ON THE ASYMPTOTIC BEHAVIOUR OF SOME THREE SPECIES ECOSYSTEM MODELS

SHAILENDRA KUMAR DEO

A DISSERTATION

Submitted to

Jawaharlal Nehru University in partial fulfilment of the requirment for the degree of MASTER OF PHILOSOPHY
date: 27-5-86

CERTIFICATE

The work presented in this dissertation has been carried out
in the School of Environmental Sciences. Jawaharlal Nehru

University, New Delhi. The work is original and has not been submitted in part or full for any other degree or diploma of any University.

(Deana. ${ }^{\text {Prot. }}$. ASTHANA
Dan
School of Environmental Sciences, Jawahatlal Nehru University

New Dilhı-110067, INDIA

My interest in this subject was stimulated. by the fascinating lectures on the Non-Linean Differential Equations and System Sciences by Dr. G.P. Mallik and on Mathematical Ecology by Prof. L.K. Pande. Hence my decision to carny out the research work in Mathematical Ecology has been amply justified by Prof. Pande's excellent quidence and having provided the problem on which the present dissertation is based.

I am thankful to Prof. 7. Subba Ray Ron his fruitful discussions particularly on numerical analysis on the computers.

The grant of U.G.C. Junior Research Fellowship through J.N.U. is acknowledged.

Thanks are also due to Mr. Gajanan Hegde Ron his fine typing on the Word Processor.

It is impossible to forget the constant encouragement from my parents and friends without which the work has never been realised.

ABSTRACT

CONTENTS

CHAPTER I INTRODUCTION 1
CHAPTER II REVIEW OF SOME ECOSYSTEM MODELS 4
CHAPTER III RESULTS ON SOME THREE SPECIES LOTKA-VOLTERRA MODELS IN THE ASYMPTOTIC REGION 19
SECTION I - ONE PREY-TWO PREDATOR SYSTEM 19 a
SECTION II - TWO PREY-ONE PREDATOR SYSTEM 35
CHAPTER IV ILLUSTRATION OF THE ANALYTICAL RESULTS USING RUNGE-KUTTA APPROXIMATION METHOD 46
CHAPTER V SUMMARY OF THE RESULTS 56
FIGURES 59
APPENDIX I: PROGRAME LISTING OF THE ONE PREY- TWO PREDATOR SYSTEM 65
APPENDIX II: PROGRAME LISTING OF THE TWO PREY- ONE PREDATOR SYSTEM 68
REFERENCES 71

CHAPTER - 1

I NTRODUCTI ON

The study of the three species ecosystem models occupies an important place in theoretical ecology. The elucidation of these models will lead to clues to an understanding of the more complex multispecies systems. The ecosystem models, as described by a set of differential equations, are in general non-linear. Due to the nonlinearity, it is very difficult to judge the exact behaviour of the component populations in the long run, as usually the non-linear equations can not be solved exactly.

A great deal of work has been done on three species models. The works of Pariish and Saila \{1970), Cramer and May (1972) and Bhat and Pande (1980. 1981) are notable in this context. The implications of the result of a three step prey-predator food chain (Bhat and Pande. 1981) are quite interesting. In the model three populations $N_{1}, \quad N_{2}$ and N_{3} are considered, with N_{2} preying on N_{1} and N_{3} preying on N_{2}. The model. contained the prey-predator interactions and self interaction for the population N_{2} All the interactions were taken to be of the Lotka-Volterra form. Due to nonlinearity of the equations, the model was not solvable analytically. However, the behaviour of the component populations was described using numerical methods for a certain range of parameters occurring in the model. It was
found that both N_{1} and N_{3} rose indefinitely while N_{2} reached a finite constant value asymptotically. Even though the results are quite satisfactory, the lack of an analytical base is felt.

Varma and Pande (1986) first tried to give some strong analytical base to the above results. Although they were not able to get the exact solutions, they obtained analytically the behaviour of the populations in the asymptotic region as t ----> ∞.

In the present dissertation, we extend the work of the above authors to the one prey-two predator system and the two prey-one predator system. In the case of one prey-two predator system the self interaction and competition terms are excluded for the predator populations, whereas in case of the tro prey-one predator system the self-interaction and compeitition terms for the prey populations are excluded. These results give the earlier results a more strong analytical base.

Our results have been obtained by exploring a constraint that exists in the subspace of two populations, and by using suitable Laurent series expansions in the asymptotic region for an appropriately chosen variable. We are able to obtain results on the asymptotic behaviour of the three species. The precise conditions pertaining to the asymptotic behaviour are also obtained. The method used for the purpose is quite simple and has got reasonably good applicability.
All the results obtained in the above manner are verified by numerical analysis on the computer. The verification has been carried out on H.P. 9836 A computer, using ther Runge-Kutta approximation method.

CHAPTER -- II

REVIEM OF SOME ECOSYSTEM MODELS

Abstract

We shall build up the three species ecosystem model step by step, starting with the single species system, and analyse it explicitely in this chapter. The latter is the simplest of possible systems realised only under extremely special conditions. Let us assume an "unlimited environment". It can be further assumed that the individuals have no effect on one another, and that the rate of growth per individual is the same for all individuals and is a constant in time. lf we denote this rate by and the population by $N_{1}(t)$, then the dynamics of this system is given by the equation:

$$
\begin{equation*}
\frac{d N_{1}}{--1}\left(=\alpha N_{1}\right. \tag{1.1}
\end{equation*}
$$

Which has the simple solution,

$$
\begin{equation*}
N_{1}(t)=N_{1}(0) e^{\alpha t} \tag{1.2}
\end{equation*}
$$

where $N_{1}(0)$ is the population at time $t=0$.

