have diéconnected joins like R1 joined with R2
and R3 joined with R4. We shall confine ourselves to the

site-to-site model of network.

The technique essentially consist of choosing one

relation (Rp) which 1is not moved (i.e. it remains
fragmented) and choosing k processing sites. The remaining
relations , Ri.i? p, are moved to the k processing sites.

Processing then begins on all k sites and the result is the

result of wunion of results on the K sites. The basic
question here is how to choose Rp and K. This requires an
analysis of communication costs involved. Evidently

following transfers of data must be made in our strategy:-

J
(i) for each processing site Sj, Rxﬁﬁpmust be moved to all

other K-1 processing sites.

(ii) for each nonprocessing site Sj)th¢ must be moved to
the K processing sites and Ré must be moved to one

processing site.



E)

For simplicity, we will number the processing
sites to be S1, S2 ----Sk. The formula for the number of

bytes which must be moved is then:-

,, K 5
Comm = 2 Gy [ £1R3]]
=1 Hp

N .
+ 2 G2 IR
3=k <L ‘#’l \]

N :
C 5
T Z-m' URP”

where Cx & The cosk & aend doda ¥ K slos

The first term comes from (1) above. The (ii) and (iii)

come from (2) above.

Epstein [ 6 ] has shown that for a site-to-site
model of network the above communication cost is minimised

by Choosing Rp and K in the following manner:-

(i) choosing Rp to be maquq) ( i.e. the relation with the

highest cardinality)} and choosing every site Sj to be a

3,

brocessing site for which

: . 3

z [Re] < SR

Ep ¢

(i.e. for the site j the amount of data required to be
brought in when it is made a processing site is less .than

the data to be moved out if it were to be a non-processing

sitej.



34

or

(ii) if the above condition is found to be not true for all
sites, then, choose only one site Sj as a processing
site which has .
max; [ 2R\
(i.e. the site containing the largest amount of data).
We «can illustrate the method of fragmented processing
technique by means of the following example:-

Suppose we have two relations:-
Supplier (sno, sname, city)
Supply (sno, jno, amount)

Let the relations be fragmented (horizontally) as

follows:-
site 1 site 2 site 3 site 4

No. of tuples 200 25 300 -
of relation
supplier .
No.of tuples of
relation supply 100 100 - 50

Let there be a query :- "“find the names of all
suppliers which figure in. the supply list ". In SQL “this

query would be



25

select sname
from supplier, supply

where supplier. sno = supply. sno £

We shall evaluate this equijoin wusing the

technique mentioned above.

We shall first decide on relation Rp. Clearly
cardinality of supplier (550) is greater than cardinality of

supply (250), so supplier is Rp.

Now to choose processing sites we used a criterion
mentioned above. We have 2]&-]:2‘50
. CHp
For site 1 ZJR?, = 300
[
since Z\RL\ < 2'\&“ site 1 is a processing
¢ ¢
site. P
. o
For site 2 T|R| = 125
(%
This is not a processing site.

For site 3 IR = 300 |
(¥

This also is a processing site.

Site 4 is not considered as Relation Rp is not present

there.



39

Let us now compute the cost of evaluation of the join:-

For site 1, cost = 100+50+25 (we have moved contents of

Rp at site 2 to site 1)

For site 2, cost = 100 + 100 = 200

Therefore total cost = 375.

If we now evaluate the cost by transferring all

the data to one site (site with maximum data - site 3 in our

case) we get
cost = 300 + 125 = 425.

Clearly our method is less costly. 0f course, in
our uase-the result of join is fragmented at site 1 and site
3 so an additional transfer is required . But that will be
the case even for the crude method if the query originates
at site 1 or site 2. It is possible that the "join may blow

up the resultant relation.

Yet another level of optimisation in communication
cost 1is possible for the case of queries involving joins

between more than two relations. - This is done through a



39

method called query splitting tactic [ 6 ]. The wessential
idea is to look for an intermediate result which is such
that if this result were evaluated first and wused in
subsequent evaluations, the overall communication cost will
be least. In this method the query q is split into two
parts q' and g". q" uses the outcome of q'. q' successively
contains all the combinations (from i=2 to i = n -1) of the
relations 1involved in query q. For each case we estimate
the size of resultant relation and the cost of evaluating q'
using fragmented 'processing technique. Also we use the
estimate of resultant relation and calculate the «ost of
evaluating q" using FPT.' The total communication cost is
the sum of the two costs. Out of all possible total costs
thus calculated we pick up the lowest one and do the
corresponding splitting of the query and proceed with

further processing.

A possible modification of the tactics 1is to
evaluate the q" cost using the query splitting tactics

again. This would be an exhaustive search.

It should be noted that correct estimation of

result-size. plays-an important role in this tactics. But

-v,:-
-



while an extensive statistics about the data can not be
stored, it is nevertheless necessary to store some
information about the data. Usually a one bit of
information 1is stored in the global schema which tells

whether a domain is nearly a primary key or not.

Yet another way would be to decide on further
processing strategy after the evaluation of every step so
that an accurate knowledge about the result-size -is
available. But this method increases processing time. Also
it is not possible to revert the decisions if it turns out

that the strategy has been expensive enough.

Having identified as to how the query is to be
split (if at‘all) and also the relations to be moved, we now
concentrate on the actual sites where data is to be picked
up for transfer. Our objective here is to pick up only
relevant data. For this we perform following operations at

each site before transfer:-

(i) Apply all one variable conditions applicable for the

fragments on that site.

(ii) Project only those fields from the relation fragments,

which: -



“y

(a) either are in the target list (i.e. in select
clause)
(b) or are involved as joining fields in the joins in

the query.
Processing of Aggregates

Sohe optimisation specific to aggregate functions
can be done. For example, the aggregates that range over
only one relation are processed on individual sites and the
aggregafed results are transmitted back to the requesting

site and they are combined to produce the final result.

Aggregates which involve more than one relation
can be performed by first retrieving the values to be
aggregated 1into a distributed temporary relation and then

aggregating on that temporary relation.

Minimising response time

Increase in parallelism can decrease processing time
but it increases the communication cost. But still we can wuse

some heuristic to 1improve response t ime by ingreasing



MAN.

parallelism. Thus for the model presented we can change the
equation.
. C )
R < TR
t#p ¢

Y

T£ Ik < 2R

ip
Where T is a heuristic value between 0 and 1 . When T = 1
communication costs are minimised. When T = 0 all sites
become processing sites. We can choose a suitable value of

T after some experimentation.



CHAPTER - IV

Design and implementation of Parser for the SQL

The parser we have developed supports almost all
the features of the language SQL as discussed in chapter II
(it does not include set inclusion). The implementation of

a Parser requires the execution of following two phases:-
(i) the lexical analyser

(ii) the syntax analyser

- The lexical analyser reads the input character by
character (from left to right) and generates tokens as soon

as a valid construct has been encountered.

The syntax analyser checks for the syntactical
correctness of the sequence of tokens ~ generated and if
correct, it Dbuilds the corresponding parsed tree 1i.e. it

stores the input in an appropriate strucutre.

We have combined the above two phases into one
pass. The syntax analyser calls the lexical analyser as and
when it needs a taken. Also our parser works in a top-to-

bottom fashion using a recursive descent procedure.



e

The output of the parser is a pointer to the root

of the tree.
We will now discuss each phase separately.

(1) The lexical analyser:- A valid token returned by the
lexical analyser is one of the following:
(i) a keyword
(ii) an identifier
(iii) a constant

(iv) a symbol

The 1list of keywords, symbols and constants is

given in appendix C.

An identifier is a string of alphabets and digits,
starting with an alphabet. Also the identifier may contain
a dot (.) ( to represent constructs like emp. name - where

emp denotes the relation which has attirbute name)

For recognising the various tokens the adjacent

transition diagram has been used.

The above transition diagram has been implemented
in the form of a transition table, with input symbols -
after mapping them to integer values - representing coloumns

and states representing rows. Each table entry represents



My

< \h L NG Lh_ﬁ),\ﬁ ' \[“ Q(%M oYYy \{ -
) () ()22 G

N
Y : ((‘ij (W() /%

N
C
© ()

< R<%c0-\m> N
G @)
O\ Leny kg hoa> 72
Z > /_}‘/ el d)}@\
\ B A\
|

W . Q{X QGM Moy 'chay> /,-\‘
0 &

W

\ ‘ .
C ‘1’{4'5\*', dr'\s,\,t ) Q /
V0

O e )
) @ EYEY c
¥ o SO—22 5 2'}'—“@- |
ALS Dt

A
C

33
@)
NN

Plg 4



Lké

the next state of transition with the given inital statc
represented by the row number and with given input symbol-

represented by the coloumn number.

We start with the state 0 and as characters are
read we move from one state to the next. At the same time
we Keep storing the characters in a string. On reaching a
final state the transition process stops. We use this final

state for mapping the given string of characters to a token.

Every token returned by the lexical analyser has
three attributes - the name of the token i.e. the actual
input, the token number and the precedence number associated
with the token ( the precedence number is needed as we shall

see later for building the parsed tree.

The precedénue associated with various tokens are
given in Appendix (C). What is actually returned by the
lexical analyser to the syntax analyser is the address of
the location where the given token with all its attributes
is stored. For this purpose we maintain four separate

tables for keywords, symbols, identifiers and constants.



)

All the keywords are a priori stored 1in the
keyword table. A string of alphabets is first checked for a
keyword. If it is a keyword we return the address of the
corresponding Kkeyword table entry. If the given string is
not a keyword, then like for any identifier we check for its
presence in the identifier table, 1if present, we return the
- corresponding identifier table entry address, otherwise we
install the new identifier in the table and return its

address.
A constant is similarly checked for its presence

and installed in the constant table, if necessary.

A symbol is matched against the symbol table
entries (which has all symbols installed in it) and the

address of its match is returned.

