
An Investigation into Two
Aspects of Software Engineering ·

Specification and Complexity Measuren1ent

Dissertation submitted to the Jawaherlel Nehru

University in Partial Fulfilment for the award

of Degree of

MASTER OF TECHNOLOGY

MURALIKRISHNA, G. V.

School of Computer and System Sciences

Jawaharlal Nehru University

New Delhi-1 10067

1987

--- CERTIFICATE
,i
_~,

~ ~~ ~ This work entitiled "An Investigation Into Two '-' '{;;) PJ .. ,\ i ;
-\:::~'~--~spects
~~

of Software Engineering: Specification and

Complexity Measurement" embodied in this dissertation has

been carried out in the School of Computer and System

Sciences, Jawaharalal Nehru University, New Delhi-110067 and

is original and has not been submitted so far in part or

full for any other degree or diploma of any University.

Prof. K.K. Nambiar
Dean

jtt~l(~

'• ~ ':.·. • .,_ ·'• .• ::...,. ...,.;r .• • .~. -

Muralikrishna, G.V.
Student.

~~L
Prof. K.K. Nambiar

Supervisor.

CONTENTS

CHAPTER NO. CHAPTER

[1] INTRODUCTION

1.0 Background: Software Engineering

1.1 Specifications

1.2 Software Complexity

1.3 Outline of Dissertation

[2] DECISION TABLES

2.1 Introduction

2.2 Decision table structure

2.3 Types of Decision tables

PAGE

1

4

8

10

12

13

16

2.4 Comparison of decision tables and flow charts 17

2.5 Uses and applications of decision tables

2.6 An example

[3] CHECKING A DECISION TABLE

3.0 Introduction

3.1 Mathematical logic

3.2 Logical dependencies

3.3 Feasible logical possibilities

19

21

24

25

29

41

3.4 The algorithm to check the decision table

3.5 Another example

[4] A STUDY OF COMPLEXITY MEASUREMENTS

4.0 Introduction

4.1 What is complexity

4.2 Importance of software complexity

4.3 Complexity metrics

4.4 Validation of different metrics

4.5 Conclusion

REFERENCES

35

39

43

44

45

49

58

67

70

PREFACE

Software Engineering is gaining

containing the gallopaing costs of software

this dissertation two different aspects

importance in

systems. In

of software

engineering are examinied. The first one is specifications

and second is complexity measurement of a software system.

Regarding the specifications, an efficient algorithm is

developed for verfying these specifications of the system

for their correctness and completeness. The algorithm takes

the specifications in the form of decision tables and it

needs the set of logical dependencies that are present in

between the conditions of the decision table.

About the complexity measurements, a review of

many software metrics that are available to this date is

attempted. They were first described and then compared with

each other. These metrics, if standardised, can play a

great role in increasing the reliability and

miintainability of the software system. Here I wish to

express

to Dr.

my most sincere thanks and deep sense of gratitude

K.K. Nambiar, Prof. and Dean, School of Computer and

System Sciences, Jawaharalal Nehru University, New Delhi,

for his keen interest, inspiration and constructive

criticism during the course of investigation. His endless

succession of argument and discussion always provided me a

stimulating atmosphere and keen interest for research.

I am also thankful to the Libreary Staff of

Jawaharlal Nehru University and Indian Institute of

Technology, New Delhi for their cooperation

Thanks are also due to my friends who all helped

me to complete this work in time.

Finally, I am grateful to University grants

commission for providing me financial help in the form of

Junior Research Fellowship.

G.V. Muralikrishna
Student.

CHAPTER 1

I N T R 0 D U C T I 0 N

1.0 BACKGROUND SOFTWARE ENGINEERING

The declining cost of computer hardware has

resulted in an increase in both the number and complexity of

new applications. To control rising costs, many of the

ideas and practices of the established engineering

disciplines have been applied to software development. The

term "software engineering" was chosen in 1968 to describe

techniques, tools, and disciplines that support every stage

of software lifecycle.

The use of software engineering practices has been

shown to significantly reduce program development costs on

large projects.

in USA showed

A recent study by a manufacturing company

an average cost reduction of 73% over

forecosts for three projects. However, it is estimated that

the techniques are not being widely used, underlining a need

for the education of both programmers and managers in this

area.

1

The software development process may be

characterized by a number of key steps collectively called

the software life cycle :

(1) Specification: The software requirements, i.e. the

system functions and operational constraints, must be

established and specified.

(2) Design: A software design must be derived from an

analysis of the software requirements.

(3) Implementation: The software design must be realised

in a programming language which can be executed on the

target computer.

(4) Testing:

that the

The implementation must be tested to ensure

completed system meets the software

requirements.

(5) Operation and Maintenance: The system must be

installed and used. If system errors are discovered

these must be corrected and changes to the original

requirement may involve adding additional constraints

to the system.

2

The complete process and sequences of operations

involved in the software development can be shown clearly by

a familiar "waterfall" model which is shown in Figure 1.1.

It has been recognized that specification is an

extremely important tool in a large scale. software design.

It should be noted that an important aspect of specification

is that it must be precise. Since specification contains

the information that the designer explicitly assumes about

the system, lack of precision can hurt the design in

many ways, e.g., the problem being solved may turn out be

not the intended one, or later refinements of a program may

not be consistent with early design decisions.

After the software specification phase is

completed, specification is then transferred into design and

later implemented in the form of computer programs. It has

recently been shown that the complexity of a program is one

of the major causes of unreliable software.

In general, complexity of an object is the measure

of the mental effort required to understand that object.

Easy human understanding of a program is an essential

requirement for reducing the cost of maintenance of the

3

software 1 system If a prdgram is voluminous, its

complexity is automatically more. In recent investigations,

it is proposed that the complexity of a program design

should be considered as a function of the relationships

among modules. The complexity of a module is a function of .
the connections among the program instructions within the

module.

1.1 SPECIFICATIONS

Studies show that any error made in the

requirements stage is three orders of magnetitude more

expensive thari the one made in the coding stage [RAMA86].

The importance, _therefore, of early detection of errors can

not be over emphasized. Requirement specification is a

technique to describe the functionality of a system, in

enough detail, so that erroneous assumptions are not made

during design and implementation. The main problem in

writing specifications is that large systems are so complex

that even the description of their functionality is

difficult and error-prone. One of the reasons for this

is the ambiguity in the medium of expression. The customer

1 . Here we
complexity
computer
problem.

are noi concerned
of an alogarithm,
time and memory

4

about the computational
which is a measure of the
needed for solving the

generally uses natural language, which is inherently

ambiguous, to express the specifications. Only limited

success has been achieved in processing natural languages

automatically and the situation is unlikely to change in the

foreseable future.

To solve the problem of ambiguity in natural

language, one of the way is to use decision tables and

another and most recent one is to use a formal requirements

language. Here, in this dissertation, decision tables are

used.

After collecting the requirements, how the systems

analyst makes sure that the list is correct and complete?

As explained earlier, it is important to verify the

specifications for their validity and sufficiency. The

first objective of this dissertation is to develop an

algorithm to verify the software system's specifications (in

the form of decision tables) for their completeness and

correctness. The discussion is limited to the systems that

can be modelled by a decision table. Current methods for

checking are inadequate, when logical dependence

relationships exist among conditions. The earlier work in

this direction will be discussed here.

5

[KING68] formally defined logical errors in

decision tables as that. occur whenever the decision table

has ambiguity or incompleteness and gave a method for

checking decision table. [KING69] later improved the method

and defined logical dependence between conditions in a

decision table and demonstrated how this could be used to

pinpoint logically impossible rules. The logically

impossible rules may be excluded from the set of apparently

ambiguous rules, and one may thus identify real ambiguities.

[KING69] advocated the use of first order predicate calculus

to detect the logically impossible rules.

[RAJA78] observed that in order to detect logical

errors in a program incorporating decision tables, the

interrelationship between the different parts of the program

should be considered. It is not rare that a mistake in an

arithmetic statement executed before executing a decision

table causes a condition in that decision table to be

erroneously satisfied. Further, due to restrictions on

variable values or computations performed earlier, a set of

rules in.a decision table may become logically impossible.

Thus restricting the scope of analysis to a decision table

in isolation is not sufficient.

6

[RAJA78] established that for a non-trivial class

of decision tables and programs with embedded

tables, error checking can be performed by a

program. The paper further established that it

decision

computer

is not

necessary for the analyst to supply statements of relations

between conditions. This is important, since obtaining such

statements of relations is, in itself, a non-trivial

problem.

