Inter PC Communication

Dissertation submitted to the Jawaharlal Nehru University
in partial fulfilment of the requirements for
the award of the Degree of
MASTER OF TECHNOLOGY

V. KISHAN

School of Computer and Systems Sciences
Jawaharlal Nehru University
New Delhi
January 1988

Inter PC Communication

Dissertation submitted to the Jawaharlal Nehru University
in partial fulfilment of the requirements for
the award of the Degree of
MASTER OF TECHNOLOGY

V. KISHAN

School of Computer and Systems Sciences
Jawaharlal Nehru University
New Delhi
January 1988

CERTIFICATE

This work,embodied in the dissertation titled,

IMTER PC COMMUMICATION

fiae heen carvied out by Mr. W Kishan ,bonafide student of
s=chool af computer and svstems sciences,Jawasharlal Mehru
University, Flew Delhi.

This work> i

original and hss not been

submitted for any degree orv diploma in any other university

ar institute.

Dr.S.Balasundaram e
fest.Professor a
of Computer and Svstems Sciesnces
Jawaharlal Mehru University

Mew Delhid

e - S e L o

CN

Frof Karmeshu
Uean,School of Computer and Svstems Science
Jawaharlal Mehru University
fHety Delhi

i

computer system,it is wvery much essential that these
computers to ke interconnected,so that they can exchange
information.My aim in this project is to -

Interconnect two POz with REE232-C interface and

then prowvide facilities for file transfer between the Pls
and other utilities like mail and phone. The file transfer

ot

between the pos & carrvied out in the backgroung bw

implementing multitasking.Resocurce sharing iz incorporated
wherein & printer connecéed to one of the pcs can be
gocessed by the other PO as well.

The PC to PC connection can be improved with some

i . o . B L4 -
more facilitiez and some more FCe can be connected - to the

existing two node network.

 ACKMOWLEDGEMENTS

My sincere thanks are due fo Dy &.K.Dusa,

i)

Sysztems Manager,CMC Ltd,NMew Delhi who initisted me to this
innouvative projsct,

i am wery much indebted to my quide,

0

Dr.S.Balassundaram, a&sst.Frofeszor, who has been extreemly
helpful and sncouvaging throughout the project,witheut which

it would have besn wery difficult to complete the project.

Mr.Sanjiu fAgaarwal, Systems Enqineer,
CHMC Ltd,bNew Deihi plaved & wvery significant role by giuiné
me timely znd uzefull sugaestiens and sparing his wvaluasble
time for discussians with me.

Mr.katpaelia of DCM data products gave wvery
useful suggestiens regarding the implemsntation of

multitasking., 1 am thankiul to him.

-t
T

I SHRYEess iy heartfelt gratitude
Prof .K.K.Mambiar, former dean of ocur school,for prowiding
the rvequired facilities and for his unfailing interest he
has shown in this project sithout which it would not have
materialized.

I am thantful to cur dean Prof.kKarmeshu,who

haz shown s=pecial interest in my work.

COMTERTS

1. Introduction
b,

2, I8M FPC and RS232-C architecture

2.1 8088 architecturs

0 P o —

R N
2.2 Intervupts and intevrvupt service routins
2.3 ESerial asvnchronous communication '3
2.4 RE-222C serial data transfers 7
T, PC to PC communicaticon , lg
Z.1 Introduction . Ig
3.2 UART intialization ‘ 2o
S.2 Implementaticn A2
'3.3.1 The RESPC medule L <3
Z.2.2 The SYSINT moduls , 29
%.3.3 The TIME_INT module : 31
%.3.4 The PCNET module ’ (3
2.3.5 The FACILITY module : 37
3.2.68 The FHOMNE f&cility' ' . Gg
3.3.7 The MAIL facility G&
3.3.8 The file tranzsfer utility s/
3.3.2 FResource sharing with DOS utility s |
4. Instructions for use ' j;?
. Future extensions and madi ications s 5

FAppendix A Z0E2 instruction set
Appendix B Proavamming 8230 UART

Frogvam Listings

INTRODUCTION
Az computers have become smaller,cheaper
and more numorcus,pecple have becoms mors &2no move

interested in connecting them together to form networks and

distributed svstems.Advanced computer and communication
technalagy has bees the key to surviwal of = many
ingtitutions and organizations.The exciting tools and
tn:hnlq ez of this high technoloegy are ussd in riakh
technology base,for arviving at gensval sclutions and fav

|"l
lad

spplicatioens support.Thess approaches to the implementation

of computer metworks are vrewvolutionizing communications,

business eystems and manufacturing and technology. Mhen
different computers can comfmunicate with esach othery and are
interconnected into & network we have many advsniages like -~

- greater relisbility

Faring common resourses

i

- internetworking capabilities
- flexibility in application programs and so on.
Most of the terminals that. connect office

desks

~+
[}

r mainframes are dumb.In contvast,the persanal
computery s fast developing intoc an intelligent user-
programmable terminzl.lt is & menotask but multi processor,

low cost,high capacity devic

|t|

There is a significant trend

toward multifunction wotrk =station as opposed to singls

functicon terminals.Interconnecting personal computers into =
lacal ares network and nwfmnrk ing these with & main frame

syste ﬁ affers many advantages. R
MOTIVATION FOR THIS PROJECT :

He,at Jrud have uery 9oéd computing
facilities.The eystems incloude 3 VaX 115780,HPLO00 and =i
DCH TEMDYL000 pos.50 far these computers ‘are isclated and
there iz no way a user working on one swvetem can look into
hise files on the other machins.MMy hasic aim iz to prowvids
this fac 111ty.:1nc~ networking a1l these pputers in not &
task that can be completed with in a semestsr of sSix
months,l started with a subset of ift.

i want'tq connect &ll the pes into a local areas
network.fAas 5 first step towards this,l wanted to intevconnect two
pos through RE-2320,s0 that thay can exchangs information.This
can be extended to interconnect all the pos into 3 token ring
netwark By adding some mor sof tware, the pos . can ais: be
connected to the Ve, Collision detection h to implemanted when

1]
more than fwe pos are interconnected.ldeally the master po should
]
be a PC/ET or a PCAAT. '

et
.
—
m
=
T
[}
£
3
-
Ay
P
[Aa]
Pl
|
]
I
o
[
I
—
-
m
b
~}
i
e
- M

The ' braim of the personal computer is the SO88
microptrocesscr.This chapter giwves an introduction to the
architecture and programming aspects of the IWNTEL 2033

microprocessoer and it’s communication aspects.

Fig 2.1 shows the internsl architecture of 2083
microprocessar. The contrel unit and wﬁrking reglisters are
divided into thrée groups according to their functions. Thew
are -

i. The dats group ,which ii.esaéntially the =st of
asrithmetic registers,

ii.The pointer group ,which includes base and index

3]

registers, but also contains the program counter and stack
pointer,

ii1.The segment group which is a st of special purpose

1]

hase registers.
All the registers are 16 bit wide.

The dataz 4group consists of AX,BEX,CH and DX

i
¥
i
jon
[ng
b1
©
¥
B
[}
-
)
1]
~+
(=]
-
2]
[n g
)
—+
T

register ters

i

. These regi

i

opevands and results and =sach of them can be accessed as 3

Wwhole,ar lower and upper buwtes can be accessed separately.
In additicon to zerving as arithmetic registers,

the BX,Cx and DX registers play special addrégaing,caunting

and 10 roles.

i
(1]

B may be used as a base rvegister in addres

CX
928

Bx |

N
~/

)

instruction
Data registers queue
el B < Addmn/dm
8H 8L O:»:;.:ol s
CH CL .
OH oL
Pointers™ Segment registers < Control
sP Ccs (16 pins)
e8P SS
Sl DS .
DI €S ; +5V °
PSwW | (2 p——r— Ground
Clock

*For the 8086 the program counter is called the
instruction pointer (IP),

FIG2.1 8088 BLOCK DIAGRAM

¥ is wused as an implied cﬁuntev by ocertain
instructions.

D iz used to hold ihe 150 addrese during certsin
10 ocpevrations.

.
. u]

it

The pointer and index group consist:

IF,5F,BP.81 and DI registers.The instruction pointer (IF)

ot

i=zlly th

&

[11]
)

and %SF registersz are essen program countery and
stack pointer registers,but the complete instruction and

of these

-+
1

1

m

stack =sddresses are formed by adding the cont
registers to the four bit left shifited contents of the code

segment({C3) and stack segment{S5) registers.

)

Fis a3 hase

register for accessing the stack and may be used with othey

registers andSor a displacement,that is & part of
ingtruction.The SI and [l regiszters are for indexing.

although, they may be used by themseslues,they are often used
with the BX or BP reqgistere and or a displacement. Except
for the IF,s pointer can be uvsed to held an operand,but mu5£
be accessed as a whole.

T provide flexible hasze addréssing aﬁd indexing,
a . data address may be formed by adding together a
combination of the BY or BF register contents, SI or DI

register cont

m

rnte and a displacement. The result of such
computation iz called an effective address{E&) or offzet.
The finasl data address,however iz determined by adding the

appropriate

i

EA to the four bit left shifted contents of th

tack =

M

data segment,extra seqment oy

w

gment registers. This

enables the proceesoy to generate & 20 kit sddress

L

The segment group consists of the C5,5%5,D5 and E

registers. The wutilization of the segment registers
essentially dewvides the memory =space into averlapping
segments,wi th each segment being &4k bwies long and

beginning at a 16 bvte paragraph boundary , 1.2 beginning at

an address that is divisible by 16, So the contents of the

1]
)
i

the seament address and th amen t

n

zegment regi

1]

ter i

the beginning physical segment

address multiplied by 16 i
addreza._

The advantages of using segment registers ara':a
1. Aallow the memory capacity to be one magabvte even though
the addresses associsted with the individual inaﬁructi&na
are only 16 bits wide.
2. @llow the instructicn,data or the stack portion of =

program to be more than 64k bytes long by using more than

ane code,datas or stack segment.

2. Facilitate the use of sepavrate memory areas for a
program, 1t°s data and the stachk.
4. Fermit & prvogram andsor it’s data to ke put into

different areas of memocry each time the program is executed.

u

FL&AGS @ The B088‘s Program status word(PSK) contains 16
bits,but seven of them are not used.BEach bit in the PSW is
called a flag.The flags are divided into the candi{ional
flags, which reflect the rvresult of the previous operation
involving the &aLlU, and control flags which control the
execution of specisl functions.,

The flags are summarized below.The lowser byte in

the PGS corresponds to the sight bit PEW in the 8083 and
cantains all of the condition flags,except the owverflow

flag(OF.

1]

The conditicon flags are -

if

11
3
L)
L1
i 1]
-t
[N
i
-
Mo
il
i
-+

SF ({=sign flag) is set if the vesult i:

m
L}
m
-t
o

ZF (zero flag) is =s=et if the result iz and reszet if
PF (parity flag) is zet if the lowsr orvder eight bits of
the result contain an even number of ones,ctherwise it is

ared.

i'[l .

ol

2 thi

H]

1

CF {carry flag) - an addition or subtraction oau

1

flag to be set if a carry in M5B or a borvrow is neesded.

&F (zuxiliary carvy flagy is set if there iz a carry out
of bit 3 during an addition or & borrvrow by Bit 3 durina 2

subitraction.This is used exclusively for BCD arithmetic.

OF (overflow flag) is set if an overflow occours.

-

DF {direction flag) - used by =tring marnipulation

insructicons. If clear,the string is processed from it's

beginning Wwith the first element having the lowest
address.(therwise the string is processed from the high

addrecs towards the low address.

certain tupe of

il]
Ji]
et
I
el
=t
i
M
(a3
-
[l

"IF dinmtervupt enable fl
intervupt {3 maskable interrupt) can be recognized by the

CPU,otherwizse these intervupts are ignored.

n
4]
0]
1]

ol

TF {trap flag) if set, & trap is executed sfter the current

instruction.

-t
it

detai zee Microcomputer Systems: The 2086730858 famil

YU-CHEMG LIU and GLEMM A.GIESOM.S=e appendix A& for the

instruction st of BLOZS.

Q

1

ift

2.2, Interrupts and intervupt service routine

=]
-t
pute
1}
1
P

metimes necessary tao have = computer

m

special

Wl

sutomaticslly execute one of & collection of
routines,whenever certain conditions exist within a program
or the computer system.The action that prompts the exécution

of one of these routines iz called an intervupt and the

131
I3
]
[
et
14
o

routine that iz executed i an interrupt seruvice
routine., There are twe general classes of interrvupts and

gsscciated routines, They are the interanl intervupts that

are initizted by the state of the CFU or by an instruction

[
¥
i
-
{1
jou
il
‘_v

and the external intervupts that are caused

~+
[d

being s=en o the OCPU from elsewhere in the computer

system.Typical internal interrupts are those caused by

N

cisl instruction like INT and

o

divigion by & zero or a sp

ed by the need of an 1.0

Il'l

typical sxternsl intervupts are cos
device to be served by the CPLL.

In general interrupts can b recognized in two
WEVE .
a., By polling and b.Interrupt basis., In polling, the CFPU

reqularly checks the 170 ports for any pending interrupts,

The disadvantage with polling is that the CTRFU time will be

wasted, since the CPU has to regularly check the 170
devices.Mot only that,dats can be lest at the 170 pore if

there is considerable delay in successive pollings. In the

i

cther mode, i.e.,interrupt basis the CPU recognize the
interrvupt only when the 1.0 device sends an intervrupt.

A interrupt sevwvice rvoudtine is similar to &

ot

procedurs,in tha it may be branched to ,from any other

fa3

program and return branch is made to that proaram after the

interrupt service routine is sxecuted.The interrupt service
rautine must be so written that,except for the lapse in

i

time,the intervupted program will proceed just as if nothing
fiad happened.This means that the P3W and the vegisters used

by the routine must be saved and restored and the rteturn

T

must be made to the instruction following the la
instruction exescuted before the interrupt. An intervupt
service vroutine is unlike 2 procedure in that, instead éf
being_linked to.a particular program,it is sometimes put in

ot linked to ather

]

s fixed place in memory.Becauyse it 1

segments,it can use gnly common areas that are absolutely

ccated to communicats with othery programs.Becsuse some

e
i}

kinds of interrvupts are initiated by external esvente,they
, :
cooour at random points in the interrupted program.For such

sed to the

W\

interrupts no parameter - addresses can ke pa

an be made

intervupt routine.lnstead, data\cammunica.ian
through wariables that are divectly accessible by both
routines.

sf the type of the intervupt,the

el
m
A
i
-
L
[
1]
i
w
P

ame and are

it

action that results from an intervupt are the

krnown as the interrupt sequense. Some kind of interrupts are

b]
n

=

controlled by the IF and TF flags and in those cases,th

-4

= th

)]
et
HI
hi)

lags must be properly set or interrupt action is

Blocked., If the conditions for am intervupt are met and the

‘

Hy
M

]
i
1t

necessary flags a ..t,ihe instruciian ihat' i curvently
executing is= completed and the intefrupt sequence proceeds
by pushing the current contents of the FSWL,C5 and IF on to
the stack,inputting the new contents of IF and CE from =&

cdoubhle word whose address is detevmined by the tvpe of

)]
-]
-
1
a
T
]
O
=
~+
]
o
-+
H]

interrupt and clearing the IF and TF flags.

of the IP and CS determine the beginning address of the

intervupt sevvice voutine to be executed.After the interrvupt
has been executed,the return is made to the intervupted

program by an instruction called IRET which pops the IF,C5
and FSW from the stack.
The double word containing the new contents of IF

and (2 is called the interrvupt pointer.BEach interrupt type

g

will bke given a numbery betwesn 0 and 255 incluszive and th
addrese of the intervupt pointer is fournd by multiplving the

sre loaded by the operating

tupe by 4. These addresses
syetem when the swstem is booted.
/0 eperations that take place betwesn 1As0

dewices and CPU on an intervrupt basis are called interrupt
1#0.8ince there iz only one interrupt input to an. 2088,in
order to support more than ones device, programmable
interrupt prievity management cirvrouit (8252) is connected fo

TR ahd IMNTE pins of 2808BE.Sees Fig 2.2 for a block diagram

o

14

To 82825 and 82865 8288 bus controller IORC
TN iNTA iowe
To 8286
AD? ADO vranewers
4 82594 ‘
A INTA _WR RO
1 CASO
1 - CAS!
_ S EN CAS2
. _ - Clear request
) 0?7 DO
1RO
Interrupt IR1
request IR2
in service Prionty '?F‘l‘t?)' iR3
reyister | cesolver ' {R4
{ISR) nd IRS
mashing b
For an BOBG they logr 1R6
hine s A and for {R?
g an 8088\.| 18 AQ
§ from 8282 : 1CW (chip controly . ocwi
eddress larches } [- I -] l 1 l LTIM lAOl SNGLl |c4] [Interrupt mash register (IMR)
- i A A b A e
P ~>1A0 1oW2 (type ocw?
2
: { | ronodseos | Reawetiewe | [R]scfeor]ofoz]uifo]
3 : >
< ‘ 1CW3 (stave conteot ocw3
Address
decoder D==e-1 CS l i 1 i 1 1 1 1] [0 IESMMISMMI 0 I ! I P l RﬂlRlS]
tog« .
A . o] twon command words”
‘otAls!SA-;2 ICW4 (mode conuoll prvaton
for 8086} [oIoI olsrw[aur[MSIAEO!I ,PMJ
INTR INT Initatization command words’
———— -

‘A0 - 0 tor addressing the fust word (ICW 1} and t for
sddressng the succeedhng words.

A0« 1 for scdressing the farst word and 0 for addressung
the succeeding words.

FIG 2.2.

P8its currespond 1o IR inputs. Bit 1 means IR s mashed
and Bit = 0 meens it 1s NOt Myshed.

‘10 8259A 15 2 master, Bit = 1 indicates that the corresponding
IR nput s connected 10 & dave For a slave Dits 3-7 are 0
ond bits 0-2 dentity the slave.

8259 INTERRUPT PRIORITY
MANAGEMENT glock DIA GgrAM

2

1

o
il

b

-+

e

of B259 interrupt controller.l 0 devices are connected o

i

the different levels of priovity management circuit.BEach

level iz assigned unique interrupt wegtor. Khen o an

4]

interrupt comes from a device on a particular level,priority

management cirvcuit checks for the priority.lf any higher

th

priorvity intervupt is in progress it hkeeps it in
pending,otherwise {t interrupte the CPU on behalf of the I-0

device and sends the intervupt vector number which enables

the CPU to respond to the interrupt.

he intervupt pricrity managemnent circuit

contains the logic needed to assign pricrities to the

incoming requestz.For. example, the highest priority could be

o3
x

given to IR the next pricrity to IRL and so on. When an

H

interrupt rvequest is vecognized by the priavity logic @ as

11}

]

Faving the highest priorite,then the three least significant

Bite of the type register are st to the number of the

request lineg, & bit is set in the inservice register and an
intervupt is sent to the CPU. If IF flag is zet then the CFU

returns an acknowledgemesnt signal and the management cirocuit
sendse the CPU the twvpe. All the reguests having lower

pricvity are blocked wuntill the bit in the inservice

register i1s cleared,an action which is norvrmally done by the
routine.Thersefore when IF is vreenabled b an 5T1
instruction,higher priovity regquest:s may interrupt the

currently executing routine, but the lower priocrity requests
will be blocked by the pricrvity logic unmtil the kit that was

set in the in service rvegister is cleared. This allows the

lower priority interrupts to procesd. The priocrity
management circyit is programmsble.

For detail

in

of programming the 8232 refer IMTEL
manual .

In addition to the built in priavity?a one bute
mask rvegister is prowided to allow the maéking of individusal

t

1n
m
[N
]

regquests.Bit n in this reqi r for masking IRn.

2.3 Sevial asvnchronous communication

iQ

Far two computers to exchange informatbon, ther

iz provided

m

should be proper interface Eetmeen them. Thi

~F

through =& communication link,which facilitates the data
transfer.

Within the computer,data ie transferred in
parallel ,because that 1is the fastest way to do it. For
transferring data over long distances ,hﬁweuer parsllel data
transfer rvegquires too many wires,which is not feasible when

the computers are lacated far apavt.Therefore datas to be

it

ent to long distances is ususlly converied from parasllsl

form to serial form,soc it can be sent on & single wirse or &

1

pair of wires. Serial data recsived from a distant source i

converted to parallsl form,so that it can be sasily
transferved to the computer bus,.)
Serial data can be sent synohronously ar

asvnchyonously . Fov svnchronous transmission,dats is sent in
bBlocks &t & constant rate. The start and end of block are
identified with specific byvtes ov it patterns.For

asynchronous transmission,gach data character has a bit

which identifies it's start and cne or two bitz which
identifies it's end. Since each character is indiwviduslly

identified,characters can be sent at any flme.

. At _ ., DERD SPACE
3 eTweEeN
Lsa , L J CHREcTORS.
‘]‘ leBT08 ¢ HRecTOR 13ITs =3} op-rzo,qA L t A‘/ oR 2
5;/;;27_1 : ' PARLITY 27 s—ruP 227 (,s)

Fig 2.2 fAsvynchronous communication format

shawse the bit format often used for

vl

Fig 2.

transmitting azynchronous datakhen no data iz being

W

-"1'

ent,the single line iz in 3 constant high or a2 marking

ate.,The heginning of a dats character is indicated by the

It}
-t
[1]]

lime going low for one bit time.This kit is called & start
bit.The data bits are then sent out on the line one after
the ather . The least significant -bit is zent ot
first.Depending on the svstem,the dats ward may consist of

28,7 ov 8 bite. Following the data bits, a parity bit is

ueed to check for the erroars in the received data. Some

systems do not insert av lock for a parity bit. Afier the

for a3t leazgt one bit time to identify the end of the
character.This always high bit,is refervred to as a stop
bi£,SDme syétems uee 2 stop bits.

The term baud rate is used to indicate the 1

at which serial data ie trans =ferred.Commanly used baud rates

are 110,3200,1200,2400,4800,9800 and 132040,
To interface a computer with serial datz

linesz,the data must be converted to and from serial form.d

parrallel in,serial out shift egister and a serial

in,parallel out shift register can be used to do this.” hand
shaking circuitry is nesded to enszure that the transmitter

does not send data faster than it can be vead in by the

s
LU

ilab

Fi1]

receiving system.There are av several programmable
L51 devices which contain most of the circuitry needed for

gervial communication.d device zuch as the INE 3230 which can

referred to az a LUniversal

[
i

do asynchronous communication

Asynchronous Receiver Transmitter or UART.