The following program (in pseudo code) sketches

the working of lexical analyser (it is not exhaustive).
Program Lexical Analyser
Begin

S = 'y [Initialise S to an empty string]

state = 0 ; [Initial state]



W

C = GETCHAR; [Get one character from input]

S = 5§ CAT C; [concatinate C with S]
CASE C OF

Alphabet: While (state # final state)

Begin
C = GETCHAR;
S = S CAT C;
state = nextstate; [nextstate Iis
the state resulting from a
transition to a new state, on
input]
end;

CASE STATE OF
F1 : Lookup (Keytab); [F1

corresponds to a string
of alphabets]

If (found)

return (§ keytab (entry));

else

begin

lookup (idtab]};

if (found) return (§idtab (entry));

else



“D

begin

instal {idtab);

return (§ idtab (entry});
end;

end;

F2 : lookup (idtab); [ F2

corresponds to
a string of
alphabets and
digits]

If (found) return (§ idtab (entry));

else

begin

install (idtab);

return (§ idtab (entry));

end;
ﬁigit: While (state # final state)
Begin
C = GETCHAR;
S = S CAT C;
end;

CASE STATE OF

F3 : Const-type = integer;



End.

(2)

lookup (constab);

If (found) return(&constab (entry));
else

begin

install (constab);

return (§ constab (entry));

end;

F4 : Const-type = real;

[then do the same as above]

Symbals: While (state # final state)

Begin

C GETCHAR;

S S CAT C;

end; .
lookup (symtab};

return (§ symtab (entry))

We shall now discuss the working of syntax analyser.

Syntax Analyser: For checking the grammatical
correctness of the query and for building the
corresponding parsed tree (if gramatically correct) we

follow a left to right recursive descent procedure.

P



In this method, we have one recursive procedure
for each nonterminal U, 1in the grammer which parses phrases
for U. We begin by looking for a phrase for some starting
nonterminal (query in our case ). The procedure finds 1its
phrase by comparing the input at the point indicated with
right part of rules for U, calling other procedures to

recognise subgoals when necessary [I2].

Thus with reference to the grammer given (below),
we begin by looking for a phrase for query. For this, we
first look for presence of the item SELECT in the input, if
bresent we now try to satisfy the expression subgoal. For
this we compare the input portion of program (after SELECTO
with the right parts of rules for expression. Satisfaction
of this subsubgoal may require comparision with the right
hand side of the rules for other nonterminals). If this
subgoal 1is satisfied we look for the presence of FROM in
the query, if present, we look for the presence of a list of

relation names in the query and so on.

It should be noted that as a particular subgoal is

satisfied the routines called also build the corresponding

parsed structure.



Before going into the details of the actual
implementation of the syntax analyser let us formally write
down the grammexr for the SQL . With reference to the the
language. defined in chapter 'II we have the following

production rules:

<query>-> SELECT [unique] <E1> FROM (rellist>
[ label ] [WHERE <E2>] [GROUP BY <field
list> HAVING <x§371 [ORDER BY <&fieid list>] [ASC or DESC]
[INTO «£filename>]/
Zqueryy ¥ SELECT [unique]<E1DFROM rel - list>
| [label] [WHERE <E2% [GROUP BY «field

list¥ [ORDER BYgfield list) [ASC or ESSC} [INTOL ilenamed/

Where [ '} indicates that the enclosed item 1is
optional and may be left out. This rule says that a query
starts with a select clause continues with a form clause and
then Includes none, one or moro oplional  clauses. tThe
clauses must occur in the order given, even though some of
them may be omitted in a specific query. Also the query

must end with a /.

We now consider rules for each of the nonterminal

present in the rule 1.



55

LEIS s <EI> <OpI> <ENp |
LEVY) —>  badd | vel fuldd | eonalial | 0 fumame (C.C17)
LEVY —= (D)
LEVy — (£D)
COPY > A4\ -]y
LB Y —> LEVY Copay L €Yy
kY > Ly Lcopyy <ty
¢ 2y —> NeTLE2y
CE1Y > (<t2P)
£0P2> —> Zlal=)elZlc 7 .

O3> —> AnD )R

o ' ‘ . A :
LB b he s v w for <6V exewpl Un

yule () (6] <€12) '
&Quﬁ«é%&lﬁ {)—v\,ﬂw b in o md cllgrne d %c‘)/ <iy’ Ve
49 - \

R\ > Lqgvnenyy

. - 7 .
AL bRy dao o-ééu ) oy s & bt i)

4 b‘\ylo{ b\[)k> % {\,'\ﬂ\(}ql ' b/\[l@ﬁ !A/){ P

£l daky o hudd

;

Al bl > s rdladhen dreld o b bdtal >

< ddd bak > > wdlahen kel

(el ke > s reladm Coveliind Y

¢ o bt > o wehabum



We now give an outline of the implementation of
~the syntax analyser (in pseudo code). It is only a sketch

of the actual routine and is not exhaustive.
Program Syntax Analyser
Begin

LEX; {LEX is a call to the lexical analyser for getting

the next token]

If nexttoken = "select"; [nexttoken stores the token
returned by LEX]
then EXPR(1); [EXPR(1) parses afithmatic expressions

valid for the select clausel].

LEX;
If nexttoken = “from"
then REL-LIST; [The REL-LIST checks for presence of

relations list and stores them if found]

LEX;
If nexttoken = "where"
then WH-CLAUSE; [WH-CLAUSE parses the remaining query

once the item where has been found]

Else if nexttoken = "Group By"

then GP-CLAUSE; [GP-CLAUSE parses the remaining query



Else

then

Else

then

Else

then

Else

End.

once the item Group By has been found]
if nexttoken = "Order By"

ORD-CLAUSE; [ORD-CLAUSE parses the remaining query

once the item Order By has been found]

if nexttoken = "Into"
INTO-CLAUSE; [INTO-CLAUSE parses the remaining query

once the item Into has been found]

if nexttoken = "/"

exit; ["/" marks the end of the query].

error,;

Let us consider the procedures called above, one by one.

Procedure

Begin

WH-CLAUSE

EXPR(2); [EXPR(2)} parses boolean expressions, which do

not contain agg.function as agg.functions are

not allowed in WHERE clause]

If nexttoken = "Group By";

then

Else

GP-CLAUSE;

if nexttoken = "Order By"



End.

Proce

Begin

then ORD-CLAUSE;

Else if nexttoken = "Into"

Then INTO-CLAUSE;

Else if nexttoken = "“/"

Then exit.

Else error;

dure GP-CLAUSE

Field-List; [Field-1list checks
list of fields and
them]

If nexttoken = "Having"

then HAVING-CLAUSE; [Having-Clause

query once the item

Else if nexttoken = "Order By"

Then ORD-CLAUSE;

]

Else if nexttoken "Into"

- Then INTO-CLAUSE;

Else if nextoken = "/"

ST

for the presence of

if present it stores

parses the remaining

having has occurred]



Then exit;
Else error;

End.
Procedure HAVING-CLAUSE

Begin
EXPR(3); [EXPR(3) parses boolean expressions

contain aggregate function as agg

are allowed in Having Clause]

If nexttoken = "Order By"

then ORD-CLAUSE;
Else if nexttoken = "Into"
then INTO-CLAUSE;

Else if nexttoken = "/"

then exit;
Else error;

End.

Procedure ORD-CLAUSE

Begin
Field list;
If nexttoken = "Into"
then INTO-CLAUSE;

Else if nexttoken = "/"

which may

.functions



>7

then exit;
Else error;
End.

Procedure INTO-CLAUSE

Begin
filename; [filename c¢hecks for a valid filename and

stores it if present]

if nexttoken # "/"
then error;
Else exit;

End.
Now we consider the routine for parsing expressions.

Procedure EXPR{(n)

Begin
LEX;
if (n=1)
then if ((nexttoken = "OPR") or (nexttoken = "OPL"))
then error; [The select clause cannot have relational
(OPR) or logical (OPL) operators]
if (n=2)

then if (nexttoken = "agg.function name")



>

then error; {The where <c¢lause cannot contain an

aggregate function]

if (flag = 0)

then if (nexttoken = "an identifier or a constant or an
agg.function name or "(" ")
then begin [flag is a global variable indicating

the stért of an expression. Initially it
is set to 0 and is used for checking the
valid tokens at the Dbegining of an
expression. Ongce the expression has
started it is set tol§.

postfix; Postfix 1is a procedure which converts
the input stream into a postfix notation.

EXPR(n});

flag = 1;

previous token = nexttoken; [previous token stores the

current token]

Else if (flag=1)

begin

if (nexttoken = "/" or "Group By" or "Order By; or
"Into") then break; [if any of these tokens occur we

exit from the EXPR(n) routinel



[the following 1lines do syntactical checking
comparing the previous token with the nexttoken].

if (previous token = "Identifier or a constant")

then if (nexttoken # "Operater" or ")" )
then error;
else begin
postfix;
previous token = nexttoken;
EXPR(n);

end;

else if (previous token = "Operater")

to
59

by

then if (nexttoken # an identifier or a constant

or an agg.function name or "(" ) then error;

else begin
postfix;
previous token=nexttoken;
EXPR(n);
end;
else if (previous token = ")'" )
then if (nexttoken # “operater" or ")" )
then error;
else begin
postfix;

previous token = nexttoken;



£p

EXPR(n);
then end;
else if (previous token = "(" )
then if (nexttoken # "(" or "an identifier" or a

"constant" or an "agg.function name") then error;

else begin
postfix;
previous token = nexttoken;
EXPR(n);

end.

else if (previous token = "an aggregate function name")
then if (nexttoken # "(" ) then error;
else begin

postfix;

previous token = nexttoken;

EXPR(n); |

end;

Emptystack (stack):; [this procedure empties the contents of

stack onto an output stream]

‘Build_expression (output stream); [after converting the
input sequence (if correct) to postfix
we call the procedure "build expression"

which builds the tree for the expression

wirg e padhon foon wiieh o alind in ot



Proce

Begin

¢

dure Postfix

=", S =" "; [0 is the output stream which will
finally have the postfix form of-:
expression. S is the Stack.

