CLISP)
A PASCAL IMPLEMENTATION FOR
PEDAGOGICAL PURPOSES

Dissertation submitted to the Jawaharlal Nehru University
in partial fulfilment of the requirements for the
award of the Degree of
MASTER OF PHILOSOPHY

“YALA KISHAN REDDY

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI-110067, INDIA
1983

N

CERTIFICATE

The research work embodied in this disseriétion
has been carried out in the School of Computer and
' Systems Sciences, Jawaharlal Nehru University, New Delhi.
The wdrk is original and has not been submitted in part

or full for any other degree or diploma of any University.

o an e

(Y. Kishan Reddy)

-

Student
: @ &@&mw»\pqu
(Dr, R. Sadananda)
Acting Dean , : K & ﬂ\ J
School of Computer and s Da Dol R .
Systems Sciences - ,
Jawaharlal Nehru University (Dr'sg'eizgaganda)
New Delhi - 110067. p sor

INDIA

ACKNOWLEDGEMENTS

It is indeed a pleasure to acknowledge the
guidance of Dr, K. Sadananda, His scholarly guidance,
~enthusiastic encouragement and constructive criticism
- enabled me to leam much from this experience.
| For access to the computer and bther facilities,
I am grateful to the Dean, School of Computer and Systems
Sciences, Jawaharlal Nehru University. '

My thanks due to Mr, Mohan Reddy and Mr. Krishna
" Rao of N.I.C. for introducing me to CYBER-170 system at
National Informatics Center, New Delhi. My thanks also
due to all my colleagues and friends for their
encouragement in carrying,oﬁt this work.

Mr. S.K. Sapra deserves special mention for his

prompt and efficient typing.

‘ ’ %Nuy%\wav« Q{}Lgﬁj
New Delhi (Y. Kishan Reddy)
October, 1983 '

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2,1
2,1.1
2,2

2,3
2.4

3.1
3.2
3.3
3.4
3.4.1

3.4.2 -

CONTENTS

I - INTRODUCTION

Introduction

What is symbol manipulation

Requirements of symbol manipulating languages
LISP and its symbol manipulating features
Scope of the dissertation

Language pfocessing - Definitions

Representatlon of lists - External and 1nternal
representations .

ITI - LISP FUNCTIONS

The LISP Language

Symbolic expressions

Basic functions of LISP
QUOTE, CAR, CDR, CONS, EQ, ATOM, LAMBDA,. and
COND forms ;

A Universal LISP function - LABEL function

Extended LISP functions
APPEND, LIST, SUBST, PROG, SETQ, EQUAL, NULL,
GO, RETURN and DEFINE

List structure operators
REPLACAR & REPLACDR

Logical connectives

AND, OR, and NOT functions

III - IMPLEMENTATION
Memorxry organization
Environment

Garbage collection
LISP input/output
Reading an S-expression

Print an S-expression

29

29
3

30

3

3.5
. 3.5
3.7
3,8

4,1

Procedure POP
Procedure INITIALIZE

EVAL function, and its local functions

Organization of the interpreter

IV - DISCUSSION AND CONCLUSIONS
Discussion and éonclusions
APPENDIX-A

- Interpreter Program
APPENDIX#B

- Results
APPENDIX-C

-~ Flow diagrams

APPENDIX-D

- References

4
Jd
4
J7

41
,49
79
86
03

CHAPTER - I
(INTRODUCTION AND DEFINITIONS)

Lil INTRODUCTION :

Symbol manipulation activity is taking a central
role in computing sciences. It is thus, increasingly being
‘considered that computer is a symbol manipulator as opposed
to the view of computer as a number cruncher., This view
point is more general, and enables computers to handle ever
increasingly complex data-structures and sophisticated
descriptive schema, This is so, particularly in the areas
such as : algebraic formula manipulation, information
retrieval, computational linguistics, automatic decision
making, Artificial Intelligence, Medical diagnostics,
Robotics and other important applications, Several papers
in the litrature describe the advantages and bechnique§ of

- symbol processors [1-4],

1.2 WHAT IS SYMBOL MANIPULATION ?

Symbol manipulation is é branch of computing
concerned with the manipulation of unpredictably structured
datg. Most scientific and business data processing is
characteriseq by the manipulation of data of known length
and format, In coﬁtrast, the size and format of the data
involved in symbol manipulation are noi known in advance
and vary greately during the run of a program, These data
are in the form of variable length lists. A list is a
sequence of elements each of which is a data item., A
multilevel list is one in which the data items may themselves
be lists, The latter aie called sublists of the multilevel
lists, An overview of the staté of the art in symbol

manipulation can be found in ACM [7].

1.3 REQUIREMENTS OF SYMBOL MANIPULATING LANGUAGES :’

Any ProgrammingrLanguage for symbol manipulation must
meet two major requiréments. First, there-must be appropriate
way of representing lists both on éaper {the external
repreéentation) and in the computer memory (the internal
representation), Second, there must be appropriste functions,‘
statement types, subroutines, and other linéuistic devices for
specifying operations on lists,

The operations common to all symbol manipulation
languages are those involving the creation and decomposition
of lists, At a minimum, it must be possible to create a list
by combining existing elements of lists, and to extract a
portion of a list. A general exposition of symbol manipulation

languages, using LISP as an example was written by Abrahams,
p.[6]. .

1.4 LISP AND IT'S SYMBOL MANIPULATING FEATURES :

~ Of all existing programming languages availéble to-day
LISP, perhaps, comes closest to being a symbol manipulating
language [9]. LISP was originally designed by John McCarthy [5]
a mathematician,and the purpose was to develop a mathematically
complete and.sound language. it is also designed to allow and
infact it encourages recursive programming.
The following are some of the important features of
- LISP : |
1. LISP has got a high-level notation for lists,
2, LISP is oriented towards programming at a terminal
with rapid response., All programs and all data can

be displayed or altered at will,

3. LISP functions and LISP data have the same form,
One LISP function can analyse another and a set
of other functions., One LISP function can synthesis
a set of other LISP functions which happens to be
the basis of automatic programming,

4, ‘Over a period of last few decgdes most of the well
known work in the area of Artificial Intelligence
hasvbeen,carrigd out in_LISP, énd therefore the
best tools for editing and debugging are available

with LISP.

1.5 SCOPE OF THE DISSERTATION :

This work ﬁresents @ PASCAL implementation of LISP,
as an experiment for developing software in a high-level
stfuctured language. PASCAL is a general purpose language
designed by Niklaws wirth, and has come-up as a result of
the movement for structured programming, PASCAL has powerful
data types and encourages a Top-down design methodology,.
Because of these, and other reasons PASCAL is now available
widely and there is an increasing number of users Who‘are.
defecting from FORTRAN to PASCAL. Some of the advanced
general purpose languageé which are being now developed

have many common features with PASCAL.

1.6 LANGUAGE PROCESSING s

Definition : The software using which the computer
uses to understand the commands in an artificial language,
supplied by the user is generally termed as the "LANGUAGE
PROCESSOR' , | '

Language processing can be broadly classified into
two types :
1, Translation,
2, Interpretation

TRANSLATOR : A Translator is g program that translates a

source language program into its equivalent object language
© program, /
Assemblers, Compilers, and Conversion Programs are
come under this category.
' INTERPRETER : An Interpreter is a program that accepts a
source language program, written-in-a highlevel language,
and appears to execute it, as if it were in machine language
form and produces the corresponding result as its out-put.
_ More precisely, an interpreter repeatedly executes
the following sequence.
1, Get the next statement,
2, Determine the actions to be executed,
3. Perform the actions.
This sequence is very similar to the pattern of actions
carried out by a traditional computer; that is, -
l, Fetch the next instruction
(i.ey the instruction whose address is specified
in the PC) and increment it, .
" 2, Decode the instruction.
3. Execute the instruction,
This similarity shows that interpretation can be viewed

as a simulation, on a host computer, of a special purpose

5

machine whose machine language is the higher level ianguage.
Pure interpretation and pure traﬁslation are'tWo extremes.,

In practice, many languages are implemented by a combination
of the’ two techniques. In a purely interpretive solution,
executing a statement may require a fairly complicated
decoding process to determine the operations to be executed
and their operands. In most cases, this process is identical
each time the statement is encounte}ed. Consequently, if the
statement appears in a frequently executed part of a program -
(e.g., an-inner loop), the speed of execution is strongly
affected by the identical decoding process. On the other
hand, pure translation generates machine code for each high
level statement, in doing so, the translator decodes each-
high-level statement once only., Frequently used parts are
then decoded man? times ' in their machine language representation.
. Since this is done efficiently by hardware, pure translation
can save processingltime over pure interpretation, However,
language processing by interpretation is deferred until data
attributes have been bound, This makes interpreters
particularly easy to construct, and they are therefore widely
used despiﬁe execution-time inefficiencies, Virtually all
processors forALISP and for APL and most of those for SNOBOL

are interpretersy

1.7 REPRESENTATION OF LISTS :
We first consider the external representation of

lists, For specialized lists such as character strings'and

algebraic expressions, there are natural written representations.

8

Thus a character string may be written by writing down the
characters one after another enclosing the entire group in
quote marks to show where it begins and ends. An algebraic
expression may be written, for example, in one of‘the forms
used for arithmetic expressions in scientific programming
languages.

For more general lists, the most frequently used
written representation of a list written in sequence, .

delimited ﬁy blanks and enclosed in perantheses. Thus,

(RAT 2 CAT)
represents the list whose three eléments are the
character string RAT, the number 2, and the character

string CAT.

((RAT 3) (caT 5))

represents a list whose elements are two sublists,
Each of these sublists in tum has two elements;‘} |

Now, we shall study how lists are represented in the
computer memory, Lists are stored as structural forms built
out of computer words as a parts of trees. 1In represenging
list structures in the computer memory there are two
possibilities for a computer word, which may be either an
atom or a list, An atomic word is a string of atmost ten
characters, Whereas a list word is a rectangle devided into
two sections called the "head" and the “tail®, Where "head"

and "Tail" are addresses that point to some other S-expressions.

 Now we represent the atomic word 'NAME®' in the

computer as

¢ atomic woxd :

It is convenient to indicate NIL by

[I

o o e

insteéd of

LTS

. INIL

Following are some diagrammed S-expressions, shown

as they would appear in the computer,

Il
S
4

(A.B)

(ABC) = L’IJ ——{4

8

It is possible for lists to make use of common subexpreSSions.

((A.B) C (A.B)) could also be represented as :
LT3

B |

Circular lists are ordinarily not pemmitted. They may not be

read in, However, they can occur inside the computer as the
result of computations involving certain functions, Their
printed representation is infinite in length, For example,

the structure;

will print'as:

(ABCABC....)

CHAPTER - II
- { LISP FUNCTIONS)

-
—

251 THE LISP LANGUAGE :

LISP is a formal mathematical language. It is therefore
possible to give a concise, yet complete description. LISP
differs from most programming languages in three important
ways, The first way is in the nature of the data, 1In the
LISP language, all data are in the form of symbolic expressions
usually referred as S-expressions, S-expressions are of
indefinite length and have a binary tree type structure, so
that significant éubexpressions can be readily isolated.

In fhe LISP programming system, the bulk of available memorxy
~is used for storing S-expressions in the form of list '
structures. This type of memory organisation f?ees the
programmer from the necessity of allocating storage for

the different sections of this program.

The second important part of the LISP language is
the source language itself, which specifies in what way the
S-expressions are to be processed. This consists of
recursive functions of S-expressions, |

Third, LISP can interpret and execute programs
written in the form of S-expressions, . Thus like machine
language, and unlike most other higher level languages, it

can be used to generate programs for further execution,

'2,1.1 SYMBOLIC EXPRESSIONS : -

The most elementary type of S-expression is an
atomic symbol., An atomic symbol is a string of no more

than ten (thirty in standard LISP 1,5) characters,

11

The following are atoms :
A

APPLE

STRING

LONGSTRING, etc.,

S-expression : An S-expression is either an atomic symbol
or it is composed of these elements in the following order :

a left peranthesis, an S-expression, either a dot
followed by an S-expression and a right peranthesis, or a
space followed by an S-expression and a right peranthesis
or only a right peranthesis,

The following are S-expressions :

(ATOM)

(A.B)

(A (B C))

(A BC), etc.,

A LISP program is itself an S-expression, It is
functional in that it is composed of applications of
functions that produce results that may be used by other

functions.,

2,2 BASIC FUNCTIONS OF LISP :
There are very few primitive functions provided in
- pure LISP, Existing LISP systems have added to this list

considerably. These new functions, however, c¢an all be

expressed in terms of the original primitive functions,

12

~ QUOTE is the identity function, It returns its
(single) argument as its value., This function is needed
because the atom 'A' does not represent itself but is the
name of a Memory Location, The QUOTE function allows its
afgument to be treated as a constant, Thus, (QUOTE A) in

LISP is analogus to 'A' in conventional languages.

