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containing the gallopaing costs of software 

this dissertation two different aspects 

importance in 

systems. In 

of software 

engineering are examinied. The first one is specifications 

and second is complexity measurement of a software system. 

Regarding the specifications, an efficient algorithm is 

developed for verfying these specifications of the system 

for their correctness and completeness. The algorithm takes 

the specifications in the form of decision tables and it 

needs the set of logical dependencies that are present in 

between the conditions of the decision table. 

About the complexity measurements, a review of 

many software metrics that are available to this date is 

attempted. They were first described and then compared with 

each other. These metrics, if standardised, can play a 

great role in increasing the reliability and 

miintainability of the software system. Here I wish to 
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CHAPTER 1 

I N T R 0 D U C T I 0 N 

1.0 BACKGROUND SOFTWARE ENGINEERING 

The declining cost of computer hardware has 

resulted in an increase in both the number and complexity of 

new applications. To control rising costs, many of the 

ideas and practices of the established engineering 

disciplines have been applied to software development. The 

term "software engineering" was chosen in 1968 to describe 

techniques, tools, and disciplines that support every stage 

of software lifecycle. 

The use of software engineering practices has been 

shown to significantly reduce program development costs on 

large projects. 

in USA showed 

A recent study by a manufacturing company 

an average cost reduction of 73% over 

forecosts for three projects. However, it is estimated that 

the techniques are not being widely used, underlining a need 

for the education of both programmers and managers in this 

area. 
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The software development process may be 

characterized by a number of key steps collectively called 

the software life cycle : 

(1) Specification: The software requirements, i.e. the 

system functions and operational constraints, must be 

established and specified. 

(2) Design: A software design must be derived from an 

analysis of the software requirements. 

(3) Implementation: The software design must be realised 

in a programming language which can be executed on the 

target computer. 

(4) Testing: 

that the 

The implementation must be tested to ensure 

completed system meets the software 

requirements. 

(5) Operation and Maintenance: The system must be 

installed and used. If system errors are discovered 

these must be corrected and changes to the original 

requirement may involve adding additional constraints 

to the system. 
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The complete process and sequences of operations 

involved in the software development can be shown clearly by 

a familiar "waterfall" model which is shown in Figure 1.1. 

It has been recognized that specification is an 

extremely important tool in a large scale. software design. 

It should be noted that an important aspect of specification 

is that it must be precise. Since specification contains 

the information that the designer explicitly assumes about 

the system, lack of precision can hurt the design in 

many ways, e.g., the problem being solved may turn out be 

not the intended one, or later refinements of a program may 

not be consistent with early design decisions. 

After the software specification phase is 

completed, specification is then transferred into design and 

later implemented in the form of computer programs. It has 

recently been shown that the complexity of a program is one 

of the major causes of unreliable software. 

In general, complexity of an object is the measure 

of the mental effort required to understand that object. 

Easy human understanding of a program is an essential 

requirement for reducing the cost of maintenance of the 
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software 1 system If a prdgram is voluminous, its 

complexity is automatically more. In recent investigations, 

it is proposed that the complexity of a program design 

should be considered as a function of the relationships 

among modules. The complexity of a module is a function of . 
the connections among the program instructions within the 

module. 

1.1 SPECIFICATIONS 

Studies show that any error made in the 

requirements stage is three orders of magnetitude more 

expensive thari the one made in the coding stage [RAMA86]. 

The importance, _therefore, of early detection of errors can 

not be over emphasized. Requirement specification is a 

technique to describe the functionality of a system, in 

enough detail, so that erroneous assumptions are not made 

during design and implementation. The main problem in 

writing specifications is that large systems are so complex 

that even the description of their functionality is 

difficult and error-prone. One of the reasons for this 

is the ambiguity in the medium of expression. The customer 

1 . Here we 
complexity 
computer 
problem. 

are noi concerned 
of an alogarithm, 
time and memory 
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generally uses natural language, which is inherently 

ambiguous, to express the specifications. Only limited 

success has been achieved in processing natural languages 

automatically and the situation is unlikely to change in the 

foreseable future. 

To solve the problem of ambiguity in natural 

language, one of the way is to use decision tables and 

another and most recent one is to use a formal requirements 

language. Here, in this dissertation, decision tables are 

used. 

After collecting the requirements, how the systems 

analyst makes sure that the list is correct and complete? 

As explained earlier, it is important to verify the 

specifications for their validity and sufficiency. The 

first objective of this dissertation is to develop an 

algorithm to verify the software system's specifications (in 

the form of decision tables) for their completeness and 

correctness. The discussion is limited to the systems that 

can be modelled by a decision table. Current methods for 

checking are inadequate, when logical dependence 

relationships exist among conditions. The earlier work in 

this direction will be discussed here. 
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[KING68] formally defined logical errors in 

decision tables as that. occur whenever the decision table 

has ambiguity or incompleteness and gave a method for 

checking decision table. [KING69] later improved the method 

and defined logical dependence between conditions in a 

decision table and demonstrated how this could be used to 

pinpoint logically impossible rules. The logically 

impossible rules may be excluded from the set of apparently 

ambiguous rules, and one may thus identify real ambiguities. 

[KING69] advocated the use of first order predicate calculus 

to detect the logically impossible rules. 

[RAJA78] observed that in order to detect logical 

errors in a program incorporating decision tables, the 

interrelationship between the different parts of the program 

should be considered. It is not rare that a mistake in an 

arithmetic statement executed before executing a decision 

table causes a condition in that decision table to be 

erroneously satisfied. Further, due to restrictions on 

variable values or computations performed earlier, a set of 

rules in.a decision table may become logically impossible. 

Thus restricting the scope of analysis to a decision table 

in isolation is not sufficient. 

6 



[RAJA78] established that for a non-trivial class 

of decision tables and programs with embedded 

tables, error checking can be performed by a 

program. The paper further established that it 

decision 

computer 

is not 

necessary for the analyst to supply statements of relations 

between conditions. This is important, since obtaining such 

statements of relations is, in itself, a non-trivial 

problem. 

In essence, the paper developed an algorithm which 

will delve into the logical dependence relationships among 

conditions. Also, an algorithm to detect logical error was 

developed, based on determining whether a set of linear 

inequalities has or has not a solution. 

The previous investigations have concentrated on 

detecting logical errors in a decision table. Little has 

been said about the completeness of a decision table. If a 

system is modelled and specified by a decision table, then 

the issues of completeness and correctness are of paramount 

importance, because in this context rarely is anything worse 

than an incrimplete and/or inc6rrect specificaiion. One 

specific objective of this dissertation is to develop a 

procedure which can be used for the type of analysis that 

checks the completeness and correctness of a decision table. 
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1.2 SOFTWARE COMPLEXITY 

As defined in section 1.0 the software complexity 

is the mental effort required to understand the software 

system seeing the source code of the system. It is now an 

established fact that the software complexity determines the 

reliability and cost of maintenance of the system. 

The published literature discusses only specific 

implementations of algorithms. What is missing is an 

explicit recognition that beginning with the problem 

statement or specification there exist, in general, multiple 

solutions, and the programming process can be envisaged as a 

combination of both analysis and synthesis processes aimed 

at identifying the most desirable solution among a large 

number of ·feasible alternatives. The search for a 

particular solution 

between reliability 

forms the core of the relationship 

and complexity and is the dominant 

factor that influences the reliability of programs. 