Initially both are empty]

If (nexttoken = "identifier or constant");
then begin

O {i] = nexttoken;

i = 1i+1;
else if (nexttoken = "operator")
then begin

if (s = empty)

then begin

S[j] = nexttoken:

jo= 31

end;

else begin

while (nexttoken.precedence& S[}ij].precedence)

O[i++] S[(ji--1:
S[++j] = nexttoken;

end;



é}..

end.
Procedure dmptystack(s)
Begin
while (j £ 1);
Ofi++] = S[j--1;

end.

Procedure Build _expression (0)

Begin

t = 0; 1=0; [we keep storing the tokens of the
output stream, 0 in locations
exp(l) till we get an operator. On
getting an operator, we store it
and link it with the preceeding two
locations - exp(l-1) and exp(l-2)
as respectively the right and left
link. We repeat the above process
till the output stream is
exhausted. ]

while (t £ k)

begin

while (O[t] # "Operator")
begin

exp(l++) = O(t++);



Yy

exp(l) - left = NULL;
exp(l) - right = NULL;

end

exp(l) = O[t];

exp(l) - right = exp(1-1);
exp(l) - left = exp(1-2);
1 = 1-2;

end.

Semantic check: The parser that we have developed here does
only syntactical checking and builds the corresponding
parsed tree 1if the input query is grammatically correct.
Semantic checking is done by another routine which takes the
output of Parser as the input and has an access to the
global schema. It checks for the validity of fields and

relations referred in the query and also looks into the

problem of type matching.

Within the framework of distributed processing

strategy that we discussed earlier the parser plays an

important role. It is used at two levels. First at the top

level where the given query is pased so that it could be
properiy partitioned. Secondly, once the partitioning of
the query has taken place and subqueries have been

distributed to local sites parser is used for translating



5

the query which is in SQL to the DML of the local DBMS. In

this process parser is an essential intermediate step. The

output of the parser is taken by the respective translating

routines. These routines then generate the appropriate code

in the local DML.



L

APPENDIX A

The following pages contain a listing of the

proegram (in 'C') for parser for SQL.




/* IN THF MAIN ROUTINE WE GFT THE INPUT QUERY INTO A FILE AND CALL THE
ROUTINE PARSE() WHICH 1S A 7oP LEVEL ROUTINE AND IT SUBSEQUENTLY CALLS
OTHER ROUTINES AS IT READS THE INPUT AND BUILDS THE CORRESPONDING
STRUCTURE. THE STRUCTURES RFFERRED TO HERE HAVE BEEN DEFINED IN THE
FILE /DHARSDEEP/EXTRA Y

#INCLUDE <STDIO.H> o
HINCLUDE "/DHARSDEEP/EXTRA":
STRUCT CEL-S #BrxA;
STRUCT FROM.S *R,%xV;
STRUCT GPBY.S M, »u;
>STRUCT QRDBY_S *g, *y;
STRUCT TOKEN *WHERET()s%GRONPT () o xHAVINGT (), *ORDERT I #*xINTOT1();
STRUCT QRYaS *QSR,*QQQ;

MAIN () 3
* SMARKER = 0: TAG = N MAQK&R = 0 SEL = 0; ¢T = 07 UNI
PRINTF("FNTFR YOUR QUERY 2\N"™);
FP = FOPEN("ARUF"."W"):
DY
* CF = GFTCHARQ):
FPUTC((F.FP\.

n
<
e

* WHILE (Cr T= "\\');
FCLOSE(FP):
IF ((FP = anFN("BUF";"R")) == NylLL)

* PRINTF¢"RUF NOT OQPENED \Nw); EXIT(O0); «
QSR = PARSE()Y:
RETURN(QSRY:
*
STRUCT GRY.S #PARSE() /* THIS IS THE MAIN ROUTINE */
STRUCT QRY.S %Q:
INT GRPIORRaHAV.TNn;
GRP = 0/0RR = 0 HAYV = 0; INO = O/
IF_((Ce>TKN) Tz 13
P = LEX1()I
IF ((D->TKN)==1 wx (r=->TKN)==
* SEL = 1;
/% 1F THE FIRST TTgM IS SE_ECT WE START BUILDING THE
STRUCTURF */

@ 5 (STRUCT QRY.S *) MALL”C(SIZEOF(STRUCT QRY_S));
Q=>S = NULI3Qm>F = NULL:Q->W = NULL7Q->H = NULL;

@=>G6 = NULL; Q=30 = NULL:@->UNIQUE = 0;
STRCPY(Q~>INTO."$"),

B = (STRUCT SFL.S %) MALLNC(SIZEOF(STRUCLT SEL_S));
Q?>S = B3 L .

B=>S_.EXP = EYP(1);:

/% EXP(1Y PARSFS ARITHEMATIC EXPRESSIONS ~ WE EXPECT ONLY
ARITHEMATIC EyP. IN SELECT CLAUSE,THE VARIoUS DIFFERENT
ITEMS IN_THF | IST ARE STORED IN A LINKED LIST «/

TF (UNI == 1y /% THIS IS FQR THE CASE WHEN UNIQUE IS

o _  PRESENT */
* Q->UNTQUE = C=>TKN;
Be>S_EXP = EXP(13: UNI = 07



*
WHICE ((e=5TkNY Y2 3)

* A = (STRUCT SEL S #) MALLOC(SIZEOF(STRUCT SEL.S))’
B=>SLTNK = q:
A=>S-EXP = FYP(1);
B = A:

L)

B-iSLfNK = NULL:

/% ONCE THE TTFM FROM HAS OCCURED Wg STORE THE RELATION

NAMES OCCHRTNG IN A LINKED LIST * /
R = (STRUCT FROMTS %) MALLOC(SIZEOF(STRUCT FROM.S));
szF'z 8"
D - LEX1(’: ~~~~~~ .
1F ((D~>TKN)==14) STRCPY(R=>REL.NM,D=>NAME);

ELSE * PRINTF("REIATTOV NAME EYpECTED IN FROM CLAUSEAN™)JEXIT():x
D = LEX1().

P P

1F ((D~>TKN) =2.4) .
* STRCPY(R=>LARFI »D=>NAMEY;D = LEX1()7*

ELSE STRCPY(R_>|ABEL,"EMPTY"):

WHILE ((D=>TKNY == 26)
* b = LEX1(): __
IF ((D=>TKN) =z 34)

* V_= (STRUCT FROM.S %) MALLOC(SIZEOF(STRUCT FROM=S))~
R=>FLINK _E v* o
STRCPY(V->Rel NM,D=>NAME) S
* .
FELSE * PRINTF(WRFL.NAME EXPECTED IN FROM CLAUSENN'")JEXIT(O) ;=
D = LEX1()’ -
IfF (D= >TKN z= 26) .
*STRCPY(V=>LAREI »D=>NAMEY; D = LEX1 Q)7
ELSE STRCPY(U~sLABELS"EMPTY");
R = V :

NUITE 2

I

R=>FLINK
C =0

LT}

/+ IF THE END OF THF QiFRY I.E. #\" HAS NOT OCCURED WE INVOKE
THE APPROPRIATFE ROUTTNE DEPENTING ON THE NEXT ITEM IN THE
QUERY.THIS PROCEDURE 1S REPEATED AFTER PARSING OF THE
NEXT CLAUSE TN THE gUERY.FOR EaCH CLAUSE THERE IS A MARKER
WHICH ENSURES THAT THF SAME CLAUSE DOES NOT OCCUR TWICE (AT
THE SAME LEVELY IN THF QUERY, */

J+ MARKER AND SMARKFR HAUE BEEN 'ISED FOR TAGGING A NgSTED QUERY %/

IF ((C~>TKN) 1= 27 8& (MARKFR < 1) && (C->TKN)I= 25)

* SWITCH(C=>TKN)*

CASE 42 WHERE1(Q)IBREAKS
CASE Sz GRP = 1; GROUPT(Q);BREAK:
CASE 7: ORR = 1; ORDER1(R);BREAK?
CASE 8: TF (GRP <= 0)
x PRINTF("HAVING NOT PREC.BY GROUP BY\N"); EXITCY;



FISE * HAY = 17 HAVINGI(Q)ZI*BREAK,
chn o- INO = 13 INTO1(Q)7BREAK?
DEFAUI Ts pRINTF("ERROR\N")‘ RREAK;
w

TF ((Cm>TKN)!=27 R& (MARKER <1) 28& (C=>TKN)!'= 23)
* SWITCH(C=>TKN)
1f (GRP~-1) pRINTr(ﬂsz -2 GRP 8Y\N");ELSE *GRP=1; GROUP1(Q):*BREAK

