
('LISP~)
-A PASCAL IMPLEMENTATION FOR

PEDAGOGICAL PURPOSES

Dissertation submitted to the Jawaharlal Nehru University
in partial fulfilment of the requirements for the

award of the Degree of
MASTER OF PHILOSOPHY

"' YALA KISHAN REDDY

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-110067, INDIA
1983

CERTIFICATE

The research work embodied in this dissertation

has been carried out in the School of Computer and

· Systems Sciences, Jawaharlal Nehru L!niversi ty, New Delhi.

The work is original and has not been submitted in part

or full for any other degree or diploma of any University.

6\. !J~/)1,
(Dr. R. Sadananda)
Acting Dean ·
School of Computer and
Systems Sciences
Jawaharlal Nehru University
New Delhi - 110067.
INDIA

~ '1~~~ ~~
(Y. Kishan Reddy)

Student

{Dr. R. Sadananda)
Supervisor

ACKNOWLEOOEMENTS

It is indeed a pleasure to acknowledge the

guidance of Dr. R. Sadananda. His scholarly guidance,

enthusiastic' encouragement and constructive criticism

enabled me to learn much from this experience.

For access to the computer and other facilities,

I am grateful to the Dean, School of Computer and Systems

Sciences, Jawaharlal Nehru University.

My thanks due to Mr. Mohan Reddy and Mr. Krishna

Rao o:f N.I.C._ for introducing me to CYBER-170 system at

National Informatics Center, New Delhi. My thanks also

due to all my colleagues and friends for their

encouragement in carrying_out this work.

Mr. S.K. Sapra deserves special mention fo-r his

prompt and efficient typing.

New Delhi

October, 1983

v~~et.A~'1
(Y. Kishan Reddy)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

2.1

2.1.1

2.4

3.1

3.2

3.3

3.4

3.4.1

3.4.2

CONTENTS

I - Th!TRODOCTION

Introduction

What is symbol manipulation

Requirements of symbol manipulating languages

LISP and its symbol manipulating features

Scope of the dissertation

Language processing - Definitions

Representation of lists - External and internal
representations

II - LISP FUNCTIONS

- The LISP Language

Symbolic expressions

Basic functions of LISP

-
-

QUOTE, CAR, CDR, CONS, EQ, ATOM, LAMBDA,. ~nd .
COND fonns

A Universal LISP function - LABEL function

Extended LISP functions
APPEND, LIST, SUBST, PROG, SETQ, EQUAL, NULL,
GQ, RETURN and DEFlliE

List structure operators
REPLACAR & REPLACDR

Logical connectives

AND, OR, and NOT functions

III- IMPLEMENT AT ION

Memory organization

Environment

Garbage collection

LISP input/output

Reading an S- expression

Print an S-expression

1

n
2
~
3
~

5 ~.

lU
10
11

16

.19

~~-
'

27
•'

·~·':»

JO
JO
a·'l

3.5

. 3.6

3.'7

3.8

4.1

Procedure POP

Procedure INITIALIZE

EVAL function, and its local functions

- Organization of the interpreter

IV - DISCUSSION AND CONCLUSIONS

- Discussion and conclusions

APPENDIX-A

Interpreter Program

APPENDI~B

Results

APPENDIX~C

Flow (iiagrams

APPEND IX-0 _

References

41

49

79

CHAPTER- I

(INTRODOCTION AND DEFlNITIONS)

1

Symbol manipulation activity is taking a central

role in computing sciences. I~ is thus, increasingly being

considered that computer is a symbol manipulator as opposed

to the view of computer as a number cruncher. This view

point is more general, and enables computers to handle ever

increasingly complex data-structures and sophisticated

descriptive schema. This is so, particularly in the areas

such as : algebraic formula manipulation, information

retrieval, computational linguistics, automatic decision

making, Artificial Intelligence, Medical diagnostics,

Robotics and other important applications. Several papers

in the litrature describe the advantages and techniques of

symbol processors [l-4] •

1.2 WHAT IS SYMBOL MANIPULATION ?

Symbol manipulation is a branch of computing

concerned with the manipulation of unpredictably structured

dat~. Most scientific and business data processing is

characterised by the manipulation of data of known length

and fo:rmat. In contrast, the size and format of the data

involved in symbol manipulation are not known in advance

and vary greately during the run of a program. These data

are in the form of variable length lists. A list is a

sequence of elements each of which is a data item. A

multilevel list is one in which the data items may themselves

be lists. The latter are called sublists of the multilevel

lists. An overview of the state of the art in symbol

manipulation can be found in ACM (7].

1.3 REQUIREMENTS OF SYMBOL MANIPULATJNG LANGUAGES :

Any Programming Language for symbol manipulation must

meet two major requirements. First, there must be appropriate

way of representing iists both on paper (the external

representation) and in the computer memort (the internal

representation). Second, there must be appropriate functions,

statement types, subroutines, and other linguistic devices for

specifying operations on lists.

The operations common to all symbol manipulation

languages are ~hose involving the creation and decomposition

of lists. At a minimum, it must be possible to create a list

by combining existing elements of lists, and to ext~ct a

portion of a list. A general exposition of symbol manipulation

languages, using LISP as an example was written by Abrahams,

P. [6).

1.4 LISP AND IT'S SYMBOL MANI'PULATJNG FEATURES :

Of all existing programming 'languages available to-day

LISP, perhaps, comes closest to being a symbol manipulating

language [9] • LISP was originally designed by John McCarthy f 5)

a mathematician~and the purpose was to develop a mathematically

complete and sound language. It is also des~gned to allow and

infact it encourages recursive programm~ng.

The following are some of the important features of

LISP :

1. LISP has got a high-level notation for lists,

2. LISP is oriented towards programming at a terminal

with rapid response. All programs and all data can

be displayed or altered at will,

3. LISP functions and LISP data have the same form.

One LISP function can analyse another and a set

of. other functions. one LISP function can synthe.sis

a set of other LISP functions which happens to be

the basis of automatic progra~ming•

4. Over a period of last few decades most of the well

knovm work in the area of Artificial Intelligence

has been .carried out in LISP, and therefore the
. .

best tools for editing and debugging are available

with LISP.

1.5 SCOPE OF THE DISSERTATION :

This work presents ~ PASCAL implementation of LISP, .,.

as an experiment· for developing software in a high-level

structured language. PASCAL is a general purpose language

designed by Niklaws wirth,. and has come-up as a result of

the movement for structured programming. PASCAL has powerful

data types and encourages a ToP-down design method.ology.

Because of these, and other reasons PASCAL is now available

widely and there is an increasing number of users who are

defecting from FORTRAN to PASCAL. Some of the advanced

general purpose languages which are being now developed

have many common features with PASCAL.

1. 6 LANGUAGE PROCESSDJG :

Definition : The software using which the computer

uses to understand the commands in an artificial language,

supplied by the user is generally termed as the "LANGUAGE

PROCESSOR".

Language processing can be broadly classified into

two types :

1. Translation,

2. Interpretation

TRANSLATOR : A Translator is ~ program that tran~lates a

source language program into its equivalent object language

program.

Assemblers, Compilers, and Conversion Programs are

come under this category.

INTERPRETER : An Interpreter is a program that accepts a

source language program, written-in-a highlevel language,

and appears to execute it, as if it were in machine language

form and produces the corresponding result as its out-put.

More precisely, an interpreter repeatedly executes

the following sequence.

1. Get the ·next statement,

2. Determine the actions to be executed,

3. Perform the actions.

This sequence is very similar to the pattern of actions

carried out by a traditional computer; that is,

1. Fetch the next instruction

(i.e~ the instruction whose address is specified

in the PC) and increment it.

2. Decode the instruction.

3. Execute the instruction.

This similarity shows that interpretation can be viewed

as a simulation, on a host computer, of a special purpose

machine whose machine language is the higher level language.

Pure interpretation and pure translation are two extremes.

In practice, many languages are implemented by a combination

of the·two techniques. In a purely interpretive solution,

executing a statement may require a fairly complicated

decoding process to determine the operations to be executed

and their operands. In most cases, this process is identical

each time the statement is encountered. Consequently, if the

statement appears in a frequently executed part of a program

(e.g., an-inner loop), the speed of execution is strongly

affected by the identical decoding process. On the other

hand, pure translation generates machine code for each high

level statement. In doing so, the translator decodes each·

high-level statement once only. Frequently used parts are

then decoded ~any times·in their machine language representation.

Since this is done efficiently by hardware, pure translation

can save processing time over pure interpretation. However,

language processing by interpretation is deferred until data

attributes have been bound. This makes interpreters

particularly easy to construct, and they are therefore widely

used despite execution-time inefficiencies. Virtually all

processors for LISP and for APL and most of those for SNOBOL

are interpreters.:
. -

1.7 REPRESENTATION OF LISTS :

We f-irst consider the extemal representation of

lists. For specialized lists such as character strings and

algebraic expressions, there are natural written representations.

'6

Thus a character string may be written by writin~ down the

characters one after another enclosing the entire ~group in

quote marks to show where it begins and ends. An algebraic

expression may be written, for example, in one of the forms

used for arithmatic expressions in scientific programming

languages.

For more general lists, the ~ost frequently used

written representation of· a list written in sequenee,.

delimited by blanks and enclosed in perantheses. Thus,

(RAT 2 CAT)

represents the list whose three elements are the

character string RAT, the number 2, and the character

string CAT.

((RAT 3) (CAT 5))

represents a list whose elements are two sublists.

Each of these sublists in turn has two elements.

Now, we shall study how lists are represented in the

computer memory. Lists are stored as structural fonns b~il t

out of computer words as a parts of trees. In representing

list structures in the computer memory there are two

possibilities for a computer word, which may be either an

atom or a list. An atomic word is a string of atmost ten

characters. Whereas a list word is a rectangle devided into

two sections called the "head" and the 11 tail11 • Where "head"

and "Tail" are addresses.that.point to some other 5-expressions.

Now we represent the atomic word 'NAME' in the

computer as

: atemic word :

It is convenient to indicate NIL by

·---n
____ jLJ

instead of

Following are some diagr~mmed S-expressions, shown

as they would appear in the computer.

(A. B) ---

(ABC)

((A.B) C (D.~))

8

It is possible for lists to make use of common subexpressions.

((A.B) C (A.B)) could also be represented as :

Circula~ lists are ordinarily not permitted. They may not be

read in. However, they can occur inside the computer as the

result of computations involving certain functions. Their

printed representation is infinite in length. For example,

the structure:

will print as:

(ABC ABC ••••)

CHAPTER- II

· (LISP FUNCTIONS)

10

2~i1 THE LISP LANGUAGE :

LISP is a formal mathematical language. It is therefare

possible to give a concise, yet complete description. LISP

differs from most programming languages in three important

ways. The first way is in the nature of the data. In the

LISP language, all data are in the form of symbolic expressions

usually referred as $-expressions. 5-expressions are of

indefinite length and have a binary tree type structure, so

that si~nifi9ant subexpressions can be readily isolated.

In the LISP programming system, the bulk of available memory

is used for storing S-expressions in the form of list

structures. This type of memory organisation frees the

programmer from the necessity of allocating storage for

the clifferent sections of this program.

The second important part of the LISP language is

the source language itselt, which specifies in what way the

$-expressions are to be proces,sed. This consists of

recursive functions of 5-expr~ssions.

Third, LISP can interpret and execute programs

written in the form of S-expressions •. Thus like machine

language, and unlike most other higher level languages, it

can be used to generate programs for further execution.

'2.1.1 SYMBOLIC EXPRESSIONS :

The most elementary type ·of S-expression is an

atomic symbol. An atomic symbol is a string of no more

than ten (thirty in standard LISP 1.5) characters.

The following are atoms :

A

APPLE

STRING

LONGSTRING, etc.,

S-expression : An s-expression is either an atomic symbol

or it is composed of these elements in the following order :

a left peranthesis, an 5-expression, either a dot

followed by an $-expression and a right peranthesis, or a

space followed by an s-e~pression and a right peranthesis

or only a right peranthesis.

The following are 5-expressions :

(ATOM)

(A. B)

(A (B C))

(A B C), etc.,

A LISP program is itself an S-expression • It is

functional in that it is composed of applications of

functions that produce results that may be used by oth~r

functions.

2.2 BASIC FUNCTIONS OF LISP :

There are very few primitive functions provided in

pure LISP. Existing LISP systems have added to this list

considerably. These new functions, however, can all be

expressed in terms of the original primitive functions.

12

QUOTE is the identity function. It returns its

(single) argument as its value. This function is needed

because the atom 'A' does not represent itself but is the

name of a Memory Location. The QUOTE function allows its

argument to be treated as a constant. Thus, (QUOTE A) in

LISP is analogus to 'A' ~n conventional languages.

