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ABSTRACT 

Mobile robots are widely used in many fields and have great applicable potential in 

human society in the future. Research on path planning for mobile robots is one of the most 

important aspects in mobile robots research. Path planning for a mobile robot is to fmd a 

collision-free route, through the robot's environment with obstacles, from a specified start 

location to a desired destination while satisfying certain optimization criteria. Many 

algorithms for path planning have been studied and developed over the past few years. The 

algorithms focusing on static environments have reached mature stage, such as the Visibility 

Graph and the Cell Decomposition. Some main AI-based approaches for robot path planning 

are Genetic Algorithm (GA), Fuzzy Logic Control (FLC) and Artificial Neural Network 

(ANN). However, because of the complexity of the dynamic environments, research on path 

planning in the environments with dynamic obstacles is limited, which is a big challenge for 

the robotics researchers. 

The objective of this research is to establish a method of path planning for mobile robots 

which could be applied to an unknown environment with the static and dynamic obstacles. A 

hybrid Artificial Potential Field - Genetic Algorithm approach is developed and implemented 

for accomplishing path planning on a mobile robot in unknown environment. The hybrid 

approach first uses Grid method where the mobile robot environment is represented by 

orderly numbered grids, each of which represents a location in the environment. The 

boundary of obstacles is formed by their actual boundary plus minimum safety distance 

considering the size of the robot. The grids adopted here do not limit movement of the path, 

but simplify the chromosome structure and genetic operation by discretizing the environment. 

Then, it applies Genetic Algorithm, a global planner, to find an approximate optimal path 

according to the currently known environment. Compared with the traditional GA approaches 

for path planning, the GA proposed here uses variable length chromosomes. The evaluation 

not only considers the length of the path, but also takes into consideration Smoothness and 

Path Security. Smooth operation is used on the feasible path to get a more suitable path for the 

robot's motion. At last, Artificial Potential Field method, a local planner, is applied to follow 
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the path obtained by GA from one intermediate node to next intermediate node avoiding the 

obstacles. Compared with the traditional APF approach which only considers the position of 

obstacles and targets, the APF method proposed in this dissertation uses novel force functions 

which consider both position and velocity of the obstacles. The position and velocity of the 

obstacles are vectors, including the information of magnitude and direction. 

The dissertation shows through theoretical analysis, simulation, and experiment that the 

developed approach can be effectively used to plan an optimal path and avoid collisions with 

obstacles in the environment. 
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CHAPTER! 

INTRODUCTION 

Science fiction movies, cartoons and novels have long depicted our future with robots. 

Popular examples include Rosie from the Jetsons and C3PO from Star Wars that assist, replace 

and extend human capabilities. But today, these visions of robots do not seem so far from 

reality. The number of robots being adopted is growing exponentially each year and the range 

of tasks they can perform continues to expand into new domains such as nursing, entertaining 

and cleaning. 

Mobile robots have great applicable potential in human society m the future. The 

function of robotics will no longer be restricted to accomplish tasks in assembly and 

manufacturing at a fixed position. In order to accomplish practical tasks, a mobile robot has to 

be navigated smoothly in the real world wherein unexpected changes take place. 

0 
FIGURE 1.1 Path Planning Problem 

In the control of mobile robot, path planning is one of the key issues. The robot path 

planning problem can be typically described as follows: given a robot and a description of its 

working environment, plan a collision free path between two specified locations that satisfies 

certain optimization criteria [Prahlad 2001]. Path planning research of mobile robot in known 



environment has reached mature stage, but the path planning in unknown environment is a big 

challenge. In practice, it is often no complete knowledge about the environment. Having a 

detailed map with all the obstacles marked seems to be unrealistic for most of the situations. 

Whether the robot path planning belongs to which category, the path should meet the 

following conditions: 

i) The path should be collision-free; 

ii) The path should be as short as possible and search time should be as little as possible; 

iii) The path should be as smooth as possible. 

Many algorithms for path planning have been studied and developed over the past few 

years. The main methods of path planning for mobile robot can be divided into two categories 

- Artificial Potential Field (APF) approaches and Artificial Intelligence (AI) approaches. The 

main AI-based approaches for robot path planning are Genetic Algorithm (GA), Fuzzy Logic 

Control (FLC) and Artificial Neural Network (ANN) [Cao Qixin 2006). Recently, many 

researchers have applied the hybrid approaches, such as Fuzzy-Genetic approach, on path 

planning. 

This dissertation develops and implements a hybrid Artificial Potential Field - Genetic 

Algorithm approach to mobile robot path planning in unknown environment. The approach 

first uses Grid method to represent the environment. Then, it applies Genetic Algorithm, a 

global planner, to find an approximate optimal path according to the currently known 

environment. At last, Artificial Potential Field method, a local planner, is applied to follow the 

path from one intermediate node to next intermediate node avoiding the obstacles. This 

chapter introduces some background information about robot path planning, the motivation of 

the project, and the organization of this dissertation. 

1.1 Background 

At present, research on various algorithms for mobile robot path planning is a hot topic. 

Mobile robots are widely used in many hazardous industrial fields where there may be 

dangerous for people, such as aerospace research, the nuclear industry, and the mining 
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industry. 

To find a safe path in a dangerous environment for the mobile robot is an essential 

requirement for the success of any mobile robotic systems. Therefore, research on path 

planning algorithms to make the robot move from the start point to the target point without 

collision with obstacles is a fundamental requirement for the mobile robot safety in such 

environments. Moreover, to reduce the processing time, communication delay and energy 

consumption, the planned path is naturally required to be optimal with the shortest length. 

At the initial stage of the robot industry, a robot was simple constituted by mechanical 

am1s controlled by motor engines. Path planning for the robot was often in stationary obstacle 

environment. As an example of the robot, path planning in static environment were discussed 

in [J. Cook 1992]. However, with the development of the robot technology, robots have been 

used in many industrial fields such as aerospace research, marine research, and mining 

industry, to just mention a few. A lobster-like underwater walking robot [J. Ayers 2004] is one 

of these new types of robots. Recently, Australian researchers have developed an unmanned 

underwater vehicle robot for reef surveying [Williams and Mahon 2004]. The robot is · 

equipped with sonar and vision systems, and works at the platfonn of the sea. Thus, how to 

respond quickly to the changing environment to avoid the stationary rocks in the seabed and 

big moving fish is a primary issue in the design and operation of the robot. 

1.1.1 The Need for Path Planning 

There is an increasing need for proficient path planning systems. Robots have been used 

for several years in industrial assembly plants. These robots move components into place, 

weld and bolt them together, and perform many functions which would previously have 

required large manual work forces. These robots are controlled by programs defining the 

specific movements which must be performed in order to achieve a goal. A change in the goal, 

for instance the introduction of a design change for a new model of car, would require 

expensive reprogramming using a robot control language. It is suggested that a better 

approach is to build intelligent robot systems which when provided with a goal, can establish 
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for themselves the set of positions which must be followed to achieve the goal. 

It would be of great benefit to have independent robots which do not rely on constant 

human intervention, but are able to continue performing their job even if the goals of that job 

change slightly, or if the environment in which they are working changes. As well as the 

possible financial advantages such robots might bring to commercial operations, they could 

also be used for hazardous work such as in nuclear reactors or in underwater situations, thus 

removing the need for humans to be placed at risk performing these dangerous jobs [Simon 

Kent 1999]. 

1.1.2 The Path Planning Problem 

The general requirement of path planning is the ability to move a robot between two 

points along a collision free course within a given environment. Two techniques often 

followed in achieving this goal are "path planning" and "obstacle avoidance". 

Ideally the route should be such that the robot avoids collisions with other objects in the 

environment, whether they are stationary or moving (as in the case of other robots working in 

the same space). Certain robots, such as complex robot manipulators (robot arms), may even 

be able to collide with themselves - this should be avoided. 

Furthermore, the route which is computed should be optimized so that it should 

minimize some dependent variables, such as the distance covered or the energy used, in 

executing the path. Typically there will be many possible paths between two points but only 

the most efficient is sought. 

