
Inter PC Communication

Dissertation submitted to the Jawaharlal Nehru University

in partial fulfilment of the requirements for

the award of the Degree of

MASTER OF TECHNOLOGY

V. KISHAN

School of Computer and Systems Sciences

Jawaharlal Nehru University

New Delhi

January 1988

Inter PC Communication

Dissertation submitted to the Jawaharlal Nehru University

in partial fulfilment of the requirements for

the award of the Degree of

MASTER OF TECHNOLOGY

V. KISHAN

School of Computer and Systems Sciences

Jawaharlal Nehru University

New Delhi

January 1988

CERTIFICATE

This work,embodied in the dissertation titled,

INTER. PC COt-··1t··1Ut···l I CAT I Ot··.J

has been carried out by Mr.V.Kishan ,bonafide student of

of computer and systems sciences,Jawaharlal Nehru

Thi =· t-.Jork is orfginal and has not been

submitted for any degree or diploma in any other university

ol· ins.titute.

Dr.S.Balasundaram
As.st, Profe·:.·:.or

Computer and Systems Sciences
Jawaharlal Nehru University

Ne1.,J Delhi

p,.- of Karmes.hu
Deari,School of Computer and Systems Sciences

Jawaharlal Nehru University
Nef..·.J Delhi

S Y N 0 P S I S

If an institute or organization has more than one

computer system,it is very much essential that these

computers to be interconnected,so that they can exchange

information.My aim i~ this project is to

Interconnect two PCs with RS232-C interface and

then provide facilities for file transfer between the PCs

and other utilities like mail and ~hone. The file transfer

between the pes is carried out in the background by

implementing multitasking.Resource sharing is incorporated

wherein a printer connected to one of the pes can be

accessed by the other PC as well.

The PC to PC conn~ction can be improved with some

more facilities and some more PCs can b~ connected' to the

existing two node network.

ACKNOWLEDGEMENTS

My sincere thanks are due to Dr A.K.Dua,

Systems Manager,CMC Ltd,New Delhi who initiated me to this

innovative project.

I ·am very much indebted to my ·3•Jide,

Dr.S.Balasundaram, Asst.Professor, who has been extreemly

helpful and encouraging throughout the project,without which

it would have been very difficult to complete the project.

Mr.Sanjiv Aggarwal, Systems Engineer,

me timely and useful! suggestions and sparing his valuable

time for discussions with me.

Mr.Katpalia of DCM data products gave very

useful S'Jgge-:.tions regardi n·3 the implement at i c•n

am thankful to him.

I e:=<Pl .. ess heat- tf el t •3rat i tude

Prof.K.K.Nambiar, fc·t-met- dean of our ·:.chc•ol,fot- pro•.).idin•3

the required facilities and for his unfailing interest he

has shown in this project,without which it would not have

materialized,

I am thankful to our dean Prof.Karmeshu,who

has shown special interest in my work.

1. Intt·oduction

2. IBM PC and RS232-C Architecture

2.1 8088 Architecture

' 2.2 Interrupts and interrupt service routins

2.3 Serial asynchronous communication

2.4 RS-232C serial data transfers

3. PC to PC communication

3.1 Introduction

3.2 UART intialization

3.3 Implementation

3.3.1 The RESPC module

3.3.2 The SYSINT module

3.3.3 The TIME_INT module

:3.3. 4 The PCJ·.~ET module

3.3.6 The PHONE facility

3.3.7 The MAIL facility

3.3.8 The file transfer utility

13

ll

I g-

Ift

;to

~~

;t_s

:Z"f
31

~3

'11

~~

f..t.ct"
~)

CJ 3.3.9 Resource sharing with DOS utility ~

4. InstructiDns for use

5. Future extensions and modifications

Appendix A 8088 instruction set

Appendix 8 Programming 8250 UART
.

Program Listings

I NTR.ODUCT I Ot··-~

As computers have become smaller,cheaper

and more numorous,people have become more

interested in connecting them together to form networks and

distributed systems.Advanced computer and communication

techno 1 o '3Y h-3~- been to survival of a
•

i n~-t i tu t i c·n~. and or·3anizations.Th-e exciting· tools. and

technique·:. of this high technology are used in

technology base,for arriving at general solutions and for

applications support.These approaches to the implementation

of computer metworks are revolutionizing communications~

business systems and manufacturing and technology. When

different computers can communicate with each other and are

interconnected into a network,we have many advantages like -

-greater reliability

- sharing common resourses

better support facilities

--faster response time

- internetworking capabilities

flexibility in applic~tion programs and so on.

t·-1o =· t o.f the terminals that connect office

t 0 n·.a in f t• ames- dumb. In cc•n tr·ast, the

computet· is fast developing into an intelligent user-

programmable terminal.It is a monotask but multi pro ce·::.-:.c• t· ,

low cost,high capacity device.There is a significant

toward multifunction work station as opposed to single

function terminals.Interconnecting personal cpmputers into a

local area network and networking these with a main frame

system offers many advantages.

MOTIVATION FOR THIS PROJECT

He,at have very good computing

facilities.The systems include a VAX 11/780,HP1000 and six

DCM TANDYlOOO pcs.So far these computers ~re isolated and

there is no way a user working on one system can look into

his files on the other machine.My basic aim is to provide

this facility.Since networking all these computers in not a

task that can be completed with in a semester of six

months,i started with a subset of it.

I want to connect all the pes into a local area

network.As a first step towards this,i wanted to interconnect two

pes through RS-232C,so that thay can exchange information.This

can be extended to interconnect all the pes into a token ring

network.By adding some more software, the pes· can also be

connected to the VAX. Collision detection has to implemanted when

•
more than two pes are i~terconnected.Ideally the master pc should

•
be a PC/XT or a PC/AT.

II .IBM PC AND RS232-C ARCHITECTURE

The :brain of the personal computer is the 8088

microprocessor.This chapter gives an introduction to the

architecture and programming aspects of the INTEL 8088

microprocesscir and it/s communication aspects.

2.1 8088 Architecture

Fig 2.1 shows the internal architecture of 8088

microprocessor. The control unit and working registers are

at·e -

i. The data group ,which is essentially the ·:.et c•f

arithmetic registers,

ii .The pointer group ,which includes base and index

but also contains the program counter and stack

pointer,

iii.The segment group which is a set of special purpose

ba~.e ,.- e·3 is t er ~-.

All the registers are 16 bit wide.

The data group consists of AX,BX,CX and DX

registers. These registers can be used to stor~ both

operands and results and each of them can be accessed as a

whole,or lower and upper bytes can be accessed separately.

In addition to serving as arithmetic registers,

the BX,CX and DX registers play special addressing,counting

and L··'Q r·oles ..

be used as a base r·egi~-ter in addr·e·:.s

·AX

BX

ex

ox

O.te registers

-AH Al

BH BL

CH CL

OH DL

PSW

Control
logic

Pointers'

SP

BP

SI

OI

IP•

• For the 8086 the program counter is celled the
instruction pointer (IP).

5

Instruction
queue

Segment registers

cs
ss
OS

ES
2

Addtell/dlta

(20plnsl

Control

(16 pins)

+5V

Ground

Clock

FIG 2.1 8089 BLOCk DIAGRA.t1

calculations.

CX is used as an implied counter by certain

instructions.

DX is used to hold the I/0 address during certain

I/0 operations.

The pointer and index group cons1sts of the

IP,SP,BP,SI and DI registers.The instruction pointer (IP)

and SP registers are essentially the program counter and

stack pointer registers,but the complete instruction and

stack addresses are formed by adding the contents of these

registers to the four bit left shifted contents of the code

segment(CS) and stack segment(SS) registers. BP a base

register for accessing the stack and may be used with other

registers and/or a displacement,that is a part of

instruction.The SI and DI registers are for indexing.

Although, they may be used by themselves,they are often used

with the BX or BP registers and/or a displacement. Except

for the IP,a pointer can be u~ed to hold an operand,but ~ust

be accessed as a whole.

To provide flexible base addressing arid indexing,

a data address may be formed by adding together a

combination of the BX or BP register contents, SI or DI

register contents and a displacement. The result of such

computation is called an effective address(EA) or offset.

The final data address,however is determined by adding the

EA to the four bit left shifted contents of the appropriate

data segment,extra segment or stack segment registers. This

enables the proceesor to generate a 20 bit address .

The segment group consists of the CS,SS,DS and ES

regi s.ters. The utilization of the

essentially devides the memory space into o• .. Jer lapping

-:.egmen t s, t.,J i t h each segment being 64k bytes long and

beginning at a 16 byte paragraph boundary

an address that is divisible by 16. So the contents of the

segment regis~er is the segment address and the segment

address multiplied by 16 is the beginning physical segment

addre·:.s ..

The advantages of using segment registers are to

1. Allow the memory capacity to be one magabyte even

the addresses associated with the individual

are only 16 bits wide.

i n·:.tt·uct ion·:.

2. Allow the instruction,data or the stack portion of a

program to be more than 64k bytes long by using more than

one code,data or stack segment.

3. Facilitate the use of separate memory areas for a

program, it's data and the stack.

4. Permit a program and/or it's data to be put into

different areas of memory each time the program is executed.

FLAGS The 8088···s Pl·ogram s.tatu-:. t-..tord(PS~··D contains 16

bits,but seven of them are not used.Each bit in the PSW is

called a flag.The flags are divided into the con eli t i c•nal

flags, which reflect the result of the previous operation

involving the ALU, and control flags which control the

execution of special functions.

The flags are summarized below.The lower byte in

7

the PSW corresponds to the eight bit PSW in the 8085 and

contains all of the condition flags,except the C•',l er f lo-:;1,· .. 1

The condition flags are-

SF (sign flag) is set if the fesult is negative,reset if

po-:.i t i •.,oe.

ZF (ze·ro flag) i-:. -:.et if the ·re-:.I.Jlt i·:. zero-:; and re:.et if

the result is nonzero.

PF (parity flag) is set if the lower order eight bits of

the result contain an even number of ones,otherwise it is

CF (can·v flag) an addition or subtraction causes this

flag to be set 'if a carry in MSB or a borrow is needed.

AF (auxiliary carry flag) is set if there is a carry out

of bit 3 during an addition or a borrow by bit 3 during a

subtraction.This is used exclusively for BCD arithmetic.

OF (overflow flag) is set if an overflow occurs.

I I I I I I DF I IF I TF i SF I ZF I I AF I I PF I I CF I
1_1_1_1_1_1_. l_i_l_l_l_l_l_l_l_l_l

DF (direction flag) u·:.ed manipulation

i n:.nJ.::t ion-: .• If clear,the string is processed from it's

with the first element h~ving the lov.Jest

address.Otherwise the string is processed from the high

address towards the low address.

·IF (interrupt enable flag) - If set,~ certain type of

interrupt (a maskable interrupt) can be recognized bu
·' the

CPU,otherwise'these interrupts are ignored.

TF (trap flag) if set, a trap is executed after the current

i n-:.tt·uct ion.

The 8088 provides various addressing modes,for

details see Microcomputer Systems: The 8086/8088 family by

YU-CHENG LIU and GLENN A.GIBSON.See appendix A for the

instruction set of 8088.

2.2. Interrupts and interrupt service routines

It is sometimes necessary to have a computer

automatically execute one of a collection of ·:.peci al

routines,whenever certain conditions exist within a program

or the comput~r system.The action that prompts the execution

of one of these routines is called an interrupt and the

t·outine that is executed is called an interrupt service

routine. There are two general classes of in ten·· up ts .:md

associated routines. They are the interanl interrupts that

are initiated by the state of the CPU or by an i n-:.tnJct ion

and the external interru~ts that are caused by a signal

being sent · to

s~;~ -=· t em. T~,J pi cal

the CPU from elsewhere in the comp•J tet·

in tet· n .31 interrupts are those caused by

di• .. Jisic•n b;"' a zero or a spe•::ial in-:.truction like INT .and

typical external interrupts are caused by the need of an I/0

device to be served by the CPU.

In general interrupts can b~ recognized in two

a. By polling and b.Interrupt basis. In polling, the CPU

regularly checks the I/0 ports for any pending interrupts.

The disadvantage with polling is that the CPU time will be

Page €f

t,-,,as ted, since the CPU has to regularly check

devices.Not only that,data can be lost at the 1/0 port if

there is considerable delay in successive pollings. In the

i.e.,interrupt basis the CPU recognizes the

interrupt only when the I/0 device sends an interrupt.

An interrupt service routine is similar

pro o::edu r· e, in that

pr·ogr·am and r·eturn bran.::~-, is. made to that pr·o·3l".ain after the

interrupt service routine is executed.The interrupt service

routine must be so written that,except for the lapse in

time,the i~terrupted program will proceed just as if nothing

had happened.Thi~ means that the PSW and the registers used

by the routine muit be saved and restored and the return

must be made to the instruction following the

instruction exe~uted before the interrupt. An inten·upt

service routine is unlike a procedure in that, ins.tead of

being linked to a particular program,it is sometimes put in

a fixed place in memory.Because it is not linked to other

segments,it can use only common areas that are absolutely

located to communicate with other programs.Because some

kinds of interrupts are initiated by external events,they

I

occour at random points in the interrupted pro~ram.For such

interrupts no parameter- addresses can be passed to the

interrupt routine.Instead, data fommunication can be made

through variables that are directly accessible by both

routine·:..

the interrupt,the

· -;;;)- fo

action that results from an interrupt are the same and are

known as the interrupt sequense. Some kind of in~errupts are

controlled b~ the IF and TF flags and in those cases,these

flags must be properly 5et or else th~ interrupt action is

blocked. If the conditions for an interrupt are met and the

necessary flags are set,the instruction that

executing is completed and the interrupt sequence proceeds

by pushing the current contents o~ the PSW,CS and IP on to

the stack,inputting the new contents of IP and CS from a

double word whose address is determined by

interrupt and clearing the IF and TF flags.The new contents

the IP and CS determine the beginning address of the

interrupt service routine to be executed.After the interrupt

has been executed,the return is made to the in ter1·up ted

program by an instruction called IRET which pops the IP,CS

and PSW from the stack.

The double word containing the new contents of IP

and CS is called the interrupt pointer.Each interrupt

will be given a number between 0 and 255 inclusive and the

address of the interrupt pointer is found by multiplying the

type by 4. These addresses are loaded b~ the opel·ating

system when the system is booted.

1/0 operations that take place between

devices and CPU on an interrupt basis are c~lled interrupt

I/O.Since there is only one interrupt input to an 8088,in

o ,.. det· to support more than one device, p ,.. o ·3r arnmabJ. e

interrupt priority management circuit (8259) is connected to

INTR and INTA pins of 8088.See Fig 2.2 for a block diagram

14

-·-

To 82821 •nd 82861
8288 buf cone roll~ IORC

A01 A00kfr
·-- -

iNlA IOWC

To 8286
'"""~oven J + 8269A • I INTA WR AD

I (AS(I

I sP ftil
CAS1

CASl
---~ __ ·:-.-:

_.... Clur ·~'IU<'11
01 00

I -, ., ..
IRO

lntf'lrupc IR1

r~ut•ll JR2
In .,.,..,IC<' A Prooroty

.A regr\1~1 IRJ

K v IIRRl ·~1\lf'l resolvf'l 1\.. IR4
II SRI lnd

IR&
"''"''"9

for an 8086 ct\•1 loql(IR6

hrw '' A 1 and fo<

"
IR7

~ an 8088 •I '' AO

~
I ..

fro,•8282
ICW1tchlp CU<'l'"'' OCV.1'

«l I -I -I I IL nrw~ I Aorl SNGLirc41 I I 4dd1~' latcht'l

t
I 1n1rrrup1 malk reg1l1f'l IIMR)

"'""' .. AO rc:wi·u.pc:l OCW2
~

I I] I R I Sll EOI I I ll71 Ito I ~
Htgh Of <it'< boiS fhqun c level 0 0 L1

f I I I I . I
: "' '

~
~ rcvd '".., ... cunt•ull• OCW3
<~ AdOre.

I I I 0 I£ S'.lt.l I SJ,IO.; I 0 I I PI RRIR•sl dfcoder P- cs 1
--,1 I I I I I I I

INTR

loQIC
A1!1-A 1 0pt"f.t1,vn cor.'rr...,ld words-'

JCW4 Crno~ con troll
101 A 16-A2

fo< 80861 I o I o I o jsFNMisurj M s jAEOI I ~PM j
INT lnth ... l.ttQn contm.¥\d VtwOtd'S

'AO- 0 to< ~dr~M"'91"<' for,c word IICW1)And 1 lo

~drf'11<"9 11W WCcft'dt"9 ""OI'<k.
1 AO • 1 fOt ..sc~rnsu>g 1tw forl1 word ¥\d 0 for aldrn'"'ll

"'" wcc..-.J••'9 wa<dl.

FIG

-
1 B•IiCUHl"S4JUO<llO IR •fli)UIS. Bot 1 ,.,...,, IR ,, mAikf'd

And Bot • 0 nw~n1 rt 11 noc "'""'-<'<~
4 11 82SIM ''A tTWI1..,. B•t • 1 •nd•c.tn thll th~ corrnpondrng

IR onputosconrwctf'd to • \lAV~ for • st..,~. O•IS 3-7 ar~O
~d brU 0-2 ickntoly th~ ~~.

82.59 tNTERQUPT PR-~ORITY

BLOCk· .)~A GRAM ..,A.aA6EMENT

I

I

I

I

I

Page f;Z-

of 8259 interrupt controller.I/0 devices are connected to

the different levels of priority management circuit.Each

level is assigned a unique interrupt vector. When an

interrupt comes from a device on a particular level,priority

management circuit checks for the priority.If any higher

priority interrupt is in progress ,it keeps i t in
~

pending,otherwise {t interrupts the CPU on behalf of the I/0

device and sends the interrupt vector number which enables

the CPU to respond to the interrupt.

The interrupt priority management circuit

contains the logic needed to assign priorities to the

incoming requests.For example, the hi~hest priority could be

given to IRO~ the next priority to IRl and so on. When an

interrupt request is recognized by th~ priority logic as

having the highest priority,then the three least significant

bits of the type register are set to the numbe~ of the

request line, a bit is set in the inservice register and an

interrupt is sent to the CPU. If IF flag is set then the CPU

returns an acknowledgement signal and the management circuit

sends the CPU the type. All the requests having lower

priority are blocked until! the bit in the inservice

register is cleared,an action which is normally done by the

routine.Therefore when IF is reenabled by an STI

instruction,higher priority requests may interrupt the

currently executing routine~ but the lower priority requests

will be blocked by the priority Logic until the bit that was

set in the in ser0ice register is cleared. This allows the

lo,_.·.Jel· p·rioritv interrupts to proceed. The

management circUit is programmable.

For details of programming th~ 8259 refer INTEL

manual. ..
In addition to the built in priority,a one byte

mask register is provided to allow the masking of individual

requests.Bit n in this register is for masking IRn.

2.3 Serial asynchronous communication

For two computers to exchange informat~on,there

sho~ld be proper interface between them.This is provided

through a communication link 5 which facilitates the data

tt·an:.fet·.

Hi thin the co~puter,data is tr~nsferred in

parallel,because that is the fastest way to. do i t . For

transferring data over long di~tances ,however parallel data

tiansfer requires too many wires,which is not feasible when

the computers are located far apart.Therefore data to be

sent to long distances is usually converted from parallel

form to serial form,so it can be sent on a single wire or a

pair of wires. Serial data received from a distant source is

converted to parallel form,so that it can be

transferred to the computer bus.

~3er i al data can be sent ·:.y n c_hr •::. no u sly Ol"

asynchronously. For synchronous transmission,data is sent in

blocks at a constant rate. The start and end of block are

identified (.-. .ri th specific bytes or bit

asynchronous transmission,each data character has a bit

'If
which identifies it's start and one or

identifies it's end. Since each character

identified,characters can be sent at any time.
. l . ·t~t:AJ> ~PAC-E

l.SB . L" J . . fJ,6-"iW66tV
...___ _ __________ ~~ ~- . ..,.. _ c..FII{~c.7oR.S·

/ ~~~~0~ C HRtnoR. IZ":!T5 -ii>l oP,.,tot\IAt. _ \,\Ya,..Oit ~
S~v fA/lz:ry IJ17 MVf f1 'j"T (..S)

Fig 2.3 Asynchronous communication format

Fig 2.3 shows the bit format often used for

tran·:.mi t t i ng asynchronous data.When no data is

sent,the single line is in a constant high or a mark~ng

state.The beginning of a data character is indicated by the

line going low for one bit time~This bit is called a start

bit.The data bits are then sent out on the line one after

the o the~·. The lea·:.t s i gn i f i cant · b i t i -=· ·::.en t out

first.Depending on the system,the data word may consist of

5,6,7 or 8 bits. Following the data bits, a parity bit is

used to check for the errors in the received da~a. Some

systems do not insert or look for a parity bit. After the

data bits and pariXy bit ,the signal line is returned high

for at lea~t one bit time to identify the end of the

character.This always high bit,is referred to as a stop

bit.Some systems use 2 stop bits.

The term baud rate is used to indicate the rate

at which serial data is· transferred.Commonly used baud rates

are 110,300,1200,2400,4800,9600 and 19200.

To interface a computer with • 1 -:.er 1 .3 ... data

lines,the d~ta must be converted to and from serial form.A

parr·.::!llel in , -;:.erial out shift .. .3nd a set· i al

in,parallel out shift register can be used to do this.A hand

shaking circuitry is needed to ensure that the transmitter

does not send data faster than it can be read in by the

receiving system.There are available several programmable

LSI devices which contain most of the circuitry needed for

serial communication.A device such as the INS 8250 which can

do asynchronous communication is referred to as a Universal

. .

Asynchronous Receiver Transmitter or UART.

Fig 2.4 shows the block diagram of 8250. The

status register would contain error and other infonoati•:;.n

concerning the state of the current transmission,and the

control register is for holding the information that

determines the operating mode of the interface.The data in

buffer is paired with data in shift register.During an input

operation,the bits are brought into the shift register one

at a time and after a character has been received,the

info uoa t ion i ~- tran~.ferr·ed to the data in buffe1·

register,where it waits to be taken by the CPU.Similarly the

data out buffer is associated with a parallel output shift

register.An output is performed by sending data to the data

out buffer,transferring it to the shift register and then

shifting it to the serial output ~ine.

Although there are several ways in which the four

port registers can be addressed,it has been assumed that the

status register can only be read from and control register

can only be written into.Therefore an active signal on the

read line would indicate either the status or data in buffer

18

Serial communication interface

Data bus
drivenMld

receivers

Interrupt
request

Handshaking .____;,R_eed_._.-i
logic:

Address
decoder

Write

From «idress __ _,

bus

8250

[Status register

Control register

Receiver
clock

FIG 2.4

and/or
Transmitter

clock

Modem

._.-+--Serial input

Serial output

UART 8L0C.I(DIAGUAM

Page l'Z

register.The interface has separate lines for sending and

receiving information.So it ca·n be u·::.ed as a. full duplex

ch.3nnel.

The information can be read from data_in register

either by polling· or on an in te·rrup t bas.i ·:;.In our

implementation,the characters are received on an inter1·upt

basis.Accordingly the 8250 is programmed· to inten··1..1pt

whenever there is a character in data_in register.It is also

progt· arnmed tt:; the appropriate baud rate,number of stop

bits,number of data bits,and the parity.

For details of progYamming the 8250, see appendix 8.

2.4 RS-232C serial data transfer standards

Modems and other devices used to send serial data

are often to as dat.3 co:;mmun i cation

equipment(DCE).The terminals or computers that are sending

0 l" the data are t· ef erred =..c =-· data tenni nal

equipment(DTE).In response to the need for signal and hand

s.hake standards between DCE and DTE the Elect t" on i c·:.

Industries Association (EIA) developed EIA standard RS-232C.

This standard describes the configuration and function of 25

singnal and handshake pins for serial data transfer.It also

describes the voltage level,impedence level,rise and fall

times,maximum bit rate and maximum capacitance for these

signal lines.RS-232C specifies pins. and i t

specifies that the DTE connector should be a male and,the

DCE connector should be a female.A specific connector is not

given,but the most commonly used connectors are the 0825-P

Page 13

male and the 0825-S female.It is important to note the order

in which the pins are numbered.See appendix 8 for RS-232C

pin configuration.

The voltage levels for all RS-232C signals are as

follows-A logic high or mark is a voltage between -3V and

-15V under load. A logic low is a voltage between +3V and

+15V under load.Voltages such -as +/-12V are commonly used.

I I I . PC TO PC CDr··1HUNI CATION

3 .1 I t··-lTRODUCT I Ot-··l

For a terminal to communicate with a nearby

computer,a simple RS-232C connection is sufficient.If the

computer is distant,then a modem is re~uired.

As another example of computer communication,

suppose that we have several computers in one building or a

complex of buildings,that need to communicate with each

i ·:. needed in this case is a high -:;.peed

network,commonly called a· local area network LAt··.J,

connecting the computers together.In thi·:. pat·t of the

project,we are connecting two PCs via RS-232C,which will

communicate at a baud rate of 9600. Since onlv

PCs are connected, no bus arbitration· is

if rnol·e PCs are then ·col! i -:.ions

have to be taken care of.

The facilities provided in this project are-

a. File transfer betwe~n the pes .

b. Other utilities like mail and phone.

c. Resource sharing.

The file utili tv run·::. in the

background.When a request for file transfer is made from pel

to pc2, a resident program on pc2 responds to the 1·equest

and transfers the file in background.The user can continue

Page tc;

r

the file transfer.A printer connected to one of the PCs can

be accessed by both the PCs.

Ou~- aim in this work is to get the rna>:. i'rnum

throughput of the pes and share the resourses like printer.