EX: (QUOTE A) = A
(QUWTE (A BC)) = (A BC) etc.,

(2]

The most common functions are those that manipulate lists

' The function CAR has one argument, Its value is

the first element of its composit argument.

EX : (CAR (QUOTE (ABC))) = A
(CAR (QUOTE ((A B) C D)Z) = (A B)
CAR of an atomic symbol is undefined and therefore it will
give an ERROR.
The function CDR has one argument,
" CDR returns all elements of its cemposii argumént

except the first,

EX : (CDR (QUOTE (A))) = NIL
(CDR (QUOTE (A B C))) = (BC)
(CDR (QUOTE ((A B) (C D E))) = ((CD E)) etc.
CDR of an atomic 'symbol is not defined, and gives an ERROR,

The function CONS has two arguments, and is used to

build bigger S-expression from the two smaller ones,

13

EX : (CONS (QUOTE A) (QUOTE B)) = (A.B)
(CONS (QUOTE A) (QUOTE (B C D))) = (A BC D)
(CoNs (QUOTE (A B)) (QUOTE (C D))) = ((A B) C D)
' » etc.,

In LISP, the values ‘true® and 'false' are represented
by the atomic symbols 'T"and fNIL' respectively, Therefore
a predicate in LISP is a function whose value is either *'T!
or 'NIL', | | .
Let us consider some elementary predicatesfunctions
in LISP :
The predicate ATOM is true if its argument_is an

atomic symbol, and false otherwise.-

EX : (ATOM (QUOTE AY} = T
- (ATOM (QUOTE (A))= NIL

.The predicate EQ is a test for equality on atomic
symbols, It checks whether its two atomic arguments ate
equal. It returns 'T' if they are equal, and NIL otheIwise.
It's value is 5NIL' for non-atomic arguments.

EX : (EQ (QUOTE A) (QUOTE A)) = T

(EQ (QUOTE A) (QUOTE B)) = NIL
(EQ (QUQTE (A)) (QUOTE (A))) = NIL

In LISP programming system the conditional expression
is a device for providing branches in function definitions,
gnd is used to define a larger class of functions,

A conditional expression has the following form :

(COND (P, e,) (P, &) . « o (P e))

14

Where each Pi is an expression, whose value may be
- either 'T' or 'NIL', and each e is any expression, The
meaning of a conditional expression is the following :

It is evaluated by evaluating the P; in turn until.
one is found whose value is 'T', The value of the entire
form is then obtained by evaluating the corresponding e .
None of the other ei*s are evaluated, nor are any of the
Pi following the first true one,

If none of the Pi are trué, then the value of the
entire expression is undefined, Instead an ERROR signal
will come out, |

Each P, or e, can itself be either an S-expression,
a function, a composition of functions or may itself be

another conditional exp¥ession.

EX : (COND ((ATOM (QUOTE (A))) (QUOTE B))
((EQ (QUOTE A) (QUOTE A)) (QUOTE FOUND))
(T (QUOTE NOTFOUND))) = FOUND

LAMBDA :

A function is represented in the form :
(LAMBDA (xl Xy o o s xn)cf) E, E, . .. En)
Where :
X}s X9y o o o X are dummy variables that appear in

the expression4x,and~ﬁl, Ez o o e En are values corresponding

respectivelyy

to X190 X5 o o o X,

15

fhe evalhétion of the expression is done by
substituting E; for the corresponding x;.

The variables in a LAMBDA expression are dummy or
bound variables because systemstically changing them does

not alter the meaning of the expression,

EX : ((LAMBDA (X y) (CONS X Y»
| (QUOTE A) (QUOTE (B C)))
= (A B C)

2.3 A UNIVERSAL LISP FUNCTION :

A universai function is one that can compufe the
value of any gi;en function applied to its arguments when
-given a description of that function. Such a function here
'is LABEL. |

In order to permit recursive functions to be
expressed in closed form an additional device is .needed,
Evaluation of the form,

(LABEL f)

Yields the function ;o(' (which must be a LAMBDA
expression) and in addition associates the function name £
(which must be an ATOM)'with 'oe! so that during the
application of ' ' to arguments, any occurence of 'f¢
evaluates to 'o«', Thus a functibn may be made recursive
by naming it via LABEL and then‘using this name within the .

definitian, 'i;e., within the Lambda expression.

16!

EX : ((LABEL MEMBER
| (LAMBDA (X Y)
(CoND ((NULL Y) (QUOTE NIL))
((EQ X (CAR Y)) (QUOTE T))
((QUOTE T) (MEMBER X (CDR Y))))))
(QUOTE A) (QUOTE (C B A)))
= T

The above defined function MEMBER checks whether the list

contains the given atom,

2.4 EXTENDED LISP FUNCTIONS :

Though; higher order functions can be derived from
the primitive LISP functions it is not feasible to define
a function of interest each time we need it, |

Here are some additional LISP functions whibh are
frequently encountered in problem solving situations, .
APPEND : The function APPEND has_two arguments, It.strings

together the elements of lists supplied as its arguments.,

EX : (APPEND (QUOTE (A B)) (QUOTE (C D))
= (A B C D)
(APPEND (QUOTE (A (B C))) (QUOTE (D E)))
o = (A (B C) D E)
L;§I : The function LIST also has two arguments. It does
not run things together like APPEND does. Instead, it makes
a list out of its arguments, Each argument becomes an

element of the new list,

17

"EX i (LIST (QUOTE (A B)) (QUOTE (C D)))
= ((A B) (CD))
(LIST (QUOTE A) (QUOTE B) = (A B)
SUBST : SUBST is a function which makes substitution

possible in LISP,

consider the form

(SUBST (QUOTE X) (QUOTE Y) (QUOTE Z))

Where_x, Y and Z are S-expressions which means,
SUBST replaces all the occurences of 'Y' in the list Z by
the value X. | o | »
'EX : (SUBST (QUOTE K) (QUdTE (B C)) (QUOTE (A (B C)))

| = (A A)

(suBST ('QUOTE (A B)) (QUOTE (B C)) (QUOTE (A (B C))))

_ = (A (A B))
| THE_PROGRAM FEATURE :

The LISP 1.5 program feature allows the user to write
an ALGOL-Like program containing LISP statements to be
executed,

An example of the program feature can be seen in
defining the function REV, that reverses the elements of a-
given list, | |
-((DEFINE (REV LAMBDA (X)

(PROG (U V)
((SETQ U X)
((A) (COND ((NULL U) (RETURN V))
((QUOTE T) ((SETQ V (CONS (CAR U) V))
((SETQ U (CDR U))
(GO (CaNNMINIMIN
(REV (QWOTE (A B C)))) = (C B A)

18

The program form has the structure -
(PROG, List of program vgriables, sequence of statéments
and labels)f
'The first list after the function name, PROG, is a

~ list of program variables. If there are none then this
should be written as 'NIL' or () (an empty list). Program
vgriables are treated much like bound variables, but they
‘are not bouhded by LAMBDA. The value of each program
variable is 'NIL' until it has been set to some thing else,
§§2Q : To assign a value to the program variable, we have
the form SETQ. To set a variable X to the value (A B), we
write the following S—expression : | |

((SETQ X (QUOTE (A B))) E)
Where 'E' is another function which contains 'X' as one
of its arguments., If 'E' is replaced by 'X' in the above
S-expression it returns the value (A B).

The function RETURN causes a normal end of a program;
The argument of RETURN is evaluatéd, and gives the result
of the whole S-expression. No further statements are
executed, |

In our implementation a label symbol is of the form
((A). Where fA' is a label symbol. Go is a form used to
cause a transfer, B) '

(Go ((A))). will cause the program to continue at
the statement following ((A). |

19

DEFINE : It is possible to associate a value with any
identifier, In the case of an identifier whose value is
a function; the association is created through use of the
LISP function DEFINE, Nomrmally, a LISP program consists
of a sequence of applications of functions to arguments,
Thus, in-order to create a complicated function using a
number of subfunctions, DEFINE is used to associate the
definition of each function with its name. Any of these
functions may refer to any other function or to itself by
name within its definition, An example (run'on'éomputer)
describing the DEFINE feature is given in Appendix ~B ,
LIST STRUCTURE OPERATORS : LISP is made general in terms

of list structure by means of the basic list operators
“REPLACAR" and " REPLACDR" . These operators can be used
to replace the 'CAR' or 'CDR' or any word in a list, The

expreésion,
(REPLACAR (QUOTE ((A B) B C)) (QUOTE A))

replaces the CAR part of the list ((A B) B C)) with the
second argument i,e, A.

Therefore the result would be (A B C)

in_terms of value, REPLACA% can be described by the

expression

| (REPLACAR (QUOTE X) (QUOTE Y)
= (CONS (QUOTE Y) (CDR (QUOTE X)))

il

But the effect is quite different, On operating REPLACAR,

there is no CONS involved, and a new word is not created.

:¢2}0

*

This can be diagramatically shown as follows :

| Let'll = ((A B) B C)

‘which can be represented as:

L
L}z "‘_—’[M /
e

A)
and: La

1

Now (REPLACAR (QUOTE 1,) (QUOTE 1,)
which modifies the structure of]‘l as the following :

/\]r ;_/ — / M

. [
b
1 - W=
V -,—; Ao-—.—-ﬁ—': . .
(A (8 | =

’
!
!
’
!
'
14
*

Li

- ww -

!
t

T s W o g o e e]

¢ Rewmeveld p’auf'

‘Whereas (CONS (QUOTE 1,) (CDR (QUOTE 1))
constructs another list 13 out of the two given S-expressions

i.é. the resultant list 13 would be of the form ;

(CDR (QUOTE 1,)) Lo

oo
-

TH- 2349

2 1

Now CONS of the above two S-expressions give a

new list 13 as follows
ed |
Vi

7 1 1 /
S /L
I

Note that on CONS operation the original list structure

A

of ll has not been changed,

In a similar way, the function
. (REPLACDR (QUOTE X) (QUOTE Y))
replaces the CDR part of list X by the S-expression ‘'Y'.

EX : - |
(REPLACDR (QUOTE (A (A B))) (QUOTE B))

returns the value as?

= (A B)
X = (A (A B)) - Y=8B
W T3 17 M
A// ' “—f'ikt
A {5

Operation on REPLACDR causes:!

X =(A . B)

'

These operators (REPLACAR, and REPLACDR) must be used with
caution, They can permanently alter existing list structures
and othexr basic memory, They can be used to create c¢ircular
lists, which can cause infinite printing, and look infinite

- to functions that search, such as YEQUAL" and "SUBST",

A few more predicates which are frequently encountered

in LISP programs are the following :

EQUAL : The predicate EQUAL, which overrides EQ in usage,
is the test for equality of its two arguments that are any

S-expressions.

EX : (EQUAL (Quoré A) (QUOTE A)) = T
| (EQUAL (QUOTE (A B)) (QUOTE (A B))) = T
(EQUAL (QUOTE (A B)) (QUOTE (A C))) = NIL
etc,

The function 'EQ' is applicable only for atomic symbols.

ﬁg;g ¢ The predicate NULL is useful in deciding whether a
list is exhausted, 1It's value i$ true only if it's argument
is 'NIL®,
EX : (NULL NIL) = T
(NULL (CDR (QUOTE (A= T
(NULL () = T
(NULL (CAR (QUOTE (A)))) = NIL

LOGICAL CONNECTIVES :

The Logical or Boolean connectives are usually
considered as primitive operators, However, in LISP, they

can be defined by using conditional expressions,

23
In the systeh, 'NOT' is a predicate of one argument.
However, 'AND' and OR are predicates of an indefinite number
of arguments, and therefore are special forms, |
The value of 'AND' is 'T' only when each of its

argument!s value is true, 'NIL' otherwise,

EX : (AND (QUOTE T) (QUOTE NIL)) = NIL
(AND (QUOTE T) (QUOTE T)) = T
The value of OR is 'NIL' only when each of its
arguments value is 'NIL;, 1T otherwise,
EX : (OR (QUOTE NIL) (QUOTE T)) = T
_ (OR (QUOTE NIL) (QUOTE NIL)) = NIL
The value of NOT is 'T* if its arguments value is ‘NIL!

and viceversa,

EX : (NOT (QUOTE NIL)) T

(NOT (QUOTE T)) NIL

CHAPTER - III
(IMPLEMENTATION)

24

23

3.1 MEMORY ORGANIZATION :

In @ 1list processing system it is hot feasible to
create free nodes (words) each time we need to store items
and to destxoy (dispose)'these nodes after they become no
more useful, This process is crude and inefficient in both
‘memory manégement and execution time.