If there exists only one robot in an environment, with all obstacles remaining stationary, 

path planning alone may be sufficient for the robot to complete its task. The route which is 

pre-planned can be followed without any chance of collision. However, since the pre-planned 

route is generated on the basis of information available at a single instance, path planning 

alone may not be sufficient if the state of the workspace is continually changing as other 

objects or people move around within the environment. This need for obstacle avoidance also 
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exists when the robot is working within an unknown or partially known environment, where it 

is not possible to rely on pre-planned routes because of the limited information available to 

the planner. 

In this case, the robot must have the ability to detect what is occurring in its immediate 

environment by means of some kind of sensors. When an unexpected obstacle is sensed, 

evasive action must be taken to avoid a collision with that obstacle. A new path can then be 

planned on the basis of the most up-to-date information available. 

In order to develop fully independent robots, planning systems need to be developed 

which can generalize. Given previous knowledge of situations, humans are able to generalize 

to new, but similar situations. For a robot, it would be desirable to have a planner which does 

not have to return to first principles and generate the plan from scratch every time. Instead, 

the knowledge of previous experiences should be somehow stored and used to achieve future 

goals faster. There should not be a reliance on humans to instruct the robot what actions to 

execute precisely. 

1.2 Motivation 

Path planning and obstacle avoidance can be considered in the static or dynamic 

environments. The information of the environment can be completely known or partially 

known through sensors. 

Generally, the approaches for mobile robot path planning can be divided into global path 

planning and local path planning. Global path planning, which is also called the deliberative 

approach, tries to use global information of the environment to create a smooth 

destination-directed path and then let the robot reach the goal along the planned path. It is 

composed of pre-detecting by vision, planning, and acting. In this approach, a global map is 

usually created by incorporating the sensed information of the environment and the motion 

decision of the robot is based on the map. This approach normally can fmd an optimized path 

for the robot to reach the selected position under some objective function. These objective 
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functions can be minimizing time, energy, variation of the velocity or distance, etc. Global 

path planning is generally destination-directed. However, the approach of global path 

planning lacks robustness due to environment uncertainty. As the map only represents a static 

environment, this method needs repeat cycling of detect-plan-act loop frequently for a robot 

to accomplish the task in a changing environment, which leads high computational 

requirements. A robot often cannot make quick accurate decisions when the deliberate method 

is used in a non-pre-known changing environment, and so global path planning is generally 

unsuitable in a changing environment. On the other hand, local path planning, which is also 

called the reactive approach, moves the robot in an unknown environment to avoid collisions 

with obstacles. Usually, only a feasible path might be found in the reactive method. Local 

path planning is more flexible in an unknown time-varying environment. However, due to its 

limited reasoning and representational ability, a complete reactive approach is not 

destination-directed, a path to the destination position for a robot is not guaranteed. 

The reasons of choosing the hybrid Artificial Potential Field - Genetic Algorithm 

approach to plan the optimal path for robots are listed below: 

i) Path planning methods based on Genetic Algorithm don't reqmre derivative 

information of the solution due to it is stochastic in nature. It is robust, being capable of 

searching the entire solution space to get global optimization. It is easy to parallelize. 

However, it requires many function evaluations. As GA searches a global optimal path in a 

very large workspace, the time complexity is very high. Therefore, more efficient path 

planning methods in dynamic environments need to be developed for adapting the 

development of robotics research. 

ii) Artificial Potential Field (APF) for path planning was first developed by Khatib in 

1985. The advantages of obstacle avoidance algorithm based on Artificial Potential Field are 

low computational complexity, good real-time characteristics and smooth path. However, the 

disadvantages are existing trap situations, oscillations in the presence of obstacles and goals 

nonreachable with obstacles nearby (GNRON) problem caused by local minima. Another 

problem of APF is that through the path is collision free, it may be not the optimal path. 
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iii) Combining the Artificial Potential Field and Genetic Algorithm can solve the local 

minima problem caused by Artificial Potential Field and improve the searching efficiency 

when using Genetic Algorithm. 

1.3 Organization of Dissertation 

The following are the descriptions of the organization of this dissertation. This 

dissertation includes five chapters. Chapter 1 states the main issues of the dissertation, 

including a general introduction to the path planning problem and motivation and 

organization of this dissertation. Chapter 2 provides detailed background and literature review 

information for Artificial Potential Field (APF) and Genetic Algorithm (GA). As one of the 

main contributions of this dissertation, chapter 3 describes the proposed hybrid Artificial 

Potential Field - Genetic Algorithm approach to mobile robot path planning. It illustrates the 

methodology of the hybrid approach to calculate the optimal path for a robot in dynamic 

environment. In chapter 4, the implementation and experimental results are given. Finally, the 

conclusion and future work are discussed in chapter 5. 
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CHAPTER2 

BACKGROUND AND LITERATURE REVIEW 

The path planning problem is known to be PSPACE hard. This means that the 

complexity of the path planning problem increases exponentially with the dimension of the 

configuration space. The configuration space is the space of all complete specifications of the 

position of every point of a robot system [Salvatore Candido 2005]. 

Path planning for mobile robots is one of the most important aspects in robot navigation 

research. The mobile robot path planning task is to find a collision-free route, through an 

environment with obstacles, from a specified start point to a target point while satisfying 

certain optimization criteria. This chapter classifies various robot path planning methods in 

different ways and gives some general information about traditional path planning methods in 

different environments such as the Visibility Graph method, Grid method, then discusses 

Artificial Potential Field (APF) and Genetic Algorithm (GA) in details. 

The robot path planning methods could be classified into different kinds based on 

different situations. Depending on the environment where the robot is located in, the path 

planning methods can be classified into the following two types: 

i) Robot path planning in a static environment which only contains the static obstacles; 

ii) Robot path planning in a dynamic environment which contains static and dynamic 

obstacles. 

2.1 Path Planning Methods in a Static Environment 

In a static environment, the obstacles are stationary. If the information of obstacles is 

known, the optimal path could be computed offline prior to the movement of the robot. The 

path planning techniques for a static environment are relatively mature. Representative path 

planning methods for a static environn1ent include the Visibility Graph method, Voronoi 
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Diagrams method, the Grids method and the Cell Decomposition method [Hui Miao 2009]. 

Moreover, the Genetic Algorithm, the Simulated Annealing Algorithm, and some other 

optimization methods have also been used to obtain the optimal path for the robot. Davidor 

[Davidor 1991] developed a tailored Genetic Algorithm with a modified crossover operator to 

optimize robot path. Nearchou [Nearchou 1998] used the number of vertices produced in 

Visibility Graphs to build fixed length chromosomes in which the presence of a vertex within 

the path is indicated by setting of a bit at the appropriate locus. The method applied a 

reordering operator for performance enhancement, and the algorithm was capable of 

determining a near-optimal solution. Cai and Peng [Cai et al. 2006] developed a fixed-length 

decimal encoding mechanism to replace the variable-length encoding mechanism and other 

fixed-length binary encoding mechanism used in the genetic approach for robot path planning. 

2.1.1 The Visibility Graph Method 

In this method, a Visibility Graph is used in robot path planning when the geometry of 

the environment is known. The main idea of the Visibility Graph method is that if there is a 

collision-free path between two points, then there is a polygonal path that bends only at the 

obstacles vertices. ·As FIGURE 2.1 shows, collision-free path (in curves) could be 

transformed into line segments (straight line). 

Start 
Point 

/ 

J Fnd 

I 

FIGURE 2.1 Visibility Graph 

Sta.ri. 
F'oint 

FIGURE 2.2 Complete Visibility Graph 

A Visibility Graph 1s constituted by nodes and edges. Nodes are the start point, 
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destination point and the vertices of all obstacles. Edges are strait-line segment between two 

nodes which do not pass through obstacles. FIGURE 2.2 shows the complete Visibility Graph 

based on FIGURE 2.1. 

FIGURE 2.2 shows that there are multiplex paths that could lead the robot from the start 

point to the destination. Then, any optimization algorithms such as the Genetic Algorithm [M. 

Scott 2004] and the Simulated Annealing Algorithm [C. Edelman et al. 1988] could be used to 

calculate the optimal path for the robot. The defect of the Visibility Graph method is that the 

efficiency of the algorithm is low. Furthermore, the obtained path is often very close to 

obstacles and thus, may lead to crash of the robot. However, this problem can be fixed by 

enlarging the obstacles by a value according to the dimension of the robot. In this way, the 

robot can approach obstacles without collision. 