When we are using RS-232C,the data transfer rate is always

slow.RS-232C can support only upto 9600 baud rate,while the

CPU execution speed is much higher. It has to wait till each

byte is transferred.Not only this,we are keeping the user

idle.A user requsting for a file can wait,but i t is nc• t

reasonable to keep a file sender idle.To overcome this

problem,we are doing the serving job in the background.

there is a request from pcl,the process

residing in pc2 is initiated and requests the user for his

for the file transfer.If the reque·:.t is.

granted,it continues the job,otherwise simply returns.

LANGUAGES CHOSEN

For writing interrupt service routines and

adjusting the interrupt vectors,assembly language is the

natural choice and w~ chose the same for our RESPC program.

The rest of the module is developed in TURBO

pascal.Pascal,as such is a good procedural language and it

is much eas.i et· debu•3 .;:s p ~- og1· am in

pa~cal.Compiling and debugging with TURBO Pascal i-:. • . .Je~-y

easy because of it's speed and inbuilt editor.TURBO also

provides excellent and very useful features like interface

to assembly lan~uage programs,executing MSDOS interrupt

service routines,windowing,direct memory access,direct port

addressing,efficient

disabling I/0 errors.

file h-3ndl i ng and enabl i n•3 and

The assembly language interface is used in

calling GETKEY and GETBUFF assembly functions.Many of the

like PO:::: CUR p r c• cedu 1· es.

so f ti/.Jar· e in ten·· up t

facility.Windowing ha·:.

-:.o

sert.J ice

-3 di r·ect

IJtilize the

routine execution

hli th minc•r·

modifications for cursor positioning.Direct port addressing

capability is utilized in addressing the 8250 communication

por·t.

:3.2 UART INTIALIZATION

The theory and programming aspects of UART were

discussed in chapter2.The PC has two communication ports

Cot-··11 and COt···12. Each of them can be

programmed.For ·PC to PC communication,COMl

independentlv

i -;:. used. The

interrupt output of this device is connected to the IR.4

interrupt of the 8259A prioritv interrupt controller in the

PC mother board.The 8259A itself is mostlv i n i t i al i zed b~,~

the svstem is booted.However,since the UART is

IR.4 of the 8259?:-~, that input h.3-;:. t.:;. be

'.lnmasked. To do this,the current contents of

interrupt mask register ars read in from address 21H.The bit

corresponding to IR4 (bit 4) is then ANDed with a 0 to

the interrupt and the result put back in the

register·.

In this communication,only four wires are used

(See F i g4 . 1) . RXD (Receive Data), TXD (Transmit Data),

Page !/

protective ground and signal ground;and 8250 is programmed

accordingly.

First the divisor latch register is programmed

for the app~opriate baud rate.To program the baud rate,the

devisor latch address bit(DLAB) of line control register has

to be set.So SOH is output to line control register.

Next, the divisor latch register 03F8H and 03F9H

are programmed with the appropriate baud rate.For a baud

rate of 9600,the values to be output are 00 to 03F9H and OC

to 03F8H.Since the communication parameters can be changed

~with in the sessiori using the setup option,this baud rate is

1
~programmable and can be changed at any time.

~ Next, the line control register is programmed

' with the. d~fault parameters. For our communication,the

parameters are 8 bit data,one stop bit and no parity.Hence

03 is output to the line control register.Like

programmable and is taken care in setup.

Since characters are received on an interrupt

enable data available interrupt bit (bit 0) in

enable register is set.So 01 is output to

interrupt enable register.

In this implementation,characters are received on

a~ interrupt basis and buffered.These characters are later

read from another program and processed.Let us consider a

simple program where characters are received by polling the

8250 and displayed,and input from the keyboard is sent to

another PC.

. In i t i ali z e 8250

l-epeat

if keypressed,then read key and send it

if UART has a character,then read the

character and display it

for·ever·.

The above program works well at 300bd or 600bd.

However for a baud rate of 1200 and above,the first

character of each line of characters received from the host

will be lost. After a carriage return is sent to the CRT,the

display on the scr~en is scrolled up one line.Not only

this,the input from the keyboard has to be processed and the

received characters have to processed for escape and control

sequences,whic~ takes considerable time.To avoid loss of

characters during this time,the characters are received on

an interrupt basis and stored in a circular buffer.

3.3 IMPLEMENTATION:

This package consists of assembly programs

and pascal programs,in which pascal programs are loaded and

executed using assembly routines and assembly programs are

called from pascal programs.

These programs are -

1 . R.Ef;PC. ASr'1

2. PCt·,lET. Af;~'i

:=:. FACI LIT"(. PAS

4. PHQt-·.JE. PA:::;

5. t--1AI L. PAS

6. A.SKFI LE. P~S

:=:. :=:. 1 ~~ESF'C::

See Fig 3.1 for a flowchart of RESPC.This program is

written in assembly language.It stores the characters in a

circular buffer and another function GETBUFF(which is in

another module) reads characters from this buffer.Since both

these functions share certain parameters,there should be a
~

t.·.Jav to these common parameters. In this.

implementation,the Data Segment of RESPC is ·:.tc•red in

0000:01:34H. GETBUFF later loads the DS with the data in

0000:0184H and accesses different parameters as offsets with

in the data segment.

Since communication port is connected to IR4 of

8259A,the 8259A will send interrupt vector OC to the

p ,.- o ce·:.·so r . :;:;o the starting address of the communication

interrupt service routine is stored at vector 60H,using DOS

function call 25H,later it will be stored at OC by a routine

The communication interrupt service routine,which

is resident all the time in memory, receives characters from

PC2 and stores them in circular buffer.The flow chart is

given in fig 3.2

Since the interrupt can occour at any time,it is

impot- tan t to save the DS register and load the DS with

DATA-HERE.

The buffer used here here is a circular buffer.One

RES PC

START

LOAD l>S
STO~ bS .rN ooo.t:Oif

M&AD•PTA•O
TAU-PTR•O
CMAt-cDUNT •0
)(QF'F'-SENT •0

COMM-lN1_

ves

ves

ENAILE INTEQQUPTS

SAVE A~8X10t~J)-,J)t,J)S
.l.OAD J)S W£TM .DATA

S£GMEWT OF ReU.DE

NO

STORI! AL n1 •ue.o&
POENTe) BV "rAEl-PTA

YES

pointer called the tail-pointer is used to keep

where the next byte is written into buffer.Another pointer

called the head-pointer is used to keep track of where the

next character is to be read from the buffer.The buffer is

becau ·:.e, 1.-• .rhen the tail-ptr reads the

location in the memory space set aside for the buffer,it' is

wrapped around to the beginning of the buffer again.The

head-p t1· follows the tail-ptr around the cit·cle

characters are read from the buffer.The checks are made on

the tail-ptr before~ character is written into buffer.

First the tal-ptr is brought into a register and

incremented.This incremented value is then compared with the

maximum number of bytes the buffer can load.If the • . .Jalues

are equal,the pointer is at the highest address in the

buffer.So the re·3ister to zero,after current

is put into the buffer.The value will be loaded

into the tail-ptr to wrap around to the lowest address in

the buffer.

check is made to see if the

incremented value of the tail-ptr is equal to the he.3d-

ptr.If the two are equal,it means that the current·byte can

be written,but for the next byte the buffer would be full.If

this happens,an XOFF character is sent to PC2 to stop it

from sending more characters and the xoff-sent flag is

set.But. some characters may be sent by PC2 before we send

XOFF.To avoaid this,every time a charecter is stored in

buffer, a variable char-count is incremented.This char-count

is compared with 950 and if they ar~ equal,an XOFF is sent

and xoff-sent flag is set.This way the host i ·:. 1· e·::. t r· .3 i ned

from sending more characters before the buffer gets filled

. up .

The other. procedure which reads characters from

this buffer(GETBUFF) checks the xoff-sent flag after every

read.If this flag is set,it checks the char-count to see if

there is enough space,in the buffer.If the char-count is

1 e-:;.s;. than 750 , i t -:.ends. an ><Cit'··l .:m d r es.e t -:. x off -s.e•n t f 1 a·3. This.

assures that there is a buffer space of 250 characters and

RESPC can ressume buffering.

Finally before returning,an end of in t er r·u p t

command must be sent to the 8259A to reset bit4 of the

interrupt mask register.

PCNET is an assembly program,consisting of

:;y·s I NT, T I r'iE_I t··.JT and TH1PCot''1 inten·upt 1·ou tines .• Before

proceeding to describe these routines,it should be born in

mind that MSDOS is a single user operating system and it's

code is not reentrant.In our program,the file transfer is.

carried in multitasking.SYSINT and TIME_INT serve this

pur·po:.e.

I/0 functions and certain special

program has to request the

system,with the proper parameters.The operating system does

the specified task and gives control back to the c.alled

process.IBM pc provides some firmware routines for ce~tain

basic function~ and MSDOS provides variety of routines under

in t er·up t 21H with different function calls. (See

technical reference manual for detaiLes).Sinc:e MSDOS is a

single user operating system,we can run only one process at

a time and only one function request is made at a time.The

p r Q c:e·:.·:; requests fQr system services one after· the

other·. Si nee MSDOS routines are not 1· een t r· ant , in the

multi tas.king,t,,then a prc•ce·:;.s enter·:. the svs.tem r-outine,c•ther

process should not be allowed to enter.If this is allowed

the system will c:rash.We can implement multitasking,by

executing each process till it's time slice expires.This

WQrks very well if bQth processes are not requesting for

system services at the same time.

But imagine a case,where multitasking is

.implemented and a process called a system function ,and it's

time slice is over when it is halfway through in the system

is passed on to the other proc:ess,and if

that pr·oces·:. als.;. for the s~,..t s. t em

function,there is no way MSDOS can know that the request has

come from the second process and it is in the way of serving

it.Hence the register variables of the first process will

be reinitialized ,which will lead tQ system crash.One

solution to this is to execute the process,though it'~ tim~

slice has expired.But this may lead to another probl~m,where

the system routine may be indefinitely waiting for the

input .For· ex.ample it may indefini tel}' t,..Jai t for· an input fr·om

the keyboard.The user may take his own time in giving the

input.During this time,the process is simply waiting for the

input from the keyboard and the second process can not be

served.Since MSDOD is serving one process,we should keep the

other process's request in pending.Another solution to t hi::.

problem is not to allow MSDOS to respond to keyboard I/0

until a key has been pressed.This method is implemented in

the following SYSINT routine.

3.3.2 SYSINT : When .a system call is made by a process, it

puts the appropriate values into the registers and executes

the corresponding interrupt.Then control branches to the

appropriate address and the routine is executed. When we run

PCNET,it takes the address of the actual system routine and

places it in vector 64H.It stores the starting address of

SYSINT at vector 21H. So whenever a system call is made with

vector 21h,The control is retained by SYSINT.

This SYSINT checks the int flag.If i.t i ·=·

set,it gives control to the actual system routine.This is

necessary because,when a process reads a key

MSDOS,it returns the ASCII value in AL register.If the key

is an extended key,AL contains zero and another call must be

made to get the extended code.When this happens,the next

request must be served to the same process.For t h i ::. , !;;;;···(S I NT

sets the intflag, when the process is leaving the SYSINT in

this particular case.

In the next step SYSINT checks whether

the request is for keyboard 1/0.If it is ,it simply loops

tint i 1 a key or keys are pressed.Then it sets the key flag

and the int flag and gives control to the system routine.If

SYS-INT

Pl>S'-\ f::LAGS A._,)>

~E6lXST£Q. USEJ)

YEs

S£ I ~~~ .f:L A G

Ex£CUTE. S'{SIEH. Rot)TXt-.JE

-FIG~-~

YE.s

Page ~i

the request is not for keyboard 1/0,it simply gives control

the system routine.Since it is looping for

input in SYSINT, TIME_INT can give control to the other

process.This int flag serves as an indicator to the TIME_INT

that a process is getting system service from MSDOS.

After executing the system service routine,

returned to SYS_INT.Then it the

in tf lag. If the returned value is that of an extended

it sets the int flag ,resets the keyflag and kev,then

control is returned to the requested process.The flowchart

is given in Fig 3.3

:3. 3. :3 T I t· .. 1E_I t .. ~T : IBM PC has 8253-5 timer chip,which has

three timers in it.One is connected to the CPU through 8259

interrupt priority controller,the second one is connected to

N··iA .:md the thit·d is connected tc• ·the speaket· .When the

system is booted,MSDOS programs the first timer to interrupt

the pro~essor periodically,so that the timer routine does

the time keeping.Timer has the highest priority interrupt.It

i -=· connected to IR.O of the 8259 interrupt

In out· implementation,Multitasking is controller.

accomp 1 i -:.hed, using this timer. Whenever there is a timer

interrupt,control is retained by our TIME_INT routine.This

routine first· does the system time keeping, then it pops the

instruction pointer,code segment,and PSW of th~ interrupted

process from the stack.It checks whether the interr~pted

process is getting served by MSDOS by checking the intflag

0 t• the code segment of the interrupted process.If the

intflag is set or the code segment is equal to the segment

•

TIME-. INT
92

EXEOl)i(

S'ISTEf-.1 'T1:11ER RCu-r:rtJE

~ -
.xtJ'f'E.Q.~l)f' TE"D ·PQ.bLE$S '1'ES

.rs G.€.'fTl:~G S'IS 'i E 1-1 -
ER,.Vl:C.E

r-

t-Jo

,!J '

E,?'-C \-\ A tJ G\ E. Q.E'&:rs T€ Q.S FRot1 J,

PRC:>c ESS CDt-Ji l<.o L SL-OC.K
I

P\JS~ T\-\£. cs, :r:PA~.D PSw
o~ T\-\e tJ f-,..:,.1 Pr<oc. ~ss t't-l

St AC.K At-J..D t. 7- 1::: (.ll T C. I RE..I

....-

~

1 ~ E 1" l.) a_ 1-.l \C> Tl-\£ OT \-\ E-R (> ~6(.ESSJ

of the MSDOS system routine,it restores the stack and

is returned the inte1·upted

process.Otherwise,it stores all registers the procees.

control block and loads the registers with the values of the

next process to be served, from the process control block of

the other process .The PSW,CS and IP of the process to be

given control are pushed onto the stack and control is given

back to that process by executing IRET instruction. The

f l•::.•., . .Jchal· t is given in Fig 3.4

3. 3. 4 PCNET This program initializes the 8250 such

it receives a character,it should interrupt

the processor.It's interrupt level .on p1·iorit).-•

is IR4 and it's vector is OCh. PCNET stores the

address of the TEMPCOM interrupt service routine at OCH and

67H.This routine stores all the registers of the interrupted

process,masks IR4 bit of the 8259 priority controller,so

that another interupt is not recognized during the execution

of this routine.Whenever there is an interrupt from 8250,it

reads the characters from UART and checks if the caharacter

·is an escape character.If it is,then it gives control to a

proc~ss,where it checks for the request and serves it.If the

received character is not an escape character,then TEMPCOM

•
unkmasks IR4,sends an end of interrupt to 8259 and calls the

disable function.This disable function places the starting

.addre-:.s of the TEMPCOM at vector OCh and loads all the

the interrupted process from the process

control block and gives control to it.

95
PCNET

IN!: T.T AL:r ZE 82,~

..1' tJ t T i: A LIZ .E VA R.1:ASLes

S'fDR£ ADJ)~ESS of'

'fEMP-COM AT

b'1 H At.Jj) oc H

s-roC2.e A.l>J) D. ESSES 6~ !tNT 21 1-1

AtJl> TX~£R ~C> \) ,... :t' ~ €: s Ar
VE(_TO Qs 64-H A "-'.D '3t-\

t-1Ak:.E Tt-\E: .PQ.c,c;;Q.AI'i

HEHCR'I RE:S.I..D£tJT

-

QE.~;E.Q.VE 20K H£NcQ.y

FoR CDH~AkJJ). CCH

(STOP)

PC NET

--~- J +Q.OM i.E:HP- C..tH1

1:~IT.fALI ZE R.EGl:sn:=.Rs

STCQ.E. C.MiH-.1:'-JT A.D.N~£$5
AT V£CT6 R OC H

SE.....S.D £J.J..D t> r !'..STE.Q.a. uPr
......,..- TO 85<."30

R.ELE:C.VF A c 1-+AR

.,.-.. ...

C.HAR IS~' NC

'1'E.5
•II

~t-Jl:. 1'"!: ATE . ~~! TA$ ~1:t-J6
£N 1:-T.r: ATE HULT.!:TAStl~

WA!'T -,fOR SoHe Tlt1E

'

I v
J>3:SAP>LE MULTl'TASI<..r~a S"IC>RE A.ETDP. ~ "".1) .D Q.. E.S.S

OF bAC.t: L~i'/ AT
VE.C.TO R. k.b. t-\

PUT TtH3 CCHHAt-r.D S.Et-JT
B'l 0~£.~ .PC: AT 8(') H ,

.I f~EC..UIE .f'AC!:L£1"'{ .
RtLEASE H.rHOR'J AA COHH~~

C()

DJ:tTl:.A L :t Z£ REGJ!:.STE RS.
I G:fV£' (Ot.JTttOL .TO useR

LOAD AtJ.ll E."><ECUTE'
r Cot·H·1AM]). COM

FlG 3.S

PCI'·-~ET initializes 8250 calling INIT

subtoutine for communication parameters of 9600 baud rate,B

bi t-::.,no pari tv. and one ·stop bit .3nd to genet·ate intet·r,Jpt,

whenever a character is recieved.Then it loads the starting

address of TEMPCOM at OCh and 67H,stores the addresses of

the original timer and interrupt 21H service r~utines in 63H

and 64H respectively,then stores the SYSINT address at

vector 21H and makes the whole program memory resident by

reserving another 20k of memory space.

Hhen TEMPCOM gives control to PCNET after

an escape character,it ini ti-3lizes all the

registers to execute this process and then copies COMM_INT

address from 60H to OCH.It sends a character .~ c: .·· to the

other computer so that it can goahead. If the 1·ecei ved

character is other than 'A' ,it stores the address of the

TIME_INT routine at vector OBH and initializes m~ltitasking.

It then stores the return address of the pascal program at

vector 66H and calls the pascal program ~ACILITY for further

s:.et·• . .J ice.

If a user on one pc wants to run a command on

the other pc,he will send an escape character ,followed by

t t-·,e char ae: t e1· 'A'.To execute MSDOS co~mands,we -::.ho u 1 d

release around 17k of memory allocated to the curt·ent

process to load a copy of COMMAND.COM into this memory.Then

place the command string at offset SOH with the strihg

length as the first byte and a carriage return as the string

.Then make the DS:DX to pofnt to the ·:.tring

COMMAND.COM and make ES:BX point to the parameter block and

load AL with zero,AH with 4BH,save SS and SP registers in an

area other than stack and execute interrupt 21H,which loads

and excutes COMMAND.COM. This COMMAND.COM picks up the

cornmand -::.tored .:.t and i t •

On return from the executed command,most of

have been changed,including SS and SP.These reqisters have

If the received character is 'A', it stores

the TIME_INT address at OBH,waits for some time and restores

the original timer routine at OCH. Then it reads the command

sent by the other user and places it in SOH and executes the

command as explained above.Then it calls the module

FACILITY,by placing the character 'D' in variable TRAY.The

flowchart is given in Fig 3.5.

:=:. :=:, 5 FAC I LIT\' : This program,written in pascal consists of

. I
e~ternal and internal procedures and functioHs.All external

procedures and functions are coded in assebmly.Let us see

how assembly programs are called from Turbo pascal and how

parameters are passed.

When an assembly routine is to be called from a

pascal program as a procedure/function,it should be defined

as external procedure/function in the pascal program.The

assembly program has to be separately assembled,linked and

converted to binary form by using EXE2BIN utility.

Let us consider a pascal program and an assembly

prc•·3r·am.

P a·:.c:.:.l p l" o gr· .3m

Page ')tB"

program pascal_assembly_interface;

function deCl" ('•'·3r n integer;

external ~decr.bin~;

• • .J ar· i , j : i n t eger· ;

i : = 1;

j : = deer· (i) ;

write(~i = ~ ,i)j

end.

Assembly program

functi6n decr(var n integer);integer;

deer· pro::•c ne.3t"

PU!=;H BP

t·,!i]l..) BP, !3P

LE:3 DI , [E:P+4]

!'11]1..). AX, ES: [D I]

DEC A><

t··10t) ES:[DI] ,A><

POP E:P

RET 6

endp

i is a variable in pascal initialized to

l.The assembly function DECR is called with the parameter

i .The function takes the variable i,dec:riments it and

returns the decrimented value.The pascal program then prints

this returned value.

Let us see how the parameters are passed.Turbo

Pascal passes parameters through stack.

At entry~the stack pointer points to the stacked

return address of the caller to this routine.The higher

address (sp+2) cohtains the address of the parameter passed

by the call~r.To access the parameter, we use the BP

register.Since this BP register would have been used in the

calling program,we must save BP as the first step in the

assembly progra~.In principle,all the registers that are

being used in the assembly routine have to be saved,and then

restored when returning control to the caller.Then the

current stack pointer is assigned to BP. Both SP and BP now

address the value of the saved BP registe~.The return

address and the BP register values are each of two

bytes,hence the parameter is found on the stack at location

[8P+4].The parameter is taken from this area,incremented and

put back at the same location. BP register is restored and

is returned to the caller by executing RET. R.ET

pop·:. onl;.J Since r Je

mustalso pop the paremeter,we shold use RET 6.

The following external procedures are used -

GETKEY : This function checks,if there is any input from the

and returns the data if any,to the called

program.The flow chart is given in Fig 3.6.

se:r

G,EiKEy

SAW BP

BP..-.SP

AH -+-Oi

J:NT l6

AR .,._oo

tNT 16

ES: (D:tJ ~ A)(

ResTORe 8P

CM6CK 2:~ k.EV

ts PRSS.sEJ>

READ ~E P~ESSE.b
KEV XNTO AL.

POT ntE k..EV rwTe
EXTERtJAL. 'IAP.rABLE

It··.JT 16H BIOS routine p r c•• .. J ide-:. diffe·rent

functions,depending on the value loaded in reg AH. AH=O

l·eturn-:. the cetde fetr .:; pressed kev in A·L. AH=l l"etl..nn·:. the

zer9 flag=O if a key has been pressed. INT 16 is called witM

AH=l. If zflag is set,there is no input from the keyboard

and execution returns to the caller.If the zflag is O,the

keyboard input is read into AL and the value returned.

GET BUFF This function checks if there is date in the

circular buffer and returns the data,if there is any.The

flow chart is given in Fig ~, ·=-·. f

All the registers are saved.The contents of

[0000:0184] are loaded into DS,so that the variables of

RESPC are accessible here.Once DS points to the data

segment,the variables within the date segment are accessible

as off sets using the registers BX and DI.

By comparing the head and the tail pointers,a

check is made to see if there are any characters in the

buffer. If not,the execution is returned to the caller.If a

character is available in the buffer,it is read and the head

pointer updated to point to the next available character.If

the pointer is at the top of the space allocated for the

buffer,the pointer is wrapped around to the start of the

buffer. The read character is then passed on to the external

variable. As discussed earlier,this function also checks the

xoff sent flag and sends an XON if there is enough space in

the buffer.

I t··.JTF'AE This routine stores the starting address of

FACILITY at address 65H and makes the whole program memory

resident and gives control to MSDOS.

RETURN : After the FAGILITY program is called and executed

from F'CNET,this RETURN procedure takes the return address

stored at vector 66H and gives control to F'CNET.

t··.JOSWAP This procedure di~ables multitasking by placing

the address of the MSDOS timer routine at vector 08H.

f
The additional procedures are-

Fit··.JDCUR Finds the position of the cursor by loading 03

into AH, 00 into BX and executing interrupt lOH.The column

numbe·r i -=· con t-3i ned in DL and the rot--.! numbe1· in DH. Rot.-.J

number ar-ies ft·om 0 to 23 .3nd column number •,.•a1· i es from 0

in PC ,,_,,,hi le the~:.! '·..' ar ~..' frorn 1 teo 24 and 1 to E:O

t" e-:.p ec t i ~.~ el v in normal use so a 1 i~ added to the reow and

column numbers determined above.

POSCUR Po·:.itions the cut·sor -3t the •:Ji • . .Jen ·ra:,rt and

C•:O 1 urnn , b~,.o loading 02 in AH,OO into E:>::: , t·o• .. ·,•number-1· in

DH,column number-1 in DL and executing intet·rupt lOH .~1 one

is subtracted b~cause of the same arguement as above.

DISPLAY :This Is used in displaving a character with a given

attribu.te.When characters are to be displayed in a mode

o thet· than normal,the attribute byte is set and this

procedure is called ~o displav the character in ~he required

F'UNCTION GET8Uf:F'

\'ES'

SAVE BP
8P~SP

SAVE ~, BX!)C)(, Dx,DI

COPV Tf.i£ 8YfE PO:tt.STE

BY H EAl'>-Pf~ n:> Ex. TE:A
VAF<+A8LE

lNC.REto1lENT &\EAZ>-PT~

J:NC.REMENT

AESET" .ser

J.OAI> J)ATA SE6t1E

Of RES! DENT :CNTO

at tribute. Fo·r cat· t" i age return,line feed and tab, the

characters are displayed as they are.For the r·es:.t, the

chat· act •:ot· is loaded in AL,09 into AH,the attribute into

BL,the number of characters into CL and interrupt iOH is

executed.The cursor is moved to the next col~mn.

Displays a given string with a given

attribute.It repeatedly calls the above procedure for ~ach

character of the string.

GET CHAR. In some cases it is necessary to wait t i 11 .;:s

character is received.This procedure waits till a character

is received by repeatedly calling GETBUFF.

SEND Sends an integer to the host.It reads the line

status register of COMl and checks if bits 5 and 6

corresponding to transmitter holding register empty_ and

transmitter shift register empty are set.If thev

set,then the data is sent to the output port [03F8].