Currently, more time is spent maintaining existing 

software than in developing new code. In fact, resources 

invested in maintenance have been estimated to be three 

times higher than those required during development. 

Metrics computed from the initial code which could estimate 
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either the reliability of modification or the time required 

to implement these would prove invaluable to the software 

manager, who must allocate the time and resources necessary 

for software maintenance. 

In the past one decade, many complexity metrics 

were developed using different aspects of computer programs. 

The most straight forward and widely applicable approach is 

based on program size. The counts like number of lines, 

procedures (modules), etc. which are representative of the 

volume of the source code can be used as software complexity 

metrics. Because this metric has many limitations, many new 

metrics were proposed. 

The forerunner is the Halstead's software science 

[HALS77], which treats the software field as a science, like 

any other physical sciences, rather than as an art. Many 

more matrics based on graph theory are prepared and some 

people advocated hybrid metrics. 

All the metrics developed till now are having many 

limitations and they are yet to gain acceptance in practice. 

Eventhough this field produced lot of literature, the 
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importance of the definitions proposed is still to be 

established. In a later chapter an attempt is made to study 

and compare different complexity metrics. 

1.3 OUTLINE OF DISSERTATION 

The remainder of the dissertation is divided into 

three chapters. Chapter 2 attempts to explain decision 

tables which are useful in Chapter 3. In Chapter 3, an 

algorithm is developed for checking a decision table for 

completeness and correctness. In Chapter 4, a study of 

different complexity metric is made. 

10 
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CHAPTER - 2 

DECISION TABLES 

2.1 INTRODUCTION 

The 

programmers, 

facilities 

decision 

analysts, 

because they 

table can 

and other 

provide 

be best 

users of 

a simple 

used by 

computer 

tabular 

representation of complex decision logic. Decision tables, 

although developed primarily as man-to-man communications, 

can ease the problems of programming and documentation in 

many applications where the feasibility of using the 

traditional flowcharts, narrative discriptions, or other 

communicative media is questionable. 

Eventhough many higher level programming languages 

are available, there is still a wide gap between computer 

specialists and users. So, especially in management-ta-man 

communication there is a possibility of misunderstanding in 

systems analysis and design and in implementing the chosen 

procedure into a workable computer program. Decision 

tables, being easily understandable can fill this 

communication gap. In addition, because decision tables 

succintly display any conditions that must be satisfied 
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before any prescribed action is performed, they are becoming 

popular in computer programming and system design as devices 

for organising logic, especially when attempting to handle 

very complex situations, 

combination of conditions. 

and to account for every possible 

Furthermore, the extent and 

nature of the changes required to update or revise an 

application programme is easily provided by the unique form 

of the problem statement in decision tables. 

Flowchart is a graphic language form that has also 

been widely used for man-to-man communications. Flowchart 

was specifically developed for the purpose of representing 

operations related to computer activities, such as system 

analysis, system design, programming, documentation etc., 

can also frequently be utilised for noncomputer related 

activities. A comparison between decision tables and 

flowcharts is made in the following section. 

2.2 DECISION TABLE STRUCTURE 

A decision table provides a tabular representation 

of information and data. Information displayed in this 

manner is easily comprehended visually, even if the table of 

information represents a complex logical problem. A 
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decision table is ~ structure for describing a set of 

decision rules, [POOC74]. The basic structure of a decision 

table is universely accepted as that illustrated in fig 2.1. 

CONDITION 

STUB 

ACTION 

STUB 

Fig. 2.1: Decision table structure. 

CONDITION 

ENTRY 

ACTION 

ENTRY 

The decision table can be divided into four 

quadrants. The upper left quadrant, called the condition 

stub, should contain all those conditions being examined for 

a particular problem segment. The condition entry is the 

upper right quadrant. These two sections described the set, 

or string of conditions that is to be tested. The lower 

left quadrant, called the action stub, 

narrative format for all possible action, 

conditions listed above the hoTiz~ontal 

contains a simple 

result from the 

line. Action 

entries are given in the lower right quadrant. Appropriate 
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actions resulting from the various combinations of responses 

to conditions will be indicated in the action entry. An 

example of decision rules and the IF-THEN function are 

illustrated in table 2.1. 

IF 
AND 
AND 
AND 

THEN 
AND 
AND 

Decision 
Rule 1 

Table 2.1: Decision Table 

Decision 
Rule 2 

Decision 
Rule 3 

Decision 
Rule 4 

The meaning of different sections of table 2.1 can 

be described as follows. Each decision rule is a 

combination of responses to conditions in the condition 

entry quadrant. The decision rules are numbered for 

identification purposes in the rule header portion of the 

table. The top most horizontal line represents IF, while 

the remaining horizontal lines represents AND, and the 

double horizontal line THEN. Note that the condition half 

of the table is separated from action half by a double 

horizontal line and stub sections are separated from the 

entry section by a double vertical line. These lines 
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improve the readability of a table, and can be preprinted on 

forms. In addition to these, each table is given a table 

header which serves the purpose of table identification. 

If a condition in the condition stub is true a Y 

is entered for that particular rule in the condition entry; 

if the condition is false an N would be entered. In a 

situation where a practical condition is irrelevant, a 

'don't care' would be indicated by the use of a dash (-) or 

an I. Two other entries, the * and $ are used to indicate 

mutual exclusion of one condition with another on a rule by 

rule basis [KING69]. Whenever the case arises within a 

single rule that the satisfaction of some "required" test (Y 

or N entry) makes some other required entry a foregone 

conclusion then the special entries * (in place of N) or $ 

(in place of Y) can be used to indicate this fact. The use 

of these implicit entries can be illustrated by the example 

of Table 2.2. 

2.3 TYPES OF DECISION TABLES 

There are three types of decision tables in 

current use [POOC74]. The limited entry decision table, the 

most popular and most often used, allows only the entries 

explained in section 2.2. In the second type of decision 
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table called extended entry table some conditions are 

allowed to appear on the condition entry space also. The 

third variety, mixed entry table, is a combination of 

limited entry rows and extended entry rows. The extended 

and mixed entry tables can always be transformed into 

limited entry tables. This is the reason for not 

considering the last two types in the treatment here. 

2.4 COMPARISON OF DECISION TABLES AND FLOW CHARTS 

The decision table is a convinient form for 

expressing any conditional alternatives, where a particular 

path to be followed is dictated by a combination of a number 

of conditions. Flowcharts in such cases can become very 

complex and difficult to follow, and involve testing for 

each condition more than once. The advantages of decision 

table can be listed as follows : 

* Clear enumeration of all operations performed. 

* Clear identification of the sequence of operations. 

* Effective means of communication between pe0ple in and 

out of data processing field, i.e. not limited to 

computer applications. 

* Easy to construct, modify and read. 

17 



* It is possible to verify a decision table for its 

correctness and completness using a computer programme. 

* Can be used to documentation applications involving 

complex interactions of variables. Unlike flowcharts 

it is not affected by personal preference or jargon. 

* When applied to computer systems decision tables foster 

better use of subroutines and provide a complete data 

check for debugging. 

* Directly adopted and possibly converted directly to 

computer operations through symbolic logic computer 

programmes. 

* Easier visualization of relationships and alternatives. 

Compared to flowcharts the decision tables have many 

disadvantages also. 

* The decision tables are slightly more difficult to 

learn. 

* For complex situations, they may become extremely large. 