EX: (QUOTE A) = A

{QUOTE (ABC)) = {ABC) etc.,

The most common functions are those that manipulate lists :

The function CAR has one argument. Its value is

the first element of its composit argument.

EX : (CAR {QUOTE (A B C))) = A

(CAR (QUOTE ((A B) CD))) = (A B)

CAR of an atomic symbol is undefined and therefore it will

give an ERROR.

The function CDR has one argument.

CDR returns all elements of its camposit argument

except the first.

EX : (CDR (QUOTE (A))) = NIL

(CDR (QUOTE (ABC))) = (B C)

(CDR (QUOTE ((A B) (CD E))) = {(CD E)) etc.

CDR of an atomic symbol is not defined, and gives an ERROR.

The function CONS has two arguments, and is used to

build bigger 5-expression from the two smaller ones.

EX : (CONS (QUOTE A) (QUOTE B)") = (A.B)

(CONs· (QUOTE A) (QUOTE (B C D))) = (A B C D)

(CONS '(QUJTE (A B)) (QUOTE (C D))) = ((A B) C D)

etc.,

In LISP, the values •true' and 'false' are represented

by the atomic symbols 'T' and 'NIL' respectively. Therefore

a predicate in LISP is a function whose value is either •t•
or 'NIL'.

Let us consider some elementazy predicate.tfunctions

in LISP :

The predicate ATOM is true_if its argument is an

atomic symbol, and false otherwise.·

EX ·: (ATOM (QUOTE. A)) = T

(ATOM (QUOTE (A)J= NIL

.. The predicate EQ is a test for equality on atomic

symbols. It checks whether its two atomic arguments are

equal. It returns 'T' if they are equal, and NIL otherwise.

It's value is 'NIL' for non-atomic ar§uments.

EX : (EQ (QUOTE A) (QUOTE A)) = T

(EQ (QUOTE A) (QUOTE B)) = NIL

(EQ (QUOTE (A)) (QUOTE (A))) = NIL

In LISP programming system the conditional expression

is a device for providing branches in function definitions,

and is used to define a larger class of functions.

A conditional expression has the following form :

14·

Where each Pi is an expression, whose va~ue may be

either 'T' or 'NIL', and each ei is any expression~- The

meaning of a conditional expression is the followi~g . •

It is evaluated by evaluating the Pi in turn until.

one is found whose value is 'T'. The value of· the entire

form is then obtained by evaluating the corresponding ei.

None of the other ei's are evaluated, nor are any of the

Pi following the first true one.

If none of the Pi are true, then the value of the

entire expression is undefined. Instead an ERPDR signal

will come out.

Each Pi or ei can itself be either an S-expression,

a functioa, a composition of functions or may itself be

another conditional exptession.

LAMBDA :

Where :

EX : (COND ((ATOM (QUOTE {A))) (QUOTE B))

{ { EQ (QUOTE A) (QUOTE A)) {QUOTE FOUND))

(T (QUOTE NOT FOUND))) = FOUND

A function is represented in the form :

x1 , x2 , ••• x
0

are dummy variables that appear in

the expression~!and·E1 , E2 ••• E
0

are values corresponding

to x1, x2 ••• x
0

respectively;'

The evaluation of the expression is done by

substituting Ei for the corresponding xi.

The variables in a LAMBDA expression are dummy or

bound variables because systematically changing them does

not alter the meaning of the expression. ·

EX : ((LAMBDA (X y) (CONS X Y))

(QUOTE A) (QUOTE (B C)))

= (A B C)

2.3 A UNIVERSAL LISP FUNCTION :

A universal function is one that can compute the

value of any given function applied to its arguments when

given a description of tha~ function. Such a function here

is LABEL.

In order to permi.t recursive functions to be

expressed in clo~ed form an additional device is ·needed.

Evaluation of the form t .

(LABEL f Cl()

Yields the function ' a<' (which must be a LAMBDA

expression) and in addition associates the function name f

(which .must be an ATOM) ·with 'D(' so_ that during the

application of 'o(' to arguments, any occurence of 'f~

evaluates to 'o<'. Thus a function may be made recursive

by naming it via LABEL and then·using this name within the

definition, 'i;e., within the Lambda expression.

EX : ((LABEL MEMBER

(LAMBDA (X Y)

(COND ((NULL Y) (QUOTE NIL))

((EQ X (CAR Y)) (QUOtE T))

((QUOTE T) (MEMBER X (CDR Y))))))

(QUOTE A) (QUOTE (C B A)))

= T

16~

The above defined function MEMBER checks whether the list

contains the given atom.

2.4 EXTENDED LISP FUNCTIONS :.

Though, higher order functions can be derived from

the primitive LISP functions it is not feasible to define

a function of interest each time we need it.

Here are some additional LISP functions which are

frequently encountered in problem solving situations. .

APPEND: The function APPEND has_ two arguments. It-strings

together the elements of lists supplied as its arguments.

EX : (APPEND (QUOTE (A B)) (QUOTE (CD))

= (A B C D)

(APPEND (QUOTE (A (B C))) (QUOTE (D E)))

= (A (B C) D E)

LIST : The function LIST also has two_ arguments. It does

not run things together like APPEND does. Instead, it makes

a list out_ of its arguments. Each argument becomes an

element of the new list.

EX : · (LIST (QUOTE (A B)) (QOOTE (C D)))

= ((A B) (CD))

(LIST (QUOTE A) (QUOTE B) = (A B)

SUBST : SUBST is a function which makes substitution

possible in LISP.

consider the form

(SUBS! (QUOTE X) (QUOTE Y) (QUOTE Z))

Where X, Y and Z are S-expressions which means,

SUBST replaces all the occurences of 'Y' in the list Z by

the value X.

EX : (SUBST (QUOTE~) (QUOTE (B C)) (QUOTE (A (B C)))

= {A A)

(SUBST (QUOTE (A B)) (QUOTE { B C)) (QUOTE (A (B C))))

= (A (A B))

THE PROGBAM FEATURE :

The LISP 1.5 program feature allows the user to write

an ALGOL-Like program containing LISP statements to be

executed.

An example of· the program feature can be seen in

defining the function REV, that reverses the elements of a

given list.

((DEFD\!E tREV LAMBDA (X)

(PROG (U V)

((SETQ U X)

((A) (COND ((NULL U) (RETURN V))

((QUOTE T) ((SETQ V (CONS (CAR U) V))

((SETQ u· (CDR U))

(GO ((A))))))))))))

(REV (QUOTE (ABC)))) = (C B A)

18"

The program form has the structure -

(PROG, List of program v~riables, sequence of statements

and labels)~-

The first list after the function name, PROG, is a

list of program variables. If there are none. then this

should be written as 'NIL' or () (an empty list). Program

v~riables are treated much like bound variables, but they

are not bounded by LAMBDA. The value of each program

variable is 'NIL' until it has been set to some thing else.

SETQ : To assign a value to the program v.ariable, we have

the form SETQ. To set ~ variable X to the value (A B), we

write the following s-expression :

((SETQ X (QUOTE (A B))) E)

Where 'E' is another function which contains 'X' as one . .

of ~ts arguments. If ,.E' is replaced by 'X' in the above

S-expression it returns the valu~ (A 13) •·

The function RETUffi causes a normal end of a program.

The argument of RETURN is evaluated, and gives the result

of the whole S-expression. No further statements are

executed.

In our impleroentation a label symbol is of the form

((A). Where 'A' is a label symbol. Go is a form used to

cause a transfer.

(GO ((A))) will cause the program to continue at

the statement following ((A).

19

DEFINE : It is possible to associate a value with any

identifier. In the case of an identifier whose value is

a function; the association is created through use of the

LISP function DEF,lliE. Normally, a LISP program consists

of a sequence of applications of functions to arguments.

Thus, in-order to create a complicated function using a

number of subfunctions, DEFnlE is used to associate the

definition of each function ~ith its name. Any of these

functions may refer to any other function or to itself by

name within its definition. An example (run on computer)

describing the DEFrnE feature is given in Appendix- B •

LIST STRUCTURE OPERATORS : LISP is made gener~l in terms

of list structure by means of the basic list operators
.

11 REPLACAR" and "REPLACDR". These_ operators can be used

to replace the 'CAR' or.'CDR' or any word iri a list. The

expression,
•

(REPLACAR (QOOTE ((A B) B C)) (QUOTE A))

replace_s the CAR part of the list ((A B) B C)) with the .
second argument i.e. A.

Therefore the result would be (A B C)
\

In terms of value, REPLACAR can be described by the

expression

(REPI.ACAR (QUOTE X) (QUOTE Y)

!! (CONS (QUOTE Y) (CDR {QUOTE X)))

But the effect is quite different. On operating REPLACAR,

there is no CONS involved, and a new word is not created.

This can be diagramatically shown as follows :

Let 11 =((A B) B C)

can be represented as:

and·

Now (REPLACAR (QUOTE 11) (QUOTE 12)

Ll
which modifies the structure of 11 as the following :

Whereas (CONS (QUOTE 12) (CDR (QUOTE 11)))

constructs another list 13 out of the two given $-expressions

i.e. the resultant list 13 would be of the form :

(CDR (QUOTE 11))

\

21

Now CONS of the above two S-expressions give a

13 as follows :

Note that on CONS operation the original list structure

of 11 has not been changed.

In a similar way, the function

(REPLACDR (QUOTE X) (QUOTE Y))

replaces the CDR part of list X by the 5-expression •v•.

EX:

(f\EPLACDR {QUOTE {A (A B))) (QUOTE B))

returns the value asl

::: (A B)

X = (A {A B)) Y=B

Lm

Operation on REPLACDR causes:

X = {A • B)

These operators (REPLACAR, and REPLACDR) must be used with

caution.· They can permanently alter existing list structures

and other basic memory. They can be used to create circular

lists, which can cause infinite printing, and look infinite

to functions that search, such as "EQUAL" and "SUBST".

A few more predicates which are frequently encountered

in LISP programs are the following :

EQUAL : The predicate EQUAL, which overrides §9. in usage,

is the test for equality of its two arguments that are any
•

S-expressions.

EX : (EQUAL (QUOTE A) (QUOTE A)) = T

(EQUAL (QUOTE (A B)) (QUOTE (A B))) = T

(EQUAL (QUOTE (A B)) (QUOTE (A C))) = NIL

etc.

The function 'EQ' is applicable only for atomic symbols.

~ : The predicate NULL is useful in deciding whether a

list is exhausted. It's value is true only if it's argument

is 'NIL'.

EX : (NULL NIL) - T -
(NULL (Cl/~ (QUOTE (A)))) = T

(NULL ()) - T -
(NULL (CAR (QUOTE (A)))) - NIL -

LOGICAL CONNECTIVES :

The Logical or Boolean connectives are usually

considered as primitive operators. However, in LISP, they

Gan be defined by using conditional expressions.

In the system, 'NOT' is a predicate of one argument.

However, 'AND• and OR are predicates of an indefinite number

of arguments, and therefore are special forms.

The value of 'AND' is 'T' only when each of its

argument's value is true, 'NIL' otheiWise.

EX : (AND (QUOTE T) (QUOTE NIL)) = NIL

(AND (QUOTE T) (QUOTE T)) :: T

The value of OR is 'NIL' only when each of its

arguments value is 'NIL', 'T' othexwise;

EX : (OR (QUOTE NIL) (QUOTE T)) = T

(OR (QUOTE NIL) (QUOTE NIL)) =NIL

The value of NOT is 'T' if its arguments value is 'NIL'

and viceversa.

EX : (NOT (QUOTE NIL)) = T

(NOT (QUOTE T)) = NIL

CHAPTER - III

{ IMPLEMENTATION)

3.11 MEMORY ORGANIZATION :

In a list processing system it is hot feasible to

create free nodes (words) each time we need to store items

and to destroy (dispose) ·these nodes after they become no

more ·useful. This process is crude and inefficient in both

memory management and execution time •'

The easiest way to keep track of available list.

storage is by u_se of a f:ree-list, a list of.:all unus~d words.

At system initialization, we chain all of available blocks

together into a .. free list. Whenever we want to add a new

item to an active-list (The concept of active-list, is the

list structure, of the input S-expression, and the environment

in which the values and identifiers are bounded during the

run .time of a program), we remove the first block from the

free-list and use it to store the new item. And the words

which are no more active, i.e.-, as soon as the execution of

the s-expression is over, are automatically retumed to the

free-list by a technique cailed as "Garbage collection" •1

We shall discuss about this technique later in this chapter.