REAbFILENAME :Reads the filename sent by the other user into

the string variable called filename.If it is unsuccessful!

in reading the filename,it sets fflag.

SEI'·lDF I LE: This is the actual procedure which runs in the

multitasking mode.It reads data from the required file and

·send·:. it to the other pc.Data is read from the file in

blocks due to the following reason.When SENDFILE runs in the

background and the user runs the directory command in the

foreground,MSDOS flushes all it's file discriptors in the

SEN»FILE

. R.EA I> ~:I:LE ~A t-1 E SE ~I

BY TI-\E. OTHER. PC

OPE.."-! n-\E FI.LE.

NC

5 E. T CO () tv T ::: 0

se.tJ.D 'c'

101

'(($

R.E T 4=:t.L€ PO :t.tJTER

SE.t..l~ E: R.R.O ~
C~.:bf<_ATC~ TC il-l£

€.

Q...E.AD A BLOC.. K. FC<oH THE f: I:. Lt

yES

Q.E. oPEN 1\-\ E. ~l:LE ·

HOVCC: I HE. ~:I:Lf
" \1 Po.I~TEQ.. TO C.OUlJT QLOC~

se.tJ_b E.AO-\ CI-IAR.AC.T€

T6 THE OTI-IER.. PC

P·age Lf:-6

memory and hence the file handle of the current file used in

the background job will be lost and there will be I/0 error.

To overcome this problem,this program reads the file in

blocks and keeps a count of the number of blocks read.If

there is any error in reading the file,it reopens the file

and positions the file pointer at the next block to be read.

This SENDFILE procedure reads the filename

and opens that file.If the file is not existing,it sends an

error message to the other pc, then disables multitasking

and returns to the main program. It reads the file block

wise and sends the characters one after the other.Then it

closes the file and disables multitasking.The flow chart is

g i '..'en in ·-~ ,-r,
.;). 0

GETFILE : This procedure is called when a user on pc2 mails

a file.It disables the multitasking by calling NOSWAP,reads

the filename sent b}J pc2,ct·eat·:. .3 f-ile 1,-• .1i th that n.3me . and

reads the contents of the file sent by pc2 and stores them

in disk till the end of file is encountered.If it is unable

to create a file,it sends an error message to the other pc.

SPEAK.: Thi·:. proc:edur·e is called,,_.,,hen a u-ser on pc2 m-3ke·:. a

phone call to pcl.It prompts the user for his permission.If

is granted,it creats two windows on the

screen and maintains the message profiles in these tl---Jo

~--Ji n dol---Js. I t the d-3t-:il ~-en t dat-3

received.This phone utility is terminated with a c,and the

other user is also taken out of PHONE.

FAC:ILJ:TY 98

FLAG == 0:0200 H

,
....

FLAG ::: i
~ z

I
~E'S

STOP-E. Tf.\ € STAR T.Xf\lG

AD.I>AESS AT VE.C.TO R. ~5 H

XNX.Tl:AL'I.2.E VARIABLES

'
se; T~£- ~LAG

GET TI-\E \IAA.l:AB t...F
SUPPL:tS.!> 8'1 PCtJE.r

HAK.E ·n-\e. PR6t;.RAM

HEMoQ..'I ca E.S.T.D E Nr

+
(E~D)

T~E. VA fl.IA f>LE :I:S .1>

.-

T R (>

,
'

=>.EtJ ..D 4='1''-f G-ET . (:.1' 1.£ SPEAK.. CCHHAJJJ)

,,
R.E.TIJQ.~ 'tO .PC. MET

FIG j~q-

C Ot''1t··1AN D : This procedure is called after the execution of

the DOS call, specified by the user on pc2.This will send

the output of that command to the pc2,which is stored in the

file C:REDIRE$CT.

The main program FACILITY is called from the

a-:.-;:.embly p-r.:•gann PCNET by keepin·3 the r·eque·:.t in the common

variable TRAY.It checks the value in TRAY.If it is-

'T' calls SENDFILE procedure.

'R' - calls GETFILE procedure.

'P' - calls SPEAK procedu-re.

'D' - calls COMMAND procedure.

After the exec~tion of the procedu-re,it returns

C:Qn tl·ol to the PCNET which returns cont-rol to the user.The

f 1 OI,.J chal- t is given in fig 3.9.

This is an independent pascal program and

has to be run separately to invoke PHONE facility.To use

the phone facility,PHONE has be run on one of the pes Hhen

run, it checks to see if the oth~r user is interested in PHONE

and proceeds just SPEAK procedure described above. The

flowchart is given in Fig 3.10.

3.3.7 MAIL~ Thi~ is an independent program written in

pascal.It is invoked when a user wants to mail a file to the
(

other user.It sends the filename and the contents of the

file to the other user.Before sending a character,a check is

.
made to see if an XOFF character is sent by the other pc.If

an XOFF is received,character transmission is suspended till

an XON character is receiued.This makes sure that characters

PHONE

---------~
CLEAQ.

. "'~··rliiJ & OFffll

SI'IJ.J) E-~

S~llj)

REC.Et:VE A cHA.Q.Al.iEI(

tv\ A IC..E -rwo ~XtJ.DCIIJS

At.l.D t1Al:kliA.

---PRE~

YES

STOP

NO

MAIL

C: LEA Q. C"_('.MHt ·~,::rtATr

.BtJ~f:R·

SEt-Jj) ESC CHAR
Q.S.C.E..t:VE A C.~A~

SEtv.J) 1=" IL.E t-~A H f
~e:C.E.-.t: VE? A c ~A R

C2.EA.D A cHAR
FROM

104

Y£s

Page 5.t

are not lost due to buffer overflow.If there is any error in

creating a file at the other node,it will receive an error

indicator and aborts with an appropriate message. The

flowchart is given in Fig 3.11.

3.3.8 ASKFILE : This an independent pascal program~which has

to be run to request a file transfer from the other node.The

other system sends the data in the file with the consent of

the user.It sends the data in the file (if the fl.le i ·=·

existing).ASKFILE receives this data and stores it in a

file. If the file is not existing at the other node,it

receives an error message and aborts with an appropriate

message. The flowchart is given in Fig 3.12.

3.3.9 DOS : When a user on pel wants to run a program on

pc2,he has to invoke this program.Typical application of

this facility is to use the printer connected to the other

pc with a simple command from this pc.Similarly he can see

the directory on the other pc from his pc.This program when

run,prompts for the command to be run on the other pc.This

command is sent to the other pc for execution.Any output of

this command is redirected back to the host pc and

displayedon screen.When the command is entered,this command

is appended with C:REDIRESCT string ,and a new string is

created with the string length at the first position

b•! ·' C.This:. ·:.tt·ing i -;:. then -:.en t to the o thet·

i-::. executed bv loading the COt-··1t·'1At··.JD. COt··i. An~.>

outnut i -;::. buff el- ed in to .:a file and_ i -=. t r .:m sm i t t ,::.d back to

ASK FILE

E.HPT'/ COMMUtJ!.C..A'f'XON

SU;:&=e.R· SE~t> e.sc C:HA~

S.ftJ.D '-r'
Q.EA.D s= .1:LE.NA t-1 E

SE.~j) f=:'.l:LE. r..IAH£

Q.E:.t. E 1:\/E A C.~AQ..A(T£

CJ~ .. EATE A &:1:LE

W!:T\-\ T~€: ~!:L.E" ._,AH€

D.EC. C..~V E A
c.r\ A Q.. Ac. T E. R

tJO

< •

this PC and is dsplayed on the screen.

IV INSTRUCTIONS FOR USE

To use the PC to PC communication utilities,

proceed as follows - stepl : install C drive and copy

COMMAND.COM onto it.

s.tep2 t·un R.E~:Pc

step3 t·u n FACI LIT"{

step4 run PCNET

You need to follow the above steps on both the PCs

If you are currently using PCl and want to get a file

ft·om PC2

When prompted,give the filename. With the approval of

the other user,the file will be transferred to your disk.

To mail a file the other user ,run MAIL. When

pr6mpted,give the filename. With the consent of the othet·

user,the file will be mailed to him.

To make a phone with the other user, run PHONE The

tither user will be informed and if interested,will go into

..
PHONE and you can proceed. Exit the phone with AC.

To run DOS commands on the other pc~ run the p t·o·3r am

DOS . When prompted,giue the command you want to execute.You

can use this facility to print your file on the f:tl" in tet·

connected to the other pc.H~wever,to print a file,first you

have to mail the file to the other system.You can also see

the directo~y of the other user.

1·) F UT U R. E E><T Et·-..1 S I ON S AND 1'·1 0 D I F. I CAT I ON S
-------------~-----------------------------

This package can be extended and modified to

give various other facilities to the user.

The file transfer utilities can be modified

to include -:.ub directo-r-~,~ and/or (.-..tl ld

specifications.These file transfer utilities transfer only

character files.Integer files like object files can not be

transferred.The program can be modified to transfer

files by using character stuffing.

This PC to PC communication facility can be

extended to connect more than two pes. Collision detection

should be incorporated. If at least one of the system is a

PC-XT,it can serve as a file server and a typical LAN sytem

can be build up.The ultimate and most useful! architecture

is the one,in which any PC can either communicate with the

other PC or with VAX with simple software control.

S'o-ei!!{
' '~

ADD 'ADD dUIInlli!On. SOVtC!t , ,&90
OOITSZAPC

Atkloll()n X ~ X X X)(

Oporando Cloche T.raneletO • ., ... Coding hom~

regollor. ICIIJISIOf l - 1 ADO CXOX
lfJ(jo!ltr. memory HEA 1 l-4 ADO 01.!8X! AlPHA
memory. rogostor

,.
tO 9 EA 2 1-4 ADO TEMP. Cl

regostor. ommcdoale 4 ~-).4 ADO Cl. 1
memory. ommod•~l" 17 • EA ' 2 H ADO .AlPHA. l
KCumuiMor. ommed•AIO ~ - 1-) AOO A~. XlO

AND lAND dol!hno~~hon.tovrco Flage
OOtTSZAPC

lOQtC~I &nd 0 X X U X 0

Operand a C!ceh ''""len• lyle~ C~lhe~

rog•lll!tr. r~go&IQt 3 - 1 AND A1.,8l
reg•aler. momory lhEA I 1·4 AND Cl(.trLAQ_WOAO
"'-"'O<y. vogoSJIItr ill+EA 2 2·4 AND ASC~ IOII.Al
reg• a lew, .ommf>d~lt 4 - ~ AND Clt.OFOH
mornoty. tmmO>QoliiO 17+EA 2 H AND 8UA.01H
KcumullliOf, ommct<lollle ~ - 2·3 AMD Alt. 0101ll0008

CAll 'CALL lz.rgcl F189s
OOITSZAPC

C.. II z proqxlure

O~ando Clceha 1 Treneleta • llytoe C~ll•~

no~t·ptoc 10 I 3 CAll.NEAA_PROC
r.,.proc n 2 s CALL FAA .PROC
momptt I!) 21 +EA 2 2 ... CALl AAOC_ TA~LE ISII
rogptt lG Ill I 2 CALL M
memptr 32 31+ EA • ,... CALL fBl!).TASK lSI!

CBW f:IIW IAOOf)4)falMO)
l'l$9~

ODITSZAPC
Convert byto. lo WOld

OP<tf&l>d~ C~lla TrDMOINa• Byte• ·c~h~

1no opormndil z - I CBW

CLC :-· I ~lC lAO oe>er~· ... OOITSZAPC
Cl-canyH~ 0

0PI)I81'1d11 C~ko Tr.-ten• lyt .. C~b-...

I no 09Cf aftdrlt 2 - I ClC

CLD r CLD I no Cj)OI'cftdll) "•
ODITSlAPC

CleM doreclloft fll»g 0

0fj>el'tilnde c*it• TrDftelan• ., ... C~IZ·~

lno~&l'l<!~l 2. - 1 CLO

• For lh0 ~. lldd four dodu f« ~ I~ word tnns/cr wid\ lift odd ·~ l?cw dl<& ~. ~
four doc:b foq- ou11 I ~blc WOt'd tnll\'afu. ~ 4:l IMGI. I 'P7tl.

CLI I Clltnr> OP"'M'rl" 0 0 I T s l A p c
(IP,.Ir •niP"IlC'III.H)

Ftaos
0

'· - -
Operonds Clochs r;anl 1fors· Bytu Cod•no Eumple

tno OO("r.anlt'\' 1 - I CLI

CMC JCMC "'<>0Pf''~""" Ftags 0 0' T S l A PC

Cornplpm,.nr..:. '" 't H_AO X

Operands Clo~:t.& Tr•n~lers• Bytn CodtnQ E urn pte

1no OPP.'.l'l<l~'] ·- I CMC

CMP !
1

CMP ''"'I'"·•'· · . ., V>urCt' 0 0 I T s . A p c
FIAQ•

.
Compdr~ dt:-..,. -,.,,,on to so,urce ~)(X X X X

Opor~nd~ Cle>eh ,, ... , Bytn Codono Eumpl•

fCQt~lt·l '•:t4• \tf.•r) -· 1 CMP B• Clt
,~,,..,,P., ""t."m<~''W <f•EA ' 2-4 CMP OH ALPHA

"'•""''''• ,,.,;.•.r•·· 'I.E A I 2 4 CMP BP. 2• so
tt•r,-·.···· •• 'l'•"t•.t!t· ~ -·) J CMf' BL•IJ]H
rflt•'''•·'. , .. "·•··J·-•'" tO • t A ' .1 & CM'P BX RADAR 01)4]0H

.•. , ·• •· .t'-.: rn••·t··~·.tl•• ~ -] J CMP Al 000 I 00\)('1 0
'

CMPS f CMPS ''"~1·"""0 source:,.,,r.a Ftaos
0 0 I T s l A p c

C..n•np.ttf" 'olrtnq , (X .(X X X

Opor~nd~ Cle>ebi Translers • !lytn CodinQ Eumplli
. --

(J~~t '•'''"Q •,r, •••..•• ""'''"lJ n 2 I CMPS RUFF I BUH7
tlf!L,H.'JIIIh_•\1 •,1f.'ltJ ,:,vu.•· ... ~,,no 9. n "'P 2 rep 1 REPE CMI-'S 10 .Kf. Y

CWO I CWO tno oporlmdsl Flogz
OOITSZA PC

Conven word IO c!Oubloword

Opor»ndl Cloc~ll TrQntll)n• Bytu Coding Eaampte

rno operanels\ 5 - l CWO

DAA 1
1
0AA tno opc:oranelsl Ft11ga

OOITSZAPC
Ooc•m"t adtuSI tor addot•on l(X X X X X

Operanda Clocks Tra.nafera• By loa Codi"O bample

1no oper~nds• 4 - ' t OAA

DAS j OAS rno operands\ Flags OOtTSZAPC
Oecom;ol •dtustlor ~ublr~ctoon u X X Jt X X

Operand~ Clocha TrDnalors • 8ytn Coding Eumple

1no oper~ndt> / 4 - I OAS

• For the !lOS&, lldd r~ clocks for uch I &-tnt woed tran&fer with an odd ~otsr.. For the 8088. lldd

fO<W clocks f« each 16-bot WOf'd transfe<". H~riiu © Intel. 1978

DEC l DEC •lc ~.l•n<>:.on FlaQ>
ODITSZAPC

o~llromrnl by 1 X X X X X

Operandt Clocha Tran\lrtrt' !lyiU Coding Eumplo

' DEC 't"f;1t\ I -' I AX
I

'"Q& J - 2 DEC AL
mttmort 1!1· E A 1 2:. DEC ARRAY lSI)

DIV 1011/ ~ourc~ Flago
OOITSZAPC

Otw•s.•on. uni•oned u u u uu u

Oporonch Clccho Trentlera' llylu Cod!<>{! hom~

I.C!Q& (1!).9() - 2 DIV CL
reo•6 16~·162 - 2 OIV BX

mem8 IM·%1 1 2·• OIV ALPHA

•EA ,
mpml6 11~1681 I 2·• OIV TABLE !SIJ '·

•lEA

ESC fesc eolern~r.opcode.~urce
Flag a

OOITSZAP c
E•c•pe

Operand a Ctodn TUintleu • By leu Co0""1JhA~

•mmec1•Aif!' memory II>EA I 2-4 ESC &,ARRAY JSI!
•mmed•dte f(HJ•S.tPf ? - 2 ESC 20.Al

HLT f Hl T lr><>oo<tt~nc311 Flig!ii
OOITSZAPC

Hall

O~oftd& Ciochll Translort • 8ytn Coding Eumplo

(1'\0 0~1Gnd9) 2 - I HLT

IDIV 'IDlY ~u•ce · Flag&
OOITSZAPC

In teo•• d•~•S•on· u u u uu u
o.,.u;nde Cio<bo Trensloro' Oylltll Coding h&mplo

reg8 101·1.17 - 2 10111 BL
regt8 IG$-1&4 - 2 lOIII ex
merna 1107·1181. I ?-~ IOIV 011/ISOR_I!YTE Sl

~eA
meonl& t111-1901 I 2. lOIII Bll 011/ISOR_WORO

; •EA
! -

IMUL liMUL 5ource Flag»
OOITSZAPC

Integer mutttphca!lon)(uuuux

0p0fllt'ldl Clocttoi Tr&fttlen• Bylot Codlftg ham pie

reg8 G0-918 -· 2 IMUL CL
reg!& 126-1!)4 - 2 lldUL BX
mem8 tll&-104i I 2·• lldUL RATE BYTE

+EA
m,pml8 1134-IGOl I 2·4 IMUL RATE WORD 'BPi :011

.-EA

IN I'" KcumulaiOI.I)Ort Flata
OOITSZAPC

Input by to Of WOld,

I O~onda Cloct>IG Yrantlors• OyiH Ccdlti;.llhllMplo

a.ccumul!iiOt,lfl'U'IIodl tO 1 2 IN Al. OFFEAH
accumuta\Of. OX (} 1 I IN AX.Olt

INC
... f INC 4eahnati01'1 OOITSZAPC

ln<rernonl by t Fb.~
)(X X X)(

OIJ>®f&nd!a Cl®cl!o· Y ranaftn • lyltl Cod~!aom~

reQIII 2 - I ,.: - -.
rcto4) - 2 INC SL
memotv 15~EA 2 2·4 INC ALPHA .01 Bll

INT f INT lntttrupt·ly~ "•
OOITSZAPC

lnte~rupl 0 0 : ·-· ..

O~el'lde C*lle Troflalet1t" lytO\l Colt~!bOMP'o

Jmme<la nype .. ll S2 5 I tNT 3
immod811YIXI " ll 51 5 2 INT 87

INTRt riNYA texternal ~~kablo tntetruptl
Flagtl

OOITSZAPC
Interrupt IIINTPIIlnd IF .. , 0 0

I OtMrltftde CIOCI!& Yranalom• 8yl81 C~il~~

tno op<ar1ndtl &I 7 NIA NlA

INTO I INTO tno OIXII&nd~l ..
Flato.

OOITSZAPC
Interrupt ti overflow '· 0 0

Op&randa Clcella TraneltHt• B-,h,G Cocllftt hDmP'e

I no operandtl SJ01 ~ 5 I INTO

IRIET l'"U t~><> operands! I'I&O~
OOITSZAPC

Interrupt Return ARRRRRRRR

Operands Clock a Tranalera • lyles Coding b11mple

tno operand., 24 3 1 IRET

JA/JNBE I JA/JNI!IE short-l•t>ol Fl&fjo
OOITSZAPC

'
Jump'' DI>Ove/Jump ol not below nor aqua

Oporanda Clock a Tronalera• Dytoe CodiAg bemplo

ni\Ott-I~Oel 16 or • - 2 JA ABOvE

JAE/JNB J JAIE/JNill 11\ott-lat>el f!4ga
OOITSZAPC

Jump ot &bove or &Quill Jump ol nolbeiOw

Operand a Clocks Tron11lers • 8ylotl Codlf>9 hemplo --
~hort-l&bel 16 014 - 2 JAf. ABOVE EQUAL

JB/JNAE I Jl!l/JNA! Bhort-la~l
flaofl

OOITSZAPC
Jump. ol belOw I Jump ol not llbove nOt eQual

Operandi Clocks Tranaho~ra• ,,, .. Coding Ea11mplo

11\011-llbel H!or 4 - 2 JB BELOW

JBIE/JNA l JBIE/ Jt.!A shorl-lebel ·
f~D9•

OOITSZAPC
Jump ol below or &Quell Jump il not above

Operandi Clock a Trans lora • Bytes Coding Eaemplo

af'>Ot1-label 16 or 4 '- 2 JNA NOT A80Vf.

JC I JC ahort-lebel
l'~a

OOtTSZAPC

~ump '' ''"'Y
Op4trando Cloclla Tranat.,a• 8ylu Codiftt Eaamplo

ahort-label I
/ 16 or • - 2 JC CARRY SET

JCXZ I JCXZ short·t.ebel
Flag II

OOITSZAPC
Jump ol CX •S zero

Oporandl Cloclto Tranalora• Bytn· Coding Eumple

ehort-lsbel 13 or 6 - 2 JCltZ COUNT DON f.

JE/JZ 'Jii:/JZ short-label Flago
OOITSZAPC

Jump ol eQual/Jump ol zero

Operands Cloch Tranolort" l!lyloo Codlf>9 E •nmple

short-label 16 or~ - 2 Jl Zf.AO

JO/J~LE ~~Q/Je3U ohort·••~l "~e
OOITSZAPC

JUfi\911 Qr~oter 1 Ju~p il not leu nor equa

()pen~Me Cloekt Tr~~t~ler;• Dr tel Coel~ ha""~

~-Aeb®l teet. - 2 JG Q~~AT(R

JOIE/JNL I ~a 11.1 .1~11. llhOf1-laMt 6'is1G
OOITSZAPC

Jum& II greater or OQu•ltJump II not lou

~ CllocU Tranelere• ly1ea CCIJIR; !EUM~

~· 160f 4 - l . JGIE GREATER_IEOUAL

Jl/JNGE I Jl/ Jt<JO!! ~;hort;label vlo\lle
OOITSZAPC

Jump If loaaJJump II not gre&tor net oqU4

Opofaftd• Cloet<o Tr&natere• lllytoa Codlf\9 Eumpkt

stton-laOOI 160f4 - 2 Jl LESS

JliE/JNG I JlfU.mo ohof1-label
"~

OOITSZAPC
JUfftC) If looll et OQIHIIIJump ol not grMtOf ·

0pM..-dll Cloeko Tr&MtGnl• lily leo ~!Ell_,.

llhort -lalxll 1& 01'. - 2 JNG NOT_GREATER

JMP , .. llio'IP Q.org<ll ,. OOITSZAPC
Jump

Oper~a Ckldla TrllMI~· lllytot CoO&RgiEa~

Ghort-la bel IS - 2 JMP SHORT
~r-14b04 1S .. - 3 JMP WITHIN_'>EGt.IENT
lor-labGl l~ - ~ JMP FAR_lABEL
rnemptr16 11+EA 1 2-~ JMP !BX I TARGET
f0gplr1CI' 11 - 2 JMP ex
lft$ff\l)lr32 2• + EA 2 2-• JIIAP OTHER SEG ISII

JNC I JNC shurt-label
riDIJS

OOilSZAPC
Jump of not ce~ry

O~•ftd• Clochl Trenslors • Bytn Codortg E umpkt

~-tebcl 16 or 4 - 7 J~K NOT •. CARRY

JNIE/JNZ I JI<IGU J~Z $hOft·IAbel Ftavo
OOITSZAPC

Jump ol not equal/ Jump of not zero

o,.,•nct• Cloch Tronaloll" l'lytoa C ocl ;.,g E u"'ple

81'10f1~Mf I& or • - 1 JNE NOT_EQUAl

JNO I JNO ahort-lat>ol _FI&gs
OOITSZAPC

Jump II not overflow

Opotanda Cloc:lul 'haMiera• ly1+a C~batnple

lho<t·label t6or ~ - 2 JNO NO OVERFLOW

JNP/JPO I J1!4P/JPO &hor1-141bol ~
OOITSZAPC

Jump II I'M)! parity I Jump II P41rily odd

Oporonda Cbclul TI5MOon' Dytoo ~(~

e"0<1·1ab41 111 or 4 - 2 JPO 000 .PARITY

JNS J JNI ah~-l<lbel Fl&99
OOITSZAPC

Jump 111101 aeon

0s-"llndl Cloctla Traraat.,.• .,. .. Codl&lgb.,...