* Multiple tables may be needed in certain cases to 

document decision logic. 

* Many people find the graphic display of flowcharts more 

18 



meaningful than a tabular description of logic. 

Desire for 

detailed 

purposes. 

automatic translation ability causes too 

requirements for man-to-man communication 

Although decision tables are not the answer to all 

documentation and programming problems, they do offer 

certain advantages that overcome some of the drawbacks of 

flowchart technique. With the state-of-the-art advancing 

sufficiently for checking a decision table and enable 

economic conversion of decision tables, their use may show a 

marked increase. 

2.5 USES AND APPLICATIONS OF DECISION TABLES 

Decision tables are useful in many areas of 

applications. 

In simulation models: The ability of decision tables in 

handling complex logic makes them a definite aid in 

formulating logical flow of simulation models. Here the 

decision tables are mainly used to determine whether a 

subprogramme is to be executed at a particular time in the 

simulation. 

In an org-anisation: The decision tables can be used at 
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various levels in an organisation. Policies of top 

management may often be expressed tabularly. Tables may be 

applied · in areas such as engineering, mathematics, 

personnel, and accounting. Tables allow cross-referencing 

and more importantly it serves best in documentation. 

In Systematics: It is a set of techniques for designing 

and describing information systems. The basic statements in 

systamatics namely the elements can be considered as a 

special case of decision table. 

more manageble because the 

This decision table form is 

entries are limited to 

combinations of conditions that yield the derivation of only 

one item. 

In Automatic test equipment system: The use of a 

programming language, based on decision table techniques, 

permits the test engineer to write test statements easily, 

and permits programming a test specification with minimal 

knowledge of programming technique and of the specific test 

equipment system involved. This type of system can be made 

to choose a new sequence of tests in accordance with 

previous results. 

In checking the specifications of a system: If decision 
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tables are used in representing the specification, it is 

possible to have an automatic checking of the specifications 

of a software system, which are prepared by the systems 

/.,. ,: _,..,-.. ~nalyst from the requirements of the user-customer. It is 
!! ~"l '''""''{\"\. 

r l,f,"-"-"''"" """"~~ t1a'l:ilitated by the fact that there is only one unique way 
i\ '.YPV\1 """"'"", 

\~ •. ~. ;-'~ -r representing the conditions in a decision table, which 
i;;a> 

~-·-.2:;;;;::-..1'"' can be taken as input for an algorithm which is prepared for 

checking the specifications. One good algorithm was 

~ developed in the following chapter for this purpose. 

~ 
2.6 AN EXAMPLE 

An example of mixed entry decision table is given 

for a stated problem of declaring students examination 

results. The flowchart representation was also given for 

making comparison. This shows that in problems involving 

complex decision logic decision tables are more convenient. 

One can easily see that this mixed entry decision table can 

easily be translated to a limited entry decision table by 

introducing more number of conditions for each variety of 

condition entry. 

PROBLEM STATEMENT 

There are two subjects in the examination called 

main and ancillary. If a student gets 50 percent or more in 

21 



the main subject and 40 percent or more in the ancillary, he 

passes. If he gets less than 50 percent in the main he must 

get 50 percent or more in the ancillary to pass. However, 

the minimum passing marks are 40 percent in the main 

subject. If a student gets 60 percent or more in the main 

subject he is allowed to repeat the ancillary subject if the 

ancillary marks fall below 40 percent. However, there are a 

group of students in the class who are granted special 

consideration. Their pass percentage is 40 percent in the 

main and 40 percent in the ancillary. If they get less than 

40 percent in the ancillary they are allowed to repeat that 

subject if they obtain 40 percent or more in the main 

subject. 
TABLE 2.2 

A DECISION TABLE CORRESPONDING TO FLOW CHART OF FIGURE 2.2 

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 

E 
Main marks % )=50 )=40 ">=60 )=40 )=40 

L 
Anc. marks % )=40 ~=50 L40 )=40 L40 

s 
Special status No No ·No Yes Yes 

E 

Pass x X X 

Repeat anc. X X 

Fail X 
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N 
w 

B 

No 

READ Main Marks, 
Anc. marks, Student status 

No Yes 

A 

Yes 

Fig. 2.2 Flow chart depleting examination results processing. 



CHAPTER 3 

CHECKING A DECISION TABLE 

3.0 INTRODUCTION 

There 

specifications 

have an edge 

effective means 

are different methods for representing the 

of a software system. But decision tables 

over other methods because it provides an 

of communication by defining both the 

problems and their corresponding solutions, especially when 

the situation demands a number of decision logic conditions. 

Moreover, with the advent of software packages which produce 

a program in a computer language, given a decision table. 

These translators are commercially available. 

Moreover, 

convenient to use 

for checking the specifications, it is 

decision tables. Here checking the 

specification means the verification of the specification 

for its correctness and completeness, even if there exists 

logical dependencies between the conditions of a decision 

table representation. The earlier work in this area is 

described in Chapter 1. This chapter attempts to develop a 

more comprehensive and simple algorithm for this purpose. 
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The algorithm uses some principles of Mathematical 

logic. In the following section, for greater understanding 

of the algorithm, a brief discussion about this topic is 

attempted. 

\ 

3.1 MATHEMATICAL LOGIC 

Mathematical logic is an analytical theory of the 

art of reasoning, whose goal is to systematize and codify 

principles of valid reasoning. 

A two-valued (either true or false) variables are 

called logical variables and the operations such as OR 

operation and AND operation, which are performed between 

such variables are referred to as logical operators. A 

variable may stand for a propositional statement. 

Some of the needed operators will be introduced 

here. The truth value of a logical statement having logical 

operators and variables can be summarized concisely by using 

a table known as truth table. The truth values of 

statements having A and B as variables are displayed in 

Fig. 3.1 for four different logical operators. 

25 



A B A A"'"B A+B A~B 
----------- -------------------------------------

T T F T T T 

T F F F T F 

F T T F T T 

F F T F F T 

Fig. 3.1: Truth Table 

A logical statement is said to be a tautology 

provided that it is true for all possible assignments of 

truth values to its component statements. The following is 

a list of tautologies which are useful later. 

(Tl) (p ~ q) ""k (q ~ r) ~ (p ~ r ) 

(T2) v v p --')> p 

(T3) (p ~ r) * (q --+ r) - p + q ~ r 

(T4) .. (p ~ q) --'>" b ~ a 

( T 5) (p + q) .....:;,. p -k q 

(T6) (p ;'r q) ~ p + q 

(T7) a ...... b ~ a + b 

Any logical function can be written in a standard 

sum of products form (-min-te-rm--form) or in a standard product 

26 



of sums form (maxterm form). e.g., 

(i) f(A,B,C) A + BC 

A (B + B) (C + C) + (A + A) B c 

ABC + ABC + ABC + ABC + ABC 

This standard sum of products form and can be represented 

as: 

f(A,B,C) ~m (1, 4, 5, 6, 7) 

which is got by assigning '0' for complemented variables 

and '1' for uncomplemented variables. 

(ii) f(A,B,C) A + BC 

(A + B) (A + C) 

(A + B + CC) (A + BB + C) 

(A + B + C) (A + B + C) (A + B + C) 

This is standard ~o~mat of sums form and can also be 

represented as 

f(A,B,C) = T(rrt (0, 2, 3) 

which is derived by assigning '1' for complemented variable 

and '0' for uncomplemented variable. 
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KARNAUGH MAP 

The K-map is a diagram which provides an area to 

represent every row of a truth table. A K-map for a two 

variable function is shown in Fig. 3.2. 