This is the well known Malthusian picture of population growth where the population rises exponentially with time (Pielou, 19773.

But in reality the environment is not an unlimited one. The food available to the population is sooner or later going to get limited because of the rising population. peari-Verhulst suggested a modification of α to $\left(\alpha-\beta N_{1}\right)$ which leads to a fall in the rate with increase in population. The equation. then, is :

$$
\begin{equation*}
\frac{d N_{1}}{d t}=\left(\alpha-\beta N_{1}\right) N_{1} \tag{1.3}
\end{equation*}
$$

and the solution to this "Pearl-Vernulst logisticequation" is :

$$
\alpha / \beta
$$

$$
\begin{equation*}
N_{1}(t)=\ldots \ldots-\ldots \tag{1.4}
\end{equation*}
$$

$$
1+e^{-\alpha\left(t-t_{0}\right)}
$$

where the constant $e^{\alpha t} 0$ is given in terms of the initial population $N_{1}(0) b y$.

$$
\begin{equation*}
e^{\alpha t} 0=\frac{(\alpha / \beta)-N_{1}(0)}{N_{1}(0)} \tag{1.5}
\end{equation*}
$$

The solution has an asymptotic value as t -->>, which is or \quad. The value $N_{1}=\alpha / B$ is the maximum that the population can reach and is therefore called the "carrying capacity" of the given environment.

Now we consider that there are two populations N_{1} and N_{2} such that N_{1} take its food directly from the environment, as in the earlier models. but N_{2} derive its food from N_{1} only. The
presence of N_{2} thus affects the growth rate α. Considering the simplest possibility we replace a by (a- $\lambda_{1} N_{2}$), where λ_{1} is a positive constant. So we get,

$$
\begin{equation*}
\frac{d N}{d t}-\frac{1}{d t}=\left(a-\lambda_{1} N_{2}\right) N_{1} \tag{1.0}
\end{equation*}
$$

The second term on the right hand side in this equation describes the interaction between the two populations. Such an interaction term should clearly also govern the rate of change of the population N_{2}, but the contribution should now be positive. We thus have,

$$
\begin{equation*}
\frac{d N_{2}}{d t} \quad \propto \quad \lambda_{2} N_{1} N_{2} \tag{1.7}
\end{equation*}
$$ to itself, it should obviously die out. Assuming that the decay rate per individual, say γ i $i s$ a constant in time and is the same for all individuals, we immediately have,

$$
\begin{array}{llll}
\mathrm{dN} \tag{1.8}\\
--2 \\
\mathrm{dt}
\end{array} \quad \propto \quad \therefore \quad \gamma \mathrm{~N}_{2}
$$

where γ is again positive. The complete equation for the evolution of the population N_{2} can therefore be written as:

$$
\begin{equation*}
\frac{d N_{2}}{d t}=-\gamma N_{2}+\lambda_{2} N_{1} N_{2} \tag{1.9}
\end{equation*}
$$

rihis system, given by equation (1.6) and (1.9) is the well known Lotka-Volterra model (pielou, 1977). describing a two species prey-predator system.

Equations (1.6) and (1.9) arecoupled nonlinear equations which cannot be solved analytically. We have to consider some approximations and with the helpof numerical methods we can solve them. In view of its nonlinear nature, it is unlikely that the full information content of this system is uncovered by such methods. [lt may be noted that equation (1.3) is also nonlinear. However, its simple formenables us to solve itexactly by direct integration . However. an exact result, can be established. This was done originally by Volterra (1927). Volterta observed that the system possesses a conserved quantity, using which it can be proved that the system traces closed trajectories in the $N_{1}-N_{2}$ phase space. This shows that N_{1} and N_{2} are oscillatory as functions of t, implying their continued co-existence.

Arguments similar to those used in constructing the hotkaVolterra model can also be used for two species systems where the tro species are no more prey and predator, but instead, both derive their food dixectly from the environment and compete with each other for the same. We simply keep positive signs for the first terms on the right hand sides in equations (1.6) and (1.9). and keep negative signs for both the interaction terms. it is possible that the growth of the two populations can also be
influenced by "self-interaction" as in the case of equation (1.3). Incorporating that also. we have.

$$
\frac{d N_{1}}{d t}=\varepsilon_{1} N_{1}-\alpha_{1} N_{1}^{2}-\beta_{1} N_{1} N_{2}
$$

$$
\begin{equation*}
\frac{d N_{2}}{--\frac{d t}{}}=\varepsilon_{2} N_{2}-a_{2} N_{1} N_{2}-B_{2} N_{2}^{2} \tag{1.10}
\end{equation*}
$$

where all the parameters $\varepsilon_{1}, \alpha_{1}, \beta_{1}$ and $\varepsilon_{2}, \alpha_{2}, \beta_{2}$ are positive constants.

This is the well known Gause-witt model for the two competing species. Here also the nonlinear nature of these coupled equations make it difficult to solve themexactly. it is possible, however, to show that this system does possess stable equilibrium under certain conditions given by certain inequality relations between the various parameters involved. This may be achieved by graphical methods using isoclines. Another approach is to consider the linearised version of the equations in the neighbourhood of the equilibrium points and to use the so called Hurwitz-Routh criteria.