CASE S+
CASE 7: 1F (ORR==z1) PRINTF("gpR~2 ORD BY\N")/ELSE *ORR=17; ORDER1(Q);*BREAK
CASE 8% TF (HAV==1) PRINTF(":QR .2 HAVINGAN")/ ' |
ELSE IF (GRP <= 0y
* PRINTF("HAVING NOT PRFCFEDED BY GROUP BY\N™)ZEXIT(); »*
_ ELSE « HAV = 1: HAVING1(Q): * BREAK:
CASE 9% 1F (INO==1) PRINTF("FQR 2 INTOAN");ELSE *INO=17INTQ1(Q);*BREAK;
DEFAULT:PRINTF("ERROR\N"); EXITQ); BREAK;
*
TF ((C=>TKN)1=27 R (MARKER < 1) && (C=>TkKN)!= 25)
* SWITCH(CmaTKNY*
CASE 7: 1F (ORR==1) PRINTE("gpr~2 ORD AY\N")JELSE *ORR=1JORDER1I(Q);*BREAK;
CASE 8% 1F (HAV==1) PRINTF("Fpr=2 HAVING\N")
FLSE IF (GRP <= M)
* PRINTF("HAVING MOT pQECEEDED BY GROUP BY\N")JEXIT().+
geLSE + HAV = 12 HAU!NG1(Q) * BREAK;
DEFAUI T=PRINTF("ERROR\N") ;EXIT()2BREAK,
. - - P, *4
TF ((C=>TKN) = 27 RR (MARKER < 1) &8 (C=>TKN)I= 25)
* SWITCH(C->TKN\*
CASE 7:1F (ORR==1) PRINTF("FRQqZ ORD BY\N")ELSE *ORR=1; OPDER1(Q),*BREAK,
CASE 921F C(INO==1) PRINTF("ERR-2INTO\N");ELSE *INO=1/INTO1(Q);*BREAK
DEFAUI TePRINTF("ERROR\N") JEXIT () ;BREAK,
*
IF ((Ce>TKN)T=27 &R (YMARKER < 1) &% (C—>TKN)!=25)
3 * SWITCH(Cm>TKNY*
CASE 9:IF (INO==1) PRINTF("FQQ_? INTONN®) JELSE *INO=17INTO07(Q);*xBREAK]
NEFAUI T PRINTF("ERROR\N“)oEXIT() sBREAK?
®
1F ((C=>TKNYT=27 29 (MARKER < 1) &R (C->TKN)1=25)
- ) . PPINTF("\\ 1S MISSINGAN"); o
ELSE #1F ((C~>TKN)== 27) MARKER = 23ELSE IF ((C->TKN)==25) SMARKER = 2:%
* ‘
ELSE * TF ((C=>TKN) == 27) MARKER = 27ELSE IF ((C->TKN)== 25) SMARKER =2;*
*
ELSE * 1F ((C=>TKN) == 27) MARKER = 2JELSE IF ((C=>TKN) == 25) SMARKER =2;
*
ELSE * 1F ((C=>TKN) == 273 MARKER = 2;ELSE IF ((C~>TKN) == 25) SMARKER=z ?2;
X +*
ELSE * ITF ((C=>TKN)Y == 27y MARKER = 27ELSE IF ((C->TKN) == 25) SMARKER=?;x
*
ELSE * 1F ((C=>TKN) == 27) MARKER = 2:ELSE IF ((C->TKN) == 25) SMARKER =»;



ELSE » PRINTF("SFLECT 1 bjE{ING\N") EXITC): *
RETURN(Q)S /* IT RFTURNS THE POINTER TO THR ROOT OF THE TREE */

STRUCT TOK&N *WHFRE1(Q)
/% THIS ROHTTNE PARSES THE WHERE CLAUSE */
STRUCT QRY_S *@:
*  Qm>W = Fxp(as.
RETURNCCYZ

STRUCT TOKEN *HAVTNG1(Q)
/* THIS ROUTINF PARSES THE HAVING CLAUSE */
STRUCT QRY_S =*a:
* - .
Q=>H = FXP(3)
RETURNC(EY ¢
*

STRUCT TOKEN *TNTn1(Q)
/* THIS ROUTINF STnRES THE FILE NAME IN INTO CLAUSE IF THg
FILE NAME 1S A yalLIp ONE */
STRUCT QRY.S Q3
* D = LEx1()*
IF ((Da>TKNY == 34)
STRCPY(Q->INTO:D sNAMEY?
ELSE PRINTF(/INVALID FILE NAME \N')#
D = LEX1():
C = p:
RETURN(CY
+*

STRUCT TOKFN *GanP1(Q)
/% THIS ROHTINE QTORES THE ITEMS IN GROUP BY CLAUSE IN A
LINKED LIST */
STRUCT QRY.Ss g@;
* CHAR REFF1%1.ATTC133:
b = LFX1()' _
1F ((D—)TKN\ 1= 4)
* PRINTF("BY 1] *4IS§ING [N GROUP BY CLAUSE\N")I EXIT(); &
ELSE
* D = LFX1()-
IF ((pm>TKNY == 34 4% (D=>TKN) ==35)
¥ M = (STRUCT APBY_S #) MALLOC(SIZEOF(STRUCT GPBY.S));
Q=>G = M; .
IF ((p=>TKNY == 35)
* STRCPY(RF? FONREL (D=>NAME)) S
STRCPY(M->GP REL#REE),
STRCPY(ATT CONATR(D~>NAME));
STRCPY (M= >nP ATRsATTY:

*._
ELSE
#* STRCPV(M >GP TREL,"3");

STRCPY(M->GP ATR,D=>VAME);
*



*
*

*

*
E
*

D = LFX1()' . oLy
WHILE ((Da>TKN) == 34 x% (D=>TKN) =% 35 *#x(D=>TKN) =z 24)

IF ((p=3TKNYT=26) -
U = (STRUCT GPBY-S *) MALLOC(SIZEOF(STRUCT GPBY-5));

MH)GLINK = d; .
IF ((DP~3>TKN) == 35)
STRCPY (U= >Gp pEL.COMRFL(D—>NAME>):
STRCPY(Um>GP.ATRLCONATR(D=>NAME) )/

LSE
STRCPY(H->GP "REL,"$'"):
STRCPY(Um>GPaATR,D=>NAME)

ey

D = LEXT()

Ma>GLINK = WULL;

C = 0:
RETURNECY 1

STRUCT TOKEN *0RDER1(Q)

/% THIS ROUTINF QTORES THg ITEMS IN ORDER BY CLAUSE IN A

*

p_ d

*

*

LINKED LIST. IT ALSO CHECKS AND STORES ANY EXPLICIT
ORDERING (iTKF ASC OR DESC ) PRESENT.

STRUCT QRY_S *a:

D = LEX1().
IfF (b=~ >TKN)|~6)
PRINTFt"Rv s MISSING IN ORDER BY CLAUSEANN")JEXITC()/ &
ELSE
p = LEx1().
IF ((D~>TKN)==3A * ok ("m>TKN) ==35)
E = (STRUCT nRDBY.S *) MALLOC(SIZEOF(STRUCT ORDBY.S));
Q=20 = E,‘ o
IF ((D«)TKN) == 35)
STRCPY(F-)ORD REL,CONREL (D=>NAME))
STRCPY(E=>0RN.ATRACONATR(D=>NAME) )/
ELSE

STRCPY(F->ORD ‘RELL"$"):
STRCPY(E->0RD ATR,D=>NAME)/

D o= LEXT1(Y:
1F ((p~- )TKN):: 39 *x (ha>TKN)== 40)

*
*

* E->0KEY = D=>TKY = 397 D = LEX1()/ *
ELSE .
E=>0KEY = 0:
WHILE ((he>Tkn)==34 *% (D=>TKN)==35 ** (Dm>TKN) == 24)
IF ((D=>TKNY 1= 26)

W = (STRUCT ORDBY § *) MALLOC(SIZEOF(STRUCT ORDBY.SY):
E~>0LINK = W



1%

IF ((De>TKNy == 35)
* STRCPY(Ww>ORD.RELLCONREL(D=>NAME))
STRCPY (W=>0RH_.ATR,CONATR(D=>NAME));
4 .
FLSE
* STRCPY(W~=>0RDaREL,"F");
STRCPY (W=>0RN.ATR,D=>NAME)/
*
D = LFX1();
=z 27 ¥%x (D-sTKN) == §) * Wm>OKEY ¥ 39/E = W;BREAK/ #
IF ((p=>TKNY== 39 ** (D=>TKN)== 40)
* W=20KFY = p=>TKN = 39; *

IF ¢(D=>TKN)

ELSE  _
W=>0KEY = 0=
E = W3
* . ) .
D = LEX1(YS:
* o .
E~>0LINK = ~nULL3S
*
* —
€ = D:

RETURN(CY:



STRUCT TOKEN *C.%D:
STRUCT QRY.$S *PARSE();
INT TAG,FLAG,MARKER,CT,SELLUNT, SMARKER S

/* THE FOLLOWING ROUTINES CONRFL AND cowaTn ExTRACT THE RELATION AND
ATTRIBUTE PART OF An IMPUT LIKE EMP NAME */

CHAR %CONREL(S)
CHAR SC24NAME.STZEDS
)* INT 1,47

CHAR CRELINAME= SIZE]m

]l = G: J = Dl‘_

WHILE (SCI] '= t.1)
CRELLJ*+] = st1++3.
CRELLJI ='\07;
RETURN(CREL):

*

CHAR *CONATR(S)
CHAR SC2#NAMELSTZE]:
* INT 1447
CHAR CATRLNAME.SIZET:
I =05 J= 0/
WHILE (SCIJ t= 'at) 133:
++1;

x  WHILE (SCID)
CATRLU++] = Sr1++41;
CATRLJD = '\O';
RETURN(CATR);

*

/% THE FOLLOWING ROUTINE PARSES AN EXPREeSTON */

STRUCT EXP.LS *EXP(N)
INT N;

STRUCT TOKEN 0C547,sC501¢

STRUCT EXP.S #2,4X[501;

STRUCT AGRFN.S «PTR;

STRUCT QRY_S #PSg3

"STRUCT QRY. S XPPPS

CHAR RE[CNAME_SIZE],ATIrNAMF.SIZETN;
INT PLS035 _ N } L
INT J,KpI1pFsT,A,LP,RP,LOGOP,RELOP,SEF 1 MARKERS
J=1iK=0;1=0iF=0LP = 0f RP = 02 SEQI.PReer = =m1ZRELOP = (i1 OGOP
LMARKER .= 07

NESEC=1:

H R

/* LEX1Q) ROUTINF 1S 18 CALLED TILL Ay EVvPRESSION DELIMITER IS EXF0UTERD.