In essence, the paper developed an algorithm which

will delve into the logical dependence relationships among

conditions. Also, an algorithm to detect logical error was

developed, based on determining whether a set of linear

inequalities has or has not a solution.

The previous investigations have concentrated on

detecting logical errors in a decision table. Little has

been said about the completeness of a decision table. If a

system is modelled and specified by a decision table, then

the issues of completeness and correctness are of paramount

importance, because in this context rarely is anything worse

than an incrimplete and/or inc6rrect specificaiion. One

specific objective of this dissertation is to develop a

procedure which can be used for the type of analysis that

checks the completeness and correctness of a decision table.

7

1.2 SOFTWARE COMPLEXITY

As defined in section 1.0 the software complexity

is the mental effort required to understand the software

system seeing the source code of the system. It is now an

established fact that the software complexity determines the

reliability and cost of maintenance of the system.

The published literature discusses only specific

implementations of algorithms. What is missing is an

explicit recognition that beginning with the problem

statement or specification there exist, in general, multiple

solutions, and the programming process can be envisaged as a

combination of both analysis and synthesis processes aimed

at identifying the most desirable solution among a large

number of ·feasible alternatives. The search for a

particular solution

between reliability

forms the core of the relationship

and complexity and is the dominant

factor that influences the reliability of programs.

Currently, more time is spent maintaining existing

software than in developing new code. In fact, resources

invested in maintenance have been estimated to be three

times higher than those required during development.

Metrics computed from the initial code which could estimate

8

either the reliability of modification or the time required

to implement these would prove invaluable to the software

manager, who must allocate the time and resources necessary

for software maintenance.

In the past one decade, many complexity metrics

were developed using different aspects of computer programs.

The most straight forward and widely applicable approach is

based on program size. The counts like number of lines,

procedures (modules), etc. which are representative of the

volume of the source code can be used as software complexity

metrics. Because this metric has many limitations, many new

metrics were proposed.

The forerunner is the Halstead's software science

[HALS77], which treats the software field as a science, like

any other physical sciences, rather than as an art. Many

more matrics based on graph theory are prepared and some

people advocated hybrid metrics.

All the metrics developed till now are having many

limitations and they are yet to gain acceptance in practice.

Eventhough this field produced lot of literature, the

9

importance of the definitions proposed is still to be

established. In a later chapter an attempt is made to study

and compare different complexity metrics.

1.3 OUTLINE OF DISSERTATION

The remainder of the dissertation is divided into

three chapters. Chapter 2 attempts to explain decision

tables which are useful in Chapter 3. In Chapter 3, an

algorithm is developed for checking a decision table for

completeness and correctness. In Chapter 4, a study of

different complexity metric is made.

10

SYSTEM
FEASIBILITY

SOFTWARE PLANS
AND REOUI RE­
MENTS

Figure l . .l The "waterfall" model of the software life cycle.

CHAPTER - 2

DECISION TABLES

2.1 INTRODUCTION

The

programmers,

facilities

decision

analysts,

because they

table can

and other

provide

be best

users of

a simple

used by

computer

tabular

representation of complex decision logic. Decision tables,

although developed primarily as man-to-man communications,

can ease the problems of programming and documentation in

many applications where the feasibility of using the

traditional flowcharts, narrative discriptions, or other

communicative media is questionable.

Eventhough many higher level programming languages

are available, there is still a wide gap between computer

specialists and users. So, especially in management-ta-man

communication there is a possibility of misunderstanding in

systems analysis and design and in implementing the chosen

procedure into a workable computer program. Decision

tables, being easily understandable can fill this

communication gap. In addition, because decision tables

succintly display any conditions that must be satisfied

12

before any prescribed action is performed, they are becoming

popular in computer programming and system design as devices

for organising logic, especially when attempting to handle

very complex situations,

combination of conditions.

and to account for every possible

Furthermore, the extent and

nature of the changes required to update or revise an

application programme is easily provided by the unique form

of the problem statement in decision tables.

Flowchart is a graphic language form that has also

been widely used for man-to-man communications. Flowchart

was specifically developed for the purpose of representing

operations related to computer activities, such as system

analysis, system design, programming, documentation etc.,

can also frequently be utilised for noncomputer related

activities. A comparison between decision tables and

flowcharts is made in the following section.

2.2 DECISION TABLE STRUCTURE

A decision table provides a tabular representation

of information and data. Information displayed in this

manner is easily comprehended visually, even if the table of

information represents a complex logical problem. A

13

decision table is ~ structure for describing a set of

decision rules, [POOC74]. The basic structure of a decision

table is universely accepted as that illustrated in fig 2.1.

CONDITION

STUB

ACTION

STUB

Fig. 2.1: Decision table structure.

CONDITION

ENTRY

ACTION

ENTRY

The decision table can be divided into four

quadrants. The upper left quadrant, called the condition

stub, should contain all those conditions being examined for

a particular problem segment. The condition entry is the

upper right quadrant. These two sections described the set,

or string of conditions that is to be tested. The lower

left quadrant, called the action stub,

narrative format for all possible action,

conditions listed above the hoTiz~ontal

contains a simple

result from the

line. Action

entries are given in the lower right quadrant. Appropriate

14

actions resulting from the various combinations of responses

to conditions will be indicated in the action entry. An

example of decision rules and the IF-THEN function are

illustrated in table 2.1.

IF
AND
AND
AND

THEN
AND
AND

Decision
Rule 1

Table 2.1: Decision Table

Decision
Rule 2

Decision
Rule 3

Decision
Rule 4

The meaning of different sections of table 2.1 can

be described as follows. Each decision rule is a

combination of responses to conditions in the condition

entry quadrant. The decision rules are numbered for

identification purposes in the rule header portion of the

table. The top most horizontal line represents IF, while

the remaining horizontal lines represents AND, and the

double horizontal line THEN. Note that the condition half

of the table is separated from action half by a double

horizontal line and stub sections are separated from the

entry section by a double vertical line. These lines

15

improve the readability of a table, and can be preprinted on

forms. In addition to these, each table is given a table

header which serves the purpose of table identification.

If a condition in the condition stub is true a Y

is entered for that particular rule in the condition entry;

if the condition is false an N would be entered. In a

situation where a practical condition is irrelevant, a

'don't care' would be indicated by the use of a dash (-) or

an I. Two other entries, the * and $ are used to indicate

mutual exclusion of one condition with another on a rule by

rule basis [KING69]. Whenever the case arises within a

single rule that the satisfaction of some "required" test (Y

or N entry) makes some other required entry a foregone

conclusion then the special entries * (in place of N) or $

(in place of Y) can be used to indicate this fact. The use

of these implicit entries can be illustrated by the example

of Table 2.2.

2.3 TYPES OF DECISION TABLES

There are three types of decision tables in

current use [POOC74]. The limited entry decision table, the

most popular and most often used, allows only the entries

explained in section 2.2. In the second type of decision

16

table called extended entry table some conditions are

allowed to appear on the condition entry space also. The

third variety, mixed entry table, is a combination of

limited entry rows and extended entry rows. The extended

and mixed entry tables can always be transformed into

limited entry tables. This is the reason for not

considering the last two types in the treatment here.

2.4 COMPARISON OF DECISION TABLES AND FLOW CHARTS

The decision table is a convinient form for

expressing any conditional alternatives, where a particular

path to be followed is dictated by a combination of a number

of conditions. Flowcharts in such cases can become very

complex and difficult to follow, and involve testing for

each condition more than once. The advantages of decision

table can be listed as follows :

* Clear enumeration of all operations performed.

* Clear identification of the sequence of operations.

* Effective means of communication between pe0ple in and

out of data processing field, i.e. not limited to

computer applications.

* Easy to construct, modify and read.

17

* It is possible to verify a decision table for its

correctness and completness using a computer programme.

* Can be used to documentation applications involving

complex interactions of variables. Unlike flowcharts

it is not affected by personal preference or jargon.

* When applied to computer systems decision tables foster

better use of subroutines and provide a complete data

check for debugging.

* Directly adopted and possibly converted directly to

computer operations through symbolic logic computer

programmes.

* Easier visualization of relationships and alternatives.

Compared to flowcharts the decision tables have many

disadvantages also.

* The decision tables are slightly more difficult to

learn.

* For complex situations, they may become extremely large.