It is straight forward to generalize the above ideas to incorporate more than two species either with prey-predator interactions or with competition. One can also construct models wherein some pairs have prey-predation relationships and the
others have only competition. It is quite simple, then, to write the full structure of the general K-species model.

But as reported earlier, the main difficulty in this approach is to solve these coupled nonlinear equations without any approximation. The numerical analysis that we may perform for different points or even regions of the parameter space, will never give us the full information content of these equations. It is thus important to construct models which are more tractable, hopefully even exactly solvable.

Let us consider the form ($\alpha-\beta \log N_{1}$) (Gompertz, 1825; Gomantam, 1974). Equation (1.3) is then replaced by,

$$
\begin{equation*}
\frac{d N_{1}}{d t}=\left(\alpha-\beta \log N_{1}\right) N_{1} \tag{1.11}
\end{equation*}
$$

which has the solution,

$$
N_{1}(t)=e^{\alpha / \beta} \exp \left\{\left\{\log N_{1}(0)-\alpha / \beta\right\} e^{-\beta t}\right]
$$

The solution is capable of yielding the same kind of population growth as we find in the Pearl-Verhulst model, the expression for the carrying capacity now being $e^{\alpha / \beta}$.

In a similar way, the inhibition of the growth ratea for the population N_{1} due to its interaction with population N_{2}, may.
also be considered in the form $\left\{\begin{array}{l}\text { a }\end{array} \log _{1} \log N_{2}\right\}$ instead of ($0-\lambda N_{2}$). The growth rate for N_{2} can also be modified to $\left(-\beta+\lambda_{2} \log N_{1}\right.$) in place of $\left(-\beta+\lambda_{2} N_{1}\right)$. We thus get the following coupled equations to describe an interacting two species prey-predator system.

$$
\frac{d N_{1}}{d t}=\alpha N_{1}-\lambda_{1} N_{1} \log N_{2}
$$

$$
\frac{d N_{2}}{d t}=-\beta N_{2}+\lambda_{2} N_{2} \log N_{1}
$$

This system of nonlinear equations can be solved exactly.

This model with "logarithemic" interaction terms which we may call the Gompertz model can easily be generalised to cover the Gause-witt case and the results are quite satisfactory. It is interesting to note that this approach can cover various multi species interacting systems, with its solvability remaining intact.

Now we discuss"the Gompertz model for some of the three species ecosystems. For instance we consider the one prey-two predator system (Bhat and Pande, 1983). Let the prey population be denoted by N_{1} and the predator populations by N_{2} and N_{3}. The time development of these populations. will be governed:
(i) by natural growth (for N_{1}) and decay (for N_{2} and N_{3}) terms, which in the absence of any interactions will lead to the usual exponential rise for the prey and exponential fall for the predators, and
(ij) by the various self interaction and mutual interaction terms. All these interaction terms are witten in the Gompertz form. The qquations describing the model are.

$$
\begin{align*}
& \dot{N}_{1}=\varepsilon_{1} N_{1}-\alpha_{1} N_{1} \log N_{1}-\beta_{1} N_{1} \log N_{2}-\gamma_{1} N_{1} \log N_{3} \\
& \dot{N_{2}}=-\varepsilon_{2} N_{2}+\alpha_{2} N_{2} \log N_{1}-\beta_{2} N_{2} \log N_{2}-\gamma_{2} N_{2} \log N_{3} \tag{1.14}\\
& \dot{N_{3}}=-\varepsilon_{3} N_{3}+\alpha_{3} N_{3} \log N_{1}-\beta_{3} N_{3} \log N_{2}-\gamma_{3} N_{3} \log N_{3}
\end{align*}
$$

where \dot{N}_{1}, \dot{N}_{2} and \dot{N}_{3} stand for the respective time derivatives. The signs of various terms depend on whether they represent self interaction, competition or.prey-pedation. The sign is negative for the former two, and as for the latter, the term has a negative sign in the equation for the time development of the prey population and positive sign in the corfesponding equation for the predator population. The ε_{1} terms are here the natural growth and decay terms; those carrying the constants α_{1}, β_{1} and γ_{3} are self interaction terms; and γ_{2} and β_{3} terms represent competition between the two predator populations and the remaining terms represent the prey-predator interactions.

Introducing the notation,
$X_{1}=\log N_{1} ; \quad X_{2}=\log N_{2} ; \quad X_{3}=\log N_{3}$
we can rewrite equations (1.14)as,

$$
\begin{align*}
& X_{1}=\varepsilon_{1}-\alpha_{1} X_{1}-\beta_{1} X_{2}-\gamma_{1} X_{3} \\
& \dot{X}_{2}=-\varepsilon_{2}+\alpha_{2} X_{2}-\beta_{2} X_{2}-\gamma_{2} X_{3} \tag{1.15}\\
& \dot{X}_{3}=-\varepsilon_{3}+\alpha_{3} X_{1}-\beta_{3} X_{2}-\gamma_{3} X_{3}
\end{align*}
$$

The above model yields solutions which can possess stable equilibrium, implying co-existence of all the three species.