Row no. A B f 
~ ========= ====== ======= 0 1 

B 0 "4 

0 0 0 1 0 1 0 

1 0 1 0 3 

1 0 1 
2 1 0 0 

3 1 1 1 

Fig. 3.2: The truth table and K-map for the function 

f(A,B) A.B + A.B. 

In the K-map each row of the truth table has been 

transfered to the appropriate K-map box. Looking at the K~ 

map one can represent the function in minterm and maxterm 

term notation as 

f(A_,B) A.B + A.B = m
0 

+ m3 = ~m(0,3) 

f(A,B) 
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From the above, it can be easily noted that given a function 

in minterm specification, one can find it in maxterm 

specification. 

Proceeding on the same lines one can represent a 

logical function having 3,4,5 or 6 variables. 

will be given in a latter section. 

3.2 LOGICAL DEPENDENCIES 

One example 

The algorithm to be presented in this Chapter, for 

checking a decision table, first finds all the feasible 

logical possibilities that the system may assume. These 

feasible logical possibilities of a decision table is found 

by traversing the logical dependency relations in the 

decision table. 

Two conditions, c1 and c2 are said to be logically 

dependent if the truth value of c1 dictates the truth value 

of c2 and othrwise they are said to be logically 

independent. If truth value T of c1 dictates the truth 

value T of Cz", then it can be represented as c1 ~ c2 . 

Similarly, if the truth value T of c1 dictates the truth 

value F of c2 , then we have c1 -7 Cr 
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A set of logical dependency statements can be 

prepared, if 

dependencies 

dependency 

specification 

[KING69]. 

there exists a set of conditions 

in a decision table. This set 

exhibiting 

of logical 

statements may be included in the system 

or may be worked out by systems analysts 

The algorithm to be presented, needs that the 

logical dependency statements must be minimal and congruent. 

A set of logical dependency statements is said to be minimal 

if (a) it embodies all the logical dependencies existing 

among the conditions in the sense that every dependency is 

explicitly stated so that no deduction is needed; (b) the 

antecedent may be composite, but the consequent must be a 

single condition; (c) the cardinality of the minimal set is 

minimal. 

A set of logical statements is said to be 

congruent if the following conditions hold whenever 

possible: (a) every instance of a simple condition has the 

same truth value; and (b) every instance of a composite 

condition has the same truth value. For example, the set of 

logical dependencies x [p 7 q, r ~ p] is not 

congruent because the two instances of condition p do not 
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have the same truth value. To make it congruent we can 

Write it aS X = ( p ~ q, p ~ r] which is congruent. 

Sometimes, ascertaining congruency will achieve minimality. 

For example the set Y = [a~ b, b ~a] can be reduced to 

Y = [a~ b, b ~a] and further to just Y= [a~ b], by using 

mathematical logic tautologies as described in Section 3.1. 

A set of logical dependency statements is said to 

be minimal and congruent if it is both minimal and 

congruent. Any set is not minimal and congruent, at first 

instance, can be converted to a set of minimal and congruent 

logical dependency {MCLDs) statements. 

3.3 FEASIBLE LOGICAL POSSIBILITIES 

The feasible logical possibilities {FLPs) can be 

easily found from the MCLDs, as will be explained here. 

Basically there are four different possibile forms of MCLDs. 

They are as follows 

Form 1: p ~ q 

This statement can be rewritten as p + q. 

The feasible logical possibilities can be found by drawing a 

simple Xarnaugh map or these can be found by expressing the 
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statement in standard sum of products form as follows 

p __;;,. q p + q 

p(q+q) + q(p+p) 

p.q + p.q + p.q + p.q 

p.q + p.q + p.q 

[00, 01, 11] 

Here 1 is used to represent T and 0 to represent 

F. This notation will be followed here afterwards. 

Form 2: p + q ~ r 

In the same way as mentioned above we can proceed 

p+q-?>r p+q + r 

p.q + r 

p.q(r + r) + r(p+p)(q+q) 

p q r + p q r + p q r + p q r 

+ p q r + p q r 

[000, 001, 011, 101, 111] 

The total number of FLPs here are five. 
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Form 3: p.q ~ r 

Proceeding in the same way as for Form 2, we get 

FLPs as [000, 001, 010, 011, 100, 101, 111]. So there are 

seven FLPs for this form. 

An algorithm is developed fot finding feasible 

logical possibilities, given the MCLDs. The set of MCLDs 

are treated as if they are 'and'ed together. 

implemented on the computer very easily. 

This can be 

An example for illustrating the use of this 

algorithm is given here. 

are given in Figure 3.2. 

The decision table and its MCLDs 

The MCLDs are 'and'ed as follows 

(p -7 q).(q ~ r).(p ~ r).(s ~ t). 

This expression can be rewritten as 

(p + q).(q + r).(p + r).(s + t). 

This can be plotted on a Karnaugh map to get all 

the feasible logical possibilities. As the above expression 

is in the product of sums form, the maxterm representation 

is convenient to get the list of FLPs. 

The K-map representation is shown in figure 3.4. 
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Condition Condition Rule 
name 1 

p M> 100 y 

q M> 65 $ 

r M/' 19 $ 

s N< 40 

t N> 70 

Action A1 

(a ) The decision table 

p --7' q 

q -7 r 

p -7 r 
-

s ~ t 

(b) MCLDs 

Fig. 3. 3: The decision table and 

qr 
st 

00 

01 

11 

10 

00 01 11 10 

____ o I 
____ o j 

o o I o o 

==~=o p=O 

Fig. 3.4: K-map for the example. 
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The resulting maxterm representation is 

f(p,q,r,s,t) =·~ M (3,7,8,9,10,11,15,16,17,18,19, 

20,21,22,23,24,25,26,27,31). 

The same function can be written in minterm 

representation as follows : 

f(p,q,r,s,t) = ~ m(0,1,2,4,5,6,12,13,14,28,29,30) 

This corresponds to the following list of FLPs: 

FLPs [ 00000' 00001' 00010' 00100' 

00101, 00110, 01100, 01101, 

01110, 11100·, 11101, 11110] 

The total number of FLPs are 11 for the considered 

decision table. 

3.4 THE ALGORTHM TO CHECK THE DECISION TABLE 

In 

possibilities, 

states that 

algorthm will 

section 3.3, we got the feasible logical 

which is representative of the possible 

the system can assume. In this section an 

be pr~sented for act~ally checking the 

decision table for completeness and correctness using these 

FLPs. 
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The algorithm is implemented in PASCAL on VAX-

11/780. The choice of PASCAL is becasue it has a clean 

control structure and a rich variety of data 

representations. 

The input to the algorithm is the decision table 

and its MCLDs. The algorithm first finds FLPs from MCLDs 

and FLPs stipulated by the decision table. The algorthm 

checks the decision table for its correctness and points out 

missing logical possibilities, if the decision is correct 

but not complete. The decision table shown in figure 3.3 

of the section 3.3. is used, as a running example, to 

illustrate the algorithm. 

STEP 1: Find all FLPs from MCLDs as described in section 

3.3 and find their total number also. Let us denote them by 

MCLDSET and MCLDTOTAL respectively. Goto Step 2. 