* Multiple tables may be needed in certain cases to

document decision logic.

* Many people find the graphic display of flowcharts more

18

meaningful than a tabular description of logic.

Desire for

detailed

purposes.

automatic translation ability causes too

requirements for man-to-man communication

Although decision tables are not the answer to all

documentation and programming problems, they do offer

certain advantages that overcome some of the drawbacks of

flowchart technique. With the state-of-the-art advancing

sufficiently for checking a decision table and enable

economic conversion of decision tables, their use may show a

marked increase.

2.5 USES AND APPLICATIONS OF DECISION TABLES

Decision tables are useful in many areas of

applications.

In simulation models: The ability of decision tables in

handling complex logic makes them a definite aid in

formulating logical flow of simulation models. Here the

decision tables are mainly used to determine whether a

subprogramme is to be executed at a particular time in the

simulation.

In an org-anisation: The decision tables can be used at

19

various levels in an organisation. Policies of top

management may often be expressed tabularly. Tables may be

applied · in areas such as engineering, mathematics,

personnel, and accounting. Tables allow cross-referencing

and more importantly it serves best in documentation.

In Systematics: It is a set of techniques for designing

and describing information systems. The basic statements in

systamatics namely the elements can be considered as a

special case of decision table.

more manageble because the

This decision table form is

entries are limited to

combinations of conditions that yield the derivation of only

one item.

In Automatic test equipment system: The use of a

programming language, based on decision table techniques,

permits the test engineer to write test statements easily,

and permits programming a test specification with minimal

knowledge of programming technique and of the specific test

equipment system involved. This type of system can be made

to choose a new sequence of tests in accordance with

previous results.

In checking the specifications of a system: If decision

20

tables are used in representing the specification, it is

possible to have an automatic checking of the specifications

of a software system, which are prepared by the systems

/.,. ,: _,..,-.. ~nalyst from the requirements of the user-customer. It is
!! ~"l '''""''{\"\.

r l,f,"-"-"''"" """"~~ t1a'l:ilitated by the fact that there is only one unique way
i\ '.YPV\1 """"'"",

\~ •. ~. ;-'~ -r representing the conditions in a decision table, which
i;;a>

~-·-.2:;;;;::-..1'"' can be taken as input for an algorithm which is prepared for

checking the specifications. One good algorithm was

~ developed in the following chapter for this purpose.

~
2.6 AN EXAMPLE

An example of mixed entry decision table is given

for a stated problem of declaring students examination

results. The flowchart representation was also given for

making comparison. This shows that in problems involving

complex decision logic decision tables are more convenient.

One can easily see that this mixed entry decision table can

easily be translated to a limited entry decision table by

introducing more number of conditions for each variety of

condition entry.

PROBLEM STATEMENT

There are two subjects in the examination called

main and ancillary. If a student gets 50 percent or more in

21

the main subject and 40 percent or more in the ancillary, he

passes. If he gets less than 50 percent in the main he must

get 50 percent or more in the ancillary to pass. However,

the minimum passing marks are 40 percent in the main

subject. If a student gets 60 percent or more in the main

subject he is allowed to repeat the ancillary subject if the

ancillary marks fall below 40 percent. However, there are a

group of students in the class who are granted special

consideration. Their pass percentage is 40 percent in the

main and 40 percent in the ancillary. If they get less than

40 percent in the ancillary they are allowed to repeat that

subject if they obtain 40 percent or more in the main

subject.
TABLE 2.2

A DECISION TABLE CORRESPONDING TO FLOW CHART OF FIGURE 2.2

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5

E
Main marks %)=50)=40 ">=60)=40)=40

L
Anc. marks %)=40 ~=50 L40)=40 L40

s
Special status No No ·No Yes Yes

E

Pass x X X

Repeat anc. X X

Fail X

22

N
w

B

No

READ Main Marks,
Anc. marks, Student status

No Yes

A

Yes

Fig. 2.2 Flow chart depleting examination results processing.

CHAPTER 3

CHECKING A DECISION TABLE

3.0 INTRODUCTION

There

specifications

have an edge

effective means

are different methods for representing the

of a software system. But decision tables

over other methods because it provides an

of communication by defining both the

problems and their corresponding solutions, especially when

the situation demands a number of decision logic conditions.

Moreover, with the advent of software packages which produce

a program in a computer language, given a decision table.

These translators are commercially available.

Moreover,

convenient to use

for checking the specifications, it is

decision tables. Here checking the

specification means the verification of the specification

for its correctness and completeness, even if there exists

logical dependencies between the conditions of a decision

table representation. The earlier work in this area is

described in Chapter 1. This chapter attempts to develop a

more comprehensive and simple algorithm for this purpose.

24

The algorithm uses some principles of Mathematical

logic. In the following section, for greater understanding

of the algorithm, a brief discussion about this topic is

attempted.

\

3.1 MATHEMATICAL LOGIC

Mathematical logic is an analytical theory of the

art of reasoning, whose goal is to systematize and codify

principles of valid reasoning.

A two-valued (either true or false) variables are

called logical variables and the operations such as OR

operation and AND operation, which are performed between

such variables are referred to as logical operators. A

variable may stand for a propositional statement.

Some of the needed operators will be introduced

here. The truth value of a logical statement having logical

operators and variables can be summarized concisely by using

a table known as truth table. The truth values of

statements having A and B as variables are displayed in

Fig. 3.1 for four different logical operators.

25

A B A A"'"B A+B A~B
----------- -------------------------------------

T T F T T T

T F F F T F

F T T F T T

F F T F F T

Fig. 3.1: Truth Table

A logical statement is said to be a tautology

provided that it is true for all possible assignments of

truth values to its component statements. The following is

a list of tautologies which are useful later.

(Tl) (p ~ q) ""k (q ~ r) ~ (p ~ r)

(T2) v v p --')> p

(T3) (p ~ r) * (q --+ r) - p + q ~ r

(T4) .. (p ~ q) --'>" b ~ a

(T 5) (p + q):;,. p -k q

(T6) (p ;'r q) ~ p + q

(T7) a b ~ a + b

Any logical function can be written in a standard

sum of products form (-min-te-rm--form) or in a standard product

26

of sums form (maxterm form). e.g.,

(i) f(A,B,C) A + BC

A (B + B) (C + C) + (A + A) B c

ABC + ABC + ABC + ABC + ABC

This standard sum of products form and can be represented

as:

f(A,B,C) ~m (1, 4, 5, 6, 7)

which is got by assigning '0' for complemented variables

and '1' for uncomplemented variables.

(ii) f(A,B,C) A + BC

(A + B) (A + C)

(A + B + CC) (A + BB + C)

(A + B + C) (A + B + C) (A + B + C)

This is standard ~o~mat of sums form and can also be

represented as

f(A,B,C) = T(rrt (0, 2, 3)

which is derived by assigning '1' for complemented variable

and '0' for uncomplemented variable.

27

KARNAUGH MAP

The K-map is a diagram which provides an area to

represent every row of a truth table. A K-map for a two

variable function is shown in Fig. 3.2.

Row no. A B f
~ ========= ====== ======= 0 1

B 0 "4

0 0 0 1 0 1 0

1 0 1 0 3

1 0 1
2 1 0 0

3 1 1 1

Fig. 3.2: The truth table and K-map for the function

f(A,B) A.B + A.B.

In the K-map each row of the truth table has been

transfered to the appropriate K-map box. Looking at the K~

map one can represent the function in minterm and maxterm

term notation as

f(A_,B) A.B + A.B = m
0

+ m3 = ~m(0,3)

f(A,B)

28

From the above, it can be easily noted that given a function

in minterm specification, one can find it in maxterm

specification.

Proceeding on the same lines one can represent a

logical function having 3,4,5 or 6 variables.

will be given in a latter section.

3.2 LOGICAL DEPENDENCIES

One example

The algorithm to be presented in this Chapter, for

checking a decision table, first finds all the feasible

logical possibilities that the system may assume. These

feasible logical possibilities of a decision table is found

by traversing the logical dependency relations in the

decision table.

Two conditions, c1 and c2 are said to be logically

dependent if the truth value of c1 dictates the truth value

of c2 and othrwise they are said to be logically

independent. If truth value T of c1 dictates the truth

value T of Cz", then it can be represented as c1 ~ c2 .