Fig 2.4 =shows the black_diagram of 82530. The

ter wWould contain error and ather infarmation

]
~+
1]
—+
[
n
l..lJ
m

concerning the state of the current transmission,and the

rol ¥

[y
fa

-t

5}

i

gﬁater ig for holding the information that
determines the operating mode of the interface.The data in
buf%er is paired with data in shift register.luring an input
'operatian,the bhits are brought into the shift reqgister one
at = time and after = character has been veceiu:d,fhe
information is transfarred to thev data in buffer

register,where it waits to be taken by the CPU.Zimilarly the

wwt bu ffE' is mssociated with a parallel outpu shift

i
-+

d a8

kX

pa
2 =ter ..an output is performed by sending dastza to the data

m

a1

out buffer,transferving it to the shift register and then
shifting it to the serial output line.
Although there are several wavs in which the four

umed that the

1]
1]

1]

port vegisters can be addressed,it has been a

3]
"1‘
:“r

~egister can only be read from and control register

a

can only be written into.Therefore an active signal on the

read line would indicste 2ither the status or data in buffer

18

Serial communication interface

Data bus
drivers and
receivers

i nierrupt

~_request
Handshaking Read
fogic o
o9 Write
o >
Address
decoder

Status register

Control register

Data-in buffer register

7

1

Modem

: control :

~

Data-in shift register

-+ Serial input

Dats-out shift register

p——i»—Serial output

T

[

Data-out buffer register

AQ

From address—-—J

bus

FIG 2.4

Y §

Receiver
clock

Cior]

and/or

Transmitter
clock

Tl

8250 VART BLOCK DIA GRAM

Fage 1%

sending and

w
[1}]
T

T
hl
-5
i1}
-+
[3(]
l_.n
fot
|
m
i
]
P
-4

register.The interface has

Pl

receiving information.So e used as a full duplex

[
-
-~
4]
1R
=
r

channel.
The infarmation can be vead from dats_in rvegister
either by polling: or on an intervupt basis.In our

implementatiaon,the characters are rveceived on an interrupt

basis.Accordingly the 8230 is programmed - to intervupt

er.lt iz als

!
-+

m

whenever theres is a character in data_in regi

&

programmed to the appropriate bhaud rate,number of

tap

bite,number of dat

it}

bits,and the parity.

appendix B.

i
M
1t}

For detail

of programming the 22350,

2.4 R&- 32[1l data transfer standards

It

211

[1}]

Modems and other devices used to zend zerial data

communication

1
L
Y]
-+
w

Y e af ten referrad to a

equipment({DCE) . The terminals or computers that are sending

1M

b terminal

L4
R

¥4
1]

or teceiving the datzs are refervred a
equipment{DTE).In response to the need for signal and hand

ndards between DLDCE and DTE the Flectronics

i
..,,

shake

ociation (EI&) developed EI& standard RE-ZZ2C.

1

Industries as

fud

Thiz standard describes the configuration and function af

it
it
[}

singnal and handshake pins for sevial data transfer.it al:

~H
(113

Py
Yot

and

i
M

describes the voltage level,impedence level vi

times,maximum bit rvate and maximum capacitance for these

igrnal lines.RS-2320C specifies 2% signal pins and it

in

il

pecifies that the DTE connector should be 3 male and, the
LDCE connector should be & female.d specific conmector is not

given,but the most commonly ussed connectove are the [RZ3-

male and the DEZ5-%2 female.lt is important to note the order

2 3

E

in which the pins are numbered.See appendix B for RE-Z
pin configuration.

The voltage lewvels for all RE-Z222C =signals are a

1

follows—a logic high or mark is a voltage between -3V and

~-13 undeyr load. Al

L]

gic low i3 a8 woltage between +3W and

+1% under losd.Veltages such as +7-124 are commonly vsed.

2.1 IMTRODUCTION

Faor & terminal to communicate. with & nearby

computer,a simple RS-252C connection is iufficient;IF the
computef is distant,theh a modem is redquired.

fe another examﬁle of computer ccommunicstion,
euppoeerihat e haue eeuerai computers in one building or &
complex of buildings,that need to communicate with @ each
other Jdhat iz needed in this casze 1= &z high speed
network ,commonly called a: local area network ov LAk,

connecting the computevs together.in this part of the

project,We are connecting two PCs wia RS-Z32C,which will
communicate at a baud rate of SE00. Since only two
Fls are connected, no bus arbitration is required,
However if more PCs arve connected, then ‘collisions
have to be taken care of.
The facilities provided in this proiect zre -

2. File transfer betweén the pos .

o Other utilities like mail and phons.

c. Resource sharing.

The file transfear ytilitwy TUMNS in the

background.bihen 3 regquest for file transfer is made from pol

H

to ped, & rvresident program on pof responds to the v

113

quest

1}

and tranefers the file in background.The user can continue

is session as. usual,and for the larger part,is unaware of

the file transfer.& printer connected to one of the PCs
be accessed by both the FPCs.

the maximum

1]
I
(]
i
fe

Cur sim in this work iz

throughput of the poce and share the resourses like printer.

4]

khern we are using RES-2320C,the data transfer rate i alwavs
slow RE~2220 can support only upto 9600 baud vate,while the

CPU execution speed is much higher. It has to wait till sach

bute i¢ transferred.Mot only thiz,wse arve keeping the user

ot

o
i

idle.s udser rvequsting for & file can wait,but it

it

reasonable to keep a file sender idle.To ouvercome thi
problem,ws are doing the ssrving dob in the background.
When there is & request from - pel,the process

iding in poZ ie initiated and requests the user for hi

Yes =
permission for these file transfer.lf the request is
granted,it continues the job,ctherwise simply returns.
LAatGUAGES CHOSEN

Far writing intervupt serwvice routines and
adjustfng the intevrupt wvectors,assembly language 15 the

natural choice and we chose the same for ouv RESPC program.

developed in TUREO

i

The rest of the module i
pascal .Pascal,as =uch iz & good procedursl language and it
is much easier to - debuqg & progran Written in
pa?:al.ﬁampiling and debugging with TURED Fascal is uer?
@asy because of it'z speed and inbuilt editor.TURBD also
prau§d95 excellent and Qery uyzeful festures like interfacs
toe assembly language programs,executing MSDOS interrupt

service routines,windowing,direct memory access,direct port

addressing,efficient file handling and enabling and

dizabling 150 evrors,

Thé aésemﬁly language interface iz used in
calling GETEEY and GETEUFF aséembly functions.Many of the
procedures like FOSCUR and =0 an ‘utilize the
sof tare interrupt service routine execution
facility.wind@wing has a divect usage wWith minar
modifications for cursor positicning.Direct port addressing

v

capability is utilized in addressing the 8250 communication

port.

3.2 USRT IMTIALIZATION

The theory and prnqrammlng azpects of USRT were
discussed in chaptev2.The PC has two | communication pavts
CoMl and COMZ.Each of them can be independently
programmed.For FLC to PC communication,COMI is used.The

intervupt output of this dewice iz connected to the IR4

intervupt of the 22528 pricvity interrvupt contraller in the

FC mother board.Th 1f i= mostl

22524 its

1]
{13
14}

s initialized by

BIOS when the system is booted.Howsver,since the UWART is

connected to IR4 of the 825%a,that input has to ‘be
unmasked.To do this,the current contents of the B2524

interrupt mask register are rvead in from address Z21H.The bit
corvresponding te IR {bit 4) is then ANDed with a3 0 to

unmask the interrupt and the rvesult put bsasck in the

In this communication,only four wives are used

[Eee igd. lﬁ 2D (Receive Data), TH {Transmit Datal,

preotective ground and sianal ground;and

Fage 2

250 i

progyammed

0,
(il

accovdingly.
Firzt thes divisor latch register i¢ progyammed

for the asppropriate baud rate.To program the baud rvate,the

L
3]
o
[1i]
[
-
[

atch addreszse hit({DLAB) of lineg control register has
to be set.Sc BOH iz ocutput to line control register.
Mext, the divizor latch register O03F8H and OIF3H

are programmed with the approprviate baud rate.For a baud

15

rate of FE00,the values to be cutput are 00 to OZF3H and OC

1]
i
n
il
e
10
T
i

to O3F8H.Since the communication parameters can b

with in the session using the setup option,this baud rvate i
programmable and can be changed at any time.

Mexwt, the line cantrai registey is programned
with the de&fault parameters. For our communication,the
top bit snd ne parity.Hence
cantrol register.like baud

and iz taken care in setup.

received on an intarrupt
interrupt Rit (it O i
set.Ze¢ 01 iz output o

intervrupt enshle register.

In this implementstion,characters are received on

T later

i
1]

aryr interrvupt basis and buffered.These characters
vread freoem anocthey program =snd processed.let us canaiﬁer E
simple program where characters are rveceived by polling the
2250 and displaved,and input from the kevboard iz sent | to

anc ther PC.

dnitialize 8B250
repeat

if kevpressed,then read key and send it

if UsRT has a character,then resad the

character and display it

forever.

The above program works well st I00bd or &00Bd.
However for =& baud rvate of L1200 and above,the firvrst

mived from the host

!'[!
i1

character of sach line of characters 1

will be lost. After & carriage return is sent to the LORT, the

display on the scréen iz scrolled up one lineJdot only
thig,the input from the kevboard has to be processed and the

received characters have to proceszed for escape and contrval

of

Q.
1]
-
i
o
[
(14
—+
-
=
D
-
a
1l
o
-
o
*..-.a
fu]
i
in

sequences,which takes conszi

celved on

14

characters during this time,the characters are t

Ly

an intervupt basis and stoved in 2 civeoular buffer.
.32 IMPLEMENTQTID“:

Thise package cansists of assembly programs
aﬁd pascal programs,in which pascal programs are loaded and
executed using assembly voutiness and asssembly programs are

called from pascal programs,

"I

These programs are —
1. RESPLC.a3M
2, PEHET.&SM
., FACILITY .PAS
4. FPHOME.P&S

. MAaIL.PAS

6. ASKFILE.PAS

i1

See Fig 2.1 for a flowchart of RESFC.Thisz program i

i

Wwritten in assembly language.lt stores the characters in
circular buffer arnd another function GETEUFF{which 12 in

another module) reads characters from this buffer.Since both

theze functions share certain parameters,there should be =
&

1 S0 o 0 3noess these COMMCn parameteys, in this

implementation,the Data Seagment of BRESFC is - storved in

O000:0124H,. GETBUFF later loades the DE with the dats in

Qo001

4H and accessesz different parame

in the data segment. -
Zince communication port iz connected to IR of

22539, the 8253%% will send interrupt wegtor OC to the

-
T

processar .20 the starting addresss of e communication

-

interrupt service routine is stored &t vector &0H,using DOE
function call EEH,léter it will ke stored =t OO by a voutine
TEMPCOM |

The communicaticon interrupt service voutine,which

cters from

1]

T

)
i
]

is resident sll the time in memory, receives ch

(1]

FC2 and storveszs them in circular buffer..The flow chart i

important to save the DS register and load the DS with

DeTe-HERE .

The buffer used here here is a3 civrcular buffer.One

LOAD DS “
STORE DS IN 0006:0i8

- 4
HEAD-PTR =0

TAILL-PTR =0
CRAR-COUMNT =0
XOFF-SENT =0

R

STORE ADDRESS OF COMM-INT £N OC

‘

MAKE COMM-INT MEMORY RESID&]

Fié 3\

LOMM-INT,

ENABLE INTERQUPTS
SAVE AX,8%,0x,Dx,DI, DS
LOAD DS WETH DATA

SEGMENT OF RESLDEM

!

READ FROM PORT G3FE INTeAl

¢

INCREMENT TAIL-PTR

TAIL~

TAIL-PTR =000

STORE AL IN QUEBULF
PoTuTED BY TALL-PTR

']

INCREMENT CWAR-COUNT

CHAR- COUNT

<900

SEND XOFF TO VAX

!

SET XOFF-SENT FLAG

&

END OF INTERRUPT 10 g2

'

RESTORE REéGs

Fie 3

pointer called the tail-pointer is used to keep track - of

Wwhere the next byte is written into bufferv.fAncther pointer

i‘[l
-
i)
c
1t
M
ja R

called the head-point to kesp track of where the

nexzt character is to be vead from the buffer . The buffer is

f[l

civocular because,when the tail-pty reads the highest
location in the memory zpace set aside for the buffer,it’ is

wrapped around to the beginning of the buffer again.The
head-pir followse the tail-ptr arocund the cirele a=

. are made on

;]

characters are read from the buffer.The check:

the tail-ptr before z character is written into buffer.

f[i

First the tal-ptr is brought into s register and

1

incremented.This incremented walue is then comparved with the

maximum number of bytes the buffer can losd.If the wvalues

are equal,the pointer iz at the highest addresz in the
buffpr S the register is reset to zevro,after curvent

character ig put into the buffer.The value will ke leocadesd
inte the tail-ptr to wrap around to the lowsst address in

the buffer

incremented walus of the tail-pty iz egqgual to the head-
ptr.If the two are equal,it means that the curvent byte oan
be written,but for the next byte the buffer would be Full.If
thie Thappens,an XOFF character is sent to FCOZ to o stop it

from sending moare characters and the wxoeff-szent flag . is

1]
i
—+
1]
-
1
=
]
e
i
=
-+
[
=
L
™M
[l
1}
e 1]
[
-4
i)
T
1
o
=3
o

zot , Bu ame char

~t
m

¥OFF.To svoaid this,every time s charecter 1s stored in

buffer, a wvariaghles char-count is incremented.This char-count

is ocom

=]

ared with 350 and if they are equsal,an X0FF is sent

and =off-zent flag is set.This way thse host is restrained

in

from sending move characters before the buffer gets filled
SUR.

The other procedurs which reads charvracters from
thiz buffer(GETBUFF) checks the woff-zent flag after every

t checks the char-count to see 1f

fN

o
1]
0
f11]

read.If this flag t,

there 1s encugh spac

l"!

e, in the buffer.If the char-count is

arn A0M and re

i
Q.
19
m
l.)‘l

less than 730,11t =zen ete xoff-sent flaq Thi
~assures that there iz 3 buffer space of 250 characters and
FESFC can ressume buffering.

Finally before returning,an end of intevvrupt

command must be sent to the 2285%4% to reset bitd of the
interrupt mask register.
PCHET is an assembly program,consisting of

SYSINT , TIME_IMT and TEMFCOM interrupt routines.Before

proceeding to describe these routines,it should ke born in

mind that MSDOS is = single user operating system and its
code e not reentrant.ln our program,the file transfer is,

carrvied in multitasking.SYSIMT and TIME_IMNT serve this .
purpose.,

For =11 170 fumctions and cervtasin special

functions,every program has to reguest the cperating
system,with the proper parameters.The operating system does
the specifisd task and gives control back to the called

process.I1BM po provides some fivrmware routines for ceviain

basic functions and MSDROS provides variety of routines under

interupt 2IH with different function calls.(Ses DOS
: ’

technical eference manual for detailes).Since MELOE iz a

eingle user operating svstem,wWs oan run only ane process . 8t
a time =and only one function reguest is made at a time.The
process requests for spstem services ane af ter the
other.Since HMsDOs rnutiﬁea are not reentrant,in | the
multitasking,when 3 process enters the system voutine,other

process should not be allowsd te enter.lf this is &llowed

the system will crash.ke can implement multitasking,bw
gxecuting =sach process till it's time slice supires.This
works wery well if both processes are not reguesting for
system services at the same time.

But imagine & case,where multitazking is

i

called a3 system function ,and it¢f

HI

1mplennnted and & process

time slice is cver when it ig halfway through in the svstem

i
m

3
~t

call If control is passed o o the otheyr process,and if

*

that DroCEss alsa requests for the same susten

function,there is no way MEDOE can know that the reguest has

come from the second process and it iz in the way of zerving

it.Hence the register wariables of the first process will
be reinitislized ,which will lead to syvetem craszh.0Ons
solution to this is to execute the process,though it time

1

zlice has expired.But this may lead to another problem,whers
the system routine may be indefinitely waiting for the
input,.For example it may indefinitely wait for an input fraom

the keyboard.The user may take his own time in giwving the

input.During this time,the process 15 simply waiting for the

input from the kevboard and the second process cosn not | De
served.Since MEDOD is serving one process,we should kesp the
other process’s request in pending.ﬁnmther solution to this

1lews MEDOS to respond to kevboard 170

il
-1
o
-
M
=
-t
th
Jou
[
-+
-
D]
]

Il!
¥

uyrntil & key has been pres

1

2ed,.This method is implemented 1in

the following SYSIMT routine,

&
3.2.2° SYSINT bihen a system call is made by a2 process,it
puts the appropriate values into the registers and executes

the corvesponding intervupt.Then control branches to the
appropriate address and the voutine iz executed. When we run

FOMET it takes the address of the actual svstem voutine and

vector £1h,The control is retained by SYSIMT.

¥
[
HH

Thie ESYSIMT checks the int flég.lf it

zet,it gives control to the actusl system routine.This is
necezsary because,when =3 process veads & key through

-

MEDOE,1t rvreturns the ASCII walue in AL register.If the hey
ig an extended kew &L contains zero and ancther call must be
mads to 'get the extended code.bkhen this happens,thse next
reguest must be served to the Eamevpracesa.Fﬁr this,SYSINT
zete the intflag, when the pracesa'ia leagving the EYISINT in
this particu}ar CasE.

In the next step SYSINT checks whether
the reqguest is for keybosrd 1/70.IF it is ,it simply looaps

v fla

until 8 key or keys are pressed.Then it setz the ke g
and the int flag and gives control to the svstem voutine.If

SYS-INT

PUSH FLAGS
RemTIstTER USED

AND

P
ol ‘Xf

YESs

KEY -BOARD T/b

YEeS

INTFRLAG =4, =

|

KEY prEssep

SET KEY -FLAG

—
-

Y

SET SIMT FLAG
EXECUTE SYSTEM ROUTTME

KEY-B0ARD T/p
EXTENDED KE

RESET

)

RETURN

FIG 3.3

Fage 3L

the regquest is not for kevboard I1-0,it simply gives contrvol

to the svstem routine.fSince it is looping for & hkeyvboard

input in SYSIMT, TIME_INT can give control to the other
process.This int flag serves as an indicatfor to the TIME_IMT

that & process i1s getting svystem servvice from MEDOS.

“after executing the system service rvoutineg,

contral is returned to SYE_IMT.Then it rTESets the

intflag.lf the returned walue is that of an exrended

key, then

-
-t
1

25N

n‘|

the int flag ,resets the hkeyflag aﬁd
controel is returned to the rvrequested process.The flowchart
i given in Fig 3.3

2.3.3 TIME_INT : IBM PC has 8253-5 timer chip,which has

three timers in it.0One is connected to the CPU through 2259

iy

intervupt priovity controller,the second one is connected to
D& and the third is conne cted to -the speaker.bhen the
eystem ie booted,MEDOS programs the first timer fto interrupt
the processor periodically,sc that the timer routine ddea

the time keeping.Timer has the highest pricovity interrupt.it

i= connected to IR0 of the 8259 interrupt pricrity
contraller. In our implementation,Multitasking is

omplished, uszing this timer. Whenever there iz a timer
intervupt,contral is retsined by ouy TIME_INT routine.This

the

i

routine first does the system time keeping,then it pop

instruction pointer,code segment,.and PSW of the interrupted

Brocess from the stack.lt checks whether the interrupted
process iz getting served by MSDOS by checking the intflag
oy the code segment of the intérrupted process.lf the
intflag is g2t or the code ssgment 12 egual o the segment

92
TIME.INT

EXEQULTE
SYSTEM TIHER ROUVTINE

IVTERRLA TED PROCEST

IS GETTING sSYs TEM
ERVTCE

EXCHANGE REGTISTERS FROM

PROCESS COMNTROL BLOCK
{

pUSH THE CS, TPAMD psw

6F THE NEAT PRocCEgs TN
STALK AND EACCUTE TRET

-

RETURN TO THE. OTHER PROCESY

FIG '3.4

tack and

i

of the MBDOS system routine,it vestares the

control is returned back TS the interupted
process.0therwize,it stores &1l rvegisters the process

control block and loads the registers with the values of the
next process to be served, from the process control block of
the other process .The PSW,CE and IF of the process ta be

is given

f ot

tack and contyo

i
i

given control are pushed onto th
back to that process by executing IRET instruction. The

flowchart is given in Fig 3.4

W

I.3.4 FOMET i This program initislizes the B250 uch

that,whenever 1t receives a character,it should interrupt

259 priovitwy

-

the precessor.lt’s intervupt lewel . an

fux

i

controller iz IR4 and it s wector is 0Ch. PCHNET =ztorves the
address of the TEMPCOM intervupt service routine at OCH and

EFH.This routine =to af the interrupted

]
m
i1}
0]
l"".
l.._a
ot
x
1]
-
i
L8 g
tad
10
~t
1]
d
i

priarity contrvroller,sc
that another interupt is not reaagnized during the execution
of this routine.khenever there is an intervupt from 8ZB0,it
reads the characters from UART and checks if the caharacter
i an escape charscter.If it iz,then it gives control to 3

for the request and serwves 1t.If the

process,wheve it check

not an secape character, then TEMPCOM

“
T
{f
-
x4
[
i+
1]
-
-
]

received

unkmasks IR4,sends an end of interrupt to 2259 and calls the

dizable function.This disable function places the starting
address of the TEMPCOM at vector OCh and leads all the
veqisters of the invervupted process from the process

control block and gives control to it,

- PCNETY

CINITIALIZE 8254

INITLALIZE VARTABLES

STORE ADDRESS of
TEMP-COM AT ‘
&7 H AND ocCc H

STORE ADDRESSES 6£ INT 23 H
.Awb TITMER QOUTINES AT

VECTORS E4H AND £L3H

_HAKE THE PRocRANM

MEMORY RESIDENT

RESERVE 20K MNEMORY

FoR COMMAND.CoOM

(sToP)

FIG 3.5 Ccomb)

PCNET 36

I_{j FROM TEMP_CoOM

INITTALI 2E€ REGISTERS

|

STORE COMM-TNT ADDRE
, AT VECTOR OC H =

4

SEMD END of TMSTERQAUOT
T6_BR59

Liae i N

4

RECETVE A CHAR

T s e

NO

INTTTATE . MULTT TASKING

WATIT . FOR SOME TIMA

INTTTATE HULTITASKING

Y

>

DIsAagLe MHULTTTASKING

PUT THE COMMAND SEMT

BY OWER PC AT g6 H

SToRE LETURN ADDRESS

OF EACTLLTY AT
VECTOR KLE Y

I

Y

EXBCUTE FACTLLTY

3

RELEASE MEMORYRR (OMHAKDS

LOAD AND ExXECUTE

] COMMAND. Co M

INTITTALTIZE REGTISTERS.
GIVE oMTQOL TO USER

F1G 3.5

CHET initialires 8230 by calling IMIT
subdroutine for communicastion parameters of F500 bsud rate,d

one stop bit and to generate interrupt,

bite,no parity and
wihenevery & character iz recieved.Then it loads the starting

address of TEMFZOM a2t OCh and 6FH,stores the addresses of
the aoriginal timer and intervupt 21H szerwice rvoutines in S5H
and &4H rvespectively,then stores the EYSINT addrese at

vector - 21H and makes the whole program memory rvesident by

reserving another 20k of memory spacs,

When TEMPCOM gives control to POMET after
receiving an escape character,it initializes all the
registers to execute this process and tﬁen coples COMPM_INT
address from G&OH %o OCH.It sends & character “C7 to the

other computery €0 that it can agoabhead. If the received

character i tares the addrezsz of the

Hi
I H]

ather than “&7,it
TIME_INT routine st wector 08H and initializee multitasking.