- IF THERE IS SYNTACTICAL FRROR WE E¥IT FROM THE ROUTINE #/

WHILE ((C=LEX1())!a NUIL &R (C~>TKN)}T1=% R& (c=>TKN)!=5 &g )
(C=>TKN)!=7 &8& (Cm>TKN)!a 25 g& (C->TKnal= 27 &R (C=>TKNy!= 26 (¢
(C->TKN)I!I= 9 88 (C=>TgN)i= 8)



/* N = 1 CORRESPONDS To THE EXPRESSIONS TN SELECT CLAUSE */

* JF (N -sa 1)
IF (C(C~>TKN)»>=28 R& (C-)TKN)<=33) ** r( ->TKN)>=16 RE (C~ >TKN\(—18))
PRINTF(YONLY ALG.EXP” ALLOWED IN SEIEery CLAUSE AND IN FHN ARG"\N")}

/% N = 2 CORRESPONDS Tn THE EXPRESSIONS TH WHERE CLAUSE «/

IF (N == 2) ;
IF ((C=>TKN) >= 10 B& (C~3>TKN) <= 12) . ,
> PRINTF("AGG,FUN, NOT ALLOWED IN WHERE el USE\N")

/* THE TOKENS ARE STORED IN AN ARRAY AS ¥H.Y ARE GENERATER */
PL4+1T = (C~>TKN):

/* NOW WE LOOK FOR TOKENS WTTH UHICH AN £XHRESSION CAN BEGIN (F=iy AND
TAKE APPROPRIATE ACTTON'S 1S THE STACK WHICH 1§ USED FOR CQNVEDTTNG
INFIX TO POSTFIX FORM.O IS AN ARRAY wn-cH FINALLY CONTAINS THE EXP,
IN POSTFIX FORM */

IF (F<=0) . . o -
*IF (Ce>TKN »=34 &g Cm>TKN <=38Y%0L0K+3T= wl SPRINTF("%S",0r=wKleNAME) Kty en
ELSE If (c-?TKN ==18) *SEJ+*J~ *Ci*
ELSE IF (Cm>TKN==23) * SCJ++7 = *Carr /T G >0 ) ++LP; *
ELSE IF (Cm>TKN== 20)*eTchv(er1 NAME , 02 ") SrdI TKN=20;SrJ) PREFEOII+45,
XELSE IF ((C=>TKN) >= 10 &% (cs>TKN) <= 14)
* O[K++7= »C} PRINTF(H%S\NH,Or--KJ NAMF\.++K ++TAGS
PTR = (STRUCT AGRFN § %) MAIIOC(SI7E0¢(STRUCT AGRFN_S)y;
PTR=>FN«KEY = AGTLC~>TKNIS
IfF ((C=>TKN) == 13) ¢T = 1:
PTR=>ARG = EXP(1):
*
ELSE IF ((C=>TKN)== 271 %% qEL: =1) * nrg4+7 w Rl
ELSE IF((C=>TKN)==2) * UNI = 1. BREAK? =
ELSE *pRINTF(" ERROR\NPY: eXIT()} #
F=1;
* '
/* NOW DEPENDING ON THE PREVIONS TOKEN We TAKF APPROPRIATE ACTIOX 4S
THE NEXT TOKEN 1S RECEIVED FROM THE LEXTPAL ANALYSERGIN CASE OF 4
. SYNTAX ERROR we EXIT FROM THE ROUTINE *x/

ELSE N
IF ((PC==1] >=34 && PrI] <= 38) ** (Prin
* IF ((C=>TKN)>228 R& (C~>TKNY<¢=33) ++R
IF ((C=>TKN) == 16 w* (C >TKN) == 17)
SWITCH(C=>TKN)»
- .CASE 24% ==JJWHILE cSTRCMP(quJ NAMF "(”))
* O[K+4] = S[JacliPRINTE("%S",00=-=KI_NAuFY; Ke+ss IF (TAG >0) ++2p:iRREAK:
CASE 2 EXIT();BREAK:

- LCASE
CASE
CASE
CASE
CASE

i

:;io 2% PL11€=14) ** PLI%==224)
cID
++L050p.

[V I L L PO LT

A eI AVIE LR e s I 64

" 45 ww S8 BE Im
e W

LTI THR V'



CASE 30:;
CASE 31%;
CASE 33:;
CASE 32%;
CASE 28:;
CASE 19:;
CASE 17%;
CASE 161

1F ((C=>PRFECY > (Sr=mJI.PRFCY)

¥ S[e+d] = xC3 J++r*

ELSE *WHILE (SCJT1.PREC > €=30RFC) *OrK++1=8Ldam17
PRINTF("YS"aﬂr"—KJ NAME) Jctasa SCa+jl= *C5 Jt+s*BREAD:

......

PEFAULT: PRINTF("ERROR\N")aFXIT()aHRFAK‘

*
I++s
*
ELSE ‘
1IF (Pr13==23)
*SWITCH(C=>TKNY* '
CASE 2431F (TAG==2) *emJiWHILE (STﬂ(mP(SCi].MAMEo"(")\
*¥O[K++1 = SClm=1; PRINTF("VS“ remK o NAME) sK++2 %
w*
_ ELSE PRINTF(wERROR\N");EXIT,)fBRRAK;
CASE 21:1F(CT==1) 8L+ = «CIELSE PRT. TF¢"ERROR\N") ;RREAK/
CASE 10 7
CASE 11 37
N CASE 12 3
CASE 13 ¢
CASE 14 ¢ ++TAG.IF(TAG ¢z ?)
' * oLK++] = (2 PR:NTF<"VQ\NH.UC--KJ  NAME) sK+4s . ~
PTR = (STRUCT AGRFN'S L) HALLOC(SIZEOF(QTRUCT TERENLS)YY ;2
PTR=>FNLKEY = AGTFCe>TKn]:
PTR=>ARG = gXP(1y;
* RREAK]
CASE 23 3 SrJ++1= «C;1F (TAG >0) ++iop: BREAK;
CASE 34 &34
CASE 35 4
CASE 37 &4
CASE 38 :; . .
CASE 36 ;5 O[K+#+4] = %CiPRINTF("%SM,0p- K1, TNAME) IK+43BREAKS

—

CASE 20: *STRCPY(SCJI.NAME, ety sr11 T N=20;STJdIaPRECZ9; 442
CASE 18 s1f ((c=>PRECY > (Sr==Jyl.pRFpis
*Sr4tdlm #C2lt4egw
ELSE *OCK++3=SFJjISFJj= *C.l+4:*_ BREAK:
DEFAULT ¢ PRINTF("ERROR\N"Y; EXIT():R-EAK:
*
I+4+;
*
ELSE IF (PLIl==16 x#P[17==17)
*SWITCH(C=>TKNY*
CASg 10:s
CASE 11
CASE 12
CASE 13: '
CASE 14z +4TAGIIF (TAG <= 2)

-



* ONK++] = *(3}
PTR = (STRUCT AGRFN-S *) METTC(STZEOF (STRUCT AGRFNT®YYS

PTR=>FNLKEY = C=>TKNJ .
PTR=>ARG = EXP(1); * BREAK;

CASE 34 24

CASE 35 3¢

CASE 36:/

CASE 38:; _ o L .
CASE 37t OCK++3= #CiPRINTF(/%S",0rmav] NANE) IK++7iBREAKS
CASE 231 SCJe+] = wCIBREAKZ

CASE 18 s 1F ((C=>PREC) > (SP==J)apREFPYY

* S{+4dI= *C; J++'*
ELSE *0CK++1=8CJ41; SrJJ= *C’PRINTF("V%“ OrmaKl. NAME) 2 14+43K+4>4BREAK?

DEFAULT % PRINTF("ERRORIN"YIZEXIT(YIRREAKS

* ~

It+;
® . - - .
ELSE 1F ( P[1] »>= 28 &% Pr1l «= 33)
* SWITCH(C=>TKN) =

CASE 10:s
CASE 1122
CASE 122
CASE 1327 )
CASE 14: +471aGs IF_(TAG <= ?)
* 0EK¢£] = %Cs - “ e
PTR = (STRUCT AGRFNZS ) MA|LOC(SIZEQF(STRUCT TORFNLSYN;
PTR=>FN_KEY = (= >TKN
] PTR=3ARG = EXP(1)i% napg Ki
CASE 34:7
CASE 3545
CASE 36:4
CASg 38:7
CASE 37: O£K++1 = *c,pRINTF("/s"‘ﬁrn-K1  NAME) ;K++iBREAKS
CASE 233 SCis+] = =C; BRFAK' o ) .
CASE 20% STRCPY(SCJD NAME,"I")isSC4]] pepc = 9:8 EJJ.TKN =20iJ+7iRREAKS
CASE 1:0lK++1% %C} QRINTF("zg".Q[.-Kq Nﬁm5$;K+
PSR = PARSE(); /u CASE OF NESTEn QUERY %/
BREAK:? ] .
DEFAULT & PRINTF("ERRORAN"YZEXIT(): nREAK:
*
Iv+;
*
ELSE If (P[1])== 1)
* SWITCH(C=>TKN)*
CASE 161:; . Lo
CASE 173 OLK++1 = gCmedlsSri++] = e PQINTF("&S":0C~-KJ NAME J++s
_ ++LOGOPIBREAK; . _
DEFAULT: PRINTF("ERROR\N"): BREAK:
*
I++;

. _
ELSE 1F (PC1] == 21 &% ¢T == 1)
* SWITCH(C=>TkNY*
CASE 265 ==JIWHILE (STRCMP(STJILNAME," (")) . .
* OFK#+] = S5rJe=) pPRINTF("SIN",OrmmkK]aNAME) Ktti* TiRPIBRES



DEFAULT PRINTF("ERROR\N"Y: EXIT(:RREAK?