. sl\ort-lat>.l 111 or 4 - 2 JNS POSITIVE

JO I JO nh0f1-la~ FlagG
OOITSZAPC

Jump If Oftrfkl1of I

Opet>andl Cloeko TraMiere• ,,, .. Ccd!RQhaM~

ahorl-label 16 or 4 - 2 JO SIGNED OVRFLW

JP/JPE I JPIJPE e,.,ort-label Flag a
OOITSZAPC

Jum~l pa~rity/Jump 11 ~rity tven

0J)GfanGI Cloch Tranelero• DytH CcdlftG (xamP'41

8,.,0<1-lllbel IGor 4 - 2 JPE EVEN PARITY

JS I JS llhort-label Flag a
OOITSZAPC

Jump1f ou;~n

Oporando Clocka ·rronalero • Syteo Codlftt! ExcmpJG

ahort-label 111 or 4 - 2 JS NEGATIVE

LAHF f L,AHF tno operands I
fi1>9B

OOITSZAPC
Lo&d .AH !rom llags

Oporanda Clock a Tranalcus!. Oyteo Coding Eumple

(no o~rmndsl 4 - 1 LAHF

LOS J LOS dj!Shnahon.source FlagG
OOITSZAPC

lo.td p_o,nter usmg OS

Opormnda Clock a Tri>nalero Byles Coding homple

rogtG. memJ2 16 + EA 1 1·4 LOS SI.OATA SEG 1011

LEA ILEA C)oallnlll.on.eovn:o l"klgo
OOITSZAPC

L04d oHectrvellddmu

Oper&Me Clo¢1te Ynt>MIINS' '"" Codin1Jb~

rog16, JMm1& hEA - N LEA 8X.j9PJ fOil

LES J LEI deetonatoon.~KNrn f1e99
OOITSZAPC

load po!nlet ueing.ES

0P4Dtllftdl C~G Trensten• .,. .. Codift$b~

tOQ16,tMmll II!~ EA 2 2-4 LES OI.IBXJ TEXT BUFF

LOCK J LOCK (no oporDndal l'lefa
ODITSZAPC

Lock bus

Op4111amha Cl3cbe Troflai<K11' lytW C~lh~

lno~rand!ll 2 - 1 LOCK XCHG FLAG.AL

LODS·· _,LOOS aovte&·Girln;;J ft.ga
OOITSZAPC

. L~d atrong

O~IIAd& Ctoc:ll& TreRafere• llytoa CocUflt :hefnple

i<>vrce-strong 12 1 1 LOOS CUSTOMER. NAME

(IOP41ltl GOU<Ce·elrlng t + 13/r~p 1/rop 1 REP LOOS NAME

LOOP f LOOP ShOtHilb01. flag& OOITSZAf>C
Loop

;

I 0 IW/flifld e Clccfll. ·Tronolera • Oytoa Codlft9 Eaomplc

&hort-label 1715 - 2 l.OOP AGAIN
!

LOOPE/LOOPZ I LOOPE/LOOPZ !horHabel Flag&
OOITSZAPC

Loop oloqual!loop olzero

OporMda Cicci!& Tranolera• · Byte a Codlfl9 hompkl

ahot1.-lllbe1 18 or 6 - 2 LOOPE AGAIN

LOOPNE/lOOPNZ I LOOPNE!LOOPNZ short-label Fl•g&
OOITSZAPC

Loop of not QIQullllloop '' not zero '

Opor&r>dl C~ko T.ranalerll' e,, .. Cod~beMple

SIIOtl·label t9or 5 - 2 LOOPNE AGAIN

NMit I NMI re•t••nal ftORMilSkable onterrupll
Fleta

OSITSZAPC
Interrupt of NMI o 1 0 0

Oper aflda Cloeh& lran&l$•• • llytea Codir.; !EaM\f)le

1r.o operan<lsJ 5I) ~ N/A NIA

MOV I ~OV duhnatton.oourco , OOITSZAPC

Move

Opefllftdlil Cloclle TtelMhwa• ., ... Codlngb~

momQ(y, accumulatOt 10 1 l MOV ARRAY lSI(. AL
&CCUI'IIuiAIOf, -IN)(y 10 1 3 MOV AX;TEMP _ MSUl T
fe11lil&r, regllltl'llr 2 - 2 MOV AX,CX
regiOIOf, -moty I+EA 1 2-4 M0V BP. STACK. TO?
rnomor,. regttltcr t+IEA 1 2-4 lotOY COUNT lOll. CX
r&gil!ler. ltntn4ldl&le 4 - 2-3 lotOY CL. 2
momory. lmroodtate 10+EA 1 ~ MOV MASK (Slt(JSl(.~
MO-fltQ. r~tg16 2 - 2 MOV ES.CX
~.momt~ I+ lEA 1 2-4 MOV OS. SfGI&ENT _ BASl
r~1G.~eg 2 - 2 YOV BP,SS.
momory. Mg-reg O+EA 1 2-4 MOV IBX(.SECL!AVIE,CS

MOVS IIIIIIOV$ dCIII1·0itlnQ.~VC&-Iltring
~

ODITSZAPC
Move etrlng

0pQreM1! Clodlm YrflftSgoro• '"" ~~ ~~1-atnno. aourcc-ctring Ul
I

2 1 MOVS LINE EOn _DATA
(ropeatl de.t-otrlnQ. eourco-strlng 9+17/rep 2/rop 1 MP WOVS SCAU~. &Uf'FEA

MOVSB/MOVSW lldOV$11/t:'!OWW (110 oper&ndlll ·- ODITSZAPC
MoYe 11trtno (bytolwordl

F~Dge

~llMhol Cloel!a TrnMfflnl• Dytoo ~It~

(oo op<~>randal 1& 2 1 MOVSB
(IOpciAI) (no os>e'llndS) 9+ 17/rop 2/rep 1 REP MOVSW

MUL t.MUL source
"~·

OOITSZAPC.
Multiplicalion. unoi9nod X U U UU X

Ope ronda Clocllo Tronet.,a• ISytoa Codln9b~

rGQ& 10-n - 2 MUL BL
reo1& 11&-lll - 2 MUL ex
memll (76-43) 1 2-4 . t.IUL MONTH (SII

+ EA
mem16 (124-lltil) 1 2~ Ml,;l BAUO_MTE

+t:.A

NEG J~£0 deslinallon F!a9•
OOITSZAPC

Negate X X X X X 1'

Oper&rwh C~ti11 'V'ansi<Wt' Bytn Coding~•~

reg1utor 3 - 2 NEG Al I

memory 111+ EA 2 2-4 NEG IAUL TIPUER

' ·o II doatonation- o

NOP

(no operands)

NOT

OR

r091~1Qf. rOQI&Ier
r9Qiater. mol'l"'Ify
~mory. r~ister

~><:cumulator, immftd.ale
r09later, Immediate
m~. lmm~i&le

OUT

· Operr.nda

lm~ll. accumu .. lor
OX.IIICCumuletor

I

POP

Oporr.nds

r09ialer
~-reo tCS tllegal)
memory

POPF

o.,..anda
!no uperand~l

'---

f
NOP tno operenelsl
No Operatton ,

Tren&lon'

3

'

NOT detlil'\$hOn '
LOQtcatnot

3
IG+IEA

lOA dnlination.aou~ce ·
... "'i)IC&IinoCIU&IYO 01

2

TrDnr.l•rs•

3
ll+EA
IG ~fA

4
4

17+'1EA

lOUT port.c.ccumui4110r
Output byta or word

I

2

Byloa

ilytn

2
2-4
2-~.

2-l
~
)-6

C~lta Trllnel.,s • llytea

10
ll

I POP doshn<on
Pop word ott ,alllck

Ck>ck&

ll
B

11+EA

rPOPF tno operondst
Pop !laos oil sleek

Ck>clla

a

Tronsler11' lllyle1i!