In our LISP programming system, we made use of the

free-list concept. The data types POINTER, and RECORD in

PASCAL provide the best mechanism to construct linked lists

and other dynamic data structures. In our LISP processing

system "SYA.ffiOLIC EXPRESSION" is a "RECORD TYPE" (Lin_es 17 to

25 in Appendix A) which has a tag field "ANATOM11 is always

checked before accessing either the name field or the "HEAD"

and "TAIL" fields of a word~·

During the system initialization the free-list is

constructed as follows :

The loop in the "PROCEDURE INITIALISE" :

FREELIST : = NIL ;

FOR I := 1 TO MAXNODES 00

BEGIN

NEW (NODELIST)

NODELIST N~T := FREELIST ;

NODELIST HEAD := FREELIST ;

NODELIST STATUS := UNMARKED

FB£ELIST := NODELIST

END;

Constructs a fr_ee-list contai_ning the number of words

equal to MAXNODES in computer memory appeared to be as shown

below :

Where N stands for the pointer field NEXT,

and H stands for the pointer field HEAD •
. "

Notice that the •status' of all the nodes if UNMARKED

Where "MAXNODES" is any Natural number. There is a

limitation in declaring the maximum number of free words.

Since, the available computer memory is to be shared among

input-output bbHes, Interpreter program and the free-list.

26

3 .-2 ENVIroNMENT :

As we have seen that each item in an S-expression

(LISP Program) is to be evaluated unless or otherwise it is

quoted by the function ''QUOTE". Now, the questions arise,

Where do the values of identifiers and functional

variables lie ?

How are they bounded to each other ? and

lastly, how are they evaluated ?

All these questions can be answered with the concept

of an association-list. An association-list is (a list

structure in_a binary form) an environment to evaluate an

5-expression, in the sense that, it contains all definitions

of indenti.fiers (and values for the functional variables) •

In our LISP processing system we represent the association

list as ALIST, and henceforth it is continued to be call

with this name. During the system initialization the 'ALIST'

is constructed with nine nodes in the form as shown below:

""'"' !o 1'

Regarding the second question, the ALIST should have 1to have

a common property that the identifiers and functional variables

with their definitions (or values) should be connected in the

'ALIST' such that a single function can traverse all the

existing identifiers and function variable names'ii The

2 8

'definitions (or values) to the identifiers (or variables)

should be their neighbouring sublists.

Consider the initial ALIST structure, which contains

the identifiers 'T' and 'NIL'•· During the evaluation of

these identifiers their values would be their neighbouring

sublists i~e., 'T' & 'NIL' respectively.

Therefore,. for example, if we want to attach one

~ore identifier 'MEMBER' with 'DEFINE' as its value. The

ALIST appears to be as : ·

Where TEMP is the current environment,ALIST,grows dynamically

during the evaluation process of LISP program. The functions

LAMBDA, and PBDG bind the variable to their corresponding

values in the above mentioned manner and attach them to the

ALIST. Similarly the forms LABEL, and DEFINE associate the

definitions of identifiers (i.e., newly defined function

names) with their identifiers on the ALIST. The function

SETQ assigns new yalues to the program variables on the

'ALIST' during its run.

During the evaluation of a LISP program if any .

identifier is encountered the function LOOKUP (Lines 465 to

481 in Appendix A) searches for its name on the ALIST from

left to right. If it is found then the function LOOKUP

2 9

gives its corresponding value as the result and the process

continues •' If the identifier is not found on the ALIST,

then the evaluation is terminated, and gives the indication

that the function is not defined.

3.3 MARK/SWEEP GARBAGE COLLECTION :

Garbage collection is an effective, although (at first)

apparently brutal solution to storage management. It presumes

that every node in 'the heap is available until proven used.

This is effected by a mark bit, initially cleared, _in every

node. Every active pointer in a register of the interpreter

is taken as the root of used structure, and every such ~

structure is traversed and;marked. After the mark phase, the

heap is swept sequentially; unset mark bits indicate available

nodes (garbage) .to be returned to available space.

The traversal of each structure requires time

proportional to its size. Conventional traversal algorithms

treat each structure as a tree to be traversed in preorder,

where atoms, null pointers, and already marked nodes are

taken as external nodes (leaves). A node is marked on its

first·visit. Knuth 1975 explains several algorithms, of

which the lost, due to Deutsch, Schorr, and Waite t12] is

the most elegant because it uses no extra stack in its

traversal. Space being at a premium, the stack is maintained

in reversed tree pointers that are restored as the stack is

popped. A PASCAL version of this algorithm was developed by

COX & TAYLOR [11) for their pr:ilnitive LISP System.

3.4 LISP INPUT - OUTPUT :

Reading a list and storing it in the computer memory

as a structural forms,.and to print out a stored expression

in the same notation are done by the procedures~ READEXPR,

and PRINTEXPR respectively.

3. 4.1 READING AN S-EXPRESSION :

The procedure READEXPR (lines 21&.261 in Appendix A),

. reads in a symbolic expression and stores it in the computer

memory in a binary tree form. It pops the require~ number

of free words from the free-list to store the symbolic

expression, or1e word at a time. Procedure "READEXPR" inturn

calls two other procedu]:'es namely NEXTSYMBOi, and BACKUPINPUT.

Procedure NEXTSYMBOL reads the next input symbol from the

input file. The type of the input symbol is defined by the

global type "INPUTSYMBOL" •. The global variable 11 SYM" returns

the type of the present symbol and transfers control to the

procedure READEXPR. Procedure "BACKUPINPUT" puts an addi tiona!

1ef~t peranthesis in the stream of input symbols.to facilitate

the procedure READEXPR during the read of an s-expression.

BACKUPJNPUT is called each time whenever the type of the next

symbol, read from the S-expression, is other than a period.

This additional left peranthesis would not be printed out,

as it was actually not there in the input expression.

Symbolic expressions are read and stored in the

appropriate structure using the following grammer for

symbolic expressions :

5-expr. = <Atoo/

ot (4-exp;) • zs-expr>)

or { <.s-expr> <s-exp;> ~' • •

• • •' .(s-expr>)

The third rule follows an al temati ve form of 5-

expression called the list notation.

For example,' consider the following 5-expression

This S-expression can be represented in the list·

notation with the same meaning as :

(11 • (12 • (13 • (••• (ln • NIL) •••))))

EX : Let a list

1 = (A (B G) D E)

on executing the instruction

READEXPR (1), reads '1' as input and stores

computer memory, in a form appears to be as :

3 • 4. 2 PRThlT AN 5-EXPRESS ION :

Procedure "PRINTEXPR" (Lines 271-297 in Appendix A).
I

Prints an $-expression which-was stored in the computer memory

32

through the procedure· READEXPR. PRlliTEXPR in tum uses

another procedure called 'PRINTNAME'. Procedure PRINTNAME

Prints out an atomic symbol each time it is called.

EX : the list '1' of the following structure :

On operating "PRINTEX~R" this will be printed out

in the following form· :

((A. B) (CD) E)

3.5 PBOCEDURE POP : (L~nes 129-139 in Appendix A)

The procedure 'POP' takes a word from the free-list

(from one end), and stores its address at the location of

its pointer argument. This word will be further used either

to store an item or to link two nodes. The operations .

performed by the procedure 'POP' are the following :

It checks whether the free-list is completely

exhausted. If it is yes, then the program is terminated

and gives an indication to the user that, "NOT ENOUGH SPACE

TO EVALUATE THE EXPRESSION". If the free-list is not

completely exhausted, then, it removes the link between the

HEAD pointer of the first word from it's next available word.

Decreases the number of freenodes by 1. Saves the address

of the first word in a location which is a pointer argument

of the procedure 'POP'. And, the address of the free-list

is changed to the address of it's next available woid. The

action of 'POP' operation on free-list can be diagrarnatically

shown as :

Consider the free-list of the form

r Not:)ll .. WT
F~c:f. \.\ ~.,.

,..

... ~ ~

Where 'N' stands for the pointer ·field "NEXT",

and 'H' stands for the pointer field "HEAD'*.

Now the operation POP (TEMP) will give the resultant

. ~
.

Note that the link from the left-most word's 'HEAD' pointer

to it's next word has been removed.

3.6 PBOCEDURE INITIALISE : (Lines 699-813 in Appendix A)

The procedure INITIALSE arranges an initial environment

that is required by other procedures and functions in the

interpreter program during the process of a LISP expression.

l4

It assigns the boolean variable 'ALREADYPACKED' to

'FALSE', reads a character from the input file and writes

it in the output file. It constructs a free-list, a list

of available words, containing the number of words equal to

the global constant 'MAXNODES' (refer sec-3.1). It assigns

the global reserved words to their corresponding LISP

functions (Lines 737 to 762 in Appendix A) • Procedure

'INITIALISE' also constructs the initial structure of ALIST

(association list) as explai.ned: in Section-3.2).

3.7 EVAL FUNCTION : {Lines 298-698 in Appendix-A)

The structure of the function EVAL is a case analysis

on the syntactic type of the expression being evaluated.

Function EVAL scans ea_ch word by walking the tree in a left

to-right depth first manner and classifies the words into

functions, preudo functions, identifiers, and labels, and

then performs their corresponding operations by calling its

several local functions ac9ordingly. This function scans the

list of clauses of a case analysis, recursively evaluating the

predicate part of each clause to see if it is true. If a

predicate part is true, the action .sequence of that part is

executed. If a predicate part is not true, the scan continues.

Running out of clauses to try gives an error at some point.

Now, let us study about the different local functions

defined in the function EVAL, and their usage in evaluating

their corresponding LISP functions.

The following functions in the PASCAL .Program :

REPLACEH, REPLACET, HEAD, TAIL, CONS,

APPEND, EQQ, EQUAL, LIST, SUBST, NULL,

.35

ATOM & NAT are called to perform the operations of

their corresponding LISP functions :

REPLACAR, REPLACDR, CAR, CDR, CONS,

APPEND, EQ, EQUAL, LIST, SUBST, NULL,

ATOM and NOT respectively.

Functi~n DOOKUP is called in case either the function EVAL's

first argument (Hereafter it is denoted as 'PTR')_ is an atom,

or the CAR of the 'PTR' is an atom and is not a reserved LISP

function. Function LOOKUP searches for the corresponding

value of an identifier or variable in the 'ALIST'. An . , -

icjentifier may be a newly defined fun_~tion _using the LISP

Pseudo-functions LABEL or DEFINE, or ~ variable bounded by

the functions LAMBDA or PROG in LISP Language.

The function 'SEARCH' is calfed to perform the actions of

the function 'DEFINE' in LISP.- It attaches the 'ALIST'

(association list) to the tail of the father of the last

identifier in the sublist, (which contains the definitions

of all the newly defined functions) and the root of the

present 'ALIST' becomes the father of the(first identifier

of the definitions sublist.

To understand more about the function search,

consider the s-expression :

(_(DEFThlE (X LAM!)

(Y LAM2)

(Z LAM3))

(Z, list of quoted arguments)).

Where X, Y, and Z are identifie_rs, that are defined intenns

of ~1ls. LAMi is any Lambda expression. The list structure

(in the computer memory) of the above expression appears to

be as :

Now, when the function EVAL scans the LISP function

'DEFINE' in the S-expression with correct syntax, then control

transfers to the function SEARCH. It attaches the 'ALIST' to

the definitions sublist of the s-expression as explained above.

The resultant structure of the ensironment (ALIST) would

'3 7 ..

Where "TEMP" is the address of the present "ALIST".

This resultant list is used as the current environment for

the function EVAL during the further evaluation of the LISP

expression. The function LOCMARK is called when the CAR of

CAR of 'PTR' is an atom and is not a reserved word (i.e. a

LISP function). This function searches for~ label mark

whose name is equal to the CAR of CAR of 'PTR•. If it is

found then the CAR of CDR of CAR of its grand-father node

will be evaluated. And the repe~itive evaluation of the

statements lying between the label mark and the statement

(GO ((label))), until the prespecified condition is

satisfied.

The function SETARG is called to perform the

operations for its correspon~ing_ LISP function SETQ.

Function SETARG bounds the program variable with its

corresponding value and.conses this expression with the

current ALIST. This value is considered as the latest one,

and all the previous values which were bounded by the same

variable are no more looked up. And the operations of the

logical LISP functions, AND and OR are performed by calling

the local function EVANDOR.

3. 8 ORGAN IZA!ION OF THE ThlTERPRETER :

So far, we have studied the actions of different

individual functions and procedures in the interpreter

program. New let us discuss how these procedures and

functions together can perform the task of interpretation

of LISP-expressions.

._-.

J 8

The two-pass interpreter program scans the input

symbolic expression twice during its process. In the pass-!

it accepts the symbolic expression as it's input, and stores

it in the computer memory in a binary tree form. And it's

syntax & semantic analysis, and evaluation are all done during

the pass-II.