¥
I14+%;
*
ELSE _ _
*SWITCH(Cm2TKNY *
CASe 10:s
CASE 11:;
CASE 13:: )
CASE 142 ++TAGI 1F _(TAG <= ?)
¥ OCK++] = (s , .
PTR = (STRUCT AGRFN.S %) MAIn0. (STZEOF(STRUCT AGRFN.lyy;
PTR=3FN-KEY = Ce>TKN: o
: PTR=>ARG = EXP(1)# % BREAK:
CASE 34 -l
CASE 35:;
CASE 3613
CASE 38:;

CASE 37: O[K++1= *r,pRINTF("%s".0r~~w1 NAME)aK++eBREAK1
CASE 23 3§ S[J++¢] = *C; 1F <TAG >0 ) +#tP,nQEAK,
CASE 20 2STRCPY(SCIT.NAME,"2")iSCI97 pREC:u,SCJJ TKN=20sJ++iR2 EAK:

DeFAULT ¢ PRINTF("ERROR\N") EXTT():BREAK?
*

I++;
*

IF (LP>0 &8& RP>0) o
IF (LP 3= RP) % ~~TAGIBRFAK *

1F (MARKER > 9) BREAK:
ELSE IF (SMARKER >1y_ o
* PPp = PSRILMARKER = SMARKFRZSMARKFp = 0
* .

1 -y o

IF (PrIl= 21 R& (CT=2i % SFL 22 133 «P INTECMAN') G
ELSE PRINTF("INVALID EXPRESSION\N"):

CT = 0; SEL = 0:

IF ((N==2) ** (y==33)
IF (

WHILE (J > 1) % OCKI =8rmadd:PRINTF(#5c",00kI NAME) JK+42%
QLKI«sTKN = =23
T=0i4A=0;

/* THE FOLLOWING PART RUILDS THE STRUCTIIRE FRoM THE EXP,.IN POSTITy
FORM 1,6+ 1T READS FROM THE ARRAY O[3 anmn UIIDS THE TREE =/

WHILE (T < K) ~ e e e - -
* WHILE (COCTIATKN)Y 2 33 wy ((OLTIaTKNY >= 10 RR  (OLTI.TKN) <=14) wx

RELOP <= 0)PRINTF("ERR-NO REL.OPERATO IN HAVING OR WHERE CYAUSE\N®

4

we

T ]



(0
* X
I
*

*

[TI.TKN) ==9)

[A] = (STRJCT EXPTS %) MAILQC(SI?FO:(QTRUCT EXPwS)) s

F (C(OLTIWTKN)==1) /% NESTEn QUERY */
X[A)=>KEY = 23

IF (LMARKER > 1)

* IF (SEC <= 1)
* Y[AJ=>DATA.ALINK

i

PPP: SEC = 2,

*-
ELSE ) o
XCAI=>DATA_GLINK = PSRRI
*.
ELSE ~

= PSR

X[AJ=>DATA.QLINK
*

ELSE IF ((OCTI.TKNY>=10 RR (OCTITTLN.<=14)
* XCAJ=>KEY = 5
X[AJ=>DATALAGREN = *PTR}
*
ELSE IFCCOLTIaTKN)e= 34 %4 (OCTilTenN)== 353
* X[A]~ >KEY S 44
IF ((OCTV.TKN)Z= 353y
* STRCPY(RE;cONREL(O[T1 NAME) Y £
STRCPY(X[A]= >DATA, FIELD_REL, RE)Y &
STRCPY(AT, CONATR(OET1 NAMED) )2
STRCPY(XCAJ=>DATA.FIELD.ATR,ATY
*
E[SE ]
* STRCPY(XrAJ=3>DATALFIELDLREL,"§fy; .
STRCPY(XFAB-)DATA FIELD.ATR,OFTATNAMEYS
*

ECSE IFC(OrTIATKNIS= 36 &R (OCTILTkN)I<=38)
* X[AJ=>KEY = 3; o .
XCAJ=>DATA.CONST.KEY = 0CTI.TKN I 357
IF ((OCTT.TKN) == 38)
X[CAI=>DATALCONST.VAR.T = ATOI(nrv7 . NAME):
IF (CO[LTIaTKN) == 38) _ L ,
STRCPY (XFAT=>DATALCONST.VARLSLArYT . NAHES ;
*

~

XCAl=>LEFT = _NuL(?
X{A)=>RIGHT = NULL:
Add;
T4+:
IF ((OCTILPREC >= 9) +a (orra TKN == 18)3y / UNARY MINUS OR A NOT &

* Z = (STRUCT EXP_S %) MALLOC(317=0F(STRUFT EXP.S)YS
Z2=>»KEY = 1; ) . .
2~>DATA.KEY_OP = MPTLOLTI.TKNT:
1=>RIGHT = Xf-*AW:
Z=>LEFT = NyLL:
TH+s:
xcﬁi = 15 As+l

ELSE 1F ((k==1) R& (OrTIL 'TKNY ==

213
¥ 2 = (STRUCT EXP.& #*) MALLOC(SIv'A?

STRUCT EXP.S)):



I=2KEY = 45 . e
STRCPY(Z=>DATA_FIFLD.ATR,OCTI NAMF)]
Z=>RIGHT = NULL:

2->LEFT = NULL:

T+4;

(SE IF (K=z=1)
I = X{m=n1i THs+i

LSE e . .
7 = (STRUCT EXP_8& «) MALLOC(ST?FROF(STRUCT EXP_S));
Z~5KEY = 13 o
2->DATAKEYZ.OP = MPTLOFTI.TKNT:

Z=>RIGHT = X[e=al:
Z=>LEFT = X[wmA]:
THes

XCAY = 73 Aast}

¥* M OOk % ™

Ip (LOGOP > 0 ~ R
* ++L0GOP; IF (REIOP 1= LOGOP)Y PRINTF("INVALID BOOLEAN EXP.UN"™); =

RETURNCZ): /% 2 IS THE ROOT OF THr TREE &/



/% THIS PART OF THE PROGRAM TMPlEMENTS THE LEXICAL ANALYSER,
THE NAME OF THE FILE CONTATNING THIS PART IS JOHARSDEEP/FEYNMAN,
BEFORE DEFINING THE ROUTINE 1 EX1() WHICH GENERATES TOKENS
NECESSARY INITIALISATION o; KEYWORD-TABLEeSYMBOL"™ ~TABLE,
AND TRANSITION TABLE HAVF RFFN DONE */

H#DEFINE NAME_SIZE 13
HDEFINE TAB.SIZE 100

STRUCT TOKEN « /% TOKEN 1S A STRUCTURE WITH FIELDST
CHAR NAMErP*NAME ST7E1: NAYMEsSTORES THE CONTENT OF THE TOKEN
INT TKN: TK: STORES THE TOKE NUMBER
INT PREC: PRECTSTORES PRECEDENCE NO,OF TOKEN #/

*IDTABCTAB_ST7F1.cnNSTABLTAR.STZE]:

/* IDTAR.CONSTAB ARE TDENTIFTFR AND CONSTANT TABLE RESPECTIVELY «/

/* WE Now FORM THE TRANSITTON TABLE.THE ROWS REPRESENT STATES WHILE
THE COLOUMNS REPRESENT THE INPUT CHARACTERS AFTER BEING MAPPED To
INTEGERS %/

. INT TRANSTARr1z]r19] = %
%10,20,21422223%3,26.25426427+1,2428¢34445262=1,=2,=1%,
* '11'11‘1!'11-11"1.~1:'11'11’11-11811‘1,“11“1 Te=1,=2 =1%,
*9;919;9191949 Q. 9,95T2;9:919p9f9191”219*1
*33-33'33 33,33, z%,zz 33 33,10 3s,29;35,33,33:33,33,~2p33*,
*34,34034, 34;34434.14 34,3408234,364364340525¢5072,34%,
*36136136:36136:36 16 36136111 36,36;36,36,5616p36,~2 36*,
*37437037,37237437437.37430037,37,37237,37530072374=2,37%,
*=1.- 1’101'1:'14*1:~1;-1;'1n'1 w1, le=1e=1210,10,10,<2,~1%,
%9090949491949494909438,9,9294909,92=2,9%2
*33‘35'35 35135:25:?5 35,3535, 35;35’35135 10210,104=2+35%,
*ol,=tsmt,m sl smtaci,mia=tsmtamto=1r=1,=1,"1212,=1,=2,-1%,
] _*37.37,37,37.37,3%.25;37,37,3?,37,37,37,3?,57:12,37,-2f37,*w;
INT L = 0; Y = 0;
FILE *FP.*FOPEN():/+ FP IS POTNTER TO THE FILE CONTAINING THE INPUT
QUERY */ ‘
STRUCT ToKEN KEYTABL2Q] = "SF'FCTul1’O’
"UNTOUE" 2+04
"FRnM":B;O;
"UHFRF";AIU: /% THIS 1s THE
”GROHP"JS:O!
"RY ., 450, INSTALLATION
"ORDFR":?IOI
"HAVING" 2,840, OF
"INTO#s9,00
"MAX" 10400 KEYWORD=TABLE
TMIN?,11.00 ‘ : */
MAVGY,12,00
"(OHNT":15nO;
mSumMn 14,0
PIN'L15,00



"ANn" 16.1;
"(”?";17 1,

“NOT" 1842
"AS(‘" 39’0’
"DFESC"r40,0

. .
STRUCT TOKEN SYMTABriéi = *n+ ‘ié’ai
"m ;20:4;
?* Y2145, /% THIS 1S THE
W N ,22+54
", 23,00 INSTALLATION
"M 24000
ng",26.00 OFf
", 26400
wiN",2740, SYMBOL=TABLE
""":28:31
")“"g29131 */
ne=1,30,3,
ned",31,3,
'S'<"13243!
ﬁ;",33,3f