Similarly, if the truth value T of c1 dictates the truth

value F of c2 , then we have c1 -7 Cr

29

A set of logical dependency statements can be

prepared, if

dependencies

dependency

specification

[KING69].

there exists a set of conditions

in a decision table. This set

exhibiting

of logical

statements may be included in the system

or may be worked out by systems analysts

The algorithm to be presented, needs that the

logical dependency statements must be minimal and congruent.

A set of logical dependency statements is said to be minimal

if (a) it embodies all the logical dependencies existing

among the conditions in the sense that every dependency is

explicitly stated so that no deduction is needed; (b) the

antecedent may be composite, but the consequent must be a

single condition; (c) the cardinality of the minimal set is

minimal.

A set of logical statements is said to be

congruent if the following conditions hold whenever

possible: (a) every instance of a simple condition has the

same truth value; and (b) every instance of a composite

condition has the same truth value. For example, the set of

logical dependencies x [p 7 q, r ~ p] is not

congruent because the two instances of condition p do not

30

have the same truth value. To make it congruent we can

Write it aS X = (p ~ q, p ~ r] which is congruent.

Sometimes, ascertaining congruency will achieve minimality.

For example the set Y = [a~ b, b ~a] can be reduced to

Y = [a~ b, b ~a] and further to just Y= [a~ b], by using

mathematical logic tautologies as described in Section 3.1.

A set of logical dependency statements is said to

be minimal and congruent if it is both minimal and

congruent. Any set is not minimal and congruent, at first

instance, can be converted to a set of minimal and congruent

logical dependency {MCLDs) statements.

3.3 FEASIBLE LOGICAL POSSIBILITIES

The feasible logical possibilities {FLPs) can be

easily found from the MCLDs, as will be explained here.

Basically there are four different possibile forms of MCLDs.

They are as follows

Form 1: p ~ q

This statement can be rewritten as p + q.

The feasible logical possibilities can be found by drawing a

simple Xarnaugh map or these can be found by expressing the

31

statement in standard sum of products form as follows

p __;;,. q p + q

p(q+q) + q(p+p)

p.q + p.q + p.q + p.q

p.q + p.q + p.q

[00, 01, 11]

Here 1 is used to represent T and 0 to represent

F. This notation will be followed here afterwards.

Form 2: p + q ~ r

In the same way as mentioned above we can proceed

p+q-?>r p+q + r

p.q + r

p.q(r + r) + r(p+p)(q+q)

p q r + p q r + p q r + p q r

+ p q r + p q r

[000, 001, 011, 101, 111]

The total number of FLPs here are five.

32

Form 3: p.q ~ r

Proceeding in the same way as for Form 2, we get

FLPs as [000, 001, 010, 011, 100, 101, 111]. So there are

seven FLPs for this form.

An algorithm is developed fot finding feasible

logical possibilities, given the MCLDs. The set of MCLDs

are treated as if they are 'and'ed together.

implemented on the computer very easily.

This can be

An example for illustrating the use of this

algorithm is given here.

are given in Figure 3.2.

The decision table and its MCLDs

The MCLDs are 'and'ed as follows

(p -7 q).(q ~ r).(p ~ r).(s ~ t).

This expression can be rewritten as

(p + q).(q + r).(p + r).(s + t).

This can be plotted on a Karnaugh map to get all

the feasible logical possibilities. As the above expression

is in the product of sums form, the maxterm representation

is convenient to get the list of FLPs.

The K-map representation is shown in figure 3.4.

33

Condition Condition Rule
name 1

p M> 100 y

q M> 65 $

r M/' 19 $

s N< 40

t N> 70

Action A1

(a) The decision table

p --7' q

q -7 r

p -7 r
-

s ~ t

(b) MCLDs

Fig. 3. 3: The decision table and

qr
st

00

01

11

10

00 01 11 10

____ o I
____ o j

o o I o o

==~=o p=O

Fig. 3.4: K-map for the example.

34

.£ l 4 2 Q_

N N N N N

y y N N N

$ $ y N N

y N N y N

* N ;" N

Az A3 A4 As A6

MCLDs of the example.

qr 00 01 11 10
st

00 0 0 0
-- -- --

01 0 0 0
-- -- -- --

11 0 0 0 0

-- -- --

10 _o _ _ 0_ -- _0_
p=1

The resulting maxterm representation is

f(p,q,r,s,t) =·~ M (3,7,8,9,10,11,15,16,17,18,19,

20,21,22,23,24,25,26,27,31).

The same function can be written in minterm

representation as follows :

f(p,q,r,s,t) = ~ m(0,1,2,4,5,6,12,13,14,28,29,30)

This corresponds to the following list of FLPs:

FLPs [00000' 00001' 00010' 00100'

00101, 00110, 01100, 01101,

01110, 11100·, 11101, 11110]

The total number of FLPs are 11 for the considered

decision table.

3.4 THE ALGORTHM TO CHECK THE DECISION TABLE

In

possibilities,

states that

algorthm will

section 3.3, we got the feasible logical

which is representative of the possible

the system can assume. In this section an

be pr~sented for act~ally checking the

decision table for completeness and correctness using these

FLPs.

35

The algorithm is implemented in PASCAL on VAX-

11/780. The choice of PASCAL is becasue it has a clean

control structure and a rich variety of data

representations.

The input to the algorithm is the decision table

and its MCLDs. The algorithm first finds FLPs from MCLDs

and FLPs stipulated by the decision table. The algorthm

checks the decision table for its correctness and points out

missing logical possibilities, if the decision is correct

but not complete. The decision table shown in figure 3.3

of the section 3.3. is used, as a running example, to

illustrate the algorithm.

STEP 1: Find all FLPs from MCLDs as described in section

3.3 and find their total number also. Let us denote them by

MCLDSET and MCLDTOTAL respectively. Goto Step 2.

For the decision table of figure 3.3 the

MCLDSET found to be (in section 3.3)

MCLDSET (00000, 00001, 00010, 00100,
00101, 00110, 01100, 01101,
01110, 11100, 11101, 11110]

MCLDTOTAL 12.

36

STEP 2: Find all the FLPs stipulated by the rules of a

decision table. This can be obtained by scanning each rule,

i.e., a column of condition entries of a decision table. If

a rule has K 'don't care' terms, then 2 ;""'k K row vectors are

obtained, each for a distinct binary combination of the

'don't care' condition. Let us denote this set of FLPs from

decision table by DTSET and the total number of FLPs is

denoted by DTTOTAL and this number can also be found by

DTTOTAL - 2**K * 2** K * - - - * 2 ** K . - 1 2 n

where n is the total number of rules and K. is the number of
~

'don't care' terms in the rule i. Goto Step 3.

Applying these to our example decision table we

get,

DTSET

and DTTOTAL

STEP 3

[00000, 00010, 00100, 00101,
01100, 01110, 11100, 11101,
11110, 11111]

10.

If MCLDTOTAL = DTTOTAL and MCLDSET DTSET,

then the table is complete and correct. If it is so,

terminate the algorithm, otherwise goto Step 4.

For the example the above conditions are not true,

so, proceed to step 4.

37

STEP 4: If DTSET i MCLDSET, then find

ADDITIONAL = DTSET-MCLDSET

where I I has the same connotation as in Pascal language

set. If A & B are sets, mathematically,

A-B =[xI (x in A) and (x not in B)].

Goto Step 5.

For our example it can be writen as

ADDITIONAL [11111]

STEP 5: If DTSET i MCLDSET, then find

MISSING = MCLDSET - DTSET.

Goto Step 6.

For the example, the MISSING will be

MISSING = [00001, 00110, 01101]

STEP 6: If the set additional is having only the rules that

are obtained by the expansion of the 'don't care' conditions

of rules; then ADDITIONAL is not considered dangerous. If

it is so goto step 7 else goto step 9.

For our example the ADDTIONAL is contained only

in the 'don't care' of rule 1, so, goto step 7.

STEP 7: If DTTOTAL ~ MCLDTOTAL and DTSET i MCLDSET,

then the table is correct but not complete. An else-clause

38

needs to be added to include the MISSING possibilities.

Goto Step 8.

For the example, 10 ~ 12 is true. So, we can

conclude that the table is correct but not complete. An

else class needs to be added to include the three logical

possibilities, [00001, 00110, 01101].

STEP 8: If DTTOTAL > MCLDTOTAL then if MISSING is empty

then the table is correct and complete else the table is

correct but not complete. Terminate the algorthm.

It is not applicable to the example.

STEP 9 : The table is neither complete nor correct.