I 1
I I

2 2-4

Tranalora• .,.,, ..
I I

OOITSZAPC
Flegt

NOP

F
OOITSZAPC

1898

NOT AX
NOT CHARACTER

Flaf 0 0 I T S Z I. P t
0

I) :t.)(U X 0

C O<llttg £ aa mple

OR AL. BL
OR OX. PORT 10 !Oil
OR fLAG BYTE CL
OR AL. 011011008
ORCX.OIH
OR !BXI CMO WORD OCfH

F
. OOITSZAPC
~~~ 

Coding Eumplo 

OUT 44. AX 
OUT OX. AL 

Flagt~ 
OOITSZAPC 

Coding Eumplo 

POP OX 
POP OS 
POP PARAMETER 

·-
Fl&go 

OOITSZAPC 
RRRRRRRRR 

CodlntE•o~ 

POPF 



PUSH I PUSH eourco Fl/.)go 
ODITSZAPC 

Punt\ ... ord onto sle<: .. k 

Opor&l\d& . C*h Trant~lefl!• 6yl•• C~lb.~ 

roga&ler 11 I ' PUSH Sl 
&eg·r0g !CS legal) 10 I ' PUSHES 
memory IG~EA 2 2~ PUSH RETURN COO£ ISII 

PUSHF I PUSHII' (no oparlndl) 
F~o 

OOITSZAPC 
Push IIGQG onto alack 

Oporando Cloclll Trenelort• lyteG Codh>Q b..,.P'e 

(ROOf)OICndS) 10 ' I PUSHf 

RCL 1
1

RCL deGiinallon.counl IT~e 
OOITSZAPC 

Rolelo &eli Qt\rovgh CMty )( X 

Ope:ands Cloclla Tr~••~· Dytea Codifttl Ea0Mp6e 

fGgi&IGI, 1 , - 2 RCL CX,I 
regiator. CL a~ 4tb•t - 2 RCI. AL.CL 
memOty. 1 15+ EA 2 2~ RCL ALPHA. I 
momory,Cl 20~ EA + 2 2-4 RCL IBPJ.PARM. CL 

4/bot 

RCR I ACR dotignshon.count 
~ 

OOITSZAPC 
Rol!lle right through corry )( X 

Opilrande Cloch Treneten• 111" Cod!R:eiE~ 

rogaztflr. 1 2 - 2 RCA ax. 1 
rogaatQH, Cl .11+4/bll - 2 ~ SL,Cl 
memory.! 15+EA 2 :!-4: RCR IBXJ.STATUS, 1 
memory, CL 20+EA+ 2 1-4 RCR ARRAY lOll. CL 

4/bit 

D 

REP I AIEP (no of)Orandol 
~ 

OOITSZAPC 
Repeal ctriOQ operation 

Operanda Cloth Trenolero• OyM CodinG b ....... 

(no Op<!rands) 2 - I AEP MOVS OEST. SRCE 

REPE/REPZ IREPE/REPZ <no operan<lsl 
Flc9a 

OOITSZAPC 
11eoed1 !.:'·"fJ OOe'4I!U"' "'"''f ~Qull',f\~ zqfO 

OperDnda Cloche Tranaler;' !lyle& Codlnr;j E urnple 

;1·1.: '>O~'<:~nd~t ] - 1 REP£ CMPS OAT A. KEY 



REPNE/REPNZ .1 REPHE/AEPNl tno operondal F169• 
OOITSZAPC 

R&pOII atron<J ~rDt!Oo'·~ no4 ~11>041tr0 

O~e!Mte Cioclls Tr11noten' Dytee ,C~fi:A:lmpl0 

(no operandal 7 - 1 REPHE SCAS INPUT LINE 

RET · jiiiii!:T oploonl!ll·~·votue fiOQI 
OOtTSZAPC 

Return frOM prcx;oouro 

~eMCI Cioelt~> Trenslon' 0ytU ~hom~ 

(intra-aogrnent. no pop) 8 1 1 RET 

(lntr~r~~egmon!. IX>Pl u 1 l RET 4 

(lnl<ili'·&egmen1. flO !)091 IS 1 1 RET 

(lnt&f·~mont. pop) 17 2 3 RET 2 

ROL lfiOL.doAh"111oon.counl , .... OOITSZAI'C 

Rotetololt 
X X 

~li>RCI!a. Clochll Tral'lslora eytot Cod""a~llll~GI ' 

rOQitter. 1 - 2 - 2 ROL 8X.1 

rcgi&ICif. (A a .. 41bol - 2 ROL Ot.CL 

momocy. 1 1$ .. EA 2 2~ ROL FLAG ®YTE 1011.1 

memocy.Cl 2(hf.A .. 2 2~ ROL ALPHA .CL 

Mbll 

ROR IFIOA dhlinotoon.count ,.~ 
OOITSZAPC 

Rotate roght 
X X 

Oper_Gftd Cloctul Tronalore' Dyto• Cod~ Ea,_ple 

register. 1 2 - 2 ROR AL. 1 

teglster. CL a+ 4/bot - 2 ROR BlCCL 

mom:>ry. 1 15.+EA 2 2·" ROR PORT STATUS. I 

memory. CL 20 • EA <> 2 2·-' AOR CMO WOAO.CL 

4/bol 

SAHF ~~AHF tno operands I F169o 
OOITSZAPC 

Store AH onto llegs 
R R R R R 

OperDndll ClOc!to irenofor;' lily1fl• Codlll!ll E~mmplo 

(no op<llr•nda) 4 - I SAHF 

'---

SAl/SHl I SAL/SHL destor.;otoon count 
f OOtTSZAPC 

Sholl illlhmet';c ltiii·S~oll looocal "'" 
legl X X 

, Op<~~ronde Cki<k» 1: Tranalers • llyiOG CodlniJ Eumphu 

tGgiator ,t 1 - ] SAL AL .. l 
utgioter. CL 8 + ~itlo' - ] SHL 01. CL 

momoty,t 15 + EA ~ ] . SHL !BXI OVERDRAW. I 

memory. CL ~o.EA·I ~ i • SAL STORE COUNT. CL 

.flbl1 . 
.. --·- .--·-



.~. 

SAR -l SAil< duhnatoon.oource Fl&go 
OOITSZAPC 

Shit! cnthmetK: right )( X XU X X 

OPflende Clo<:kt Trontlere• .,, .. Coding hampte 

r0gletor. I 2 - 2 S~A OX. I 
fOiJIIIIflr. CL c~•tbil - 2 SAR Ot.CL 
mQRIOty, 1 IS+ EA 2 2 ... SAR N BLOCKS. I 
~mory.Cl 20 + EA + 2 2-4 SAR N . BLOCKS. CL 

4/bil ' 

SBB I sam ooshnalton.tourcc 
F~B9s 

OOITSZAPC 

S\-'btr/OICI ""''" borrow X X X X X X 

Operonda Clocke Tranalera· lily tea Coding £ump68 

regietor. ;~oater 3 - ,. 2 sea ex. ex 
regleler. memory· 9+EA I 2-~ See DI.IBXI PAYMENT 
memory, rogiater HI+EA 2 2~ SBB BALANCE. AX 
occ:umutator. ommodlcle 4 - 2-3 see AX. 2 
rogietG>r. !mmedoate 4 - 3-4 SBB CL. I 
m111mory, immedklle 11+ EA 2 :H SBB COUNT ISij. 10 

SCAS I SCAS desl-atrong Flsga 
OOITSZAPC 

Scan strong X X X X X X 

Oporanda Clocks Tren&lors• lyi~B Codlft9 Eum~ 

dest-slrtng 15 1 1 SCAS INPUT LINE 
(repeat) dell-airing 0 ~ 15/rop 1/rep 1 REPNE SCAS BUFFER 

SEGMENTt I SE·GMENT override proh• 
F~gfl 

OOITSZAPC 
Ovomde .10 speciloed segment 

Oporonde Clo<:ka Trsnoloro • By loa Codtr•e Eumplo 

tno operer>dsl 2 - I MOV SS PARAMETER. AX 

SHR I SHR deston&hon.count 
F13iJI 

OOITSZAPC 
ShoftiOQoCal rtght X X 

Oporenda Clocks Tran1lora• Byles Coding Eumplo ' 

regosler. 1 1 - 1 SHR Sl. 1 

regos:er. CL ·a. 41btl - 7 SHR'SI Cl 
memo,y. I / 1~ + EA 2 1·4 SHR 10 BYTE jSIIIBXI 1 
mem<)ry. Cl ?Q • E .ll + I 7 4 SHR INPUT WORD. CL 

4' tJl1 

SINGLE SlEPt I SINGlE STEP 1 TtJp flaQ ontrrrupll 
I' toga 

OOITSZAPC 
lnii'JJupl ,, rr 1 0 0 

Oper1nda Clocbs l••nsftu•• Bytes Coding Eumple 

tno 0(Jera~n051 '>{) ~ NiA :N1A 

----·-- '---·--- - _ .. __ 

• Fcx the 8086. l>dd fOlK clocks for each i 6-bot wOf'd tn.ml~r with an odd IK!d¥-HS. For tM 8008. &odd 

fe<$ clock. fOf' each I t>-bit wOf'd transfer. 



STC I stc 100 operand,, FI61J& 
OOITSZAPC 

Se 1 Cllrr y flag 1 

Oporcnda Clock& Tr&lftllere' Byte~ Codlni! bcmple 

tno operand$) 2 - 1 STC 

STD I STD tno operand~) 
F1a'lltl 

ODITSZ.APC 
Set dorectaon flag I 

D&Mr&nda Clocko Tronalorc' lytoa Codino IEumGJte 

tno operands I 2 - I STO 

STI I :ST11no operands} Fla11a 
ODITSZAPC 

Set•nterrupt en~ote llag : 1: 

Oper.,n<h Clc<:ka Trcnalera • Bytn Coding bami!)IO 

tno operands I 2 - I STt 

STOS l STOS Clest-strong 
Flag• . 

ODtTSZAPC 
Store byte or word !\lflng 

Op<tranda Cloc~~ Tranofer~· 8ytoa Codlllg hcmple 

de"·Slrong 1i 1 1 STOS PRINT LINE 
trepellt) dest-Stflng 9 • 10/rep 1/rep 1 REP STOS DISPLAY 

SUB 'SUI d&&tiMHOn.GOVtCQ F~s 
ODITSZAPC 

Subtr11ct1on X X X X X X 

0p.Monda Cloclln _Tran&IIHS • lyl91 Coding Eumple 

r~lator, reglalor J - 2 SUB CX. BX 
r~~>Qicter. momory ~~ EA 1 2~ SUB OX. MAli-C TOTAL ISIJ 
memory, register 10+ EA 2 2-• SUB IBP+21.CL 
accumulator. lmrn«Jiale 4 - 2-3 SUB AL, 10 
r&giater, imm~"'lc ~ - )-.1 SUB Sl. 5280 
memoty,lmmod"'IO 17+ EA 2 ).6 SUB !BPI BALANCE. 1000 

TEST ,_TEST C!UIInlhOn.IIOurco 
Ft!Dilll 

OOITSZAPC 
Teat or non-deslfuclivo logiCal and 0 X XU X 0 

0pGUindll Cloch; Tr11nalore• Sytu Codln<,j bomple 

rogr31Cit, regillor 3' - 2 TEST St. 01 
register, memory 8+EA 1 2-~ TEST Sl. END __ COUNT 
~~ecumulotor. lmmG<Ii&le 4 - 2-3 TEST Al .. 00100000B 
reQister.lmmoooat(l 5 - 3-4 TEST BX,OCC4H 
memory. immedoa1e 11 + EA - ~ TEST RETURN CODE. OIH 



WAIT rNA IT tno operondsl \ . f\b91l 
OOtTSZAPC 

' WAo\ whole TEST pon not userled .. 
OPQrarwle Ckle!la TranGiert• llytoa Cod~b&mple 

!no opert~ndsl 3 .. , !)n - , WAIT 

XCHG JXCHQ doetin.:;hon.oourca 1"18ga 
ODITSZAPC 

Eachange 

Oporand& Cloche Tron1lora• Byte a C~mghompto 

eccumulotor. rog16 J - I XCHG All, 6X 
memory. rsgonter IHIEA 2 H XCHG SEMAPHORE. AX 
rego)ter. regislor 4 - 2 XCHG AL. BL 

XLAT . fXLAT ~ur~G-talmi 
Tran11ota 

f~· 0 D t T S Z A P C 

Oporarwlm Clo<;lt» Tranatora• Bylea Ccd~hemplo 

~ource-lable 11 I I XLAT ASCII TAB 

XOR 1 I XOR dut•nll\t•on.BOurce Flll911 
OOITSZAPC 

I Log teat onctusivo or 0 X XU X 0 
I .·' 

Operand a C'l$ckG Tranate<a• lyiOI C0<$1ng IEumpkt 

regoMer. rego~ter 3 - 2 xoff ex. ex 
rego~ler. m"mory \l+ EA , 2~ XOR CL. MASK_ BYTE 
memory. regoSler UI+.EA 2 2~ XOR ALPHA lSI), OX 

I 

ac.cvmulator tmmed1a1e 4 - 2-3 XOR Al., 010000108 
regoster. ommedolte 4 - 3--1 XOR Sl. 00C2H 
memory. ommedollle t7 + EA 2 ~ XOR REi URN. CODE. 002H 





IBM Asynchronous 
Communications Adapter 

The a.-;~'nchronous communicHions adapter system control 
signals and voltage n:quiremems are provided chrough a 2 by 31 
position card edge rah. Twojumper modules are provided on the 
adaptl'r. One jumper moduk selects <;ither RS-232C or 
curn:m-loop operation. 11H.: other juri1per module selects one of 
t\\"O acJdrcsses for the :It.l:.Iptcr. so two adapters may,be used in 
one system. 

·n,e :tcJ:Iptt:r is fully programmahk and supports asynchronous 
communciations only. It will add and remove start bits, swp bits, 
and parity bits. r\ programmable baud rate generator allows 
operation from 50 baud to 9600 baud. Five, six, seven or cighr bit 
characters with I. 1-l/2. or 2 srop bits are supported. A fully 
prioritized interrupt system controls transmit, receive, error, line 
sratus. and data set interrup~s Diagnostic capabilities provide · · 
loopback functions of transmit/receive and inpur/outpm_s.ignals .. 

'Ine heart of the adapter is a INS8250 LSI chip or functional · 
equivalent. Features in addition to those listed above are: .. · 

" Full double buffering eliminates need for precise 
synchronization. · 

o Independent receiver clock input.. 

• 

• 

Mod~m control functions: clear to $end ( CTS). request w 
send (RTS), data set ready (DSR). ~ata.terminal ready (DTR). 
ring indicawr ( Rl ). and carrier det~C[. :~. 

False-start bit detection . ' 

• Line-break generation and detectioq. 

All communications prowcol is a function of the system 
. microcode and must be loaded before the adapter is operationaL . 
All pacing of the interface and control signal status must be 
handled by the system software. The figure below is a block 
diagram of che asynchronous communications adapter. 

Asynchronous Adapter 1-185 



Address Bus Address 
Decode 

Deta Bus 

Chtp 

Select 

25-Pin O-Shell 
Connector 

Asynchronous Communications Adapter Block Diagram 

Modes of Operation 

The different modes of operation are selected by programming 
the 8250 asynchronous communications element. This is done by 
selecting the LO address (hex 3F8 to 3H primary, and hex 2F8 
to 2 FF secondary) and writing data out to the card. Address bits 
AO, A l. and ,\2 select the different registers that define the modes 
of operation. Also. the divisor latch access bit (bit 7) of the line 
com roi register is used to select certain re;gisters. 

1-186 Asynchronous Adapter 



1/0 Decode (in Hex) 
Primary Alternate 
Adapter Adapter 

3F8 2F8 
3F8 2F8 
3F8 2F8 
3F9 2F9 
3F9 2F9 
3FA 3FA 
3F8 21'8 ' 
3FC 2FC __ , 

3FD 2FD 
3FE 2FE 

I 
110 Decodes 

Register Seleqicd 

TX Buffer 
RX Buffer 
Divisor 1..atch LSB !'· 
Divisor Lntch MSB ' 
Interrupt Enable Register __ . 
Interrupt Identification Registers 
line Control Re~ister .. , . · 

Modem Control Register 
line Status Register 
Modem Status R€gister 

OlAB State 

OLAB=O (Write) 
DLAB=O (Relld) 
OLAB=1 
OLAB=1 

Hex Address 3F8 to 3FF and 2F8 to 2FF 

A9 AS A7 A6 A5 A4 A3 A2 A1 AO OLAB Register 

1 1/0 1 1 1 1 1 ,x X X 

' 0 0 0 0 Receive Buffer (r~ar<l. 
Transmit 
Holding Reg. (write) 

0 0 1 0 \ interrupt Enable 

0 1 0 X lnterr!Jpt l~efllilication 

0 1 1 X Lme Co~trol 

1• 0 0 X Modem Control 

1 0 1 X Line Status · 

1 1 0 X Modem Status ' 

t 1. 1 y X None 

0 0 0 ' Divisor latch (LSBI 1 

0 0 1 1 Divisor latch (MSB) 

Note: Bit 8 will be logical 1 lor the adapter designated as primary or a logical 0 lor 
the adapter designated as alternate (as defined by the address Jumper 
module on the adapter) 

A2. A 1 and AO bits are "don't cares'.' and are used to select the different 
register of the communicauons chip: 

Address Bits 

Asynchronous Adapter 1-187 

... l 



Interrupts 

One intc:rrupt line.: is prm·idcd to the: systcni 'l11i:-- interrupt is 
IHQ-i for a primary adapter or IRQ3 for an alternate adapter. and 
is positive active. To allo\\' the communications card 10 send 
interrupts to the system, bit 3 of the modem control register 
must be set ro 1 (high). At this point, any interrupts allowed by 
the interrupt enable: rtgiSter will cause-an imnrupt · 

TI1c: Jata format will be 'as follows: 
' 

DO D I 02 03 04 DS 06 07 

I ~ J ~ ~ ~ f t 
Transmit Start Parity Stop 
Data Muklng Sit Sit Bit 

'--

Data hit 0 is the first bit to be transmitted or rn:ei\-c.:d · iH: 
adapter automatically insnts the: stan bit, the correct parity bit if 

. programmed to do so, anc.J the stop hit ( I, 1·1 I 2. or 2 dc:pendmg 
on the command in the line-control register). 

Interface Pescription 

I 
The communications adapter provides an E1A RS·232C-Iike 
interface. One 25-pin O-shell, male type connector is pro\'ided to 

attach various peripheral devices. In addition, a current loop 
interface is also located in this same connector. A jumper block is 
pro\'ided to manually select either the voltage interface, or the 
current loop interface. 

The current loop interface is provided to auach certain printers 
pro\'ided by IBM that use this particular type of interface. 

Pin 18 + rccc:ivc current loop data 
Pin 25 - receive current loop return . 
Pin 9 + transmit currem loop return 
Pin 1 I - transmit current loop data 

1·188 Asynchronous Adapter 



·5 Vdc 

[Transmit Circuit I ~~--""-9_._9_o_h_m ____ ...,..ll> Pin 
9 

TxOato---~ ':>o----'V'vv.------------6 Pin 1 1 

t-5 Vdc 

Receive Circuit J 5.6 k·ohm 

OPTO Isolator 

Pin 1 8 ~---+----. 

Pin 2 5 <tt---4----' 

•5 Vdc 

Current Loop Interface 

The: voltage interface is a serial interface. It supports certain data 
an<..! control signals. as listed below. 

Pin 2 Transmined Data 
Pin 3 Received Data 
Pin 4 Request to Send 
Pin s Clear to Send · 
Pin 6 Data Set Ready 
Pin 7 Signal Ground 
"in 8 Carric:r Dc:tc:ct 
'in 20 Data Terminal Read)' 
'in 22 Ring Indicator 

·he adapter converts these signals to/from TfL t<.:vets to EIA 
()ltagc: kvt:ls. These signals are-sampled or generated by tt:!e 
t>mmunications control chip. TI1ese signals can then be sensed 
y t h<: system software to determine the state of the interface or 
criphc:ral device. 

Asynchronous Adapter 1-189 



Voltage Interchange Information 

Interlace 

lnterchllnge Voltage Binary State Signal Condition Control Function 

Posotove Voltage,= Bonary (0) = Spacong \ =On 

Negatove Voltage o Bonary ( 1) 
1 = Markong ~Off 

lnvalid Levels 

~ 15 Vdc 
--- - - -- -:- -- ~ -- +-: 

On Function 
-3 Vdc ____________ _ 

0 Vdc Invalid Levels 

-3 Vdc __________ - _-

Off Function 

-15 Vdc __ ------ __ ---

Invalid Levels 

The Signal \Yil! be.: COnSidert.:d in the "mariJn!L' COnditiOn When 
the voltage on the interchange circuit. measured at the interface 
P9inf.- is'fiH)i-e neg:n ivc.: than 7 3 ~'de ~ith-rcspect t-oS!gn:rt 
ground. The signal will be considered in the .. _~p_a_sft1j..-condition 
whc:n t11e voltJge is more positi\'e than+ 3 Ydc with respect to 

signal ground. TI1e region between + 3 Vdc and -3 Vdc is defined 
as the transition region, and considered an invalid level. TI1e 
voltage.: that is more negative than -1 S' Vdc or more positi\'e than 
+ 1 5 Vdc will also be considered an invalid le\'el. 

During the transmission of data. the "marking" condition will be 
used to denote the bin:1n· state "1" and "spacing" condition will 
be used:ro denote the bin:1ry state "0." 

I 

For interfan: con1rol circuits, the function is "on" when the 
voltage is mor<: posi 1 ivl· 1 han + .~ Vdc with respc.:ct to signal 
ground :tnd i~ "otr· whc:n th(: \'oltagt: is more m:gativc.: than 
-) \'tk with rl'SJKl't lo signal ground. 

1-190 Asynchronous Adapter 



INS8250 Functional Pin Description 
' ' 

111l" following c..ksnibes lhl" function ·of all INS8250 input/output 
pins. Some of tht:Sl" descriptions reference internal circuits. 

Note: In the following descriptions, a low represents a logical 0 
( 0 Vdc nominal) and a high represents a logical I ( +2.4 Vdc 
nominal). 

Input Signals 

Chip Select (C'iO, CSl, CS2), Pins 12-14: \'\'hen CSO and CSI 
are high and C:S2 i~ lo\\'. rh<..· chip is selected. Chip selection is 
complete when the: decoded ~':!i.e. select signal is latched with an 
:1qin: ( lmv) addn.:ss strobe (ADS) input. This enables . 
cor1munications betw<.Tn the !NSH2'SO and the: processor. 

Data Input Strobe (DISTR, DISTR)'Pins 22 and 21: When ~ 
DISTR is high or DISTR is low while the chip is selected, allows 1 

the procc:ssor to read status information or q;ua.frorn a selected 
r<.:gister of the INS8250. · 

Note: Only an actin· DISTR or DISTR input is required to 
transfer data from the INS82SO during a read operation. 
·nH."reforc. tic either the: DISTR input permanently low or the 
~ input permanently high. if noc used. 

Data'Output Strobe (DOSTR, DOSTR}, Pi~s 19 and 18: \Vhen 
DOSTR is high or DOSTR is low while the chip is selected, allows 
the: pro<:essor to write data or control words into a selected 
register of rhe INS82SO ·:· 

Note: Only an acti\'c: DOSTR:or DOSTR input is required lO 

transfer dara to the INSH2S01during a w~ite operation. Therefore, 
ti<: c:irher the DOSTR inpuq)ermanc:ntly low or the DOSTR input 
pl'rmanemly high. if not used. 

Address Strobe (ADS), Pin 25: Whert low. provides l::uching for 
tll<..''n:gister select (AO. AI. A2) and chip select (CSO, CSI, m) 
stgnals. 

Asynchronous Adapter 1-191 



Note: An active ADS input is required when the register select 
(AO, A 1, A2) signals are not stable for the duration of :1 read or 
write: oper:iHion. If not required, tie the ADS input permanently 
low. 

Register Select (AO, Al, A2), Pins 26-28: These three inputs 
are used during a read or write operation to select an INS8250 
registeno read or write to as indicated in the table below. Note 
that the state of the divisor latch access bit ( DLAB ). which is the 
most signific:J.nt bit of the line control register. effects the 
selection of cert:J.in 11"\S82SO registers. The DLA.B must be set 
high by the system .sofiw:1re to access the baud generator di\'isor 
latches.' 

DLAB A2 A1 AO Regi$ter 

0 0 0 0 Receiver Buffer (Read). Transmilter 

Holding Register (Write) 

0 0 0 1 lntetrupt Enable 

X 0 1 0 Interrupt ldentificatton (Read Onlyf 

! X 0 1 1 . Line Control 

I X 1 0 0 Modem Control 

X 1 0 1 Line Status 

X 1 1 0 Modem Status 

X 1 1 1 None 

1 0 0 0 Divisor Latch (Least Signifocant Bit) 

1 0 0 1 Divisor Latch (Most Signifocant Bit) 

Master Reset (MR), Pin 35: When high. clears all the registers 
(except the receiver buffer, transmitter holding. and divisor 
latches), and the control logic of the INS8250 Also. the state of 
various output signals (SQUT, INTRPT. OCT 1. OL'T 2, RTS, DTR) 
are affected. by an active MR input. Rdn to thl' "A.synchronous 
Communications Reset Functions" table. 

· Receiver Oock (RCLK), Pin 9: This input is the 16 x baud rate 
I clock for the receiver section of the chip . , - 1. f--·_,:T-~-

Serial Input (SIN), Pin 10: Serial data input from the 
communications link (peripheral device. modem. or data set). 

1-192 Asvnchronous Adapter 



Clear to Send (CTS), Pin 36: The CTS signal is a modem 
conrrol function input whose condition,,can be tested by the 
processor by reading bit 4 ( CTS) of thelmodem st~tl.IS register. 
Bit 0 ( DCTS) oflhe modem status register indicates whether the 
CTS input has changed state since the 'p,revious reading of the 
rpodem status register. ' r' ; ·, ' ' ', 

I , , , 

~ote: ·Whenever the CTS bit of the modem status register 
qhanges state, an interrupt is generated if the modem status 
interrupt is enabled. 

Data. Set Ready (I:5"5R), Pin 37: When low, indicates that the 
modem or data set is ready to establish the communications link 
and transfer data with the IN$8250. The DSR signal is a 
modcm·control function input whose condition can be tested by 
the processor by reading bit S ( DSR) of the modem status 

· register. Bit 1 ( DDSR) of the modem 'status register indicates 
whether the DSR input has c.hanged since the previous reading of 
the modem status regi<;rer. 

Note: Whenever the DSR bit of the modem status register 
changes state, an interrupt is generated if the modem status 
imerrupt is enabled. 

Received Line Signal Detect (RLSD), Pin 38:.When low, 
indicates that the data carrier had been detected by the modem 
or data set. The RLSD signal is a modem-control function irtput 
whose condition can be tested by the processOr by reading bit 7 
( RL'iD) of the modem status register. Bit 3 ( DRLSO) of the 
mod en~ status register indicates whether the ru::sr5 input has 
changed state since the previous reading of the modem sta~us 
register. 

Note: Whenever the RLSD bit of the modem status register 
changes state, an interrupt is generated if the modem status 
interrupt ts enabled. 

Asynchronous Adap~er 1-193 



Ring Indicator (RI), Pin 39: When low. indicates that a 
telephone ringing signal hao; been received hy the mmkm or data 
set. The iU signal is a m<XIem-control function input whose 

. condition can be tested by the processor by n:ading bit 6 ( Rl) of 
the modem status register: Bit 2 ( TERI) of the modcr:1 status 
register indicates whether the lU input has changed from a low to 
high state since the previous reading of the modem status 
register. 

Note: Whenever the RJ bit of the modem status register changes 
from a high to a low state, an interrupt is generated if the modem 
status interrupt is enabled. I 

vee, Pin 40: +S Ydc supply. 

VSS, Pin 20: Ground ( 0 Vdc) reference. 

Output Signals 

Data Terminal Ready (DTRJ, Pin 33: When low. informs the 
modem or data set that the INS8250 is ready to communicate. 
The DTR output signal can be set to an active low by 
programming bit 0 (DTR) of the modem control register to a. 
high level. The DTR signal is set high upon a master reset 

' operation 

Request to Send (RTS), Pin 32: When low, informs the modem 
or data set that the INS8250 -is ready to transmit data. The RTS 
output signal can be set to an active low by programming bit 1 
(RTS) of the modem control register. The~ signal is set high 
upon a master reset operation. 

/ 

Output 1 (OUT 1), Pin 34: User-designated output that can be 
set [0 an active low by programming bit 2 ( cmn) of the 
modem control register to a high level. The DUi1 signal is set 
high upon a master reset operation. ,_ ,. 

Output 2 (OD"'"2), Pin 31: User-designate~oTput that can be 
set to an active low by programming bit 3 ( U 2) of the 
modem control register (0 a high level. The oon signal i.s'set 
high upon a master n.-sct operation. 