=z the retuvrn addr

M
HYj

=

It then stor

ki1

af the pascal program &t

vector 66H and calls the pascal program FACILITY for further

If 3 user on one po wWwants to run a command on
the oather po,he will zend an escape charzcter ,followed by
the character A7 .To execute MEIDOS commands,we should

release around 17k of memory allocated to the ocurrent

s
process to losd & copy of COMMAMD,.COM intoe this memory.Then

place the commsnd string at offset 80H with the string

length as the first byte and & carrvriasge return as the string
terminator LThen make the DS:DX to point to the string

COMMAMD COM and make ES:EY point to the parameter bhlock and

Fage B4

load 4L with zero,aH with 4BH save 55 and SF registers in an

iy

area other than stack and sxecute intervupt ZlH,which loads

and excutes COMMAMD.COM. This COMMAMD.COM picks up the

cormmand stoved at affzet aoH and gxecUies it.

On return from the executed command,most of the registers

have been changed,including 55 and SP.These registers have

to be vestored.
If the received character 13 “&°, 1t stores

it

the TIME_IMT address at U8H,waits for some time and restore

the original timerv voutine at OCH. Then it veads the command

i1

ent by the othey user and places it in B80H and executes the

rcalls the module

m
—
g
il
a
~+

cﬁmmand gz explained ahbow
FFﬁCILITY,by placing the character 07 in uériable TR&Y . The
flowehart is qiven in Fig 2.5,

3.3.5 FACILITY : This program;written in pascal consists of
evternal and internsl procedures and functiaﬁg.ﬁll external
procedures and fun:tians are coded in assebmiv.let us see

o 3zsembly programs are called from Turbe pascal and how

zed,

(1]
IM

rarameters are DA

to be called from ai

]

bhen an sssembly rvoutine i

al program as a proceduresfunction,it should be defined

o]
fil]
it
ﬁ

szl program.The

ﬂl

as externzl proceduresfunction in the p
azzembly program has tﬁ be separately assembled,linkesd and
converted to binsvy fovm by using EXEZEIMN utility.

Let wus consider & pasecal program and an assembly
PYrogy an.

Fascal program

program pascal_assembly_interfaces

h
[31]
¥
—#

function decr{var noo integer) : int

gxternal “decr.bin’;

C@ssembly program
;'Functi&n decrfua? noi integerijintegery
decr proc near
PUSH BF
PO .EBF,SP

LES DI, [BF+4]

MO A, ES (DI]
DEC 0

MO ES:[DIT,a%
FOP EF
RET I3

endp

4

wher e i iz & wariable in pascal initislized to

1.The sssembly function DECR is called with the par~méter

i

i.The function take the wariable i,decriments 1t and

returns the decrvimented walue.The pascal program then prints

thizs returned valus,

haow the parameters are passed.Turbo

-
1]
-+
o
i1
]
i
1]

a
1]
i
[R]
i
,’._-.-
™
i}
h]
i
m
i
s
i1
prt
1
2
n
+
m

& through stack.

At oentry,.the stack pointer

3
3
P
jon
ot
i

st
o
~+
ey
1]
U
-+
il
n
b
]
n)

return addresz of the caller to ‘thisz voutine.The higher
addrese (sp+2) contains the address of the parameter passed
by the caller.Toe accesse the parameter, we use the BF
regiaﬁernﬁirce this BF register would have been used in the

slling program,se must save EBEF

£y

szembly program.in principle,all the registers that are

1]

being used in the assembly rvoutine have to De saved,and then
restored when returning controel to the caller.Thsn the

current stack pointer is assigned to BF. Both SP and BF now

gddrecs the walueg of the saved BP rvegister.The return
address and thse BF register wvalues are each of Lo
butes,hence the parameter is found on the stack st location

[BEF+4].The parameter is taken from thiz ares,incremented and
put back at ths same locsation. BF reagister is vestored and
cantrol is returned to the caller by executing RET. RET
pops only the rveturn address from the etagk. SZince e

mustalsoe pop the paremeter e shold use RET &,
The following external procedures are used -

GETKEY @ Thiz function checks,if there iz any input from the

kevhboard and veturns the data if any,to the called

given in Fig 3.5,

m

program.The flow chart i

GETKEY

SET

SAVE 8P
Bp =« SP

AH <+ 01
INT 16

ZERO FLAG.

RESET

Al <00
INT 16

!

Es:(D1] «— AX

%

RESTORE BP

Fie 3.6

CHECK IF KEY
S PRESSED

READ THE PRESSED
KEY INTO AL

PUT THE KEY TNTO
EXTERNAL VARTABLE

IMNT 1&H Biog routine provides different
functions,depending on the value loaded in reg AH. AH=O
returns the code for = pressed key in AL. AH=1l returns the

zergs flasg=0 if a key has been pressed. INT 16 is called with

I
T
i
e
o
)
4
“h
-
it}

3
-
"
iy
m
-t
-t
o
n
-4
m
-

¥

no input from the kevboard

and execution rvretfurns to the caller.If the zflag is O,the

F

bevbhoard input is read intoc AL and the value returned.

GETBUFF : Thise function checks if there iz date in the
cireular buffer and returns the dats,if there is any.The

flow chart is given in Fig 2.7

1l the registere are saved.The contepts of
[0600:01841 are loaded into DE,s0 that the variables of
RESFL are accessible herve.lncoce DS points to the data

segment,the variables within the date segment are acocessible

gz off zetsz using the registers BY and LI,
By comparina the head and the tail pointers,s
check is mads to sees if thervre zve any characters in the

buffer. If not,the execution is returned te the caller.If a

the pointer is 3t the top of the space allecated for the

buffer,the pointer is wrapped arcund to the start of the

]
i
-+
i1}
-
-t
]
+
r
it
o
™
il
11
1
1]
L
o
o
=3
[}
o+
T
m
3
~r
1]
-4
]
[T
}-n.l

buffer. The read char
variable. &s discussed earliev,this funciion alsoc checks the

#xo0ff_sent flag and sends an HOM if

i1

theve is snough space in

vthe buffer.

IMTP&S : This rvoutine stores the starting address of
FACILITY at address &5H and makes the whole program meEmory

resident and gives control to MSDOS.

RETURM 3 @&fter the FACILITY program is called and Execy ted

from PCONET,this RETURM procedure takes the return address

stored =zt vector &6H and gives contvel to FONET.
MOSWEP @0 This procedure disables multitasking by placing
the addresz of the MEDOS timer routine at vector OZH.

The zdditionsl procedures are -~

FIMDCUR @ Finds the pozition of the curser by loading O3
into @&H, 00 inte B¥ and executing interrvupt 10H.The ocolumn

ntsined in DL and the row number in DH. R

o

rnumber 1s o

1,

number waries from O to 23 and column number varies from O

3 in PFCaukile they vary from 1 to 24 and 1

) a0

fed

P

-]
r+
<

respectively in normal use so a 1 is added to the row and

coalumn rnumbers determined zbowve.

FOSCUR : Positions thé cursor at the given row and
oo lamn, by lDadirnq 02 in aH,00 intco Ei”’ (Fonumber—-17 in
DH,column number—-1 in DL'and aﬁecuting interrﬁpt 10H.8 ane
iz subtvracted because of the same srguément az shouve.

DISPLAY tThis Is used in displaving & character with 3 given

attribute When characters are to be displaved in 3 mode

zet asnd this

-t
1]
[
ik

i

other than naormal,th attribute byt

procedure is called to display the charscter in the required

EUNCTION GETBUFF

'SAVE BP
BPe— 3P
4
DS < [oc00:0184] | LOAD DATA SEGMEN

OF RESIDENT INTO

YES

COPY THE BYTE POINTE
BY HEAD-PTR TO EATERI
YARIABLE

)

INCREMEMT MHEAD-PTR

HEAD -TR =0 |
>

INCREMENT owz—couﬂ

SEY

—
SEND XOMN TG VAKX

v

RESE T XOFF-SENT FLAG

3

RESTORE REGS

attribute.For carriage return,line feed and tak, the
charscters are displaved =3z they are.For the rest,the

character is loaded in AL,03 into AH,the attribute into

-t

i

BL,the number of characters into CL and imtervupt 10H i

executed,.The cursor is moved to the next column.

1]
T

SET_DIZRLAY 1 Displays =3 given string with a given

sttribute.lt repeastedly calls the above procedure for each

character of the string.

GETCHAR : In some cases it is necessary to wait till o=
character is received.This precsdure waits till & character

iz received by rvepeatedly calling GETEUFF.

SERD : Sends an integer to the host.Ilt veads the line

o
-
ot
1t
PR
W
o
[
]

T

tatus rvegistey of COMI =nd checks if

corvresponding to transmitter holding register empty &nd

W

transmitter shift register empty are et.If they are

s

et,then the data is sent to the cutput port [O03IFZ]

i
i
Y]

READFILEMAME :Reads the filename sent by the other user into

the string variable called filename.If it is unsuccessfull

-+
o
]

SEMDFILE: Thie is the asctusal procedure which rums in
multitasking mode.lt reads dastas from the requirved file and
gendz it fto the othery po.Dats iz read from the file in

blocke dus to the following veason.khen SEMDFILE runs in th

1]

background and the user runs the divectory command in the

foreground,MSDOE flushes 811 it7s file discriptors in the

101
SENDFILE

"READ FILENAME SEMNT
BY THE OTHER PC

1

OPEN THE FILE

SET COULNT =0
-SE.MD IC t .
RESET F€LLE POTMTER L

SEVD €ERALR

INDTCATOA TO THE
! OTHER PC

YES

o C RETLRN *)

CEAD A BLock FRoOH THE FLLE

RE oPEN THE FILE - : - [send eacn cunracre

HMovE THE“CILEH
POINTER TO COULMT BLOCKS

TO THE OTHER pC

rr'e 3.9

Page[ﬁd

memary and hence the filé handle of the current file used in
the background job will be lost and'there Wwill be 1.0 BYYOT.
To Dﬁerccme thisz problem,this program veads the file in
blocke and keeps 2z count of the number of blocks vead.If
there i3 any error in reading the file,it recpens the file

and pogitions the file pointer at the next block to be resd.

l}!

Thie SEMDFILE procedure resds the filename
and apens that {ile.lf the file iz not existing,it sends sn
error message to the cther po, then disables multitasking

and rveturne to the main program. It reads the file block

wWise and sends the characters one after the other.Then 1t
closzes the file and dissbles multitasking.The flow chart s

o
m
-
-
L an]
™
im
-4
o
-
l

i

procedures is called when a user on pod mails

jH]
-
-
p
H
-l
~F
L
[
]
i)
[ng
}-..l
(]
i
~r
pa g
1]
=
[
'-.-.a
-
e
ot
w
m
e
pos
{81]
T
iz
i
1]
|.._4
|...4
1t
2
(81}
=
o
Ry}
=
e
T
-y
i
i1}
o
11

reads the contents of the file sent by pco? and stores tham
in disk till the end of file is sncountered.If it iz unahle

to ocreate a file,it sends an error message to the other po.

SFEAK ¢ This procedure is called,when s user on pof makes 3

phane call to pol.lt prompts the user fovr hiszs permiszsion.lf

ot
b

the permissicn is granted,it oreats two windows on the
SCYeen énd maintains the messsges profiles in these two
windows. 1t displays both the data sent and data
re:eiued,Thie phone utility ie terminated with = c;and the

cthey user is z2lzo tabken out of FHORE.

W
it

FACILITY 98

FLAG = 0:0200 H

' No
Zz FLAG =4 l
STARE THE STARTING
| ADDAESS AT VECTOR 65H
INTTTALTZE VARTABLES
i SET THE.- €LAG
GET THE VARTARLE 7)
SUPDLIED BY PCMNET h
HAX.E THE PROGRAM
HEMORY RESTDENT
END
THE VARTABRLE 1S D

T R Pl
. I 1
senD FILE| | GET erue SPEAK. COMMAND
RETURN TO PCNET

FIG 3.9

COMMAMD: @ This procedure is cslled after the execution of
the DOS call, specified by the user on pod.This will send
“the gutput of that command to thé poZywhich is stored in the
file CiREDIRESCT.
The main program F&ACILITY i=s called from the

assembly progarm PCMET by keeping the regquest in the common

variahle TRy .1t checks the walue in TRaY.If it iz -

TY = ecalls SENDFILE procedure.
TR - o=lls GETFiLE procedurse.,
“P7 - calls SPEAK procedure.

D - calls COMMAND procedure.

he execution of the procedure,it veturns

I
-4
~t
m
-
3

conftroal to the PCMET which returns control to the ussr.The

0
LA

flow chart is given in fig

. PHOME @ This is an independent pascal program and

15

Lpec)
P BRI

las to be run separately to inwvoke FPHOME facilitwv.Te use
the phone facility,FHOME has be run on one of the pos . When

run, it checks to see if the other user is interested in PHONE

and proceeds just SPEAK procedure described zbove. The
flowchart is given in Fig 2.10.

¢ MmlIL: This is an {ndependent progvam wWritten in
pascal.lt is invoked when & user wants to mail = file to the
P
aothery wuser.lt sends the filename and the contents of ths
file to the other user.Before zsending a charvacter,a check is

made to ses if an XOFF character is sent by the other po.if

an XOFF ie received,character transmission is suspended till

it

T

1]

an XOMN character i ceived.,.Thie makes zure that characters

Mo

YES

PHONE

[COMMUNTCATION BUEFEQ)

CLEAR

'

SEND ESC CHAR.

POUR =]

RECEIVE A CHAR.

NG

CHARACTER='C

seud o
RECEIVE A CHARACTER

T

CHARACTER="c!

{MA LE TWO wWINDOWS

AND HATMTAZY Mecosce

y
—

\)

Key paey

YES

KEY T¢ AcC
(7%)

DLESPLAY THE CHAR
>

SEND “Ac

CHAR I

" NO

Y

COHM~-BLFFER

3

I DrspLAy THE

CHARACTER

MAIL

P ,._,_w__,__j

CLEAR CoaMMUNT AT
BUEFER.
SENMD EsC (HAR
RECELVE A (CHAR

i

104

NG
SeND 'R
READ LTLENAME
APEN THE ETILE
RESET ‘THE £ILE
£
ERRAR YES 1
NO SEND ABORT

SEND FTLE NAME
RECELVE A CHAR

CHAR.

NO

> ¥ES

NO

READ A CHAR
FROM f€ILg

SEND THE CHAR.

SEND EFof CHAR.

[-

C ST P j

are not lost dus to buffer overflow,.If there is any error in
creating a file at the other node,it will receive an errvor

indicastor and aborts with &6 appropriate messsge. The

flowehart ie giwven in Fig 2.11.

an independent pascal program,which has

LNX]
£
)
I
(1)
-
|
-t
-
m
m{
.y
b
i
i

¥ from the cther node.The

i

to ke run to request & file trancef
cther svstem sends the data in the file with the consent of

the user.lt sends the data in the file (if the {ile i=
]

]
-
-t
e
a3
s

existingl ASKFILE receives thie data and stores
file.If the file 1is not existing =3t the other node,it

receives anh error message and aborvts with an appropriate

messaqe. 1he flowchart is given in Fig 3.1Z2.

2.32.5% DOS : bhen a user on pcl wWants to vun o a program on

poc2,he has to invoke this program.Tvpical applicaticn of

this facility is to use the printsr connected to the othsr

<
m

poc with & simple command from this po.Similarly ke can

e
the directory on the other po from his po.This pregram when

Ht

vyun;prompts for the command to be run on the cther po.Thi
command i€ sent to the cther po for execution.dny auiput of

this command | redivrected back to the host po and

displavedon screen.bhen the command is entered,this command
is appended with C:REDIRE#CT string ,and a new string is

created with the string length &t the first positiaon

i

followed by C.Thi tring is then =ent to the other

poywhere 1t iz exscuted by loading the COMM&MDL.COM. anu

mutoat 1w Pgffered in tn g File =nd iz tymmemittred Rocel +

ASKFILE

ENMPTY cor\uuurtArroM
BUEERER: SEND ESC CHAR

RECETVE A CRAR AcTER

S

A

o

CHARACTER= C

SEnD 1!
READ EILENAME

\

SEND FILENAME _]
ER

RECEIVE A CHARACT

NG

CHARACTER = ¢!

CREATE A €TLE

WETH THE FLLENAME

Yes

f

pr. NT :
frLe NoT Foun)

(-
C o

NO

¥

RECEDVE A
cHARACTER

CHARACTER = EOF

sepnd

ABORT
ST GNAL

YES =

(. pToP j

FIG -3-42

A

this PC and is dsplayved on the screen.

To usze the FL to PO communicstion utilities,

proceed 3z follow stepl : install C drive and Ccopy

]
it
i

COMMAND COM onto it.

step? 1 run RESPC
stepz @ run FaACILITY
stepd : vun PCHNET |

You need to follow the above steps on both the Fls
only onocewhen vou boot the sy

If wou are currently using PCL and want

ot
o

[$1]
in
-+
[11]
-+
—
[
n

from PC2 run ASKFILE .
When prompted,give the filename. With the approwval of

the other user,the file will be transferved to vour disk,

B
4

Toe mail & fil ta the oither ussv ,run PMEIL.

m

prompted,give the filername. With the consent of the other

user,the file will ke mailed ta him.

i 11}

To make s phone with the other user, run FPHOME . Th
Gther user will be informed and if interested,will 9o intao
PHOME and wou can proceed. Exit the phone with ~C.

Te run DOS commands ah the Gthef Py YUumn thé pYogram
Los . Nﬁen prompied,give the command vou want to éxecuﬁe.?au
can use this facility to priot wour file on the printer

ir

it}
“

connected to the other po.However,to print a fil o oyou

1t
]

have to mail the file to the cther system.You can al s

the directory of the other user.

L FUTURE E»TEH:IHYS A MODIRICATIONS

0

This package can be tended and modified ¢

give wvwarious other facilities to the user.

The file transfer utilities can be modified
to includs sub divrectory andsor wild card

pecifications.These file transfer wtilitiss transfer only

111

+
>
i

character files.Integer files like object files can not
tranzferred.The program can be modified to transfer integer

files by using character stuffing.

Thie FC to PC communication facility can he

m

“tended . to connect more than two pos,. Collision detection

least one of the svstem is &

Y1}
-t

should be 1nc“rpuraied If

C—#T,1it can serve 3z a file server and & tvpical LANM swvtem
can ke build up.The ultimate and most usefull architecture
iz the ane,in which any FC can el ther communicate wifh the

cother FC or with W with simple sc ff“ ve control.

|1I

|€:un§ : sf ;n“: ;gl;i:’-,v, :n 1
; mjuﬁugﬁnuf«ﬂne“"ig

v ADD gostinalion. source ' . COITSZAPC|
ADD Addion v Floge XX XA X
Operands Clocha | Transters® | Byres Coding Exomple
1eQ18t0r. roQistar 3 - 1 2 ADD Cx. Ox
1egisler. memory Tl BEA 1 2:4 ADD Dt [BX| ALPHA
mamory. roQistor "1 160 EA 2 24 ADD TEMP Ci
reQister, smmediale 4 P -)4 ADD CL.2
memory. immediate 17 EA t2 38 ADD ALPHA 2
HCumulator. immaediale 4 _ 23 ADD Ax 200
AND geatinstion source O01TSZAPC
AND , Logwcal ang 1 Feee XXUXo
Operando Clocho | Transtera® | Dyles Coding Bnsmple
10Q181@%, reQinier 3 - 2 AND AL.BL
19008107, MOMOry Do EA 1 2.8 AND CX.FLAG __WORD
memory. registoer . 18eEA b 24 AND ASCH {DI).AL
reQister, ymmediale 4 - 34 AND CX.OFON
memory, immedialo 70 EA 2 38 | AND BETA,01H
acCumulalor, mmoediale .8 - 23 AND AX, 010100008
CALL targot . ODITSZAPC
CALL Calt » procedura Flm
Operando Clocha | Tranaters® Bytos " Ceding Exssmples
noar-proc Rl 1 3 CALL NEAR _PROC
fer-proc % 2) CALL FAR PROC
memptr 16 ' NLEA 2 24 CALL PROC __TABLE |S!|
reQptr 16 ‘ 16 1 2 CALL AX
mempir 32 "1 37+EA 4 24 CALL |BX].TASK |34
al CBW (no 0porando) : . 0DITSZAPC
caw Convart byte to word) Flage
Oparands : Ciesho | Vromolera® | Byteo v ‘Cediag Enamplo
(n0 0perands) : 2 - ' cew
| cLet snde) R ODITSZAPC
cLc ’ Cleer carry Hag -0 0
Oporands ' Closts | Treaslors® | Bytes " Codiag Example
{no operands) 2 - ' (91K
' CLO (no oporende) : : OOITSZAPC
¢ LD) Clear duaction flag Floge 1
Operande Cmi_m Tronolere® | Bytes Codlag Enampia
{n0 0porands) 2 - 1 Lo

°mem.,mcwmwmw&mm«m@»m-mmmm.m
four docks for osch |6-bit word transfer. Maomonics ® bwel, 1978,

{cLl) CLlinn operangsy Flags C0DITSZAPC
N Clear interigpt tag 0
Operands Clochs Yianstors® | Bytles Coding Example
("o operands: ' 2 - ! cu
cMC CMC inp operandss : Flags 001 TSZAPC
Complement iy HaQ) X
Operands Clocks | Transters® | Bytes Coding Enample
(no OpRrANEY! ? - 1 [t
CMP CMP desting n snurce Flaos QD1 S52AaPC
Compare ge~” 1ahinn 10 SOufCe ° £ X XX X X
Opetands Clochs | Yranstors® | Bytes Coding Erample
reQesivt fegister 3 2 CmP Bx CX
eGSR Memory G.EA] 2-4 CMP DM ALPMHA
Mermae, Tpgate . 9. FA VoL 2.4 CMP BP .2 Si
[R T AN IS & - AR] CMF BL'0O2M
rperemn . 10 tA 1 16 CMP Bx RAADAR DI Ja20H
KUEEYE Seater 3 . - 2} CMP AL 000100008
| CMPS gest.string sourCe-stnng ODITS ZAPC
CMPS Caompace winng .H‘O‘ X X X X X X
' Operands Clochs § Transters® | Byles Coding Example
(251 Wng whare e Shing 2 b v | CMPS BUFFY BUFE?
Hepeah dest WIag shurtcr stong 9422 rep 2 tep 1 REPE CMPS 1D KEY
; CWD {no operands) -00D1ITS2APC
Fi
cw D Convert word 1o goudblewdrg a2
Operonds Clocks | Tronslers® | Byles - Coding Example
(no operands) -8 - ! CwWOo
DAA (no operands} ‘ODITSZAPC
Fi
DAA Decimat adjust for additon %8 x XX XXX
Opersnds Clochs Trangters® | Bytos Coding Ezampla .
ino operandst 4 —- v | DAA
DAS tno operandsy .) ODITSZAPC
DAS Decimai agjust lor subtraction Flags U XX XXX
Qperands Clocks | Transtors® | Byles : Coding Example
1no operands: /e - 1 DAS

* For the 8086, udd four clocks for each 16-bit word transfer with an odd address. For the 8088. 20d -
four clocks for each 16-b word transfec. Mnemonics © Intel. 1978

.