2.1.2 The Cell Decomposition Method 

The Cell Decomposition method is another algorithm for searching the collision free 

path for a robot. It uses small non-overlapping grid cells to represent the entire environment. 

The cells usually are simple squares. There are three types of cells: empty cell, mixed cell and 

full cell. An empty cell is a free space, where the robot could go through in the environment. 

A mixed cell contains obstacles and free space. A full cell is the block of the obstacles. In a 

two-dimensional map, a Quadtree is used to decompose the map, as shown in FIGURE 2.3. 

D &mpty r!Jmrxed .fUll 

FIGURE 2.3 Quadtree Decomposition 
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The Cell Decomposition method is briefly outlined below [Hui Miao 2009]: 

i) Decompose the map into cells. 

ii) Search for a sequence of mixed or free cells that connect the start point and goal point. 

iii) Further decompose the mixed cells. 

iv) Repeat (ii) and (iii) until a sequence of free cells is found. 

Then, the method uses an optimization algorithm, such as A* algorithm, to find the 

optimal path for the robot. The A* algorithm is first described early in 1968 by Hart, Nilsson 

and Raphael. The algorithm is a best-first, tree search algorithm, and could find the shortest 

path from the start point to the target point. Lingelbach in [Lingelbach 2004] used the Cell 

Decomposition method combined with probabilistic sampling to plan path for a robot in 

high-dimensional static configuration spaces. The potential field approach based on harmonic 

function is computed over a non-regular grid decomposition of a high-dimensional space 

obtained with the probabilistic sampling of cells. 

2.2 Path Planning Methods in a Dynamic Environment 

Research on methods that deal with the static environment path planning has been 

introduced in previous sections. Currently, the path planning methods to find paths in a static 

environment have been well developed with hundreds of published papers. Give the entire 

information of the environment, the global optimal or near-optimal path could be found by 

these algorithms. 

However, in practical applications, robots often face obstacles that are not all static in the 

environment, the status and the movement of the obstacles change continuously in the map. 

Moving obstacles in a dynamic environment increases the difficulty of path planning for the 

robot in the map. 

Unlike the situation for path planning in a static environment, limited reports have been 

found in the open literature to discuss optimal path planning in dynamic environments. 

Complexity and uncertainty increase with the number of the dynamic obstacles. Therefore, 

II 



traditional path planning algorithms, such as the Visibility Graph, the Voronoi Diagrams and 

the Grids method, do not perform well in dynamic environments. It is also difficult to gain the 

optimal path for the robot using these methods. Robot path planning in a dynamic 

environment is thereby an issue for further research. In a dynamic environment, how to 

manipulate the robot so that it can move to the goal safely and optimally without collision is 

an important issue of concern. 

In 2005, Chestnutt, Lau and Cheung [J. Chestnutt et al. 2005] used a modified A* 

algorithm to calculate path for a Honda ASIMO humanoid robot. The path planning method is 

applied to real robots rather than simulation on software. A grid of cells is employed to 

represent the environment. Colour cells represent the obstacles. The cells create a bitmap 

representing the free spaces and obstacles in the map. The algorithm plans a sequence of 

footstep positions to navigate toward a goal location based on known static and moving 

obstacles with predictable trajectories. 

Wang and Sillitoe [Y. Wang et al. 2007] proposed a vertices Genetic Algorithm planner 

in 2007. The planner is able to rapidly determine optimal or near-optimal solutions for a 

mobile robot in an environment with moving obstacles. The method uses the vertices of the 

obstacles as search space and produces off-line path planning through the environment with 

dynamic obstacles. 

It first incorporates the robot speed into the genetic genes, which could optimize both the 

travel time and distance of the robot. Before the robot starts movement, the complete motion 

knowledge of the moving obstacles in the observed region is available for the robot. The robot 

uses the Genetic Algorithm based planner to calculate the time or distance optimized solution 

and then starts to travel. 

A hybrid navigation method [S. Lbszlo et al. 2003] was proposed in 2003. The method 

consists of two modules: global and local modules, which could combine two robot path 

methods to deal with the global map information and local sensor information. 

i) The global module specifies the global route positions. It uses prior information on the 
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navigation environment and chooses critical points to pass. through before actual navigation 

takes place. This module uses the A* algorithm to determine the optimal route to the specified 

goal position. Using the algorithm, it is possible to find the optimal route to the goal. 

ii) The local module carries out the navigation itself, relying on current sensor data, thus 

making it easier to avoid static or dynamic obstacles. It uses a fuzzy neural representation of 

the potential field based navigation method. 

Firstly, the global planning module finds the optimal route to the goal and proposes the 

positions to pass through as intermediate points. These intermediate points are then passed 

one by one to the local navigator, which makes the robot reach them while reactively avoiding 

the obstacles present in the environment, according to the potential function previously 

supplied to the local navigator. 

A dynamic environment is more complicated than a static environment in the robot path 

planning issue. Several methods were proposed to solve the problem. Because the moving 

information and the obstacle information can be known in advance of movement, the optimal 

solution can still be obtained. 

2.3 Artificial Potential Field (APF) for Path Planning 

The Artificial Potential Field method, an idea of adding an imaginary force on the robot, 

was first suggested by Andrew and Hogan (1983) and Khatib (1985) for obstacle avoidance of 

manipulators and mobile robots. In their method, the obstacle exerts a virtual repulsive force 

on the robot, while the goal position applies a virtual attractive force to the robot. The sum of 

the attractive and repulsive forces is then used to determine the direction and the speed of the 

robot. The approach was first implemented on a robot by Arkin (1989), but in his experiment, 

the speed of the robot was very slow (0.12m/s). 

2.3.1 Traditional Artificial Potential Field 

The application of APF for obstacle avoidance was first developed by Khatib in 1985. 
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The basic idea of the APF approach is to fill the robot's workspace with an artificial potential 

field in which the robot is attracted to its target position and is repulsed away from the 

obstacles [Cao Qixin 2006]. 

The APF uses two types of potential field, namely a repulsive potential field to force a 

robot away from obstacles or forbidden regions and an attractive potential field to drive the 

robot to its goal. An obstacle is considered as point of highest potential, and a goal as a point 

of lowest potential. 

The robot moves under the action of a force that is equal to the negative gradient of that 

potential, and it is driven towards the target position with the lower potential. FIGURE 2.4 

and FIGURE 2.5 indicate the potential field created by a goal and an obstacle, respectively . 

FIGURE 2.4 Attractive potential field 
created by a goal 

i) The Attractive Potential Function 
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FIGURE 2.5 Repulsive potential field 
created by an obstacle 

For simplification, the robot is often considered as a mass point. The position of robot is 

expressed as a vector of xr = [X, y r in two-dimensional workspace. An expression for the 

conventional attractive potential function Uau(Xr) is described by 

(2.1) 

Where .; is a positive scaling factor, t'(Xr,Xg) = jjxg- Xrll is the distance between 

the robot and the goal. And m = 1 or 2 . Form = 1, the attractive potential is conic in shape and 
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the resulting attractive force has constant amplitude except at the goal, which Uau is singular. 

Form = 2 , the attractive potential is parabolic in shape; the corresponding attractive force is 

then given by the negative gradient of this attractive potential: 

(2.2) 

It converges linearly towards zero as the robot approaches the goal. The force will drive 

mobile robot to reach the goal. 

ii) The Repulsive Potential Function 

The conventional repulsive potential function can be represented as 

{

_!_ ( 
1 - _l )2 if £(X X ) < .e 

U (X ) = /7 £(X X ) .e ' r' o - o 
rep r r' o 0 

O, if €(X,,XJ > £0 

(2.3) 

where 77 is a positive scaling factor, £(X,,XJ denotes the m1mmum distance 

between the robot and the obstacle, X
0 

denotes the point on the obstacle such that the distance 

between this point and the robot is minimal between the obstacle and the robot, £0 is a 

positive constant and represents the influence scope of the obstacle. 