The above was the general situation where we considered all the different types of interactions. It is of much interest to see what happens when some of the above interactions are absent. We take for instance the case with no competition and self interaction for the predators. So we have

$$
\beta_{2}=\gamma_{3}=\gamma_{2}=\beta_{3}=0
$$

Thus equations (1.15) reduce to,

$$
\begin{align*}
& \dot{x}_{1}=\varepsilon_{1}-\alpha_{1} x_{1}-\beta_{1} x_{2}-\gamma_{1} x_{3} \\
& \dot{x}_{2}=-\varepsilon_{2}+\alpha_{2} x_{1} \tag{1.16}\\
& \dot{x}_{3}=-\varepsilon_{3}+\alpha_{3} x_{1}
\end{align*}
$$

We solve these equations by differentiating once the first equation and substituting from second and third the values of X_{2} and \dot{X}_{3}. So we get.

$$
\begin{equation*}
\ddot{X}_{1}=A-B X_{1}-\alpha_{1} \dot{X}_{1} \tag{1.17}
\end{equation*}
$$

where,

$$
\begin{aligned}
& A=B_{1} \varepsilon_{2}+\gamma_{1} \varepsilon_{3} \text { and } \\
& B=\beta_{1} \alpha_{2}+\gamma_{1} \alpha_{3}
\end{aligned}
$$

Equation (1.17) is a nonhomogeneous linear equation, the full solution of which is.

$$
\begin{equation*}
x_{1}=-\frac{A}{B}+D_{1} e^{E_{1} t}+D_{2} e^{E_{2} t} \tag{1.18}
\end{equation*}
$$

where D_{1} and D_{2} are two arbitrary constants and.

$$
\begin{align*}
& E_{1}=\frac{\left.1-a_{1}+\left(a_{1}^{2}-4 B\right)^{1 / 2}\right]}{2} \tag{1.19}\\
& E_{2}=\left[-a_{1}-\left(a_{1}^{2}-4 B\right)^{1 / 2}\right]_{1}
\end{align*}
$$

when E_{1} and E_{2} are complex, we have $E_{1}^{*}=E_{2}$ and $D_{1}^{*}=D_{2}$ For real E_{1} and $E_{2} ; D_{1}$ and D_{2} are also real.

Substituting the values of X_{1} from equation (1.18) in the last two equations of (1.16) and integrating we obtain.

$$
\begin{align*}
& X_{2}=C_{1}+K t+\alpha_{2}\left[\frac{D_{1}}{\left.-\frac{E_{1}}{} e_{1}+\underset{E_{2}}{D_{2}} e_{2}^{E_{2}}\right]}\right. \tag{1.20}\\
& X_{3}=C_{2}-\frac{\beta_{1}}{\gamma_{1}} K t+\alpha_{3}\left[\frac{D_{1}}{E_{1}} e^{E_{1} t}+\frac{D_{2}}{E_{2}} e_{2}^{E_{2}}\right] \tag{1.21}
\end{align*}
$$

where,

$$
K=\frac{r_{1}\left[\alpha_{2} \varepsilon_{3}-\alpha_{3} \varepsilon_{2}^{]}\right.}{B}-\underline{-}^{]} \text {and }
$$

C_{1} and C_{2} are two integration constants connected by,

$$
\begin{equation*}
B_{1} C_{1}-Y_{1} C_{2}+\alpha_{1} \frac{A}{B}-\varepsilon_{1}=0 \tag{1.22}
\end{equation*}
$$

which is obtained when the expressions for X_{1}, X_{2} and X_{3} are substituted in the first equation in (1.16).
lt is clear from equation (1.19) that E_{1} and E_{2} always have negative real parts. Therefore, X_{1} (and hence N_{1}, is always finite and non-vanishing. For $t--\infty \infty$, it acquires the value.

$$
X_{1}(t-->\infty)=\frac{A}{B}
$$

As regards X_{2} and X_{3}, due to the presence of the term linear in t, as $t \rightarrow-\infty$, one of the predator populations blow up and the other vanishes. Clearly, under the condition

$$
\begin{align*}
& \left(\alpha_{2} \varepsilon_{3}-a_{3} \varepsilon_{2}\right)>0, \tag{1.24}\\
& N_{2}(t--->\infty), \infty \\
& N_{3}(t--->\infty)
\end{align*}
$$

and under the condition

$$
\begin{align*}
& \left(\alpha_{2} \varepsilon_{3}-\alpha_{3} \varepsilon_{2}\right)<0, \tag{1.25}\\
& N_{2}(t-->\infty) \\
& N_{3}(t-\cdots) \infty,-\cdots \infty
\end{align*}
$$

For both N_{2} and N_{3} to remain finite and coexist, the constraint

$$
\begin{equation*}
K=0 \Rightarrow\left(\alpha_{2} \varepsilon_{3}-\alpha_{3} \varepsilon_{2}\right)=0 \tag{1.26}
\end{equation*}
$$

or simply $\alpha_{2}{ }^{\prime \varepsilon} \varepsilon_{2}=a_{3}{ }^{\prime \varepsilon}{ }_{3}$, has to be satisfied.

In that case,

$$
\begin{align*}
& \left.x_{2}(t--)=\infty\right)=C_{1} \\
& \left.x_{3}(t---) \infty\right)=C_{2} \tag{1.27}
\end{align*}
$$

we get a very similar result in the case of two prey-one predator system when we exclude competition and self interaction for the prey populations. As $t-->\infty$, one of the prey populations blow up and the other vanishes, whereas under the constraint $K=0$ all the three populations coexist.