DEC Jestination

ODI1TSZAPC

Fi
DEC Decirment by | 29 X X xx
Oparands Ciocha | Tiansloers® | Byles Coding Exomplo
iih 2 - | DEC AX
reqd 3 . - 1 DEC AL .
memory 4. FA 2 24 DEC ARRAY {54
DIV soutce OD!ITSZAPC
F)
DIv Dreision, ungigned R LY VUUL U
Operonds Clachs | Teonsters” | Bytes Coding Exomple
teQd 09-90 - H owv CL
10Q6 1468.362 - ? Div BX
mem@ 186-9%) 1 24 DIV ALPHA
o LA ' :
memig (150-188) \ 24 OIv TABLE |51
+EA
ESC ESC eumma@.opcoqe.sou(w Fisgs 0ODI1ITSZAPC
Escape
Operands Clectin | Translors® | Bytos Coding Exnmplo
immediate memory BoEA | 3 2-¢ | ESC 8.ARRAY |Si]
immeadiate register ? - ? ESC 20.AL
HLT HLT (ho operands) Fligs 00D1ITszaPrPC
Hailt : -
Operonds Ciochs || Transtore® | Bytes -'Codlng Example
{no Oparponds) 2 - 1 HLY
] 1DV sovrce Fls 0Dt1TSZAPC
Div integer dimision: la,a u VIRV R VRVIRY)
Operonds Clocho | Translors® | Byles Coding Example
1eQ8 1012 - ? 101V BL
reQ'd 16%-184 - 2 10Iv. Co
mems 1107-118) 1 2-4 0V DIVISOR_RYTE 'S4
o EA
memns (§71-190) 1 24 10V BX DIVISOR_WORD
; - €A]

IMUL souice

. QO0ITSZAPC
Fiags

IMUL Integer myltiphcation X [VIRVEVEVED 4
Oporands Ctochn .| Transters® | Bytos) Coding Example
reg8 " 8098 L= 2 IMUL CL
reg16 129-154 - 2 IMUL BX
memg . 188-104} 1 24 IMUL RATE BYTE
+EA
memig {134-160) 1 2-4 IMUL RATE WORD '8P, DIl
¢ EA : '
IN accumulator port QpiIvs2zarcC
Fi .
IN Input dyte or Wd: a9
| Opoionds : chhu_‘ Tronsters® | Bytos Coding Exomple
sccumulsior, immadd e 1 2| N AL OFFEANM
accumulator. DX 8] 1 IN AX. DX
r INC dastination ODITSZAPC
INC Incrament by t Fal 7w xxx
Qporands Clechio | Yronslers® | Bytes Coding Expmple
regl8 2. - 1 R
reg8 3 - 2 INC BL .
memory iSeEA' 2 2.4 INC ALPHA D1 BX
INT interrupt-typo oODITSZAP c
'NT Interrupt _ Flage 00 - ..
Opareads Ciocho | Vronslers® | Bytos Coting Exompls
immedd (type = 3) 2) 1 INT 3. -)
immeds (lypa ¢ J) 83 S 2 INT 87
4 INTR (external maskable interrupl) ‘ODITSZAPC
INTR : Interrupt if INTR and IFot ’ Flogs 60
| Opstands Clocko | Trenalors® | Bytes Coding Enample
(no oparands) 81 7 NIA | NIA '
INTO (no operandss 0DITSZAPC
INTO intarrupt f overtow . Flags . 09
Operands Cloghs | Tronoters® | Bylos Coding Exomple
(no operands) 33oré] 1 INTO

IRET (no Oparands)

: ODITSZAPC
F
IREY interrupt Return lage RRARRRRRRR

Opersnds Clocks | Transfers® | Byles Coding Ezample

{ho operands) 2 3 1 RET
JA/INBE short-iavel ODITSZAPC
JA/JN BE . Jump if sbove’ Jump it not below nor equal] Flago
Operands Clocks | Tronsfers® | Bytes Coding Exampia
short-izoel Vbord - 2 JA ABOVE
. - A
JAE/JNB JAE/INB short-labet Flags oo0ITS2ZAPC
Jump il above ofr equat! Jump il not below

Operands Clocks | Tronslers® | Bytes Coding Example
short-lsbel 160r 4 - 2 JAE ABOVE EQUAL
JB/JNAE JB/INAE short-label . Flags ODITSZAPC

Jump it betow/ Jump i not above not equal :

Operands - ' Ciochs | Transiors® | Byles Coding Examplo

short-labe! 160r4d - 2] 4B BELOW
JBE/INA short-lebe! ODITSZAPC
JBE/JNA Jump i betow or equet/Jump if not sbove Floge .

Opersnds Clocks | Translore® | Bytes Coding Example
short-igbel 16014 - 2 JNA NOT ABOVE
Je JC ghort-1edbel Flogs ODITSZA P‘ C

. . ‘:l,umng! carry

Operanda Clocks | Vranefers® | Byles Coding Example
short-label /L 6o - 2 JC CARRY SET
JCXZ . JCXZ short-1abel Flags 0O0DiITSZzZAPC

Jump it CXs zeio _

Operands Clocks | Trenolors® | Bytes Coding Example
shori-lzbel t8ord - 2 JCHZ COUNT DONE
JE/JZ JE/JZ short-label Flogs ODITSZAPC

Jump gqual/Jump if 2er0 4

Oporands Clocks | Translors” | Bytes Coding Erample

short-label 18o0r4 _- 2 JZ ZERO

0D31TS2APC

\ 3G/ JHILE short-lebet : Floas
JB/INLE . Jump i reoter 1 Jump if not lass nor qusd o9

Operasnds Ciocks | Tremoters® | Oyles Coding Examplo

phvort-lobet dord - 2 J8 GREATER
JOE7205L short-ladet # opivszarcC
JGE/J NL Jump it groater or equat/Jump i not loas tego

Oporends Ctocks | Tronstors® | Byles Coding Examplo

short-tadal 1808 | ° ~— "2 | JGE GREATER_EQUAL
' IL/SHGE shori-labe! ' ODITSZIAPC
JL/JN GE Jump i lass) Jump it POt groater nor aqual Floge

Oporands Ciochn | Transters® | Bytes Coding Exomple

shortdabat 16014 - 2 JL LESS
JLE/ING short-labe! ODITSZAPC
JLE/ING Jump i 1008 of 0qual/Jump it not greater Flogs

Opsrende Clocks | Trensiors® | Byteo. Codlng Expmpio

short-tabal 160c 4 - 2.] JNG NOT_GREATER
K7 arget ODITSZAPC
JMP Jump . Flogs .

Opavonds Clocko Tvm’slm' Bytos : Coding Examplao
short-latet 15 - I JMP SHORT
near-label 15 - 37 JMP WITHIN_SEGMENT
tertabet 15 - 9 JMP FAR_LABEL
MaMPIrd 13+ EA 1 2.4 | JMP [BX] TARGET
rogpig " - 2| 4P CX
memptr32 244 EA 2 2.4 | JMP OTHER SEG(S!].
JHC JHC short-labet Flogs 0_ Di11szapPcC

Jump ! notcairy) .

Operands Clochs | Transters® | Byles Coding Exompto
shon-obel 16 or 4 - ? INC NOT. CARRY
JNEZINZ JHE/IHZ short-ladei Flags © O TszarcC

Jump i not equal! Jump 1t not zero

Opersnds Clocks | Tronstors® | Bytles Coding Example

ehornt-ladol 160rd — 2 JNE NOY_EQUAL

JNO JKO ghont-label Flogs 00! TSZAPC
Jump i not overfiow .
Oporands Cloctis | Translers® | Bytes Coding Example
shortabel ord ||~ 2 | JNO NO OVERFLOW
JNP/JPO shori-lobel 'e; 0DITSZAPC
JNP/JPO Jump I not parity /Jump i parity odd
Oporondgs . Clocks | Trsralors® | Dyleo Coding Exzmple
shon-lsbet 18ord - 2 JPO O0D PARITY
: JNS shont-labol ODITSZAPC
JNS Jump i rot sign . Floge
Oparands Clocho | Transiers® | Bytes Coding txmeh
| short-labe! 160r4 - 2 JNS POSITIVE
140 short-abe Foas OD1TS2APC
JO Jump i overtiow] i !
Operands Ctocks | Transiers® | Bytes Coding Exomple
short-labe! ore | -~ 2 JO SIGNED OVRFLW
JP/IPE short-labe) ODITSZAPC
JP/JPE Jump il parity/ Jump it parity aven Flago
Opaerands ' Clocn_ Transfere® | Bytes Codiag Example
short-labe! 160r 4 - 2 JPE EVEN PARITY
JS short-label QDITSZAPC
s Jump if sign “.WB
Operonds Clocks | Tronsters® | 8yles Coding Exompie
short-label 16004 - 2 JS NEGATIVE
' LAMF (no operands) 0DITSZAPC
LAHF Uoad AH trom lags) Flogs
Opcrands Clogcks | Translecs® | Bytes Coding Enompie
{no opersnds) 4 - v | LAMF
LDS destination source QODITSZAPC
LDS Load pointer using DS Floge)
Oporonds .| Clocka | Tronsters | Bytes Coding Example
reQ18. mem32 16¢EA_ 2 2-4 LDS SI.DATA SEGIDY

LEA destinoton source

0ODITSZAPC

Flegs
LEA Load effective 0ddross log .
Oporsnds Ctscks | Tronofers® | Byieo Coding Enssaglo
reg1s, mom1e 2o EA - 24 | LEA BX.[BP|{DY)
T52aPC
LES LES destinstion scuice f o)
Load pointer using ES
Operands Clacte | Trensiers® | Bytes Coding Exompte
10916, mem32 16eE& | 2 24 | LES DI, [BX] VEXT BUFF
LOCK LOCK (no operands) Flags ODITSZAPC
R Lock bus .
Oporanda Cissts | Tronsiers® | Bytes Coding Enemple
{no 0patends) 2 - 1 LOCK XCHG FLAG.AL
LODS" LODS sourcs-string Flags ODITSZAPC
.fLoed siring
Opsarande Ctochs | Tronsters® | Byles 'Coang Enample
source-siring 12 1 1 LODS CUSTOMER NAME
(repeat) pourca-sinng - 9+ 13lrep Vitep 1 REP LODS NAME
LOOP LOOP short-labat. Fiags ooiTszarPcC
Loop , . '

i Oporande Cioclis | Tronslora® | Bytes Coding Exampie
short-ladal 1718 - 2 LOOP AGAIM
LOOPE/LOOPZ LOOPE/LOOPZ short-tabel Flags ODITSZAPC

Loop it equatiLoop «t zero 9
Oporands Clocks | Transfers® | Bytes Ceding Exomplo
short-ladet 180r6 - T2 LOOPE AGAIN
LOOPNE/LOOPNZ LOOPNE/LOOPMYT shorl-tabel 1 Fregs ODITSZAPC
Loop sf not aquatiLoop it not 2ero S
Operends Ctotks | Tranclers® | Bytes Coding Enample
short-label Wor § - 2 LOOPNE AGAIN
TNt MM (external nonmaskable interrupt) . 0sivTs$zZAaPC
interryptd Nl o t) lags 090
Cperands Clochs { Tronsters® | Bytes Coding Example
ir.0 operands) 50 5 Nia | Nea

0D1ITS2APC

MOV destination, sourco
MOV Move Flags
Cpereads Clocke | Vronslers® | Bytes Coding Exsmple
memory, accumulater 10 1 3 MOV ARRAY |54}, AL
BCCUMUIBIOY, MOMOTY 10 1 k] MOY AX, TEMP _RESULT
register, registor 2 -— 2 MOY AX,CX
reQiolor, momary 8+EA 1 24 MOV B8P, STACK _TCP
MMory, register 8+ EA 1 24 MOV COUNT (D], CX
repioter, immediate 4 -— 23 MOV CL. 2
momory, immadiate 0+ BA] 34 MOY MASK {81] {32, 2CH
sag-req. reglé F] - 2 MOV ES, CX
88Q-roq, memié B+EA A} 24 MOV DS, SEQKENT _ BASE
16916, 2og-reg 2 - 2 OV B8P, 88. .
memory. 80Q-1oQ 8+ EA 3 24 wovmm.sea&m&.cs
MOVS MOVS dost-ptring, pourte-otring Flogs ODIT8ZAPC
tove string
' - Oporends Clocho | Trorafers® | Bytes Cecing Bremele
G\ou‘wmq, S0UrCO-string 18 ! 2 1 HMOVS LINE EDIT__DATA
{repest) dest-otring, sourco-string $+7Irep| 2lrep 1 REP WOVS SCREEN, DUFFER -
- 7 ODITSZAPC
MOVSB/MMOVSW MOVEE/MOVEY (ro operands) Flage
Move siring (bytolword)
OWBWGQ Ciochka | Tronsiors® | Byles Coging Enampia
(no oporands) 18 2 1 MOVS8 .
{repeal) (no operands) B+ 17tt0p 2/tep R REP MOVSW
MUL source ODITSZAPC
MUL Multiptication, ungignod Flage X [VRVIRVEVRS §
Oporands Clocha | Teoncters® | Bytes Coding Erompie
1698 . T0-17 C— 2 MUL BL
10916 118133 - ? MUL CX
maend {78-83) 1 24 | MUL MONTH |$4}
sEA :
mem1§ {124-139) | 1 24 | MUL BAUD_RATE
+EA
NEG NEG destination Flacs ODITSZAPC
Negate - leg X XXX X1
Operandas Clocks | Transtors® | Bytes Coding Expmple
registar 3 - 2 NEG AL /
memory 16+ EA . 2 2.4 NEG HMULTIPLIER

*0 if dastination = 0

ODITSZAPC

NOP NOP (no oparends) Flage
: NoOperation
Operantis Clocks | Trensters® | Bytos Coding Exomple
{no operands) 3 — 1 NOP
NOT NOT destinstion ' Flags 0DITSZAPC
: Logical not
Operandso Cloctis | Tronsters® | Bytes Cading Exsmple
16Qices 3 - 2 NOT AX
Momory 16+ EA ? 2-4 NOT CHARACTER
OR OR destination, souice - " Fiags 0D1TSZAPC
‘eurcst inclusiva or] 1.»x ux o
Oporands Ciocks | Teonslors® | Bytes Coding Exsmple
rogisler, reginter (3 - 2 OR AL.BL
reQigiar, memory 8+EA 1 24 OR 0OX. PORT 10 |DI}
memory, ragigler 18 EA 2 2-4, | OR FLAG BYTE CL
sccumulator, immediate .4 — 2-3 OR AL, 011011008
register, immadiate 4 — 34 QR CX.0H
memory, Immadiate 17+EA 2 36 OR{BX| CMD WORD.OCFH
OUT port.sccumulator . 0DITSZAPC
OUT Output bylae or worg Fiags
© Operands Clocks | Translers® Bytes ' Coding Example
Immaed8, sccumulator 10) 2 | OUT &4 AX
DX Jaccumulator 8 \ 1 OuUT DX, AL
i
pop POP dastinstion Fleas 0ODITSZAPC
Pop word off stack 9
Oparends Ciochs | Trenstera® | Bytes Coding Example
registes - B 1] POP DX
seq-reg (CS egah) '8 1 1 POP DS
mamory 17+ EA 2 2-4 POP PARAMETER
POPF (no operands) CO0ITSZAPC
POPF .
Pop flags off stack 3 RRARRRAR
Operands _Clochs | Transiers® | Bytes Coding Example
(no uperanda} 8 v 1 POPF

0ODITS2APC

PUSH source Flons
PUSH Pusgh word onto stack Ly
Oporends ° Ciocks | TVronslers® | Bytos Cading Enemple
regisier 11 1 ' PUSH SI
86q-12Q {CS legal) 10 1 1 PUSK ES
memory . 16¢ €A 2 24 PUSH RETURN CODE {81]
PUBHF {nO Oparands) OLITSZAPC
PUSHF Push flage onto steck Floge
Operande Clocke | Tranators® | Bytes Codging Exemple
tnho operands) 10 PR | | PUSKHF
RCL gestination,count ODITSZ2ZAPC
RC%’ Roteto loli through carry) Flage x ‘ X
Oporands Clocks | Translorn® | Dytos’ Coding Erample
rogQistor, 1 2 - 2 ARCL CX, ¢
register, CL IR:EX N - 2 RCL AL, CL
memory, 15+ EA 2 2-4 RCL ALPHA. 1
momory, CL 20¢EA 2 24 RCL [BP}.PARM. CL
4/bet) :
RCR dasignsation, count] f ODtTSZAPC
RC R Rotate right through carry . X X
Oparands Clocks | Tronaters® | Bytes Coding Expmpto
rogister, \ 2 - 2 RCA BX. 1
rogister, CL 8s4idh - .2} RCR 8L, CL
memory. 1 15+ EA 2 24’ | RCA {BX|.STATUS, 1
memory, CL 0+EA<| 2 24 RCR ARRAY |Di].CL
‘ 41bit
. <.
R AEP {no oporands) ' &1 obiIvYSzAaPC
EP Repeat string operation
Operands ' Clocks | Yrensfers® | Bytce Coding Exasple
(no operands) ’ 2 - - 1 AEP MOVS DEST. SRCE
REPE/REPZ REPE/REPZ ino operanas) Flags O011S2APC
€peat LN operaliun while equal whie 1810 .
Operonds Clochs | Transtere® | Bytes Coding Exsmpie
L nnerandss ? - 1 REPE CMPSDATA KEY

mamory, CL

41 -

{REPNE/REPNZ REPNE/REPNZ (no operands) Fags CO'TSZAPC
) Repost Mvmg;ommmmmw'w’m
Oporends Clochs | Trangiers® | Bytee Coding Exomplo
{nO Operands)) - 1 REPNE SCASINPUT LINE
REY RET oplonal-pop-votue Fiags opriszarc
Raturn from procodure
Opereado Crocks | Tronsters® | Byles Coding Example
tintra-segment. no pop) 8 1 1 RET
lintra-sagmont. pop) 12 ' 3 RET 4
{inter-segment, Ao pop) 18 2 ' RET
(inter-segmant. pap) 7 2 3 RET 2
T1ROL ROL destination.count Flags 0Dt1VSZAPC
Rotate teh X X
Operands Clochs | TVronsters | Byled Coding Enomplee .
register. 1 2 - 2 ROL B8X.1
register. CL , 8o aibnt - 2 ROL Di.CL :
memory. 1 150 A 2 2-4 ROL FLAG BYTE [Di}.9
maemory. CL 0sEAe 2 2-4 AOL ALPHA .CL
arpit - ¢ -
ROR ROR déstination.count Floge O0'TSZAPC
Rotate nght . 1 X
Operond Clechs | Tronsfore® | Dyies Coding Example
registar, 1 2 . — 2 ROR AL_.!
register, Ct 8+ 4/bik - 2 A0R BX.CL
memory. 1 134EA | 2 24 ROR PORT STATUS. 1
maemory. CL 20e¢EAs | 2 2-4 ROR CMD WORD.CL
. 4/bat
SAHF SAHF (no operands) Fiags 00'TSZAPC
Slore AH into fizgs’ ' ARAA AR
Oparonds Clocko | Tronsiars® | Bytee Coding Examplo
{nc operends)] - ! SAMF
SAL/SHKL SAL/SHL des,h'n.'uho_n.c‘o\:m -Flagn 001 TISZAPC
Shift anthmetic feft/Shilt logics! ! SR X
- Opsrends Clocks | Trensters™ | Byted Coding Examples
ragister, 2 — 1T SAL AL
register, CL 8+ 4/ - ? SHL DI.CL .
memory,) 154 EA 2 74 SHL 1BX| OVERDRAW 1
20+EA - 2 24 SAL STORE COUNT. CL

£
APC
U XX

SAR 8AR destinstion source Flago 00I1TS2
Shift arsthmetic right X X X
~ Operands Clocks | Tronsters® Bytes Ceding Example
register, § b] - 2 SAR DX
tegister, CL 8¢ 4100t - 2 SAR Dt CL
mamaory, 1 i85+ EA 2 24 SAR N BLOCKS. !
marmory, CL 0+EA 2 24 SAR N . BLOCHS.CL
‘ 4/bit x :
$B0 003tNaNON. $0UTCO ODITSZAPC
SBB Subtract with borrow Flogs X XX XXX
Oporonds Clocke | Tramsters®™ | Bytes Coding Enample
"~ [registor, register 3 - L2 SB8 8X. Cx
regioier, memory * 9+ EA] 2-4 588 Di. |BX] PAYMENT
memory, feQister 18+ EA | 2 C 24 SBO BALANCE. AX
sccumulator, immaediate 4 - 23 SB8 AX.2
registor, immediate 4 - 3-4 SBB CL. 1
mamory, immediate 17+ EA 2 36 | SB8B COUNTISI|10
SCAS dgest-sinng 0ODITSZAPC
SCAS Scan stnng | Flees XX X XX
Oporands Clocks | Translers® | Bytés . Coding Example
dest-slnng ST 1 1 SCAS INPUT LUINE
(repeat) dast-siring 9s15/rep tirep 1 | REPNE SCAS BUFFER
SEGMENT? SEGMENT overnde protm Floas ODITSZAPC
Overnde 1o specilied segment 2
Operands Clocke | Tronslors® | Byles Coding Exampie
{(no operands) 2 - 1 A0V SS PARAMETER. AX
SHR SHR destination count ODITSZAPC
Shetttogical nignt Flogs X X
Operands Clocks | Transtors® | Bytes Coding Exampic
register 1 .2 - 2 SHR S11
register CL B+ arbnt — 2. SHR'St CL
memary. 1 154 EA 2 24 | SHR D BYTE|SH(BX| 1
memory CL m IR ? 2-4 SHR INPUT WORD. CL
. Todonn :
YEP (Trap -
SINGLESTEPT | BHOLESIER untaammnon | goqy 0D 1TSZAPC
Operands ~ Clochs | Tisnsfers® | Bytes Coding Ezample
(no operands) “0 3 Nia | 'NsA '

———— A

* For the B086, 3dd four clocks for each I:6~bn word transfler with an odd address. For tha 8088, add

four clocks for each 16-bit word transfer.