‘ The easiest way to.keep track of available list
storage is by use of a free—list; a list of,all unused woxrds.
At'system initialization,,we chain all of available blocks
together into auf;ee list, Whenever we want to add a new
itew to an active-list (The concept of active-list, is the
list structure, of the input S-expression, and the environment
in which the values and identifiers are bounded during the
run time of a program), we remove the first block from the
free-list and use it to store the new item. And the words
which are no more active, i,e.,, as soon as the exechtion of
the S-expression is over, are automatically returmed to the
free-list by a technique called as "Garbage collection®,

We shall discuss about this technique later in this chapter.

In our LISP programming system, we made use of the
free-list concept, The data types POINTER, and RECORD in
PASCAL proﬁide the best mechanism to construct linked lists
and other dynamic data structures, In our LISP processing
system "SYMBOLIC EXPRESSION" is a "RECORD TYPE' (Lines 17 to
25 in Appendix A) which has a tag field ﬂANATONW is always
checked before accessing either the name field or the "HEAD"

and "TAIL" fields of a word.

26
During the system initialization the free-list is
constructed as follows : |

The loop in the "PROCEDURE INITIALISE" :

FREELIST : = NIL ;
FOR I := 1 TO MAXNODES DO
BEGIN
NEW (NODELIST) ; |
NODELIST NEXT := FREELIST ;

i}

NODELIST HEAD := FREELIST ;
NODELIST STATUS := UNMARKED ;
FREELIST := NODELIST
END ;.
Constructs a free-list containing the number of wérds

equal to MAXNODES in computer memory appeared to be as shown
NHEL ST '

below : E}&Eeu st
Lo

B B
H rT [LF et SN

Where N stands for the pointer field NEXT,
and H stands for the pointer field HEAD.
Notice that the 'status' of all the nodes if UNMARKED

Where "MAXNODES" is any Natural number, There is a
limitation in declaring the maximum number of free woxds.
Since, the available computer memory is to be shared among

input-output bpFes, Interpreter program and the free-list,

26

——

3.2 ENVIRONMENT
As we have seen that each item in an S-expression
(LISP Program) is to be evaluated unless or otherwise it is

quoted by the function “"QUOTE", Now, the questions arise,

Where do the values of identifiers and functional
variables lie ?
. How are they bounded to each other ? and

lastly, how are they evaluated ?

 All these questions can be answered with the concept
of an association-list., An association-list is (a list
structure in a binary form) an environmeht to evaluate an
S-expression, in the sense that, it contains all definitions
of indentifiers (and values for the functional variables),
In our LISP processing system we represent the association-
list as ALIST, and henceforth it is continued to be call
with this name. During the system initialization the 'ALIST®

is constructed with nine nodes in the form as shown below:
<
AwLS

L_‘_7L/' 1 » | ‘"“‘%; Wit
N

L] (M

Regarding the second question, the ALIST should have ‘to have

a common property that the identifiers and functional variables
with their definitions (or values) should be connected in the
'ALIST' such that a single function can traverse all the

existing identifiers and function variable names; The

28

definitions (or values) to the identifiers (or variables)
should be their neighbouring sublists,

Consider the initial ALIST structure, which centains
the identifiers 'T' and *NIL', During the evaluation of
these identifiers their values would be their neighbouring
sublists i;e;~‘T' & 'NIL' respectively.

Therefore, for example, if we want to attach one
more identifier 'MEMBER' with 'DEFINE' as its value, The

resultant ALIST appears to be as :-
-r&t\f

Where TEMP is the current environment, ALIST, grows dynamically
during the evaluation process of LISP program. The functions
LAMBDA, and PROG bind the variable to their corresponding
values in the above mentioned manner and attach them to the
- ALIST. Similarly the forms LABEL, and DEFINE associate the
definitions of identifiers (i,e,, newly defined function
names) with their identifiers on the ALIST. The function
SETQ assigns new values to the program variables on the
'ALIST' during its run. ' |
| During the evaluation of a LISP program if any .
identifier is encountered the function LOOKUP (Lines 465 ta
481 in Appendix A) searches for its name on the ALIST from
.left to‘right; If it is found then the function LOOKUP

29

gives its corresponding value as the result and the process
continues., If the identifier is not found on the ALIST,
then the evaluation is terminated, and gives the indication

that the function is not defined,

3.3 MARK/SWEEP_GARBAGE COLLECTION :

Garbage collection is an effective, élthough (at first)
apparently brutal solution to storage management, It presumes
that every node in the heap is available until proven used,
'This is effected by a mark bit, initially cleared, in every
node. Every active pointer in a register of the interpreter
is taken as the root of used structure, and every such %
$tructuretis traversed and marked. After the mark phase, the
heap is swept sequentially; unset mark bits indicate available
nodes (garbége) to be retumed to available space,

The‘traversal of each structure requires time
proportional to its size. Conventional traversal algorithms
treat each‘structure as a tree‘to be‘traversed in preorder,
where atoms, null péinters, and already marked nodes are
taken as external nodes (leaves). A node is marked oh its
first' visit. Knuth 1975 explains several algorithms, of
which the lost, due to Deutsch, Schorr, and Waite [lé] is
the mosi elegant because it uses no extra stack in its
traverssl. Space being at a premium, the stack is maintained
in reversed tree pointers that are restored as the stack is
popped, A PASCAL version of‘this algorithm was developed by
COX & TAYLOR [11] for their primitive LISP System.

30

3.4 LISP_INPUT - OQUTPUT :

Reading a list and storing it in the computer memory
‘as a structufal_forms,,and to print out a stored expression
in the same notation are done by the procedures, REARDEXPR,
and PRINTEXPR respectively.

3.4,1 READING AN S-EXPRESSION :

The procedure READEXPR (lines 216-261 in Appendix A),
.reads in a symbolic expression and stores it inlthe computér
memory.in a binary tree form. It pops fhe required number
of free words from the free-list to store the symbolic
expression, one woxrd at a time. Procedure hREADEXPR.". inturn
calls two othe; prbcedures namely NEXTSYMBOLi and BACKUPiNPUT.
Procedure NEXTSYMBOL reads the next input symbol from the
input file, The type of the input symbol is defined by the
global type "INPUTSYMBOL". The global variable "SYM" returns
the type of the present symbol and transfers control to the
procedure READEXPR. Procedure "BACKUPINPUT" put$ an additional
léfét peranthesis in the stream of input symbols to facilitate
the procedure READEXPR during the read of an S-expression.
BACKUPINPUT is called each time whenever the type of the next
symbol, read from the S-expression, is other than a period.
This additional left peranthésis would not be printed out,
as.it'was actually not there in the input expression. |

vSymbolic expressions are read and stbxed‘in the

appropriate.structure'using the following grammer for

51

symbolic expressions :

S-expr, = Atom> |
of (£S-expD> . (S—expr)) |
or (£S-expr> S-expD>r & . .
‘. ;<($-exp::>) |
The third rule follows an alternative form of S-
expression called the list notation, |

For example, consider the following S-expression

(ll 12 13 c .. ln)'

This S-expression can be represented in the list

notation with the same meaning as :
(ll . (12 . (13 . (. o . (ln . NIL) L '))))
EX : Let a list
1=(A(BC)DE)
on executing the instruction

READEXPR (1), reads '1' as input and stores

'in the computer memory, in a form appears to be as :
L‘ .

=

3.4.2 PRINT AN S—-EXPRESSION :

Procedure "PRINTEXPR" (Lines 271-297 in Appendix A).

Prints an S-expression which was stored in the computer memory

32

through the procedure READEXPR., PRINTEXPR in turn uses
another procedure called *'PRININAME'. Procedure PRINTNAME

Prints out an atomic symbol each time it is called.

EX : the list 'l' of the following structure :

LWoT 3o

On operating "PRINTEXPR" this will be printed out

in the following form :

((A . B) (C D) E)

3.5 PROCEDURE POP : (Lines 129-139 in Appendix A)

The procedure 'POP' takes a'wordvfrom the free-list
(from one end), and stores its address at the location of
its pointer argument. This word will be further used either
to store an item or to link two nodes. The operations
performed by the procedure 'POP‘ are the following :

It checks whether the free-list is completely
exhausted. If it is yes, then the program is terﬁinated
and gives an indication to the user that, "NOT ENOUGH SPACE
TO EVALUATE THE EXPRESéION“. If the free-list is not
completely exhausted,vthen, it removes the link between the
HEAD pointer of the first word from it's next available word;
Decreases the number of freenodes by 1. Saves the address

of the first word in a location which is a pointer argument

33

of the procedure 'POP'. And, the address of the free-1list
is changed to the address of it's next available word. The
action of 'POP' operation on free-list can be diagramatically

shown as ¢

Consider the free-list of the form
NohEL\ST

chkeeL\sf .
v LN LLJ_: LAY S -
M3 [—s) (XY 7

Where 'N' stands for the pointer field "NEXT",
and 'H' stands for the pointer field "HEADY.
Now the operation POP (TEMP) will give the resultant
free-list ofthe foym :

ENP_ ot €UST FRECLIST
N l—N——‘———-” Lﬂ:r—} ¢ ¢ s o .>
m n . | rﬁ‘ﬁ - . ¢ -

Note that the link from the left-most word‘'s 'HEAD'® pointef

to it's next word has been removed.

3.6 PROCEDURE INITIALISE : (Lines 699-813 in Appendix A)

The procedure INITIALSE arranges an initial environment
that is required by other procedures and functions in the

interpreter program during the process of a LISP expression.

34

It assigns the boolean variable 'ALREADYPACKED' to
'"FALSE', reads a character from the input file and writes
it in the output file. It constructs a free-list, a list
of available words, containing the number of words equal to
the global constant *MAXNODES' (refer sec-3.1)., . It assigns
the global reserved words to their corresponding LISP
functions (Lines 737 to 762 in Appendix A). Procedure
'INITIALISE!' also constructs the initial structure of ALIST

| (association 1ist) as explained in Section-3.2),.

3.7 EVAL FUNCTION : (Lines 298-698 in Appendix-A)

The structure of the function EVAL is a case analysis
on the syntactic type of the expression being evaluated.
Function EVAL scans each word by walking the tree in a left-
to-right depth first manner and classifies the words into
functions, preudo functions, identifiers, and labéls, and
then performs their corresponding operations by calling its
several local functions accordingly. This function scans the
list of clauses of a case analysis, recursively evaluating the
predicate part of each clause to see if it is true. If a
predicate part is true, the action .sequence of'tha£ part is
executed. _If atpredicate pért is not true, the scan continues.
Running out of clauses to fry gives an error at some point.

Now, let us study ébout the different local functions
defined in the function EVAL, and their usage in evaluating

their corresponding LISP functions,

35

The following functions in the PASCAL.Program :

REPLACEH, REPLACET, HEAD, TAIL, CONS,
APPEND, ' EQQ, EQUAL, LIST, SUBST, NULL,
ATOM & NAT are called to perform the operations of

their corresponding LISP functions :

REPLACAR, REPLACDR, CAR, CDR, CONS,
APPEND, EQ, EQUAL, LIST, SUBST, NULL,
ATOM_and NOT respecfively.

Function LOOKUP is called in case either the function EVAL's
first argument (Hereafter it is denoted.as 'PTR') is an atom,
or the CAR of the 'PTR' is an atom and is not a reserved LISP
function. Function LOOKUP searches for the corresponding

' value of an identifier or variable in the 'ALIST'. An
identifier may be a newly defined function using the LISP
Pseudo-functions LABEL or DEFINE, or & variable bounded by
the functions LAMBDA or PROG in LISP Language.

The function 'SEARCH!' is called to perfomm the actions of
the function 'DEFINE' in LISP. It attaches the 'ALIST!
(association list) to the tail of the father of the last
identifier in the sublist, (which .contains the definitions
of all the newly defined functions) and fhe_root of the
present 'ALIST' becomes the father of the first identifier
of the definitions sublist, ‘

2 3 (;

To understand more about the function search,

consider the S-expression : ,

((bpEFME (X Laml)
(Y LAM2)
(z LAaw3))

(2, list of quoted arguments)).

Where X, Y, and Z are identifiers, that are defined interms
of LAMls, LAMi is any Lambda expression. The list structure
(in the computer memory) of the above expression appears to

be as :

List of QuoTE? ovvqumesth

&FIN LAMY LAM).) LAMS

X Y i

Now, when the function EVAL scans the LISP funétion
'DEFINE' in the S-expression with correct syntax, then control
transfers to the function SEARCH. It attéches the 'ALIST' to
the definitions sublist of the S-exbression as explained above.