The corresponding repulsive force is given by: 

Therefore, the total force applied to the robot is expressed as 

if£(X,,XJ~f 0 

if £(X,,XJ > £0 

(2.4) 

(2.5) 

The robot moves under the action of the composition of forces F:otal , which is the 

summation of the goal's attractive force Fa" and the obstacle's repulsive forceF,ep, as shown 
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in FIGURE 2.6. One path of the robot in the environment of an obstacle and a target is shown 

in FIGURE 2.7. 

y 

o,~-----------------x 

FIGURE 2.6 Visual attractive force of robot in APF FIGURE 2. 7 One path of the robot in the 
environment of an obstacle and a target 

This method is particularly attractive because of its elegant mathematical analysis and 

simplicity. However, it has some inherent limitations. A systematic criticism of the inherent 

problems based on mathematical analysis was presented in [Y. Koren and 1. Borenstein 1991], 

which includes the following: 

i) Trap situations due to local minima; 

ii) No passage between closely spaced obstacles; 

iii) Oscillations in the presence of obstacles; 

iv) Oscillations in narrow passages. . 

Besides the four problems mentioned above, there exists an additional problem, goals 

nonreachable with obstacles nearby (GNRON) [S. S. Ge andY. J. Cui 2000]. It happens when 

the goal is very close to an obstacle. When the robot approaches its goal, it approaches the 

obstacle as well. As a consequence, the attractive force decreases, while the repulsive force 

increases. Thus, the robot will be repulsed away rather than reaching the goal. A local 

minimum is the case which occurs when the total force acting on the mobile robot is summed 

up to zero although robot has not reached its goal position yet. When the mobile robot falls 

into the local minima of potential function, the final state will never be reached. This situation 

frequently happens as obstacle is in the vicinity of the target point. FIGURE 2.9 'shows the 

situation of local minima. 
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FIGURE 2.9 Total force derived by the new 
potential function 
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There are many methods to resolve the local minima problem of traditional APF. The 

following section will discuss some evolutionary approaches based on APF. 

2.3.2 Some Evolutionary Artificial Potential Field Approaches 

i) Adding "escape force" [Prahlad et al. 2001] 

In the evolutionary artificial potential field, local minima exist within the areas around 

the null-potential points. The null-potential point condition is: 

F +"'VF =0 att L._. rep 

Where Fa
11 

represents the attractive force, L ~ep represents the total repulsive forces. 

A local minimum is identified when the following two conditions are satisfied. 

{

F - "\:' F 
all ~ rep< b 

L~ep 
cos(LF,

11 
-LL~ep) < -cos(c) 

When these two conditions are satisfied, an additional escape force can be applied on the 

mobile robot to escape. 

F'_ =(~J(\cos(LFau-LL~ep)-cos(c)\) 
dDro 

(2.8) 
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Where F. represents the escape force, D,
0 

is the distance between the robot and an 

obstacle, the parameters b, c, d and m need to be optimized. 

ii) New Repulsive Potential Function [S. S. Ge andY. J. Cui 2000] 

The goals nonreachable with obstacle nearby (GNRON) problem arises because the 

global minimum of the total potential field is not at the goal position when the goal is within 

the influence distance of the obstacle. This problem is due to the fact that as the robot 

approaches the goal, the repulsive potential increases as well. If the repulsive potential 

approaches zero as the robot approaches the goal, then the total potential will take the global 

minimum at the goal. Therefore, we can take the relative distance between the robot and the 

goal into consideration as 

{ 

1 ( 1 1 )zen (X X ) 
U (X ) = l '7 £(X X ) - f '' g ' 

rep r r' o 0 

o, 

if f!(X,,XJ s £0 

if f(X,,XJ > £0 

(2.9) 

Where £(X,,XJ is the minimal distance between the robot and the obstacle, 

£(X,,Xg)is the distance between the robot and the goal, £0 is the distance of influence of 

the obstacle, and n is a positive constant. 

The introduction of ensures that the total potential 

Utotal(X,) = Ua11 (X,) + Urep(X,) arrives at its global minimum, 0, if and only if X, = Xg. 

The potential function U
10101

(X,) should have the property that the total force, the sum 

of the attractive force and the repulsive force, pushes the robot away from the obstacles and 

pulls toward the goal. 

When the robot is not at the goal, Xr -:t:- Xg, the repulsive force is given by 

F (X ) = - V U (X ) rep r rep r 

= {F;.eplnRO + Frep2nRG' if f!(X,' XJ s e 0 

0, if f(X,,XJ > 1! 0 

(2.10) 

Where 
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F _ 1 __ 1 f"(X,,Xg) 
rep] -IJ(f(X X) f ) f 2 (X X) 

r' o 0 r' o (2.11) 
F _ !!__ ( 1 __ 1 )2 pn-1 (X X ) 

rep 2 - 2 1J f(X X ) f r' g 
r' o 0 

nR0 = Vf(X,,XJ and nRG = -V£(X,,Xg) are two unit vectors pointing from the 

obstacle to the robot and from the robot to the goal, respectively. FIGURE 2.9 shows the total 

force derived by the new potential function. 

There are three forms of repulsive force functions as n vanes: 1) 0 < n < 1 ; 2) n = 1 ; 

3) n > 1. The detailed repulsive force functions are represented in [S. S. Ge and Y. J. Cui 

2000]. No matter n belongs to which category, the repulsive potential function ensures that 

the goal position is the global minimum of the total potential. 

2.4 Genetic Algorithms (GAs) for Path Planning 

Genetic algorithms {GAs) are search algorithms and optimization techniques using the 

principles of natural selection inspired by Darwin's theory about evolution (the survival of the 

fittest). In GA based approaches, the variables are represented as genes on a chromosome. 

Genetic Algorithms feature a group of candidate solutions (population) on the response 

surface. Through natural selections and the genetic operations, recombination and mutation, 

chromosomes with better fitness are found [Jianping Tu et al. 2003]. 

Recently, it has been widespread interest using genetic and evolutionary algorithms. 

Compared to traditional search and optimization methods, the evolutionary algorithms are 

robust, global and generally more straightforward to apply in situations where there is little or 

no priori knowledge about the problem to solve. As evolutionary algorithms require no 

derivative information or formed initial estimates of the solution, and because they are 

stochastic in nature, evolutionary algorithms are capable of searching the entire solution space 

with more likelihood of finding the global optimum. The Genetic Algorithms are powerful 

search algorithms based on the mechanism of natural selection and use operations of 

reproduction, crossover, and mutation on a population of strings. 

The popularity of GAs is motivated by a number of factors including: [Tom 1997] 

19 



i) Evolution is known to be a successful, robust method for adaptation within biological 

systems. 

ii) GAs can search spaces of hypotheses containing complex interacting parts, where the 

impact of each part on overall hypothesis fitness may be difficult to model. 

iii) Genetic Algorithms are easily parallelized and can take advantage of the decreasing 

costs of powerful computer hardware. 

A typical Genetic Algorithm requires: 

i) A genetic representation of the solution domain; 

ii) A fitness function to evaluate the solution domain. 

A standard representation of the solution is as an array of bits. Arrays of other types and 

structures can be used in essentially the same way. The main property that makes these 

genetic representations convenient is that their parts are easily aligned due to their fixed size, 

which facilitates simple crossover operations. Variable length representations may also be 

used, but crossover implementation is more complex in this case. 

The fitness function is defined over the genetic representation and measures the quality 

of the represented solution. It is always problem dependent. Once we have the genetic 

representation and the fitness function defined, GA proceeds to initialize a population of 

solutions randomly, then improve it through repetitive application of mutation, crossover, 

inversion and selection operators. 

In path planning based on GA, any path from the start point to the goal is a solution, 

which is generation. First generation is selected by Roulette Wheel Selection, i.e. at the 

beginning a large random population of strings is generated. Strings representing unacceptable 

solutions are eliminated and strings representing acceptable solutions get multiplied. 

Unacceptable solutions are strings that can not reach the target. Acceptable solutions are 

strings that can reach the target. The decision whether the string is acceptable or unacceptable 

is decided by the fact whether the string solution would lead the mobile robot into obstacles 

and whether the mobile robot is progressing towards the goal. Based on such decisions each 

string in the population is assigned a fitness value. Acceptable solutions will have higher 
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fitness value and unacceptable solution would have lower fitness value [Jianping Tu 2003]. 