For the decision table of figure 3.3 the 

MCLDSET found to be (in section 3.3) 

MCLDSET (00000, 00001, 00010, 00100, 
00101, 00110, 01100, 01101, 
01110, 11100, 11101, 11110] 

MCLDTOTAL 12. 
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STEP 2: Find all the FLPs stipulated by the rules of a 

decision table. This can be obtained by scanning each rule, 

i.e., a column of condition entries of a decision table. If 

a rule has K 'don't care' terms, then 2 ;""'k K row vectors are 

obtained, each for a distinct binary combination of the 

'don't care' condition. Let us denote this set of FLPs from 

decision table by DTSET and the total number of FLPs is 

denoted by DTTOTAL and this number can also be found by 

DTTOTAL - 2**K * 2** K * - - - * 2 ** K . - 1 2 n 

where n is the total number of rules and K. is the number of 
~ 

'don't care' terms in the rule i. Goto Step 3. 

Applying these to our example decision table we 

get, 

DTSET 

and DTTOTAL 

STEP 3 

[00000, 00010, 00100, 00101, 
01100, 01110, 11100, 11101, 
11110, 11111] 

10. 

If MCLDTOTAL = DTTOTAL and MCLDSET DTSET, 

then the table is complete and correct. If it is so, 

terminate the algorithm, otherwise goto Step 4. 

For the example the above conditions are not true, 

so, proceed to step 4. 
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STEP 4: If DTSET i MCLDSET, then find 

ADDITIONAL = DTSET-MCLDSET 

where I I has the same connotation as in Pascal language 

set. If A & B are sets, mathematically, 

A-B =[xI (x in A) and (x not in B)]. 

Goto Step 5. 

For our example it can be writen as 

ADDITIONAL [11111] 

STEP 5: If DTSET i MCLDSET, then find 

MISSING = MCLDSET - DTSET. 

Goto Step 6. 

For the example, the MISSING will be 

MISSING = [00001, 00110, 01101] 

STEP 6: If the set additional is having only the rules that 

are obtained by the expansion of the 'don't care' conditions 

of rules; then ADDITIONAL is not considered dangerous. If 

it is so goto step 7 else goto step 9. 

For our example the ADDTIONAL is contained only 

in the 'don't care' of rule 1, so, goto step 7. 

STEP 7: If DTTOTAL ~ MCLDTOTAL and DTSET i MCLDSET, 

then the table is correct but not complete. An else-clause 
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needs to be added to include the MISSING possibilities. 

Goto Step 8. 

For the example, 10 ~ 12 is true. So, we can 

conclude that the table is correct but not complete. An 

else class needs to be added to include the three logical 

possibilities, [00001, 00110, 01101]. 

STEP 8: If DTTOTAL > MCLDTOTAL then if MISSING is empty 

then the table is correct and complete else the table is 

correct but not complete. Terminate the algorthm. 

It is not applicable to the example. 

STEP 9 : The table is neither complete nor correct. 

Terminate the algorithm. 

For the example it is not applicable. 

3.5 ANOTHER EXAMPLE 

The second example is taken from [KING68]. In 

many business data processing situations the conditions are 

highly related. For example, instalment buying where 

payments are made in cash on weekly basis, the action 

taken when an account goes into arrears is a crucial aspect 
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of the operation. The figure 3.5 shows a simplifiesd 

arrears procedure. It is seen that the first three 

conditions are directly related. Thus a No out come for the 

third condition implies No out comes to the first two 

conditions. The last two conditions are also directly 

related. 

Rule 
Condit ion 1 2 l 4 2 Q_ l ~ .2. 

p this week's cash greater weekly rate y y N N * ·k ;': * ;~I 

q this week's cash greater than 0 $ $ y y ;'\ ;'( N N N 

r any cash during last 3 weeks $ $ $ $ N N y y y 

s arrears greater than 3 * weekly rate $ y N $ N y $ 

t arrears greater than 6 -·-" weekly rate N y N ·k N y .. k N y 
====================================== =========================== 

Actions 

Send arrears letter A X 

Send arrears letter B X 

Send arrears letter c X 

Send arrears letter D X 

Note account X X X 

Take special arrears action X X 

Fig. 3.4: The decision table for second example. 

(Source:[KING 68]) 
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The set of MCLDs can be writen as 

r -7 p 

r ~ q 

q ~ p 

t ~ s 

We can find MCLDSET and MCLDTOTAL as described 

in section 3.3. 

MCLDSET [00000, 00010, 00011, 00100, 
00110, 00111, 01100, 01110, 
01111, 11100, 11110, 11111]. 

So MCLDTOTAL = 12 

As explained in the step 2, we can expand all the 

rules in the decision table to get the elementary rules. 

This set, called DTSET, can be writen as. 

DTSET 

DTTOTAL 

[00000, 00010, 00011, 00100, 
00110, 00111, 01100, 01110, 
11100, 11110, 11111]. 

11. 

Since, MCLDTOTAL ~ DTTOTAL, 

ADDITIONAL and MISSING. 

ADDITIONAL DTSET - MCLDSET 

[ ] 
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MISSING MCLDSET - DTSET 

[01111] 

The ADDITIONAL is empty, we conclude that the 

table is correct but not complete. The missing feasible 

logical possibility is [01111]. This is the case when a 

customer's current week payment is greater than zero but 

less than weekly rate and his arreares is greater than six 

times weekly rate. 

So, the arrears procedures specified by the 

decision table of figure 3.5 is therefore correct but not 

complete. 

We have shown that the possible logical 

possibilities of a decision table can be obtained by our 

algorthm. The method will aid the system analyst performing 

the validation of system modelling. 
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CHAPTER 4 

A STUDY OF COMPLEXITY MEASUREMENTS 

4.0 INTRODUCTION 

Increasing importance is being attached to the 

idea of measuring software characteristics. It is only by 

such a process of measurement that it will be possible to 

determine whether new programming techniques are having the 

desired effect in reducing the problems of reliable software 

production. Unfortunately, many of the qualities of 

interest such as clarity, ease of testing and maintenance, 

etc. are highly subjective and so experiments have been 

performed to correlate subjective grading of programs with 

measured structural characteristics of source programs. But 

quantification is a must in making programming a science 

rather than an art. So attempts are made to evolve software 

metrics which are to be used to measure and predict software 

quality. Several software metrics have been developed to 

measure various kinds of software properties, such as the 

complexity measure, stability measure [YOU85], reliability 

measure [GOEL85], reusability measure [PRES83], etc. 
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Complexity measures offer great potential for 

containing the galloping cost of software development and 

maintenance [KEAR8·6]. This can be used for cost projection, 

manpower allocation and program and programmer evaluation. 

Despite the growing body of literature devoted to their 

development, anlysis and testing, software complexity 

measures have yet to gain wide acceptance. Nonetheless, new 

complexity measures continue to appear, and new support for 

old measures is earnestly sought. 

evidence is available, software 

should be used very cautiously. 

Until more comprehensive 

complexity measurements 

Here in this Chapter an attempt is made to 

highlight the importance of complexity measurement and a 

comparative study is made to evaluate different complexity 

metrics. 

4.1 WHAT IS COMPLEXITY? 

Basili defines complexity as a measure of 

resources expended by another system in interacting with a 

piece of software to perform a given task [BSLI80]. If the 

interacting system is a computer, then complexity is defined 

by the execution time and storage required to perform the 

computation. This type complexit~ can be termed as computa-
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tional complexity (or dynamic complexity) which is not of 

our concern in this chapter. 