The resultant structure of the ensironment (ALIST) would

ﬁijl__:__? ALIST
LARL é ¥ ans

appear as :
TENP

37

Where "TEMP" is the address of the present "ALIST",
This resultant list is Qsed as thé current environment for
the function EVAL during the further evaluation of the LISP
expression, The function LOCMARK is called when the CAR of
CAR of 'PTR' is an atom and is not a reserved word (i.e, a
'LISP function). This function searches for a label mark
whose name is equal to the CAR of CAR of 'PTR'. If it is
found then the CAR of CDR of CAR of its grand-father node
will be evaluated. And the repetitive evaluation of the
statements lying between the label mark and the.statemenf
(GO ((label))), until'the,prespecified condition is
satisfied, : ,

The function SETARG is célled to perform the
operations for its corresponding LISP function SETIQ.
Function SETARG bounds the program variable with its
corresponding value and . conses this expression with the
current ALIST. This value is considered as the latest one,
and all the previous values which were bounded by the same
variable are no more looked up. And the operations of the
logical LISP functions, AND and OR are performed by calling
the local function EVANDOR.

3.8 ORGANIZATION OF THE_INTERPRETER :
So far, we have studied the actions of different
individual functions and procedures in the interpreter

program., New let us discuss how these procedures and

functions together can perform the task of interpretation

of LISP-expressions,

38

The two-pass interpreter program scans the input
symbolic expression twice during its process. In the pass-I
it accepts the symbolic expression as it's input, and store§
it in the computer memory in a binary tree form., And it's
syntax 8 semantic analysis, and evaluation are all done during
the pass-1I. |

initially, the program calls the procedure INITIALISE,
which assigns the boolean variable 'ALREADYPACKED' to 'FALSE',
reads a character from the input file, constructs a free-list,
assigns the reserved words to their corresponding LISP functions,
and initialises the ALIST (association list) as deséribed in
Section 3.2 & 3,6 , Then, control trénsfers to the
procedure 'NEXTSYMBGL;, which decides the type ofvthe input
character which was just read at some point and reads in the
next character from the input file. Further, the procedure
'READEXPR' is called to store the LISP expression in computer-
memory (refer sec.l3.4.l); | |

Then, the interpreter program enters in a Loop, whose
main function is to evaluate the LISP expression by transfering
control over to the function 'EVAL', which inturn recursively
executes the LISP instructions one by one and prints out the .
resultant 1list th;ough‘the procedure PRINTEXPR., Since the
execution of the present LISP-expression is over then the
procedure 'GARBAGEMAN' is called, which collects all the
used nodes, except the intial structure of 'ALIST!, and

attaches them to the free-list. If thére are any more LISP-

39

expressions, to be éxecuted, in the input file, then it
repeats the same process until there are no more LISP programs

in the input file or a *'FIN' Caxrd is encountered,

CHAPTER - IV
(DISCUSSION AND CONCLUSIONS)

40

Anqﬁl

4,1 DISCUSSION AND CONCLUSIONS : .

"We must recognize the strong and undeniable
influence tﬁat our language exerts on our way of thinking,
and in fact defines and delimits the abstract space in
which we can formulate - give farmvto - our thoughts"
(Wirth 1974),

"Language is the vehcle by which we express our
thoughts, and the relation between those thoughts and our
language is a subtle and involuted one, The nature of
language actually shapes‘and,models the way we think . . .
If, by providing appropriate language constructs we can
improve the programs written using these structures, the
entire field will benefit . , . A language design should
atleast provide facilitids which allow comprehensible
expression of algorlthms, at best a language suggests better.
forms of expression., But language is not a panacea., A
language cannot, for example, prevent the creation of
obscure programs; the ingenious programmer can always find
an infinite number of paths to obfuscation." (Wolfv1977).

The relationship between software design methodo-
logies and programming language is a most important one.
This is so whether or not one views the programming language
as a component of a software development facility. In
trying to follow @ certain design methodology, we will find
that some languages are better suited than others. These

are three important requirements in designing a language

4 2

which are imposed by the software development process :

i) Software must be reliable :-

i.e., users should be able to rely on the software,.
They should feel comfortable in using it even in the
presence_ofiinffequent or undesirable events such as
hardware or software failure. Software is correct if it
behaves according to its specifications, the more regorously
and unambiguously the specifications are set down, the more
convinéingly program correctness can be proved, The.
reliability requirement has gained importance as software
has been called upon to accomplish increasingly complibated
tasks.

'i1) Software must be maintainable :

Again, as software costs have risen and increasingly
complex software systems have been déveloped, economic
considerations have reduced to possibility of throwing
away existing software and developing similar applications
from scratch, So, existing software must be modified to
meet new requirements.

iii) Software must execute efficiently :

Efficiency has always been a goal of any software
system, This goal affects both the programming ianguage
and the choice of algorithms to be used.

These'three reﬁuirements - reliability, maeintain«
ability, and efficiency - can be achieved by appropriate
tools in the software development facility, and by certain

characteristcs of the programming language.

43

The goal of software reliabilit& is promoted by.
the following programming languagé qualities,

Writability, refers to the possibility of expressing
a program in a way that is natural for the problem, The
programmer should not be distracted by details and tricks
~of the language from the more important ;ctivity of problem
solving. The easier it is to conéentrate on problem
solving activity, the less error prone is program writing.

It should be possible to follow the logic of the
program, and to discover the presence of errors, by examining
the program. The>simpler the languége is and the more
naturally it allows algorithms to be expressed, then it is
to understand what a pfogram does by examining the code.
For example, the GO TO statement has the potential of
making programs hard to read, because it can make it
impossible to read a program in one top-to-bottom pass and
to understand it, Rather, one must jump around in the
‘program in search of the targets of the GO TO statements.

The language should make it possible to trap
undesired events (arithmatic overflows,’ihvalid input, etc.)
and to specify suitable responses to such events, In this
way, the behéviour of the system becomes totally predicatable
even in anamalous situations.

The need for maintainable progfams imposes two
requirements on the programming lange : Programs written
in the language must be readable, and they must be

modifiable, It is possible to identify features that make

44

a8 program more modifiable. For example, several

- programming léhguages allow constants to be given symbolic
names, Choosing an appropriate name for a constant promotes
the readability of the program. Moreover, a future need

to change the value would neceséitate a change only in the
definition of the constant, rather than in every use of
constant,

Efficiency is no ionger measured only by the
execution speed and space, The effort required to produce
a program, or system, initially and the effort required in
méintenance can also be viewed as components of the
efficiency measure. And, once again, the programming
language can have a great impact.

A Language supports efficiency if it has qualities
‘of writability and maintainability, and optimizability
(i.e., the quality of allowing automatic program optimization).

Older languages, such as FORTRAN, were not designed
to support specific design methodologiés. For example,
the absence of suitable high-level control structures in
FOBiRAN makes it difficult to systematically design
algorithms in a top-down fashion. Conversely, PASCAL was
designed with the explicit goal of supporting top-down
design and structured programming. The developing trends
in languages.show that the idea that languages should
support a design methodology is increasingly becoming

accepted,

*4751 .

Now, coming to our "interpreter prOgrém“ the
inherent feature of PASCAL language enables us to design
the prdblem in a top-down fashion. The recursive power
of the language facilitates to define the tasks in a
compact and flexible manner. The program starts from
defining the global variables, and then deviding the
task into separate modules namely the garbage collector,
_inpdt,‘outpﬁt routines, the evaluation procedure, and the -
'initializétion routine,

The data structures of PASCAL enables us to define
the task in a natural way, and hence the reliability and
maintainability., PASCAL provides us powerful “"data types"
to handle dynamic variables that are frequently encéuntefed
in the LISP processing system.

As the modules are well classified, if suppose one
wants to introduce some more facilities to the interpreter
system, then, one only heeds to add their own subprograms
"to extend the power of the systém. For example, as we
- did not much care to have comment statements in the LISP
programs, we did not introduce this facility in our input
routine, 1If one wants to have this facility, he can simply
updafe the input routine in such a way that the system
allows to have comments statements in LISP programs., Aﬁd,
the global constant "MAXNODES" whose value can be changed
at once to increase (change) the number of nodes in the
FREELIST.‘ At present the number of nodes in the FREELIST
is fixed at the system initialisation time. If one wants

to have the dynamic expansion facility he can have this by

16

simply writing the lines 728-735 in Appendix-A in a
separate routine which can be called by the main program
as many times accofding'to the requirements of the LISP
Program,

Writing software packages in a low level language
is quite time consuming, and more over these packages are
restricted either to one particular machine, or those
family of machines; Writing a software package in a
structured language yields, good readability, ease in
implementation, good portability and also maintainability.
Thus, the importance of building and using portable
software continues to grow steadily, especially with the
spreading of microprocessors.

There are clear advantages in using PASCAL,
constructs for implementing LISP. We have the machine
indeﬁendency from the choice of higher level language and
therefore.portability. We had several other advantages
that are inherent to PASCAL and were discussed in the

preceeding sections, -

If we try to draw pre-visions from the current
situation, we think that portable software will use more
and more high-level programming languages. Powerful
micropiocessors and portable low-level languages, although
very successful, will probably disappear in the coming
years, because writing large unstructured programs will

no longer be tolerable. For the same reason, FORTRAN will

no longer the only writing tool, and will be replaced by
PASCAL, sometimes by languages like Ada, BCPL or C, ;r
possible successars to these,

ﬁe have carried out this work on CYBER-170 system
at National Informatics Centre, New Delhi, Our interpreter
(PASCAL) program occupies 1ll-K words of memory. Where each
word is of 60-bits size, We could not compare its execution
time‘effiéiency as there was no other LISP processing system
available to us. However, we are getting quick responses
with very small fraction.of CPU secs, in executing even
complex'LISP programs.

Thgﬁgh in principle one can define higher oxder
functions using the primitive LISP functions CAR, CDR,
CONS, LAMBDA, COND, ATOM, DQ, and LABEL, it is not
feasible on account of memory and execution time
inefficiencies. Having only théserfunctions, for example,
COX, and TAYLOR's [li] system is not practically suitable
 for problem solving pufposes. Besides these functions we
have added DEFINE, PROG, SETQ, SUBST, LIST, GO, RETURN,
EQUAL, NULL, and the logical connectives AND, OR and NOT
functions. Having all’these features in our improved
system now we are in a position to use it for any symbol

manipulation purposes.,

APPENDIX - A
(INTERPRETER PROGRAM)

18

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
0024
00025
00026
00027
00028
00029
00030

49

PROGRAM LISP(INPUT,QUTPUT);

LABEL

1, (ORUSED TO RECOVER AFTER AN ERRQOR BY THE USER*)
25 (*IN CASE THE END OF THE FILE IS REACHED BEFDORE A FIN CARD¥*)

CONST
MAXNODES=1200;

TYPE

INPUTSYMBOL=(ATOM,»PERTIOD,LPARENSRPAREN) ;

RESERVEDWORDS=(REPLACEHSYM,REPLACETSYMs HEADSYMs TATLSYMsEQSYMs QUOTESYM,
ATOMSYM, CONDSYMs LABELSYM, LAMBDASYM, COPYSYMy APPENDSYM,
CONCSYMsDEFINESYM,SETQSYM,NULLSYMINOTSYMs ORSYMs ANDSYM,
EQUALSYMs LISTSYMySUBSTSYMsPRUGSYMy GOSYMsRETURNSYM,
CONSSYM);

STATUSTYPE={UNMARKEDR,LEFT,RIGHTsMARKED);

SYMBEXPPTR="SYMBOLICEXPRESSION;

ALPHA=PACKED ARRAY [1..101 OF CHAR;
SYMBOLICEXPRESSION=PACKED RECORD

(*THE GLOBAL
VAR '
LOOKAHEADSYM,
SYMIINPUTSYMBOL;
ID: ALPHA;

STATUS:STATUSTYPE;
NEXT:SYMBEXP?TR;
CASE ANATOM:B8Q00LEAN OF
TRUE: (NAME: ALPHA;
CASE ISARESERVEDWORD:BGOLFAN OF
TRUE: (RESSYM:RESERVEDWORDS)) 3
FALSE:(HEAD, TAIL:SYMBEXPPTR);
END;
VARIABLESY)

00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
060058
00059
00060

20

ALREADYPACKED:BOOLEAN;
CH:CHAR;
PTR:SYMBEXPPTR;
FREELIST,
NODELIST,
ALIST:SYMBEXPPTR;
NILNODFE,
TNODE:SYMBOLICEXPRESSION;
RESWORDIRESERVEDWORDS ;
RESERVED:BOOLEANS
RESWORDS t ARRAY [RESERVEDWORDSI OF ALPHA3
FREENDDES:INTEGER;
NUMBERDFGCS s INTEGER
PROCEDURE GARBAGEMAN;
PROCEDURE MARK(LIST:SYMBEXPPTR);
VAR _
FATHER,
SON»
CURRENT:ISYMBEXPPTR;
BEGIN
FATHER:=NIL:;
CURRENT:=LIST;
SONt=CURRENT;
WHILE CURRENT<>NIL DO
WITH CURRENT® DO
CASE STATUS OF
UNMARKED:IF ANATOM THEN STATUS:=MARKED
ELSE IF (HEAD®.STATUS<>UNMARKED) OR (HEAD=CURRENT)
THEN TIF (TAILN.STATUS<>UNMARKED) 0OR (TAIL=CURRENT)
THEN STATUS:=MARKED