The above system can also be discussed within the LotkaVolter madel, with the prey population denoted by N_{1} and the predator populations by N_{2} and N_{3}. The dynamics of the system for the case with no competition and self interaction for predators is then given by.

$$
\begin{align*}
& \dot{N}_{1}=\varepsilon_{1} N_{1}-\alpha_{1} N_{1}^{2}-\beta_{1} N_{1} \dot{N}_{2}-\gamma_{1} N_{1} N_{3} \\
& \dot{N_{2}}=-\varepsilon_{2} N_{2}+\alpha_{2} N_{2} N_{1} \tag{1.28}\\
& \dot{N}_{3}=-\varepsilon_{3} N_{3}+\alpha_{3} N_{3} N_{1}
\end{align*}
$$

Assuming all N_{i}, 0 , we obtain the equilibrium value \bar{N}_{i} from:

$$
\begin{align*}
& \varepsilon_{1}-\alpha_{1} \bar{N}_{1}-\beta_{1} \bar{N}_{2}-\gamma_{1} \bar{N}_{3}=0 \tag{1.29}\\
& -\varepsilon_{1}+\alpha_{2} \bar{N}_{1}=0 \tag{1.30}\\
& -\varepsilon_{3}+\alpha_{3} \bar{N}_{1}=0
\end{align*}
$$

Equation (1.30) gives.

$$
\begin{equation*}
\overline{\mathbf{N}}_{1}=\frac{\varepsilon_{2}}{\alpha_{2}}=\frac{{ }^{\varepsilon}}{3}-\alpha_{3} \tag{1.31}
\end{equation*}
$$

The possibility of all populations remaining finite and nonvanishing cannot be ruled out. But in view of the lack of exact solution for equation (1.28) nothing definite can be sad analytically in this regard. But when we look at the results obtained by numerical analysis under the conditions:
(i) $\quad \begin{gathered}\varepsilon_{2} \\ \\ \alpha_{2}\end{gathered}=\frac{\varepsilon_{3}}{-\frac{\alpha_{3}}{3}}$
(ii) $\quad \begin{array}{lll}\varepsilon_{2} \\ \alpha_{2} & >{\underset{\beta}{3}}^{\alpha_{3}}\end{array} \quad$ and
$\begin{array}{cc} \\ \text { (iii) } & \varepsilon_{2} \\ & -\frac{\varepsilon_{3}}{\alpha_{2}} \\ & \\ & \alpha_{3}\end{array}$

We see the following :-

Under condition (i) there is co-existence of all the three populations. Under condition (ii), the population N_{2} steadily vanishes while population N_{1} and N_{3} oscillate with decreasing amplitude about a finite value at which they finally settle. Under condition (iin) N_{3} vanishes and N_{1} and N_{2} reach certain finite values.

Thus. we see that the results in the Lotka-Volterra model are very similar to what we obtained in the Gompertz model. They are identical as to which populations survive and which one dies out, but in place of the indefinite rise of one of the surviving populations in the Gompertz model, we now have the corresponding population reaching a finite constant value. That is the situation as regards case (ii) and (iii). The results in case (i) are totally similar in the two cases. Similar agreement between the results of the lotka-Volterra model and those of the

Gompertz model is also obtained for the two prey-one predator case (Ph.D thesis: Bhat, 1980). In fact. the main purpose in discussing in detail the solvable Gompertz model was to obtain some guidelines as to what kind of numerical solutions to expect in the Lotka-Volterra case under different conditions. The problem of obtaining more general results analytically in case of the Lotka-Volterra model, of course, remains unsolved.

In this dissertation we are able to obtain the behaviour of the three species systems analytically in the asymptotic region as $t-->\infty$. We again deal with the cases when competetion and self interaction for the predators is excluded in the one preytwo predator system and when the competition and self interaction for the prey is excluded in the two prey-one predator system. The details of our approach and our results arepresented in the next chapter. ln the chapter.following that we present some numerical examples done in the computer, which illustrate the analytically obtained results of the earlier chapter.

The approach followed in obtaining the analytical results of the next chapter was first used by Varma and pande (1986).

CHAPTER - 111

RESULTS ON SOME THREE SPECIES LOTKA-VOLTERRA MODELS

IN THE ASYMPTOTIC REGION

Abstract

In this chapter we carry out an analysis of certain three species ecosystems within the Lotka-Volterramodel. In Section l below we consider the one prey-two predator system in which competition and self interaction terms are excluded for the predator populations. In Section II we deal with the two preyone predator system and in this case we do not consider self interaction and competition terms for the prey populations. lt is not possible to write the exact solutions of the above systems. However, important information about the populations can be ascertained by analysing the behaviour of the systems in the asymptotic region as $t-->\infty$. The results are abtained by exploring the constraint that exists in the subspace of the two populations and using suitable laurent series expansions in an appropriately chosen variable in the asymptotic region. We also illustrate, in the next chapter, our analytical results with numerical calculations done in the Computer.