Initially, the program calls the proce~ure INITIALISE,

w!'lich as'signs the boolean variable 'ALREADYPACKED' to 'FALSE',

reads a character from the input file~constructs a free-list,

assigns the reserved words to their corresponding LISP functions,

and initialises the ALIST (association list) as described in

Section 3.2 & 3.6 •" Then, control transfers to the

procedure 'NEXTSYMBOL', which decid_es the type of the input

character which was just read at some point and reads in the

next character from the input file. Further, the procedure

'READEXPR' is ·called to store the LISP expression in computer

memory (refer sec. 3.4.1).

Then, the interpreter program enters in a Loop, whose

main function is to evaluate the LISP expression by transfering

control over to the function 'EVAL', which int'ljm recursively

executes the LISP instructions one by one and prints out the .

resultant list th~ough the procedure PRINTEXPR. Since the

execution of the present LISP-expression is over then the

procedure 'GARBAGEMAN '· is called, which collects all the

used nodes; except the intial structure of 'ALIST', and

attaches them to the free-list. If there are any more LISP-

39

expressions, to be executed, in the input file, then it

repeats the same process until there are no more LISP programs

in the input file or a 'FIN' Card is encountered.

40

CHAPTER- Dl

(DISCUSSION AND CONCLUSIONS)

·4.1

4.1 DISCUSSION ANTI CONCLUSIONS :

"We must recognize the strong and undeniable

influence that our language exerts on our way of thinking,

and in fact defines and delimits the abstract space in

which we can fonnulate - give form to - our thoughts"

(Wirth 1974).

11 Language is the vehcle by which we express our

thoughts, and the relation between those ~houghts and our

language is a subtle and involuted one. The nature of

language actually shapes and models the way we think • • •

If, by providing ~ppropriate language constructs we can

improve the programs written using these structures, the

entire field will benefit ••• A language design should

atleast provid~ faciliti~s which allow comprehensible

' expression of algorithms; at best a language suggests better

forms of expression. But language is not a panacea. A

language cannot,_for example, prevent the creation of

obscure programs; the ingenious programmer can always find

an infinite number of paths to obfuscation." {Wolf 1977).

The relationship between software design methodo

logies and programming language is a most important one.

This is so whether or not one views the programming language

as a component of a software development facility. In

trying to follow a certain design methodology, we will find

that some languages are better suited than others. These

are three important requirements in designing a language

42
•

which are imposed by the software development pro·cess :

i} Software must be reliable : -

i.e., users should be able to rely on the software.

They should feel comfortable in using it even in the

presence of inffequent or undesirable events such as

hardware or software failure. Software is correct if it

behaves according to its specifications, the more regorously

and unambiguously the specifications are set down, the more

convincingly program correctness can be proved. The
.

reliability· requirement has gained importance as software

has been called upon to accomplish increasingly complicated

tasks.
-

ii) Software must be maintainable :

Again, as software costs nave risen and increasingly

complex software systems have been developed, economic

considerations have reduced to possibility of throwing

away existing software and developing similar applications

from scratch. So, existing software must be modified to

meet new requirem~nts.

iii} Software must execute efficiently :

Efficiency has always been a goal of any software

system. This goal affects both the programming language

and the choice of algorithms to be used.

These three requirements - reliability, maintai~

ability, and efficiency - can be achieved by appropriate

tools in the software development facility, and by certain

characteristcs of the programming language.

43

The goal of software reliability is promoted by

the following programming language qualities.

Writability, refers to the possibility of expressing

a program in a way that is natural for the problem. The

programmer should not be distracted by details and tricks

. of the language from the more important activity of problem

solving. The easier it is to concentrate on problem

solving activity·, the less error prone is program writing.

It should be possible to follow the logic of the

program, and to discover the presence of errors, by examining

the program. The simpler the language is and the more

naturally it allows algorithms to be expressed, then it is

to understand what a program does by examining the code.

For example, the GO TO statement has the potential of

making programs hard to read, because it can make it

impossible to read a program in one top-to-bottom pass and

to understand it. Rather, one must jump around in the

program in sear~h of the targets of the GO TO statements.

The language should make it possible to trap

undesired events (arithmatic overflows, invalid input, etc.)

and to specify suitable responses to such events. In this

way, the behaviour of the system becomes totally predicatable

even in anamalous situations.

The need for maintainable programs imposes two

requirements on the programming lange : Programs written

in the language must be readable, and they must be

modifiable. It is possible to identify features that make

a program more modifiable. For example, several

programming languages allow constants to be given symbolic

names. Choosing an appropriate name for a constant promot.es

the readability of the program. Moreover, a future need

to change the value would necessitate a change only in the

definition of the constant, rather than in every use of

constant.

Efficiency is no longer measured only by the

execution speed and space. The effort required to produce

a program, or system, initially and the effort required in

maintenance can also be viewed as components of the

efficiency measure. And, once again, the programming

language can have a great impact.

A Language supports efficiency if it has qualities

·of writability and maintainability, and optimizability

(i.e., the quality of allowing. automatic program optimization).

Older languages, such as FORTRAN, were no~ designed

to support specific design methodologies. For example,

the absence of suitable high-level control structures in

FORTRAN makes it difficult to systematically design

algorithms in a toP-down fashion. Conversely, PASCAL was

designed with the explicit goal of supporting toP-down

design and structured programming. The developing trends

in languages show that the idea that languages should

support a design methodology is increasingly becoming

accepted.

Now, coming to our "interpreter programn the

inherent feature of PASCAL language enables us to design

the problem in a toP-down fashion. The recursive power

of the language facilitates to define the tasks in a

compact and flexible manner. The program starts from

defining the global variables, and then deviding the

task into separate modules namely the garbage collector,

input~, output routines, the evaluation procedure, and the·

initialization routine.

The data structures of PASCAL enables us to define

the task in a natural way, and hence the reliability and

maintainability. P~SGAL provides us powerful 11 data types"

to handle dynamic variables that are frequently encountered

in the LISP processing system.

As the modules are well classified, if suppose one

wants to introduce some more facilities to the interpreter

system, then, one only needs to add their ovm subprograms

to extend the power of the system. For example, as we

did not much care to have comment statements in the LISP

programs, we did not introduce this facility in our input

routine. If one wants to have this facility, he can simply

update the input routine in such a way that the system

allows to have comments statements .in LISP programs. And,

the global constant "MAXNODES" whose value can be changed

at once to increase (change) the number of nodes in the

FREELIST. At present the number of nodes in the FREELIST

is fixed at the system initialisation time. If one wants •

to have the dynamic expansion facility he can have this by

simply writing the lines 728-735 in Appendix-A in a

separate routine.which can be called by the main program

as many times according to the requirements of the LISP

Program.

Writing software packages in a low le~el language

is quite time consuming, and more over these packages are

restricted either to one particular machine, or those

family of machines. Writing a software package in a

structured language yields, good readability, ease in

implementation, good portability and also maintainability.

Thus, the importance of building and using portable

software continues to grow steadily, especially with the

spreading of microprocessors.

There are clear advantages in using PASCAL,

constructs for implementing LISP• We have the machine

independency from the choice of higher level language and

therefore .portability. We he1d several other advantages

t-hat are inherent to PASCAL and were discussed in the

preceeding sections.

If we try to draw pre-visions from the current

situation, we think that portable software will use more

and more high-level programming languages. Powerful

microprocessors and portable low-level languages, although

very successful, will probably disappear in the coming

years, because writing large unstructured programs will

no longer be tolerable. For the same reason, FORTRAN will

no longer the only writing tool, and will be replaced by

PASCAL, sometimes by languages like Ada, BCPL or C, or

possible successors to these.

We have carried out this work on CYBE~l70 system

at National Informatics Centre, New Delhi •. Our interpreter

(PASCAL) program occupies ll-K words of memory. Where each

word is of 60-bi ts size. We could not compare its execution

time"efficiency as there was no other LISP processing system

available to us. However, we are getting quick responses

with very sma~l fraction of CPU sees, in executing even

complex LISP programs.

Though in principle one can define higher order

functions using the primitive LISP functions CAR, CDR,

CONS, LAMBDA, COND, ATOM, DQ, and LABEL, it is not

f·easible on account of memory and execution time

inefficiencies. Having only these fun~tions, for exa~ple,

COX, and TAYLOR's [1.:Q system is not practically suita~le

for problem solving purposes. Besides these functions we

.have added DEFINE, PROG, SETQ, SUBST, LIST, GO, ~TURN,

EQUAL,_ NULL, and the logical connectives AND, OR and NOT

functions. Having all these features in our improved

sy~em now we are in a position to use it for any symbol

manipulation purposes.

APPENDIX - A

(INTERPRETER PROGRAM)

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
opo1s
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030

PROGRA~ LISP(INPUT,OUTPUTl;
LABEL

l,(*USED TO RECOVER AFTER AN ERROR BY THE USER*>
2; (*IN CASE THE END OF .THE FILE IS REACHED BEFORE A FIN CARD*l

CONST
MAXNODES=1200;

TYPE
INPUTSYMBOL=CATOM,PEPIOO,LPAREN,RPAREN>;
RESERVEDWORDS=CREPLACEHSYM,REPLACETSYM,HEADSYM,TAILSYM,EQSYM,QUOTESYM,

ATOMSYM,CONDSYM,LABELSYM,LAMBDASYM,COPYSYM,APPENDSYM,
CONCSYM,OEFINESY~,SETQSYM,NULLSYM,NDTSYM,ORSYM,ANDSYM,

EQUALSYM,LISTSYM,SUBSTSYM,PROGSYM,GOSYM,RETURNSYM,
CONSSYM);

STATUSTYPE=(UNMARKED,LEFT,~IGHT,MARKED>;
SYMBEXPPTR=ASYMBOLICEXPRESSION;

ALPHA=PACKED ARRAY [1 •• 10] OF CHAR;
SYMBOLICEXPRESSION=PAtKED ~ECORD

STATUS:STATUSTYPE;
NEXT:SYMBEXP?TR;
CASE ANATOM:SODLEAN OF

TRUE: (NAME: ALPHA;
CASE ISARESERVEDWORD:BOOLFAN OF

TRUE: (!<ESSYM:RESERVEDWDRDS));
FALSE:(HEAD,TAIL:SYM~EXPPTR>;

END;
<*THE GLOBAL VARIABLES*)

VAR
LOOKAHEADSYM,
SYM:INPUTSYMBOL;
IO:ALPHA;

00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051 •
00052
00053
00054
00055
00056
00057
00058
00059
00060

ALREADYPACKEO:BOOLEAN;
CH:CHAR;
PTR:SYMBEXPPTR;
FREELIST,
NODELIST,
ALIST:SYMBEXPPTR;
NIL NODE,
TNOOE:SYMBOLICEXPRESSION;
RESWORO:RESERVEDWORDS;
RESERVED: BOOLEAN;

58

RESWOROS:ARRAY [RESERVEDWORDSJ OF ALPHA;
FREENDDES:INTEGER;
NUMBEROFGCS:INTEGER;

PRITCEDURE GARBAGEMAN;
PROCEDURE MARKCLIST:SYMBf-XPPTRl;

VAR
FATHER,
SON,
CURRENT:SYMBEXPPTR;

BEGIN
FATHER:=NIL;
CURRENT:=LIST;
SON:=CURRENT;
WHILE CURRENT<>NIL 00
WITH CURRENTA DO

CASE STATUS OF
UNMARKEO:IF ANATOM THEN STATUS:=MARKED

ELSE IF (HEADA.STATUS<>UNMARKED) OR CHEAD=CURRENT)
THEN IF (TAILA.STATUS<>UNMARKED} OR (TAIL=CURRENTl

THEN STATUS:=MARKED

00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090

ELSE BEGIN
STATUS:=RIGHT;

51

SON:= TAIL;
TAIL:=FATHER;
fATHER:=CURRENT;
CURRENT:=SON

I

END
ELSE

BEGIN
STATUS:=LEFT;
SON:=HEAD;
HEAD:=FATHF.R;
FATHER:=CURRENT;
CU~RENT:=SON

END;
LEFT: IF CTAILA.STATUS<>UNMARKEO) THEN

BEGIN
STATUS:=MARKED;
FATHER.: =HE,AD;

END
ELSE

HEAD:=SON;
SON:=CURRENT

B E.G IN
STATUS:=RIGHT;
CURRENT:=TAIL;
TAIL:=HEAD;
HEAD:=SON;
SON:=CURRENT

END;

00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00103
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120

RIGHT: BEGIN
STATUS:=MARKED;
FATHER:=TAIL;
TAIL:=SON;
SON:=CURRENT

END;
MARKED: CURRENT:=FATHER

END C*CASE*>
END <*MARK*);
PROCEDURE COLLECTFREENODES;