The challengeable problems will be met when applying GA on mobile robot path 

planning: 

i) Encoding of the problem in a binary string, which maps a path from the start point to 

the goal. Each of the individuals (or chromosomes) of a genetic population is encoded by a 

genotype like in biology. A chromosome corresponds to a possible solution of the 

optimization problem. 

There are two types of chromosome. One is a fixed length string that the numbers of 

genes are the same for all the solutions. Another one is that different solutions have different 

numbers of genes. 

ii) Designing a fitness function 

The key issue of GA is to determine an appropriate fitness evaluation function according 

to the pending problem. When design a fitness function, we should take into account the 

security of the path, the length of the path, and the smoothness of the path. The security of the 

path is primary factor. A suitable fitness function can be expressed as: 

Fit = w1 • Fitl + w2 • Fit2 + w3 • Fit3 (2.12) 

Where Fitl, Fit2,Fit3 denotes the sub-function of path length, the sub-function of path 

security, the sub-function of smoothness, respectively, w1, w2 , w3 denotes the weighted value 

of length, security, and smoothness degree in the fitness function. 

iii) Choosing the configuration parameters is important as well. These include population 

size, crossover type, crossover probability, mutation probability, number of generation, etc. 

The population size dictates the number of chromosomes in the population. Larger population 

sizes increase the amount of variation present in the initial population at the expense of 

requiring more fitness evaluations. It has been found that the best population size is both 

applications dependent and related to the length of the chromosome. A good population of 

chromosomes contains a diverse selection of potential building blocks resulting in better 
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exploration. For longer chromosomes and challenging optimization problems, larger 

population sizes are needed to maintain diversity and hence better exploration. Many 

researchers suggest population size between 25 and 100. Some researchers suggest that the 

optimal mutation rate is approximately as 

(2.13) 

Where M is the size of population and L is the length of the chromosome. 

2.4.1 Initialization of the Population 

Initialization is the first stage of the iterative GA process, as represented in the flowchart 

in FIGURE 2.1 0. An initial population is randomly generated at the start of the run. If desired, 

the initial population could be interspersed with non-randomly individuals to give the GA 

process a head start. This might be a previously known good solution to a problem which is 

the best-to-date solution available. Hopefully, GA should either use the components of these 

non-random solutions to contribute to a better solution, or discard them if they have nothing 

to offer. Care must be taken not to unduly pollute the population with such previous 

knowledge, as the GA search may be inadvertently directed away from better solutions, and 

instead converge early on sub-optimal solutions because diversity in the population is lost. 

Initial 

Population 

D 
Start 

Calculate 
Fitness 

Criterion is 
reached? 

/ 

FIGURE 2.10 The flowchart of Genetic Algorithm 

22 

Optimal 
Solution 

Result 



The population size dictates the number of chromosomes in the population. Larger 

population sizes increase the amount of variation present in the initial population at the 

expense of requiring more fitness evaluations. It has been found that the best population size 

is both applications dependent and related to the length of the chromosome. A good 

population of chromosomes contains a diverse selection of potential building blocks resulting 

in better exploration. For longer chromosomes and challenging optimization problems, larger 

population sizes are needed to maintain diversity and hence better exploration. Many 

researchers suggest population size between 25 and 100. 

2.4.2 Evaluation 

Each individual in the population is evaluated against a function (fitness function), to 

measure how well it performs against the problem it is addressing. The result of the 

evaluation is known as the fitness of the individual. 

2.4.3 Selection 

The next step is the evolutionary stage where a new population is created from the old 

population. Having measured the fitness, this information is used as the means of comparing 

the relative ability of individuals to solve the problem. During the evolutionary phase, those 

individuals with a higher fitness are more likely to survive in the new population. Most 

functions are stochastic and designed so that a small proportion of less fit solutions are 

selected. This helps keep the diversity of the population large, preventing premature 

convergence on poor solutions. This process of fitness evaluation and evolution is repeated as 

the GA process efficiently searches for an optimum or near optimum solution to the problem. 

Popular and well-known selection methods are fitness-proportionate selection using Roulette 

Wheel and Tournament Selection. 

Roulette Wheel Selection 

• Add up the fitness of all chromosomes 

• Generate a random number R in that range 
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• Select the first chromosome in the population that gives you at least the value R (when 

all previous fitness are added) 

Example: 

Chromosome No. Fitness 
1 
2 2 
3 
4 

5 
6 
7 

3 

3 
5 

Total fitness 16 

Tournament Selection 

Fitness l--l--+----+--+----+---+-----1f-----t 
2 

I 
3 

I 
4 5 6 7 

2 3 3 5 1 

/ r 
Random{O.J6) = 7 Random(0 .. 16) = 11 
Chromosome: 4 Chromosome: 6 

Parent 1 Parent 2 

FIGURE 2.11 Roulette Wheel Selection 

Tournament Selection is a method of selecting an individual from a population of 

individuals in a Genetic Algorithm. Tournament Selection involves running several 

"tournaments" among a few individuals chosen at random from the population. The winner of 

each tournament (the one with the best fitness) is selected for crossover. Selection pressure is 

easily adjusted by changing the tournament size. If the tournament size is larger, weak 

individuals have a smaller chance to be selected. 

Tournament Selection pseudo code: 

Choose k (the tournament size) individuals from the population at random 

Choose the best individual from pool/tournament with probability p 

Choose the second best individual with probability p*(l-p) 

Choose the third best individual with probability p*(1-p)2 

and so on ... 

Deterministic Tournament Selection selects the best individual (when p = 1) in any 

tournament. A 1-way tournament (k = 1) selection is equivalent to random selection. The 

chosen individual can be removed from the population that the selection is made from if 
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desired, otherwise individuals can be selected more than once for the next generation. 

Tournament Selection has several benefits: it is efficient to code; works on parallel 

architectures and allows the selection pressure to be easily adjusted. 

2.4.4 The Genetic Operators 

i) Crossover 

To produce new offspring, parts of individuals from the previOus generation are 

exchanged using a GA operation called crossover which is similar to sexual reproduction. It is 

hoped that over next generations, all the useful sub-components, which are initially spread 

throughout the population, will combine in a single individual which will offer a 'good' or 

even perfect solution. FIGURE 2.12 illustrates the crossover operation. 

Parent 1 

[!I 4 I 2 I 
Offspring 1 

I 3 I 0 4 I 3 I 0 I 4 2 6 3 

~ I C . 
1 

rossover pomt 

Parent 2 Offspring 2 

'I 5 6 2 6 3 I 5 I 1 I 6 l 4 2 

FIGURE 2.12 Single Crossover Operation 

ii) Reproduction 

To avoid the loss of good individuals from the population, and to improve the speed of 

convergence of GA, reproduction is also used to copy some better individuals to next 

generations. 

iii) Mutation 

Crossover and reproduction are the main operators used, typically to generate 90% and 

10% of a new population respectively. Sometimes, it may be useful to introduce a mutation 

operator applied to individuals with a much lower probability [Simon Kent 1999]. Mutation 
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rate determines the probability that a mutation will occur. Mutation is employed to give new 

information to the population and also prevents the population from becoming saturated with 

similar chromosomes. Large mutation rates increase the probability that good schemata will 

be destroyed, but increase population diversity. The best mutation rate is application 

dependent but for most applications is between 0.001 and 0.1. The mutation operation 

involves the random selection of an individual's component and the replacement of this 

component by another randomly created component. This operator can make sure the 

diversity of the population. It is useful to prevent convergence to a solution which is 

sub-optimal, and can be seen as the addition of new genes to the population. FIGURE 2.13 

shows the mutation operation. 

Parent Offspring 

4 2 I 3 I 2 4 4 2 

~.futation gene 

FIGURE 2.13 Mutation Operation 

2.4.5 The Problem of Genetic Algorithm for Path Planning 

Path planning methods based on Genetic Algorithm don't require derivative information 

of the solution due to it is stochastic in nature. It is robust, being capable of searching the 

entire solution space to get global optimization. It is easy to parallelize. 