OD!TSZAPC

STC (no Operangs)
Fi
STC Setcarry liag bor 1
Opsronds Clocks | Tronsiers® | Bytes | Coding Exomple
{no operands) 2 - § S1C
STD S$TD (no operends) Floas 0DITSZAPC
Set direction flag 9 1
Oparands Ciocke | Transters® | Bytes Coding Erampte
(no operands} ? - ' s10
STi(no operands) ODI1TSZAPC
ST' Setinterrupt enadle Hlag n:ag‘ 1
Opeoronds Clocks | Trenslers® | Byles Coding Example
{no operandsi 2 - i STl
7
STOS dest-sting O0DITSZAPC
STOS Store byle Or word stning Fiags .
Operends Ciocks | Trensters® | Bytes Coding Example
gasl-strng 1" 1 1 STOS PRINT LINE
(repeatl) dest-string 9+ 10/rep 1rep 1 REP STOS DISPLAY
SUB 8UB dastination.cource 0DITSZAPC
_ Subtraction Flege XX XXX
Oporonds Ciochn | Tronglers® | Byles Coding Exomple
raQistor, register 3 - 2 suB CX, 8Xx
reQister, momory $+EA 1 2-4 SUB DX.MATH__ TOTAL [Si]
mamory, register W+EA 2 2-4 SUB |BP+2]. CL
accumutator, immediate 4 - 233 SUB AL, 10
register, immediste & — 3-4 SUB S1.5280
memory, imediate 17+EA 2 3-8 SUB [BP) BALANCE, 1000
TEST TEST destination, source Fi 0D1I7TsSZAPC
Test or non-destructivg logical and 59 4 Xuxo
Oporonde Clocho | Tronslorg® | Bytes Coding Exompie
roQister, register Y - 2 TEST St. Ot
registar, mamory 9+EA 1 2-4 TEST St END _COUNT
accumulator, immadiste 4 - 23 TEST AL, 001600008
tegistar, immedisie L] - 3.4 TEST BX,0CCeH
memory, immediate M+EA - 38 TEST RETURN CODE, 01H

WAIT (no operands) \

WAIT . 0DITSZAPC
| - Wait white TEST pin not asserted Floge .
‘Oporands Clschis | Yeanstors® | Dytes Cedtag Exomple
tno operands) 14'5n - 1 WAl
XCHGC XCHQ dostination source Flage oDi1TsZarcC
Exchange]
Oporsnds Clocks | Transtors® | Byles Cosing Enomplo
accumuletor, rog1é 3 - 1 XCHG AX, BX
memory, registar 174 EA 2 2-4 XCHG SEMAPHORE, AX
raQister, regQister 4 - 2 XCHG AL, BL
XLAT source-table "ODITSZAPC
XLAT Transiste Floge :
Cperands Clecks | Teonslors® | Byles Ceding Exemple
source-tabie " 1 1 XLAT ASClHt TaB
X | XOR dosunation source - ODITSZAPC
ORP Logical exclysive or Floge 0 ., XRUXO
Gperands Cloeks | Tronsters® | Bylos ' Ceding Exasmple
register. register 3 - 2 xOR Cx, 8x
register, memory 8o EA ' 24 | XOR CL MASK_BYTE
memory_ register 18+.EA 2 -4) XOR ALPHA |5}, DX
acCumulator immediate 4 - 23 XOR AL, 010000108
register immediate 4 - 3-4 XOR St GOC2H)
memory. immegdiste 17+ EA i 38 XOR RETURN _ CODE, 002H

lﬂﬁil!i ;B

]

E"Bnﬂ L

% g

“
[})

&

EPGDFEE

T

Y

@.ﬁ

o

IBM Asynchronous ‘
Communications Adapter

The asynchronous communications adapter system control
signals and voltage requirements are provided through a 2 by 31
position card edge tab. Two jumper modules are provided on the
adapter.One jumper moduie sclects cither RS-232C or
current-loop operation. The other jumper module selects one of
two addresses for the adapter, so two adapters may,be used in
one system.

The adapter is fully programmable and supports asynchronous
communciations only. It will add and remove start bits, stop bits,
and parity bits. A programmable baud rate generator allows
operation from 50 baud to 9600 baud. Five, six, seven or cight bit
characters with 1. 1-1/2, or 2 stop bits are supported. A fully
prioritized interrupt system controls transmit, receive, error, line
status, and data sct interrupts. Diagnostic capabilities provide
loopback functions of transmit/receive and input/output signals ,

The heart of the adapter is a INS8250 LSI chip or funcuonal
equivalent. Features in addition to those hstcd above are:,

* Full double buffering clxmmaxcs nced for prcasc
synchronization.

° [ndependent receiver clock input.. :

¢ Modem control functions: clear to. $cnd (CTS) request to
send (RTS), data set ready (DSR), data. tcrmmnl rcady (DTR),
ring indicator (R1), and carrier dct§ct e

* False-start bit detecnon
° Line-break generation and:dctectiorp

All communications protocol is a function of the system
‘microcode and must be loaded before the adapter is operational. -
‘All pacing of the interface and control signal status must be
handled by the system software. The figure below is a block
diagram of the asynchronous communications adapter.

Asynchronous Adapter 1-185

Chip

Address Bus Address Select
? Decode
Deata Bus
. interrupt o 8250
- Asynchronous
Osciliator Communications
1.8432 MHK: Element
€A ' ' EIA
" Receivers Orivers
Current Loop
A A
L
25-Pin D-Shell

Connector

Asynchronous Communications Adapter Block Diagram

¥

Modes of Operation

The different modes of operation are selected by programming
the 8250 asvnchronous communications ¢lement. This is done by
selecting the 170 address (hex 3F8 to 3FF primary, and hex 2F8
to 2FF sccondary) and writing data out to the card. Address bits
A0, Al, and A2 sclect the different registers that define the modes
of operation. Also, the divisor latch access bit (bit 7) of the line
control register is used to-select certain registers.

1-186 Asynchronous Adapter

1/ 0 Decode {in Hex) - R o j

Primary Alternate) ' .

Adapter Adapter Register Saleé}ied DILAB State
3F8 2F8 TX Bufler b DLAB=0 (Write}
3f8 2F8 RX Buffer o DLAB=0 (Read)
3F8 2F8 DivisorvlatchtSB § - - .. | OLAB=1
3F8 2F9 ‘Divisor Latch MS8 -+ © ¢ | DLAB=1
3F9 2F9 Interrupt Enable Register L. .
3FA 3FA Interrupt Idenuhcauon Regtslers
3r8 2FB Line Control Register
3FC CO2FCT Modem Controt Register
3FD 2FD Line Status Register

3FE 2FE Modem Status Register

170 Decodes

Hex Address 3F8 1o 3FF and 2F8 to 2FF
A9 | AB| AT] AG)AS| A4 A3|AZ]A1{A0| DLAB | = Register
IR P2 R T R T R T R T R O x| x '
AN
0jO0} 0 [¢] Receive Buffer {rearl) -
Transmit o
Holding Reg. (write) -
6] o 0 ‘| interrupt Enable
olilo x Interrupt Identification
(VI 1 x Line Control -
.10} 0 X Modem Control
1§10} 11 "x. | LineStatus
1 110 x Modem Status ‘

O A T None
ofoloj i Divisor Latch (LSB)
cjoi 1 Divisor Latch (MS8)

Note: Bit B will be logical 1 for the adapter designated as primary or 2 logicat O Gor
the adapter designated as alternate (2s defined by the address jumper
module on the adapter).)

A2, Al and AO bits gre “'don’t cares” and are used to selecx the dlﬂerem
register of the communicattons chip.

.

Address Bits

Asynchronous Adapter 1-187

Interrupts

Onc interrupt line is provided to the systeni. This interrupt is
IRQ+ for a primary adapter or IRQ3 for an alternate adapter, and
is positive active. To allow the communications card to send

. interrupts to the system, bit 3 of the modem control register
must be set to 1 (high). At this point, any interrupts allowed by
the interrupt enable register will causean interrupt.

The data format will be as follows:

0o .Dl 02 03 D4 05 06 O7

A L I N N N

Transmit Start | . : Parity | Step
Datz Marking | Bit : Bit Bit

Dara bit 0 is thefirst bit to be transmitted or received. « he
adapter automatically inserts the start bit, the correct parity bit if
- programmed to do so, and the stop bit (1, 1-1/2, or 2 dcpcndmg,
on the command in the line-control'register).

Interface Description

The communications adapter provides an ELA RS-232C-like
interface. One 25-pin D-shell, male type connector is provided to
attach various peripheral devices. In addition, a current loop
interface is also located in this same connector. A jumper block is
- provided to manually sclect either the voliage interface, or the
current loop interface. :

The current loop interface is provided to attach certain printers
provided by IBM that use this particular rype of interface.

Pin 18 + receive current loop data -
Pin 25 - receive current loop return .
Pin 9 + transmit current loop return
Pin 11 - transmit current loop data

1-188 Asynchronous Adapter

*5 Vdc

Transmit Circuit : 49.3 ohm

e iod
100 ochm
Tx Data —gp

+5 Vde |

Receive Circuit . $ 5.6 k-ohm

OPTO isolator

Pin 18 Q‘—-*} Dc . Rz Data
Pin 25 Gremm—ord ‘g

Current Loop Interface

'SVdc

Th(. voltage interface is 2 scnal interface. It supporxs certain data
and control signals, as listed below.

Pin
Pin
Pin
Pin
Pin
P2in
2in
2in 20

hn 22

Db N

Transmitted Data
Received Data
Request to Send
Clear to Send

Data Set Ready
Signal Ground
Carricr Detect

Data Terminal Ready
Ring Indicator

“he adapter converts these signals to/from TTL levels to EIA

- oltage levels. These signals are.sampled or generated by the
ommunications LOﬂU’Ol chip. These signals can then be sensed
v the system software to determine the state of the interface or
cripheral device.

Asynchronous Adapter 1-189

Voltage Interchange Information

interface
Interchange Voltage | Binary State | Signal Condition Control Function
Positive Vouage\ = Binary (0} = Spacing ‘ =0n
Negauive Voltage = Binary (1) | . =Marking -of

invalid Levels

A VAC o e e e e e e e —— . —— .
On Function] 4
~3IVAC o o o o e e e e e e e
0 vde invalid Levels
“3VEC e e e e e e e ——
Off Function
~15 VOC e et e e e e e e e e ——

Invalid Levels

The signal will be considered in.the "marking” condition when
the voltage on the interchange circuit t, measured at the interface
poini, is' more negative than -3 Vde with respect IOW
ground. The signal will be considered in the ™ spacmg “condition
when the voltage is more positive than +3 Vdc with respect to
signal ground. The region between +3'Vde and -3 Vdc is defined
as the transition region, and considered an invalid level. The
voltage that is more negative than -15 Vdc or more positive than
+15 Vdc will also be considered an invalid level.

During the transmission of data, the "marking” condition will be
used to denote the binary state "1 and “spacing™ condition will
be usedito denote the binary state 0.

For interface control circuits, the function is “on” when the
voltage is more positive than +3 Vde with respect to signal

ground and is “off” when the voltage is more negative than
- 5 Vde with respect (o signal ground.

1-190 Asyanchronous Adapter |

INS8250 Functional Pin DescriptiOQ

i
|

The following describes the function of all INS8250 input/output
- pins. Some of these descriptions reference internal circuits.

Note: In the following descriptions, a low represents a idgical 0
(0 Vdc nominal) and a high represents a logical 1 (+2.4 Vdc
nommal)

Input Signals

Chip Select (CS0, CS1, CS2), Pins 12-14: When €S0 and CS1
arce high and €S2 is low, the chip is selected. Chip selection is
complete when the decoded chip select signal is latched with an
active (low) address strobe (ADS) input. This enables

co’mmunications between the INS8250 and the processor.

Data Input Strobe (DISTR, DISTR) Pins 22 and 21: When 3
DISTR is high or DISTR is low while the chip is selected, allows |
the processor to read status infornmation or data, from a selected
register of the INS8250.

Note: Only an active DISTR or DISTR input is required to
transfer data from the INS8250 during a read operation.
Therefore, tie either the DISTR input permanently. low or the
DISTR input permancently high, if not used.

Data Cutput Strobe (DOSTR, DOSTRD, Pins 19 and 18: When
DOSTR is high or DOSTR is low while the chip is selected, allows
the procéssor to write data or control words into a selected
register of the INS8250 ‘

Note: Only an active DOSTR or DOSTR input is required to
transfer data to the INS8250-during a write operation. Therefore,
tie cither the DOSTR input. pcrmancmly low or the DOSTR input
permanently high, if not used.

Address Strobe (ADS), Pin 25 When low, provides latching for

the register select (AO. A1, A2) and chip select (CSO, €SI, C52)
signals.

Asynchronous Adapter 1-191

Note: An active ADS input is required when the register select
(A0, A, A2) signals are not stable for the duration of a read or

- write operation. If not rtquxrcd tie the ADS mpux permanently
low.

Register Select (A0, A1, A2), Pins 26-28: These three inputs

* are used during a read or write operation to select an INS8250
register'to read or write to as indicated in the table below. Note
that the state of the divisor latch access bit (DLAB), which is the
most significant bit of the'line control register. effects the
selection of certain INS8250 registers. The DLAB must be set
high by the svstem software to access the baud generator divisor
latches

DLAB A2 | A1 AO Register
o] 0 0 o] Receiver Bulfer {(Read), Transmitter
) Holding Register {Write} '
(o] 0 0 i interrupt Enable \
X 0 1 o] Interrupt ldentification (Read Only)
. X 0 i 1 . Line Control
l X 1 0 0 Modem Control
X 1 0 1 Ling Status
X 1 1 o] Modem Status
X (R R None
1 0 DiQisor tatch (Least Significant Bit):
1 0 1 Divisor Latch (Most Significant Bit)

Master Reset (MR), Pin 35: When high, cléars all the registers
(except the receiver buffer, transmitter holding, and divisor
latches), and the control logic of the INS8250. Also, the state of
various output signals (SOUT, INTRPT, OUT 1, OUT 2, RTS, DTR)
_are affected by an active MR input. Refer to the "Asynchronous
Communica(ions Reset Functions™ table. :

.

Rccetvcr Clock (RCLK), Pifni 9: This input is the 16 x baud rate

|
| clock for the receiver section of the chip. N

Serial Input (SIN), Pin 10: Serial data input from the
communications link { peripheral device, modem, or data set).

1-192 Asvachronous Adapter

Clear to Send (CTS), Pin 36: The CFS signal is a modem
control function input whose condition can be tested by the
processor by reading bit 4 (CTS) of the!modem statys register.
Bit 0 (DCTS) of the modem status register indicates whether the.
CTS input has changed state since the’ prcwous reading of the
modem status register.

i : -
Note. Whenever the CTS bit of the modcm Status rcglster

changes state, an interrupt is gencratcd xf thc modcm status
mtcrmpt is cnablcd S :

Data Set Ready (D3SR), Pin 37: When low, indicates that the
modem or data set is ready to establish the communications link
and transfer data with the INS8250. The DSR signal is a
modem-control function input whose condition can be tested by
the processor by reading bit 5 (DSR) of the modem status

" register. Bit 1 (DDSR) of the modem status register indicates
whether the DSR input has changed since (hc previous reading of
the modem status rcg'stcr

Note: Whenever the DSR bit of the modem status rcg;stcr
changes state, an interrupt is generated if thc modcm status
interrupt is enabled. - :

Recelved Line Signal Detect (RLSD), Pin 38:.When low, i
indicates that the data carrier had been detected by the modem .-
or data set. The RLSD signal is a modem-control function iput

- whose condition can be tested by the processor by reading bit 7.~
(RLSD) of the modem status rchstcr Bit 3 (DRLSD) of the
moden status register indicates whethet the RISD input has
changed state since the previous reading of the modermn status
register. :

Al

Note: Whenever the RLSD bit of the modem status rchstcr
changes state, an interrupt is generated if the modem status
mzerrupt is cnablcd :

Asynchronous Adap,ter 1-193

Ring Indicator (RT), Pin 39: When low, indicates that a

' telephone ringing signal has been received by the modem or data
i set. The Rl signal is a modem-control function input whose

.. condition can be tested by the processor by reading bit 6 (R1) of
| the modem status register: Bit 2 (TERI) of the modem status

© register indicates whether the RI input has changed from a low to
+ high state since the previous reading of the modem status

| register,

| Note: Whenever the Rl bit of the modem status register changes
' from a high to a low state, an interrupt is generated if the modem
| status interrupt is enabled. 1 :

‘ VCC, Pin 40: +5 Vdc supply.

VSS, Pin 20: Ground (0 Vdc) reference.

Output Signals

Data Terminal Ready (DTR ; . Pin 33: thn low, informs the
modem or data set that the INS8250 is ready to communicate.
The DTR output signal can be set to an active low by
programming bit 0 (DTR) of the modem contro! register to a .
high level. The DTR signal is set hxgh upon a master reset
opcrauon

Request to Send (RTS), Pin 32: When low, informs the modem
or data set that the INS8250 is ready to transmit data. The RTS
output signal can be set to an active low by programming bit 1
(RTS) of the modem control register. The RTS signal is set high
upon a master reset operation.

Output 1 (OUT 1), Pin 34: User-designated output that can be
set to an active low by programming bit 2 (OUT 1) of the
modem control register to a high level. The OUT 1 signal is st
high upon a master reset operation.

Qutput 2 (OUT 2), Pin 31: User-designated output that can be -
set to an active low by programming bit 3 (OUT 2) of the

modem control register to a high level. The OUT 2 signal is’set
high upon a master reset operation.

1-194 ‘Asynchronous Adapter

] _
Chip Select Out (CSOUT), Pin 24: When high, indicates that /' *
the chip has been selected by active €S0, CS1, and €S2 inputs. No

data transfer can be initiated until the CSOUT signal is a logical 1.

Driver Disable (DDIS), Pin 23: Goes low whenever the
processor is reading data from the INS8250. A high-level DDIS
output can be used to disable an external transceiver (if used
bctwecn the processor and INS8250 on the D7-D0 data bus) at
all times, except when the processor is reading data. "

Baud Out (BAUDOUT), Pin 15: 16 x clock signal for the
transmiteer section of the NSSZSO The clock rate is equal to the
main reference oscillator frequency divided by the specified
dlzvx:,or in the baud generator divisor latches. The BAUDOUT may
also be used for the rcccxvcr section by t}pmg this output to the

Interrupt (INTRP’I‘) Pin 30: Goes high whenever any one of the
following interrupt types has an active high condition and is
enabled through the 1ER: reCeiver error flag, received data
available, transmitter holding register empty, or modem status.
The INTRPT signal is reset low upon the appropriate interrupt
service or a master reset operation.

Serial OQutput (SOUT), Pin 11: Composite serial data output to
the communications link (peripheral, modem or data set). The
SOUT signal is set to the marking (!ogxcal 1) state upon a master
reset opcmuon :

Input/Output ngnals

Data (D7-D0) Bus, Pins l 8: This bus comprises eight tri-state
input/output lines. The bus provides bidirectional
communications between the INS8250 and the processor. Data,
control words, and status information are transferred through the
D7-D0 Data bus. o

Exiernal Clock Input/Output (XTAL1, XTAL2), Pins 16 and

17: These two pins connect the main timing reference (crystal or
signal clock) to the INS8250.

Asyn'c'hronous Adapter 1-195

Programming Considerations

|
The INS8250 has a number of accessible registers. The system
programmer may access or control any of the INSB250 registers
through the processor. These registers are used to control
INS8250 operations and to transmit and receive data. A table
listing and description of the accessible registers follows.

.

Register/ Signal

Reset Control

Resat State

interrupt Enable Register

Interrupi identification -
Regisizr

Line Contron Register
Moderm Contioi Reg:ster
Line Stztus Register

Modem™ Siatus Regrster

SOUT .

INTRPT (RCVR Errors)
INTRPT (RCVR Data Ready)
INTRPT {RCVR Data Ready)

INTRPT {(Modem Status
Changes)

OuT 2
RTS
DTR
ouT 1

Master Reset
Naster Reset

NMasier Reset
Master Reset
Masier Reset

Master Reset

Master Reset
Read LSR/MR
Read RBR/MR

Read IR/ Write
THR/MR

Read MSR/MR

Master Regsst
Master Reset
Master Reset

Master Reset

All Bits Low (0-3 Forced and
4.7 Permanent)

Bit O rs High. Bits Vand 2 Low
Bis 3-7 are Permar\emly Low

All Bits Low
All Bits Low
Except Bits 5 and 6 are High

Bits 0-3 Low
Bits 4-7 - Input Signal,

High
Low
Low

Low
Low

High
High
High .
Hngh.

Asychronous Communications Reset Functions

1-196 Asynchronous Adapter

Line-Control Register

The system programmu spccxﬁcs the format of fffé asyachronous
data communications exchange through the line-control register.
In addition to controlling the format, the programmer may _
retrieve the contents of the line-control register for inspection.
This feature simplifies system programming and eliminates the
need for separate storage in system memory of the line
characteristics. The contents of the line-control register are
indicated and described below.

ADDRESS= OJFH
Bn 7 6 5 4 3 2

0

-

L.— ‘Word Length Select Bit O (WLSO}
" Word Length Select Bit 1 (WLSY)

Number of Stop Bits (STB)
—+= Parity Enable (PEN)
+ Even Parity Se!ect_(EPS)
+— Stick Parity B
-+~ Set éreak)
- Divsior Latch Access Bit [DLAB)

Line-Control Register (LCR)

Bits 0 and 1: These two bits specify the number of bits in each
transmmcd or received serial character. Thc encoding of bxts 0
and 1 is as follows: '

Bit1 | BitO Word Length

0 0 5 Bits
0 i 6 Bits
v 0] 7 Bits
1 1 8 Bits

Asynch}onous Adapter 1-197

Bit Z: This bit specifies the number of stop bits in cach
(ranammcd or received seriad character, IWbit 2 is alogic, o one
stop bit is generated or checked in the transmit or receive data,
respectively. I bit 2 is logical 1 when a 5-bit word length is
selected through bits 0 and 1, 1-1/2 stop bits are generated or
checked. If bit 2 is logical 1 when either a 6-, 7-. or 8-bit word
length is selected, two stop bits are generated or checked.

" Bit 3: This bit is the parity enable bit. When bit 3 s a logical 1. a
parity bit is generated (transmit data) or checked (receive data)
between the last data word bit and stop bit of the serial data,
(The parity bit is used to produce an even or odd number of 1's
when the data word bits and the parity bit are summeced.)

th 4: This bit is the even parity select bit. When bit 3 is a logical
li:md bit 4 is a logical 0. an odd number of logical s s
transmitied or checked in the data word bits and parity bit. When
blit 3 is a logical 1 and bit 4 is a logical 1, an even number of bits
is transmitted or checked.

Bit 5: This bit is the stick parity bit. When bit 3 is a logical 1 and
bit 5 is a logical 1, the parity bit is transmitted and then detected

by the receiver as a logical 0 if bit 4 is a logical 1, or as a logical 1

if bit 4 is a logical 0.

Bit 6: This bit is the set break control bit. When bit 6 is a logical
1. the serial output (SOUT) is forced to the spacing (logical 0)
state and remains there regardless of other transmitter activity.
The set break is disabled by setting bit 6 to a logical 0. This -
feature enables the processor to alert a terminal in 2 computer
communications system. '

Bit 7: This bit is the divisor latch access bit (DLAB). It must be
-set high (logical 1) to access the divisor latches of the baud rate
generator during a read or write operation. It must be set low
(logical 0) to access the receiver buffer, the transmitter holding
register, or the interrupt enable register.

1-198 Asynchronous Adapter

Programmable Baud Rate Generator

The INS8250 contains a programmable baud rate generator that
is capable of taking the clock input (1.8432 MHz) and dividing it
by any divisor from 1 to (2'¢-1). The output frequency of the
baud generator is 16 x the baud ratei[divisor # = (frequency
input)/(baud rate x 16)]. Two 8-bit latches store the divisor in a
16-bit binary format. These divisor latches must be loaded during
Jinitialization in order to ensure desired operation of the baud
rate generator. Upon loading either of the divisor latches, a 16-bit
baud counter is immediately loaded. This prevents long counts
“on initial load.