1·194 'Asynchronous Adapter 



I . :; 
Chip Select Out ( CSOUT), Pin 24: When high, indicates that r v 

tht; chip ha.'i hec:n sdecred b)' active CSO, CS 1. and CS2 inputs. No 
data trJnsfc:r can be initiated until the CSOUT signal is a logical 1. 

Driver Disable (DDIS). Pin 23: Goe~ low whenever the 
procc:Ssor is reading data from the INS8250. A high·level DDIS 
output can be used to disable an external transceiver (if used 

I 
bFtween the processor and 1NS8250 on the D7·DO data bus) at 
a\ I tiines, except when the processor is reading data. 1'V 

I 
Baud Out (BAUDOUT), Pin 15: 16 x clock signal fonhe 
t~ansmiuer section of the INS8250. The clock rate is equal to the 
main reference oscillator frequency divided by the specified 
d~ivisor in the baud generaror divisor latches. The BAODOOT may 
also be used for the receiver section by ()ping this output to the 
RICLK input of the chip. . 

Interrupt (INTRPT), Pin 30: Goes high whenever any one of the 
following interrupt ()pes has an active high condition and is 
enabled through the IER: re'C:eivcr error flag, received data 
available, transmiuer holding register empty, or modem status. 
The INTRPT signal is reset low upon the appropriate interrupt 
service or a master reset operation. 

Serial Output (SOUT), Pin 11: Composite serial data output to 
the communications link (peripheral, modem or data set). The 
SOUT signal is set to the marking (logical 1) state upon a master 
reset operation. 

Input/Output Signals 

Oata (07 -DO) Bus, Pins }~8: This bus comprises eight tri·state 
input/output lines. The bus provides bidirectional 
communications between the ,lN$82 50 and the processor. Data, 
control words, and status information are transferred through the 
07-00 Data bus. 

External Clock Input/Output (XTAl.l, XTA1.2), Pins 16 and 
17: These two pins connect the main timing reference (crystal or 
signal clock} co the INS82SO. 

Asynchronous Adapter 1-195 



Programming Consid~rrations 

! 
TIH: J:'\SB210 h:t'i a number ofan.:c::ssibk registers. The system 
programmer may access or control any of the INSH2SO regis~ers 
through the processor. These registers are used to control 
l:"iS8250 operations and to transmit and receive data. A table 
listing and description of the accessible registers follows. 

Register I Signal Reset Control Reset State 

lnterrGpt Enable Reg•ster Master Reset All Bits Low (0·3 Forced and 
4 · 7 Permanent) 

lnterru;:>: lde~trftca:ron t'.~3S!er Reset B1t 0 1s High. Bits 1 ;and 2 Low 
Reg•s :~ r B•ts 3-7 are PermaAently Low 

Ltne C:·r.~~ot ~r·s;·s:er 1\!as:'-'r Reset All B1ts Low 

Mocer- Contro• R,,g ster MJster Reset All B1ts Low 

L•ne S:atus Reg•s:er Master Reset Except Bits 5 and 6 are High 

Mode""l ·s:Z!tus Re;;tstt!r Master Reset B1ts 0-3 low 
Bits 4-7 · Input S1gnal. 

SOUT Master Reset High 

INTRPT (RCVR Errors) Read LSRIMR Low 

INTRPT (RCVR Data Ready) Read RBR/MR Low 

INTRPT (RCVR Data Ready) Read II A/Write Low 
THRIMR 

INTRPT (Modem Status Read MSR/MR Low 
Changes) 

OUT 2 Master Reset High 

RTS Master Reset High 

OTR Master Res.et High , 
( 

OUT 1 Masrer Reset H1gh 

Asychronous Communications Reset Functions 

1-196 Asynchronous Adapter 



Line-Control Register 

The ~)'Stem programmer specifies lhe format of ftf€ ilsynchronous 
data communications exchange thro~gh the line-control register .. 
In addition to controlling the format, the programmer may · 
retrieve the contents of the line-control register f~r inspection. 
This feature simplifies system programming and eliminates the 
need for separate storage in system memory of the line 
characteristic's. The contents of the line-control register are 
.indicated and described below. 

AD.DRESS = O?:!Ff) 
7 6 5 4 3 2 0 

I
I. I I I : Wo<dlong<h SoiOOI Bl1 0 )WLSO) 

: 

: 

Word Length Select Bll 1 (WLS 1) 

Number of Stop Bits (STB) 
...._ ____ _..,_ Parity Enable (PEN) 

~-.-. ___ "-,:-____ Even Parity Select (EPS) 

'------------ Stick Parity l L------------ Set Break 

L------------- Oivsi0 r Latch Access Bit (DLA!l) 

Line-Control Register (LCR) 

Bits 0 and 1: These rwo bits specify the pumber of bits in each 
transmitted or received serial character. The encoding of bits 0 
and 1 is as follows: 

Bit 1 Bit 0 Word Ler:-gth 

0 0 5 Bils 
0 '1 6 Bits 
1 0 7 Bits 
1 1 8 Bits 

'i 
Asynchronous Adapter 1·197 



Bit 2: 'l11is bit specilie~ th\.· nup1her of stop hit~ 1n e:!d1 
trarl!!mittn.l or ren·iH·d serial char;u:tt:r. If hit 2 j, :1 l11).:i,. :i. ww 
stop bit is generatc:d or chc.:ckc:d in the: trJnsmi 1 or rn:l'i' c: d;na. 
rc:.spe<.:ti"dy. If bit 2 is logical 1 \vhc:n a S-bit word length is 
sekcted through bits 0 and 1. l·l/2 st~p bits :1re gcnn:Hed or 
checked. If bit 2 is logical 1 when either a 6·, 7 ·. or H-bit word 
length is sdectt:d, two stop bits are gt:nt:rJted or cht:ckt:d. 

· Bit 3: lllis bit is the parity enable bit. When bit :) is a logiol I. :1 

pari[}' bit is generated (transmit data) or checked ( reu:in: data) 
bet\vc:c:n the last dJta word bit and stop bit of the serial d:tt:t. 
(Thc: pari[}' hit is used to produce an even or odd number of l's 
when the data word bits and the parity bit arc :--ummnl. ) 

I 
Bit 4: This bit is thc: even parity select bit. \XlH:n hit . .~,is :1 logicJI 
11 and bit -i is :1 logical 0. an odd number or logical \.)is 
transmitted or chc:cked in the data word bits :md paritv bit. \\'hen 
dit 3 is a logical 1 and bit -i is a logical I, an nen number of bits 
is transmitted or checked. . ' 

Bit 5: This bit is the.: stick parity bit. When bit 3 is a logical 1 and 
bit 5 is :1 logicJI 1, the parity bit is tr.wsmitted :1nd then detected 
by the receiver as a logi<.:Jl 0 if bit 4 is a logical 1, or as a logical ·! 
if bit 4 is a logiCJI 0. 

Bit 6: ·n,is hit is the.: set hre:lk control bit. \\·'hen bit 6 is a logical 
l. the snial output (SOLT) is forced to the spKing (logical 0) 
state and rc.:mains there n:gardkss of other transminer :Ktivity. 
The set br<.:ak is disablc:J by setting bit 6 to a logical 0. This 
feJture en:thlc.:s the processor to akn a terminal in a computer 
communications system. 

Bit 7: 1l1is bit is the divisor larch access bit ( DL\B ). It must be 
set high (logical 1 ) to access the divisor latches of the baud rate 
generator during a read or write opera-tion. It must be set low 
(logical 0) to acn:ss the receiver buffc.:r. the transmitter holding 
register. ,<?r the interrupt enable register. 

1·198 Asynchronous Adapter 



Programmable Baud Rate ,.Generator 

The 1NS82SO contains a programmable baud rate: ~c:nc:rator that · 
is capable of taking the clock input ( 1.8432 MHz) and dividing it 
by any divisor from 1 w ( 2•b-l ). The output frequc:n<:y of the: ~ 
baud generator is 16 x the baud r.tte'i[ divisor " = (frequency 
input)/( ~aud rate: x 16) j. Two 8-bit latches store the divisor in a 
16-bit binary format. These diVisor latches must be: loaded during 
initialization in order w c:nsure desired operation of the baud 
rate generator. Upon loading either of the divisor latches, a 16-bit 
.baud counter is immediately loaded. This prevents long counrs 
·on initird load. 

I 
fjex Address 3F8 DLAB = 1 

611 7 6 5 4 3 2 0 

I LBIIO 
L___===: Bot l 

Bot 2 

Bit 3 

Bit 4 

L...-.-----------....._ Bit 5 

L...-.--------------- Bit 6 

'-------------------- Bit 7 

Divisor Latch Least Signif.icant Bit (DLL) 

rs~· 

Asynchronous Adapter 1-199 



4 3 2 0 

Btl B 
Btt 9 

Btl 10 

Btl 11 

Btt 12 

Btt 13 
Btt 14 

Btt 15 

Divisor Latch Most Significant B~~?LM) 

The following figure illustra£cs the use of tht: baud rate: generator 
with a frequency of '1.84 3 2 MHz. For baud rates of 9600 and 
below. the error obtained is minimal. 

·Note: The maximum operating frequency of the baud genl'LHor 
is 3.1 :\1Hz. In no case should the data rate be grl'ater than 9()00 
baud. · 

Desired Divisor Used Percent Error 
Baud to Generate· Difference Between 
Rata 1 6x Clock Desired and Actu~l 

(Decimal) (Hex) 

50 2304 900 -
75 1536 600: -

. 110 1047 417 0.026 
1134.5 8'57 35.9 0.058 

150 768 300 -
300 384 / "180 - . 
600 192 / oco -

1200 96 060 -
1800 64 040 -
2000 58 03A 0.69 
2400 48 030 -
3600 32 020 -
4600 24 018 -
7200 16 010 -
9600 12 ooc -

Baud Rate at 1.843 MHz 

·• --------. ~ "' 

1-200 Asvnchronous Adapter 
• J 



Line Status Register 

This H-hir regi~ter provides staws information on the processor 
conet:rning thr: data tr.tnsfc:r. The contents of the line status 
register are indicued and described beJow: 

He• Address 3FD 

61! 7 6 5 3 2 0 

I I_,._ Data Ready (DR) 

~ Overrun Error {OR) 

Paroty Error (PE) 

'---------+- .Framong Error (FE) 

Break Interrupt (81) 

L-------------a- Transmotter Holdong 
Register Empty 

(THRE; 

L--------------+- T~ Sholl Rcgoster 
Empty (TSRE! 

L---------------- ~ 0 

Line Status Register {LSR) 

Bit 0: 1l1is bit is the receiver data ready (DR) indicator. Bit 0 is 
set to a logical 1 whenever a complete incoming character has 
been recein~d and transfern:d imo the receiver buffer.regist~r. 
Bit 0 may be reset to a logical 0 either by the processor reading 
the data in the receiver buffer registc.r or by writing a logical 0 
into it from the processor. 

Bit 1: 1l1is bit is the overrun error ( OE) indicator. Bit 1 indicates 
th;H data in the rc.:cei\'er bufftr register was not read by the 
proct:ssor before the next .character was tr~sferred into the 
rect:i\·er buffc:r rc:gister, tlH:n:by destroying the previous 
character. The.: OE indicator is reset whenn'er the processor 
rcJds the comems of the line status register. 

Bit 2: TI1is bit is the parity error ( PE) indicaror. Bit 2 ind)cares 
that the recein:d data cluracttr does not han~ the correct even 
ur odd parity, as selected by the even parity-select bit. The PE bit 
is set to a logical I upon detection of a parity error and is reset to 
:1 logical 0 whent:n:r the processor reads th_e contents of the line 
st:lt us register. 

! 

Asynchronous Adapter !-201 



Bit .): 'll1i' hit i~ the lraming ~:rror (FE) indicator Bit .~ inJicues 
IlLII til;. rt·\.t'i\ t·J <:h:tLll"ler diJ Jlll! h;l\T :l \·;did ~!llj) hit 1\it .~is 
SL'I t1l :1 logical I ,,.11<-:nL·n:r the stop hit folio\\ ing thL· l:L'-l J:na hit 
or p:trit\ i:o- JL·tt·ctcJ J:-- :1 zt·ro hit (spacing kvl'l ). 

Bit ~: Thi, hit h the hreak interrupt ( Bl) indicHor. Bit .:i is set to 
a lo.~it·al I \\ hL-nL·\·t·r the recl'i\·eJ Jata input is ht:ld in thl' 
>p:tung ( logiL al ()) ,tatL· for longer than a full worJ tr:lnsmission 
tintt· ( tlut "· thl' tut:d time of start hit+ Jata hits+ parity+ stop 
hit'>) 

~ote: ll1t~ I through ·I an: the error conJition:-- th:.lt proJucl' a 
rn ,.,, ,·r hill' ~t:!tll' illlL'rrupt ,,.hl'lll'n·r :.~ny of thl' Ulrrt:sponJing 
t(ril<.lltl(l\b :trv dctt·ucd. 

Bit 5: Tlli' h1t ~~ tlw t r;tibmittcr holding regist<:r empty ( THRE) 
111d1'-:lt•>r llii 'i'llld!Lllo tl1Jt the l:'\SH2'>0 is rcady_to __ aL;q:pt a 
nn\· --·IL~rJt tn f( rr t r:tnsmi,sion. In atldition. this hit caust:s tht: 
l.'\SH2')tJ t.r l'>.'llt' :111 intL·rrul'>t to thl" procl'SSor wht:n the transmit 
hold1ng rcgi,tu empty i11tcrrupt enahk is set high nH: THRE hit 
is sct to J lll;..:iol I \\·hen a character is transferred from the 
transmittn holding register into the transmiuer shift rt:gister. 
The hit is resl"t to logical 0 concurrently with the loading of the 
transmitter holding register by the processor. 

Bit 6: This bit is the transmitter shift register empty ( TSRE) 
indicator. Bit 6 is set to a logical 1 whenever the transmitter shift 
register is idle. It is reset to logical 0 upon a data transfer from 
the transmitter holding register to the transmitter shift register. 
Bit 6 is a read-only bit. 

Bit 7: This bit is permanently set to logical 0. 
// 

Interrupt Identification Register-

The INS8250 has an on-chip interrupt capability that allows for 
complete flexibility in imer:facing to all the popular 
microprocessors presently available. In order to pru\ide 
minimum software overhead during data character transfers, the 
INS82 50 prioritizes interrupts into four levels: receiver line status 
(priority I ). received data· ready (priority 2 ). transmitter holding 
register empty (priority 3 ), and modem status (priority 4 ). 

_.1-202 Asynchronous Adapter 



lnfor_mation indicating that a prioritized interrupt is pef1~ing and 
i_lw rypl' of prioritized in tcrri1pt is ston:d i ~ the int cr rupt 
irJt·~tilh:~t_!<l_l2__~_cg~o;~·r. Rdl'r to thl' '"Interrupt Control Functions" 
t:thl:c. ·nH: intl·rrupt idl·ntifkation register ( IIR ). when addressed 
during chip·s<.:kc:t timL', frt:c:zc:s the:: highest priority interrupt 
pl'nding, ant.! no othl'r intc:rrupts arc::',.acknowkdgc::d until that 
particular intc:rrupt is scni<:ed hy the processor. The: n>ntc:nts of 
till' IIR an: indicated and dc::scri.hcd hclow. · 

Hex Address 3FA 

Bu 7 6 5 4 3 2 0 

I I I : 0 If '""""" ''"''"' Interrupt 10 B1t 101 

Interrupt 10 Bit ( 1) 

"0 

=0 

=0 

=0 

~ 0·. . . 

Interrupt Identification Register (liR} 

Bit 0: 1l1is hit can he used in either a hard-wired prioritized or 
polled environmem to indicate whether an interrupt is pending 
and the IIR contents may be used as a pointer to thc.appropriate 
interrupt service routine. When bit 0 is a logical 1, no interrupt is 
pending and polling (if used) is continued. 

Bits 1 and 2: These two bits of the IIR are used to identify the 
highest prioriry interrupt pending as indicated in the "Interrupt 
Control Functions" table.' 

Bits 3 through 7: TI1ese five bits of the llR are always logical 0. 

Asynchronous Adapter 1-203 



Interrupt 10 
Register lntefruPI Set and Reset Fun<:tions 

·--
Priority Interrupt Interrupt Interrupt 

Bit 2 Bit 1 Bit 0 Level Type Source Fleset Control 

0 0 1 None None 

1 I 0 Hoghest Receiver Overrun Error Readong the 

Line Status or Lone ~!atus 

Parity Error Reg oster 

or 

Framong Error 

or 

Break Interrupt 

1 0 0 Second Rece•ved Receover Readong the 
Data Avaolable Data Avaolable Receover Buffer 

Reg:ster 

0-
.. 

1 0 Thord Transmolter Transmotter Reabong th~ IIR 
Holdtng Holdong Regoster (of 

Regrster Regoster source ol 
Empty Empty onterrupt} 

or 

Virot•n·:: · "·'i the i 

T r a:-:·~·.·· ! 
Holdong Regoster I 

0 0 0 Fourth Modem Clear to Send Readong the 

Status 1 Modem Status or 
Data Set Ready Regrster 

or 

Aong lnd•cator - or 

Recetved L•ne 

Srgnal Ollect 

Interrupt Control Functions : 

1-20'-i :\synchronous .. \daptcr 



Interrupt Enable Register· 

This eight-hit register enables the four t)pes of imer~upt of the 
INSH2SO to separately activate the d)ip interrupt ( INTRPT) 
output signal. It is_possiblc tQ.!.OtaUv-Jisable the imcrrupt system 
by.n:set t ing. bit ~..Q. through ... .3. of.Jhdnte.z:.t11PJ..!Dab_l~~gi§ter. 
Similarly. hy setting the appropriate bits of this register to a 
logical 1, sekued interrupts can be enabled. Disabling the 
interrupt system inl1ihits the interrupt identification register and 
the au in: (high) l:\TRPT output from the chip. All other system 
funcrions operate in chc:ir normal manner. including the scuing of 
chc line sc:1cus and modem status registers. The contents of the 
intcrrupc cnahk register :~rc in<,lic:ttcd and described below: 

Hex .t..ddr~ss 3F9 OLAB = 0 

7 6 5 4 3 2 0 

L 1. = Enable Data . 

Available Interrupt 

1 =Enable Tx Holdtng Regtster 

Empty Interrupt 

'-:----~ 1 = Enable Receive Line 

Status Interrupt 

.__ _____ ...., 1 = Enable Modem Status 

Interrupt 

'-----..,..------.. = 0 

'------...,---...,..--+- = 0 
...._ _________ _...,. ~ 0 

.___ ____________ .,.. = 0 

Interrupt Enable Register'(IER) 
{ 

Bit 0: This bit enables the received data available interrupt when 
set to logical 1.' 

Bit 1: This bit enables the transmitter holding register e~pry 
in'terrupt when set to logical l. 

Bit 2: This hit en:1bles the recei\'er line s'arus interrupt when set 
tq logical I. 

Asynchronous Adapter 1·205 



1': • 

Bit 3: ll1i:-. hi! enahlo tht: modt·'m status intcrrupl wht:n sel lo 
logic.tl I 

Bits 4 through 7: Tht:st: four hits an: always logit·al 0. 

Modem Control Register 

ll1is ctgh! -hi! rt:gistn controls tht: interface with the modem or 
data st:t (or a pt:ripht:ral dt·\·in: emulating a motkm ). Thl' 
contcn~:-. uf,tlw m<>tkm control rc:gisu.:r an: indicated an.d 
lksnihn! lwl<>" 

0 

I L Data Term•nal Ready (OTR) 

t.-= Requesl 10 Send (RTSi 

Oul 1 . 

Oul2 . 

'--------~ Loop 

=0 
L._ __ _..:. ________ = 0 

=0 

Modem Control Register (MCR) 

Bit 0: This bit controls the data terminal ready (15TR) output. 
When bit 0 is set to a logical 1, the DTR output is forced to a 
logical 0, When bit 0 is reset to a logical 0, the DTR output is 
forced, to a logical 1. , 

i -- /' 
Note: TI1e DIR output of the INS8250 may be applied to an EIA 
inverting line driver (such as the DS 1488) to obtain the proper 
polariry input at the succeeding modem or data set. 

Bit 1: This bit controls the request to send ( RTS) output. Bit 1 
affects the RTS output in a manner identical to that described 
above for bit 0. 

1-206 Asynchronous Adapter 



Bit 2: Thi~ hit controls the output 1 (OUT I) signal. which is an 
auxiliary u~t:r-designatcd output. Bit 2 affects the OUT I output 
in a manner identical to that dcscrihc:d above for bit 0. 

Bit 3: This bit controls the output 2 ( 0Dn) signal, which is an 
- auxiliary user-designated output. Bit 3 'affects the OD'l'L output 

in a manner identical to that described' above for bit 0. 
I 

Bit 4: This bit provides a loopback feature for diagnostic testing 
of the INS82'50. \\'hen bit 4 is set to logical 1. the following 
occurs: the transmitter serial output ( SOUT) is set to the marking 
(logical 1 ) state; the receiver serial input (SIN) is disconnected; 
tht: output of the transmitter shift register is "looped back" into 
the receiver shift register input; the four modem control inputs 
( CTS, DSR. RLSD. AND Rl) are disconnected; and the four 
modem control outputs ( DTR, RTS, OUT 1, and OUT 2) are 
intt:rnally connected to the four modem control inputs._!!U!'!_~ 
di:Jgnostic mQ<J..e, d~ta __ tha~ is trans~_itted i_~ im~eqiatcly received. 
111[~ feat ur~~QW.? !be. procc:~.t_t_?_ ~eri!t~h~ransmit:..~.nd 
r~c!.'in~·dl.~'!-P>li..b.s_Qf tbe INS82 '5Q; 

In the diagnostic mode, the receiver and transmitter interrupts 
an: fully operational. The modem control interrupts ate also 
operational but the interrupts' sources are now the lower four 
hits of the modem control register instead of the four modem 
control inputs. The interrupts are still controlled by the interrupt 
enable register. 

The INS8250 interrupt system can be tested by writing into the 
10\Ver four bitS Of tre modem StatuS register. Sening any Of these 
hits ro a l~ic:.tl 1 ~ener.ucs the 4lppl'Opri:lte interrupt (if 
cn.1Nn.f )_ The f'C"X."Hin~ of thO<' imcrrupts is the- s;un~ :lS in 
norm:ai!NS8250 operation. To return to normal operation, the 
registers must be reprogrammed for normal operation and then 
hit 1 of the modem control ,register ·must be reset to logical 0. 

Bits 5 through 7: These bits are permanently set to logical 0. 

Asynchronous Adapter 1-207 



Modem Status Register 

This eight-bit register providcs the current state: of the: control 
lines from the modem (or peripheral 9evle<~) to the: processor. In 

·addition to this current-state information, fo'ur bits of the modem 
status register provide change information. These bits are set to a 
logical 1 whenevcr a control input from the modem char.,:.:es 
state. They are reset to logical 0 whenever the processor reads 
the modem status register. 

The content of the modem status register arc indicated and 
described below: 

Hex Address 3FE 

Bit . 7 6 5 . 4 3 2 0 

I · I L Delta Clear to Send (DCTS) L=: Delta Data Set Ready (DDSR) 

Trailing Edge R•ng 

Indicator (TERI) 

Delta Rx L•ne S•gnal 

Detect (DRLSDJ 

'---------+- Clear to Send iCTS) 

Data Set Ready (DSR) 

R.ng lndocator (RI) 

'--------------_... Receive L•ne S•gnal 
Detect (RLSD) 

Modem Status Register (MSR) 

1-208 Asynchronous Adapter 



nit 0: This hit i~ tht." udra ckar 10 send (DCTS) indicator. Bit 0 
indicuc:s·that the CTS input to the chip has changed state since 
the last time it was read hy the proce~sor. 

Bit 1: This bit is the delta data set ready (DDSR) indicator. Bit 1 
indicates that the rER input to the cpip has changctd state since 
the last time it was read by the processor. · · 

Bit 2: This bit is the trailing edge of ring indicator (TERl) 
detc:l·tor. Bit 2 indicates that the Rl input to the chip has changed 
from an On ( logical I ) to an Off (logical 0) condition. 

Bit 3: This bit is the ddt a recei\'ed line signal detector ( DRl.SD) 
inc..licawr. Bit 3 indicates that the RLSD input tb the chip has 
df::lllt:t:d state. 

:"iote: \\l1cnc;\·er bit 0, 1. 2, or 3 is set 10 a logical I, a modem 
~tat us inte.-rupt is generated. 

Hit 4: This bit is rh<: complement of the clear to send (Ci'5) 
input. If bit 4 ( luup 1 of the MCR is set w a logical 1, this is 
e4ui\·a!ent to RTS ia1 t!1c MCR. 

Bit 5: This bit is the complement of the data set ready (D'S'R') 
input. lf bit 4 of the :'\1CR is set w a logical l, this bit is equivalent 
tn DTR in the MCR. , . 

Bit 6: This bit is the complement of the ring indicator (Rf) input. 
If bit 4 of the M CR is set w a logical 1, this bit is equivalent to 
OUT 1 in the MCR. 

Bit 7: This bit is the complement of the received line signal 
detect (iTI:SO) input. If bit 4 of the MCR is .set to a. logical 1, this 
bit is equivalent to OUT 2 of the MCR. 

Asynchronous Adapter 1-209 



Receiver Buffer Register 

>. 

.The recei"er buffc:r n:gisttr u>ntains the n:c.c:ivcd t:harat:tL"r as 
'defined bdow: 

Hex A<;ldress 3F8 DLAB = 0 Read Only 

Bit 7 6 5 4 3 2 0 

LL:: ~::: ::: ~ 
Data 811 2 

Data Bit 3 

"--------~Data Bit4 

'----------...... Data 811 5 

'------------- Data 811 6 

"--------------- Data 811 7 

Receiver Buffer Register (R B R) 

Bit 0 is the le:LSt signifietnt bit and is the first bit serially received. 

1-210 Asynchronous Adapter 



Transmitter Holding Register 