Terminate the algorithm.

For the example it is not applicable.

3.5 ANOTHER EXAMPLE

The second example is taken from [KING68]. In

many business data processing situations the conditions are

highly related. For example, instalment buying where

payments are made in cash on weekly basis, the action

taken when an account goes into arrears is a crucial aspect

39

of the operation. The figure 3.5 shows a simplifiesd

arrears procedure. It is seen that the first three

conditions are directly related. Thus a No out come for the

third condition implies No out comes to the first two

conditions. The last two conditions are also directly

related.

Rule
Condit ion 1 2 l 4 2 Q_ l ~ .2.

p this week's cash greater weekly rate y y N N * ·k ;': * ;~I

q this week's cash greater than 0 $ $ y y ;'\ ;'(N N N

r any cash during last 3 weeks $ $ $ $ N N y y y

s arrears greater than 3 * weekly rate $ y N $ N y $

t arrears greater than 6 -·-" weekly rate N y N ·k N y .. k N y
====================================== ===========================

Actions

Send arrears letter A X

Send arrears letter B X

Send arrears letter c X

Send arrears letter D X

Note account X X X

Take special arrears action X X

Fig. 3.4: The decision table for second example.

(Source:[KING 68])

40

The set of MCLDs can be writen as

r -7 p

r ~ q

q ~ p

t ~ s

We can find MCLDSET and MCLDTOTAL as described

in section 3.3.

MCLDSET [00000, 00010, 00011, 00100,
00110, 00111, 01100, 01110,
01111, 11100, 11110, 11111].

So MCLDTOTAL = 12

As explained in the step 2, we can expand all the

rules in the decision table to get the elementary rules.

This set, called DTSET, can be writen as.

DTSET

DTTOTAL

[00000, 00010, 00011, 00100,
00110, 00111, 01100, 01110,
11100, 11110, 11111].

11.

Since, MCLDTOTAL ~ DTTOTAL,

ADDITIONAL and MISSING.

ADDITIONAL DTSET - MCLDSET

[]

41

we proceed to findi

MISSING MCLDSET - DTSET

[01111]

The ADDITIONAL is empty, we conclude that the

table is correct but not complete. The missing feasible

logical possibility is [01111]. This is the case when a

customer's current week payment is greater than zero but

less than weekly rate and his arreares is greater than six

times weekly rate.

So, the arrears procedures specified by the

decision table of figure 3.5 is therefore correct but not

complete.

We have shown that the possible logical

possibilities of a decision table can be obtained by our

algorthm. The method will aid the system analyst performing

the validation of system modelling.

42

CHAPTER 4

A STUDY OF COMPLEXITY MEASUREMENTS

4.0 INTRODUCTION

Increasing importance is being attached to the

idea of measuring software characteristics. It is only by

such a process of measurement that it will be possible to

determine whether new programming techniques are having the

desired effect in reducing the problems of reliable software

production. Unfortunately, many of the qualities of

interest such as clarity, ease of testing and maintenance,

etc. are highly subjective and so experiments have been

performed to correlate subjective grading of programs with

measured structural characteristics of source programs. But

quantification is a must in making programming a science

rather than an art. So attempts are made to evolve software

metrics which are to be used to measure and predict software

quality. Several software metrics have been developed to

measure various kinds of software properties, such as the

complexity measure, stability measure [YOU85], reliability

measure [GOEL85], reusability measure [PRES83], etc.

43

Complexity measures offer great potential for

containing the galloping cost of software development and

maintenance [KEAR8·6]. This can be used for cost projection,

manpower allocation and program and programmer evaluation.

Despite the growing body of literature devoted to their

development, anlysis and testing, software complexity

measures have yet to gain wide acceptance. Nonetheless, new

complexity measures continue to appear, and new support for

old measures is earnestly sought.

evidence is available, software

should be used very cautiously.

Until more comprehensive

complexity measurements

Here in this Chapter an attempt is made to

highlight the importance of complexity measurement and a

comparative study is made to evaluate different complexity

metrics.

4.1 WHAT IS COMPLEXITY?

Basili defines complexity as a measure of

resources expended by another system in interacting with a

piece of software to perform a given task [BSLI80]. If the

interacting system is a computer, then complexity is defined

by the execution time and storage required to perform the

computation. This type complexit~ can be termed as computa-

44

tional complexity (or dynamic complexity) which is not of

our concern in this chapter.

If the interacting system is a programmer, then

complexity is defined by the difficulty of performing tasks

such as coding, debugging, testing, or modifying the

software. In our discussion, the software complexity is

used to indicate this difficulty level, i.e., the difficulty

present in the interaction between a program and the

programmer working on that programming task. In simple

words complexity is a measure of how difficult the program

to comprehend and work with. This can be termed as

structural complexity (or static complexity].

Usually these measures are based on program code

disregarding comments and stylistic attributes such as

indentation and naming conventions. Measures typically

depend on program size, control structure or the nature of

module interfaces. Many complexity measures will be

introduced in latter sections.

4.2 IMPORTANCE OF SOFTWARE COMPLEXITY

As software scientists attempt to understand

software processes and products, it is natural for them to

45

characterize and measure those aspects of programs that seem

to affect cost. Software maintainability is the degree to

which characteristics that impede maintenance are present.·

The costs for software maintenance activities have been

observed to outweigh the development costs and take a

greater share of the total software budget for many

organizations than development costs. This maintainability

is driven primarily by software complexity.

relationship is roughly depicted in Fig. 4.1 [HFLI87].

;--------- ------- -.-_-__._1_-----,

I Software
I Understandab111 ty

I
L

SofttJare
Hod1f1ab111ty

Soft~o~are

- - rE:el1back

--.. Control ·

:::::::>- H~asure

Fig4~ollmportancc of software complexity.

46

Their

According to C.V. Ramamoorthy, the metrics should

be applied at requirements phase to predict cost,

phase to guide the decomposition process, and

phase to estimate testing time required [RAMA85].

at design

at coding

Dennis Kafura and G.R. Reddy in their paper

[REDY87], which is a study of the relationship between

complexity metrics and software maintenance, concludes:

[1] that the growth in system complexity as described by

the software metrics agree with the general character

of maintenance tasks performed;

[2] the metrics

integration

system;

were able to identify

of functional enhancements

the

made

improper

to the

[3] the complexity values of the system components as

indicated by the metrics confirm well to an understand­

ing of the system as people familiar -with the system;

[4] Metrics are useful in redesign phase, as they reveal

any poorly structured component that may be present in

the system.

Advocates of software complexity metrics have

suggested that these tools can be used to predict program

47

length, program development time, number of bugs, the

difficulty of understanding a program and the future cost of

program maintenance.

Furthermore, Basili [BS480] gives three

possibilities for using complexity metrics :

[a] To evaluate the software process and product: a low

score on a metric like the number of errors, indicates

something desirable about the quality of the process

while a high score on the same metric indicates some­

thing quite undesirable about the product.

[b] As a tool for software development: In this case, the

metric can act as feedback to the developer, telling

him to know how the development is progressing. It can

be used to predict where the project is going by

estimating future size or cost, or it may tell him his

current design is too complicated and unstructured.

[c] To monitor stability and quality of an existing product:

One can periodically recalculate a set of metrics to

see if the product has changed character in some way.

It can provide a much needed feedback during

maintenance period.

48

As the complexity metrics are yet to be standardi­

sed, these measures should be used v'ery cautiously until

more comprehensive evidence is available.

4.3 COMPLEXITY METRICS

In his letter entitled "Goto Statement Considered

Harmful", Dijkstra observed that the "quality of programmers

is a decreasing function of the density of goto statements"

[DIJK68]. This suggests then a very simple measure for

complexity, namely the number of gotos in a program. Whilst

this may be useful as a measure of unstructuredness for some

languages [eg. Pascal, Algol) it is not for others (e.g.,

Fortran).

Since then, many complexity metrics have been

developed and they can be classified into two basic types:

(1) static and (2) dynamic. In the former case, measurement

of the product is done by static analysis of the source

code, while in the latter case, it is collected at run time

and may vary from one execution to the other. Here, the

attention will be concentrated on static measures which can

in turn be devided into three types:

[1] volume: measure the size of a product

49

[2] Data organization: measures the usage and visibility of

data as well as their interactions.