SECTION - 1

ONE PREY-TWO PREDATOR SYSTEM

We now consider the one prey-two predator system. Let the prey population be denoted by N_{1} and the predator populations by N_{2} and N_{3}. The system under consideration is described by the following set of equations:

$$
\begin{align*}
& \dot{N}_{1}=\varepsilon_{1} N_{1}-\alpha_{1} N_{1}^{2}-\beta_{1} N_{1} N_{2}-\gamma_{1} N_{1} N_{3} \\
& \dot{N}_{2}=-\varepsilon_{2} N_{2}+\alpha_{2} N_{2} N_{1} \tag{2.1}\\
& \dot{N}_{3}=-\varepsilon_{3} N_{3}+\alpha_{3} N_{3} N_{1}
\end{align*}
$$

Where all the parameters $\varepsilon_{1}, \quad \alpha_{1}, \quad \beta_{1}, \quad \gamma_{1}, \varepsilon_{2}, \alpha_{2}, \varepsilon_{3}$ and α_{3} are positive and the dots on the N 's signify time derivatives. Let
 equations in terms of Z can be written as:

$$
\delta_{Z} \underset{--1}{d N}=\varepsilon_{1} N_{1}-a_{1} N_{1}^{2}-\beta_{1} N_{1} N_{2}-\gamma_{1} N_{1} N_{3}
$$

$$
\begin{equation*}
\delta Z \frac{d N_{2}}{d Z}=-E_{2} N_{2}+\alpha_{2} N_{1} N_{2} \tag{2.2}
\end{equation*}
$$

$$
62 \underset{d Z}{--2}=-\varepsilon_{3} N_{3}+\alpha_{3} N_{1} N_{3}
$$

From second equation of (2.2), we get,

$$
\begin{aligned}
& \delta Z \begin{array}{ll}
1 & d N \\
N_{2} & d Z
\end{array} \quad=-\varepsilon_{2}+\alpha_{2} N_{1}
\end{aligned}
$$

Similarly, we have from thirdequation of (2.2).

Equating equations (2.3) and (2.4), me have,

$$
\begin{aligned}
& \text { or. } \quad a_{3} \begin{array}{c}
\mathrm{aN}_{2} \\
-\mathrm{N}_{2}
\end{array}-\alpha_{2} \begin{array}{c}
d N_{3} \\
\mathrm{~N}_{3}
\end{array}=\begin{array}{cc}
\mathrm{k} & \mathrm{dZ} \\
- & -- \\
\delta & Z
\end{array}
\end{aligned}
$$

where,

$$
\begin{equation*}
k=\alpha_{2} \varepsilon_{3}-\alpha_{3} \varepsilon_{2} \tag{2.6}
\end{equation*}
$$

Integrating equation (2.5) we have,

$$
\alpha_{3} \log N_{2}-a_{2} \log N_{3}=(k / \delta) \log Z+\log A
$$

or, $\log \frac{\mathrm{N}_{2}^{a_{3}}}{\mathrm{~N}_{3}^{\alpha_{2}}}=\log A Z^{k / \delta}$
or. $\stackrel{N}{2}_{\mathrm{N}_{3}}^{-\cdots}=A Z^{\mathrm{k} / \delta}$.

$$
\begin{equation*}
\mathrm{N}_{3}^{\alpha_{2}} \tag{2.7}
\end{equation*}
$$

Where, A is a constant determined by the initial conditions.

In view of the self interaction term present in the first equation of (2.2) which generally leads to frictional damping and saturation (Volterra. 1927) we look for a solution of the system of equations such that $N_{1},-->$ constant as $t \cdots \infty$, or in view of the positivity of δ, we look for,

$$
\begin{equation*}
\lim _{Z--\infty} N_{i}(Z)=a_{0} \tag{2.8}
\end{equation*}
$$

where a_{0} is a constant. This would imply around $Z \quad=\infty$ the following Laurent expansion for $N_{1}(Z)$:

$$
\begin{equation*}
N_{1}(Z)=a_{0}+\sum_{n=1}^{\infty} a_{-n} Z^{-n} \tag{2.9}
\end{equation*}
$$

We then have,

$$
\lim _{Z-\infty} \quad Z \frac{d}{--}\left(\log N_{1}\right)=0
$$

Now first equation of (2.2) can be written as,

$$
\delta_{Z} \begin{align*}
& d \tag{2.11}\\
& d Z
\end{align*}\left(\log N_{1}\right)=\varepsilon_{1}-a_{1} N_{1}-B_{1} N_{2}-\gamma_{1} N_{3}
$$

Using equation (2.10). we get,

$$
\lim _{Z \rightarrow-\infty}\left\{_{1}^{\varepsilon}-\alpha_{1} N_{2}-B_{1} N_{2}-\gamma_{1} N_{3}=0\right.
$$

or. $\lim _{Z-->\infty}\left(\beta_{1} N_{2}+\gamma_{1} N_{3}\right)=\varepsilon_{1}-\alpha_{1} a_{0}$

$$
\equiv \quad C
$$

where C is a constant. Thus the Laurent expansions of $N_{2}(Z)$ and $N_{3}(Z)$ around $Z=\infty$ should be.

$$
\begin{align*}
& N_{2}(Z)=b_{0}+\gamma_{1} f(Z)+\sum_{n=1}^{\infty} b_{-n^{\prime}} Z^{-n} \tag{2.13}\\
& N_{3}(Z)=c_{0}-\beta_{1} f(Z)+\sum_{n=1}^{\infty} c_{-n} Z^{-n} \tag{2.14}
\end{align*}
$$

where feZ) will be a polynomial in Z with some leading power Z^{m}, where my. The above general results will satisfy equation (2.12). However, in view of the fact that our populations should always be positive, ice., $N_{2}(Z), N_{3}(Z)>0$ for all \quad (Z) 0 , we must have feZ) identically equal to zero. This is because otherwise. at least for very large Z, where the leading terms will be coming from (Z), either $N_{2}(Z)\left[\right.$ when $f(Z)$ is negative] or $N_{3}(Z)$ [when feZ) is positive] will become negative. We thus conclude
that the desired expansions for $N_{2}(Z)$ and $N_{3}(Z)$ have to be,

$$
\begin{align*}
& N_{2}(Z)=b_{0}+\sum_{n=1}^{\infty} b_{-n} Z^{-n} \tag{2.15}\\
& N_{3}(Z)=c_{0}+\sum_{n=1}^{\infty} c_{-n} Z^{-n} \tag{2.16}
\end{align*}
$$

Substituting equations (2.15) and (2.16), equation (2.7) can now be witten in the form,

$$
\begin{aligned}
& {\left[b_{0}+\sum_{n=1}^{\infty} b_{-n} z^{-n}\right]^{a_{3}}} \\
& {\left[c_{0}+\sum_{n=1}^{\infty} c_{-n} z^{-n}\right]^{\alpha_{2}} z^{k / \delta}}
\end{aligned}
$$

Three cases now arise corresponding tok>0, $k<0$ and $k=0$ We consider them one by one.