4

T
Hex Address 3F8 DLAB =1 -
81 7 6 5 4 3 2 1 o]

L———» Bit O
\ . Bt)

+— Biy 2
- Bit 3
‘ : > Bit 4
—=Bit §
> Bit 8
=~ Bit 7

Divisor Latch Least Significant Bit (DLL) ~

~ Asynchronous Adapter 1-199

8a

7

6

Hex Aadress 373 DLAB =

5

I S

' | [———t—- 8t 8
‘ 8119

+ B8:11 10
o~ Bit 11

+ Big 12

+— Bi113

- Bit 14

> Bit 15

Divisor Latch Most Significant Bit/(DLM)

The following figure itlustrates the use of the baud rate generator
‘with a frequency of 1.8432 MHz. For baud rates of 9600 and
below, the error obtained is minimal.

"Note: The maximum operating frequency of the biud generator
is 3.1 MHz. In no case should the data rate be greater than 9600

baud. -
Desirad Divisor Used Percent Error
Baud to Generato Ditference Betwsen
Rate 16x Clock Desired and Actual
{Decimal) {Hex)
50 2304 900 —
75 1536 600 -
110 1047 417 0.026
1385 857 359 0.058
150 768 - 300 -
300 384 ! “180 - -
600 192 g oco -
1200 96 060 -
1800 64 040 —
2000 58 03A 0.69
2400 48 030 -
3600 32 020 —
4800 24 018 -
7200 16 010 -
9600 12 00C —

Baud Rate at 1.843 MHz
e £

|

| 1-200 Asynchr/onous Adapter

Line Status Register |

This 8:-bit register provides status information on the processor
concerning the data transfer, The contents of the line status
register are indicated and described below:

! Hex Address 3FD

‘ Bt 7 & s 4 3 2 1 0
' .

i

L—" Data Ready (DR)

QOverrun Error {OR)
Panty Error (PE)
) + Framing Ercor (FE)
! Break Interrupt (Bl)

o~ Transoutier Holding
Register Emply
{THRE}

—= Tx Shift Register

Emply {TSRE)

i

i

i i 2 — =
| .

Line Status Register (LSR)

Bit 0: This bit is the receiver data ready (DR) indicator. Bit O is .
©sct to 2 logical 1 whenever a complete incoming character has
been received and transferred into the receiver buffer.cegister.
Bit 0 may be reset to a logical O cither by the processor reading
the data in the receiver buffer register or by writing a logical 0
into it from the processor.

Bit 1: This bit is the overrun error (OE) indicator. Bit 1 indicates
that datw in the receiver buffer register was not read by the
processor before the next character was transferred into the
receiver-butfer register, thereby destroying the previous
character. The OE indicator is reset whenever the processor
reads the contents of the line status register.

Bit 2: This bit is the parity error (PE) indicator. Bit 2 indjcates
that the received dawr character does not have the correct even
or odd parity, as selected by the even parity-select bit. The PE bit
Is set to a logical 1 upon detection of a parity error and is reset to
4 logical 0 whenever the processor reads the contents of the line
status register. ‘ ’

Asynchronous Adapter 1-201 |

Bit 3: This bit is the traming crror (FE) indicator, Bit 3 indicates
that the reccived character did not have avalid stop bit Bit 3 is
set toa ogical 1T whenever the stop bit following the st data bit
or parity is detected as a zero bit (spacing level). :

Bit -: This bit is the break interrupt (Bl indicator. Bit 4 is set to
alogical 1 whenever the received datainput is held in the
spacing (logical) state tor longer than a full word transmission
tme (that s, the total dme of start bit + data bits + parity + stop
bits).

Note: Bis 1through 4 are the error conditions that produce 2
recener line sttus interrupt w huuur any of the corresponding
condittons are detected.

Bit 5: This it is the transmitter holding register empty (THRE)
indicator B Shindicates that the INS8250 is ready to aceept 2
new character for transmission. In addition, this bit causes the
INSE250 to issue aninterrupt to the processor when the transmit
holding register empty intecrupt enable is set high. The THRE bit
is set to 4 dogical 1 when a character is transferred from the
transmticr holdmg, register into the transmitter shift register.
-The bit is reset 1o logical 0 concurrently with the loading of the
transmitter holding register by the proccssor.

Bit G: This bit is the transmitter shift-register empty (TSRE) ,
indicator. Bit 6 is set to a logical 1 whenever the transmitter shift
register is idle. It is reset to logical 0 upon a data transfer from
the transmitter holding register to the transmitter shift register. .
Bit 6 is a read-only bit.

Bit 7: This bit is pcrmanchtly set to logical O.
Interrupt Identification Register-

The INS8250 has an on-chip interrupt capabiliny-that allows for
complete flexibility in interfacing to all the popular
microprocessors presently available. In order to provide
minimum sofiware overhead during data character transfers, the
INS8250 prioritizes interrupts into four levels: receiver line status
(priority 1), reccived data ready (priority 2), transmitter holding
register empuy (priority 3), and modem status (priority 4).

.1-202 Asynchronous Adapter

lnfnrm.m()n mdm.mn;, that a pru)rm/Ld lmurupl is pending and
the npe nf prioritized xmumpt iy stored in the interrupt
identification register. Refer) the “Interrupt Control Functions™
- table. The interrupt identification register (1IR), when addressed
during chip-sclect time, freezes the highest priority interrupt
pending, and no other interrupts arc'ncknowlcd;,cd until that
particular interrupt is serviced by the processor. The contents of
the HR are indicated and described below.

Hex Address 3FA
Bt 7 6 5 4

O I interrups Pending
Interrupt 10 Bit {0)
Interrupt 1D Bit (1)
=0

~ =0
—— =0

— =

3 = O .

interrupt Identification Register (IR}

Bit 0: This bit can be used in either a hard-wired prioritized or
polied ¢nvironment to indicate whether an mtcrrupt is pending
and the IR contents may be used as a- pointer to the appropriate
interrupt service routine. When bit 0 is a logical 1, no interrupt is
pending and polling (if used) is continued.

Bits 1 and 2: These two bits of the IR are used to idcntify the
highest priority interrupt pendmg as indicated in the “Interrupt
Control Functions” table.

Bits 3 through 7: These five bits of the HIR are always logical 0.

Asynchronous Adapter 1-203

Interrupt ID
Register Interrupt Set and Reset Functions
Priority Interrupt interrupt Interrupt
Bit2 {Bit1{Bit0O] Level Type Source Reset Control
0 (¢} R None None
1 1 O | Highest {Receiver Overrun Error Reading the
Line Status or Line Status
Parity Error Register
or
Framing Error
or
Break Interrupt
1 o] o] Second | Recesived Receiver Reading the
Data Available | Data Available | Receiver Buifer
Reg:ster
0- 1 0 Third Transmitter Transmitier Realding the 1IR
Holding Holding Register {if
Register Register source of
Empty Empty intercupt)
or
VWrnuns - =t the
Trans-
Holding Register
0 0 0 Fourth | Modem Ctear to Send Reading the
Status of Y Modem Status
Data Set Ready | Register
Tor .
Ring Indicator
- or
Received Line
Signa! Direct

Interrupt Control Functions .

1-204 Asynchronous Adapter

Interrupt Enable chistef‘

This cight- bit register enables the four types of i mlcrrup(of the
INS8B250 to separatcely activate the chip interrupt (INTRPT)
output signal. It is possible to mau*_gsaw system
by_resetting bits O through.3 of the intexrupt enable register.
Similarly, by setting the appropriate bits of this register to a
logical 1, selected interrupts can be enabled. Disabling the
intercupt system inhibits the interrupt identification register and
the active (high) INTRPT output from the chip. All other system
functions operate in their normal manner, including the sctting of
the line status and modem status registers. The contents of the
interrupt enable regoster are indicated and described below:

| Hex Address 3F9 OLAB =0
Bit 7 6. 5 4 3 2 1 Q

‘-—» 1 = Enable Data

Available Interrupt
1 = Enable Tx Holding Register
Empty Interrupt
1 = Enable Receive Line
Status interrupt

+ 1 = Enable Modem Status

Interrupt
=0
> =0
+ =0

;_;._.:O

Interrupt Enable Register (IER)
Bit 0: This bit enables the received dém available interrupt when
set 10 logical 1!

Bit 1: This bit ¢nables the transmitter holdmg rchster cmpr)
interrupt when set to logxc:zl L

Bit 2: This bit enables the receivcr line status interrupt when set
to logical 1.

Asynchronous Adapter 1-205

i‘:
Bit 3: This bit cnables the modem status interrupt when set to
logical 1.

Bits 4 through 7: These four bits are always logical 0.
Modem Control Register

This cight-bit register controls the interface with the modem or
data set (or a peripheral device emulating @ modem). The
contents of the modem control register are indicated and
described below

Hex Agcress 250

Bt 7 % 5 & 3 2 1 0
i! l L«» Data Terminat Ready (DTR)
Request 1o Send (RTS)
Out 1
Qut 2
e~ Loop
+= =

S —

Modem Control Register (MCR)

Bit 0: This bit controls the data terminal ready (5TR) output.
When bit 0 is set to a logical 1, the DTR output is forced to a
logical 0. When bit 0 is reset to a logxcal 0, the DTR output is
forccd to a logical 1.

Note: The DIR output of the INSSZSO may be applied to an EIA
inverting line driver (such as the DS1488) to obtain the proper
polarity input at the succeeding modem or data set.

Bit 1: This bit controls the request to send (RTS) Oulpu(Bit 1

affects the RTS output in a manner identical to that described
above for bit 0.

1-206 Asynchronous Adapter

Bit 2: This bit controls the output 1 (OUT 1) sngnnl which is an
auxiliary user-designated output. Bit 2 affects the OUT 1 output
in a manner identical to that described above for bit 0.

Bit 3: This bit controls the output 2 (OUT 2) signal, which is an
auxiliary user-designated output. Bit 3 ‘affects the OUT 2 output
mI a manner identical to that described above for bit 0.

Bit 4: This bit provides a loopback feature for diagnostic testing
of the INS8250. When bit 4 is set to logical 1, the following
occurs: the transmitter serial output (SOUT) is set to the marking
(logical 1) state: the receiver serial input (SIN) is disconnected;
the output of the transmitter shift register is “looped back™ into
the receiver shift register input; the four modem control inputs
(CTs, DSR. RISD. AND RI) are disconnected; and the four
maodem control outputs (DTR, RTS, OUT 1, and OUT 2) are
internally connected to the four modem control inputs. In the
diagnostic mode, data that is transmitted is immediately rccewcd
This feature allows the processor lo_vcrufy/thc transmit- and
receive- data;pmm of the INS825 IY\SSZSO

In the diagnostic mode, the receiver and transmitter interrupts
are fully operational. The modem control interrupts are also
operational but the interrupts’ sources are now the lower four
bits of the modem control register instead of the four modem
control inputs. The interrupts are still controlled by the interrupt
enable register.

The INS8250 interrupt system can be tested by writing into the
lower four bits of the modem status register. Setting any of these
bits to 2 logical 1 ccncratcs the appropriate interrupt (if
¢nabled). The resetting of these interrupts is the same as in
normal INS8250 operation. To return to normal operation, the
registers must be reprogrammed for normal operation and then
bit 4 of the modem control register must be reset to logical 0.

Bits 5 through 7: These bits are permanently set to logical O.
!

Asynchronous Adapter 1-207

Modem Status Register

This eight-bit register provides the current state of the control
lines from the modem (or peripheral device) to the processor. In
‘addition to this current-state information, four bits of the modem
status register provide change information. These bits are st to a
logical 1 whenever a control input from the modem char.ges
state. They are reset to logical 0 whenever the processor reads
the modem status register. :

The content of the modem status register are indicated and
described below:

Hex Address 3FE
Bt 7 6 5 4 3 2 i 0

Le— Delta Clear to Send (bCTS)
Delta Data Set Ready (DDSR)
Trailing Edge Ring

indicator (TERI)

Delta Rx Line Signat
Detect (DRLSD)

> Clear to Send (CTS)
+ Data Set Ready {(DSR)
+ Ring Indicator (R}

Receive Line Signal
Detect (RLSD)

Modefn Status Register (MSR})

1-208 Asynchronous Adapter'

Bit 0: This bit is the delta clear to send (DCTS) indicator. Bit O
indicates'that the CTS input to the chip has chnngcd state since
the last time it was read by zhc proussor

Bit 1: This bit is the delta data set rcad) (DDSR) indicator. Bit 1-
indicates that the DSR input to the chip has changed state since
(hL last time it was read by the processor.

Bit 2: This bit is the trailing edge of nng mdxca(or (TERI)
detector. Bit 2 indicates that the RI input to the chip has changed
from an On (logical 1) to an Off (logical 0) condition.

Bit 3: This bit is the dela received line signal detector (DRLSD)
indicator. Bit 3 indicates that the RLSD input to the chip has
changed state.

Note: Whenever bit 0, 1,2, 0or 3 issettoa log,xcal l a modem
status intesrupt.is generated.

Bit 4: This bit is rthe complement of the clear to send (CTS)
input. If bit 4 (loup) of the MCR is set to a jogical 1, this is
cquivalent to RTS i the MCR. :

Bit 5: This bit is the complement of the data set ready (DSR)
input. If bit 4 of the MCR is set 1o a logical 1, this bu is equivalent
to DTR in thc MCR.

Bit 6: This bit is the complement of the ring indicator (RI) input.
If bit 4 of the MCR is set to a logical 1, this bit is cquwalcm to
OUT 1 in the MCR.

Bit 7: This bit is the complément of the received line signal

detect (RISD) input. If bit 4 of the MCR is set to a logical 1, this
bit is equivalent to OUT 2 of the MCR. '

Asynchronous Adapter 1-209

Receiver Buffer Register

The receiver buffer register contains the received character as
'defined below:

Hex Address 3F8 DLAB =0 Read Only
Bit 7 6 5 4 3 2 1 0

i L—o- Data Bit 0
Data Bt ¥

~————2> Data Bit 2
Data Bit 3

+ Data Bit 4

+ Data Bu S
-~ Data Bi1 6
> Data Bit 7

Receiver Buffer Register (RBR)

Bit 0 is the least significant bit and is the first bit serially received.

1-210 Asynchronous Adapter

Transmitter Holding Register

The transmitter holding register codtains the character to be
“serially transmitted and is defined below:

Hex Address 3F8 DLAB =0 Write Only
Bn 7 6 5 4 3 2 v 0

l L’ Data Bit 0
Data 8it 1

Data Bit 2
Data 81t 3
Data Bit 4
> DataBu S
Data Bit 6
> pala 8it7

1

Transmitter Holding Register {THR)

!
Bit O is the least significant bit and is the first bit serially

. transmitted.

Asynchronous Adapter 1-211

The following is an illustration of data terminal equipment
connected to an external modem using connections defined by
the RS-232C interface standard:

- Data Data
Terminal Communications
Equipment Equipment Communications
Line
=S
N
s ~
s N
“
// Adapter ,/ Cable Conforming \\\ o
/7 e To RS-232C Standards o N
v - ~ N
/ i NN AN
/7 LEIA/CCITT Telephone Co. AN
Line Number Lead Number ™ 4
|- Protective Ground ————-———@—AA/IOI
|-— Signa! Ground AB/102.
— Transmitted Dats BA/103
l~~ Received Data 88/104 —
L Request to Send ————-——————@—CAA 0s
L Clear to Send -—-———-———\—@——CBI‘IOG ;
L Data Set Ready cC/107 -
Data .
Terminal {— Data Terminal Ready CD/108.2 —= Modem
Eaquip- 1 connect Data Set 10 Line **/108.1] -
ment
- Received Line Signal Detector CF/109
-~ Speed Select - CH/11 1 —ef
L~ Transmit Signa! Element Timing @ -DB/114-
-~ Receive Signal Element Timing Q - DD/11§
-+~ Select Standby /116 ——
f~ Ring Indicator DE/125 —
— Test VAR s
; X |
External Modem Cable Connector
131211109 8 72 6 5 4 3 2 1
O0000O0O00O0000O0)
O0C0CO0O0000O0DOO0O0
2524 232221201918171615 14
. {Modem) DCE
}.._.._. — DataTernunat | . Data Communica(ionsn—u{
Equipment Equipment :

Pin Number

*Not used when business machine clocking is used.
"*Not standardized by EIA (Electronics Industry Association).
“"*Not standardized by CCITT

DaTa _HERE SEGMEMT
HEAD _FTR O o ;3 Head pointer to the gueus

TRIL_FTR Dibd 0 ; Tail pointer to the gqueue
CHAR_COUMT Gl { 3y Mo.of chars in the buffer
HOFF_BENT Dl i 3 Flag=1 if xoff is =ent .

QALEUE DB 1000 DURCO: t Dueue of 1000 chars
DaTe_HERE EMDE :

DO character
; DC3 character

HOk EQu
HOFF Equ

Ll ol
51~}

CODE_HERE SEGMENT
551

UME CE:CODE_HERE,DS: DHTH HERE

r—a

STHRT : O ﬁﬁ,bﬁTﬁ_HERE ; Load Dats Ssgment Register

MO DE,ax H

MO T A ;

Mo A, 0000 ;3 Set dats segment=00040
i DS, :

F E”gﬁlﬂdH H .

Mo [EX],Cx ;3 Store ds in 0184H

MO D_,Lﬁ H

fACS HEAD_FTR, 00 ;s Initizlize head =nd tail
MOk TeslL_FTR,O0 ; pointers

MOW | HOFF_SEWNT, OO ;3 Set woff_sent flag to 00
Mo . CH&R_COUMT, 00 3 Sert charv_count to OO
PUSH . DS : 5
MO &b &0H H

PO B, SEG COMM_ INT- .
MO D&, BEX 3 Set intervupt vector OG0H
Mo e, OFFSET COMM_ THT i to our comm_int service
Mol &aH, Z25H : routine

IMNT 21H :

PoOF DE H

JMP OLER, H

COMPM_INT :

FULL_CHECK :

MO_MORE :

G0

OMER 3
FGE_LEM

CODE_HERE

s COMMUNICATION IMNTERRUPT SERVICE ROUTINE

END
E

5T1

FUSH
FUSH
FUSH
FLUSH
PLSH
PUSH

IR
Ird
PUSH
Mo
MOw
FOF
Mo
IME
CHP
JHE
P
CHP
JE
Mo
Mo
P
e
i
CHP
J
P
MO
ouT
O
Mo
auT

FOF
FOF
FOF
FOF
FOP
FOF

IRET
Mo
IWNT
LABEL

8

Fa
B
T
o
bl

bE

Dl 0 BFBH
H EA

I
<

avl
&, DATA_HERE
5,8

A

DI, TAIL_FTR
Ol

Ol,1004
FULL_CHECK
OI,00

DI, HEAD _FTR
MO_MORE
Ex,T&IL_FTR
OUEUELEXT &L
TeIL_PTR,OI
CHE&R_COUNT

I

F, CHaR_COUNT

¥, 900
&0

G, 19

U, DSFEH

D AL
WOFF_SENT, 01
&L, 20H

20H, 4L

DS
DI
DX
C¥
B
M et

-,
5,

1A s OFFSET COr I"!_

27H

BYTE

B Ly R L Y LR L

W CME Amm N TDE NER M GNE R SEE MR MR N CAE MR IR TS AR VEE N AR AR EN CER Ml M

B D cmm wm MM ww

char from 28230

Read

Load Data Segment Reqgister

Increment tail pointer
If end of queue makes it
civroular

Check if queue is full,
if full go to no more

Store char in gqusue
Festore tail_ptr
Increment char_count

If char_count » 300,
send XOFF to UaK

and set =off_sent flag

IMT-OFFSET PG_LEM

;
.
3

Make the program
memery resident

13 This

s+ and responds

PaRAM2

BUF_CNT

EUFFER
STRT:
TR
STHPTR

STHEEG
i

PGM_MNAME

PRMBELK
o
o1

P
L2

to the

IMCLUDE
IF1
IHCLUDE
EMDGIF
EG

ECLU

ECL
SEGHMERNT

m
-
I
(N3]
X

TequUestE,
MYLIB.EQU

V_LIB . MaC

t

s

3

b et pr
R IR I L

s D5 CODE

ZCH
FORD
=CH
EYTE
ECH
EYTE
S0H
EYTE
S2H
EYTE

S 1loaH

OVER_DETa

FERDT

G COMMAMD . SO,

=0 DURIG:)
o

OFFSET BUFFER
OFFSET PARAML

OFFSET PARAME

.
H
N
5
«
¥
<
§
M
3
v
3
4
2

B Y L I L I 1]

“an enn B A can AN cwn

pragram installs interupt routines

senvivonment segment

paramsterl
paramsterd

buffer length

command tail

o
i
iy

i cmdd_line '

SEG parvaml

FPCNET &5SM

ca

BUFF
FLAG
FILE_M&ME
HAMDLEL
HANDLE
MO_OF CHER
INTFLAG
KEYFLAG
REMOVE

FLIF
FLCS
FLPSH
Pl
FLEX
P1C¥
Flhx
FlEE
PLER
FlEF
FIES
FLLS
F1DI
F1&I
TIP
TCS
TRER
TEMP
TEMPZ
TEMP2

OVER DéTé:

D
OB
Dl
LB
Dl
D
i
Dl
D
Dl

Dl
Ll
Dl
Dl
Dl
Dl
D
Do
Dl
DA
Dl
Dl
Dl
D
O
Ll
il
Dl
Diel
Did

This procedure

- Cebl

MO
i
RN

C MO
- MO

PUSH

PO
ML

Mo

IMT
FOF

o
-
=

(R

DUPL 2]

[B s T e 0 IR o oo O L9
o)

oaoa
oo
goan
anoo
aago
oooa
Qagn
oooo
oaan
ooon
noan
gooo
aoaan
Qaaa
Qoan
000
oo
aoaan
oo
oo

unmaskes comm_int in

IMIT
D3, 0 3F SH
AL, D
FL&G, 00

IMTFLAG,O
KEYFLaG, O

oo
&l , DCH

3
3

cHE B EE B AR MN M IR MR MR R B nee EN e

W sum m aw an

X1

Sae anE UER se MR DR AR caw KR can

Fage 1-:

SEG params

, "/C DIRMC:SDIR.C " 4 1

This is pr

cantrol blo

DX, OFFSET TEMFCOM § store

i TEMPCOM

AH, 25H
Z1H
DE

259

=

s
ot

PCHET A

0
o
[

TRY :

FROS:

=

| o o1

]

MO
gl
i"."‘ G‘.._,.l
IWT
FOP

FUSH
rfl D {__:,i
RN
IMNT
MOL
MO
oL
ro
O
IMT
FOF

PO
PO
1T

JHR

FUSHF
5T1

FUSH
FLUSH
FUSH

PUSH
FOF

CHF
JE
l:c E...'l Fl
CHP
J7
ChE
JE
CHP
JHE

Mo
IMT
JZ

FOL

FUSH
FOF

-

DS, A
&L, 52H
AH, 25H
21H
D&

E::E:

Z1H
ﬁH.ffH
Z21H
(24 E-
DS % Ha’ "
Do B
Al 54H
aH, 25H
21H
D=

L, OFFSET
%, 25E7H
Z1H

RESIDENT

inturvupted
(Z¥ 4
B
L&

Cs
D&

IMTFLAG, 1
FROS
aH , DaH
M, 01

TRY

“H, 07
TRY

GH, 08
FROS

aH, 01

16H

TRY
KEYFL&aG, 01

2
wm

TEMPCOM

sTIMER and storv
iin int &3IHC

au aw

yEstar 2

interrupt 1H
G4H.