00061
00062
00063
00C64
00065

00066

00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090

)1

ELSE BEGIN
STATUS :=RIGHT
SON:=TAIL;
TAIL:=FATHER;
FATHER :=CURRENT;
JCURRENT:=50N
¢ END
ELSE
REGIN
STATUS:=LEFT;
SON:=HEAD;
HEAD:=FATHER;
FATHER ¢=CUURRENT
CURRENT:=SON
END;
LEFT: IF (TAIL".STATUS<>UNMARKED) THEN
BEGIN
STATUS:=MARKED;
FATHER :=HEAD;

HEAD:=S0ON;
SON: =CURRENT
END
ELSE
BEGIN

STATUS:=RIGHT};

CURRENT:=TAIL;

TATL:=HEAD;

HEAD:=SON;

SON:=CURRENT
END;

o1

00091 RIGHT: BEGIN

00092 STATUS t =MARKED;
00093 FATHER:=TAIL;
00094 TAILt=SON;
00095 SON:=CURRENT
00096 END;

00097 MARKED: CURRENT:=FATHER
00098 END (%CASE*)

00099 END (*MARK*);
00100 PROCEDURE COLLECTFREENODES;

00101 VAR

00102 . TEMPISYMBEXPPTR;

00103 BEGIN .

00104 WRITELN('NUMBER OF FREE NODES BEFORE CGLLECTION“';FREFNDDCS 3,%.1)
001GC5 FREELIST:=NIL;

00106 FREENODES:=0;

00107 TEMP:=NODELIST;

00108 - WHILE TEMP<>NIL DO

00109 BEGIN

00110 IF{TEMP . STATUS<>UNMARKED) THEN TEMP",STATUS:=UNMARKED

00111 ELSE BEGIN

00112 FREENODES:=FREENDDES+1;

00113 : TEMP™.HEAD:=FREELIST;

00114 FREELIST:=TENP

00115 END;

00116 TEMP:=TEMP® NEXT

00117 END;

00118 WRITELN('NUMBER DF FREE NODES AFTER COLLECTION=',FREENODES:3,'.1)3
00119 ENDS (*COLLECT FREENDODESX)

00120 BEGIN (*GARBAGEMANX)

00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150

53

NUMBERDFGCS:=NUMBERDFGLS+13;
WRITELN;
WRITELN('GARBAGECOLLECTION. ') -
WRITELN;

MARK{ALIST);

IF PTR<>NIL THEN MARKI(PTR};
COGLLECTFREENODES

END {*GARBAGEMAN¥*};

PROCEDURE POP{VAR SPTRISYMBEXPPTR);

BEGIN
If FREELIST=NIL THEN
BEGIN
WRITELN('NOT ENDUGH SPACE TO EVALUATE THE EXPRESSION');
6070 2
END;

FREENODESs=FREENDODES-13;
SPTR:=FREELIST;
FREELIST:=FREELIST®.HEAD

CEND{%POP%); '

PROCEDURE ERROR(NUMBER:INTEGER):

BEGIN
WRITELN;
WRITE{TERROR')NUMBER:3,',7);
CASE NUMBER OF

1:WRITELN{TATOM OR LPAREN EXPECTED IN THE S-EXPR,.1');

21WRITELN{YATOMsLPARENsy OR RPAREN EXPECTED IN THE S-EXPR.');
3sWRITELN('LABEL,LAMBDA,DEFINE AND SETQ ARE NOT NAMES OF §UNCTIN

43WRITELN{TRPAREN EXPECTED IN THE S—EXPRESSION?);
5:WRITELN{(*1IST ARGUMENT DF REPLACAR IS AN ATOM.");
")

6:WRITELN(*1ST ARGUMENT OF REPLACDR IS AN ATOM .

00151
00152
00153
00154
0015%
00156
00157
00158
00159
00160
00161
. 00162
00163
00164
00165
001686
001867
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180

04

TTWRITELN(YARGUMENT OF CAR IS AN ATOM');
BIWRITELN{? ARGUMENT OF CDR IS AN ATOM');
G:WRITELN{'IST ARGUMENT OF APPEND IS NDT A LIST.");
10:WRITELN{*CDOMA OR RPAREN EXPECTED IN CONCATENATE.?);
TJ1:WRITELN{YEND DOF FILE ENCOUNTERED BEFORE A FINCARD');
12:WRITELN('EITHER OF LAMBDAJLABEL,DEFINE,SETQ IS EXPECTED.?)3
13:WRITELN(YVALUE OF FUNCTION COND IS NOT DEFINED.?);
14:WRITELN{YFUNCTION IS NOT DEFINED.')3
I5:WRITELN(YERROR IN ARGUMENTS TYPE.?')
END3
IF NUMBER IN 111 THEN 6070 2
ELSE G6OT0 1
END (*ERROR%*);
PROCEDURE BACKUPINPUT;
BEGIN
ALREADYPACKED:=TRUE;
LODKAHEADSYM:=5YM;
SYM:=LPAREN
END (*BACKUPINPUT*);
PRODCEDURE NEXTSYM;3;
VAR '
IS INTEGER;
BEGIN
IF ALREADYPACKED
THEN BEGIN
- SYM:=LOOKAHEADSYM;
ALREADYPACKED::=FALSE
END
ELSE ,
BEGIN

J9J

00181 WHILE CH=' ' DO

00182 ~ BEGIN :
00183 IF EOLNCINPUT) THEN WRITELN;
00184 READ(CH) ;

00185 , WRITE(CH)

00186 - END3

00187 IF CH IN ['(15%,7,1)1]

00188 THEN BEGIN '
00189 CASE CH GOF

00190 P(t:SYM:=LPAREN;
00191 * ViSYM:=PERIODS
00192 1)1:SYM:=RPAREN
00193 END(%CASE*);

00194 IF EOLN(INPUT) THEN WRITELN;

00195 ' READICH) ;

00196 WRITE(CH)

00197 END .

00198 | ELSE BEGIN

00199 SYM:=ATOM;

00200 ID:=" ';

00201 1:=0;

00202 REPEAT ,
00203 T:=1+1;

00204 IF I<11 THEN ID[I1:=CH;

00205 IF EOLN(INPUT) THEN WRITELN;
00206 READ(CH) 3
00207 WRITE(CH)
00208 UNTIL CH IN [' ', 0{t,1,1,1)1];
00209 RESWORD:=REPLACEHSYM;

00210 WHILE (ID<>RESWORDSIRESWORDI) AND (RESWORD<>CONSSYM) DD

00211
00212
00213
00214

0021%

00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240

RESWORD:=SUCC
RESERVE
END;3
END
END (=NEXTSYM*)3;
PROCEDURE READEXP
VAR

(RESWORD);
D:=(ID=RESWORDSIRESWORD])

!

R{VAR SPTR:SYMBEXPPTR);

NXTsHEAD1, TATL1:SYMBEXPPTR;

BEGIN
POP{SPTR

)3

NXT:=SPTR™M.NEXT;

CASE SYM OF .
RPARENSPERIDD:IERROR(1);
ATOMIWITH SPTR™ DD

B

E
LPAREN?

ELSE

EGIN
ANATOM:=TRUE;
NAME:=103
ISARESERVEDWORD:=RESERVED;
IF RESERVED THEN RESSYM:=RESWORD
ND 3 :
WITH SPTR™ DO

BEGIN

NEXTSYM;
IFf SYM=PERIOD THEN ERROR{2)’

FLSE IF SYM=RPAREN THEN SPTR™:=NILNODE
BEGIN

ANATOMs=FALSE;

READEXPR{HEADL);

HEAD: =HEAD] ;

00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252

00253 .

00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269

00270

E

END

NEXT
IF SYM=PERIOD
THEN
BEGIN
NEXTSYM

SYM;

»
?

READEXPR{TAILL);
TAIL:=TAILL;
NEXTSYM;

IF SYM<>RPAREN THEN ERRDOR(4);

END
ELSE
BEGIN

BACKUPINPUT;
REABDEXPRITAILL);

TAIL:=TAIL1
END
END
END (*WITH*)
ND (*CASE*);
SPTRTWNEXT:=NXT
READEXPR) 3

PROCEDURE PRINTNAME(NAME:ALPHA);

VAR
I:
BEGI

END

INTEGER;
N
I:=1;

REPEAT WRITE(NAMELID);

I:=I+1
UNTIL (NAMELI]=!
(*PRINTNAME®);

')y OR (I=11)

27

J8

00271 PROCEDURE PRINTEXPR(SPTR:ISYMBEXPPTR);

00272 LABEL
00273 1;
00274 BEGIN
00275 IF SPTR™.ANATOM THEN PRINTNAME(SPTR™.NAME)
00276 ELSE BEGIN
00277 WRITE(Y(1);
00278 1:WITH SPTR™ DD
00279 BEGIN
00280 PRINTEXPR(HEAD);
- 00281 IF TAIL® . ANATOM AND (TAIL® NAME=INIL 1)
. 00282 THEN WRITE(')")
00283 ELSE
00284 IF TAIL".ANATOM THEN
00285 REGIN
00286 WRITE('.1);
00287 PRINTEXPR{TAIL);
00288 WRITE(V)Y)
00289 END
00290 ELSE BEGIN
00291 WRITE(' ')
00292 SPTR:=TAIL;
00293 6070 1
00294 END
00295 END
00296 END

00297 END (®*PRINTEXPR*) 3

00298 FUNCTIOM EVALIESALIST:SYMBEXPPTR):SYMBEXPPTR;

00299 VAR

00300 TEMPSNILT,STADSTEST,CARDFESCAAROFE:SYMBEXPPTR

00301
00302
00303
00304
00305
00306
00307
00308
00309
003190
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330

29

CHECKQUD:BDOLEAN;
FUNCTION REPLACEH{SPTR1,SPTR2:SYMREXPPTR) :SYMBEXPPTR}
BEGIN .
IF SPTR1IZ.ANATOM THEN ERRORI(5)
ELSE SPTR1IM.HEAD:=SPTR2;
REPLACEH:=SPTR1;
END (#RPLACEH*);
FUNCTION REPLACET(SPTR1,SPTR2:SYMBEXPPTR):SYMBEXPPTR;
BEGIN
IF SPTR1IM.ANATOM THEN ERROR(S) -
ELSE SPTR17.TAIL:=SPTR2;
REPLACET:=SPTR1
END (*REPLACET*);

FUNCTION HEAD(SPTR:SYMBEXPPTR) :SYMBEXPPTR;

BEGIN :
IF SPTR®LANATOM
THEN BEGIN ,
PRINTEXPR{SPTR);
FRROR(7)
END
ELSE HEAD:=SPTR",HEAD
END (*HEAD*);
FUNCTION TAIL(SPTR:SYMBEXPPTR):SYMBEXPPTR;
BEGIN | _
IF SPTR™.ANATOM
THEN BEGIN
PRINTEXPR(SPTR);
ERROR(8)
. END
ELSE TAIL:=SPTR™,.TAIL

50331
00332
00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356
00357
00358
00359
00369

'
=

END (XTAIL*);
FUNCTION CONSU{SPTR1,SPTR2:SYMBREXPPTR):SYMBEXPPTR;
VAR
TEMP:SYMBEXPPTR;
BEGIN
"POP{TEMNP);
TEMP® JANATOM:=FALSE;
TEMP T HEAD:=SPTR1;
TEMP N .TAIL:=SPTR2;
CONSs=TEMP
END (*%CONS*);
FUNCTION COPY(SPTR:SYMBEXPPTR) :SYMBEXPPTR;
VAR :
TEMP,NXT:SYMBEXPPTR;
BEGIN .
IF SPTR™.ANATON
THEN BEGIN
POP(TEMP);
NXT:=TEMP NEXT;
TEMP™:=SPTR™;
TEMP N NEXT:=NXT;
COPY:=TEMP
END
ELSE COPY:=CONS{COPY(SPTR . HEAD)»COPY(SPTR ., TAILY)
END (%COPY*);
FUNCTION APPEND(SPTR1,SPTR2:SYMBEXPPTR):SYMBEXPPTR;
BEGIN
IF SPTR1ITN,ANATOM THEN IF SPTRIT.NAME<>INIL ' THEN ERROR{9)
ELSE APPEND:=SPTR2 ELSE APPEND:=CONS{COPY{SPTR1",HEAD)s» APPEND(
SPTR1™.TAIL»SPTR2)) '