VAR
TEMP: SY/'1BEXPPTR;

BEGIN

51

WRITELN('NUMBER OF FREE NODES BEFORE COLLECTION= 1 ,FREENODES:3, 1 • 1);

FREELIST:=NIL;
FREENODES:=O;
TEMP:=NODELIST;
WHILE TEMP<>NIL DO

BEGIN
IF<TEMPA.STATUS<>UNMARKEO) THEN TEMPA.STATUS:=UNMARKED

ELSE BEGIN
FREENODES:=FREENODES+l;
TEMPA.HEAD:=FREELIST;
FREELIST:=TEMP

END;
TEMP:=TEMPA.NEXT

END;
WRITELN(1 NUMBER OF FREE NODES AFTER COLLECT10N= 1 ,FREENODES:3,'.');

END; (*COLLECT FREENODES*)
BEGJN C*GA~BAGEMAN*>

00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150

53

NUMBEROFGCS:=NUMBEROFGCS+l;
WRITELN;
WRITELNC'GARBAGECOLLECTION. 1 l;
WRITELN;

MARK(ALIST);
IF PTR<>NIL THEN MARK{PTRl;

COLLECTFREENOOES
END <*GARBAGEMAN*l;

PROCEDURE POPCVAR SPTR:SYMBEXPPTRJ;
BEGIN

IF FREELIST=NIL THEN
BEGIN

WRITELN(1 NOT ENOUGH SPACE TO EVALUATE THE EXPRESSION' l;
GOTO 2

END;
FREENODES:=FREENODES-1;
SPTR:=FREELIST;
FREELIST:=FREELISTA.HEAD

ENO(*POP*);
PROCEDURE ERROR(NUMBER:INTEGERl;

BEGIN .
WRITELN;
WRITE(1 ERROR 1 ,NUMBER:3,•.•>;
CASE NUMBER OF

l:WRITELN('ATOM OR LPAREN EXPECTED IN THE S-EiPR.•);
2:WRITELN{'ATOM,LPAREN, OR RPAREN EXPECTED IN THE S-EXPR.');
3:WRITELN('LABEL,LAMBOA,OEFINE AND SETQ ARE NOT NAMES OF FUNCTIN
4:WRITELN(1 RPAREN EXPECTED IN THE $-EXPRESSION•);
5:WRITELNC 1 1ST ARGUMENT OF REPLACAR IS AN ATOM. 1);

6;WRITELN<•lST ARGUMENT OF REPLACOR IS AN ATOM .•);

00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180

54

7:WRITELN(1 ARGUMENT Of CAR IS AN ATOM');
8:WRITELN(1 ARGUMENT Of CDR IS AN ATOM 1 l;
~:WRITELN(1 1ST ARGUMENT OF APPEND IS NOT A LIST.•);

lOZWRITELNC•COMA OR RPAREN EXPECTED IN CONCATENATE.');
ll:WRITELNC•END OF FILE ENCOUNTERED BEFORE A FINCARD 1);

12:WRITELN(1 EITHER OF LAMBOA,LABEL,DEFINE,SETQ IS EXPECTED.');
13:WRITELN('VALUE OF FUNCTION CONO IS NOT OEFINE0. 1);

14:\IIRITE.LNt'FUNCTION' IS NOT DEFINEO.I};
15:WRITELN(1 ERROR IN ARGUMENTS TYPE.')
END;
IF NUMBER IN Clll THEN GOTO 2

ElSE GOTO 1
END (*ERROR*);·

PROCEDURE BACKUPINPUT;
BEGIN

ALREADYPACKEO:=TRUE;
LOOKAHEADSYM!=SYM;
SYM:=LPAREN

END <*BACKUPINPUT*>;
PROCEDURE NEXTSYM;

VAR
I: INTEGER;

BEGIN
IF ALREAOYPACKED
THEN BEGIN

SYM:=LOOKAHEADSYM;
ALREADYPACKED:=FALSE

END
ELSE

BEGIN

00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210

WHILE CH=' t DO
BEGIN

IF EOLN<INPUT} THEN WRITELN;
READ(CH);
WRITE(CH}

END;
IF CHIN ['{J,'•'''l'J

THEN BEGIN
CASE CH OF

'(':SYM:=LPAREN;
'.': Sn1: =PERIOD;
t)t:SYM:=RPAREN

END<*CASE*);
IF EOLN(INPUT) THEN WRITELN;

READCCH>;
WRITE<CH)

END
ELSE BEGIN

SYM:=ATOM;
I D: = 1

I:= 0;
REPEAT

I:=I+l;

I •

'

IF I<ll THEN IO[IJ:=CH;
IF EOLN(INPUT) THEN WRITELN;

READ(CH);
WRITE (C H)

UNTIL C H IN [' t, t (t , t • t, t) '] ;

RESWD~D:=REPLACEHSYM;

WHILE (!D<>RESWOROS[RESWORD]) AND (RESWORO<>CONSSYM) DO

00211
00212
00213
00214
00215
00216
00~17
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240

END

RESWORD:=SUCC<RESWORDl;
RESERVEO!=CID=PESWORDS[R~~WOROJ)

END;

END C*NEXTSYM*);
PROCEDURE READEXPRCVAR SPTR:SYMBEXPPTR);

VAR
NXT,HEAOl,TAILl:SYMBEX~PTR;

BEGIN
PDP<SPTR);
NXT:=SPTR".NEXT;
CASE SYM OF

RPAREN,PERIOD:ERROR{l);
ATOM:WITH SPTR" DO

BEGIN
ANATCM:=TRUE;
NAME:=IO;
ISARESERVEDWORD:=RESERVED;
IF RESERVED THEN RESSYM:=RESWORD

END;
LPAREN:WITH SPTR" 00

BEGIN
NEXTSYM;
IF SYM=PERIOD THEN ERROR(2)'

ELSE IF SYM=RPAREN THEN SPTR":=NILNODE
ELSE BEGIN

ANATO"':=FALSE;
READEXPRCHEADl);

HEAD:=HEADl;

00241
00242
00243
00244
00245
00246
00247
00248
00249
00250
00251
00252
·00253
00254
00255
00256
00257
00258
00259
00260
00261
00262
00263
00264
00265
00266
00267
00268
00269
00270

NEXTSYM;
IF SYM=PERIOO

THEN
BEGIN

NEXTSYM;
READEXPR <T AI ll);

TAIL:=TAILl;
NEXTSYM;·

IF SYM<>RPAREN THEN ERROR(4);
END

ELSE

END

BEGIN
BACKUP INPUT;
REA.DEXPR (TAILl);

TAIL:=TAILl
END

END <*WITH*)
END <*CASE*l;

SPTR".NEXT:=NXT
END <*READEXPR*>;

PROCEDURE PRINTNAME(NAME:ALPHA);
VAR

!:INTEGER;
BEGIN

I:= 1;
REPEAT WRITE(NAME[IJ);

I:=I+l
UNTIL <NAME[IJ=' 1) OR (1=11)

END C*PRINTNAME*J;

57

00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282

.00283
00284
00285
00286
00287
00288
0.0289
1)0290
00291
00292
00293
0029 1t

00295
00296
ooz<n
00298
00299
00300

PROCEDURE PRINTEXPR(SPTR:SYMBEXPPTRl;
LABEL

1;
BEGIN

IF SPTRA.ANATOM THEN PRINTNAMECSPTR~.NAME)
ELSE BEGIN

WRITE('(');
l:WITH SPTR~ DO

BEGIN

END

PRINTEXPRCHEAD);
IF TAIL~.ANATOM AND CTAILA.NAME= 1 NIL

THEN ~JRITE (I)' l

END

ELSE
IF TAIL~.ANATOM THeN
BEGIN

END

WRITE('.');
PRINTEXPRCTAIL);
WRITE C ') ' l

ELSE BEGIN
WR.ITEC' 'l;

SPTR:=TAIL;
GOTO 1

HlD

END C*PRINTEXPR*>;
FUNCTION EVAL(E,ALIST:SYMBEXPPTR) :SYMBEXPPTR;

VAR.
TEMP,NILT,STAO,TEST,CAROFE,CAAROFE:SYMBEXPPTR;

58

lt)

00301
00302
00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
00323
00324
00325
00326
00327
00328
00329
00330

59

CHECKQUO:BOOLEAN;
FUNCTION REPLACEHCSPTR1,SPTR2:SYMAEXPPTR):SYMBEXPPTR;

BEGIN
-IF SPTR1".ANATOM THEN ERROR(5)

EL~E SPTR1".HEAO:=SPTR2;
REPLACEH:=SPTR1;

END C*RPLACEH*);
FUNCTION REPLACETCSPTRl,SPTR2:SYMBEXPPTR):SYMBEXPPTR;

BEGIN
IF SPTRl".ANATOM THEN ERROR(6)

ELSE SPTR1".TAIL:=SPTR2;
REPLACET:=SPTRl

END C*REPLACET*>;
·FUNCTION HEAOCSPTR:SYMBEXPPTR}:SYMBEXPPTR;

BEGIN
IF SPTR"'.ANATOM

THEN BEGIN
PRINTEXPRfSPT~l;

E-RROR(?)
END

ELSE HEAO:=SPTR".HEAD
END C*HEAD*);

FUNCTION TAIL(SPTR:SYMBEXPPTR):SY~BEXPPTR;
BEGIN 1

IF SPTR".ANATOM
THEN BEGIN

PRINTEXPRCSPTRl;
.ERROR(8)

END
ELSE TAIL:=SPTRA.TAil

00331
00332
00333
00334
00335
00336
00337
003i8
00339
00340
00341
00342
00343
00344
00345
00346
00347
00348
00349
00350
00351
00352
00353
00354
00355
00356
003'57
00358
00359
00360

§ 0

END (tfTAILtf};
FUNCTION CONSCSPTRl,SPTR2:SYMBEXPPTR):SYMBEXPPTR;

VAR
TEMP:SYMBEXPPTR;

BEGIN
POP (TH1 P};
TEMP".ANATOM:=FALSE;
TEMPA.HEAD:=SPTRl;
TEMP".TAIL:=SPTR2;
CONS:=TEMP

END C*CONS*);
FUNCTION COPYCSPTR:SYMBEXPPTRl :SYMBEXPPTR;

VAR
TEMP,NXT:SYMBEXPPTR;

BEGIN
IF SPTRA.ANAT01>1
THEN BEGIN

POP(TEMPl;
NXT:=TfMP".NEXT;
TEMP":=SPTR";
TEMP".NEXT:=NXT;
COPY:=TEMP

END
ELSE COPY:=CONS(COPY(SPTR".HEAOJ,COPY(SPTR".TAIL)}

ENO (tfCOPY*l;
FUNCTION APPEND($PTR1,SPTR2:SYMBEXPPTR):SYMBEXPPTR;

BEGIN
IF SPTRlA.ANATOM THEN IF SPTRl".NAME<>'NIL ' THEN ERROR(9)

ELSE APPEND:=SPTR2 ELSE APPEND::CQNSCCOPY(SPTRl".HEAO),APPEND(
SPTR1A.TAIL,SPTR2J) .