[3] Control organization:

of control structure.

measures the comprehensibility

Classification of complexity metrics using some

common measures of interest is shown in Fig. 4.2. Most of

these measures have been used in some way but do not gain

full acceptance partly because it is not certain what

aspects of the software life cycle the metrics describe and

partly because of the difficulty in parameterization.

Many reports are published by researchers for the

emperical evaluation of different complexity metrics

[BSL183a; BSL183b; CURT79].

I. VOLUME METRICS

This conventional volume metrics are straight­

forward and widely applicable. This is based on program

size, which by virtue of the complexity involved in the

volume of information that must be absorbed to understand

the problem.

50

The definable measures of the volume of a program

are number of lines (LINES), number of executable statements

(STMTS), number of programming units like subroutines

(UNITS), average length of a programming module (STM/U),

etc.

II. HALSTEAD'S SOFTWARE SCIENCE

It is one of the most well-known complexity metric

with several emperical studies. The Halstead measures are

functions of the number of operators and operands in the

program [HALS77].

Operators fall into three classes and for FORTRAN

language, for example, the list will be as follows :

(a) Basic-+-* ** I II = () .GT .. GE .. LT .. LE .

. NE .. EQ .. NOT .. AND .. OR .. EQV .. XOR .. NEQV.

(b) Keyword - IF THEN ELSE ELSEIF ENDIF DO DOWHILE GOTO

ASSIGN CONTINUE ENDDO RERD WRITE TYPE PRINT ACCEPT EOS

(c) Special -Names of subractines, functions.

Operands consist of all variable names and

constants such as, TRUE, FALSE and Esm (real). The

Halstead's metrics can be defined on the basis of

51

r.·.r\'"'~ I r.t ... ; t•llly
M-·triC"P

I.
I •

I lllal''f7 1;1 IItle l
I

I ll<llt' 01 '"''I r.Allnh 1
I I .. I

sran P-ta
flllodlfl(·

P•t_..n f:•·,..,.nl Ch&J•In
Dat.a Gllc- 1116 Clot,. I Q

R<' r" '"'""<'" 81 Ul'll,(' 79
76 , .. lr

n

t

r l Vc•lw:>• J I
RAl&t.•ad Cow•t• of
Soft"ano Um.•F,
Sc1t>nce f.t.af.(·W>fll6.
Ht>t.r1ca • J/0 ft·n>atf:,

count• or ~ruc .. ~urt"l', --....
OS'f'rAwra, ~<tat..-nb

OJ'i' rat' d 1 . flt"r ~rt>Cf'durt'
77 convf!'Tlt lone)··

' Control Oq:An!r.at.lon I
I I ., .,

!>,...':)iJ(' Hu!aoal
Cycloastlc Knots

r;ue.~r ' jnt.t·Tt;('C1
Co~~~t).,x Hy (;Qunt

rat1o nultt•(·r
76' 79 e: 7t

-
j • l I·

i.nuutr: e>f
C1lb'a Av•·l Af:t-

callf t<• Lot leal H,ycr'a)l.,,.t Uo&:
r.ul•j'rvn·all

Complexity 77 Levt·l

' func-t Jolo 77 7~
c<•f:\'f'!o t I cue!

·-
t

P.;ot·rld 1
1

i • • t .-: :J r. ~ . '-' I. : :

Y.-IHf (,(

Hanaen'• ~1.-in'•
Syr.Uort lc

Nt>w l'u~ llcet
78 60 c~, lexlly

Mt.'l.rlr
f&c:lly a ..

6•.

J(!fl

Fig4. ,2Ciassification of complexity me tries.

number of unique operators n ,
0

number of distinct operands n ,
2

total number of operators N , and
1

total number of operands N .
2

Then Halstead defines the vocabulary of the program as

n = n + n
1 2

and implementation length as

N N + N .
1 2

He hypothesizes on estimator N' log n + n
2 1 2

log n .
2 2

A program volume metric V, which characterizes the size of

an implementation, as V = N log n

The potential value V n log n represents the

minimum algorithm representation in a language where the

required operation is builtin. Hence, the potential
··k

vocabulary n n + n ~ n + n because in such a
1 2 2

minimal form, the number of operators is two: the algorithm

name and ().

To evaluate the programming effort, propensity of

error, and ease of understanding, the program level L of an

52

implementation is defined as V /V, which has the maximum

value of unity and can be approximated by L' = 2.n /n /N .
2 1 2

It follows that only the most succinct expression can have a

level of unity. Program difficulty D is the difficulty of

coding an algorithm. D = 1/L by definition and can be

estimated by D = 1/L'.
2

Halstead hypothesizes that LV remains invariant

under translation from one language to another. LV can

therefore be regarded as the intelligence context IC of the

algorithm which increases only as the complexity of problem

solution increases.

The effort required to generate an algorithm is

E V/L. It is suggested that E can measure the effort

required to comprehend an implementation and is a measure of

clarity. Effort E can be approximated by

E'
L'

n N .N log n
1 2

---------------- (or) E"
2.n

2

III. GRAPH-THEORETIC METRICS:

A program can be represented by a flow graph,

G=(V,E), where Vis a set of nodes and Eisa set of edges

53

Node - A sequential block of code with unique entrance and

exit but no internal branch or loop.

Edge - Flow of control between the various nodes.

For an edge· (u,v), node u is the initial node and

node v is the terminal node. The outdegree of node u is the

number of edges emanating from u;

the number of edges incedent at u.

the indegree of node is

Using this flow graph

concept, various control metrics can be constructed, which

characterizes the control complexity of a given flow graph.

(a) McCabe's Complexity Metric:

McCabe's cyclomatic complexity [MCAB76] is well

accepted, intutively reasonable, and easily calculated. The

metric V(G) is essentially the cyclomatic number of the

program graph +P; where P is the number of strongly

connected components of the program graphs (also called

units in volume metrics). It is given by

V(G) e - n + 2P

where e is the number of edges and n is the number of

vertices of the program graph.

54

In a strongly connected graph, this cyclomatic

number is the number of linear independent circuits. For

programs with single entry and single exit, V(G) is one

plus the number of decisions (that is number of predicates).

This graph-theoritic metric is independent of the

program size but depends only on the decision structure.

Decision making of a program affects its error probability

and development time and cost.

(b) Gilb's metrics:

Gilb gives [GILB77] two metrics: CL, absolute

logical complexity (number of binary decisions) and cL!

relative logical complexity (ratio of CL to STMTS) whict

have been supported by some empirical evidence. The latter

can be considered as an improvement over pure control

metrics as it also takes into account some volume metric.

He gave some conventional metrics also like CALLS (the

number of subroutine and function invocations); CA+BD (the

total number of calls and binary decisions) etc.

(c) KNOT Count:

A Knot occurs when two control transfers

intersect, as depicted in Fig. 4.3. since each node is

55

GOTO 51

KNOT

Fig. 4.3: KNOT EXAMPLE

sequence of statements, with no internal branches, a Knot

occurs if node b includes at least one line in the example

[WOOD79]. Two related metrics can be further defined :

1. KNOT1 - The number of Knots that can be verified.

2. KNOT2 - The total number of potential Knots, assuming

every node contains one statement.

It is conceivable that a program with many knots

is more complex to comprehend to reflect this.

(d) SCOPE Metric and Ratio:

Nodes with an outdegree 0 or 1 are RECEIVING

nodes. Those with an outdegree greater than 1 are SELECTION

ones. Given a selection node, we can find atleast one

"lower bound" node which succeeds every immediate successor

of the selection node. The lower bound node that precedes

56

every other lower bound is the GREATEST LOWER BOUND (GLB).

The number of nodes preceding the GLB and succeeding the

selection node, plus 1, yields the ADJUSTED COMPLEXITY (AC)

of the selection node. It reflects the scope of "influence"

of the selection node. Summing up the adjusted complexity

of each node, the SCOPE metric is formed [HARS81a,b].

SORT, the scope ratio metric, is defined as:

(1.0 - N/SCOPE)*100%,

where N number of nodes in the flow graph excluding

terminal node.

SCORT increase towards 100 (percent) as complexity

increases.

III LI's HYBRID METRIC

This is a hybrid metric [HFLI87], which integrates

software science with the scope of measure and reflects both

volume and control organization. The raw complexity of a

node V
j

is E'
j

E b N

j j
log n /L'

j

where N , n are local parameters of node V and L' is a
j j j

global parameter defined previously in this section.