/% THE FOLLOWING ROUTINE |Fx1cs READS THE INPUT CHARACTER BY (HARACTER
AND RFTURNS THE ADDRESS O0F THE APPROPRIATE TOKEN */
STRUCT TOKEN *LEX1()
*
» INT STATEsXuKsJuTslaPr@sRsELr:
CHAR Sr2*NAME_S12€1;
19:
WHILE ((cC FGETC(FP)) == 32 *%x ¢ == "\N');
/% SKIPPTING RLANK% AND NEWLINE CHARACTER %/
uwasTrcc FP):
STATEQ: 0; /% INITIAL STATE = 0 x/
B = N

Hi—ii
l(

/%« FINAL STATES ARF GREATER THAN 18 */
WHILE (STATE >= 0 && STATE < 19)
* f -FGFTC(FP):
QFR++1 = C »
/% S STORES THF INPUT STRING /

/* WE NoWw MAP THf INPUT CHARACTERS TO INTEGER VALUES «/

TF (TSALPHACC))
1. = 147 _
FLSF TF (ISDIGIT(C))
!lz ;5
FUSE
* SwTTCH(C) *
tASE '+' : 1=07;BREAK/
fASE '=' : I =1:;BREAK;
CASE '*' 1 1=2;BREAK’
¢FASE '/' @ 1=3;BREAK;
CASE '(' ¢ I=4;BREAK’

FASE ') 1 =5;BREAK;



FASE ';' & I=6;BREAK;
CASE ',' = I=7iBREAK:?
CASE '\\' : I=8;BREAK:
FASE '\.' 1 I=9;BREAK;
CASE '""' T 1=10 ;BREAK:
cASF '=' ¥ I =11 ;BREAK]
cASE '<' 3 1=12 ;BREAK;
cASE '>' ¢ I=13 JBREAK/
tASE '.' & I=16 ;BREAKS
¢ASE EOF 3 I=17 JBREAK?

nEFAULT : I =18;BREAK;

*
STATE = TRANSTARrFSTATEI(T;
/% THIS STATEMENT npeEFINES THE TRANSITION FROM ONE STATE TO
THE NEXT #/
*
1f (STATE >= 3> e STATE < 38)
UNGETc(r,Fpan
IF (STATE >-_19 &% STATE <= 33)
RETURN(RQYMTARrSTATE 191)3
/+ THIS RETURNS THE ADDRESS OF THE ApPROPRIATE SYMBOL=- TABLF

ENTRY %/ _
IF  (STATE == _38)
SIBl = '"\n':_
ELSE S[~=B1 = '\Q+:

/* A CANDIDATE FOR aN IDFNTTFIER IS FIRST CHECKED TO SEE
IF IT IS A KFYWnRD .IF YES THEN CORRESPONDING KEYWORD=-
TABLE ENTRY'S AnARFSS IS RETURNED,ELSE IT IS COMPARED
TO SEE WHETHER TT HAS BEEN ALREADY INSTALLED IN IDTAB,
IF YES, THEN CNRRESPONDI5 ADDRESS 1S RETURNED ELSE THE
INPUT STRING IS INSALLED N IDTAB AND THE ADDRESS
RETURNED. */

IF (STATE == 24 #+ STATE == 35)
P = 03
WHILE ((STRCMP(S.KEYTABLPI.NAME)) '=0 &R P <= T)
Pess
IF (P <= T)
RETURN(&KEYTARrpws.
ELSE .

* 1F (L<= 0)

* STRCPY(IDTARCLI_NAME,LS)’
IDTABIL].TKN = STATE;
IDTABILLI.PREC = N

o~

RETURNC(RIDTARIL +41):

ELSE .
* Q= 0; ==
WHILE (@ <= 1) i
* IF (STRCMP(S,TINTABIQI1.NAYME)) Q4+
ELSE BREAK:
* )
IF (@ <= Ly



*  ++LJRETURN(RTDTABIQI) S *

ELSE

* STRCPY(IDTABF++|1 NAME#S):
IDTABILLY. Txh = %TATE‘
IDTABCLI.PREC = 0! .
RETURNCRIDTARIL++1);

*

*

*

*

/x A CONSTANT IS FIRST CHECKED To SEE IF I1 HAS BEEN ALREDY
INSTALLED IN comqrnn IF YES,THE CORRESPONDING TABLE=-ENTRY'S
ADDRESS IS RETURNEn rfLSE IT TIg INSTALLED AND THE ADDRESS
RETURNED M

IF (STATF >=%A 22 STATE <= 38)
IF (Y <= 0}

* STPCPY(CON%TARrvw NAME.S)?
CONSTABrvyl. . TKN = qTATE,
CONSTABLY]. PRFC = 07
RETURN(RCONSTABFrY++7)3

ELSE o

* X = 07 m=y?

WHILE ( X <= vx

* IF (STRCMP(S,CONSTABLXT.NAME)) X++;

ELSE BRFAK:

* . “

If (X <= ¥)

*  ++Y; RETURN(RCONSTABLx1);

ELSE _ i .
* STRCPY(CONSTABr+<YI.NAME,S);

CONSTABIY1.TKN = STATE;

CONSTARCY1.PREC = 0}

RETURN(RCONSTARIY4++1) 3
*
*
IF ( STATE == =1)
* PRINTF("INVALID STRING\N"y; RETURN(NULL); *
/* THE INPUT STRINR IS NOT A LOWED BY THE LANGUAGE «/



/* THIS PART OF THE PRn RAM BUILDS THF qru TURE FOR EXPRESSIONS,
THE NAME OF THE FILF CONTAINING THIS TS /DHAR*DEEP/EXTQA .
THIS FILE ALSO CONTAINS THE DECLARATYON. O0F VARIOUS STRUCTURE.
USED */

HINCLUDE "/DHARSDEEP/FRYNMAN"
#DEFINE NAMgLSIZE 13
HDEFINE FN=LEN 6
H#DEFINE STR_LEN 256
umxom CONST.U
" . * INT 1;

FLOAT R:

CHAR SCSTR_LENII

* g

/* THIS STORES THE CONQTANT IN APPROPRIATE pIan */

STRUCT CONST.S

* INT KEYS )
UNION CONST_U VAR:
, .
/* KEY IS CODE FOR CONSTANTS.IT IS 1 foOR IwTEZERS.2 FOR RrAL AND 3 fFOR
STRING CONSTANTS w/
STRUCT REL.S o
> * CHAR RELEMA”E S1Z2F7:
CHAR ATRINAMELSIZEY?

*
/* THIS IS5 STORES THE RELATION AND ATTRTRUE RAME */

STRUCT AGRFNaS
* INT FNa KEY: N B
STRUCT EXP_S *ARG!?
*:
/* THIS STORES THE AGGREGATF FUNCTION:
FN.KEY IS THE CODE FOR AGGREGATE FUNeTTON.%/

UNION DATA.U
*« INT KEY Ot‘h
STRiCT QRyY.S *QLINK:
STRUCT CONST.S CONST;
STRUCT REL_S FIELD;
STRUCT AGRFN_.S AGRFN
*' vh o
/* DATALy IS THE DATA ¢ONTATNED IN THe NOD 0F THE TREE.IT IS ONg ofF
THE FOLLOWINGTAN OPERATOR OR A POINTER TO 4 QUERRY (FOp NESTER QUERYSH
OR A CONSTANT OR A FIELD NAME OR AN aG RLFUNCTION »/

STRUCT EXP.S )

- *# INT KEY: L
UNION DATA_y DATA:
STRUCT EXP_.§ *LEFT?
STRUCT EXP_S #RIGHT:



/+* 1T STORES AN FXPRESSION.KEY 1S AN TN:n £6 WHICH INDICATES WHAT 71§
STORED .DATA IS THE ACTUAL DATA STORFA.1 EFT AND RIGHT ARE RES, ECTIVELY
LEFT AND RIGHT LINKS w/

STRUCT SELaS )
*  STRUCT EXPo§ #*S~fpXPJ
STRUCT SE -8 #SLINKZ
*a
/x 17 STORES THE CONTENTS OF THE SELECT eI aUSE IN THE FORm OF A 18T,
- THE LIST CONSISTS OF eXPRESSIONS %/

STRUCT FROMS ) .
* CHAR REL-NMINAMp-ST2€1:
CHAR LABELC101)
STRUCT FROMLS *fLINKJS
% -
/* 1T STORES THE CONTENTS OF THE FROM rnau E TN THE FORM nF ALy cT-
THE (IS8T CONSISTS oOf R:LATInmnNAMEe "THERE MAY BE A LABEL FO& A
RELATION (FOR SELF=JOIN) #/

Y

STRUCT GPBYa.S ] _
* STRUCT REL-§ GPJ _
STRuUcT GPBY-S *G6LINK:
*‘ " 1y =7
/% 1T STGRES THE CONTENTS OF GROUP BY CraUsE TN THE FORM. ofF A LrcT)
THE LIST CONSISTS OF FYELD NAMES. &/

> STRUCT ORDBY.S B
* STRUCT REL - 8 ORbn:
INT oxev. )
STRUCT ORDBY- *0OLTNK?
*;
/* 1T STORES THE CONTENTS Of ORNER BY CQAUQE tN THE FORM ns A L7or-
THE LIST CONSISTS OF Frelp NAMES.OKEY STORES THE ASC. OR DESC.
QUALILIFICATION w/

STRUCT GRYaS o
* STRUCT SEL.S #§7
INT UNIGUE;
STRUCT FROM_S «F:
STRUCT EXP.S W/
STRUCT GPBY.S 46:
STRUCT EXPaS %H:
STRUCT ORDPBY.S %0;
CHAR INTOLCNAME_STZET:
tl
/%* 8RY.S STORES THE POTNTR TO ALL THE € AUSES EXCEPT UNIQHE. AND "NT0.
IF UNIQUE IS PRESENT YTS FLAG IS SET.NTO STORES THE FILE NAm, TN
IN THE INTO CLAUSE */

INT MPT(347= %0,0,0. o,o,opofo;n.ﬁ.é,o;D,Q;Q.O;2,3.1,14153,32o1¥45,
- 916104004!719IR:R 6*'
/% 1T MAPS THE OPERATORS 7O THEIR RESPErTTVE CODE NOSe %/

INT AGTL151 = %0,000,040,0,0,0,0.0.50401s203%;
/% IT MAPS THE AGG.FUNCTIONS TO THEIR RFePECTIVE CODE NOS. */



APPENDIX B

The following pages contain illustrations whict
show the output of parser. We traverse the parsed tree iﬂ
the order of occurance of the clauses in the query. Thy

tree for expressions 1s traversed in the preorder.