00361
00362
00363
00364
00365
00366
00367
00368
00369
00370
00371
00372
00373
00374
00375
00376
00377
00378
00379
00380
00381
00382
00383
00384
00385
00386
00387
00388
00389
00390

END C*APPEND*l;
.FUNCTION CONC<SPTRl:SYMBEXPPTR):SYMBEXPPTR;

VAR
SPTR2,NILPTR:SYMBfXPPTR;

BEGIN
IF SYM<>RPAREN THEN

BEGIN

END
ELSE

NEXTSYM;
READEXPRCSPTR2);
NEXTSYM;
CONC:=CONSCSPTRl,CONC(SPTR2));

IF SYM=RPAREN THEN
BEGIN

NEWCNILPTRJ;
WITH NILPTR" DO

END

BEGIN
AN.ATOM:=TRUE;

NAME:='NIL
END;
CONC:=CONSCSPTRl,NILPTRl;

ELSE ERROR(10)
END !*CONC*l;

61

FUNCTION EQQ(SPTR1,SPTR2:SYMBEXPPTR):SYMBEXPPTR;
VAR

TEMP,NXT:SYMBEXPPTR;
BEGIN

POPCTEMP>;

00391
00392
00393
00394
00395
00396
00397
00398
00399
00400
00401
00402
00403
00404
00405
00406
00407
00408
00409
00410
00411
00412
00413
00414
00415
00416
00417
0041R
00419
00420

NXT:=TEMP"'.NEXT;
IF SPTRl"'.ANATOM AND SPTR2"'.ANATOM THEN

IF SPTR1"'.N4ME·=SPTR2"'.NAME THEN TEMP"':=TNODE
l ELSE TEMP"':=NILNOOE

ELSE IF SPTR1=SPTR2 THEN TEMP"':=TNOOE
ELSE TEMPA:=NILNOOE;

tEMP"'.NEXT:=NXT;
EOO:=TEMP

END C*EOO*>;
FUNCTION EQUALCSPTRl,SPTR2:SYMBEXPPTR):SYMBEXPPTR;

VAR
TEMPl,NXT:SYMBEXPPTR;

PROCEDURE EQUATE(SPTRl,SPTR2:SYMBEXPPTR);
BEGIN

IF SPTRl ANATOM AND SPTR2"'.ANATOM
THEN IF SPTRl"'.NAME=SPTR2"'.NAME

THEN TEMPl"':~TNODE ELSE TEMPl"':=NILNODE
ELSE IF (NOTCSPTRl"'.ANATOM) AND SPTR2"'.ANATOMl OR (SPTRl"'.ANATOM

AND CNOTCSPTR2"'.ANATOM))) THEN TEMPl"':=NILNODE
i=LSE BEGIN

EQUATECHEADCSPTRl),HEADCSPTR2));
IF TEMPl"'.NAME='T l

T H E N E Q U A T E (T A I L (S P T R 1') , T A IL (S P T R 2)) ;
END

END (>,'<EQUATE*);
BEGIN <*EQUAL*>

POP(TEMP1};
NXT:=TEMPlA.NfXT;

EOUATE!SPTRl,SPTR2);
EOUAL:=TE"1Pl;

00421
00422
00423
0042"4
00425
00426
00427
00428
00429
00430
00431
00432
00433
00434
00435
00436
00437
00438
00439
00440
00441
00442
00443
00.444
00445
a·o446
00447
00448
00449
00450

TEMPlAoNEXT:=NXT
END C*EOUAL*) i

6j .-

FUNCTION LISTCSPTR1,SPTR2:SYMBEXPPTR):SYMBEXPPTR;
VAR

· NUL,NXT:SYMBEXPPTR;
BEGIN

POP(NUL);
NXT:=NUL"'.NEXT;
NUL"':=NILNOOE;
NULA.NEXT:=NXT;
LIST:=CONSCSPTR1,CONSCSPTR2,NUL))

END !*LIST*};
FUNCTI~N SUBST<SPTRl,SPTRZ,SPTR3:SYMBEXPPTRJ:SYMBEXPPTR;

VAR
TEMPl:SYMBEXPPTR;

BEGIN
TEMPl:=EQUAL(SPTR2,SPTR3);
IF TEMPl"'.NAME='T ' THEN SUBST:=SPTRl
ELSE If SPTR3"'.ANATOM THEN SUBST:=SPTR3

ELSE SUBST:=CONS<SUBST<SPTRl,SPTR2,HEAOCSPTR3J),SUBST(SPTRl,SPTR2,TAIL
(SPTR3)})

END C*SUBST*);
FUNCTION NULUSPTR:SYt1BEXPPTR) :SYMBEXPPTR;

VAR
TEMP4,NXT:SYMBEXPPTR;

BEGIN
POP<TEMP4>; .
NXT:=TE~P4A.NEXT;
IF <SPTR"'.NAt1E:i:iNil ')THEN Tf.MP4A:=TNODE
ElSE TEMP4~:=NILNODE;

00451
00452
00453
00454
00455
00456
00457
00458
00459
00460
00461
00462
00463
00464
00465
00466
00467
OO!t68
00469
00470
00471
00472
00473
004 74
00475
00476
00477
00478
00479
00480

TEMP4".NEXT:=NXT;
NULL:=TEMP4

END <*NULL*l;
FUNCTION ATOM(SPTR:SYMBEXPPTR):SYMBEXPPTR;

VAR
TEMP,NXT:SYMBEXPPTR;

BEGIN
POPCTEMP>:;
NXT:=TEMP".NEXT;
IF SPTR".ANATOM THEN TEMPft:=TNODE

ELSE TEMP":=NILNODE;
TEMP".NEXT:=NXT;
ATOM:=TEMP

END <*ATOM*);
FUNCTION LOOKUP<KEY,ALIST:SYMBEXPPTR):SYMBEXPPTR;

VAR
TEMP,FUNC:SYMBEXPPTR;

BEGIN
TEMP!=EOQ(HEAD(HEADCALIST)),KEY);
IF TEMP".NAME='T t

THEN LOOKUP:=TAIL(HEAD(ALIST))
ELSE BEGIN

FUNC:=TAIL<ALIST);
IF FUNC".NAME='NIL 1

THEN BEGIN
PRINTEXPR{KEY>;
ERROR(l4)

END
ELSE LOOKUP:=LOOKUP<KEY,TAIL(ALIST))

END

00481
00482
00483
00484
00485
00486
00487
00488
00489
00490
00491
00492
00493
00494
00495

'00496
00497
00498
00499
00500
00501
00502
00503
00504
00505
00506
00507
00508
00509
00510

65

END (*LOOKUP*);
FUNCTION BINDARGSCNAMES,VALUES:SYMBEXPPTR):SYMBEXPPTR;

VAR
TEMP,TEMP2:SYMBEXPPTR;

BEGIN
IF NAMESAoANATOM AND (~AME$AoNAME='N!l 1 }

THEN BINOARGS:=ALIST
ELSE BEGIN

TEMP:=CONSCHEADCNAMESJ,EVALCHEADCVALUES),ALIST>J;
TEMP2:=BINDARGS(TAIL(NAMESl,TAIL(VALUESJ);
BINDARGS:=CONSCTEMP,TEMP2)

END
END C*BINDARGS*);

FUNCTION EVCONCCONOPAIRS:SYMBEXPPTR>:SYMBEXPPTR;
VAR

TEMP,TEST:SYMBEXPPTR;
BEGIN

TEMP:=EVALCHEAD(HEADCCONDPAIRS)),ALISTl;
IF TEMPA.ANATOM AND CTEMPA.NAME='NIL 1)

THEN BEGIN

END

TEST:=TAILCCONDPAIRS>;
IF TESTA.ANATOM AND CTESTA.NA~E= 1 NIL ')
THEN BEGIN

PRINTEXPR(CONDPAIRS>;
ERROR(l3)

END
ELSE EVCON:=EVCON<TAIL<CONOPAIRS))

ELSE EVCON:=EVALCHEADCTAILCHEADCCONDPAIRS})),ALISTl
END (~fEVCON*);

00511
00512
00513
00514
00515
00516
00517
00518
00519
00520
00521
00522
00523
00'124
00525
00526
00527
00528
00529
00530
00531
00532
00533
00534
00'535
00536
00537
00538
0053Q
00540

FUNCTION NAT(SPTRl:SYMBEXPPTR):SYMBEXPPTR;
VAR

TEMPl,NXT:SYMBEXPPTR;
BE Gil\!

POPHEMPU;
NXT:=TEMPlA.NEXT;
IF SPTR1A.NAME= 1 T THEN TEMPlA:=NILNODE
ELSE IF SPTRlA.NAME='NIL 1 THEN TEMPlA:=TNOOE
ELSE BEGIN

PRINTEXPR(SPTR1);
ERROR{l5)

END;
TEMPlA.NEXT:=NXT;
NAT:=TH1Pl

END <*NAT FUNCTION*>;
FUNCTION EVANDORCPRF.D,SPTRl:SYMBEXPPTR):SYMBEXPPTR;

VAR
TEMPl,TEMP2,TEMP3:SYMBEXPPTR;

BEGIN
TEMP3:=EVALCHEAD(PRED),ALIST};
TEMP2:=TAIL(PRED);
IF TEMP2A.NAME<>'NIL ' THEN
IF TEMP3A.NA~E=NILTA.NAME THEN EVANDOR:=EVANDOR(TAILCPRED),SPTRll
ELSE BEGIN f

TEMPl:=NATCNILTJ;
IF TEMP3A.NAHE=TEMP1A~NA~E THEN EVANDOR:=TEMP3
ELSE BEGIN

PRINTEXPR(PREO);
ERROR(15)

END

00541
00542
00543
00544
00545
00546
00547
00548
00549
00550
00551
00552
00553
00554
00555
00556
00557
00558
00559
00560
00561
00562
00563
00564
00565
00566
00567
00568
00569
00570

END
ELSE EVANDOR:=TEMP3

F.ND C*EVANDDR*);
FUNCTION SETARGCNAM,VAL:SYMBEXPPTR):SYMBEXPPfR;

VAR
TEMPl:SYMBEXPPTR;

BEGIN
TEMPl:=CONS(HEAD(NAM),FVAL(HFAD<VAL>,ALIST)l;
SETARG:=CONSCTEMPl,ALIST)

END <*SETARG*);
FUNCTION SEARCH(FPTR:SYMREXPPTR>:SYMBEXPPTR;

VAR
NXT:SYMBEXPPTR;

BEGIN
NXT:=FPTR;
WHILE FPTRAoTAILAoNAME<>IN!l 1 DO

FPTR:=FPTRA.TAIL;
FPTRA.TAIL:=ALIST;
SEARCH:=NXT

END <*SEARCH*);
FUNCTION BINDVARS(SPTR,VARS:SYMBEXPPTR):SYMBEXPPTR;

VAR .
NUL,NXT,TEMPO,TEMPl,TEMP2:SYMBEXPPTR;

FUNCTION INITVALCVARS:SYMBEXPPTRl:SY~BEXPPTR;
BEGIN

IF VARSA.ANATOM AND !VARSA.NAME=~NIL 1 }

THEN INITVAL:=TEMPO
ELSE BEGIN

TEMPl:=CONSCHEAD<VARSJ,NUL);
TtMP2:=INITVAL(TAIL(VAR$));

00571
00572
00573
00574
00575
00576
00577
00578
00579
00580
00581
00582
00583
00584
00585
00586
00587
00588"
00589
00590
00591
00592
00593
00594
00595
00596
00597
00598
00599
00600

INITVAL:=CONSCTEMPl,TEMP2}
END

END; <*INITVAL*l
BEGIN <*BINOVARS*>

P or< NUl> ;
NXT:=NUL".NEXT;
NUL":=MILNODE;
N U L" .. N E X T : = N X T ;
TEMPO:=SEARCHCSPTR>;
BINDVARS:=INJTVALCVARSl

END; C*BINDV"ARS*>

68

FUNCTION LOCMARKCKEY,ALIST:SYM~EXPPTR):SYMBEXPPTR;
VAR

TEMP,FUNC:SYMBEXPPTR;
BEGIN

FUNC:=HEAD(HEAD(ALISTJ);
IF FUNC". ANA TOM

THEN IF FUNC".NAME= 1 COND
THEN BEGIN

FUNC:=TAILCHEADCALIST>J;
WHILE NOT CFUNC".TAIL".NAME='NIL 1) DO

. FUNC:=FUNC".TAIL;
LOCMARK:=LOCMARKCKEY,TAILCHEADCFUNCJll

END
ELSE BEGIN

FUNC:=TAILCALISTJ;
IF FUNC".ANATOM AND CFUNC".NA~E= 1 NIL '1
THEN LOCMARK~=LOCMARKCKEY,TAIL<HEAD<ALIST>>l

ELSE LOCMARK:=LOCMARKCKEY,TAILCALIST))
END

00601
00602
00603
00604
0060 .'5
00606
00607
00608
00609
00610
00611
00612
00613
00614
00615
00616
00617
00618
00619
00620
00621
00622
00623
00624
00625
00626
00627
00628
00629
00630

69

ELSE BEGIN
TEMP:=EQQ(HEAD(HfADCHEADCALISTlll,KEYJ; .