CASE - I: - When $k>0$.

Since k (0 , the right hand side of equation (2.17) tends to ∞ for $Z-->\infty$, whereas on the left hand side we are left with the ratio of numerator and denominator which is a constant. Thus, for right hand side to be infinity we should put $c_{0}=0$ and then $\sum_{n=1}^{\infty} c_{-n^{\prime}} Z^{-n}$ will contribute for the positive powers of Z when it goes to the numerator. Thus we are left with the following expansions, for $N_{2}(Z)$ and $N_{3}(Z)$ as $Z \cdots \infty$,

$$
\begin{align*}
& N_{2}(z)=b_{o}+\sum_{n=1}^{\infty} b_{-n} z^{-n} \tag{2.18}\\
& N_{3}(z)=\sum_{n=i}^{\infty} c_{-n} Z^{-n} \tag{2.19}
\end{align*}
$$

Substituting equations (2.9), (2.18) and (2.19) in the first equation of (2.2), we obtain

$$
\begin{align*}
& \varepsilon_{1}\left\{a_{0}+\sum_{n=1}^{\infty} a_{-n^{2}} Z^{-n}\right]-\alpha_{1}\left[a_{0}+\sum_{n=1}^{\infty} a-n^{-n}\right]\left[a_{0}+\sum_{n=1}^{\infty} a-n^{2-n}\right] \\
& -\beta_{1}\left[a_{0}+\sum_{n=1}^{\infty} a-n^{-n}\right]\left[b_{0}+\sum_{n=1}^{\infty} b_{-n} Z^{-n}\right] \\
& -Y_{1}\left[a_{0}+\sum_{n=1}^{\infty} a_{-n} z^{-n}\right]\left[\sum_{n=i}^{\infty} c_{-n} Z^{-n}\right] \\
& =\delta Z \underset{d Z}{d} \quad\left[a_{0}+\sum_{n=1}^{\infty} a_{-n} Z^{-n}\right] \\
& =\delta Z\left[\sum_{n=1}^{\infty}(-n) a_{-n} Z^{-n-1} j\right. \tag{2.20}
\end{align*}
$$

Substituting equations (2.9), (2.18) and (2.19) in the second equation of (2.2), we have.

$$
\begin{align*}
-\varepsilon_{2}\left[b_{0}+\sum_{n=1}^{\infty} b_{-n} z^{-n}\right] & +\alpha_{2}\left[b_{0}+\sum_{n=1}^{\infty} b_{-n} z^{-n}\right]\left\{a_{0}+\sum_{n=1}^{\infty} a-n z^{-n}\right] \\
& \left.=\delta Z \underset{d Z}{d} b_{0}+\sum_{n=1}^{\infty} b_{-n^{\prime}} z^{-n}\right] \\
& =\delta Z\left[\sum_{n=1}^{\infty}(-n) b_{-n} z^{-n-1}\right] \tag{2.21}
\end{align*}
$$

Lastly, substituting equations (2.9), (2.18) and (2.19), in the last equation of (2.2), we get,

$$
\begin{align*}
& -\varepsilon_{3}\left[\sum_{n=j}^{\infty} c_{-n} z^{-n}\right]+\alpha_{3}\left[\sum_{n=i}^{\infty} c_{-n} z^{-n}\right] \quad\left[a_{0}+\sum_{n=1}^{\infty} a_{-n} z^{-n}\right] \\
& \left.=\quad \delta Z \underset{d Z}{d} \underset{n=j}{\infty} c_{-n}^{\infty} Z^{-n} \quad\right] \\
& =\delta Z\left[\sum_{n=i}^{\infty}(-n) c_{-n} z^{-n-1}\right] \tag{2.22}
\end{align*}
$$

Equating the coefficients of like powers of Z we obtain from (2.20),

$$
\begin{equation*}
\varepsilon_{1} a_{0}-\alpha_{1} a_{0}^{2}-\beta_{1} a_{0} b_{0}=0 \tag{2.23}
\end{equation*}
$$

From (2.21), we have

$$
\begin{equation*}
-\varepsilon_{2}^{b}{ }_{0}+\alpha_{2}^{b} o_{0}=0 \tag{2.24}
\end{equation*}
$$

Thus we have from (2.24)

$$
\begin{equation*}
a_{0}=\frac{\varepsilon_{2}}{a_{2}} \tag{2.25}
\end{equation*}
$$

And we have from (2.23)

$$
\begin{equation*}
\varepsilon_{1} a_{0}-\alpha_{1} a_{0}^{2}-\beta_{1} a_{0} b_{0}=0 \tag{2.26}
\end{equation*}
$$

or $\varepsilon_{1}-\alpha_{1} a_{0}-\beta_{1} b_{0}=0$
or $\quad \beta_{1} b_{o}=\varepsilon_{1}-\frac{\alpha_{1} \varepsilon_{2}}{\alpha_{2}}$