lnc: transmitter holding rc:gistc:r c:ontains the c:haracter to be 
sc:rially transmitred and is ddined bdow: 

Hex Address 3F8 DLA_~_= 0 Write Only 

811 7 6 5 4 3 2 1 . 0 

Data BitO 

Data Bit 1 

Data B•t 2 

Data Bit 3 

Data Bit4 

'------------- Data B1t 5 

Data Bit 6 

Data Bit 7 

Transmitter Holding Reg'ister (THR) 

I 

Bit 0 is the least significant bit and is the first bit serially 
transmitted. 

Asynchronous Adapter 1-211 



"111<: foliO\'\ing is an illustration of dara' terminal cquipmcnl 
connected 1o an external modem using connections defined hy 
1he RS-232C interface standard: 

DJ~ta 

Terminal 
Equipment 

/ 

/ 
/ 

,/ 

Communications 
line 
--:z:.__ 

', 
', ' 

,/ Adapter 
,, ', Cable Conforming ,, , 

To RS·232C Standards ',, '":', 

" " 
" " " ......... ', 

.-EIA/CCin Telephone Co. ', 
1----f' line Number lead Number ...,_ __ _,.;..,. 

Data 
Terminal 
Equip· 
ment 

Protective Ground ---0--AA/101 

Signal Ground ~7 AB/102· 

Transmil!ed Dau · 2 BAll 03 

Re1=eived Data 3 BB/104 

Request to Send ---0-CA/105 

Clear to Send ...._ @-cB/106 

Data Set Ready 6 CC/1 07 

Data Terminal Ready----~ Modem 

Connect Data Set to line 

Received line Signal Detector CF/109 

CH/111 Speed Select 

Transmit Signa. I Element Timing~ DB_f 1 14 . 

Receive Signal Element Timing---@--:- DD/115 

Select Standby • •1116 

Ring Indicator ------'---{ DE/125 

Test --;· .. 
External Modem Cable Connector 

13121110987654321 

\o o o _o o o o o o o o o o} 
\000000000000} 

252423222120191817161514 

-· 

1---- 0-.ta Tcrnl1nal 
f.qwpn1cnt 

·--- Data Communications _j +(Modem) DCE 

Equrpment - -~ 

Pin Nun1her 

•Not used whr.n tJus•nt·~s ,n,,chinc ctock.fng is used. 
··Not standardized by EtA !Electronics Industry Association). 

• .. Not standardrzed hy CCtn 



R.ESPC. ASt·'1 

DATA_HERE SEGt1Et··.JT 
HEAD_PTR D~···~ 

TAIL_PTR DW 
CHAR_COUNT D~,l 

>=~OFF _SEf"·.JT DH 
QUEUE 

DATA_HERE 

><ON 
><OFF 

DE: 
ENDS 

EQU 
EQU 

CODE_HER.E SEGf"'1ENT 

0 
0 
0 
0 
1000 DUP(O) 

17 

Head pointer to the queue 
Tail pointer to the queue 
No.of chars in the buffer 
Flag=l if xoff is sent 
Queue of 1000 chars 

DCl chal·actel· 
DC:3 ch.ar act e"t· 

ASSUt···1E c~:: CODE_HEP.E, D~:: DATA_HERE 

STAFn: A><, DATA_HERE 
~-·1 Cit.) D ~; , A>< 

t·'101·) 

t,·j[ll . .) 
c::~<, A>< 
A><, 0000 

HO'·.) DS , A>< 
t'·j[ll . .) 

t·,j(ll.) 

t·,j(ll) 

t·1(1l.) 

t·-101..) 

r··JOt.) 
t··1(1l.) 

B><, 0 HNH 
[ BX] , c:x: 

HEAD _PTR , 0 0 
TAIL_PTR.,OO 
XOFF_SENT,OO 
CHAR_COUt···lT, 0 0 

AL,60H 
BX, SEG Cot···1t·'1_I NT; 
[>S, 8:~< 

Load Data Segment Register 

Set data segment=OOOO 

Store ds in 0184H 

Initialize head and tail 
pc• in tel·-:. 

Set xoff_sent flag to 00 
Set char_count to 00 

• Set interrupt vector OCH 

t·'101·) 

r·10I.J 
t···JI)I..) 

t·10I..) 
t·1[1' . .) 
INT 
POP 

DX,OFFSET COMM_INT ; to our comm_int ·::.el·• . .J ice 
AH,25H routine 
21H 
D:::: 

._H,1P Ot.)ER. 



FULL_CHECI<.: 

130: 

Ql)ER: 

PI3_LEN 

CODE_HERE 

; COt-·1MUt··H CAT I ON Il'·lTERRUPT SER'·.)! CE ROUTINE 

==TI 
PUSH A>< 
PUSH E:>< 
PUSH C>< 
PUt::H D>< 
PUSH DI 
PUf;H DS 

fvl[l' . .) 
IN 
PUSH 
t·'10'.) 
t···11]' .. ) 
POP 
r-·1[11.....' 
It···lC 
C:t-·1P 
.Jt·-..IE 
t···1(1t.) 

Ci'·1P 
JE 
t···j(lt.) 
r··10'·J 
t···1Qt) 
I t···lC 
t···1(1t.) 

Ct-'1P 
.JL 
HOt.) 
r'10t.) 
OUT 
i•101....J 
t·'10'·) 
OUT 

D>< ~ 03F8H 
AL,DX 

A><, DATA_HERE 

"' ..... H,,·: .. 

DI TAIL PTR ' - . DI 
DI,lOOO 
FULL_CHECI<. 
DI, 00 
DI ,HEAD_PTR 
t···l 0 _t-10 R. E 
E:><, TA I L_PTF!. 
QUEUE[ B:X:J ,AL 
TAIL_PTR,DI 
CHAR_ COUNT 
A><, CHAF:._COUt··.JT 
A><, 900 
GO 
AL,19 
D>::, 03F8H 
D>< ~AL 
><OFF _t::ENT, 01 
AL,20H 
20H,AL 

POP DS 
POP DI 
POP DX 
POP CX 
POP B>=: 
POP A>< 

IRET 

Read char from 8250 

Load Data Segment Register 

Increment tail pointer 
If end of queue make it 

ci l"CtJlal-

Check if queue is full, 
if full go to no more 

Store char in queue 
Restore tail_ptr 
Increment char_count 

If char_count > 90d, 
send :X:OFF to VAX 
and set xoff_sent flag 

End of interrupt signal 
tc• 8259 

t·101·) 

INT 
LABEL 

DX,OFFSET COMM_INT-OFFSET F'G_LEN 

ENDS 
Et··.JD 

27H 
E:YTE 

t-1ake the program 
memory resident 



PCl·lET. Af;t--·1 

;; This program installs interupt routines 
;; and responds to the request.s. 

BLK_:::;Iz 
>:~OFF 

><Oi'·l 
CODE 

ENl.)_SEG 

PAR.At···11 

PAR.At'-12 

BUF_CNT 

BUFFER 

~3Tr;~.T: 

TRA'·( 
STKPTR 
STK.SEG 
dumm~,J 

PG~··1_NAt···1E 

PRJ'1BLK. 
co 
C1 

INCLUDE MYLIB.EQU 
IFl 
INCLUDE MY_LIB.MAC 
ENDIF 
EQU 128 
EQU 19 
EQU 17 
E E Gt·'1 Et··.JT 

c::;: CODE, DS: CODE 

OR.G 
LABEL 
OF:.G 
LABEL 
ORG 
LABEL 
ORG 
LABEL 
OF:.G 
LABEL 

2CH 
l···lOR.D 
5CH 
8\'TE 
6CH 
s···(TE 
BOH 
e··/TE 
:32H 

OR.G 100H 

,Jf'·1P (ll...JEF:._DATA 

;environment segment 

p ·3l" ame t et·l 
p.3rameter2 

command t.3i 1 

·:.a•.,.. e ·::. t .3ck 
·:.ave s.t.3c::k 

DB 
m.·~ 

D~,l 

DB 
DB 
DB 
N·.J 
DH 
DH 
m·.J 
[)l···l 
m·.J 

·' :\RDG!t'··l,.. ; 
,..C:COMMAND.COM ... ,O 

20 DUP(O) 
0 
OFFSET BUFFER 
'? SEG cmd_line 

SEG paraml 
OFFSET PARAt···12 



PCNET .ASt·-1 

(::=: 
E:UFF 

FLAG 
FILE _NA~··1E 
HANDLEl 
HANDLE 
t··.JD OF CHAP. -INTFLAG 
i<.E\'FLAG 
REt-1[li..)E 

F'1IP 
PlCS 
Pl F'S~··l 
PlA>< 
PlE:X 
PlCX 
Pl D:i< 
F'l E::~::; 
Pl:::;p 
PlE:P 
PlES 
Pli:;•S 
PlDI 
PlSI 
TIP 
TCS 
TP:::;~.·-l 

TEt-··1P 
TEt·-1P2 
TEt···1P3 

[>j,-.J 

DE: 
D!t-l 
DE: 
N,l 
m~ 

DH 
DH 
N·~ 

DH 

D~,l 

DH 
DH 
N··l 
D~-~ 

N··l 
DH 
DH 
DH 
DH 
N··l 
DH 
D~--1 
D~,l 

Dt-·l 
DH 
DH 
[>i.·.J 

N··l 
DH 

Page 1-2 

. ., ; BEG par am2 
20' II /C D I R > c: SD I R. c II 13 

0 
20 DUP(?) 
0 
0 
0 
0 
0 
0 

0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

Th i -:. i-:. p reo c:es-:. 
c:o::ontl·o::ol bleoc:k 

This preoc:edure unmaske-:. c:o::omm_int in 8259 , 
0 1v 1ER_DATA: 

CALL 
1'"101..) 
H,l 
t·-j[ll..) 

i'101·) 

t···1[11..) 

PUSH 

H-HT 
D><, 0:3F8H 
AL,D>< 
FLAG, 00 

INTFLAG,O 
KEY"FLAG, 0 

t-'101-.) AL , 0 CH 

intialize B250, 

HOV DX,OFFSET TEHPCOH ; store the address eof 
; TEHPCOt·-1 

HOV AH,25H at OCH. 
INT 21H 
POP DS 



PCHET .ASt·'1 

TR""t : 

PR.D:::;: 

t··j(ll.) 

t···101.) 

t··10l.) 

INT 
POP 

PUSH 
t··101) 

t·'101·.) 

INT 
t··jl]l) 

t·,jl]l.) 

HO'·.) 
t···j(ll) 

t···1QI..) 
It··.JT 
POP 

DS~AX 
AL,6:3H 
AH,25H 
21H 
D:::; 

DS 
AL,21H 
AH,35H 
21H 
A){, E!=; 
DS ,A>< 
D>< 'E:>< 
AL,64H 
AH 25H 

' 21H 
D::; 

;TIMER and store it 
;in int 63H(unused in dos) 

;Get interrupt vector 21H 
;and store it in int 64H. 
;(unus:.ed in dos) 

t··1[11..) 

t-101..) 
INT 

DX,OFFSET TEMPCOM ; store the adress of 
AX,2567H TENPCOM at vector 67H. 

.Jt···lP 

PUSHF 
STI 

PUSH 

21H 

RESIDENT 

in tUl"l"UP ted 

PUSH E:>< 
PUSH DS 

PUSH CS 
POP DS 

Ct·1P 
.JE 
Ct···1P 
Ct···lP 
,Jz 
G··1P 
,JE 
Ct-·1P 
.Jt··.JE 

t·-1 (ll.} 
INT 
.Jz 
t···10l.) 

PUSH 
PDP 

INTFLAG,l 
PROS 
AH, OAH 
AH, 01 
TR"'( 
AH ,07 
TRY" 
AH, o:::: 
PROS 

AH,Ol 
16H 
TRY 
KEYFLAG,Ol 

r ·C· -·-1 
DS 

push flags of the 

pl·ocess. 

;check if intflag is set 
;if set jump to pros 

to read from keyboards 
goto t1·v 

jump to pros 

; check if keay is pressed 
;if not loop until pressed 

set the k e~.Jf l-3•3 



P CN E1 . A St·'1 

POP 
POP 
POP 
POPF 
!NT 

PUSH 
Pu:::;HF 
POP 
PUSH 
t'10l) 

ADD 
PUSH 
~··1(11,) 

POP 
POP 
PUSH 
PU:=:H 
POP 
DEC 

ct"1P 
.Jt···lE 
Cl1P 
... .H"··lE 
~'101) 

t··101·) 

t···lO KE\': - POP 
IRET 

TH·1E_INT: · 

It··.JT 

keeping 
PUSH 
PUSH 
POP 
POP 

POP 
POP 
POP 

PUSH 
t··:j!]l.) 

1:1'1P· 

o:::: 
B'x·· ' .. 
.~ ....... · 
H/·-. 

64H 

c·v· /'•, 

C< 
BP 
BP,SP 
SP;OAH 
r· ... .r 
-·/•. 

SP,BP 
BP 
D< 
DS 
c-=-~· 
D:::; 
INTFLAG 

K.E"YFLAG,Ol 
NO KE\' -
AL,OO 
NO KE'{ -
H-·JTFLAG, 01 
KE\'FLAG, 00 

[)~; 

6:3H 

t·Ciutine 

D:::; 
cs 
D:::; 
TEt···1P2 

TIP 
TCS 
TPS~,l 

A ...... . .~ .... 
A><, TC:~; 

ThlTI="I Al":i _ n·1 

Page 1-4 

restC~re registes of 
interrupted prCicess 

execute system rC~utine 

give flags tCI the 
interrupted routine. 

chek if key flag is set 

chek if the pressed key 
is extended key then 

·:.et in tf la·3 

t·eturn tCI the 
interrupted process. 

execute actual timer 

store DS in temp2 location 
and make it tCI pC!int tCI 
data of this rC~utine. 

pop the stack which cC~ntaine 
IP,CS and FLAGS Clf intrrupte 
prC~gram into temp locations. 



P Cl··J ET • A St··1 

.JE 
Cl1P 
.JE 
Cl·1P 
.JE 
Cl··1P 
.JE 
POP 

><CH.G 
XCHG 
><CHG 

><CHG 
><CHG 
}::CHG 
)(C:HI3 
:~<CHG 

t--10~) 

t···101) 

XCHG 
t·10~) 

t···iOl.) 
XCHG 
t···j(ll..) 
t···l(I~.J 

><CHG 
l''l01v' 

PUSH 
PU~3H 

PUSH 

t···lOl.) 
t···10V 
t···j(l~) 

t···1(1'.) 
t·,j(l~) 

t·,j(ll .. ) 
t'1 (II..) 
._n-··1P 

SAt···1E: 
POP 
PU~3H 

PUSH 
PUSH 

F:.ETURt·-..1: t·,j(ll) 

IRET 

SAt···1E 
A><, OE9CH 
SAt-·1E 
A><, 0070H 
~3At-·1E 

A><, OD91H 
SAt··1E 
..... I' 

H?: .. 

A><, PlA>< 
E:)< , F' 1 E:)< 
D<, PlD< 

DX,PlDX 
PlDI ,DI 
PlSI '~:::I 
PlBP,BP 
PlSP,SP 

T Et-·1 P , A>< 
AX, TEt''1P2 
PlDS ,A>< 
TEt·,lP2 ,AX 
A>(, ~38 
F'l ~;~;,A>< 
:;:;~::;'A:::< 

AX,ES 
PlES ,A>< 
ES,A>:: 

PlPSH 
PlCS 
PliP 

A><, TIP 
Pi I P ,A>:: 
A><, TCS 
PlCS,AX 
A><, TP~::;L,J 
PlPE:H ,A>< 
A><, TEt···1P 
RETURt··.J 

A>< 
TP~:::~··i 

TCS 
TIP 

DS,TEHP2 

exchange all registers of 
interrupted process and 
ne:>~ t proce·::.s tQ be execute 

;< when .we give cC~ntrole to 
;other program we shoOld 
;~estore all of it's registers 
;and save the rigisters of 
;interrupted program in PCB} 

push IP,CS and FLAGS of 
next process to be execute, 

store IP,CS and FLAGS Clf 

interrupted process in PCB 

give contrC~l to the next 
process to 'be executed. 



PCNET • A~:t--·i 

GO_.E:ACf(: 

HULTI: 

STI 
PUSH 
IN 
OR. 
OUT 
POP 
PUSH 
PUSH 
POP 
POP 
t·.-j[ll) 
!"10l) 
~ .. 1[11..) 

t· .. 10i...J 
t···1(1~) 

r·.-101..) 

~··1(11..) 

t10~) 

r·.-101.....' 
POP 
POP 
POP 
t·1 (II..) 

t·11]1v1 

I t···l 
U··1P 
._n-·.JE 
~..Tt···1P 

IN 
At··.JD 

A>< 
AL,21H 
AL,lOH 
21H,AL 
A>< 
DS 
C:!=; 
D·=-._. 

PlDS 
F'lA>( ,A>< 
Pl E:X, E:>< 
PlC><, C>< 
Pl D><, D:/ 
PlDI ,DI 
PlE:P,E:P 
PlSI ' ~=;I 

"PlES,ES 
Pl ~38, ~;:;:: 
P1 I P 
PlCS 
PlP:::;j .... J 
P1SP,SP 

D>=~, 03F8H 
AL, D>< 
AL, lE:H 
GO_BACI<. 
~ .. 1UL TI 

AL,21H 
AL ,OECH 

OUT 21H,AL 

t··1[1l.) 

OUT 

CALL 

t··10l.) 
t·.-1(11..) 

t·,1(1l.) 

HOV 

AL, 20H· 
20H,AL 

DISABLE 

A><, (::3 
DS,AX 
ES;,_A>< 
SS ,A>< 

HOV SP,OFFFEH 
HOt) :::TKPTP., ~3P 
MDV STKSEG,SS 

t·1(1i..) AL, 60 H 
t··Ktl..) AH , 35H 
INT 21H 
t···j(ll,) 

t-·j(il,) 

t-·1(11..) 

A>=~, E~: 

D::;, A>< 
DX , 8>::: 

di ·:.able :3259 I R4 
by masking bit 4 of 
ma-:.k t· egis t et· . 

store all registers of 
interrupted process in 
process control block. 

;read charector from UART 
;and chek if it is ESC. 

enable ir4 by unmasking bit 
in IMR. of 8259 so new c~ar 

in UART can interrupt 

end of interrupt signal 
to E:259 

give control back to the 
interrupted process. 

intialize registers. 

;Get interrupt vector for 
;comm_int and store it 
;at vector OCh(unused in dos) 



BEGH·l: 

PAt;CAL: 

SCALL: 

i"'101·) AH , 25H 
It·..JT 21H 
f'10'·) 
OUT 

I t···l 
At··.JD 
OUT 

fvj[l~) 

t··10t.) 
. t···10t..J 

t-10'.) 
t··101v' 
CALL 
CALL 
Ct-1P 
.JE 
t-·j[lt.) 

AL,20H 
20H,AL 

AL,21H 
AL, OECH 
21H,AL 

A>(, c:~; 
D~;, A>< 
E~; ,A>< 

It··HFLAG, 0 
AL,43H 
SEND 
GETCHAR 
AL,41H 
s···(STH·! 
TRAY. ,AL 

t···10'·) AL, 0 E:H 

~nd of interrupt signal 
to 825::' 

; enable ir4 by unmasking bit 
in IMR of 8259 so new char 

in UART can interrupt 

send char 'C' to inform 

the other PC 

if the recieved charector 
;is other than 'A' then call 

facility program else 
jump to label system. 

t··10t.) D><, OFFSET T I t···1E_I t-·4T 
t·-'1(1t.) A H , 2 5 H 
H··lT 21H 

t'10'·) 
HOI..) 
INT 

DX,OFFSET COME_BACK; store the 

t···l(ll.) 

I t··.JT 
t·'1 [ll.) 

t·1[1l.) 

PUSHF 
PUSH 
PU:3H 
IR.ET 

t·'1 (It) 
t·'1 [ll.) 
t1(1l.) 

AX,2566H 
21H 

A>:::, 35~.55H 
21H 
TEt···1P3, E:3 
D::;;, TEf'1P:=: 

ES 
B>< 

A>(, CS 
E:=: ~A>< 
DS, A>< 

MOt..J SP,STKPTR 
MOt..J SS,STKSEG 

CALL 

C::ALL 
t···10l.) 

DISABLE 

GET CHAR. 
AL, o::::H 

come~back in vector·66H 

get the address of the 
facility program and 
give control to it. 

after rhe execution of the 
facility program control 
comes ro this label. 

give control .back to the 
u·:.et· 



t··.j(l : 

NET: 

FNAt···1 E _Qt.) E R. : 

Page 1-8 

MDV DX,OFFSET TIME_INT ;make vectopr 08H to tim 

t'10l.) 
Il',lT 

t···101) 

PUSH 
1'·101) 

LOOP 
POP 

AH,25H 
21H 

C<, OEH 
C>< 
CX, OEFFH 
NET 
ex 

LOOP t·Ki 

1'·10\.) 
l'··jl]l.) 

It·-..lT 
t···j(ll.) 
t···101·.) 

t···1Ql.) 
t··10l.) 

AL, G::::H 
AH,35H 
21H 
A><, ES 
D~3, A)< 
D><' B>< 
AL, 08H 

1'·10'.) AH, 25H 
INT 21H 
POP DS 

t··1 (ll.) 

t'·1 01
.) E s ' A>< 

t···1 Qt.) DS , A:::< 

t··10t.) D I , 80 H 

GET CHAR. 

l-ou tine 

wait for some time 

; 
;Get interrupt vector for 
;TIMER. and store it 
;in int 08H(unused in dos) 

intialize registers 

CALL 
t·101·) 

CliP 
,JE 
It··.JC 
.Jt·,1P 

BYTE PTR. [DIJ ,AL; 
AL,CR 

read the command sent by 
user on other PC and 

place it offset 80H. 

t·,j(ll..) 

t··101·.) 

t'10l) 
t···101.) 

1''11]1 . .) 
It··.JT 
,JC 
t···10V 
HOt.) 
t···l(ll.) 

t···101..) 
INT 
t·.-10'..) 
t·.-j[ll..) 

j--1(1l.) 

, ... 101..) 
t···il]l..) 

H·JAI'1E_Ot.)EP.; 
DI 
t··.JEXT 

[ Cl] , DS 
[C2] ,DS 
[ c::::), DS 
BX, 1200 
AH,4AH 
21H 
NORED 

cmd line 
FCBl 
FCB2 
release memory to load 

co:•mman d. com 

D)<, OFFSET PGt·1_NAI'"1E 
Al,OO 
S::<,OFFSET 
AH,4BH 
21H 
::;;p, STKPTR 
SS,STKSEG 

AX,CS 
DS ,A>< 
ES,A>< 

; load .:.nd 
PRt· .. 1BLK 

execute command.com 

call the facility program to 
send the output of the 
executed. • 



P et·.J ET • A St·1 

NORED: 

RES I DEt·..JT: 

PG_LEN 
CODE 

1'1[11 . .) 

.Jr·.-JP 
CALL 

TRAY,44H 
SCALL 
DI :=:ABLE 

Page 1-9 

; 
o:ilHR I TE / 1'1EMOFfY REDUCT I Cit"-..! FA I LED··· 
CALL D I :=:ABLE 

INCLUDE SUB.LIB 

HOV 
t···1 (1\.) 

r·.-10lJ 
t·.-1[1\.) 

t··1[11..) 
t·.-j[ll) 

t···1Ql.) 
t'10l.) 
It···JT 

LABEL 
END:=: 
Et"-..ID 

A><, 00 
DS, A>< 
DI~0084H 
C<, OFF::::ET 
[DI],C:::< 
[DI+2] ,c::;: 

A><, ::n 0 ::::H 
DX,2000H 
21H 

B\'TE 

STR.T 

store the address of SYSINl 
.:at vector 21H. 

make the program memory 
resident and reserve 
20K to load commahd.com. 



SUE:. LIB 

;;This librery provides some procedures used in the PCNET program 

GETBUFF PROC 

OK: 

NO_CHAR: 

t··.JEAR 

PUSH 
PUSH 
PUE;H 
PUSH 
t·,1[11.) 

t·,j[ll.) 

t·1(!1.) 

t···jl]l . .) 

r··10'-.) 
r··1ol .. ) 
t·,j[ll.) 

Ct,1P 
.JE 
t'·1D1·) 

It··K 
et-··1P 
. JNE 
t···11]1) 
~-·1[11 .. ) 

DEC 
Ct·,1P 
.JNE 
Ct···1P 
. JGE 
f'i0~) 
t···j[ll.) 

OUT 
t·'1 (II.) 

HOl.) 
POP 
POP 
POP 
POP 

DI 
c:><, c)s 

A><, 0000 
[>S, A>< 
B><,0184H 
D::;;, [ B><] 
BX,OOOO 
D I , [ B><] 
DI , [ 8><+2] 
NO_CHAR 
AL, [B><+8] [DI] 
DI 
DI ,1000 
OK. 
DI, 00 
[B><J ,DI 
~-·mRD PTR [ B><+4] 
WORD PTR [8><+6] ,1 
t··.JO_CHAR 
WORD PTR [8><+4],750 
t··.JO_CHAF: . 
DX, 03F8H 
AL,l? 
DX,AL 
WORD PTR [BX+6J,O 

D>< 

8:\ 
DI 

;make DS register to 
;point comm_int routine 

;move head_ptr to di 
;compare with tail_ptr 
;if equal queue is full 
; quit .lc•ad chal· 
;pointed by head_ptr, 
;to al incr di make the 
; q IJ eu e c: i ,.. cu 1.::~· • 

,.. e·:. t cq~ e head_p t ,.. 
decrement char_coun 
Check for xoff 

; if char_count<=750 

-:.end >~on 



R.ET 
GET BUFF ENDF' 

;;this procedure sends a charector to the comml. 

P.ETP.'I'': 

RETR.Yl: 

SEND 

GET CHAR. 

GETIT: 

GET CHAR. 

DISABLE 

PP.DC 

PUSH 
t···1()1.) 

PU~;H -

I t··.J 
At··.JD 
T'7 

'...f... 

IN 
At···lD 
,Jz 
POP 
t·10l.) 
OUT 
POP 
RET 
Et··.JDP 

PROC 

PUSH 
PUSH 

t···1(1l.} 

~··1(!l.) 

t-101·.) 

INT 
t"10l) 
t-10l.) 
t···10i.) 
INT 

POP 
POP 

CALL 
CI"'1P 
,JE 
RET 
ENDP 

PR.OC 
POP 

NEAF~. 

D>:: 
D><, 03FDH 
A>< 

AL, D>< 
AL,20H 
RETR·y· 

AL,DX 
AL,40H 
RETR''(l 
6 .. -;;. 
r-Io" •• 

D)(, 03FBH 
D>< ,AL 
DX 

t··.JEAR. 

........ / 
H ....... 

BX 

AL,O 
AH, 14 
BH,O 
lOH 
AL,B 
AH,14 
BH,O 
lOH. 

B>< 
A>< 

AL,O 

GET BUFF 
AL,O 
GET IT 

t··.JEAr;:. 
R. Et--1 0 1·...J E 

' ;chek weather THR reg 
; is emptv. 

;check weather TXSHR 
i ~· emp tv • 

;· send the charector 
in ~1 to the comml. 

;This procedure returr 

a charector from 
the que,Je. 



t:;UB .LI 8 

DISABLE 

H.JIT 

t··101..) 
t···101v' 
It··.JT 
PUSH 
POP 
t···101..) 
~·10'·) 
t· .. 10'..) 
HI]!..) 

t···101·.) 

t···11]1..) 
t···101..) 
t--1(11..) 

H01) 

t···1 (II.,) 
PU:3H 
PUSH 
PUSH 
t··11]1..) 
IRET 
ENDP 

D><, OFFSET 
A><, 250C:H 
21H 
,-··=· -··-· 
[!~: 

A><, F'lA>::: 
B><, Pl B>< 
C><, PlCX 
D><, PlD>< 
DI ,PlDI 
~3 I , P1:3I 
BP,PlBP 
:;p, PlSP 

!=;~;, F·l ~;~; 
ES,PlES 
PlPS~··l 

PlCS 
PliP 
DS, P1D:3 

TEHPCot-·1 

., -"'=t 

.J.. ·-· 

store the offset of 
TEMPCOM at vector oc• 

re·:.tol·e .:E~ll us.el· 
re·3i -::.te·i"·:. and 
give full con~rol. 

This procedure unmaskes comm_int in 8259 , 
initializes 8250 and transfers the comm_int 
vector stored at 2Dh to OCh . 

PR.OC t··~EAP. 

PUt:;H 
PUSH 
PUSH 
PUt:;H 
PUt:;H 
PU:3H 

I t···l 
At··.JD 
OUT 

~··1(11..) 

t···1(11..) 
OUT 
DEC 
DEC 
t···101..) 
OUT 
DEC 
t···101) 

OUT 
INC 
INC 
INC 

t· .. 101·) 

OUT 

Dt:; 
DI 
c~>< 

C>< 
EO< 
.. · .. · ..... · 
H ...... 

AL,21H 
AL, OACH 
21H,Al 

DX, 03FBH 
AL,80H 
D:::<, AL 
D>< 
D>< 
AL,OO 
D><, AL 
[)>::: 
AL, OCH 
D>=:.,AL 
DX 
D>< 
D>< 
Al,03 
D><, Al 

;unmask irq4(comm int) 

; In i t i ali z e 8250 
;·:.et DLAB tO 1 

;set baud rate low byt• 

;set baud rate high by 
(9600) 

;no.of bits 8,no parit 
;1 ':.top bit 



::;;us. LIs 

DEC DV ···. 
DEC D>< 
t-101·) AL,Ol 
OUT D><; AL 

; 
;enable 8250 COMM INT 

POP A>< 
POP B>< 
POP ex 
POP D>< 
POP DI 
POP [.1!::; 

RET 
INIT ENDP 



FACI LIT'(. PAS 

{ This program serves the requests for phone,mail?transefer file 
and sends the output of dos commands } 

program facility; 
procedure intpas 
procedure r~turn 
procedure noswap 
function getkey (var i 
function getbuff (var i 

registers = record 

;external 'intpas.com'; 
;external 'retu~n.com' 
;external 'noswap.com' 

integer);integer ;external 'getkey.bin' ; 
in t e•3el·) : in t e•3er ; e::< t ex n al ·'get buff . bin,. ; 

a>:: ~ b>:: , ex , d>:: , bp , sp , d i , ·:. i , c·:., ds, es, ss., f 1 ag·:.: in t e·3el· ;. 
end; ' 
mes=·:.tr i n·3[ 30]; 

•.Jar 
filename: string[12]; 
fp : FILE; 
fpl : te::·::t; 
c : char; 
l·e·3: l·e·3i s.tel·s; 
ccr,clf,csp : char; 
st : array[l •. BO] of char; 
bufsiz,wblkno,rblkno,flag,resultl,result:integer; 
flagl,row,col,fflag,i,j ,tray:integer; 
buff:array[l .• l28] of char~ 
complete,cleartosend:boolean; 

{ This procedure returns a character from comm-buffer 
It waits till a character is received.} 

procedure getcharp(var i :integer); 
•,Jar j : in teget·; 

begin 
i : = 0; 

J..· •• •h i 1 e i = 0 do 



j : = ·:te t buff ( i ) ; 
t"ot, . .J: =t.-..Jher ex ; 
co 1 : =t,,thel- ev ; 
1..-n i t e ( chr ( 0) ) ; 
go tO X~,..' ( l"CII .. ·.J, CC•l) 

end; 
end; 

procedure getchar(var i:integer); 
.begin 

i ~ =0; 
t •• .rhile(i=O) de• j:=getbuff(i); 

end; 

{This procedure sends a char through 8250 it 
waits untill shift reg and transmitter buffer 
.:.,.-e ernp tv } 

procedure send(w : integer); 
'-.J al~ ::-~ , ~:.J , z , i 
be·::!i n 

~:.J := O;z := 0; 
while ((V = 0) or (z = 0)) do 

begin 
x := port[$03FDJ; 
v := x and $0020; 
z := x and $0040; 

end; 
port[·$·03FB] := •.•.t; 

end; 

,. -.. This procedure finds the 
using DOS interrupt 10h 

po-:.i t ion 

procedure findc:ur(var i,j :integer); 
begin 

end; 

·reg .. 3X := ·$0300; 
t· e·3. b:>:: : = 0 ; 
in tr ($10, l·e·:t); 
i := reg.dx div 256 + 1; 
j := reg.dx and $FF + 1; 

on the ·:.cl- een 

{This procedure positions the cursor on the screen 
at given row and column } 

procedure poscur(row,col 
be·3i n 

re•3. ax : = ·$200; 
l"e•3. b~< : = o.; 

I 

integer); 



FAC I lIT/. F'A:::: Page 1-:::: 

• 
reg.dx := ((row-1) * 256) or ((col-1)); 
in t ~- ("$1 0 , r e•3) ; 

end; 

< This procedure displays a character at the current cursor position 
in the given attribute and advances the cursor to next column. 
The first arguement is the character to be displayed and 
the second is the attribute } 

pr·oce.:IIJ't·e di ·:.pla~J ( i, j :integer); 
var k: integeT; 
be·3i n 

of 
10 
1:3 
09 

t,.n·i te(clf); 
1.-.Jr i te( ccr·); 
for k:=1 to 

< pTint line feed as it is} 
< print carriage return as it is } 

8 do write(csp); <expand tab } 

end; 
end; 

req.ax := i or $0900; 
,.-eg.bx := j; 
re•3.CX := 01; 
in t r ( $10 , r· eg) ; 
findcur(row,col); 
poscur(row,col+1); 

end; 

< This procedure waits for a char from keyboard 
and returns the same 

procedure readkbd(var i 
•.J ar· j : in t e•3et· ; 
begin 

i : = 255; 

-~ 
·' 

,_,,,hile i=255 do j := getke)J( i); 
end; 

< This procedure displays the given 
cursor position in the given mode 

string at the current 
-.. 
•' 

p r· c• cedu r· e 
•,.1 at·. i , j 
begin 

set_display(st:mes;mode:integer); 
in tege1·; 

for i:=l to length(st) do d i sp lav ( Q r d ( s. t [ i ] ) , mode) ; 
end; 

< This procedu~e reads the file name sent bv the other 
PC and sets fflag if error in reading.} 



FACI LIT"(. PA~: 

procedure readfilename; 
var· 

i , j , k : integer ; 
c:, ·::.: c:l-tal' .. ; 

be·3i n 
f i 1 en arne : = ,/ 
i := 1; 
getchaq:;. U); 
if(j<>03) then 

be·3i n 
'··'.lhi le j < >13 do 

begin 
filename[i] := chr(j); 
i := i + 1; 
getcharp(j); 

end; 
end 

else · 
fflag:=l; 

end; 

<This procedure sends the file } 

procedure sendfile; 
'·..' .ar· 
i , j , k : in t e•3er ; 
c, -:.:char· ; 

begin 
readfilename; 
if (fflag<>l) then 

assign(fp,filename); 
{$i-} 

r· es.e t ( f p) ; 
{$i+} 

if (ioresult <> 0) then send(03) 
else 

begin 
·:.end( 67); 
{$-i -} 

< This procedure reads the file blockwise and sends it charector 
by charector.if error in reading it reopens the file and 
moves reading head to the sector to read. } 

while NOT EOF(fp) do 
be·3i n 

blockread(fp,buff,l,resultl); 
while(Ioresult<>O) do 

begin 
assign(fp,filename); 
re-:.et(fp); 



FACILITY .PA!::; 

end; 

~-eeJ..:. ( fp, rblkno); 
blockread(fp,buff,l,resultl); 

end; 
rblkno:=rblkno+resultl; 
i : =1; 
while ( (i<=128) and NOT complete) do 

begin 