IF TEMPA.NAME='T ' THEN LOCMARK:=HEADCTAILCHEAO(ALISTll)

END;
BEGIN

IF

ELSE LOCMARK:=LOCMARK(KEY,TAIL(HEADtALISTl))
END

C*LOCATE MARKS*)
C*EVAL*l

E~.ANATOM THEN EVAL:=LOOKUPCE,ALISTl
ELSE BEGIN

CAROFE:=HEADCE>;
IF CAROFEA.ANATOM
THEN IF NOT.CAROFEA.ISARESERVEDWORO

THEN EVAL:=EVALCCONS<LDOKUPCCAROFE,ALIST),TAIL(E)),ALISTl
ELSE CASE

CAROF~A.RESSYM OF
SETQSYM,OEFINESYM,LABELSYM,LAMBOASYM!ERROR(3);
QUOTESYM:EVAl:=HEADCTAIL(E)l;

NULLSYM: EVAL:=NULL(EVAL(HEADCTAILCE)),ALIST));
EQUALS Y r~ : EVA l : = EQUAl (.EVA l C HEAD (T A I U E)) , A L IS T} , E V A l { HEAD (T A I l (T A I L (E l

ATOMSYM:
EOSYM:

)),ALIST>>;
EVAL:=ATOMCEVAL<HEAD(TAIL(f)),ALIST>>;
EVAL:=EQQ(EVALCHEAOCTAil(E)),.ALIST>,EVAL~HEADCTAIL(TAILCEl

)),ALISTJ);
NOTSYM: EVAL:=NATCEVAL(HEAD(TAIL(f)),ALIST)J;
ORSYM: BEGIN

POP(NILT>;
STAD:=NILTA.NEXT;
NIL TA: =NIL NODE;
NILTA.NEXT:=STAO;
EVAL:=EVANDORCTAIL(E),NILT)

00631
00;)32
(~b33

~634
00.635
00636
00637
00638
00639
00640
00641
00642
00643
00644
00645
OOo<tb
00647
00648
00649
00650
00651
00652
00653
00654
00655
00656
00657
00658
0')659
00660

70

f~D;

ANDSYM: BEGIN
POP(NILT);
STAO:=NILTAoNEXT;
NILT":=TNOOE;
NILT".NEXT:=STAD;
EVAL:=EVANDOR<TAIL(E),NILT)

END;
HEADSYM: EVAL:=HEAb<EVAL(HEADCTAIL(E)),ALIST>);
TAILSYM: EVAL:=TAIL<EVAL(HEADCTAILCE)),ALIST)J;

CONSSYM: EVAL:=CONS<EVALCHEAD(TAIL(E)),ALIST>,EVAL(HEAD(TAIL<TAILCE)))
,ALIST>J;

CONDSYM: EVAL:=EVCONCTAtL(E));
CONCSYM: ;
AP?ENDSYM!

EVAL:=APPENDCEVAL(HEAD(TAIL(E}),ALIST),EVAL(HEAD(TAIL(TAIL
{E))),ALIST) l;

LISTSYM: EVAL:=LISTCEVAL<HEAD(TAIL(E)},ALIST),EVAL(HEAD
(TAIL<TAIL(f))),ALIST))j

SUBSTSYM: EVAL:=SUBSTCEVAL(YEAO(TAILCE)),ALIST),EVAltHEADCTAILCTAil
(ElJ),ALIST),EVALCHEAD(TAILCTAILCTAILCEJ)t),ALISTJJ;

REPLACEHSYM:
EVAL:=REPLACEHCEVAL(HEADCTAIL(E}),ALIST),EVALCHEAO(

TAIL <TAIL (E))),ALIST));
REPLACETSYM: EVAL:=~EPLACETCEVAL(HEAD<TA!L(E)l,ALIST),EVAL(HEADCT~ll(TAIL

(E))),ALIST>H
P R 0 G S Y M : B E GI N

TEMP:=BINDVARSCTAILCTAIL<EJ),HEAD<TAIL(EllJ;
EVAL:=EVALCHEADCTAILCTAIL{El}J,TEMPJ

END;

00661
00662
00663
00664
00665
00666
00667
00668
00669
00670
00671
00672
00673
00674
00675
00676
00677
00678
00679
00680
00681
00682
00683
00684
00685
00686
00687
00688
00689
00690

71

GOSYM: EVAL:=EVAL<HEADCTAIL(f)),ALIST>;
RETURNSYM: EVAL:=EVALCHEAO(TAIL(E)),ALIST);

END <*CASE*>
ELSE

BEGIN
CAAROFE:=HEADCCAROFEJ;
IF CAAROFEAoANATOM

THEN IF NOT.CAAROFEA.ISARESERVEOWORD
THEN EVAL:=EVAL(LOCMARKCCAAROFE,ALIST),ALIST)

ELSE IF NOT CCAAROFEA.RESS~M IN [SETOSYM,DEFINESYM,LABELSYM,LAMBDASYMJ)
THEN fRRORC12)

ELSE CASE CAAROFEAoRESSYM Of
SETQSYM: BEGIN

TEMP:=SETARGCTAILCCAROFE},TAIL(TAILCCAROFE>>>;
EVAL:=EVALCHEADCTAIL(E)),TEMP)

END;
DEFINESYM: BEGIN

TEMP:=SEARCH(TAIUCAROFE));
EVAL:=EVAL(HEAOCTAIL(E)J,TEMP)

END;

LAMBDASYM:

LABELSYM:
BEGIN

TEMP:=CONS{CONSCHEAO(TAIL(CAROFEll,HEADCTAIL(
TAIL(CAROFE)J)),ALISTJ;

EVAL:=EVALCCONSCHEAD!TAILCTAIL<CAROFE>>>,
TAIL(E)),TEMP)

END;

BEGIN
TEMP:=BJNDARGS(HEAD(TAIL(CAROFE)l,TAIL(E));

00691
00692
00693
00694
00695
00696
00697
00698
00699
00700
00701
00702
00703
00704
00705
00706
00707
00708
00709
00710
00711
00712
00713
00714
00715
00716
00717
00718
00719
00720

72

EVAL:=EVALCHEAD(TAILCTAIL<CAROFE)l),TEMP)
END

END (*CASE*)
ELSE

EVAL:=EVAL(CONSCEVALCCAR~FE,AliSTJ,TAILCE)),ALIST)
END

END
END <*EVAL*l;

PROCEDURE INITIALISE;
VAR

!:INTEGER;
HEADl,TAILl,TEMP,NXT:SYMBEXPPTR;

BEGIN
ALREADYPACKED:=FALSE;
READCCHl;.
~iR ITE ·c O-J);

NUMBEROFGCS:=O;
FREENODES:=MAXNODES;
WITH NILNODE DO

BEGIN
ANATOM:=TRUE;
NEXT:=NIL;

' . , NAME:= 1 NIL
STATUS:=UNMARKEO;
ISARESERVEDWORD:=FALSE

END;
WITH TNODE DO

BEGIN
ANATOt1: =TRUE;
NEXT!=NIL;

00721
00722
00723
00724
00725
00726
00727
00728
00729
00730
00731
00732
00733
00734
00735
00736
00737
00738
00739
00740
00741
00742
00743
00744
00745
00746
00747
00748
00749
00750

NAME:= 1 T ';
STATUS:=UNMARKED;
ISARESERVEDWORD:=fALSE

END;
<*ALLOCATE STORAGE AND MARK IT FREE*l

FREELIST: =NIL;
(*$R-,W30000B*l

FOR I:=l TO MAXNODES DO
BEGIN

NEW(NODELIST);
NODELISTA.NEXT:=FREELIST;
NODELISTA.HEAD:=FREF.LIST;
NODELISTA.STATUS:=UNMARKED;
FREELIST:=NODELIST

END;
(*INITIALISE RESERVED WORD TABLE*l

I •

' RESWORDS[REPLACEHSYMJ:='REPLACAR
RESWORDSCREPLACETSYMJ:='REPLACOR ' . . ,
RESWOROSCHEADSYMJ:='CAR •;
RESWORDS{TAILSYMJ:= 1 CDR •;
RESWOROS[COPYSYMJ:= 1 COPY •;
RESWORDS[APPENDSYMJ:=•APPEND •;
RESWORDS[CONCSYMJ:='CONC
RESWORDSCCONSSYM]:='CONS
RESWORDS(EQSYMJ:='EO
RESWORDS[OUOTESYMJ:= 1 QUOTE
RESWORDS[ATOMSYMJ~= 1 ATOM

RESWORDS[NOTSYMJ:='NOT
RESWORDS(ORSYMJ:='OR,
RESWORDS[ANDSYM):='AND

' . '

' . ' t •
' I • .,

' . ' ' . '
' . ' f •

'

73

00751
00752
00753
00754
00755
00756
00757
00758
00759
00760
00761
00762
00763
00764
00765
00766
00767
00768
00769
00770
00771
00772
00773
00774
00775
00776
00777
00778
00779
00780

RESWORDS[CONDSYMJ:= 1 C.OND
RESWORDS[LABELSYKJ:='LABEL
RESWORDS[LAMBOASYMJ:=•LAMBDA

RESWOROS(SETOSYMJ:= 1 SETO
RESWORDS[DEFINESYMJ:= 1 DEFINE

RESWORDSfPROGSYMJ:='PROG
RESWnROSCGOSYMJ:= 1 GO ';
RESWORDS[RETURNSYMJ!='RETURN

RESWORDSCNULLSYMJ:= 1 NULL
RESWOROS[EOUALSYMJ:='EOUiL
RESWORDSCLISTSYMJ:=•LIST
RESWORDSfSUBSTSYMJ:='SUBST

I • ,

I •

'
t •

J

1 • ,
t •

'
•• '

I •
1

I •

' ' . ' I •
~

' . '

74

<*INITIALISE THE A-LIST WITH T AND NIL *>
POP(ALIST>;
ALISTAoANATQM:=FALSE;
ALISTA.STATUS:=UNMARKED;
POP<TAIL1);

ALISTAoTAIL:=TAill;
NXT:=ALISTA.TAILA.NEXT;
ALISTA.TAILA:=NILNODE;
ALISTA.TAILA.NEXT:=NXT;
POP(HEADll;

ALISTA.HEAD:=HEADl;
C*BIND NIL TO THE ATOM NIL *)

WITH ALISTA.HEAOA DO
BEGIN

ANATOM:=FALSE;
STATUS:=UNMARKED;
PQP{HEADl);

HEAD:=HEADl;

00781
00782
00783
00784
00785
00786
00787
00788
00789
00790
007Ql
00792
00793
00794
00795
00796
00797
00798
00790
00800
00801
00802
00803
00804
00805
00806
00807
00808
00809
00810

NXT:=HEAD".NEXT;
HEAD":=NILNODE;
HEAD"'.NEXT:=NXT;
POP<TAILl);

TAIL:=TA!Ll;
NXT:=TAIL ",NEXT;

TAIL ":=NILNODE;
TAIL".NEXT:=NXT

END;
POP<TEMP);
TEMP",ANATOM:=FALSE;
TEMP",STATUS:=UNMARKED;
TEMP".TAIL:=ALIST;
A LIST: =T01P;
POP P-lEAOU;

ALIST"'.HEAD:=HEADl;
(*BIND TO THE ATOM T *)

WITH ALIST".HEAO"' DO
BEGIN

ANATOM:=FALSE;
STATUS:=UNMARKED;
PClP(HEAOl};

HEAD:=HEADl;
NXT:=HEAD",NEXT;
HEAD":=TNODE;
HEAD".NEXT:=NXT;
POP(TAill);

TAIL:=TAILl;
NXT:=TAIL".NEXT;
TAIL"':=TNODE;

75

00811
00812.
00813
00814
00815
00816
00817
00818
00819
00820

.00821

. 00822
00823
00824
00825
00826
00827
00828.
00829
00830
00831
00832
00833
00834
00835
00836
00837
00838
00839
00840

TAIL "'.NEXT:=NXT;
END;

END <*INITIALISE*>;
BEGIN <*LISP*)

WRITELN<'*EVAL*t};
INITIALISE;

NEXTSYM;
READEXPR<PTRl;
READLN;
WRITELN;
WHILE NOT PTR"'.ANATOM OR (PTR NAME<>'FIN

BEGIN
WRITELN;

WRITELNC'*VALUE* 1 J;
PRINTEXPR(EVAL(PTR,ALISTI);

1: WRITELN;
lf/RITELN;

IF EOF<INPUTJ THEN ERROR(ll);
PTR:=NIL;
GARBAGE MAN;
WRITELN;
WRITELN;
WRITELNC '*EVAL*');
NEXTSn1;
READEXPR(PTRJ;
RE ADLN;

WRITELN
END;

2: WRITELN;
\4R I TELN;

1 } DO

00841
00842
00843
00844
00845

77

WRITELNC 'TOTAL NUMBER OF GARBt.GE COLLECTIONS='• NUMBfROFGC$:3, '•');
WRITELN;
WRITELNC•FREENODFS LEFT UPON EXIT=t,FREENODES:3,•.•>;
WRITELN;

END. C*LISP* l

APPENDIX- B

(RESULTS)

78

EVAL
(CAR (QUOTE ((A 6) (ABC)}) l

VALUE
(A B)

GARBAGECOLLECTION.

NUMBER OF FREE NODES BEFORE COLLECTION=568.
NUMBER OF FPEE NODES AFTER COLL~CTION=591.

EVAL

(CDR (QUOTE ((A Bl (ABC))))

>!<VALUE*
((ABC))

GARRAGECOLLECTION.

NUMBER OF FREE NODES BEFORE COLLECTION=568.
NUMBER OF FREE NODES AFTER COLLECTION=591.