SELECT NAMEsJORLSAI ARY,.DEPTNA
FROM EMP

WHERF (DFPTNO = 10 AND Sal aARY <=~ 1200) \

TRAVERSING THE TRFF
SELECT CLAUSE
ATTR.NAMF . NAMF
ATTR.NAMF JOR
ATTR.NAMF DEPTNO
FROM CLANRE
RELATION EMp
WHERE CLAUSE

OPERATOR €ODF = ?
OPERATOR CODE = 4
ATTR.NAME DEPTNO

CONSTANT 10
OPERATOR CODF = 9
ATTR.NAME _ SALARY
CONSTANT 1200



IMFORMATICS CENTRE

MNATEON!

w

RE

AL INFORMATICS CENT

B

NATION

SELECT NUMBER,NAME,J OB
FROM EMp

ORDER BY NUMBER \

TRAVERSIHG THE TREE

SELECT CLAUSE

ATTR NAME HUMBER

ATTR, NAME  NAIE

ATTR_NAME 408

FROM CLAUSE
RELATION EP

ORDER BY CLAUSE

ATR  NUMBER



NATIONAL INFORNMATICS CENMTRE

Yy,

FOI

&

NAL 1

T
H

NAT

)
"3

g

SELECT DFPTNOLAVGCSALARY)
FROM EMp _ _

GROUP BY DEPTND .
HAVING AVG(SALARYY > 2n0n ©

TRAVERSING THE TRFE
SELECT ClAUSE
ATTR.NAMFE DPEPTNO
AGGR.FN XFY = 1
ATTR.NAME SALARY
FROM CLAUSE '
RELATION EMP
GROUP By CLAUSF
ATR DEPTNO
HAVING CLAUSE
OPERATOR CODE = 6
AGGR.FN kFY = 1
ATTR.NAME SALARY
CONSTANT 2000



FORMATICS CENTRE

NATIONAL IN

SELECT DFPTNOLAVG(SALARY)
FROM EMP
GROUP By nNEPTNO
HAVING AVG(SALARY)Y <
CSELECT AVUG(SALARY)
FROM  FMP

TRAVERSING THF TRFE
SELECT Ci1 AUSE
ATTR.NAME DEPTNO
AGGR.FN KFY = 1
ATTR.NAMF  SALARY
FROM CLAUSE
RELATION EMp
GROUP By CLAUSF
ATR DEPTNO
HAVING ¢ AUSE
OPERATOR CODE = 8
AGGR.FN KEY = 1
ATTR.NAME  SAILARY
NESTING _
SELECT C1 AUSE
AGGR.FN KEY = 1
ATTR.NAME =~ SALARY
FROM CLANSE
RELATION EMP



SELECT NAMEsSAl ARY
FROM EMP )
WHERE DEPTNO =
SELECT DEPTNO
FROM . EMP
GROUP BY DFPTNO _
HAVING AVG(SALARYY = N
SELFCT MAX(AVG(SAI ARY))
FROM EMP
GROUP BY DEPTNN \

NFORMATICS CENTRE

o TRAVERSING THE TREE
| SELECT CLAUSE

i ATTR.NAME NAME

Q ATTR.NAMF SALARY
e FROM CLAUSE

’a RELATION EMP

WHERE CLAUSE .
OPERATOR CODE = 4
ATTR.NAME DPEPTNO

MAT

W NESTING
SELECT CIAUSE

) ATTR.NAMF  DEPTNO

£ FROM CLANUSE

> RELATION EMP

bl GROUP By _CLAUSE

© ATR DEPTNO

¥ HAVING CLAUSE "

= OPERATOR CODPE = 4

= AGGR.FN KEY = 1
i~ ATTR.NAME SALARY

o NESTING _

& SELECT CIAUSE

> AGGR.FN KEY = 5§

- AGGR.FN KEY = 1

' ATTR.NAME SALARY
R FROM CLAUSE

£ RELATION EMP

e GROUP By CLAUSE

ATR DEP

£

)

ol

K}

&Y

I

CE



NATIOMNAL INFORMATICS CENTRE

1

iCS CENTRE

b
i

NATIONAL INFORMAT

S

SNTRE

)

SELECT NAME
FROM [Mp
WHERE SALARY + C(oMMae=
SELECT MAX(SAL + cOMpMG)
FROM  gMp
WHERE JO0B = 'SALFg:* ¢
OR ( JOB = '"SALES' AeD DEPTNO = 30 ) \

TRAVERS1HG THE TREE
SELECT CLAUSE
ATTR,MNAME  NAME
FROM CLAUSE
RELATIOM E£MpP
WHERE CLAUSE
OPCRATOR CUDE
OPLERATORN COpE
QPERATOPL CODE
ATTR HAME  SALA:
ATTR,NAME  CONMM
MESTING

SELECT CLAUSE
AGGR FN KEY = 5
OPERATOR CODE = 14
ATTR MART SALAGY
ATTR HANME  COMM
FROM CLAUSE
RELATION £MPp

WHERE CLAUSE
OPLRATOR CUDE = 4
ATTR.NAME  JOD

oo

B G P AR W

%

CONSTANT "SALESH
OPLCHATOR COpE = 2
OPCLRATOp ¢OpE = 4

ATTR NANE 408
CONSTAMT “SALES®™
OPLRATOR CODE =
ATTR.tARE DEPT 0
COMSTANT 30



28

APPENDIX C

LIST OF KEYWORDS IN SQL

SELECT, UNIQUE, FROM, WHERE, GROUP BY, HAVING, ORDER BY,

INTO, AND, OR, NOT, ASC, DESC, MAX, MIN, AVG, SUM, COUNT.

LIST OF SYMBOLS

(' )- + o *v /v () I "'<)>;\

CONSTANTS

We have Integer, Real and String constants.

precedence number associated with various tokens are as

The

follows
) 0
( 0
' 4
- 4
* 5
/ 5
AND i

OR {



NOT 2
RELATIONAL. OPERATORS .3

All other tokens have precedence number zero.

When a unary minus is detected, we increase the precedence

of (= to 9.



[63]

REFERENCES

S. Ceri and G.Pelagatti,  Distributed Database

Principles and Systems, McGrawHill Book Company 1984.

Wong. "Retrieving Dispersed Data from SDD1", Proc. o
the second Berkley workshop on Distributed Dat

Management and Computer Networks.

Hevner and Yao, "Query Processing in Distributed Dat1
Base Systems", IEEE Trasactions on Softwarq

Engineering.

Stonbroker et. al., "A Distributed Version of INGRESS",
Berkley workshop on Distributed Data Management and

Computer Networks, 1977.

Roth et. al., "Anovericw of the Preliminary Design of
SDD-1-A system for Distributed Database", Berkley*\
workshop on distributed Data Management and computer

network, Larence Berkley Laboratory, May 1977.

Epstein R., "Query processing techniques for
Distributed, Relational Database System", UMI ,

Research Press.



8.

10.

11.

Wong E. & Youssefi K. "Decomposition a strategy fc

query processing"”, ACMTODS, Vol. No. 3, 1976.

Date C.J. "An introduction to Database Systems"
« |
Addison - Wesley, 1981

Unifg§ Relational Database Management System, Tutori4

Manual.

. ) L. |
Chamberlin et. al., "Sequel2; A unified approach t
Data Defination, Manipulation and control", IBM Journa

of Research and Development, 1976.

1.W.  Dratfan, and . fPooloe, Distributed Data Uusd

(edited), Cambridge University press.

D.Gries, "Compiler Construction for Digital Computers"

John Wiley and Sons, Inc. 1971




	TH23670001
	TH23670002
	TH23670003
	TH23670004
	TH23670005
	TH23670006
	TH23670007
	TH23670008
	TH23670009
	TH23670010
	TH23670011
	TH23670012
	TH23670013
	TH23670014
	TH23670015
	TH23670016
	TH23670017
	TH23670018
	TH23670019
	TH23670020
	TH23670021
	TH23670022
	TH23670023
	TH23670024
	TH23670025
	TH23670026
	TH23670027
	TH23670028
	TH23670029
	TH23670030
	TH23670031
	TH23670032
	TH23670033
	TH23670034
	TH23670035
	TH23670036
	TH23670037
	TH23670038
	TH23670039
	TH23670040
	TH23670041
	TH23670042
	TH23670043
	TH23670044
	TH23670045
	TH23670046
	TH23670047
	TH23670048
	TH23670049
	TH23670050
	TH23670051
	TH23670052
	TH23670053
	TH23670054
	TH23670055
	TH23670056
	TH23670057
	TH23670058
	TH23670059
	TH23670060
	TH23670061
	TH23670062
	TH23670063
	TH23670064
	TH23670065
	TH23670066
	TH23670067
	TH23670068
	TH23670069
	TH23670070
	TH23670071
	TH23670072
	TH23670073
	TH23670074
	TH23670075
	TH23670076
	TH23670077
	TH23670078
	TH23670079
	TH23670080
	TH23670081
	TH23670082
	TH23670083
	TH23670084
	TH23670085
	TH23670086
	TH23670087
	TH23670088
	TH23670089
	TH23670090
	TH23670091
	TH23670092
	TH23670093
	TH23670094
	TH23670095
	TH23670096
	TH23670097
	TH23670098
	TH23670099