If the interacting system is a programmer, then 

complexity is defined by the difficulty of performing tasks 

such as coding, debugging, testing, or modifying the 

software. In our discussion, the software complexity is 

used to indicate this difficulty level, i.e., the difficulty 

present in the interaction between a program and the 

programmer working on that programming task. In simple 

words complexity is a measure of how difficult the program 

to comprehend and work with. This can be termed as 

structural complexity (or static complexity]. 

Usually these measures are based on program code 

disregarding comments and stylistic attributes such as 

indentation and naming conventions. Measures typically 

depend on program size, control structure or the nature of 

module interfaces. Many complexity measures will be 

introduced in latter sections. 

4.2 IMPORTANCE OF SOFTWARE COMPLEXITY 

As software scientists attempt to understand 

software processes and products, it is natural for them to 
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characterize and measure those aspects of programs that seem 

to affect cost. Software maintainability is the degree to 

which characteristics that impede maintenance are present.· 

The costs for software maintenance activities have been 

observed to outweigh the development costs and take a 

greater share of the total software budget for many 

organizations than development costs. This maintainability 

is driven primarily by software complexity. 

relationship is roughly depicted in Fig. 4.1 [HFLI87]. 

;--------- ------- -.-_-__._1_-----, 

I Software 
I Understandab111 ty 

I 
L 

SofttJare 
Hod1f1ab111ty 

Soft~o~are 

- - .... rE:el1back 

--.. Control · 

:::::::>- H~asure 

Fig4~ollmportancc of software complexity. 
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According to C.V. Ramamoorthy, the metrics should 

be applied at requirements phase to predict cost, 

phase to guide the decomposition process, and 

phase to estimate testing time required [RAMA85]. 

at design 

at coding 

Dennis Kafura and G.R. Reddy in their paper 

[REDY87], which is a study of the relationship between 

complexity metrics and software maintenance, concludes: 

[1] that the growth in system complexity as described by 

the software metrics agree with the general character 

of maintenance tasks performed; 

[ 2 ] the metrics 

integration 

system; 

were able to identify 

of functional enhancements 

the 

made 

improper 

to the 

[3] the complexity values of the system components as 

indicated by the metrics confirm well to an understand­

ing of the system as people familiar -with the system; 

[4] Metrics are useful in redesign phase, as they reveal 

any poorly structured component that may be present in 

the system. 

Advocates of software complexity metrics have 

suggested that these tools can be used to predict program 
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length, program development time, number of bugs, the 

difficulty of understanding a program and the future cost of 

program maintenance. 

Furthermore, Basili [BS480] gives three 

possibilities for using complexity metrics : 

[a] To evaluate the software process and product: a low 

score on a metric like the number of errors, indicates 

something desirable about the quality of the process 

while a high score on the same metric indicates some­

thing quite undesirable about the product. 

[b] As a tool for software development: In this case, the 

metric can act as feedback to the developer, telling 

him to know how the development is progressing. It can 

be used to predict where the project is going by 

estimating future size or cost, or it may tell him his 

current design is too complicated and unstructured. 

[c] To monitor stability and quality of an existing product: 

One can periodically recalculate a set of metrics to 

see if the product has changed character in some way. 

It can provide a much needed feedback during 

maintenance period. 
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As the complexity metrics are yet to be standardi­

sed, these measures should be used v'ery cautiously until 

more comprehensive evidence is available. 

4.3 COMPLEXITY METRICS 

In his letter entitled "Goto Statement Considered 

Harmful", Dijkstra observed that the "quality of programmers 

is a decreasing function of the density of goto statements" 

[DIJK68]. This suggests then a very simple measure for 

complexity, namely the number of gotos in a program. Whilst 

this may be useful as a measure of unstructuredness for some 

languages [eg. Pascal, Algol) it is not for others (e.g., 

Fortran). 

Since then, many complexity metrics have been 

developed and they can be classified into two basic types: 

(1) static and (2) dynamic. In the former case, measurement 

of the product is done by static analysis of the source 

code, while in the latter case, it is collected at run time 

and may vary from one execution to the other. Here, the 

attention will be concentrated on static measures which can 

in turn be devided into three types: 

[1] volume: measure the size of a product 
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[2] Data organization: measures the usage and visibility of 

data as well as their interactions. 

[3] Control organization: 

of control structure. 

measures the comprehensibility 

Classification of complexity metrics using some 

common measures of interest is shown in Fig. 4.2. Most of 

these measures have been used in some way but do not gain 

full acceptance partly because it is not certain what 

aspects of the software life cycle the metrics describe and 

partly because of the difficulty in parameterization. 

Many reports are published by researchers for the 

emperical evaluation of different complexity metrics 

[BSL183a; BSL183b; CURT79]. 

I. VOLUME METRICS 

This conventional volume metrics are straight­

forward and widely applicable. This is based on program 

size, which by virtue of the complexity involved in the 

volume of information that must be absorbed to understand 

the problem. 
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The definable measures of the volume of a program 

are number of lines (LINES), number of executable statements 

(STMTS), number of programming units like subroutines 

(UNITS), average length of a programming module (STM/U), 

etc. 

II. HALSTEAD'S SOFTWARE SCIENCE 

It is one of the most well-known complexity metric 

with several emperical studies. The Halstead measures are 

functions of the number of operators and operands in the 

program [HALS77]. 

Operators fall into three classes and for FORTRAN 

language, for example, the list will be as follows : 

(a) Basic-+-* ** I II = () .GT .. GE .. LT .. LE . 

. NE .. EQ .. NOT .. AND .. OR .. EQV .. XOR .. NEQV. 

(b) Keyword - IF THEN ELSE ELSEIF ENDIF DO DOWHILE GOTO 

ASSIGN CONTINUE ENDDO RERD WRITE TYPE PRINT ACCEPT EOS 

(c) Special -Names of subractines, functions. 

Operands consist of all variable names and 

constants such as, TRUE, FALSE and Esm (real). The 

Halstead's metrics can be defined on the basis of 
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number of unique operators n , 
0 

number of distinct operands n , 
2 

total number of operators N , and 
1 

total number of operands N . 
2 

Then Halstead defines the vocabulary of the program as 

n = n + n 
1 2 

and implementation length as 

N N + N . 
1 2 

He hypothesizes on estimator N' log n + n 
2 1 2 

log n . 
2 2 

A program volume metric V, which characterizes the size of 

an implementation, as V = N log n 

The potential value V n log n represents the 

minimum algorithm representation in a language where the 

required operation is builtin. Hence, the potential 
··k 

vocabulary n n + n ~ n + n because in such a 
1 2 2 

minimal form, the number of operators is two: the algorithm 

name and (). 

To evaluate the programming effort, propensity of 

error, and ease of understanding, the program level L of an 
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implementation is defined as V /V, which has the maximum 

value of unity and can be approximated by L' = 2.n /n /N . 
2 1 2 

It follows that only the most succinct expression can have a 

level of unity. Program difficulty D is the difficulty of 

coding an algorithm. D = 1/L by definition and can be 

estimated by D = 1/L'. 
2 

Halstead hypothesizes that LV remains invariant 

under translation from one language to another. LV can 

therefore be regarded as the intelligence context IC of the 

algorithm which increases only as the complexity of problem 

solution increases. 