if(buff[iJ<> chr(26)) then 

begin 
for j:=l to 200 do; 
send(ord(buff[i])); 
i:=i+l; 

end 
el-:.e 

begin 
complete ~= TRUE; 
send(26); 

end; 
end; 

{ j := getbuff(i); 
if i = 19 then • .. ·.Jhile i <> 17 do j := getbuff(i);} 

end; 
close(fp); 

end; 
{This procedure disables multitasking} 

n C• SI.•.L3p j 

end; 
{ This procedure recieves a file sent by the other PC } 
procedure getfile; 

begin 
no-: ... -.Jap; 
readfilename; 
if ( fflag <> 1 ) then 

be·3i n 
assign(fpl,filename); 
{$i-} 

t· et.·.n· i t e ( f p 1 ) ; 

if (Ioresult=O ) then 



FACI LIT\'. FAE; 

end; 

be·3i n 
-:.end( 03); 
writeln( 'CAN NOT CREATE FILE'); 

end; 
end; 

< This procedure respo~ds to the phone call } 
procedure ·:;peak ; 
const 

l.}Ql'"' 

LF = 
CR. = 
E~::;c = 
SPACE = 

10 ; 
1:3; 
27; 
":•..., . ._Ia:...' 

{ line feed 
{ carriage return 
{ e-:.cape 
{ ·:.pace 

i ,j,k,n1,n2,code,index,scancode,appm 
row,col,saverow,savecol,attrib,ptr 
wintop,winbottom,fgcolor,bgcolor 

· rl,cl,r2,c2 : integer; 
continue : boolean; 

be·3i n 
n C• s:.\,,1.3 p ; 

in tE"3e1'·; 
in tegel·; 

: 1 n te•3et·; 

writeln(' YOUR HAVE A PHONE CALL 
l·ead( kbd, c); 
if((c='y') or (c='Y')) then 
begin 

{ This creates two windows on the screen J 

send(67); 
window(1,1,80,25); 
cl 1· -:.cr ; 
gotoxy(30,1); 
set_display(' PCNET PHONE FACILITY ',$70); 
got o ::< y ( 1 , 2) ; 
for i:= 1 to 79 do write('-'); 
go to::<:~J ( 1, 13); 
for i : = 1 to 7:=1 do ~..-n· i t e ( ·'- ·' ) ; 
gea tea>~ y ( 1 , 14) ; 
fear i:= 1 to 79 dea write('-'); 
gotoxy(1,25); 
for i!= 1 to 79 do write('-'); 
gotoxy(1,1); 
1'"1 : = 1 ; c1 : = 1 ; 
1' .. 2 : = 1 ; r::2 : = 1 ; 
j : = 1; 

continue := TRUE; 

.. .·· 
} 

} 

{ this displayes and sends the key pressed and displayes 
charectors recieved from other PC } 

while continue do 
be·3i n 



FACI LIT'"(. PAS 

i : = 255; 
j : = ·3e t k ev ( i ) ; 
i := l.:o(i); 
if i = 0 3 then· 

begin 
-:.end( 03) ; 

el·:.e 

continue := FALSE; 
cl t· -:.c:r ; 
writeln(' YOU HAVE COME BACK TO YOUR PROCESS 
end 

if i < > 255 then 
be•3i n 
send(i); 
window(1,3,80,12); 
textbac:kground(O); 
textc:olor(5); 
got o ::-~ v ( r 1 , cl) i 
t,.n·i te(dw( i)); 

if i=13 then write(chr(10)); 
rl := wherex;cl := wherey; 

end; 
i : = 0; 
j : = get b•J f f ( i ) ; 
i:=lo(i); 
if i = 03 then continue:=FALSE else 
if i < > 0 ·then 

end; 

be·3i n 
window(1,15,80,24); 
textbac:kground(O); 
tex tcol•)r ( 5); 
gotoxv(r2,c2); 
1,-..1r i t e ( c:ht· ( i ) ) ; 
if i=13 then write(c:hr(10)); 

r2 := wherex;c:2 := wherey; 
end; 

end else send(03); 
end; 

PROCEDURE COMMAND; 

• . ..o at· 
i , k , j : i n t eger· ; 
begin 

assign(fpl,'C:dire$ct'); 
re·:.et(fpl); 
if ( i O:•r·e-:.ul t < >o) then t.-.n· i te( ·' OF'Et---~ FAILED ') 
else 
while NOT EOF(fpl) do 



FACILITY.PAS 

begin 
read(fpl,c); 
sendCord(c)); 

• • • I 

end; 
send(26); 
rewrite(fpl); 
close(fpl); 

end; 

{ MAIN PROGRAM STARTS HERE } 
begin 

flag:=O; 
flag:=mem[0:$200]; 
if (flag<>O) then 
begin 

complete:=FALSE; 
bufsiz:=256; 
rblkno:=O; 
wblkno:=O; 
resultl:=O; 
result:=O; 
fflag:=O; 

Page 1-8 

{ This is to read the request from other PC. } 
i:=memw[0000:$019A]; 
tray:=mem[i:$0103]; 
case tray of 

$54 . sendfile; 
$52 getfile; 

·$50 speak; 
$44 command; 

end; 
{ This gives control back to PCNET. 

return; 
end 
else 

{ This p~ocedure makes the whole program memory resident } 
intpas; 

end. 



CODE_HER.E 

the 
GETl.::.E---r·· PROC 

al·d 

ed 

cot·-JT: 

QUIT: 

GETKE-t Et··.JDP 
CODE_HER.E 

!3EGt,1ENT 
ASSUME CS:CODE_HERE 

PUBLIC GETI<E·( 

t···lEAF:. 

PUSH BP 

HOi.) AH,Ol 

INT 16H 
,Jz QUIT 
t-·101·.) AH,OO 
INT 16H 
r-10'.) BF·,sp 
LES DI , [ BP+4 j 
t···j(!t.) E:::: : [ D I ] ; AX 

POP BP 
RET 6 

END:3 
END 

; This function returns 

input from the keybo 

Check if keay is press 

If not goto quit, 

else read the key, 

Transfer this key to 
the external variable 



i dent 

l,quit. 

head_p t~· 

iable 

If lag. 

CODE_HEP.E SEGt1ENT 
ASSUME CS:CODE_HER.E 

PUBLIC GETBUFF 

GETE:UFF PROC I··.~ EAR 

01<.: 

NO_CHAR.: 

PUSH 
!'·1[11.) 

PUSH 
PU::::H 
PUf:H 
PUSH 
PU:3H 
!'·j(ll..) 

t···101·.) 

1'101·) 

BP 
BP,SP 
A>< 
B>< 
c:>< 

DI 
C><, DS 

A><, 0000 
[)8 ,A>< 

t·10',.J BX, 0 184H 
t···10V o:;, ( B>< J 
t··10l.) 
t101..) 
Ct·-1P 
JE 

t··1QI..) 

PUSH 

BX,OOOO 
D I , [ B><J 
DI,[B><+2J 
t···lO_CHAR 

A L , [ B>< + 8 J [ D I ] 

DI 

LES DI,(BP+4J 
MOV ES:[DIJ,A>< 
PDP DI 
INC 
ct-··1P 
•• .Tt ... ~E 
t···JQI.) 
f'101·) 

DEC 
C:t'-1P 
... Tt'··~E 
CHP 
JGE 
~··101..) 

t··10'·.) 
OUT 

DI 
DI,lOOO 
0!< . 
DI ,00 
[B><J ,DI 
HOF!.D PTR. [ 8}:~+4 J 
HORD PTR [BX+6],1 
t···lO_CHAR. 
HORD PTR [8X+4],750 
t··.JO_CHAR. 
D><, 03F8H 
AL, 17 
D>< ,AL 

t·-1[11 •• ) l·,lOF!.D PTR. [ 8><+6 J , 0 

t··101..) 
POP 
POP 
POP 
POP 
POP 
F'OP 

DS,C)( 
DI 
[i)( 

C>< 
B>< 
A>< 
BP 

This function returns 

char,if any from buf 

Load DS reg with 
Data segment of Res 

Move head_ptr to di 
Compare with tail_ptl 

'If ~qual queue is fuJ 

load char pointed b~ 

into the external var 

Increment head_ptr 
If head_ptr=lOOO ther 

make it circular 

Restore head_ptr 
Decrement char_count 
If ~<off _·:.ent .;and 

char_count <= 750, 

send XDN to VAX, 

and reset xoff_sent 



CODE 
ASSUt-·1E 
ND_S~'·JAP 

NO_S~··~AP 

CODE 

procedure disables multitasking. 
SEGt···1ENT 
c::;: CODE, OS: CODE 

PROC t···lEAF:. 

PUSH 
PUSH 
PUSH 
PIJ::3H 
PUSH 
t·1D1·.) 

t···1(1\) 

I !-.JT 
l''101..) 
t···j(ll.,) 

110l.) 
HOI,) 
t-·10l) 
It···lT 
POP 
POP 
POP 
POP 
POP 
RET 

Ef"·.JDP 
ENDS 
END 

E.-. 
-=· 

DX 
B>< 
A>::: 
AL,63H 
AH,:35H 
21H 
AX,ES 
[):=;'A>< 
D:::<, BX 
AL; 08H 
AH,25H 
21H 
A>< 
BX 
D>< 

;Get interrupt vector for 
;TIMER. and store it 
;in ~nt 08H(unused in dos) 



R.ETURJ·l. A:=:t·'1 

CODE_HERE SEGMENT 
ASSUME CS:CODE_HERE 

RETURN PROC NEAR 

RETURN 

CODE_HEf::.E 

POP 
t···j(ll.) 

INT 
PUSHF 
PUSH 
PUSH 
IR.ET 

RET 
ENDP 

Ef'·.JD::.:: 
lil-..!D 

A>< 
A><, 356:3H 
21H 

0 



It··.JTPAS 

;;This procedure makes the facilty program memory 
; ;resident,sets the flag and stroes the starting 
address at vector 65H 
CODE SEGMENT 

It···lTPA:::; 

INTPAS 

CODE 

A:::;:=;;ut···1E c::;;: CODE, D:::;: CODE 
NEAR PR.OC 

ENDP 

Et'·..!DS 
Ef'-.j[l 

POP A>< 
HOt) A><, 00 
1'101.) 

r·10'..J DI,200H 
t··1 (II.) A>< ' 0 1 
MOV DS:[DIJ,AX 
t··Ktt.) A><, CS 
1'1(1t.} ES ,A>=~ 
i''101·.) 

t·,jQt.) 

t··j(ll .. ) 

INT 
f··101..) 
H01·) 

INT 
RET 

D>~ ~ 100H 
A~=<, 2565H 
21H 
A:~<, :=:1 0 ~:H 
DY ~ 1500H 
21H 

store the starting address 
.:st •Je.:::tot· 65H 

make the program memory 
resident and return to dos. 



ASKFILE.PAS 

{ This is to request and get a file from the other pc. 
If the user on the other PC is willing to send file, 
it reads and sends the file name,if there is no error 
indicator from the other side the file is recived and 
stored on your current directory } 

PROGRAM askfile(input,output); 
function getkey (var i integer):integer 
function getbuff (var i : integer) :integer 

t ~:.~pe 

;external 'getkey.bin' ; 
;external 'getbuff.bin'; 

{This record contains the varioues registers in 8088 
Used in interrupt routines within TURBO } 

registers = record 

<.Jar 

ax,bx,cx,dx,bp,si ,ds,es~flags : integer; 
end; 
mes = string[80]; 

i,j,k,l :intege-r; 
c: chat·; 
filename: st-ring[20]; 
f p : t e::-:: t ; 
r·eg ; Ye·3i·::.ter·~.; 

cleartosend : boolean; 

t This pYocedure retuYns a character from comm-buffey 
It waits till a character is received from anotheY PC} 

pYocedure getchar(var i:integer); 
'·.! ar j : integer ; 

be•3i n 
i ~ = 0; 
while i = 0 do j := getbuff(i); 

end; 



{ This procedure swaps interrupt vectors vl and v2 } 
procedure swap_vectors(01,u2 : integer); 
begin 

reg.ax := $3500; 
reg.ax := reg.ax or vl; 
in t r ("$·21, r·e·3); 
reg.ax := reg.es; 
reg.ds := reg.ax; 
reg.dx := reg.bx; 
reg .. :n:: : = $2500; 
reg.ax := reg.ax or u2; 
intr·($·21 ,t·eg); 

end; 

{ This procedure sends a char to another PC through 8250 
It waits untill shift reg and transmitter buffer 
at· e emp t >J } 

procedure send(w : integer); 
u~r x,y,z,i integer; 

end; 

y := O;z := 0; 
while ((y = 0) or (z = 0)) do 

x := port[$03FD]; 
y := x and $0020; 
z := x and $0040; 

end; 
pot· t [·$·03F8J : = ,, .. .J; 

< MAIN PROGRAM STARTS HERE } 

be·3i n 
< This procedure stores the comm_int address at vector OCH } 

swap_vectors($60,$0C); 
< read a charector from 8250 } 

i :=pol·t[$03f8]; 
i : = 255; 

{ clears comm_buffer } 
'·'·.ih i 1 e i < > 0 do 

begin 
i : = 0; 
j :=getbuff(i); 

end; 
-:.end( 27); 
getchar(i); 
if (chr(i)= /C/) then 

be·3i n 
·:.end ( 84) ; 
t-H· i teln; 
write(/ GIVE FILE NAME :/); 
readln(filename); 

{ This sends file name to the other pc } 
for i:= 1 to length(filename) do send(ord(filename[i: 
-:.end( 1:3); 



ASKFILE.PAS 

getchar(i); 
if(lo(i)=67) then 

begin 
assign(fp,filename); 
~ewrite(fp); 

· getchar(i); 
{This recives file from oth~r PC } 

while(i<>26) do 
begin 

write(fp,chr(i)); 
if(lo(i)=$03) then i:=26; 
getchar(i); 

end; 
close(fp); 

end 

Page 1-3 

else writeln('file not fou~d at the other node'); 
ehd 
else send($03); 

{ This stores the address of tempcom at vector OCH 
from vector 67h } 

swap_vectors($67,$0C); 
end. 



t·,1A I L. PAS 

{This program is to mail a file to the other PC,it prompts for 
file name to be mailed and reads the file name and sends the 
file name and file to the other PC. } 

program mail (input,output); 
function getkey (var i : integer):integer 
function getbuff (var i integer) :integer 

t~,1pe 

;external 'getkey.bin' 
;external 'getbuff.bin' 

<This record contains the varioues registers in 8088 
Used in interrupt routines within TURBO } 

re··3istet·s = t·ecot·d 
a>:: , b>:: , ex , dx , bp , '=· i , d-:., e-:., f l.ags : in t eget· ; 

end; 
mes = string[80]; 

i , j , k , 1 : in t eget· ; 
c: chat·; 
filename : string[20]; 
fp : te>~t; 
l" eg : l" e·:d -::;. t et· -::;.; 
quit,cleartosend : boolean; 

< This procedure returns a character from comm-buffer 
It waits till a character is received from other PC} 

procedure getchar(var i:integer); 
v.at· j : integet·; 

begin · 
.i : = 0; 
while i = 0 do J := getbuff(i); 

end; 

{ This procedure swaps vetors vl and v2 .,_ 
·' 



t·'1A I L . PAS 

procedure swap_vectors(v1,v2 
begin 

reg.ax := $3500; 
reg.ax := reg.ax or v1; 
in tr ("$21, 1·e·3); 
reg.ax ·-.- 1·e·3. es; 
re·3. d~. := 1· e·3. ax . ~ 

r-eg.d::< := reg.bx; 
1·eg. ax := ·$2500 . 

' r-eg.ax := reg.ax or v2; 
in o- ($21, ·reg); 

end; 

integer) ; 

{ This procedure sends a char to other PC through 8250 
It waits until! shift reg and transmitter buffer 
a,.- e emp t ~,) } 

pro~edure send(w : integer); 
var x,y,z,i integer; 
begin 

end; 

~:.J := O;z := 0; 
while ((y = 0) or. (z = 0)) do 

be·3i n 
x := port[$03FDJ; 
~) : = 
.... ·,;:.. .-

;< and ·$0020; 
x and ·$·0 040; 

end; 
port[·$03F8] := t,.,q 

{ MAIN PROGRAMM } 
be:3i n 
{ This procedure store the address of comm_int at vector 

OCH from vector 60H } 
swap_vectors($60,$0C); 
i :=port[$03f8]; 
i : = 255; 

{ This makes clears the comm_buffer } 
I,·.Jh i 1 e i < > 0 do 

begin 
i : = 0; 
j : = get buff ( i ) ; 

end; 
~.end(27); 

•3e t cha1· ( i ) ; 
if (chr(i)= ···c·') then 

begin 
send(82); 
write(' GIVE FILE NAME '); 
readln(filename); 



HAIL.PAS 

-{$i-} 
assign(fp,filename); 
t·eset ( fp); 

if (Ioresult<>O) then 
begin 

Page 1-:3 

send(03);write('FILE NOT FOUND'); 
end 

el-:.e 
begin 

{ This sends the file name to the other PC } 
for i:= 1 to length(filename) do 

send(ord(filename[i])); 
-:.end( 1:3); 
getchar(i); 

< This reads and sends the file to the other PC } 

if( i=67) then 
be•3i n 

t· ead ( f p , c) ; 
while not EOF(fp) do 

be·3i n 
-=-end( ot·d( c)); 
t· ead ( f p , c) ; 
j : = ·3e t buff ( i ) ; 
if i = 19 then 

t,.Jh i 1 e i < > 17 do 
1. • -- . - getbuff(i); 

end; 

end; 
end; 

end; 
{this stores the address of tempcom at vector OCH 

from vector 67H } 
swap_vectors($67,$0C); 

end. 



PHONE.PAS 

<This program is to make a phone call to the user on other pc} 

program phone(input~output); 
function getkey (var i integer):integer 
function getbuff(var i : integer):integer 

;external 'getkey.bin' 
;external ?getbuff.bin' 

const 
LF = 10; { line feed } 

CR = 13; { carriage return } 
ESC = 27; { escape 
SPACE = 32; j 

~ space } 

type 
<This record contains the varioues registers in 8088. 

var 

It is used in procedures within TURBO } 
registers = record 

ax,bx,cx,dx,bp,sl,ds,es,flags integer; 
end; 
mes = string[30]; 

i,j,k,nl,n2,code,index,scancode,appm 
row,col,saverow,savecol,attrib,ptr 
wintop,winbottom,fgcolor,bgcolor 
c,ccr,clf,csp,lastchar 
reg : registers; 
rl,cl,r2,c2 : integer; 
continue : boolean; 

integer; 
integet; 
integer; 
char; 

{ This procedure finds the cursor position on the screen 
using DOS interrupt lOh } 

procedure findcur(var i,j :integer); 
begin 

reg.ax := $0300; 
reg.bx := 0; 
intr(SlO,reg); 
i := reg.dx div 256 + 1; 



PHCtt··-lE • PAS: 

j := reg.dx and SFF + 1; 
end; 

{This procedure ~o~itions the cursor on the screen 
at given row and column } 

procedure poscur(row,col integer); 
begin 

end; 

reg.a:x: := $200; 
,.- eg. b>~ : = 0 ; 
reg.dx := ((row-1) * 256) or ((col-1)); 
intt-($10 ,r~g); 

{ This procedure swaps interrupt ~ectbrs vl and u2 

procedure swap_vectors(v1,u2 : integer); 
begin 

·r e·3. ax : = ·:$:350 0 ; 
reg.ax := reg.ax or vi; 
in tr ($·21, reg); 
reg. a::< := r·eg. e~.; 
re·3. d·:. := reg.ax ; 
req.dx . -.- r·eg.bx ; 
r·eg. ax := ·$2500 . 

' reg.ax := reg.ax or v2; 
in tr· ($·21, r·eg); 

end; 

{ This procedure sends a char to another PC through 8250 
It waits untill shift reg and transmitter buffer 
are err1p t ~:..1 } 

procedure send(w 
t.J ar ;.( , v , z , i 
begin 

integer·; 

end; 

~:--' := O;z := 0; 
t.,Jh i 1 e ( ( v = 0) or ( z = 0)) do 

begin 
x := port[·$03FD]; 
y := x and $0020; 
z := x and $0040; 

end; 
por·t[$-03F8] := •r~; 

{ This procedure displays a character at the current cursor posl 
in the given attribute and advances the cursor to next column 
The first arguement is the character to be displayed and 
the second is the attribute } 

r:o l" o cedu r e d i -:.~::•1 av ( i , j : in t e·3er·) ; 



F'HONE.PAS Page 1-:3 

c:.3s.e i c• f 
10 l,,.n·ite(clf); 
13 ~,.Jr i te( c•::t·); 
09 for k:=l to 
else begin 

{ print line feed as it is} 
{ print carriage return as it is 

8 do l.,.n·i,te(c:·:.p); · { e>~pand tab } 

reg.ax := i or $0900; 
l" e·3. b;< : = j ; 
t· eg . cx : = 01 ; 
intt·('$10 ,reg); 
findcur(row,col); 
posc:ur(row,c:ol+l); 

end; 
end; 

end; 

{ This procedure returns a character from comm-buffer 
It waits till a character is received from PC2 } 

procedure getchar(var 
• • .J at· j : in t eget· ; 

begi r: 
i : = 0; 

i : integer) ; 
• 

while i = 0 do j := getbuff(i); 
end; 

{ This procedure waits for a char from keyboard 
and returns the same } 

procedure readkbd(var i integer); 
var j :integer; 
begin 

i := 255; 
I.,.Jhile i=255 do j := getkev(i); 

end; 

{ This procedure displays the given string at the current 
cursor position in the given mode } 

proc:edut·e 
• .. !.3l" i ; j 
begin 

set_display(st:mes;mode:integer); 
in teget·; 

fot· i:=l to length(st) do 
end; 

{ MAIN PROGRAM STARTS HERE } 

begin 
swap_vec:tors($60,$0C); 

d i s.p 1 ay ( o t· d ( s. t [ i ] ) , rno de) ; 

< read a charector from 8250 } 
i: =port [·$0:3f8); 
i : = 255; 
< empty the c:omrn_buffer } 

1 •• · .• t!-d le i < > 0 de• 



PHOt···lE. PA:::; 

i : = 0; 
j := getbuff(i); 

end; 
~-end( 27); 
get chat· ( i); 
if (chr(i)= 'C') then 

begin 
-:.end ( 80) ; 
getchar(i); 
if(lo(i)=67) then 
begin 

{ This makes two windows on the screen } 

window(1,1,80,25); 
clt· se:t· ; 
go to::< y ( 30 , 1 ) ; 
set_display(' PCNET PHONE FACILITY ',$70); 
go t C• XV ( 1 , 2) ; 
fot· i := 1 tQ 79 do r.,H"i te("""-···); 
·30 to::<y ( 1, 13); 
for i : = 1 to 79 do r.,.n· i t e ( ···- ··· ) ; 
•30 tQX~,J ( 1, 14) j 
for i : = 1 to 79 do r,,n· i t e ("'- ··· ) ; 
g::t tCI){~;..I ( 1 '25); 
for i : = 1 to 79 do v.n· i t e ( ,. - ··· ) ; 
go to>~).·' ( 1 , 1 ) ; 
t"l : = 1 ; e:l : = 1 ; 
·r 2 : = 1; c2 : = 1 ; 

continue := TRUE; 

{This displayes a key if pressed by the user,sends it 
to the other PC and reads a charector from e:omm_buffer 
if there is and displayes it } 

while continue do 
begin 

i ~ = 255; 
j := ·3etke;J(i); 
i := lC!(i); 
if i = 0:3 then 
begin 

continue : = FAL:3E ;• 
send(03); 
cl r se:-r ; 

end 
else 

i f i < > 255 then 
begin 
s;.end(i); 
window(1,3,80,12); 
textbae:kground(O); 
te:x:tcolor(5); 
•30 tox~,~ ( r1, o:.:l) ; 
r.,.n· i t e ( cht· ( i ) ) : 



PHONE. PAE: 

if i=13 then write(chr(10)); 
rl := wherex;cl := wherey; 

end; 
i : = 0; 

j := getbuff(i); 
i:=lo(i); 
if i = 03 then continue:=FALSE else 
if i <> 0 then 

begin 
window(1,15,80,24); 
textbackground(O); 
textcc•lot·(5); 
gotc·::-~~J(·r2,c:2); 

t,.Jl·i te(chr( i)); 
if i=l3 then write(chr(lO)); 

r2 := wherex;c2 := wherey; 
end; 

end; 
end; 

end; 
swap_vectors($6?,SOC); 

end. 



{ This program reads DOS commands from the key board, 
and appends tbe string >c:redireSct at the end and 
resultent string length,' C / ' at the beginning.} 

pre• gram 
f1Jnct ion 
functic•n 

type 

dos (inp~t,output); 
getkey (var i : integer) :integer 
getbuff (var i integer):integer 

; e:x: tern.3l 
; ex te1·nal 

··· ·:;tetkey. bin·' ; 
'getbuff .bin···; 

<This record contains the varioues registers in 8088 
Used in inte~rupt routines within TURBO } 

registers = record 

'·.! a1· 

ax,bx,cx,dx,bp,si,ds,es,flags integer; 
end; 

i , j , k , 1 , f 1 en '3th : in t ege1· ; 

filename, do-:.cmd ;·redirect -:.tr i ng[ 20 J; 
command : string[40]; 
fp text; 
re•:;t : regi·:.tet·s; 
quit,cleartosend : boolean; 

{ This procedure returns a character from comm_buffer 
It waits till a character is received from other PC} 

procedure getchar(var i:integer); 
• . .Jar j in te•:;tel'; 

be•3i n 
i : = (I ; 

\,.Jhile i = 0 de• j := ·3etbuff(i); 
end; 

{ This procedure swaps vectors vl a~d v2 } 

procedure swap_vectors(vl,v2 : integer); 
begin 



DOS. PA~3 

reg. a:~: : = ·$.:350 0; 
reg.ax := reg.ax or v1; 
intt-($21 ,reg); 
reg .. 3~< := 't"e•3. e·:; ; 
l" eg. d-=:. := re•3. a>~ ; 
reg. d>~ := 1·eg. bx ; 
1·eg. ax := $2500 . 

' reg.ax := reg.ax or v2; 
in tr ($21, 1·eg); 

~nd;. 

{ This procedure sends a char to VAX through 8250 
It waits until! shift reg and transmitter buffer 
are err.p t ~=-; } 

procedure send(w : integer); 
var x,y,z,1 integer; 
begin 

end; 

be·3i n 

y := O;z := 0; 
while ((y = 0) or (z = 0)) do 

be•3i n 
x := port[$03FDJ; 
y := x and $0020; 
z := x and $0040; 

end; 
port [$·03F::::] : = t,.J; 

{ This procedure stores the address of comm_int at 
vector OCh from vector 60H } 

swap_vectors($60,SOC); 
i :=pol· t [$O:=:f8] ; 
i : = 255; 

{ this cleares the comm_buffer } 
1A"'dle i <> 0 do 

be·3i n 
i : = 0; 
j : = get buff ( i ) ; 

end; 
s.end(27); 
•3etchar ( i); 
if (chr(i)= ·'[:·') then 
begin 

-=:.end (':~-41) ; 
·:.end ('$44) ; 
redirect:='>c:dire$ct'; 
t...Jl" i teln; 
write('COMMAND>'); 

readln ( dos.cmd); 
flength:=length(doscmd)+length(redirect) + 5; 
command[lJ :=chr(flenqth): 



DOS.PAS 

for j := 1 to length(redirect) do 
be•3i n 
command[i]:=redirect[jJ; 
i:=i+l; 

end; 
command[i]:=chr(l~); 

i : =1; 
{ This sends the command string } 

while(command[iJ<>chr(13)) do 
be·3i n 
send(ord(command[i])); 
i:=i+l; 

end; 
·:.end( 13); 
i : =0; 
getch.:sl'- ( i); 

{this reads message sent by other PC and 
while( i <> 26 ) do 

end; 

begin 
\.·.n· i t e ( ch,.- ( i ) ) ; 
getchar(i); 

end; 

di splave:. it } 

< This store the address of TMPCOM at vector OCH from 
vector 67H } 

swap_vectors($67,SOC); 
end. 



1. 

2. 

·'j ._,. 

4. 

c:-
·-':a 

,.. 
b. 

7. 

8. 

9. 

10. 

B I BL I OGR.APH\' 

Microprocessors and interfacing -

Programming and hardware by Douglas V. Hall 

Hicro comp IJ tel- The 

familv bv ''(u-Cheng ·Liu .:md Glenn A. Gibson 

Computer Networks bv Andrew S. Tanenbaum 

Turbo Pascal manual 

The MSDOS handbook bv Richard Allen King 

Assembly Language Techniques by Alan R. Millar 

IBM pc Technical reference manual 

Programmer's guide to the IBM pc by Peter Norton 

DOS reference manual 

Designing and implementing Local Area Networks 

by Chorafas. 


	TH23650001
	TH23650002
	TH23650003
	TH23650004
	TH23650005
	TH23650006
	TH23650007
	TH23650008
	TH23650009
	TH23650010
	TH23650011
	TH23650012
	TH23650013
	TH23650014
	TH23650015
	TH23650016
	TH23650017
	TH23650018
	TH23650019
	TH23650020
	TH23650021
	TH23650022
	TH23650023
	TH23650024
	TH23650025
	TH23650026
	TH23650027
	TH23650028
	TH23650029
	TH23650030
	TH23650031
	TH23650032
	TH23650033
	TH23650034
	TH23650035
	TH23650036
	TH23650037
	TH23650038
	TH23650039
	TH23650040
	TH23650041
	TH23650042
	TH23650043
	TH23650044
	TH23650045
	TH23650046
	TH23650047
	TH23650048
	TH23650049
	TH23650050
	TH23650051
	TH23650052
	TH23650053
	TH23650054
	TH23650055
	TH23650056
	TH23650057
	TH23650058
	TH23650059
	TH23650060
	TH23650061
	TH23650062
	TH23650063
	TH23650064
	TH23650065
	TH23650066
	TH23650067
	TH23650068
	TH23650069
	TH23650070
	TH23650071
	TH23650072
	TH23650073
	TH23650074
	TH23650075
	TH23650076
	TH23650077
	TH23650078
	TH23650079
	TH23650080
	TH23650081
	TH23650082
	TH23650083
	TH23650084
	TH23650085
	TH23650086
	TH23650087
	TH23650088
	TH23650089
	TH23650090
	TH23650091
	TH23650092
	TH23650093
	TH23650094
	TH23650095
	TH23650096
	TH23650097
	TH23650098
	TH23650099
	TH23650100
	TH23650101
	TH23650102
	TH23650103
	TH23650104
	TH23650105
	TH23650106
	TH23650107
	TH23650108
	TH23650109
	TH23650110
	TH23650111
	TH23650112
	TH23650113
	TH23650114
	TH23650115
	TH23650116
	TH23650117
	TH23650118
	TH23650119
	TH23650120
	TH23650121
	TH23650122
	TH23650123
	TH23650124
	TH23650125
	TH23650126
	TH23650127
	TH23650128
	TH23650129
	TH23650130
	TH23650131
	TH23650132
	TH23650133
	TH23650134
	TH23650135
	TH23650136
	TH23650137
	TH23650138
	TH23650139
	TH23650140
	TH23650141
	TH23650142
	TH23650143
	TH23650144
	TH23650145
	TH23650146
	TH23650147
	TH23650148
	TH23650149
	TH23650150