However, GA searches a global optimum path in a very large workspace, so the time 

complexity is very high. The time cost of GA increases exponentially when the dimension of 

the configuration space increases. GA is not working properly in dynamic environments. 

2.5 The Need for Hybrid Approach 

As discussed previously, the single approach such as Artificial Potential Field or Genetic 

Algorithm has its own advantages. However, there are existing trap situations, oscillations in 

the presence of obstacles and goals nonreachable with obstacles nearby (GNRON) problem 

caused by local minima in APF. Another problem is that through the path is collision free, it 
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may be not the optimal path. The time cost of GA increases exponentially when the dimension 

of the configuration space increases. GA is not working properly in dynamic environments. 

There are many benefits of applying hybrid Artificial Potential Field - Genetic Algorithm 

approach on mobile robot path planning. Combining the Artificial Potential Field and Genetic 

Algorithm can solve the local minima problem caused by Artificial Potential Field and 

improve the searching efficiency when using Genetic Algorithm. The next chapter will 

discuss a hybrid approach based on Artificial Potential Field and Genetic Algorithm in details. 
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CHAPTER3 

HYBRID APPROACH BASED ON ARTIFICIAL POTENTIAL 

FIELD AND GENETIC ALGORITHM 

3.1 Overview 

The mobile robot environment is represented by orderly numbered grids, each of which 

represents a location in the environment. The boundary of obstacles is formed by their actual 

boundary plus minimum safety distance considering the size of the mobile robot, which 

makes it possible to treat the mobile robot a point in the environment. In a large scale 

environment, suppose the environment is 1 Ox 10 meters with a robot size 1 Ox 10 centimeters. 

We can model the environment into 1 OOx 100 grids, and treat the robot as a point in the 

environment. FIGURE 3.1 shows an environment representation with 100x 100 grids. 

9900 9901 9902 9903 000 000 000 9997 9998 9999 

9800 9801 9802 9803 000 000 000 9897 9898 9899 

9700 9701 9702 9703 ... 000 000 9797 9798 9799 

000 000 000 

000 000 000 

000 000 ... 

300 301 302 303 000 ... 000 397 398 399 

200 201 202 203 ... 000 000 297 298 299 

100 101 102 103 000 000 000 197 198 199 

0 1 2 3 000 ... . .. 97 98 99 

FIGURE 3 .1 Environment Representation 
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In this hybrid approach, a Genetic Algorithm is proposed first. It uses a simple effective 

path representation that combines grids and coordinates representations. Unlike other Grid 

methods, the grids adopted here do not limit movement of the path, but simplify the 

chromosome structure and genetic operation by discretizing the environment. This approach 

makes it possible to have one number for each gene and to use integer numbers instead of real 

numbers in chromosomes. A potential path is encoded as a sequence of grid numbers starting 

from the start point and ending at the target with a various number of intermediate nodes 

(FIGURE 3.2). 

I o- 2o-23s -1ou- 3212-4032-5152- s4n- 9431-9563-9767-9866-9999 

I I I 
Start Point Intermediate Node Target Point 

FIGURE 3.2 A sample chromosome 

Such a grid representation is different from the one that usually uses grids to limit the 

movement of a path to be one of its eight adjacent cells and uses relative directions to 

represent a path. The proposed path representation is more like a coordinate representation, 

but differs by discretization and using integer numbers instead of coordinates (x, y). 

As we know, the time cost of Genetic Algorithm increases exponentially when the 

dimension of configuration space increases. So the Genetic Algorithm will not work properly 

on the environments with large scale dimension. The suggested path length should be 

constrained to be less than 20. 

After applying Genetic Algorithm, a global optimal or near-optimal path has been got 

according to the currently known environment. However, as the environment is dynamic, 

some obstacles are moving, we can not follow the fixed path obtained by GA simply. How to 

follow the path? How to avoid the obstacles? It is not efficient to apply GA again when the 

environment is changed. Therefore, a local planner is proposed. We need an effective local 

path planner that follows the path obtained by global planner and avoid the moving obstacles 

properly. 
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Since the predefined path is obtained before the movement of robot according to the 

currently known environment. Artificial Potential Field, a local planner, is proposed to follow 

the path from one intermediate node to next intermediate node. FIGURE 3.3 shows the main 

idea of the hybrid approach. 

Start GA 
(Global 

Planner) 

APF (Local planner& Obstacles Avoidance) 

FIGURE 3.3 A hybrid approach 

3.2 The Application of GA 

GA first searches the optimal path or near-optimal path based on the currently known 

environment. In this dissertation, GA uses a chromosome with variable length. As the 

dimension of the environment is very large, the chromosome size (the number of nodes 

included in the path) should not be as long as the environment size, otherwise GA will not 

work efficiently. Therefore, the proposed chromosome size is less than 20. The following will 

discuss the chromosome, fitness function and genetic operators in details. 

3.2.1 Representation and Initial Population 

A chromosome represents a path as a sequence of nodes, where each node indicates a 

grid number representing a location in the environment. The first node is the start point and 

the last node represents the target point. A feasible path is a collision free path, i.e. no nodes 

fall on any obstacles. The length of a chromosome is variable and between 2 and maximum 

length 20. FIGURE 3.4 shows a sample chromosome. 
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I o- 20-235- 1011-3212-4032-5152- s4n- 9431-9563-9767-9866-9999 

r r r 
Start Point Intennediate Node Target Point 

FIGURE 3.4 A sample chromosome 

The initial population is generated randomly, where each path has a random number of 

nodes. 

3.2.2 Evaluation 

Many traditional approaches to path planning consider only the length of the path to 

compute costs. This evaluation has many drawbacks, since shorter paths may not be safe and 

smooth and therefore do not represent optimal paths. The same evaluation methodology 

introduced by Xiao [Xiao et al. 1997] is utilized here with some modifications. 

The fitness function is composed of three sub-functions: 

i) Sub-function of Path Length 

N 

Fitl = Idi (3.1) 
i=l 

Where N is the number of line segment of a path, d; is the Euclidean distance of the 

two nodes forming the line segment. 

ii) Sub-function of Smoothness 

N-1 

Fit2 = Lg((,li+l) (3.2) 
i~l 

value is non-negative, we can define g(/;, (+1) = cos(/;, /i+I) + 1 . 
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iii) Sub-function of Path Security 

N 

Fit3 = C• IP; (3.3) 
H 

Where C is the coefficient, ,B; is the coefficient denoting depth of collision, its 

definition is given as 

{

0, 

P= M 

' ~aJ, 

if the i th line segment is feasible 

ifthei1
h linesegment intersects obstacles 

(3.4) 

Where M is the number of obstacles the line segment intersects, the value of a 
1 

is 0 or 1, 

which is determined by considering whether a line segment intersects an obstacle j. a
1 

is 

equal to 1 when the i1
h line segment intersects obstacle j . This evaluation gives penalty to 

infeasible path, but still keeps them in the population because they might become good 

feasible solutions after certain genetic transformations. 

Finally, the fitness function can be given as 

Fit= w1 • Fitl + w2 • Fit2+ w3 · Fit3 (3.5) 

Where w; (i = 1, 2, 3) respectively stands for the weighted values of length, smoothness, 

and security degree in the fitness function. 

3.2.3 Reproduction and Genetic Operators 

In this approach a Tournament Selection method is used as a selection strategy (selection 

determines the pair of individuals chosen for recombination). Two paths are selected 

randomly and the fitter path will be selected as the first parent. The same process is repeated 

to select the second parent. After the selection process, four operators are used to evolve the 
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selected paths. Each operator application is controlled by its probability. These operators are: 

i) Crossover: This operator combines two selected paths (parents) to generate two 

offspring as follows: a random mating intermediate node is selected on each parent. This node 

split the path into two parts. The first offspring is generated by combining the first part of the 

first parent with the second part of the second part of the second parent, and the second 

offspring is generated by combing the first part of the second parent with the second part of 

the first parent. FIGURE 3.5 illustrates the crossover operation. 

' r 
'-.1 ' ' 'v 

FIGURE 3.5 Crossover Operation 

ii) Mutation: This mutation changes the intermediate node in the path. It randomly 

selects one intermediate node and changes it into another grid number. FIGURE 3.6 illustrates 

the mutation operation. 