57

The adjusted complexity for a selection node is

the sum of Ej' values of every node within the scope of

that selection node, plus the value of the selection node

itself. A receiving node has an adjusted complexity equal

to its raw complexity. The complexity of the overall

program is the sum of the adjusted complexities of every

node.

The metric can be defined as:

(1.0 - 2: Raw complexities/ ~adjusted complexities) *100%

This increases towards 100 (percent) as complexity

increases.

4.4 VALIDATION OF DIFFERENT METRICS

In the earlier section we have seen several

metrics based on characteristics of the software product,

which appeared in the literature. Many studies have applied

them, to data, from various organisations to determine their

validity and appropriateness. However, the question of how

well the various metrics really measure or predict effort or

quality is still an issue in need of confirmation. Studies

58

across different environments have been done to answer this

question [BSLI83a, BSLI83b, CURT79, HFLI87]. The results of

these studies will be discussed here. For validating a

metric one has to examine many software projects. This type

of work created yet another new field namely Experimental

Computer Science.

The first question that is to be answered in this

direction is "what are the properties of a good metric?".

[KEAR86] says that complexity measures should be graded

by its robustness, normativeness, specificity and prescripti­

veness. Robustness of a measure means that the metric

should be responsive to program modifications and it should

show that a reduction in the measure consistantly produce

improvements in the program. Normativeness means that the

measure should facilitate to provide a norm (a particular.

figure of complexity) against which measurements can be

compared to reject programs having unacceptable levels of

complexity. Specificity is the degree to which a measure is

able ~o point out the deficiencies in program construction.

The word prescriptiveness means that the ability of the

metric to suggeat methods to reduce the complexity of a

overly complex program.

59

One of the earliest work done on validation of

complexity metrics is [CURT79a]. It reports empirical

evidence to show that metrics were related to difficulty

programmers experience in understanding and modifying

software. But the correlations observed are not as high as

those claimed by Halstead. The Halstead and McCable metrics

provided some information about program differences, but

there were other factors unassessed by these metrics which

influence the psychological complexity of the programs. The

metrics reportedly predicted programmer performance better

on versions of programs which were unstructured or

unconnected. Further, neither Halstead's nor McCabe's

metrics consider the level of nesting within various

constructions (eg. three DO loops in succession will result

in metric values similar to those for three nested DO loops).

It also reported the detection of curvilinear

relationship between Halstead's E and performance. From

this one can conclude that as Haltead's E grows larger a

program becomes more psycologically complex, but the

increments in difficulty grow smaller and smaller [CURT79B].

60

TABLE 4.3

Intercorrelations Among Complexity Metrics as Reported by

Measure

Subroutine

V(G)

Length

Program:

V(G)

Length

Note: n=2 7

[CURT79b]

E

0.92

0.89

0.76

0.56

CORRELATIONS

and P <:::..= 0.001

V(G)

0.81

0.90

Basili in his paper [BSLI83] also reported that

none of the metrics examined manifests a satisfactory

explanation of effort spent developing software or the error

incurred during that process. In this evaluation the effort

spent is actually found ·from interviews and reports of the

programs involved. The major results of the investigation

are listed below :

61

[1] Neither software

complexity nor

science's E

source lines

metric, cyclomatic

of code relates

convincingly better with effort than the others;

[2] The strongest effort correlations were derived when

models obtained from individual programmers or certain

validated projects were considered;

[3] The majority of the effort correlations increase with

more reliable data;

[4] The number of revisions appears to correlate with

development error better than either software science's

B metric, E metric, cyclometric complexity or source

lines of code; and

[5] Although some of the software science metrics have size

dependent properties with their estimators, the metric

family seems to possess resonable internal consistency.

static

on a

H.F. Li and W.K. Cheung have developed a Fortran

source code analyzer [FORTRANAL] to study 31 metrics

data base of 255 student programs [HFLI87]. This

study is the most comprehensive of all the emperical studies

available today. The results of this study are summarized

in Table 4.4 in which correlation coefficients between every

62

possible pair of metrics are tabulated for 18 selected

metrics. They made the following remarks.

The Halstead's family of metrics reported to

possess reasonable internal consistancy, i.e. , with

correlation coefficient clause to units, as can be seen from

Table 4.4. This suggests that one of them can replace the

other in application. The length equation N' = n
1

log n +

1
n log n appears to be program-size dependent and N' tends

2 2
to be high for small programs and low for larger ones.

McCabe's cyclometric measure correlates well with

Halstead's, Gilb's, Knot counts, SCOPE, EDGES and NODES

metrics. This measure can be viewed as a control

TABLE4.4
CoRRELATION CoEFFICIENTs AMONG 18 SELI'CTED MuHtcs

STMTS LN-CM NODES EDGES HcCBE SCOPE n2 N1 N:;> n v IC E" E'" CL

STHTS --------------------------------·
LN-CM .983

NODES • 92~ . 9D6

EDGES . 91~ . 875 . 982

HcCBE .908 .891 .96~ .971

SCOPE .8~8 . 797 .910 .9~7 .892

n2 .898 .877 .696 .869 .672 .626

N1 .977 .9.71 .916 .696 .905 .633 .925

N2 .9~2 .933 .917 .903 .915 .626 .953 .976

n .907 .693 .920 .699 .666 .632 .987 .933 .9~0

N .968 .960 .921 .906 .915 . 8 36 • 9~ 3 . 996 . 992 . 9~ 6

N" .896 .676 . 913 . 898 .661 .837 .969 .925 .9~7 .996 .940

v .960 .9~9 .927 .91~ .916 .8)? .956 .990 .992 .959 .9>7 .958

IC .665 .83~ .810 .6?~ . 796 . 780 .956 .86? .891 .907 .691 .912 .900

E" .91~ .913 .905 .873 .897 .805 .8~5 .9~0 .937 .884 .944 .680 .947 .726

E"" .886 .882 .917 .881 .892 .813 .867 .914 .925 .931 .924 .931 .938 .748 .976

CL .878 .830 .930 .978 .9(9 .932 .851 .862 .872 .848 .872 .650 .880 .803 .630 .828

KNOT? .871 .830 .919 .9~6 .923 .877 .855 .661 .872 .81<8 .871 .545 .873 .815 .803 .799 .943 I L_ ___________________________________ __

63

organization metric (i.e., number of control paths) and to a

lesser extent, a volume metric (i.e., number of decisions

+1). So the cyclomatic measure seems to bridge the gap

between the two categories (VOLUME and control organisation

metrics).

The SCOPE number is reported to be not always

reliable because the scope number, in essence, is dependent

on the no. of nodes in the flow graph. Some programs can be

rearranged to give flow graphs with different scope

measures. The SCORT and Li's hybrid metric are found to

correlate well with each other.

KNOT2.

It was noticed that KNOT1 count is much less than

And the KNOT2 is found to be much better correlator

than KNOT1 with volume metrics.

Similar to KNOT metrics, the absolute logical

complexity CL correlates better with those tradinal metrics

than the relative logical complexity CL, which takes into

account the program size. In fact, CL is the number of

binary decisions in the program's logic and can be regarded

as a special volume metric.

64

Regarding all the volume metrics, the number of

executable statements (STMTS) is found to be the best one,

which correlates well with Halstead's Nand V measures.

Volume metrics vs. control organization metrics:

size,

In

have

general,

been the

metrics based on measures of program

most successful to date, with

experimental evidences indicating that larger programs have

greater maintenance costs than smaller ones. But this

technique is not adequate, which can be demonstrated by

imagining a 50 line program consisting of 25 consecutive "IF

THEN" construe ts. Furthermore, volume metric s can only be

measured after the design has been carried out fully to the

debugged code, making it difficult to take any corrective

action at the implementation stage.

As reported by [HFLI81] several control

organisation metrics correlate well with value metrics,

e.g., McCabe, SCOPE, CL and KNOT2. In general, the control

flow

the

metric fails to be comprehensive and do

contribution of any factor except

not consider

cant rol flow

complexity. However, these metrics, can differentiate

between two programs of similar volume metrics and certainly

related to software quality.

65

Hybrid metrics · attempt to remedy one of the

shortcomings of single factor complexity metrics in use.

Li's hybrid metric combines a measure of control flow and

program size, i.e.'
1

SCORT and E' are considered together

The resulting hybrid metric was found to be slightly

different from SCORT measures.