00361
00362
00363
00364

00365 -

00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
. 00385
00386
00387
00388
00389
003990

61

END (*APPEND*);

FUNCTION CONC(SPTRL:SYMBEXPPTR):SYMBEXPPTR;

VAR
SPTR2yNILPTR:ISYMBEXPPTR
BEGIN
IF SYM<>RPAREN THEN
BLEGIN
NEXTSYNM;
READEXPR(SPTR2});
NEXTSYM;
CONC:=CONSISPTRLI,CONC(SPTR2)) 3 -
END
ELSE
IF SYM=RPAREN THEN
BEGIN
NEWINILPTR)Y;
WITH NILPTR® DO
BEGIN
ANATOM:=TRUE;
NAMEt=tNTL !
END;
CONC:=CONS(SPTR1I,NILPTR);
END
ELSE ERROR(10)
END {%CONC*);
FUNCTION EQO(SPTR1SSPTR2'SYMBEXPPTR):SYMBEXPPTR;
VAR : ‘ .
TEMPyNXTISYMBEXPPTR;
BEGIN
POP(TEMP);

00391
00292
00393
00394
00395
00396
00397
00398
00399
00400
00401
00402
00403
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
00418
00419
00420

NXT:=TEMP N JNEXT;
IF SPTR17.ANATOM AND SPTR2™.ANATOM THEN
‘ IF SPTRITMNAME=SPTR2".NAME THEN TEMP":
v ELSE TEMP™:=NILNODE
ELSE IF SPTR1=SPTR2 THEN TEMP":=TNODE"
CELSE TEMPM:=NILNODE;
TEMP T NEXT:=NXT3;
EQQ:=TEMP
END (XEQO*);

| &
N

=TNODE

CFUNCTION EQUAL(SPTR1,SPTR2:SYMBEXPPTR):ISYMBEXPPTR;

VAR
TEMPL,NXT:ISYMREXPPTR;
PROCEDURE EQUATE(SPTR1,SPTR2:SYMBEXPPTR);
BEGIN
IF SPTRl“.ANATOM AND SPTR2%.ANATOM
THEN IF SPTR1".NAME=SPTR2",NAME
THEN TEMP17:=TNODE ELSE TEMP1"™:=NILNODE
ELSE IF (NDOT{SPTR1I™.ANATOM) AND Jprpz «ANATOM)
AND (NOT(SPTR27.ANATOM))) THEN TEMP1”™:
FLSE BEGIN
EQUATE(HEAD(SPTRl),HEAO(SpTRZ)),
IF TEMP1™ NAME='T
THEN TQUAT&(TAIL(SPTRI),TAIL(SPTRZ))5
END
END (*EQUATE#*);
BEGIN (*EGQUAL¥*)
POP{TEMP1);
NXT:=TEMP1".NEXT;
EQUATE(SPTR1sSPTR2);
FQUAL:=TEMP1;

OR (SPTR1I™
=NTILNODE

« ANATOM

00421
00422
00423
00424
00425
00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00435
00437
00438
00439
00440
00441
00442
00443
00444
00445
00446
00447
00448
00449
00450

63

-—

TEMPLI N NEXT:=NXT
END (*FQUAL%*);
FUNCTION LIST{SPTR1,SPTR2:SYMBEXPPTR):SYMBEXPPTR;
VAR
"NULSNXT:SYMBEXPPTR;
BEGIN
POP(NUL);
NXT:=NUL" NEXT;
NUL®t=NILNODE;
NUL®oNEXT:=NXT;
LIST:=CONS{SPTR1,CONS{SPTR2sNUL))
END (*LIST*);
FUNCTION SUBST(SPTR1sSPTR2sSPTR3:SYMBEXPPTR):SYMBEXPPTR;
VAR
TEMP1:SYMBEXPPTR;
BEGIN ‘
TEMP1:=EQUAL(SPTR2,SPTR3);
IF TEMPL . NAME=1T ' THEN SUBST:=SPTR1
ELSE IF SPTR3”,ANATOM THEN SURST:=SPTR3
ELSE SUBST:=CONS{SUBST(SPTR1,SPTR2sHEAD{SPTR3)),SUBSTISPTR1,SPTR2,TAIL
[SPTR3))) .
END (*SUBST*); .
FUNCTION NULL{SPTR:SYMBEXPPTR) ISYMBEXPPTR;
VAR
TEMP4sNXT:SYMBEXPPTR;
BEGIN
POP(TEMPS); .
NXT:=TEMP4" NEXT;
IF (SPTR™M.NAME=TNIL ') THEN TEMP4™:=TNODE
ELSE TEMP4":=NILNODE;

00451
00452
00453
00454
00455
00456
00457
00458
00459
00460
00481
00462
00463
00464
00465
00466
00467
004568
00469
00470
00471
00472
00473
00474
00475
00476
00477
00478
00479
00480

. TEMP4™ NEXTe=NXT;
NULLt=TEMP4
END (*NULL*);
FUNCTION ATOM{SPTR:SYMBEXPPTR)tSYMBEXPPTR;
VAR
TEMPSNXT:SYMBEXPPTRS
BEGIN
POP(TEMP);
NXTe=TEMP" JNEXT; .
IF SPTR™.ANATOM THEN TEMP™:=TNODE
ELSE TEMP™:=NILNODE;
TEMP T WNEXT:=NXT;
ATOM:=TEMP
END (XATOM%);
FUNCTION LDOKUP{KEY,ALIST: SYMBEXPPTR) SYMBEXPPTR,
VAR
TEMP S FUNC:SYMBEXPPTR
BEGIN
TEMP'=EQQ(HEAD(HEAD(ALIST)) KEY);
IF TEMP™WNAME=1'T
THEN LOOKUP: TAIL(HEAD(ALIST))
ELSE BEGIN
FUNC:=TAIL(ALIST);
~ IF FUNCT.NAME=INTL 1
THEN BEGIN
PRINTEXPR(KEY) ;
ERROR(14)
END
ELSE LOCOKUP:=LOOKUP{KEYSTAIL(ALIST))
END

00481
00482
00483
00484
00485
00486
00487
00488
00489
00490
00491
00492
00493
00494
00495
00496
0Cag7
00498
00499
00500
00501
00502
00503
00504
005035
00506
00507
00508
006509
00510

b9

——

END (*%LOOKUP*);
FUNCTION B8INDARGS(NAMES,VALUES:SYMBEXPPTR) ISYMBEXPPTR;
VAR : :
TEMP, TEMP2 :SYMBEXPPTR;
BEGIN
IF NAMES™.ANATOM AND (NAMES™ NAME='NIL 1)
THEN BINDARGS:=ALIST
ELSE BEGIN
TEMP:=CONS(HEAD(NAMES) s EVAL (HEAD(VALUES)»ALIST));
TEMP2:=BINDARGS(TAIL(NAMES),TAIL(VALUES));
BINDARGS :=CONS{TEMP,TEMP2)
END
END (*BINDARGS*);
FUNCTION EVCON(CONDPAIRS:SYMBEXPPTR):SYMBEXPPTR;
VAR :
TEMPs TEST:SYMBEXPPTR;
BEGIN
TEMP:=EVAL{HEAD(HEAD{CONDPAIRS))s»ALIST);
IF TEMP ", ANATOM AND (TEMP™ . NAME=INIL 1)
THEN BEGIN
TEST:=TAIL{CONDPAIRS);
IF TEST . ANATOM AND (TEST . NAME=INIL 1)
THEN BEGIN '
PRINTEXPR(CONDPAIRS);
ERROR(13)
END
FLSE EVCON:=EVCON(TAIL{CONDPAIRS))
END
ELSE EVCON:=EVAL{HEAD(TAIL{HEAD{CONDPAIRS)))I»ALIST)
END (XEVCON*);

00511
00512
00513
00514
00515
00516
00517
00518
00519
00520
00521
00522
00523
00524
00525
00526
00527
00528
00529
00530
00531
00532
00%33
00534
00435
00538
00537
00538
00539
00540

66

FUNCTION NAT(SPTR1I:SYMREXPPTR)}:SYMBEXPPTR;
VAR
TEMPLyNXT:SYMBEXPPTR;
REGIN '
POP(TEMPL);
NXT:=TEMPL1" NEXT;

IF SPTR1™.NAME='T ' THEN TEMP1”:=NILNODE
ELSE IF SPTRIM.NAME='NIL ' THEN TEMPL®:=TNODE
ELSE BEGIN .

PRINTEXPR{SPTR1);
ERRORI{15)
END3
TEMPL T JNEXT:=NXT;
NAT:=TEMP1
END (%NAT FUNCTION%);
FUNCTION EVANDOR(PRED»SPTRLI:SYMBEXPPTR)::SYMBEXPPTR

VAR
TEMP1,TEMP2, TEMP3:SYMBEXPPTR;

BEGIN :
TEMP3:=EVAL{HEAD(PRED)sALIST);

TEMP2:=TAIL(PRED);

IF TEMP2 . NAME<>'NIL ' OTHEN
IF TEMP3~.NAME=NILT™.NAME THEN EVANDOR:=EVANDOR(TAIL(PRED),SPTR1)
ELSE BEGIN | ¢ !

TEMPLt=NAT(NILT); .
IF TEMP3".NAME=TEMPL",NAME THEN EVANDOR:=TEMP3
ELSE BEGIN ' '
PRINTEXPR(PRED);
ERROR(15) ‘
END

00541 END

00542 ELSE EVANDOR:=TEMP?

00543 END (XFEVANDOR%*); .
00544 FUNCTION SETARG(NAM, VAL:SYMBEXPPTR):SYMBEXPPTR;
00545 VAR

00546 TEMPL:SYMBEXPPTR;

00547 BEGIN

00548 . TEMP1:=CONS(HEAD{(NAM),FVAL{HEAD(VAL),ALIST));
00549 SETARG:=CONS(TEMP1,ALIST)

00550 END (*SETARG*);

00551 FUNCTION SEARCH(FPTR:SYMBEXPPTR):SYMBEXPPTR:

00552 VAR

00553 NXT:SYMBEXPPTR;

00554 REGIN

00555 NXT:=FPTR;

00556 WHILE FPTR™,TAIL® NAME<>INIL ' DQ

00557 FPTR:=FPTR™.TAIL; ‘

00558 FPTR™.TAIL:=ALIST; _
00559 SEARCHI=NXT

00560 END (*SEARCH*);

00561 FUNCTIDN BINDVARS{SPTR,VARS:SYMBEXPPTR):SYMBEXPPTR;
005562 VAR , : '

00563 NULSNXTsTEMPOSTEMPLs TEMP2:SYMBREXPPTR;

00564 FUNCTION INITVAL(VARS:SYMBEXPPTR):ISYMBEXPPTR;
00565 BEGIN

00566 IF VARS™.ANATOM AND [VARS™ . NAME=1'NIL 1)
00567 THEN INITVAL:=TEMPO

00568 ELSE BEGIN

00569 TEMP1:=CONS{HEAD(VARS)»NUL);

00570 , TEMP2:=INITVAL{TAILIVARS));

00571
00572
00573
00574
00575
00576
00577
00578
00579
00580
00581
00582
00583
00584
0058%
00586
00587

0058e8"

00589
00590
00591
00592
00593
00594
00595
005956
60597
00598
00599
005660

INITVAL:=CONS(TENMPL, TEMP2)
END :
END; (XINITVAL*)
BEGIN (*BINDVARSH)
POPINUL)Y;
NXT:=NUL"JNEXT;
NUL®:=NILNODE;
NUL®WNEXTt=NXTs
TEMPO:=SEARCH(SPTR);
BINDVARS:t=INTTVALIVARS)
END; (%BINDVARS*)
FUNCTION LOCMARK(KEY,ALIST:SYMBEXPPTR)::SYMBEXPPTR;
VAR
TEMP,FUNCISYMBEXPPTR:
BEGIN
FUNC :=HEAD{HEAD(ALIST));
IF FUNC”™.ANATOM

THEN IF FUNC”™.NAME='COND '
THEN BEGIN
FUNC:=TAIL(HEAD(ALIST)); ‘
WHILE NOT (FUNC M TAIL® NAME=INIL 1) DO

CFUNCt=FUNC . TAIL;
LOCMARK : =L OCMARK(KEY> TAIL{HEAD(FUNC)))
| END
ELSE BEGIN
FUNC:=TAIL{ALIST);
IF FUNC™.ANATOM AND (FUNC . NAME='NIL)
THEN LOCMARK:=LOCMARK(KEY,TATL(HEAD(ALIST)))
ELSE LOCMARK:=LOCMARK(KEY,TAIL{ALIST))
END