FIGURE 3.6 Mutation Operation 

iii) Repair: This operator is applied to infeasible line segments. Random intermediate 
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nodes around the intersecting obstacle are generated and the operator connects these nodes to 

pull the segment around the obstacle. FIGURE 3.7 illustrates the repair operation. 

FIGURE 3.7 Repair Operation 

iv) Smooth: This operator is applied to feasible paths. A path node is selected and a new 

node is inserted on each segment such that the segment connecting the new inserted nodes is 

feasible and the selected node is deleted as illustrated in FIGURE 3.8. 

'-----> 

FIGURE 3.8 Smooth Operation 

3.3 The Application of APF 

In this dissertation, a new potential field method is proposed for path planning of a 

mobile robot in a dynamic environment where the target and obstacles are moving. The 

attractive potential is defined as a function of the relative position and velocity of the target 

with respect to the robot. The repulsive potential is also defined as the relative position and 

velocity of the robot with respect to the obstacles. Accordingly, the virtual force is defined as 

the negative gradient of the potential in terms of both position and velocity rather than 
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position only. 

3.3.1 Attractive Potential Function 

The attractive potential field functions are presented as follows 

Uau (p, v) =a p liP g (t)- Pr (t)llm + av llv g (t)- v r (t)lln (3.6) 

Where pr(t) andpg(t)denote the positions of the robot and the goal at time t , 

respectively; p r = [X y Z r in a 3-dimentional space Or p r = [X y r in a 2-dimentional space; 

v Jt) and v g (t) denote the velocities of the robot and the goal at time t, respectively; 

IIPg(t)-pr(t)ll IS the Euclidean distance between the robot and the goal at time t ; 

llv g (t)- v r (t)ll is the magnitude of the relative velocity between the goal and the robot at time 

t; a P and av are scalar positive parameters; and m and n are positive constants which 

satisfy m, n > 1 . 

The new attractive potential Uatt (p, v) is a function of both the position p and velocity 

v of the robot. Therefore, we shall define the corresponding virtual attractive force as the 

negative gradient of the attractive potential in terms of both position and velocity, 

Fa11 (p, v) = -VUa11 (p, v) 

= -V pUa11 (p, v)- VvUa11 (p, v) 
(3.7) 

Where 

v u (p v) = auatt(p, v) 
p att ' ap (3.8) 

v u (p v) = auatt(p, v) 
v all ' av (3.9) 

with the subscripts p and v denoting the gradient in terms of position and velocity, 

respectively. 
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When Pr 7:- pg and vr 7:- vg, substituting (3.6) into (3.7), we will have 

Fau(P, v) = Faui (p) + Fauz(v) (3.10) 

Where 

(3.11) 

(3.12) 

With n P RG being the unit vector pointing from the robot to the goal and nv RG being the 

unit vector denoting the relative velocity direction of the goal with respect to the robot. 

The attractive force Fau consists of two components: the first component, Fau 1 (p) , pull 

the robot to the goal and shortens the distance between them, the second component, F
0112 

( v), 

drives the robot to move at the same velocity of the target. 

From (3.11) and (3.12), for m>1and n>l, when the robot approaches the goal, 

Jjpg(t)-pr(t)ll approaches zero, Fatti approaches zero; when the velocity of the robot 

approaches that of the goal, Fa112 approaches zero. Thus, when both of the position and 

velocity of the robot approach those the goal, the attractive force Fau approaches zero. 

3.3.2 Repulsive Potential Function 

Assume that the position p
0
(t) and velocity V

0
(t) of the nearest point on the obstacle to 

the robot can be obtained online. The relative velocity between the robot and the obstacle is 

given by 

(3 .13) 
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Where n Ro is a unit vector pointing from the robot to the obstacle. If v Ro (t) s; 0 , the robot 

is moving away from the obstacle, no avoidance motion is needed. IfvR0 (t) > 0, the robot is 

moving close to the obstacle, avoidance motion needs to be implemented. 

Assume that at time t, the robot is moving toward the obstacle. The shortest distance 

between the robot and the body of the obstacle is denoted by Ds(Pr(t)-p
0
(t)). Accordingly, 

the repulsive potential can be defmed as follows: 

(3.14) 

Where Urep denotes the repulsive potential generated by the obstacle; D0 is a positive 

constant describing the influence range of the obstacle; and 17 is a positive constant. 

From (3.14), we can see that when the robot is far away from the obstacle, 

i.e. Ds (p r, p J ~ D0 , the robot is not influenced by the obstacle, and therefore no avoidance 

motion is implemented. When the robot is within the influence range of the obstacle and 

Ds(Pr,PJ approaches zero, the repulsive potential approaches infinity and as the projection 

of relative velocity of the robot vR0 increases, the repulsive potential also increases. Even if 

the distance between the robot and the obstacle does not approach zero, the repulsive potential 

approaches infinity if the relative velocity v Ro is large enough. 

Similar to the definition of the new attractive force, the corresponding new repulsive 

force is defined as the negative gradient of the repulsive potential in terms of both position 

and velocity 

~ep (p, v) = -VUrep (p, v) 

= -V pUrep(p, v)- VvUrep(p, v) 
(3.15) 
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To derive the virtual repulsive force, we need to derive the gradient of vR0 (t) with 

respect to position and velocity, respectively. The relative velocity of the robot with respect to 

the obstacle in the direction from the obstacle to the robot, vR0 (t), can be written as 

VRo(t) =[vr(t)-vo(t)f DRO 

=[v (t)-v (t)f Po(t)-pr(t) 
r 

0 liP a (f)- Pr (t)ll 
(3.16) 

The gradients of v Ro (t) with respect to both velocity and position are given respectively 

as 

(3.17) 

Where vR0(t)nR0 gives the velocity component of vr(t)-vo(t) in the direction from 

the robot to the obstacle. 

For clarity, let v 'Ro (t)n 'Ro denote the velocity component perpendicular to v Ro (t)n Ro as 

given in the following equation 

(3.18) 

Where 

(3.19) 

Therefore, Equation (3 .17) can be simply expressed as 

(3.20) 
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FIGURE 3.9 shows the detailed relationships among the vectors. 

The virtual repulsive force generated by the obstacle is then given by 

Where 

And 

{

0, 
Frep(p, v) = F + F 

rep! rep2' 

if Ds(Pr,PJ 2?: Do or VRO s; 0 

if Ds(Pr,pJ <Do and VRO > 0 

F = -ry n 
rep! D ( )2 RO 

s Pr,Po 

(3.21) 

(3.22) 

(3.23) 

The relationship between the repulsive force components in a 2D space IS shown in 

FIGURE. 3.10. 

y 

Obslad~ 

l'(t)- v, (l) 

v,.(t) 

{) X 

FIGURE 3.9 Vectors for defining the new 

repulsive potential 

Obstacle 

y 

0 

FIGURE 3.10 New repulsive force in 2D space 

The repulsive force component Frepl 1s in the opposite direction of vR0(t)nR0 which 
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will keep the robot away from the obstacle. The repulsive force component Frep2 is in the 

same direction of v 'Ro (t)n 'Ro, and will drive the robot bypassing/detouring the obstacle. 

After the calculation of the attractive and repulsive forces, the total virtual force can be 

obtained by 

F =F +F total att rep (3.24) 

Where Fa
11

and F,.epcan be calculated through Equations (3.10) and (3.21). For the case 

where there are multiple obstacles, the repulsive force is given by 

n, 

Frep = L Frepi 
i=l 

(3.25) 

Where no is the number of obstacles and Frepi is the repulsive force generated by the i th 

obstacle. The total virtual force F,otat will be used for local path planning. 