Most of the metrics are lacking of context

sensitivity. For example, EDGES, NODES, McCabe and CL

consider only the node and edge counts and fail to consider

the context of each edge and node. Halstead's metrics too

cannot take into account the flow of control. Hence, most

metrics lack comprehensiveness.

Metrics. relation to errors:

[CURT79b] reports from their experiments that the

software complexity metrics developed by Halstead and McCabe

are related to the difficulty programmer experience in

locating errors in code. They can be used in providing

feedback to programmers about the complexity of the code

they have developed and to managers about the resources that

The stated
orthogonal,
complexity
-0.032.

reason for the choice [HFLI82] is that they are
i.e., they measure different aspects of

and give correlation coefficient by them as only

66

will be necessary to maintain particular section of code.

Code which is more complex may also be more error-prone and

difficult to test.

Basili et al. [BSLI83] in their study report that

the most of the correlations between metrics and errors and

weighted errors are very weak with the exception of system

changes. These disappointingly low ~orrelations attribute

to the discrete nature of error reporting. However, they

report that partitioning an error analysis by individual

project or programmer shows improved correlation with the

various metrics.

4.5 CONCLUSION

Software complexity measures have not realized

their potential for the reduction and management of soft~are

cost. This failure derives from the lack of a unified

approach to the development, testing and use of these

measures.

only

likely

Complexity measures currently available provide

a crude index of software complexity. Advances are

to come slowly as programming behaviour becomes

67

understood. Users

the limitations of

of complexity measures must be aware of

these measures and approach their

applications cautiously. Before a measure is incorporated

into a programming environment, the user should be sure that

the measure- is appropriate for the task at hand. The

measure must possess the properties demanded by the use.

Finally, users should always view complexity measurement

with critical eye.

68

[BSLI80a]

[BSLI8'Bb]

[BSLI8Bc]

[CURT79a]

[CURT79b]

[DIJK68]

[GILB77]

[GOEL85]

[HALS77]

REFERENCES

V.R. Basili, Tutorial on models and metrics fo~
software management and engineering, IEEE Compute1
Society Press.

V.R. Basili and D.H. Hutchens, 'An empirical
study of a syntactic complexity family,' IEEE
Trans. Software Eng., val. SE-9, pp. 664-672,
Nov. 1983.

V.R. Basili, R.W. Selby, Jr., and T.Y.
Philips, 'Metric analysis and data validation
across Fortran projects,' IEEE Trans. Software
Eng., val. SE-9, pp. 652-663, Nov. 1983.

B. Curtis, S.B. Sheppard and P.M. Millman,
M.A. Borst and T. Love, 'Measuring the psycho­
logical complexity of software maintenance
tasks with the Halstead and McCabe metrics,'
IEEE Transactions on Software Engineering,
5.2, pp. 95-104, March 1979.

B. Curtis, S.B. Sheppard and P. Millman,
'Third time charm: stronger prediction of
programmer performance by software complexity
metrics,' Proc. 4th International Conference
on Software Engineering, pp. 356-360, Sept.
1979.

E.W. Dijkstra 'Goto Statement Considered
Harmful,' Commun. of ACM, val. 11, pp.147-148,
1968.

T. Gilb, 'Software metrics,' Cambridge, MA:
Winthrap 1977.

A.L. Gael, 'Software
assumptions, limitations
IEEE Trans Software Eng.,
1423, Dec. 1985.

reliability models:
and applicability,'

vol.SE-11, pp. 1411-

Maurice
Science, '
1977.

H. Ha 1st ead, 'Elements of S of twa re
Elsevier North-Holland, New York,

70

[HARS81a]

[HARS81b]

[JENS74]

[KEAR86]

[KING68]

[KING69]

[MCAB76]

[MYER77]

[POLL71]

[POOC74]

[PRES83]

W. Harrison and K. Magel, 'A complexity
measure based on nesting level,' ACM SIGPLAN
Notices, pp. 63-74, Mar. 1981.

W. Harrison and K. Magel, 'A topological
analysis of computer programs with less than
three binary branches,' ACM SIGPLAN Notices,
pp. 51-63, Apr. 1981.

K. Jensen
Report
vol. 18,
1974.

and N. Wirth, PASCAL User Manual and
Lecture Notes in Computer Science.
Springer-Verlag: Berlin, Germany,

Josph K. Kearney et
mesurement,' Commun.
1044-1050, Nov. 1986.

a 1., 'Software complexity
ACM Vol. 29, no. 11, pp.

P. J. H. King, 'Ambiguity in 1 im ited entry
decision tables,' Commun. ACM, Vol. 11, No.
10, pp. 680-684, Oct. 1968.

P.J.H.
entry
among
1969,

King, 'The interpretation of limited
decision table format and relationships

conditions,' Computer J., vol. 12, Nov.
pp. 320-326.

T. J. McCabe, 'A complexity mea sure, ' IEEE
Transactions on software engineering, vol. 2,
no. 4, pp. 308-320, December 1976.

G.L. Myers, 'An extension to the cyclomatic
measure of program complexity,' SIGPLAN
Notices, Vol. 12, pp. 61-64, Oct. 1977.

S.L. Pollack, H.T. Hicks and W.J. Harrison,
'Decision Tables: Theory and Practice,' N€w
York: Wiley, 1971.

U.W. Pooch, 'Translation of decision tables,'
ACM Computing Surveys, vol. 6, no. 2, pp. 125-
151, June 1974.

P. E. Presson, 'Software interoperability and
reusability guide-book for software quality
measurement,' Rome Air Development Centre,
Griffies Air Force Base, NY, Rep. RADC-TR83-

, 174, July 1983.

71

[RAMA86}

[RAJA78]

[WOOD79]

[YAU80]

[YOU85]

[kt-LI ~7]

c.v. Ramamoorthy and Vick,
ware Engineering, Van
Company Inc., 1984.

Handbook of Soft­
Nostrand Reinhold

C. V. Ramamoorthy et a l. , 'Metrics guided
methodology,' Proc. COMPSAC, 1985.

C.V. Ramamoorthy, "Programming in the large",
IEEE Trans. on Software Engineering, vol. SE-
12, no. 7, July 1986.

M. Ibramsha and V. Rajaraman, 'Detection of
logical errors in decision table programs,'
Commun. ACM, vol. 21, no. 12, pp. 1016-1025,
Dec. 1978.

M.R. Woodward~ M.A. Hennell, and D. Hedley, 'A
measure of control flow complexity in program
text,' IEEE Transactions on Software Engineer­
ing, vol. 5, no. 1, pp. 45-50, January 1979.

S.S. Yau and J.S. Collofello, 'Some stability
measure for software maintenance,' IEEE Trans.
Software Engg., vol. SE-6, pp. 545-556, Nov.
1980.

S.S. Yau and J.S. Collofello, 'On design
stability measure for software maintenance,'
IEEE Trans. Software Engg., vol. SE-11, pp.
849-856, Sept. 1985.

H·F.Ll a~) W·K. CNuYlj)(~ -eynp;.,,·~J)

~ 1 S1ware 'Yrlat;w ', IP££ ~fl.J.
s~ <ZtfJ -~ ~ l<rf'- 13 ~ J411f er

72

	TH23640001
	TH23640002
	TH23640003
	TH23640004
	TH23640005
	TH23640006
	TH23640007
	TH23640008
	TH23640009
	TH23640010
	TH23640011
	TH23640012
	TH23640013
	TH23640014
	TH23640015
	TH23640016
	TH23640017
	TH23640018
	TH23640019
	TH23640020
	TH23640021
	TH23640022
	TH23640023
	TH23640024
	TH23640025
	TH23640026
	TH23640027
	TH23640028
	TH23640029
	TH23640030
	TH23640031
	TH23640032
	TH23640033
	TH23640034
	TH23640035
	TH23640036
	TH23640037
	TH23640038
	TH23640039
	TH23640040
	TH23640041
	TH23640042
	TH23640043
	TH23640044
	TH23640045
	TH23640046
	TH23640047
	TH23640048
	TH23640049
	TH23640050
	TH23640051
	TH23640052
	TH23640053
	TH23640054
	TH23640055
	TH23640056
	TH23640057
	TH23640058
	TH23640059
	TH23640060
	TH23640061
	TH23640062
	TH23640063
	TH23640064
	TH23640065
	TH23640066
	TH23640067
	TH23640068
	TH23640069
	TH23640070
	TH23640071
	TH23640072
	TH23640073
	TH23640074
	TH23640075
	TH23640076
	TH23640077
	TH23640078