69

00601 ELSE BEGIN

00602 TEMP:=EQQ(HEAD(HEAD{HEADIALISTI))LKEY); ,

00603 IF TEMP" (NAME='T ' THEN LOCMARK:=HFAD(TAIL(HEAD(ALIST)))
00604 ELSE LDOCMARK:=LOCMARKIKEY, TAIL({HEAD(ALIST)))

00605 END

00606 END; (*LOCATE MARKS*)

00607 BEGIN [FEVAL*)

00608 IF E7.ANATOM THEN EVAL:=LOCKUP(ESALIST)

00609 ELSE BEGIN

00610 CAROFE:=HEAD(E);

00611 ; IF CAROFE”™.ANATOM

00612 ’ THEN IF NOT. CAROFE®,ISARESERVEDWORD

00613 THEN EVAL:=EVAL(CONS(LDOKUP(CARDFE,ALIST)»TAIL(E)),ALIST)

00614 ‘ ELSE CASE

00615 CARQFE®,RESSYM OF

00614 SETQSYMsDEFINESYMs LABELSYM, LAMBDASYMIERROR(3)3
00617 QUOTESYMIEVAL:=HEAD(TAILI{E));

00618 NULLSYM: EVAL:=NULL(EVAL(HEAD(TAIL(E))sALIST)});

00619 EQUALSYM: EVAL:=FEQUAL(EVAL{HEAD(TAILIE)) ALISTI»EVAL{HEAD(TAIL(TAIL{E)
00620 YI»ALIST)) '

00621 ATOMSYM: EVAL:=ATOM{EVAL(HEAD(TAIL{(E) IS ALIST)); ,

00622 EQSYM: EVAL:=EQQUEVAL(HEAD(TAIL(E))»ALIST),EVAL (HEAD(TAIL(TAIL(E)
00623 Y)sALISTY) ;

00624 NOTSYM: EVAL:=NAT(EVAL(HEAD(TAIL(E)),ALIST));

00625 ORSYM: BEGIN

00626 POPINILT)S

00627 STAD:=NILT . NEXT;

00628 ' NILT®¢+=NILNODE;

00629 NILT® NEXT:=STAD;

00630 EVAL:=EVANDOR(TATL(E),NILT)

00631
00632

533

634
005635
00636
00637
00638
00639
00640
00641
00642
00643
00644
00645
00040
004h47
00648
00649
00650
00651
00452
00653
00654
00655
00656
00657
00658
61659
00660

70

v END;
ANDSYM: BEGIN
POPI(NILT);
STAD:=NILT ™ NEXT;
NILT":=TNQODE;
NILT®oNEXT:=STAD;
EVAL:=EVANDOR{(TAIL(E)»NILT)
END;
HEADSYM: EVAL:=HEAD{(EVAL{(HEAD(TAIL(E)),»ALIST));
TAILSYM: EVAL:=TAIL(EVAL({HEADI(TAILIE)),ALIST)Y);
CONSSYM: FVAL==CDRS(FVAL(HEAD(TAIL(E))pALIST);FVAL(HEAD(TAIL(TAIL(F)))
s ALIST)Y);
CONDSYM: EVAL:'=FEVCON{(TAIL(E));
CONCSYM: 3
APPENDSYM:
EVALs=APPENDIEVALIHEAD(TAILA(E))LALIST)»EVAL(HEAD(TAIL{TAIL
{E)))sALISTY) ;
LISTSYM: EVAL:=LIST(EVALUHEAD{TAILI{E)},ALIST),EVALIHEAD
{TAILLTAIL{E)))Y»ALIST));
SUBSTSYM: EVAL: SUBST(EVAL(HtAO(TAIL(F)))ALIST);¢VAL(HEAD(TAIL(TAIL
(E))):AL’ST);EVAL(HFAD(TAIL(TAIL(TAIL(E)))) ALIST))3
REPLACEHSYM:
EVAL:=REPLACEHIEVALIHEAD(TATILI(E))»ALIST)»EVAL (HEAD(
TATL(TAIL{(E)})SALISTY);
REPLACETSYM: EVAL: ‘QEPLACET{EVAL(HFAD(TAIL(E));ALIST);EVAL(HEAD(TAIL(TAIL
(E)}YLALIST));
PROGSYM: BEGIN
TEMP:=BINDVARSITAILI{TAILIE))L HEAD(TAIL(ED)));
EVAL:=EVAL{HEAD(TAIL{TAILIE))Y) TEMP)
END;

00661
00662
00663
00664
00665
006656
60667
00668
00669
00670
00671
00672
00673
00674
00675
00676
00677
00678
00679
00680
006381
00682
00683
00684
00685
00686
00687
00688
00689
060690

11

GOSYM: EVAL:=EVAL{HEAD(TAIL(E))sALIST);
RETURNSYM: EVAL:=EVAL(HEADI(TAIL(E)),ALIST);
END (*CASEX)
ELSE
BEGIN
CAARQFE:=HEAD(CARDFE);
IF CAAROFE™.ANATOM
THEN IF NOT.CAARDFE”™.ISARESERVEDWORD
THEN EVAL:=EVAL(LOCMARK(CAAROFESALIST)SALIST)
ELSE IF NOT (CAAROFE™.RESSYM IN [SETQSYMyDEFINESYMsLABELSYMsLAMBDASYM])
THEN ERROR(12)
o ELSE CASE CAARGFE“.RESSYﬁ OF
SETQSYM: BEGIN
TEMP: —SETARG(TAIL(CAPOFE),TAIL(TAIL(CARUFE))):
EVAL:=EVAL(HEAD(TAIL(E))s TEMP)
END;
DEFINESYM: BEGIN
TEMP: SEAQCH(?AIL(uAROFE));
EVAL:=EVAL(HEAD{TAIL{EY)» TEMP)
END;
LABELSYM:
BEGIN :
TEMP:=CONS{CONS(HEAD(TAIL(CAROFE))»HEAD(TATIL(
" TAIL{CAROFE))))»ALIST);
EVAL:=EVAL(CONS{HEAD(TAIL(TAIL(CARDFE)))»
TATL(E))» TENMP)
‘ END 3
LAMBDASYM:
BEGIN
TEMP:=BTINDARGS (HEAD{(TAIL{CARDFE)),TAIL(E));

00691
00692
00693
00694
00695
00696
00697
00698
00699
00700
00701
00702
00703
00704
00705
00706

00707,

00708
00709
00710
00711
00712
00713
00714
00715
00716
00717
00718
D0719
00720

12

EVALS=EVAL(HEAD(TAIL(TATIL(CARQOFE)))» TEMP)
END
END (%CASE¥)
ELSE :
EVAL:=EVAL(CONS(EVAL(CARIFE,ALIST)» TAIL(E))SALIST)
END
END
END (*EVAL*);
PROCEDURE INITIALISE;
VAR
I:INTEGER;
HEADLsTAILL1sTEMPSNXT:SYMBEXPPTR;
BEGIN
ALREADYPACKED:=FALSE;
READI(CH) ;.
WRITETCH) ;
NUMBEROFGCS:=0;
"FREENODES:=MAXNDODES;
WITH NILNODE DO
BEGIN
ANATOM:=TRUE;
NEXT:=NIL;
NAME:=t'NIL '3
STATUS:=UNMARKED;
ISARESERVEDWORD:=FALSE
END;
WITH TNODE DO
BEGIN
ANATOM s =TRUF;
NEXT:=NIL;

00721 NAME:=1T 's

00722 STATUS :=UNMARKEDS
00723 ISARESERVEDWORD:=FALSE
00724 END3
00725 {*ALLOCATE STORAGE AND MARK IT FREE*)
D0726 FREELIST:=NIL:
00727 {*3R-»W300008B%)
00728 FOR I:=1 TO MAXNODES DO }
00729 BEGIN
060730 NEW(NODELIST);
00731 NODELIST " NEXT:=FREELIST;
00732 ' NODELIST”.HEAD:=FREELIST;
00733 NODELIST o STATUS :=UNMARKED;
00734 FREELIST:=NODELIST
00735 END
00736 (*INITIALISE RESERVED WORD TABLEX)
060737 RESWORDSIREPLACEHSYMI:='REPLACAR 73
00738 RESWORDSIREPLACETSYMI:='REPLACOR '3
00739 RESWORDS{HEADSYM]I:="CAR v
00740 RESWORDSCTAILSYMI:=7CDR H
00741 RESWORDSICOPYSYHMI:=1CQOPY v
00742 RESWORDSTAPPENDSYMI:=VAPPEND '3
00743 RESWORDSICONCSYMI:=*CONC b
00744 RESWORDSLCONSSYM]I:="CONS '
00745 RESWORDSLEQSYMI:="'EQ '3
007406 RESWORDSIQUOTESYM]:=1QUOTE '3
00747 RESWORDSLATOMSYMIt="ATOM '
00748 RESWORDSINOTSYMI:="'NOT. ' '
00749 RESWORDSIORSYMI:=70R '3

!

00750 RESWORDSIANDSYMI:="'AND

00751
00752
00753

00754 .

00755
00756
00757
00758
00759
00760
00761
00762
00763
00764
00765
00766
007&7
00768
00769

00770 .

00771
00772
00773
00774
00775
00776
00777
00778
00779
007890

RESWORDS[CONDSYMI:="COND
RESWORDSLLABELSYMI:=1LABEL

RESWORDSILAMBDASYMI:="LAMBDA

RESWORDSISETOQSYMI:='SETQ
RESWORDSIDEFINESYMI:=1DEFINE
RESWORDSIPROGSYMI:=1PROG

RESWORDSIGOSYMI:=1GD v

RESWORDSIRETURNSYMI:=1RETURN
RESWORDSINULLSYMIt=tNULL
RESWORDSCEQUALSYMI:=1EQUAL
RESWORDSCLISTSYMI:=1LIST
RESWORDSI{SUBSTSYMI:="SUBST

- e
- e

.
A
1

LTS

'3

1
'
'

!.;

's

(*INITTALISE THE A-LIST WITH T AND NIL

POP(ALIST);
ALIST N JANATOM:=FALSE;
ALIST,STATUS:=UNMARKED;
POP{TAILL);
ALIST . TAIL:=TAILL1;
NXTe=ALIST N TAIL®,NEXT;
ALIST . TAIL”:=NILNODE;
ALIST o TAIL" JNEXT:=NXT;
POP(HEADL);
ALIST” .HEAD:=HEAD1;
(*BIND NIL TO THE ATOM NIL
WITH ALIST .HEAD" DO
REGIN v
ANATOM$=FALSE;
STATUS : =UNMARKED
POP{HEADL);
HEAD:=HEAD1;

%)

74

%)

00781

00782
00783
00784
00785
00786
00787

00788 .

00789
00790
00791
00792
00793
00794
00795
00796
00797
00798
00799
00800
00801
00802
00803
00804
00805
00805
00807
00808
00809

00810

NXT:=HEAD™ JNEXT;
HEAD®s=NILNODE;
HEAD® JNEXT t=NXT;
POP(TAILL);

TAIL:=TAIL1;
NXT:=TAIL " NEXT;

TAIL®:=NILNODE;
TATIL®JNEXTt=NXT
END 3

POP(TEMP);
TEMP™ JANATOM:=FALSE;
TEMP N STATUS:=UNMARKED;
TEMP®. TAIL:=ALIST:
ALIST:=TEMP;
POP(HEADL);

ALIST®.HEAD:=HEAD];

(¥BIND TO THE ATOM T
WITH ALIST .HEAD" DO
BEGIN
ANATOM:=FALSE;
STATUS :=UNMARKED;
POP(HEADL);
HEAD:=HEADL;
NXT:=HEAD" JNEXT;
HEAD®:=TNODE;
HEAD™ NEXT:=NXT;
POP(TAIL1)Y;
TATL:=TAILYl;
NXT:=TAIL" NEXT;
TAIL®:=TNODE;

*)

79

00811

00812
00813
00814
00815
00816
00817
60818
00819
00820
. 00821
. 00822
00823
00824
00825
00826
00827

00828,

00829
00830
00831
00832
00833
00834
00835
00836
00837
00838
00839
00840

TAIL® JNEXT:=NXT;
END;

END (XINITIALISE®);
BEGIN (LISP*)

2

WRITELN(YXEVAL®')3
INITIALISES
NEXTSYM; .
READEXPRIPTR);
READLN;
WRITELN:
WHILE NOT PTR .ANATOM OR (PTRT.NAME<>'FIN
BEGIN
WRITELN;
WRITELN{Y®VALUE%®?);
PRINTEXPR{EVALIPTIR,ALIST));
12 WRITELN;
WRITELN;
I1F EQF(INPUT)Y THEM ERROR{11)};
PTR:=NIL;
GARBAGEMAN;
WRITELN;
WRITELN;
WRITELN{VHEVALX");
NEXTSYM;
READEXPRI(PTR);
READLN;
WRITELN
END;
WRITELN;
WRITELN;

'y DO

00841
00842
00843
00844
00845

WRITELN('TOTAL NUMBER OF GARBAGE CODLLECTIONS='s NUMBEROFGCS:3s'.')