:and storve it inm int
sfunused in dosl

N um caE

stove the adress

y TERPCOM 3t vector &5
H

H

i push flags thes

intflag is
to pros

check if
if set jump
is

Hi
it
.M
-

[l
1]
[11}

ad from kevboards
T t

1 o+
[
[}

jump to pros

check 1f
if not loop

beay is pres
urntil pres

i
1]

t the keuvflag

B A AR ANE AT AR CON ABR ME i N0 cme SOl nAN YAE SEE M8 w0E HDZ N CMIS N B AR e

PCMET . A5M

MO_KEY:

TIME_INT:-

FOF
FOF
FOP
FOFF
INT

PUSH
FUSHF
FPOF
FLUSH
PO
ST
FLISH
RN
FaF
FOP
FUSH
PUSH
FOF
DEC

P
JHE
CHP
JHE
Mo
Mo

FOF
IRET

IMT

kesping
FUSH
FUSH
FOF

FOF

FarF

Par

Far

FLSH
oy

CMF

C
EP

BP,SP
5P, 06H

et
{4

5P, BP
EP
Cx
DS
CS
LS

INTFLAG

KEYFLAG, 01
MO_KEY
EXITY
MO_KEY
IMTFL&G, 01
KEYFLAG, 00

Ds

&3H

i routine

DS
g
D=
TEMPZ

TIF
TCS

TRSH
i
ax,TCS

TRITED &5 .l

T
m
L
It

o
|

L

FBE B M MR AN AN AN T el B N VIR el e Mn EE e

AR MG ME MM MR cal SR en sun

an e san e

TR 1]

“h

T O Y L I LR L

restore registes of

tem routineg

m

Hecute sys

give flags to the
interrupted routine.

rezet inflag

chek if key flag is

chek if the p

iz extended kew
set intflag

return to the
interrupted process.

store DS in temp2 location
and make it to point fo
data of this routine.

pop the stack which containe
IF,CS and FLAGS of intrrupte
program into temp locations.

PCHMET .ASM

SAME :

FETURRM:

JE
oHp
JE
CHF
JE
CHE
JE

FOP

HEOHG
#CHG
HCHG

HCHE
HOHE
HCHE
XCHEG
HCHE

Mo
MOl
#OHG
I
Mg
HEHG
o
Mo
HOHG
MO

PUZH

FUSH -
PUSH

I
Mo
RN,
R
Mo
Mo
Mo
JHF

POFP

FUSH
FUSH
PUSH

i
IRET

SEME
&, DESCH
SEME
&, 0070H
SEME

f ODTILH

SEME
N

a3, PLAK
B, FLEX
Cx,PLCH

Do PLDX
F1DI,DI
P1SI,SI
F1EP,EBP
P15P,5F

TEMF , &%
&3, TEMPZ
FLDS &%
TEMPZ , &%
i, 55
F1SS, A%
S5, 6%

&% ES
PLES &%

ES ,ax

PLPEW
F1CS
PLIP

A, TIF
PLIF, &
e, TOS

P1CE,A%
f, TREM
FLPSW , A
A3, TEMP
RETURRN

£
TPEW
TCS
TIP

DS, TEMFZ

Fage 1-5

arvice routine.

N

B L L IR TR TR T

exchange all registers of

intervupted process and
next process o be execute

when we give controle to
ther program we should
sstorve all of it's register:
o save the rigisters of
nterrupted program in PCEY

AT

-

=]
i

SIS ARE GAN B M W KB N A G MR N VNN R A GaR R W aw

push IF,C5 and FLAGS of
next process to be execute

wem an ww

ztore IP,C05 and FLAGE of

interrupted process in PCE

MG canm CE® cmg nER s M sam

give control to the next
vocess to he sxecuted.
F

B AT R AR AN mu i

FONET . &% Fage 1-E

m

ite

TEMPCOM
=TI
FUSH - Ax
IM &l , 21H
QOF, A, 10H
ouT 2Z1H,AL
FOF]
PLSH LE
FLSH - s
FOF S
FOF F1D3
g FLé& &
Moy PLEX,
oL PiEi,C”
I FLle, DX
MO F1DI DI
PO PlEP BF
MO/ Flul,JI
Mo "PLEZES
P FLSS, 558
FOF PLIF
FOF F1C5
FOF F1PS
MO F15FP,SF

dizable 235 IR4
by masking kit 4 of
mask register.

ztare all reqgister
interrupted proces
process control b

MW IR MR DN cun VR MW WK T W e MR N SRR B EN R AR AR R BN W0 ABR

read charector from UART
nd chek if it is ESC.

FMOL O, D2FSH
It AL, b
CHMP &l 1EH
JHE GO_BACK
JMP MULTI

ey

enable ir4 by unmashing bit
in IMR of 8252 so new char
in USRT can intervupt

O_BACK:
I &l , 21H
AMD &L, DECH
auT Z1H, 4L

PR Y . LI TREFTY ¥ ST

MO &L, 20H
auT 20H,4L

-a

end of interrupt signal
to E255 :

.

calL DIS&ELE

give control back to the
interrupted process

PMULTI :

MO &, 05
Mo DS, 4K
MO ES A
Moy S5, ax intialize registers.

Mo SP,O0FFFEH
pons STKPTR SF
Mo STHEEG,S5S

Sy AL, E0H
MOy AH, I5H
INT 21H
PO &, ES
MO DS , A%
MO Dt , B

et ifnterrupt wector for
scamm_int and store 1t
at vector O0CK{unused in dos?

WEH I VR AN AN AN RN uX M0 AN caN cam AR uan

FCHET .ASM Fage 1

Mo &H, 25H

INT 21H

P Al 20H
, ouT Z0H,~L

end of interrupt signal
to B239
enable ir4d by unmasking bit
in IMR of 8259 =o new char
in UASRT can intervupt

M AL, 21H
AMD &L, OECH
OuT . Z1H,AL

DU IRV T Rt '\.l‘- SAR AN EE A

MO &, OF
Mo DS, X

MOU ES, A%
BEGIM:

MO IMTFLAG, O i send char 07 to inform
pO &l , 43H o
Call SEMD H
CAaLL GETCHAR
CHF &, 41H 1 if the recieved cha
JE EYETEM 3is other than “A7 th
MRS TRAY Al ;1 facility program &

1 dump to label swst
o Al 0aH H
Mo Dy, OFFSET TIME_IMT
Fo fiH 25H
IMT 21H .

the ather FC .

Pesoilal s

LRV TR

Mo L OFFSET COME_BACK; store the address
MO B, 2566H 1 come_back in wector- &66H
INT 21H i '

Moy £ 3565H : get the address of the

IWT Z1H : facility program and

Mo TEMPSL,ES : give control to 1f.

Mo Ls,TEMFZ H

FLSHF :

FiiSH ES
FUISH B
: IRET
COME_B&CK 3
after rhe sxecution of the
facility program control
comes ro this label.

bt
-

Mo
poL
ps

N
R | L~ E;
2

g A

§ £33

Do B gy B

[ix
WE MR N nEE wE WE caw AW

Mo SPETKFTR
P 55, 5TESES

Catl DISABLE

o~

€ 1

[}1]

ive control back to the
ZBY

SYSTEM:
CaLL GETCHAR
S AL, 08H

NS AW MM NN R AR N ABN cun AR

PCHET JASM ' Fage 1-8

MO D¥,0FFSET TIME_IMT jmake wectopr O8H to tim

MO aH, 25H { routine
INT Z1H

MO T, 0EH
RI=H PUSH Cx
MO .
NET: LOOF NET
FOF Cx
LOOR M

3
33
<
m
M
"‘1
X

FLZH DR
Mo Al &
ginie #H
IWNT Z21H
Mot B iGet intervupt vector for
I DS, Ax s TIMER and stove it

PO Dr B 1in imt 08H{unused in dasi
MO fal, 0EH '
Mo fH, 25H
IWT 21H
FOF B35

P R L LY K T R T T LT I LR

= an cam

oL &, O : intialize registers
P SR
IR LE, Ak

RN DI, B0H

Cal L GETCHAR
MOl BYTE FTR [DI].al; read the command sent by
CHP &, CR : user on other PO and
JE FrHaME_OUER; place it off=set B0OH.

I DI

JrF MEXT

cmd line

FCEL

FCEZ

release memory to load
cormmand . oo

§
H
FrdatieE _OWVER - H
IR [C1]1,D% H
) [czl,bs :
Mot [Cz21,08 H
Mo Bx,1200 :
Mo FH e H
IMT . 21H 3
JC FHORED ;
Mo Dx , OFFSET POM_MAME 3
Mo #4100 : load and execute command.com
MO By, OFFSET PRMBLEK I

FOV ~H, 4BH
INT 21H
R Iniv SR LETEFTR reztare siack.

Mo S5,STHKEEG

P R LR TR T STy

Mo &, 0E call the facility program to
o DR A zend the cutput of the
PO ES, é ; executed. °

PCHET .&~8M

MO TRéT , 44H
JHP SCalL
Call DISAELE

e mE wam cam

MORED : BWRITE "MEMORY REDUCTION FaILED”
Cab L DISABLE

INCLUDE SUB.LIE :

RESIDENT: » :
MOV 3, 00 Y the address of SYSINT

MO DS, aX : ar 21

MO DI ,0084H ;

MO . CH,0FFSET SYSINT ;

MOV [DI71,CH :

MO [DI+2],C5 :

Ly
[ny]
P
-4

3
ot Fl, 3LO3H : maske the program memory
MO Dl 2000H y resident and reseruve
IMT 21H 3 20K to load command.com.
L

FGE_LEN ' LABEL EYTE :
CODE ENDS :
EMND STRT

' 5 t.L..IEt

13This librery provides some procedures used in the PCHET progr

GETREUFF FROC MNEAR

FUSH B H

PLISH 2 H

FUSH D :

PUSH DI H

MO DA ;

MO Cax, 000na make DS register to
MO D e point comm_int routins

RN Bx,0184H
pOs 0s, [B8]
(g B, 0000
Mo DI,[EB]
ChF DI, [Bx+2]
JE MO CH&AR
MO Al [BX+210D11]
IMNEC ol
CHP LI ,1000
JHE QK
MO LI,0n
] A PO [E 1,01
DEC WORD PTR [Bx+4]
LHF WORD PTR [EBx+a],1
JME MO_CH&R
CHP WORD FTR [Bx+4],750
JEE M CHeR
pAoL D, 02FBH
RN Al L7
OuT D Al
O WORD PTR [Bx+53,0

move head_ptvy to di
rcompare with tail ptr
if equal queus is full
quit.load char
pointed by head_ptr,
to &l ingcr di make the
queus circulsr.

gztore hesd _ptr
decrement char_coun
Check for =off

-
Il

char_countd=7FL0

e
—hy

send HLon

THE sam R anm WE AR AR Lam HE A8 CBE AN CMD HH I SR HR AN N SRR WS a0 as

WO CH&ER Mo Do, O
POP D
FOF o
FOP Bx
FOF (D31

‘ma e an can csw

GETEBUFF

jithis procedure sends a charector to

SEMD

RETRY ¢

RETRY1:

SEMD
GETCHaR

GETIT:

GETCHaR

DIZsBLE

RET

PROC

PUSH
ML
PUSH -

Ir
R

JZ

I
IR

- JZ

POF

M)
ouT
FOF
RET
EMDF

PROC

Mo

- O

I
IMT
Mo
MO
PO
INT

FOF
FOF

MO

Casl L
CHMP
JE

RET
ErDF

FROC
FOF

MESFE.

AL, DK
Gl , 20H
RETRY

Al Do

&l anH
RETRY1
&%

O , 0 3F2H
D il

D

ME&R

GETRBLUFF
~l, 0
GETIT

HESR
REMOUVE

.
8
"
5

corral .

P R L

Y T L I A LA)

i

chso

is

emp ty .

kb weasther
smpty .

chek weather THR reg

THEHR

zend the charector
a1l to the comnml.

in

1 This procedure returr

a charector

from

SUE.LIB

DISABLE

an am e

INIT

Thi=

yeciar

FROC

p]’ [¥ il
initislizes
stored at 20N to

Mo
PO
IMT
FUZH
FOP
MO
H DI,?,I
Mol
Mo
P
MOV
MO
oL

t' 1 C’ ivl
MO
PLZH
FUSH
FUSH
oL
IRET
EMDF

cedure

HME~P
FUSH
FLUSH

FPUSH

FUSH

FPUSH

FUSH

IN
AHD
ouT

I
Mo
ouT
GEC
DEE
PO
ouT
DEC
G
ouT
IMC
IMC
MG
MO
ouT

o250

5.4

Lo, OFFSET TEMPCOM

&, ESOCH
Z1H

L=

DS

A PLEY
B, P1EX
3, FPLCX
D%, PLOX
ol,P1DI
S1,FLS]
EF,FLEF
SP,FLSP

,F15S
ES,FLES
F1FEM
F1CS
FLIF
D&, F1DS

m

(.

unmﬂcPez

L=
DI
D
CH
Bx

Sy

AL, 21H
AL , DACH
Z1H, AL

, I 3FEH
AL, SOH
D, &l

D

D

el 00

[
54
AL, 0CH
FEA1R
4
Do
D
&L, 03

D 4L

=L

[
P

“en rmn Naw

‘M nAD am EE can

e

T I LR LR

in

the comm_

*
?

sunmaskhk

.
H

R NR ME AnE WET wmE R saR AN

wHM un EE AR wE e

TS
[ro i ai o’

store the off
TEMFCOM at ve

=]

159 full

int

irg4icomm

intgd

by

10 pﬂTlT

I yitialize B230

set DLAaR 0 1

set baud rate low byt

zet baud rate hiah
=T NN

noc.aof Qite &

1 stop bit

SUE.LIE

IMIT

ErDF

DEC

DEC
MR
OuT

FOP
POP
FOF
FOP
FOF
FOF
RET

D,
D
a0l
D AL

i
B
Cx
D
[}
0

....-...‘..‘..w.
]

nabls

I
L
g

Dok §
e

=
-t

0 COoMM_INT

FACILITY .FAS

v

{ This program serves the requests for phone,mailftransefer file
and sends the cutput of dos commands * :

progaram Ffacilitu:

proceduyre intpas _ Cjexternal ’infpag.ﬁam’;
procedure rveturn : jexternal rufurn.ram' H
procedure nosSwWap jedternal ‘noswap.ocom’

function getkey (war i : integerliinteger jextevnal “‘getkew.bin”
function getbuff {var 1 @ integerlsinteger jexternal “gethuff.bin’

tupe
regisiers = record
ax,bx,cx,du,bp,sp,di 21,08, de,es,s=,flagsiinteqger;
end; ’
mes=stving[307 ;
VEY
filename 1 stringll2];
fp : FILE;
fpl 1 textg
c & char
rag:regieters;
cor,clf,cep v oohar g
st roarravil..80] of char;

bufsiz,wblkno,rblbno,flag,resultl,resultrinteger
flagl,row,col ,fflag,i,i.traviinteger; '
Buff:arravil..128] of char;
complete,cleartosendiboolean;

< This procedure returns = character from comm—buffer =,
I't waits till a rhdr"cter iz received.r
integeyr)

procedure getcharpi{var i:i
te

var i 1 integsr;
begin
ior= g

il
Lo
o

wWhile i

begin

i o= getbuff(i};
rio i =iwherex s
coli=wherey
wWwrite{chr{0)i;
gutoxuivaw,coll

end;

=nd g

procedur
kegin
i:=0;
whilel{i=0)

i

ends;
£ This procedure sends 3 char
wWwaits untill shift v
are empty

procedure iz i
2,1 & ‘intege

VEY H W =
begin
ooy o= O3z 1= 0
while ((w 0y or {z = 01} do
begin
¥ 1= povt[#03F0D];
wor= ow oand 0020
z 1= % and 00404
end; '

por t[£03F2] ==

W;

ends;

£ This procedure finds the cursor
using DOS interrvupt 10h 7 '
procedure findourf{uvar i,3i :int
begin
reg.ax
reg. b H
intr(®ll,reg);

Saet)

o

N
b

[m]

i 1= reg.d=z div 256 + 1;
i = reg.dy and ¥FF + 1
ernd;
£ This procedurs positions the cursor
at given rvow and column ¥

procedure poscur{row,col @ integer:

begin

reg.ax 1= B200;
reg.bx 1= 0

*
3

thrauagh
eg and transmitter buffer

=,

o

=250

ition

the

it

an

SCTEan

the

ZorvYeern

FeCILITY . Pat Fage 13

v
vreg.dx = ((row-1) * 258} or ({col-137);
intri$ld,reqgl;

end:

t the current cursor position
in the given attribu 1d advances the cursov to next column.
The first arquement i he charactery to be displaved and
the second is the atiribure -

< This jang rocedure

Il
L
-
n
)
H
o
g
[1{]
vt } hi]
i
T
1
-
it
1
~+
M
-
U

procedure displavii,d tinteger)i
var k @ integer;
begin
case 1 oof
10 1 write(clfis { print lrre feed as it is *
13 1 writefcord; { print carriage vreturn as it is *
03 ¢« for k:=1 1o 2 do writeicap,, { sxupand tab ¥
else begin
reg.ax 1= i orv £0500;
reag.bx 1= 3%
teEg.on 1= Cl;
intr{®li,reql;
findouy Vﬁw. ol
poscuri{raw,coldll;
erds
ends;
end;
{ This procedure waits for & char from kevboard
and returns the same ¥ .
procedure readkbdivar 1 @ integerly
yar i 1integer;
beain
i 1= 255
While 1=23553 do j = getkew(i);

andy

L This preocedure displavs the given string at the curvent

cursar position in the given mode >
procedure set_displavistimesijmoderinteger);
war i,1 @ integsr;
beqin
for 1:=1 to lengthi{st) do displaviord(st[il},mode);
snd;
£ This procedure reads the file nams zent by the other
FC oand sets fflag if errvor in reading.?

FaCILITY.PAS Page 1-4

procedure readfilename;
Y ar
i.d,k sinteger;
cesicharg
begin
filename = *
i = 1;
getoharpiil;
iFEi4:03) then
begin
while j4:13 do

end:

{This procedure sends the file F

procedure sendfile;
LHar

isdsksinteger;
ch.sicharg

o
Lot S 1]
o o~n 0 o0

i

o
s)
b
U]

(81}

o

= m

e’ ST R

-t

or

i

3

it]
I B LR]

I 0
a
-
o
-ty
-
'.—.v
M
pu
1
=
i

~4
i
ot B e h

o -;:H- T e e T3 e
.-I

result <x 03 then send(032)

begin
send{ &7

{%i-*
£ Thiz procedure res
by charector.if e
mouves rvesding hesad to the
while MOT EOF{fp1 do

heagin

Dlockreadifp,buff ,l,resultli;

whiledloresultd{»0) do

begin
gzzignifp,filename);
resetifpl;

charector
file and

FaCILITY .PaE Fzge 1-5
ueek Cfp,rblino)g
blockreadi{fp,buff,l,resultl);

endy
riblkror=rblknotresultl;
ii=1l;
Wwhile ¢ (1i{=128) and MNOT complete} do
begin :
ifibuffli}ds chr {281y then
beqgin
for i:=1 to EUD deog
sendl{ovrdibuffl11171;
ir=1+1;
end
sglze
begin
complete = TRUE:
send{Z5);
end;
ends;
{ 3 1= gastbuffi{i);
if 1 = 13 then while 1 <% 17 do 3
end; '
close(fpl;
end;
=nd;
+ Thie procedure disasbles multitasking *
NoSkWap s
end; : :
1 Thizs procedure vecieves & file szent by the acther
procedure getfiley
beglin
NoSWan s
readfilename;
if (fflag £y 1 1 othen
begin
assiqnifpl ,filenamsl;
16i-*
rewrite(fpls;
if (loresult=0) then
begin
send(E71; 1:=0;
£ This recives 5 file and stovres it in disk >
while {(14{*2Z&) do
begin
getcharp(ils
wWrite(fpl,chr{i)l;
ends
close(fplls

o
"

begin
send{ 330
writeln(
erd}
end;

"Cabd NOT CREATE FILES)g

end;

{ This procedures rvesponds to the phone call
procedure speak;
const

LF 1 £ line fesd
CR = 133 { carriage return
EsC = 273 { escape
CSPACE = 223 L space
War
i,j,k,nl-nE‘cade,indev.scarcade.ﬁppm i oinm
Tow,cocl,saverow,savecol ,atovib,ptr :
WITTOp, H1ﬁbuf.nm,f9tulur.b "lur :

‘rl,cl,r2,c2 @ integer;
continue @ hbooleany

beqin
MGsWan
Writelnd” YOLUR HAUE
vpadfbbd,cj;
ifi{o="u"1 or [o=Y"31 then
begxn,
creates to Windows on the scresn ¥
send{&7)
wWwindowil,1,80,25);
clrscr;
qutn*qu ‘1),
get_display(” FCNET FPHOME FACILITY
goto=wil, 2
for i:= 1 to
gotoxw(l,121;
faor ii= 1 ta 7
gotoxuil 1471

FHOME CALL

< This

1 'an
-]

do writel ="

-

s

do writel '~

15
am

for i:= 1 to 79 do wWritel ~"1;
gotaxyil , 250
for i:= 1 to 79 do write(=713
gqotoxyil,1lrg
rl 1= 132l := 1;
r2 = l;o2 1= 1
i = 13
continue 1= TRUE: :
i this displaves and sends the key pressed and
charectors recieved from other PLC X
while continue do

begin

[ST

K , $

poc I 1]

o

st et Ul
{1 1]

[31]

dis

Paae 1-6

Wiy
M e
-

i1
-5

Tl

pla

caw cmm

D)
¥

ot bt

l'[\

-

FACILITY .PAS FPage 1-7

i = 285;

3 = gethevyiils
1 3= 1lo(id;

if 1 = 03 then

clresorg

wWriteln(” TGU.HQUE CoME BAaCE TO YOUR FPROCESS

end

m
e
Lol 1]

&

if 1 <r 235 then
begin
send(i);
window(l,3,80,12);
textbhackground{0)
textoolor (S
gQuioxyirl, ol
letELFhTfl}l'

if i=13 then write{chr{i0)};

1= wherexjcl = wherey

—+
o
m
=
i
ﬁ
.—r
fot
|
[
it
il
i
T
-
)]
m
m
[
i
1]

begin
Window{l,15,80,249]1;
exthackground{0);
textoolori3dg
gotoxul{rZ,c2l}
Write{chr{ill;
if 1=13 then writelichr{ld)is
v2 1= wherexicd 1= wherey;
end;
end;
no els

]
(]

el

H
i
1

o i

e
FPROCEDURE COMM&ND

ET
ik,ijtintegery

begin
LEI-F

assignifpl, ' Cidivesct’ i;
rc:efffp1?; ’
iflioresuylt

£33 then write(’ OPEM F&ILED 70
elde :
while MOT ECGF(fpl) do

1]

i)

o
H

{
ax]

FACILITY . P&as F

begin
readifpl,cl;
zendiord{oy};

1

(WY

e,

sendl
¥ ST i
clos

end

oy

51

+ I

“h M

.