The effort required to generate an algorithm is 

E V/L. It is suggested that E can measure the effort 

required to comprehend an implementation and is a measure of 

clarity. Effort E can be approximated by 

E' 
L' 

n N .N log n 
1 2 

---------------- (or) E" 
2.n 

2 

III. GRAPH-THEORETIC METRICS: 

A program can be represented by a flow graph, 

G=(V,E), where Vis a set of nodes and Eisa set of edges 
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Node - A sequential block of code with unique entrance and 

exit but no internal branch or loop. 

Edge - Flow of control between the various nodes. 

For an edge· (u,v), node u is the initial node and 

node v is the terminal node. The outdegree of node u is the 

number of edges emanating from u; 

the number of edges incedent at u. 

the indegree of node is 

Using this flow graph 

concept, various control metrics can be constructed, which 

characterizes the control complexity of a given flow graph. 

(a) McCabe's Complexity Metric: 

McCabe's cyclomatic complexity [MCAB76] is well 

accepted, intutively reasonable, and easily calculated. The 

metric V(G) is essentially the cyclomatic number of the 

program graph +P; where P is the number of strongly 

connected components of the program graphs (also called 

units in volume metrics). It is given by 

V(G) e - n + 2P 

where e is the number of edges and n is the number of 

vertices of the program graph. 
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In a strongly connected graph, this cyclomatic 

number is the number of linear independent circuits. For 

programs with single entry and single exit, V(G) is one 

plus the number of decisions (that is number of predicates). 

This graph-theoritic metric is independent of the 

program size but depends only on the decision structure. 

Decision making of a program affects its error probability 

and development time and cost. 

(b) Gilb's metrics: 

Gilb gives [GILB77] two metrics: CL, absolute 

logical complexity (number of binary decisions) and cL! 

relative logical complexity (ratio of CL to STMTS) whict 

have been supported by some empirical evidence. The latter 

can be considered as an improvement over pure control 

metrics as it also takes into account some volume metric. 

He gave some conventional metrics also like CALLS (the 

number of subroutine and function invocations); CA+BD (the 

total number of calls and binary decisions) etc. 

(c) KNOT Count: 

A Knot occurs when two control transfers 

intersect, as depicted in Fig. 4.3. since each node is 

55 



GOTO 51 

KNOT 

Fig. 4.3: KNOT EXAMPLE 

sequence of statements, with no internal branches, a Knot 

occurs if node b includes at least one line in the example 

[WOOD79]. Two related metrics can be further defined : 

1. KNOT1 - The number of Knots that can be verified. 

2. KNOT2 - The total number of potential Knots, assuming 

every node contains one statement. 

It is conceivable that a program with many knots 

is more complex to comprehend to reflect this. 

(d) SCOPE Metric and Ratio: 

Nodes with an outdegree 0 or 1 are RECEIVING 

nodes. Those with an outdegree greater than 1 are SELECTION 

ones. Given a selection node, we can find atleast one 

"lower bound" node which succeeds every immediate successor 

of the selection node. The lower bound node that precedes 
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every other lower bound is the GREATEST LOWER BOUND (GLB). 

The number of nodes preceding the GLB and succeeding the 

selection node, plus 1, yields the ADJUSTED COMPLEXITY (AC) 

of the selection node. It reflects the scope of "influence" 

of the selection node. Summing up the adjusted complexity 

of each node, the SCOPE metric is formed [HARS81a,b]. 

SORT, the scope ratio metric, is defined as: 

(1.0 - N/SCOPE)*100%, 

where N number of nodes in the flow graph excluding 

terminal node. 

SCORT increase towards 100 (percent) as complexity 

increases. 

III LI's HYBRID METRIC 

This is a hybrid metric [HFLI87], which integrates 

software science with the scope of measure and reflects both 

volume and control organization. The raw complexity of a 

node V 
j 

is E' 
j 

E b N 

j j 
log n /L' 

j 

where N , n are local parameters of node V and L' is a 
j j j 

global parameter defined previously in this section. 
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The adjusted complexity for a selection node is 

the sum of Ej' values of every node within the scope of 

that selection node, plus the value of the selection node 

itself. A receiving node has an adjusted complexity equal 

to its raw complexity. The complexity of the overall 

program is the sum of the adjusted complexities of every 

node. 

The metric can be defined as: 

(1.0 - 2: Raw complexities/ ~adjusted complexities) *100% 

This increases towards 100 (percent) as complexity 

increases. 

4.4 VALIDATION OF DIFFERENT METRICS 

In the earlier section we have seen several 

metrics based on characteristics of the software product, 

which appeared in the literature. Many studies have applied 

them, to data, from various organisations to determine their 

validity and appropriateness. However, the question of how 

well the various metrics really measure or predict effort or 

quality is still an issue in need of confirmation. Studies 
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across different environments have been done to answer this 

question [BSLI83a, BSLI83b, CURT79, HFLI87]. The results of 

these studies will be discussed here. For validating a 

metric one has to examine many software projects. This type 

of work created yet another new field namely Experimental 

Computer Science. 

The first question that is to be answered in this 

direction is "what are the properties of a good metric?". 

[KEAR86] says that complexity measures should be graded 

by its robustness, normativeness, specificity and prescripti­

veness. Robustness of a measure means that the metric 

should be responsive to program modifications and it should 

show that a reduction in the measure consistantly produce 

improvements in the program. Normativeness means that the 

measure should facilitate to provide a norm (a particular. 

figure of complexity) against which measurements can be 

compared to reject programs having unacceptable levels of 

complexity. Specificity is the degree to which a measure is 

able ~o point out the deficiencies in program construction. 

The word prescriptiveness means that the ability of the 

metric to suggeat methods to reduce the complexity of a 

overly complex program. 
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One of the earliest work done on validation of 

complexity metrics is [CURT79a]. It reports empirical 

evidence to show that metrics were related to difficulty 

programmers experience in understanding and modifying 

software. But the correlations observed are not as high as 

those claimed by Halstead. The Halstead and McCable metrics 

provided some information about program differences, but 

there were other factors unassessed by these metrics which 

influence the psychological complexity of the programs. The 

metrics reportedly predicted programmer performance better 

on versions of programs which were unstructured or 

unconnected. Further, neither Halstead's nor McCabe's 

metrics consider the level of nesting within various 

constructions (eg. three DO loops in succession will result 

in metric values similar to those for three nested DO loops). 

It also reported the detection of curvilinear 

relationship between Halstead's E and performance. From 

this one can conclude that as Haltead's E grows larger a 

program becomes more psycologically complex, but the 

increments in difficulty grow smaller and smaller [CURT79B]. 
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TABLE 4.3 

Intercorrelations Among Complexity Metrics as Reported by 

Measure 

Subroutine 

V(G) 

Length 

Program: 

V(G) 

Length 

Note: n=2 7 

[CURT79b] 

E 

0.92 

0.89 

0.76 

0.56 

CORRELATIONS 

and P <:::..= 0.001 

V(G) 

0.81 

0.90 

Basili in his paper [BSLI83] also reported that 

none of the metrics examined manifests a satisfactory 

explanation of effort spent developing software or the error 

incurred during that process. In this evaluation the effort 

spent is actually found ·from interviews and reports of the 

programs involved. The major results of the investigation 

are listed below : 
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[ 1 ] Neither software 

complexity nor 

science's E 

source lines 

metric, cyclomatic 

of code relates 

convincingly better with effort than the others; 

[2] The strongest effort correlations were derived when 

models obtained from individual programmers or certain 

validated projects were considered; 

[3] The majority of the effort correlations increase with 

more reliable data; 

[4] The number of revisions appears to correlate with 

development error better than either software science's 

B metric, E metric, cyclometric complexity or source 

lines of code; and 

[5] Although some of the software science metrics have size 

dependent properties with their estimators, the metric 

family seems to possess resonable internal consistency. 

static 

on a 

H.F. Li and W.K. Cheung have developed a Fortran 

source code analyzer [FORTRANAL] to study 31 metrics 

data base of 255 student programs [HFLI87]. This 

study is the most comprehensive of all the emperical studies 

available today. The results of this study are summarized 

in Table 4.4 in which correlation coefficients between every 
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possible pair of metrics are tabulated for 18 selected 

metrics. They made the following remarks. 