WRITELN;

WRITELN(YFREENODES LEFT UPON EXIT=1,FREENODES:3,%.%);

WRITELN;

END.

(=LISP*)

17

.

H

APPENDIX - B
(RESULTS)

78

SEVAL*
(CAR (QUOTE ((A B) (A B C))))
YALUE
(A B)
GARBAGECOLLECTION.
NUMBER OF FREE NODES BEFORE COLLECTICN=568.,
NUMBER OF FREE NODES AFTER COLLFCTION=591,
EVAL
(CDR (QUOTE ((A B) (A B C))))
YALUE
(CA B C))
GARBAGECHLLECTION.

NUMBER OF FREE NODES BEFORE COLLECTION=568,
NUMBER OF FREE NODES AFTER COLLECTION=591.

3

EVAL

(CONS (QUOTE A) (QUOTE (B C)))
VALUE
(A8 0C)

GARBAGECOLLECTION,

NUMBER OF FREE NODES BEFORE COLLECTION=571.
NUMBER OF FREE NODES AFTER COLLECTION=591.

SEVAL¥ _ | _
(APPEND (QUOTE (A 8)) (QUOTE (C D)))

EVALUEH

(A B C D)

GARBAGECOLLECTION.

NUMBER OF FREE NODES BEFORE COLLECTION=564.,
NUMBER OF FREE NODES AFTER COLLECTION=591.

¥EVAL*
(LIST (QUDTE (A B)) (QUOTE (C D)))

*VALUEX :

(€A 8) (C DY)

GARBAGECOLLECTION,

NUMBER OF FREE NODES BEFORE COLLECTION=565,
NUMBER OF FREE NODES AFTFR COLLECTION=591.

FEVAL* '
(REPLACAR (QUOTE ((A B) B C)) {QUOTE A))

*VALUES
(A B C)
GARBAGECOLLECTION.

NUMBER OF FREE NODES BEFORE COLLECTION=566,
NUMBER OF FREE NODES AFTER COLLECTION=591.

81

FEVAL*
{(REPLACDR (QUDTE (A (A BR))}) (QUDTE B))

*VALUE=®
(A.B)

GARBAGECOLLECTION,

NUMBER OF FREE NODES BEFORE COLLECTION=568.
NUMBER OF FREF NODES AFTER COLLECTION=591,
SEVAL®
(CLABEL MEMBER (LAMBDA (X Y) .
(COND {(NULL Y) [OUOTE NIL))
((EQUAL X (CAR Y)) [QUOTE T))
((QUGTE T) {MEMBER X (CDR Y))))))
(QUOTE (A 8))
(OUDTE (C D A B (A B))))

KYALUE*
.
GARBAGECOLLECTION.

NUMBER OF FREE NODES BEFORE COLLECTION=388.
NUMBER OF FREE NODES AFTER COLLECTION=591,

82

EVAL
((DEFINE (MEMBER LAMBDA (X Y)
(COND ((NULL Y) (QUOTE NIL))

{(EQUAL X (CAR Y})) (QUOTE T))
{(QUOTE T) (MEMBER X (CDR Y)))))

(UNION LAMBDA (X Y)
(COND ((NULL X) Y)
((MEMBER (CAR X) Y) (UNION (CDR X) Y))

{((QUDTE T) (CONS (CAR X) (UNIGN (CDR X) Y}V
(UNION (QUOTE (A B C D)) (QUOTE (A E F B G H)II))

*YALUE®
(CDAEFBGH

GARBAGECDOLLECTION.

NUMBER OF FREE NODES BEFCRE COLLECTION=407.
NUMBER OF FREE NODES AFTER COLLECTION=1191.

83

*EVAL¥
({DEFINF (REVERSE LAMBDA (X)
' (PROG (U V)
((SETC U X)
{(A)Y (COND ((NULL U) (RETURN V))
{(QUOTE T) ((SETQ V {CONS (CAR U) V))
({SETQ U (CDR U))
(GO (A1))
{REVERSE {QUOTE (A B D E F G H))))
ZVALUE*

(H G FEDEB A)

GARBAGECDLLECTIDON.

NUMBER OF FREE NODES BtFORE COLLECTION=937.
NUMBER OF FREE NODES AFTER COLLECTION=1191,

*EVALX
(AND {QUOTE T) (QUOTE T) (QUOTE NILY)

*VALUEX
NTL
GARBAGECOLLECTION,

NUMBER GF FREE &DDES BEFORE COLLECTION=1169,
NUMBER 0OF FREE NODES AFTER COLLECTION=1191,

84

*EVALX
(OR (QUOTFE NIL) (QUOTE NIL) (QUOTE T1))

*YALUEX

T

GARBAGECOLLECTION.,

NUMBER OF FREE NODES BEFORE COLLECTION=1169.
NUMBER OF FREE NODES AFTER COLLECTION=11091,

REVAL*
(NOT (DR (QUOTE NIL)Y (QUOTE T)))

*VALUEX
NIL

APPENDIX - C
(FLOW DIAGRAMS)

85

bo NoT CHANGE
CuaRAcTER VARIARLE'
TNPE | ‘
Rool. ' = FAL&e y

Y

" READ THE NEXT

NON BLANK CHARACTER
FROM TwHE INFUT

G .. EXPRESSIeN |

i —
ASSIGN ITS TYPE
To THE TYPE vagiaBLé
ReEAd THE NEXT ’
cnAaRaeTeER

vAN‘\S‘-i’S
enaracTeR Y TIPE @

v Yo
16 An ATe™M

READ THE NAME
e wweTHeR

TS A &ES"-V\“"”
WekD

p .
Ro CEDURE NEXTSYRBOL

Pop(3PTR)

AToM

LPAREN
CHARACLTER

p_pap.EN .
CHAR A cTER

WRITE ThE ~NAME

IN o Twe MobE‘)
WwHETHER

CHECK
RE 559_\I€b

NobE

CALL.
C CALL

Y

1S A LIST NobE

ReApE x PR (SPTRY. WEAD) |

NEXTSYHBOL |

R PAREN

wWRiTE NIl
AN TWE NobE

AS TT'S NafE

ERROR

CHARACTER

CALL NExT3yméol »
cALL READER pRE SPTR TArL))

Peg]ob
catl ~ExTSIHRL |

I THE
ESWoN ,’

. PRocepbugre

INSERT ABDITIoNAL

LEFT PARENTHELS
N PYT ENPR~

catL Readexer

READEXPR(SPTR)

mem NAME

-~

eNbD

CALL
pRinTex PR (SPTRLHEAD)

1

R

sprrA Tl

A vaME
S

“{ sere := sfrRTan

CALL

PRoCEDURE

WRITE

prin TEX PR (SPTR) .'M\L))

\

INRITE O/ '
'

\ ’
)

PRINTEXPR (SPTRY

IWRITE B ,

END

1S

[sevs, peeine, LABES
LAMEDA |

Y

.o

89

4

EvAL = LooR U

ALIST

THE VALUE oW } | .
ND)}

an

oL THE
W TWE
wWolkbds

scaren €
cuneTion
RESERVED
~ABLE]
EVvALLI T
PEKPoK"\ THE
FuUNCLTION OVEK
TH& AK&\)(‘{E‘NT$
AFTGK'E\IALUAT\JQ

e Twe M ‘J

I FUNCTION evaL (€, Aus{) .

9o

 EVAL !z EVALUATE
cons (EvAL (cAR of €, AL\;T)/

CcDR of E) /

EVAL = EVALUATE
Tve ouB Ex PLE s Sond

THAT 1S folLeWED ‘
Ry THE \.AQEL-HA&\« 5

[setq,bEFINE,
LARBEL, LAMADA

FUN Evar .
. CTioN E\/_‘\h(.e/ AL) ST) (cow'nuuer:) »

N

START I

INITIALTSE THE SYSTEM

A 4

\{/
CALL NExT &M oL

/
¢ - ExPRESLION

LREAD TwWE

S - EafRESS oV
AN ATof

EVALVATE THE SpExPKE’SS\w\/I

A

PRINTOUT THE RESULTANT

E x PRESSION

i’ B
[LALL CARAACEHAN

(—

¢ v
LISP" INTERPRETER

APPENDIX - D
(REFERENCES)

92

10.
11,
12,

13.

14.

15,

93

B.F. Green, "Computer Languages for Symbol

" manipulation®, IRE Trans.,, HFE2 (March 1961).

B. Raphael, “Aspects and applications of symbol
manipulation", Proc. 21lst Natl. Conf., ACM (Aug 1966).

M.V, Wilkes, "Lists and why they are useful",
Proc. 19th Natl. Conf. ACM (Aug 1964).

J.E. Sammet, "Formula manipulation by Computer®,
TROO.1363, IBM Systems Development Division,
Poughkeepsic, N.Y., (Nov. 1965).

John McCarthy, "“"Recursive Functions of Symbolic
expressions and their Computation by Machine", Comm,
of ACM (April 1960). :

Abrahams, P., “"Digital Computer User's Handbook
(McGraw Hill 1967). '

YAn over-view of the state-of~the-Art in symbol
manipulation®, Comm. ACM (Aug. 1966).

John McCarthy et al, "LISP 1.5 Programmers Manual',
(MIT Press, 1962). :

Winston, B,K., Horn, B., K., P., "LISP" (Addison-
Wesltey, 1981).

K. Jensen and N.Wirth, "Pascal User Manual and
report", (Springer Verlog, 1978).

W. Taylor, and L, Cox, "The Essence of LISP
interpreter®, Pascal News, PUG, (Sept., 1980).

H. Schorr, and W.M. Waite, “An Efficient Machine-
Independent. Procedure for Garbage Collection in
various List Structures", Comm. ACM, (Aug., 1967).

Y. Kishan Reddy, and R. Sadananda, “A Structured
Implementation of LISP for Pedegogical Purposes”,
proceedings of A Natl. seminar on COMPUTER AND THE
SOCIETY, College of Engg., Anna University, Madras,
India, Feb, 23-24 (1983).

A Darlington, P. Henderson, and D.A. Turner,
"Functional Programming and its applications"
(Cambridge).

J.P. Fitch, and A.C. Norman, "Implementation of
LISP in a high level language", Software Practice
and Experience (1977).

16,
17,
18.

19,

94

Carlo Ghezzi, and Mehd Jazayeri, "Programming
Language Concepts® (John Wiley & Sons, Inc.)

Paul W. Abrshams, "Symbol manipulation Languages",
Advances in Computers, Vol. 9, 1968, pp. 51-110.

Wirth N., "On the design of Programming Languages"
in IFIP Congress 74, Vol.2: Software, 1974, 386-393 .

Wirth N., "An assessment of the Progfamming Lahguage
PASCAL", IEEE trans., Software Engg., SE-1,2,
pp. 192-198 (June 1975),

	TH23490001
	TH23490002
	TH23490003
	TH23490004
	TH23490005
	TH23490006
	TH23490007
	TH23490008
	TH23490009
	TH23490010
	TH23490011
	TH23490012
	TH23490013
	TH23490014
	TH23490015
	TH23490016
	TH23490017
	TH23490018
	TH23490019
	TH23490020
	TH23490021
	TH23490022
	TH23490023
	TH23490024
	TH23490025
	TH23490026
	TH23490027
	TH23490028
	TH23490029
	TH23490030
	TH23490031
	TH23490032
	TH23490033
	TH23490034
	TH23490035
	TH23490036
	TH23490037
	TH23490038
	TH23490039
	TH23490040
	TH23490041
	TH23490042
	TH23490043
	TH23490044
	TH23490045
	TH23490046
	TH23490047
	TH23490048
	TH23490049
	TH23490050
	TH23490051
	TH23490052
	TH23490053
	TH23490054
	TH23490055
	TH23490056
	TH23490057
	TH23490058
	TH23490059
	TH23490060
	TH23490061
	TH23490062
	TH23490063
	TH23490064
	TH23490065
	TH23490066
	TH23490067
	TH23490068
	TH23490069
	TH23490070
	TH23490071
	TH23490072
	TH23490073
	TH23490074
	TH23490075
	TH23490076
	TH23490077
	TH23490078
	TH23490079
	TH23490080
	TH23490081
	TH23490082
	TH23490083
	TH23490084
	TH23490085
	TH23490086
	TH23490087
	TH23490088
	TH23490089
	TH23490090
	TH23490091
	TH23490092
	TH23490093
	TH23490094
	TH23490095
	TH23490096
	TH23490097
	TH23490098
	TH23490099
	TH23490100