)
| el ;R
P]

i Lis
Falta

1
e
-

u

£ M&IM PROGRAM STARTS HERE ¥

flagi=0;
flagr=mem[0:$2007;
if {flag4x0) then
begin
complete:=F&LSE;

bufsizi=236}
vhlbnoi=0;
wibilbkno:=0;
resultli=0;
recult:=0;
fflag:i=0;
{ Thiz is to read the regque
mem [0000 12015947
wr=mem] i s E0103]
tray of
sendfile;
getfile;
speak ;
commandg

st from other FC. *
H

e
i
]

©“ This gives control back toe FOMET.
return;
and
else
L This procedure makes the whole program memcry resident
intpass
end.

(€T KEY

CODE_HERE SEGMENT

ASEUME C5:COLE_HERE

H FUBLIC
the :
GETKEY PROC HEAER
ard .
FLUSH

MO

1
o)

INT
JZ
(e
IMT
COMT : SOy
LES
O

QuIT: FOF
RET

GETEEY EMDF :

CODE_HERE ErMDS
EMD

GETKEY

EP
fiH, 01

16H
ouIT

aH, 00

16H

EF, 5P

01, [BP+4]
ES:[DI],a%

EF
)

B R L LTy

This function returns
input from the kewvho
if any.

Check if keay is press

If not goto quit,

Transfer this key to
the external variables

(nETBUFF

[Sl

CODE_HERE SEGMENT
SUME CS5:CODE_HERE

Su fe
)

ot

: FPUBLIC GETBUFF i This function refturns

&
. GETERUFF PROC HESE H char,if any from buf
fer
FLISH BF :
ML “BF,5F H
FUSH £33 H
PUZH B H
CPUSH o :
PUSH D ;
FLUSH) :
M Col,DE 5

s F, 0000 1 Lead DE reg with

Mol DE A H Data segment of Resz
ident .
MO Ex,0184H
MOL DS, [EX]
Mo Bx,0000
PO DI, [B]
cHP DI,[Ex+2]
JE MO_CTHAR

Mave head_ptr to di
Compare with tail_pty
If equal gqueus is ful

m% ew W cme AN can

L.quit., . ‘
MO AL, [EX+HEII0I] 3 load char pointed by
head_ptr

FL

[13]

. H 3 3 inmto the external vat
izble ’
LES LI, [BFt4]
I ES:[DI] A
FOF 01
I DI
CHE Di,lo00
JHE Ok,
: PO GIl,00
0k s Mo [Bx]1,DI
: DEC WORD PTR [Bx44]
CMF WORD PTR [BX+E7,1
JHE MO_CH&R
CHF WORLD PTR [Ex+41,730
JGE MO _CHAR
Pt L, 0 2F2H
Mo Al ,17 .
ouT Do &bl

Increment hesd_ptr
If hesd _prr=1000 ther
make it cirvcular

FRezstovre head ptr
Decrement char_count
If woff_sent and

char_count <= 7E0,

send A0 to WA,

WIW AE WP CME MR tan MER hmw AN NM VKN EE WIS ARR ED A

and reset xzoff_sent
P WORD PTR [BXAs],0 H

MO CHeR Mo 05, Cx
FOF oI
FOF D
FOF et
FPOP B
FOF £
FOF EF

E awk EW am SR

MOSw rpP

3sthie procedure disables multitasking.
CODE CSEGMEMT

SESUME _CE:CDEE,ES:EQBE

MO BlSP FROC HE®E,

FLISH D=
FLIEH =3
FUSH RE
PUEH B
FUSH 5
Mo Al 63H
MO FH, 35H
INT © o Z21H
o Aol ES iGet intevrupt vector for
PO DEf - 3TIMER and stare 1t
MO D, B iin int O8H{unused in dos)
FOU al, O8H :
MO A, 25H ;
IMNT 21 ;
FOF ax
FOF B
POP Lo
POF ES
FOP LE
RET

MO_SkiaP . EMDP

CODE - EMDS
EMD

LRECT I

RETURM . AEM

CODE_HERE & SEGMENT

SUME CS:CODE_HERE

SE
A5
RETURM PROC MNEAR

FOP
M
INT
PUSHF
FUSH
FUSH
IRET

- RET
RETURM ERDF

CODE_MERE ErMDE
Bk

0

;iThis procedure makses the facilty program memory
;jresident,sets the flag and stroes the €tarting
address at vector &5H ‘

CODE SEGMENT

SESUME CS:CODE, DS CODE
IMTRaE FROC o ME&AR
FOP U
Mou A, 00

MO 05, & ; s=t the flag.

POV DI ,200H H

P #l, 0L H

o DE:[DI], A H

Mo A i

MOV ES, £ ;

P DS,&E H

Mo D, 100H ! store the starting sddress
PO QV.ZSQ-H i =3t vector &5H

IWT *lP

Mo % ,3103 : make the program mMemory
I qul DHH 3 resident and return to dos.

IMT 21H
RET
INTPAS EMDF

CODE EMDE
ERD

ASKFILE.FAS

£ This ise to request and get a file from the other po.
If the uzer on the octhery PLC is willing to send file,
it reads and sends the file name,if there is no ervor
indicator from the other side the file is recived and

storved on vouy curvent divectory ¥

PROGRAM askfilel{input,cutputly
function getkey (var 1 @ integer)iinteger jexternal ‘getkev.bin’
function gethbuff {(var i : integeviiinteger jexternal “getbuff.bin’

2
e |
(]
oy

“This record contains the wvarioues registers in &8
HUeed in interrupt voutines within TUREBD ¥
registers = recovrd v
¥,d% ,bp,s1,ds, 2

T b =,flags : integer:
ends
mes = stringi80d;
Yar
i,i,k,1 sintegsr;
cichar s
filename @ stringl[207;:
fp : textg
req ¢ registers;
cleartosend : boolean;
£ Thi=s procedure returns a character from comm-buf fer

It waits till a character is received from another FC >

procedure getchari{var itinteger);
yar 3 : integer; '
begin
i o=
wWhile
ends

i
i =0 do i = getbuffi{i);

T

£ This procedure swaps 1rtevrup vectors vl and vz *
procedure swap wvectaors(vl,u2 1 integevl;
begin

reg.ad = $3500;

reg.as 1= reg.ad or wli

intri{®=2l,reqry

reg.ax 1= reg.esi

reg.ds 1= veg.a%;

reg.dy 1= veg.bg

reg.as 1= $2500;

reg.ax !IT reg.as or w2

intrig2l,reqly
ends;
{ This procedure sends a char to another FC through 2250

It waits wuntill shift reg and transmitter buffer |

are smpity ¥

procedure sendiw

intﬁger};

VET H,M,.Z,1 3 intege
begin
y 1= iz 1= 03
wWwhile ({w = 0) or {z = 0}) do
begin
¥ 1= port[$03FD];,
y 1= x and 0020
2 o= x and £20040;
ey _
por t[F03IFE] 1= g

endg

£ MaIb PROGRAM

begin

STARTS HERE ¥

+ This prvocedure stoves the comm_int address at vector OCH ¥
stiap_vector=i$el $00)
{ read 2 charector from S250 ¥
i:=part[$03f8];
i 1= 255
£ cleare comm_buffer
tiile 1 {» 0 do
beqgin
i o= 0
i 1= getbuff{i);
end;
send{ 271 ;
getchar{i):
if (chriiy= "C) then
begin
zend(354);
Wwritelng
writed” GIVE FILE M&SME 173
readlnifilenams);
£ This sends file rame to the other po ¥
' for i:i= 1 to lengthifilename) do send{orvd(filenamsli’

cend{131;

ASKFILE.PAS

20
=lse

end
else s=zend
£ This stores the
from vector &7hH
Slap_vector

kU
¥
m
|
i

har(i}g
oi11=673 then
n

begin
write(fp,chri{ill;
ifiloli)=%02) then 1:1=Z6;
aetchar{il;

o

end:
close(fpl;
Pa _

wWwritelni{ file not found at the othser nade’)

(2030
address of tempcom at vector UCH

.
#

o

T

his & the for
file name ta be mailed and reads the file name and sends the
fil . r

program is to mail a fil cther FO,it prompts

2 name and file to the other PC.

program maill (input,ourput

funec
function getbuff (war 1 : integerli:integer

tion getkey {war 1 @ 1ntwqer%.1n eger jexternal ‘getkey.bin’
sexternal ‘getbuff.bin”

type
{Thise record contains the wvaricues rvegisters in 2088
sed in interrupt voutines within TURBO }
registers = record
s¥%,bx,cx,dybp,si,ds,es,flags : inteqsr
and .
mes = string(20];
EL
i,i,k,lvinteger;
cichar; ‘
filename : stringl207;
fp @ teut:
req § registers;
guit,cleartosend : booleang
L This procedure returne a character from comm—buffer
It waits till & character is received from other FLC +
procedure getcharivar i:integer);
var i o integer;
begin '
i o= Oy
Wwhile 1 = 0 do j 1= getbuffi{il;
end;
{ Thiz procedure swaps vetors w1l and 2 -

MATL.PAS » Page 1-2

procedurs sSwap_ vectorsi{uwl,w? @ integer);

begin

reg.ax = 3500

reg.ax = reg.ax or wli
intri$E2l,reql;

Y¥eg.ax 1= reg.es
reg.ds = reg.axd
reg.de 1= reg.bx;
reg.ax = #2500

rYeg.ax 1= veg.ax or uwii
intr{%z2l,vegl;

end;

£ This procedure sends & char to other FC through 2250
It waits untill shift reg and transmitfter buffer
are empty

procedure sendiw ¢ integer)
Var ¥,u;z,i @ integer;

begin

“-n

1= port{FO2FD0];
y = x and $0020;

Pal

z 1= ¥ and #¥0040:
end;
por t[H02IFE] 1= iy

end;

+ Mell PROGRAMM *

begin

{ This procedure s=tore the address of comm_int at vector
GCH from wector &0H ¥ ’
swap_vectors(E&0,3007)
ir=port{$03Ff8];
i 1= 255; , .

£ This makes clesrs the comm_buffer *

fohrdilx= ‘L) then
begin
send{ 821 ;
Wwritel” GIVE FILE M&ME 1 71
readlni{filename) ;

M TL O P&RE Fage 1-3

~LEi-F
assigni{fp,filenamel;
reset(fpl;
i+
if f{laresultdx0) then
begin
=1

di 02 swritel FILE NOT FOUND “3;

{ This sende the file name to the other PO
for i:= 1 to lengthifilenames} do
sendlovd{filenams[il1};

charii};
{ This

i
-
]
1]
jul
i

if{ i=67) then
Begin
read(fp,cts
while not EOF(fp}: do
begin
send{ordi{cyi;
read(fp,.cl;
i t= getbuff{il};
if i = 1% then
while i {» 17 do
i 1= gethuff{il;
end;
send(281 ;
end;
end;

fthis =to
from u

t =
nd =ends the file to the other FC

"

= mddress of tempoom a2t wvector OC0H
=

FHOME , Pas

£Thiz program is to make 3 phone call to the user on
program phone{input,ocutputl;
function gethey (var 1 1nteger}:integer jexternal
funutlun.getburriudr i+ integer):integer jexternal
const
LF = 103 < line feed
CR = 13; { carriage return
ESC = 273 1 BEcape
SPACE = 323 i =zpace
type
{This veceord contains the varioues registers in
It iz used in procedures within TURBD
registers = record
ay,bx,cx,ds,bp,si,ds,es,flags @ integer; '
endsy
mes = stringl 307
uar
izd,kynl,n2,code,index,,scancode, appm @ inteqer;
raw,cel,aaveraw,aauecal,dttr1b,ptr : integer
wWintap,winbottom,fgoolor,bgoolor 1 ointeger
cycer,clfosp,lastochar : chargs
req : registersg
rl,cl,r2,c2 : integer;
continue : boolean;
£ This procedure finds the cursor position on the s

using DOS intervupt 10h

procedure findourdvar 1,3 :
begin
reg.ax = 203003
req.bx 1= 03
intr{El0,reql;
i = reg.dx div 25& +

}-

integerl;

[d
L1

ather

pok

“gethew.bin’

-

aw ema

getbuff.bin”

gttt

)
G

[u x|

FHOME . P&E

i = veg.dx and #FF 4+ 1
e} .
{ This procedure positions the cursor on the scresn
at given row and column >
procedure poscurirow,cael @ integerl;
begin
redq.ax: 1= ®200;
reqg.bx = 0
reg.dx 1= {{row-1) * 25&) or {({col-11};
intr{®l0,reqi;
ends
{ Thisz procedure swWaps interrupt vectors w1 and w2 *
procedure swap_vectors{ul, w2 @ integeri;
beqgin
req.ax = £3500%
reg.ax 1= reg.ax or vl
intr($2l ,vegl;
reg.ad 1= reqg.es;
req.ds 1= reg.au;
reg.dy 1= rveg.bxg
veg.ax = $2500;
reg.a% 1= reg.ad or uj
intri{$2l,regl;
end;
{ This procedure sends & char to ancther PO through 8250

untill shift transmitter buffer

It waits
are empty

reg and

end integer 1
! integer;

procedur
(R8N}
begin

2 =
Z41

wo1= Oz 1= 03
while ¢{yw = 01 or {(z = 031 do
begin
1= port{HR03F0]:
y 1= x and $H020;
z = x and #0040;
enc;

[

port[€032FE] i}

endj

{ This procedure displavs a character at the curvent cur
in the given attribute and advances the cursor to next
The first arauement is the character to be displaved =

the zsecond is the attribute >

orocedure displavii,i iinteqgeriy

FPage

o~

[

sar pos]
column
ol

FHOME . PAT
begin
case i of
10 5 writel{clfl; £ print line fesd as it
123 ¢ writeicoris { print carrisge return
0% ¢ for k:=1 to 8 do wrigel{cspl; £ expand tab
else begin
reg.ax 1= 1 ov S0500;
reg. b: 1= J; *
reg.ocx 1= 01

1nfr£¥lﬂ regw
1nd;urgr0u.cu11;
pnscur(_rgw cold+ll;
end;
endsy
endj

£ This procedure rvreturns a character from comm-buffer
It waits 1ill & character iz received from PCZ ¥

procedure getcharivar itinteger)y

war 1 @ integer *
beqirn '
i = 03
wWhile 1 = 0 do 1 1= getbuffiil;
ends

ts for = char from kevhoard

£ This procedure wai
s ame ¥ .

and returns the

procedure readkbd{var i 1 integer):
yar i tinteger; :
begin

m e
RSl LI 1]

£ This procedure displays the given string at the,chrPnf
cyursor poesition in the given mode . *
procedure set_displavistimesimoderinteger
yar 1,3 & integer;:
begin
for i:=1 to lengthi(st) do displaviovdistlil},model;
ends;

£ MAaIMN PROGRAM STaRTE HERE >

begin
sap_vectorsi®2e0 ,$00);
{ vead a charectar Tram S250 x
ie=port[$03f2];
io1= 255,
{ empty the comm_buffer >
i 4% 0 da

foN

11

FHOME . P&S
i 1= 03
i 1= getbuffiil;
ends;
zend(27);
getchar{il;
if (chriid)= “C7) then
begin
sendi{ 807 ;
getchar(il; '
ifiloli}=87) then
begin 8
£ Thiszs makes two wWindows on the screen *
wWindow(l,1,80,25);

clrsoy s

gotoxy {30,101

cset_display(” PCHET PHOME FACILITY 7 ,%701:
ngtns-l,)|_]_’ "l; '
for i:= 1 to 79 do write! ' -"1;
aotoxw(l,131;
for i:= 1 to 79 do writel =713
gotoxwl{l, 143
for i:= 1 to 79 do write(' -7);
gotoxwil, 250
far i:1= 1 to 79 do writel —-");
gotoxy(l,l;
rl 1= 13l 1= 1:
rg 1= lie2 1= 1;
i= 1
continue = TRUE:
< This dizplaves 3 key if pressed by the user,sends it
to the other PC and reads a charector from comm_buffer
if there is and d’“D ayes it ¥
while continue do
begin
i g= 255
i 1= getkew(il;
i = ladid;
if i = 03 then
begin
cantinue 1= FALZE
send{03);
clrscr;
end
else
if i {» 255 then

begin

sendi il

Windowel , 2,280,127
textbhackgroundi{ i}
textcolor{5);
gqotoxyirl,clly
Writeichriiys .

ETERY 1Y

FHOME . PAE

if i=13 then write{chr{l0:1;
rl = wherexjcl 1= wherey;i
end;
i = {1
‘d i= getbuff({i);
is=lo(i);
if i = 02 then continue:=FALE =lse
if 1 < 0 then

begin
windowi{l,153,80,24);
texthackground(Q)}

textoalor{3) g
QoIoRViTe o2}
writel{chr{ilds
2 then wri

s
H

if i=1 iteichr(1017;
rz 1= wherexjcd 1= wherey;
end;
ends
end;

DOS . Pas

£ This pregram reads DOS commands from the key board,

and appends the string rciredire$ct at thes end and
rezultent stving length,” © 0 ° at the beginning.®

proaram dos {input,ocutputlg;
function getkey (var 1 ! integeritinteger 3
function getbuff fwar i @ integer):integer ;

type
{This vecord contains the wariocues registers in Z0EE
idsed in intervupt voutines within TUREBD ¥
regiseters = record
ax,bx,cxu,ds,bp,si ,ds,es, fl Js & intege
ends; '
var
i,d.,k,1,flength rinteger;
o scharg
filename,doscmd,redirect @ stringl20];
5

”frlnqL4H}

f B
3

=3

o

[¥{]

o
o=

£ This procedure returns a charac

ter from comm_buffer
It waits till a character is recei

ved from ather PO ¥

procedure getchari{var itintegery;
var 1 ¢ integet:

begin

ioi= O

wWwhile 1 = 0 do i = getbuff{i);
ends;

{ This procedure swaps vectors w1 and w2 *

procedure swap_vectorse(vl,v2 @ integer};
begin

En}

o©y

LU H]
et 10 0D
- a

[R TV [1]

b e e 4
2

1]

-4
iy

-
1]

-
m W

e U0 A0 g

-t
% »
o~

bt
3

end;

£ This
It

i+

1t

p

Fage 1-2

oo
-

¥ o r= #3350

X 3= rveg.as or wli

$21,regl;

¥ 1= veq.es)

£ = vYeg.an; :

¥ 1= req.DHi

% 1= 2500 ’

¥OIT req.ax or vwEj

21 ,.regl

rocedure sends a char to Uax through 8250
untill shift reg and transmitter buffer

gl te

are empty ¥
procedure sendiw

! integsrig

MET ®,4,Z,1 @1 integer
begin
yo1= Ogz 1= 0O
while ({y = 0) or (z = 0331 do
begin
1= port[®03FD];
v o= ¥ oand 0020
z 1= ¥ and 0040
end;
por t[ELIFET] 1= wg
ends
begin .
1 This procedure stoves the address of comm_int at
vectar GLh from vector &0H *
swWwap_wectors{®al ,300)
1:=pcrt[$ﬂ¢f9]
i 1= 255 .
{ this cleares the comm_buffer ¥
wWhile 1 <% 0 do
Begin
1oz= [y
i = getbuff{il;
end;
send{ 271
gqetchar (il
if hriix= ‘0" then
!

i

T

n [t]
3

"[l

:."
EL
-I:H»
)
.I:x

R

leECt'=
wrzteln,
Writel COMMAND: g

readlnidosomdl g
flength:=lengthi{doezomdli+lengthiredirect) + 33
commandll]i=chr{flength}:

=

i)

I

pos,F
faor i = 1 to lengthi(redirecty do

egin :
commandlili=redirect[il;
ir=i+ly

end;
' cormand{ i} e=chr {137
i:=1

{ This =sends the command stving
while{command[i]l<*chri{l3) do
begin
send{ord{command[i])3;
ir=i+1;)

erndsi
send(13);
ii=0y
getchar{iry
{this reads message sent by other PC and displaves it ¥
Wwhile! 1 {F 26 1 dao
begin
wWwrite(chr{ilis
getchari(il;
end;
ands;
{ This storve the address of THMPCOM at vector OCH from

vector &FH ¥
sihiap_vectors{$s7,%00C7;

end.

BIBLIOGRAPHY

1. . Micvoprocessore and interfacing -
Programming and hardware by Douglas V. Hzall
2. Micro computer Svstems : The aogese088

Family by Yu-Cherg bLiv and Glenn &. Gibson

N Computer Metworks by éndrew 5. Tanenbaum

4, Turbo Pasczl manual

g The MSDOS handbook by Richsrd &llen Eing

&, ésaembly Lanqusge Technigues by &lan R; Millar

7 IBM po Technical rveference manual

a2, . Frogrammer '’ guide to the IBM poc by Peter Morton
9. BO% reference manual

ig. - Deszigning and implementing Local Area Metworks

o by Chorafas

	TH23650001
	TH23650002
	TH23650003
	TH23650004
	TH23650005
	TH23650006
	TH23650007
	TH23650008
	TH23650009
	TH23650010
	TH23650011
	TH23650012
	TH23650013
	TH23650014
	TH23650015
	TH23650016
	TH23650017
	TH23650018
	TH23650019
	TH23650020
	TH23650021
	TH23650022
	TH23650023
	TH23650024
	TH23650025
	TH23650026
	TH23650027
	TH23650028
	TH23650029
	TH23650030
	TH23650031
	TH23650032
	TH23650033
	TH23650034
	TH23650035
	TH23650036
	TH23650037
	TH23650038
	TH23650039
	TH23650040
	TH23650041
	TH23650042
	TH23650043
	TH23650044
	TH23650045
	TH23650046
	TH23650047
	TH23650048
	TH23650049
	TH23650050
	TH23650051
	TH23650052
	TH23650053
	TH23650054
	TH23650055
	TH23650056
	TH23650057
	TH23650058
	TH23650059
	TH23650060
	TH23650061
	TH23650062
	TH23650063
	TH23650064
	TH23650065
	TH23650066
	TH23650067
	TH23650068
	TH23650069
	TH23650070
	TH23650071
	TH23650072
	TH23650073
	TH23650074
	TH23650075
	TH23650076
	TH23650077
	TH23650078
	TH23650079
	TH23650080
	TH23650081
	TH23650082
	TH23650083
	TH23650084
	TH23650085
	TH23650086
	TH23650087
	TH23650088
	TH23650089
	TH23650090
	TH23650091
	TH23650092
	TH23650093
	TH23650094
	TH23650095
	TH23650096
	TH23650097
	TH23650098
	TH23650099
	TH23650100
	TH23650101
	TH23650102
	TH23650103
	TH23650104
	TH23650105
	TH23650106
	TH23650107
	TH23650108
	TH23650109
	TH23650110
	TH23650111
	TH23650112
	TH23650113
	TH23650114
	TH23650115
	TH23650116
	TH23650117
	TH23650118
	TH23650119
	TH23650120
	TH23650121
	TH23650122
	TH23650123
	TH23650124
	TH23650125
	TH23650126
	TH23650127
	TH23650128
	TH23650129
	TH23650130
	TH23650131
	TH23650132
	TH23650133
	TH23650134
	TH23650135
	TH23650136
	TH23650137
	TH23650138
	TH23650139
	TH23650140
	TH23650141
	TH23650142
	TH23650143
	TH23650144
	TH23650145
	TH23650146
	TH23650147
	TH23650148
	TH23650149
	TH23650150