The Halstead's family of metrics reported to 

possess reasonable internal consistancy, i.e. , with 

correlation coefficient clause to units, as can be seen from 

Table 4.4. This suggests that one of them can replace the 

other in application. The length equation N' = n 
1 

log n + 

1 
n log n appears to be program-size dependent and N' tends 

2 2 
to be high for small programs and low for larger ones. 

McCabe's cyclometric measure correlates well with 

Halstead's, Gilb's, Knot counts, SCOPE, EDGES and NODES 

metrics. This measure can be viewed as a control 

TABLE4.4 
CoRRELATION CoEFFICIENTs AMONG 18 SELI'CTED MuHtcs 

STMTS LN-CM NODES EDGES HcCBE SCOPE n2 N1 N:;> n v IC E" E'" CL 

STHTS --------------------------------· 
LN-CM .983 

NODES • 92~ . 9D6 

EDGES . 91~ . 875 . 982 

HcCBE .908 .891 .96~ .971 

SCOPE .8~8 . 797 .910 .9~7 .892 

n2 .898 .877 .696 .869 .672 .626 

N1 .977 .9.71 .916 .696 .905 .633 .925 

N2 .9~2 .933 .917 .903 .915 .626 .953 .976 

n .907 .693 .920 .699 .666 .632 .987 .933 .9~0 

N .968 .960 .921 .906 .915 . 8 36 • 9~ 3 . 996 . 992 . 9~ 6 

N" .896 .676 . 913 . 898 .661 .837 .969 .925 .9~7 .996 .940 

v .960 .9~9 .927 .91~ .916 .8)? .956 .990 .992 .959 .9>7 .958 

IC .665 .83~ .810 .6?~ . 796 . 780 .956 .86? .891 .907 .691 .912 .900 

E" .91~ .913 .905 .873 .897 .805 .8~5 .9~0 .937 .884 .944 .680 .947 .726 

E"" .886 .882 .917 .881 .892 .813 .867 .914 .925 .931 .924 .931 .938 .748 .976 

CL .878 .830 .930 .978 .9(9 .932 .851 .862 .872 .848 .872 .650 .880 .803 .630 .828 

KNOT? .871 .830 .919 .9~6 .923 .877 .855 .661 .872 .81<8 .871 .545 .873 .815 .803 .799 .943 I L_ ___________________________________ __ 
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organization metric (i.e., number of control paths) and to a 

lesser extent, a volume metric (i.e., number of decisions 

+1). So the cyclomatic measure seems to bridge the gap 

between the two categories (VOLUME and control organisation 

metrics). 

The SCOPE number is reported to be not always 

reliable because the scope number, in essence, is dependent 

on the no. of nodes in the flow graph. Some programs can be 

rearranged to give flow graphs with different scope 

measures. The SCORT and Li's hybrid metric are found to 

correlate well with each other. 

KNOT2. 

It was noticed that KNOT1 count is much less than 

And the KNOT2 is found to be much better correlator 

than KNOT1 with volume metrics. 

Similar to KNOT metrics, the absolute logical 

complexity CL correlates better with those tradinal metrics 

than the relative logical complexity CL, which takes into 

account the program size. In fact, CL is the number of 

binary decisions in the program's logic and can be regarded 

as a special volume metric. 

64 



Regarding all the volume metrics, the number of 

executable statements (STMTS) is found to be the best one, 

which correlates well with Halstead's Nand V measures. 

Volume metrics vs. control organization metrics: 

size, 

In 

have 

general, 

been the 

metrics based on measures of program 

most successful to date, with 

experimental evidences indicating that larger programs have 

greater maintenance costs than smaller ones. But this 

technique is not adequate, which can be demonstrated by 

imagining a 50 line program consisting of 25 consecutive "IF 

THEN" construe ts. Furthermore, volume metric s can only be 

measured after the design has been carried out fully to the 

debugged code, making it difficult to take any corrective 

action at the implementation stage. 

As reported by [ HFLI81] several control 

organisation metrics correlate well with value metrics, 

e.g., McCabe, SCOPE, CL and KNOT2. In general, the control 

flow 

the 

metric fails to be comprehensive and do 

contribution of any factor except 

not consider 

cant rol flow 

complexity. However, these metrics, can differentiate 

between two programs of similar volume metrics and certainly 

related to software quality. 
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Hybrid metrics · attempt to remedy one of the 

shortcomings of single factor complexity metrics in use. 

Li's hybrid metric combines a measure of control flow and 

program size, i.e.' 
1 

SCORT and E' are considered together 

The resulting hybrid metric was found to be slightly 

different from SCORT measures. 

Most of the metrics are lacking of context 

sensitivity. For example, EDGES, NODES, McCabe and CL 

consider only the node and edge counts and fail to consider 

the context of each edge and node. Halstead's metrics too 

cannot take into account the flow of control. Hence, most 

metrics lack comprehensiveness. 

Metrics. relation to errors: 

[CURT79b] reports from their experiments that the 

software complexity metrics developed by Halstead and McCabe 

are related to the difficulty programmer experience in 

locating errors in code. They can be used in providing 

feedback to programmers about the complexity of the code 

they have developed and to managers about the resources that 

The stated 
orthogonal, 
complexity 
-0.032. 

reason for the choice [HFLI82] is that they are 
i.e., they measure different aspects of 

and give correlation coefficient by them as only 
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will be necessary to maintain particular section of code. 

Code which is more complex may also be more error-prone and 

difficult to test. 

Basili et al. [BSLI83] in their study report that 

the most of the correlations between metrics and errors and 

weighted errors are very weak with the exception of system 

changes. These disappointingly low ~orrelations attribute 

to the discrete nature of error reporting. However, they 

report that partitioning an error analysis by individual 

project or programmer shows improved correlation with the 

various metrics. 

4.5 CONCLUSION 

Software complexity measures have not realized 

their potential for the reduction and management of soft~are 

cost. This failure derives from the lack of a unified 

approach to the development, testing and use of these 

measures. 

only 

likely 

Complexity measures currently available provide 

a crude index of software complexity. Advances are 

to come slowly as programming behaviour becomes 
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understood. Users 

the limitations of 

of complexity measures must be aware of 

these measures and approach their 

applications cautiously. Before a measure is incorporated 

into a programming environment, the user should be sure that 

the measure- is appropriate for the task at hand. The 

measure must possess the properties demanded by the use. 

Finally, users should always view complexity measurement 

with critical eye. 
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