When employing the potential functions for dynamic path planning, local minimum 

problems do exist and should be taken care of. To solve the problem, the simplest method is to 

keep the robot move according to the total virtual force as usual and wait for the obstacle or 

the goal to change their positions. Since the environment is highly dynamic where both the 

goal and the obstacles are moving, the situations where the configuration of the obstacles and 

goal keeps static are rare. Therefore, the waiting method is often adopted. 
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CHAPTER4 

IMPLEMENTATION AND EXPERIMENTAL RESULTS 

Building an actual physical robot, with its complex motors, sensory system is very 

difficult, cost, and time-consuming, hence the attraction to bring the search for intelligent 

behavior inside the more-manageable world of computer. There are so many advantages of 

simulation: 

i) Prototyping new robots in the real world is a task full of soldering irons and nuts and 

bolts. Moving from one iteration of a design to the next can take weeks or months. However, 

in the simulation, you can easily make several changes and refinements to a design in just a 

day or two. 

ii) When the robot is running in the simulation environment, it is easy to set breakpoints 

on the services that control it and to find the bugs in your code. It is often difficult to have a 

debugger connected to a robot under motion. 

iii) The simulation can be used when there is only limited hardware available. The 

researchers can focus on writing software and debugging the behavior of a simulated robot 

before testing the final version on the actual hardware. 

iv) Another advantage to simulation is personal safety. It provides a way to debug the 

robot without risking bodily injury. 

This dissertation provides a hybrid Artificial Potential Field - Gnetic Algorithm 

approach to mobile robot path planning in unknown environment. The environment is 

partially unknown, including the static obstacles and dynamic obstacles. As some obstacles 

are moving, we can not know their exact location, hence, the sensors installed on the robot are 

used to sense the moving obstacles and pass the information to the robot for obstacles 

avoidance. 
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4.1 Introduction of the Simulator - Microsoft Robotics Development Studio 

Microsoft Robotics Developer Studio (MRDS) is a Windows-based environment for 

robot control and simulation. It is aimed at academic, hobbyist, and commercial developers 

and handles a wide variety of robot hardware. 

MRDS is based on CCR (Concurrency and Coordination Runtime): a .NET-based 

concurrent library implementation for managing asynchronous parallel tasks. This technique 

involves using message-passing and a lightweight services-oriented runtime, DSS 

(Decentralized Software Services), which allows the orchestration of multiple services to 

achieve complex behaviors. 

The features included in MRDS are a visual programmmg tool, Microsoft Visual 

Programming Language for creating and debugging robot applications, web-based and 

windows-based interfaces, 3D simulation (including hardware acceleration), easy access to a 

robot's sensors and actuators and support for a number of languages including C# and Visual 

Basic .NET, JScript and IronPython. 

Microsoft Robotics Developer Studio includes support for packages to add other services 

to the suite. Those currently available include Soccer Simulation and Sumo Competition by 

Microsoft, and a community-developed Maze Simulator, a program to create worlds with 

walls that can be explored by a virtual robot. 

There are four main components in MRDS: 

• CCR (Concurrency and Coordination Runtime) 

• DSS (Decentralized Software Services) 

• VPL (Visual Programming Language) 

• VSE (Visual Simulation Environment) 
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FIGURE 4.1 Sample apartment VSE simulation 

environment 

FIGURE 4.2 Sample outdoor VSE simulation 

environment 

MRDS in only available in one language, U.S. English and requires NET Framework 3.5 

SPl . The Visual Simulation Environment requires a DirectX 9 graphics card that supports 

Pixel Shader 3.0. 

4.2 Simulation System 

The simulation system includes hardware and software. The hardware used in this 

simulation is HP laptop 6520s. And the software used in this simulation is Microsoft Robotics 

Development Studio (MRDS) 2008 R3. The robot selected for the simulation is Pioneer 3DX. 

The Pioneer 3DX Robot is manufactured by Mobile Robots, Inc. It is interesting because it 

has an onboard laser range finder and an onboard computer, so it is capable of autonomous 

movement. It also has bumpers, and the version in the simulator has a mounted webcam. 

FIGURE 4.3 shows the Pioneer 3DX robot. 

The environment where the Pioneer 3DX moves is an indoor environment, the modem 

apartment, which is shown in FIGURE 4.4. At the first step, we have to extract the 

information such as obstacles' location from the environment and then model it into a 20 

space. According to the size of Pioneer 3DX, we can model the environment into 50 x 33 

grids. Therefore, the mobile robot can be treated as a point in the environment. FIGURE 4.5 

shows the space map after modeling the environment. 
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FIGURE 4.3 The Pioneer 3DX 

FIGURE 4.4 The 3D Simulation Environment 

Modern Apartment 

4.3 Simulation Result 

FIGURE 4.5 Space Map 

In this simulation, the start point is grid number 257 and the goal point is grid number 

1498. The population size is 100. The crossover rate is 0.8. The mutation rate is 0.03. The 

maximum generation is 200. In the evaluation function discussed in Chapter 3, wP w2, w3 is 

set as 0.1, 0.3 and 0.6, respecti vely. C is set as 1000 because the penalty for infeasible path 

should be high. The proposed genetic algorithm can easily deal with the obstacles and obtain 

a near-optimal path. FIGURE 4.6 shows the evolution process . The best solution in the initial 

population in FIGURE 4.6(a) is not feasible. FIGURE 4.6(b) shows the best solution after 10 

generation's evolution. The genetic algorithm continues to evolve better solution (FIGURE. 

4.6(c)) until the maximum generation is reached. A near-optimal path is obtained after 192 

generations, shown on FIGURE 4.6(d)). 
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(a) (b) 

(c) (d) 

FIGURE 4.6 One typical run of path planning in the simulation environment: (a) The best initial path 

(Infeasible); (b) The best solution in generation io (feasible path); (c) The best solution in generation 

164 (Improved solution); (d) The near-optimal path is obtained in generation 192. 

FIGURE 4.7 The robot stops moving when it has sensed the obstacles 
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The near-optimal path is obtained by GA after 192 generations. Then the Artificial 

Potential Field approach is proposed to follow the optimal path and avoid the obstacles. As a 

local planning, every time the robot chooses one intermediate node as the start point and its 

next intermediate point as the target point. It moves from one intermediate node to next 

intermediate node repeatedly till the robot reaches the final point, which is the global target 

point. In this simulation, the APF based planner works properly. The robot tries to reach the 

desired target which is attractive to it. When it moves towards to the obstacles, the repulsive 

force prevents it colliding with the obstacles. FIGURE 4. 7 shows the robot stops moving 

when it has sensed the obstacle. 
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CHAPTERS 

CONCLUSION AND FUTURE WORK 

This chapter summarizes the dissertation, and discusses the research limitations. Future 

research on the Hybrid Artificial Potential Field and Genetic Algorithm approach will also be 

discussed. 

In this work we have developed and implemented a Hybrid Artificial Potential Field and 

Genetic Algorithm approach (chapter 3) to deal with path planning problem for mobile robots 

in unknown environment with static and dynamic obstacles. Compared with the genetic based 

approach, th.e hybrid approach provides a better performance in processing time, and is crucial 

for a robot to quickly respond to avoid collision with the dynamic obstacles. 

The novelty of this work is the combination of a global planner and a local planner for 

robot path planning in dynamic environments with moving obstacles. The global planner is 

used to obtain a global optimization based on the currently known environment while the 

local planner is good at obstacles avoidance when following the optimal path. The hybrid 

approach is able to quickly determine the optimal feasible path for robot in dynamic 

environment. 

However, there are still some research limitations in this dissertation. The limitations of 

this work are described below: 

i) The shape of the robot is ignored in this work though the dimensions of the obstacles 

are considered for calculation. Therefore, taking the dimension of the robot into consideration 

is a future work. 

ii) In this simulation, the dynamic obstacles are moving in a fixed speed and the direction 

is changed based on some predefined algorithms. For a more realistic modeling, making the 

dynamic obstacles roam with arbitrary speed and arbitrary direction should be considered. 
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Though the Hybrid Artificial Potential Field and Genetic Algorithm approach solves the 

issue of obtaining the optimal path without collision with obstacles in dynamic environments, 

some further extensions to be considered as future work: 

i) For a more realistic modeling, a more complex and realistic environment shall be used 

and tested using the hybrid approach. The environment in this simulation is described in a 

two-dimensional surface. For modeling a more realistic environment for robot, a 

three-dimensional modeling needs to be considered. 

ii) The hybrid approach is applied on a single robot currently. How to apply it on the 

multi-robot system is a more interesting future research work. And the target in this 

simulation is static, for further research, we can consider the target in a moving state, which is 

more realistic. 
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