EVAL

(CONS (QUOTE A} (QUOTE (B C)))

VALUE
<A B C)

GARBAGECOLLECTION.

NUMBER OF FREE NODES BEFORE COLLECTION=571.
NUMBER OF FREE NODES AFTER COLLECTION=591.

EVAL
(APPEND (QUOTE <A B)) (QUOTE (C 0)))

VALUE
<A 8 C 0)

GARBAGECOLLECTION.

NUMBER OF FREE NODES BEFORE COLLECTION=564.
NUMBER OF FREE NODES AFTER COLLECTION=591.

E VAL
<LIST (QUOTE CA B> > (QUOTE <C 0)) l

VALUE
((A 8) (C 0))

GARBAGECOLLECTION.

NUMBER OF FREE NODES BEFORE COLLECTION=565.
NUMBER OF FPEE NODES AFTFR COLLECTION=591.

EVAL
<REPLA.CAR (QUOTE {(A B) B Cl) (QUOTE A>)

VALUE
(A B C)

GARBAGECOLLECTION.

NUMBER OF FREE NODES BEFORE COLLECTION=566.
NUMBER OF FREE NODES AFTER COLLECTION=591.

Bo

EVAL
{REPLACDR (QUOTE (.A (A B)}) (QUOTE Bl >

VALUE
CA. B l

GARBAGECOLLECTION.

NUMBER OF FREE NODES BEFORE COLLECTION=568.
NUMRER OF FREE NODES AFTER COLLECTION=591.
EVAL

((LABEL MEMBER (U1MBDA CX Yl .
CCO"lO .{ CNULL Y) {QUOTE .NIU)

((EQUAL X CCAR Y)} {QUOTE T))

81

((QUOTE T) <MEMBER X CCOR Y})))))
(QUOTE (A B l)
(QU OTt (C D A B (A P.))))

VALUE
T

GARBAGECOLLECTION.

NUMBER OF FREE NODES BEFORE COLLECTION=388.
NUMBER OF FREE NODES AFTER COLLECTION=591.

82
EVAL

((DEFINE U1EMBER LAMBDA (X Y)

CCOND <<NULL Y) (QUOTE NIL))
~(EQUAL X (CARY}) (QUOTE T))
((QUOTE Tl <MEMBFR X CCOR Y)))))

(UNION LAMBDA (X Y)
(COND <<NULL X) Y)

((MEMBER (CAR X) Y) (UNION CCDR X) Y))
((QUOTE T) (CONS (CAR Xl (UNION (CDR X> Y))))))

(UNION (QUOTE (ABC 0)) (QUOTE (A E F 8 G H))})

VALUE
<C D A E F B G H)

GARBAGECOLLECTION.

NUMBER OF FREE NODES BEFORE COLLECTION=407.
NUMBER OF FREE NODES AFTER COLLECTION=l191.

EVAL
((DEFINE (REVERSE LAMBDA (X)

VALUE

(PROG (U V)
«SETO U X)

((A} (CONO (<NULL U) (RETURN V))
((QUOTE T> ((SETQ V {CONS <CAR U) V)l

((SETQ U {COR U))

<GO ((A))))))))))))

(REVERSE {QUOTE (A B 0 E F G Hl)))

(H G F E D B A)

GARBAGfCOLLECTION.

NUMBER OF FREE NODES BEFORE COLLECTION=937.
NUMBER OF FREE NODES AFTER COLLECTION=1191.
EVAL

(AND (QUOTE T) {QUOTE T> (QUOTE NILl)

VA,LUE
NIL

GARBAGECOLLECTION.

NU~BER OF FREE NODES BEFORE COLLECTION=ll69.
NUMBER Of FREE NODES AFTER COLLECTION=1191.

EVAL
{OR (QUOTF NIL) (QUOTE NIL) (QUOTE T))

VALUE
T

GARBAGECOLLECTION.

NUMBER OF FREE NODES BF.FORE COLLECTION=1169.
NUMBER OF FREE NODES AFTER COLLECTION=l191.

*EVAL>!<
(NOT (OR !QUOTE NIL) (QUOTE T))l

VALUE
NIL

84

APPENDIX - C

(FLOW DIAGRAMS)

NON e,\..AK\C. CWA~A~-rE"Il.

fRo!"\ "ti-\E INf\.11'

S- €xPR,fS.SioN;

I
v4f.t"-&'-£ S

..\r ~

CI-\A.~AC.i€~ \'1Pt
~ ., .

1 ~ A..w A.'TcM /
REAl:> 'HUE N~l"'E_; 0
C. '-'~c..~ W\o\€.1'1.\E."-

1'1 \~ A. ~....~ !:,€.~...,£.~

wo~b;

pIt 0 c. e: i)\J R.£

()o ,..ro.,- c.~r~A.JG..(
-I

C ~H\#:.At."(.c-K ..,-~~~A. ~Li s.

1''iP€ ;

@.ooL~O::. f-AL~€-'

~'f-'S. 'T'ff€

To "f~t 'f'tfE. "'~~,p.~\.f;
R_E.Ab '\1,\E. NE.)('i

c.\-\~ ~A e. "t E ~

I

I

W f\.11" IE. "NIL.!
Ito..~ ,..~€ I\IObt

A.S 'ti
1

S. N'ViE;

• PR.oc.€.DuRE

WR.I"ft i~E NAI'1~

IN" 'r\o\t. wot>£_ ~

CHE'K L,.JI.\E.T~~~
tT ~~ ·~ ~E. $.E~"E ~

wo~C> ~

C.Al.L

C.i\LL

Re. At><:. 1t f~ (Sf'T"fl"· ~H< All)~
..SE~"r.S.'ff1&oL. ~

lNS£~'i Al>bl'rloN"A.L

LEF·'l" PA ~E NTI-"I E ~IS.

IN" 'TW£ IIII'VT €.1CP~..

E: s !,\s '
J

C. ~LL R._EP.t>E'Itf~ l
'3,P-rt_I\.TAit.) ~

CALL. N(JII,.-S'1MI>ol. ;

c.ALI.. ~E~f>£1'fR.t SPTA~T~\0
c.A.t.l Nf.K"'1r16.oL:

PR.IN'T N AM~ ;

CALL

fR.I t.J'T"E)C. flft (_S.f'fll \\-\ EA b)

W~l'Tt '•

CALL

p~,..s-rc:)< Pt. (sP-r~" • .,.~,L) ~
\ I

wP-1,..€)
)

fRoC.fDU~E.

At-J

r-JI\r\~ of

C. ll\(Z. of- f
IN

(SE:\6\, CE.~II\J£, LASfL
\.. ~M@.\)1\ J•

• FUNCTION

G"' t\ L ~-::. L o o'f;... uf'

Tl.-lf 'J'A\..Ut: oN

~l-\ ~ i ~

-89

E.vAL~-::.
--t

E"~\.-u~vT€ .)

c or-~s(v~>.uJE J CDR oF f) J I
Gt)

S£A~C.\o\ ~ol2.... -r\-112

fuN C. ·n t>N tN' 't'~te:
flE .S E' ~vE\> woR..J)S

-rA. f:,LE ~
E.vAL::::

PER.~ ot...ri. 'TI-l G"
f-urH--~IoN ovflt
TY\~ A~L..\lMENT".S.
A f '1 ~ ~ , ~vAL. \J A 1' ttJ 4

IS

N A HIE ol: T\o\€

~AAfl.o.f- G y
IN

[SE1'Q, 1 b€~JN'f1
LASE. 1.-, L A.t1 t!.DA]

!10

€VAL: = E:VALVPo.'if'

c..oNS(ei;vA'-(~AR of. f 1 AL\$.T)1

c D~ oF- G) ~

/

'T 1-1 ~ · s. v ~ E 'X ft.. € S. ~to t\1

f.aLLowt£1)

LA@.tl. MA~\<\ ;

v.Jti14 ,-~EI#l -vAL\J(G~ orV

AI.,.. I ~<i '
j

e,d\L!-:::. €v'ALv/.\'Tf .,-"'€ ,..
t.X PR..E. >~\ 0 rJ IN "f \-\t
c.v~J2,€N'I. f2N"'~otJM€.N .J

j

j

j

j

j

j

j

J

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j
I

~- ..•

C. t\ LL NEx'i ~~M ~-o L
------.1

fP.tNi ov'T' T\~~

f_)1. fR_E. S.S It> rJ

I

[J

APPENDIX - D

(REFERENCES)

1. B. F. Green, "Computer Languages for Symbol
manipulation", IRE Trans., HFE2 (March 1961).

2. B. Raphael, "Aspects and applications of symbol
manipulation", Pro c. 21st Natl. Conf., ACM (Aug 1966).

3. M. V. Wilkes, 11 Lists and why they are useful",
Proc. 19th Nat!. Conf. ACM (Aug 1964).

4. J. E. Sammet, "Formula manipulation by Computern,
TROO.l363, IBM Systems Development Division,
Poughkeepsie, N.Y., (Nov. 1965).

5. John McCarthy, 11 Recursive Functions of Symbolic
expressions and their Computation by Machine", Comm.
of ACM (April 1960).

6. Abrahams, P., "Digital Computer User's Handbook
(McGraw Hill 1967).

7. nAn over-view of the state-of-the-Art in symbol
manipu~ation", Comm. ACM (Aug. 1966) ..

. 8. John MCCarthy et al, "LISP 1.5 Programmers Manual",
(MIT Press, 1962).

9. Winston, P. 9K., Horn, B., K., P._, 11 LISP" (Addison
Wesley, 1981).

10. K. Jensen and N .Wirth, "Pascal User Manual and
report", (Springer Verlog, 1978) •

11. W. Taylor, and L. Cox, "The Essence of LISP
interpretertt, Pascal News, PU3, (Sept., 1980).

12. H. Schorr, and W.M. Waite, "An Efficient Machine
Independent. Procedure for Garbage Collection in
various List Structures", Comm. ACM, {Aug., 1967).

13. Y. Kishan Reddy, and H. Sadananda, tt A Structured
Implementation of LISP for Pedegogical Purposes",
proceedings of A Natl. seminar on COMPUTER AND THE
SOCIETY, College of Engg. , Anna University, ·Madras,
India, Feb. 23-24 (1983).

14. A Darlington, P. Henderson, and D.A. Turner,
11 Functional Programming and its applications11

(Cambridge) •

15. J.P. Fitch, and A.C. Norman, "Implementation of
LISP in a high level language", Software Practice
and Experience (1977).

94

16. Carlo Ghe.zz.i, and Mehd Jazayeri, flProgramming
Language Conceptsn (John Wiley & Sons, Inc.)

17. Paul W. Abrahams, "Symbol manipulation Languagesn,
Advances in Computers, Vol. 9, 1968, pp. 51-110.

18. Wirth N., non the design of Programming Languagesn
in IFIP Congress 74, Vol.2: Software, 1974, 386-393 •

19. Wirth N., "An assessment of the Programming Language
PASCAL'1 , IEEE trans. , Software Engg • , S E-1, 2,
pp. 192-198 (June 1975).

	TH23490001
	TH23490002
	TH23490003
	TH23490004
	TH23490005
	TH23490006
	TH23490007
	TH23490008
	TH23490009
	TH23490010
	TH23490011
	TH23490012
	TH23490013
	TH23490014
	TH23490015
	TH23490016
	TH23490017
	TH23490018
	TH23490019
	TH23490020
	TH23490021
	TH23490022
	TH23490023
	TH23490024
	TH23490025
	TH23490026
	TH23490027
	TH23490028
	TH23490029
	TH23490030
	TH23490031
	TH23490032
	TH23490033
	TH23490034
	TH23490035
	TH23490036
	TH23490037
	TH23490038
	TH23490039
	TH23490040
	TH23490041
	TH23490042
	TH23490043
	TH23490044
	TH23490045
	TH23490046
	TH23490047
	TH23490048
	TH23490049
	TH23490050
	TH23490051
	TH23490052
	TH23490053
	TH23490054
	TH23490055
	TH23490056
	TH23490057
	TH23490058
	TH23490059
	TH23490060
	TH23490061
	TH23490062
	TH23490063
	TH23490064
	TH23490065
	TH23490066
	TH23490067
	TH23490068
	TH23490069
	TH23490070
	TH23490071
	TH23490072
	TH23490073
	TH23490074
	TH23490075
	TH23490076
	TH23490077
	TH23490078
	TH23490079
	TH23490080
	TH23490081
	TH23490082
	TH23490083
	TH23490084
	TH23490085
	TH23490086
	TH23490087
	TH23490088
	TH23490089
	TH23490090
	TH23490091
	TH23490092
	TH23490093
	TH23490094
	TH23490095
	TH23490096
	TH23490097
	TH23490098
	TH23490099
	TH23490100