Here we put the value of a obtained from equation (2.25). Thus.

$$
\begin{equation*}
\mathrm{b}_{\mathrm{o}}=\frac{\varepsilon_{1} \alpha_{2}-\varepsilon_{2}^{\alpha}-\frac{\varepsilon_{1}}{\beta_{1} \alpha_{2}}}{\left(-\frac{1}{-}\right.} \tag{2.27}
\end{equation*}
$$

Equation (2.7)yields,

Rest of the terms vanishes in the limit $Z--->\infty$. So we have,

$$
\mathrm{i} \alpha_{2}=k / \delta
$$

$$
\begin{equation*}
\text { or. } \delta=k / i \alpha_{2} \tag{2.28}
\end{equation*}
$$

Reverting to the variable t, we thus obtain the following asymptotic behaviour for the three populations $N_{1}(t), N_{2}(t)$ and $N_{3}(t)$.

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} N_{1}(t)=a_{0}=\varepsilon_{2}^{\prime a_{2}} \\
& \underset{t i m}{t \rightarrow N_{2}}(t)=b_{0}=\varepsilon_{1} \alpha_{2}-\varepsilon_{2} \alpha_{1} \alpha_{2} \\
& \lim _{t \rightarrow \infty} N_{3}(t)=c_{-1} e^{-\left(k / \alpha_{2}\right) t}
\end{aligned}
$$

Thus, from the above equations we come to the conclusion that the prey population N_{1} uniquely goes to the value $\varepsilon_{2} / \alpha_{2}$ as $t--->\infty$, in which case one of the predator population N_{2} tends to the value $\frac{\left(\varepsilon_{1} \alpha_{2}-\varepsilon_{2} \alpha_{1}\right)}{\beta_{1} \alpha_{2}}$ and the other predator population N_{3} vanishes exponentially. The constant c_{-i} is determined by the requirement that,

$$
\underbrace{\alpha_{3}^{a}}_{\left(c_{-i}\right)^{\alpha_{2}}}=A
$$

where A is a constant appearing in equation (2.7) and is determined by the initial conditions.

CASE - 11: - When $k<0$.

As k (0 , the right hand side of equation (2.17) tends to zerofor 2 ---> \boldsymbol{c}^{∞}, whereas on the left hand side we are again left with the ratio of numerator and denominator which is a constant. So in this case for right hand side to be zero we should put $b_{0}=0$ and then $\sum_{n=1}^{\infty} b_{-n} Z^{-n}$ will contribute for the powers of Z. Thus we have the following expansions for $N_{2}(Z)$ and $\mathrm{N}_{3}(Z)$, as $Z \ldots \infty$.

$$
\begin{align*}
& N_{2}(z)=\sum_{n=q}^{\infty}{ }^{b}-n^{2} z^{-n} \tag{2.31}\\
& N_{3}(z)=c_{0}+\sum_{n=1}^{\infty} c_{-n} z^{-n} \tag{2.32}
\end{align*}
$$

whereas the expansion for $N_{i}(Z)$ remains as usual as in equation (2.9).

Substituting equations (2.9), (2.31) and (2.32) in first equation of (2.2), we obtain

$$
\begin{aligned}
& \varepsilon_{1}\left[a_{0}+\sum_{n=1}^{\infty} a_{-n} z^{-n}\right]-a_{1}\left[a_{0}+\sum_{n=1}^{\infty} a_{-n} z^{-n}\right]\left[a_{0}+\sum_{n=1}^{\infty} a_{-n} z^{-n}\right] \\
& -B_{1}\left[a_{0}+\sum_{n=1}^{\infty} a_{-n} Z^{-n} \underset{n=q}{\infty} \sum_{-n^{-n}}^{\infty}\right] \\
& -Y_{1}\left\{a_{0}+\sum_{n=1}^{\infty} a_{-n} z^{-n}\right\}\left[c_{0}+\sum_{n=1}^{\infty} c_{-n} z^{-n}\right\} \\
& =\delta z \frac{d}{d Z}\left[a_{0}+\sum_{n=1}^{\infty} a_{n} Z^{-n}\right]
\end{aligned}
$$

$$
\begin{equation*}
=\delta Z\left[\sum_{n=1}^{\infty}(-n) a_{-n} Z^{-n-1}\right\} \tag{2.33}
\end{equation*}
$$

Again, substituting equations (2.9), (2.31) and (2.32) in the second equation of (2.2) we obtain

$$
\begin{align*}
& -\varepsilon_{2}\left[\sum_{n=q}^{\infty} b_{-n} z^{-n}\right]+a_{2}\left[\sum_{n=q}^{\infty} b_{-n^{2}} Z^{-n}\right]\left[a_{0}+\sum_{n=1}^{\infty} a_{-n} z^{-n}\right\} \\
& =\quad \delta z^{-\quad-\left[\sum_{n=q}^{\infty} \sum_{-n} Z^{-n}\right]} \\
& =\quad 6 Z \sum_{n=q}^{\infty}(-n) b_{-n} Z^{-n-1}, \tag{2.34}
\end{align*}
$$

And lastly substituting equations (2.9), (2.31) and (2.32) in the last equation of (2.2), we get

$$
\begin{align*}
& -\varepsilon_{3}\left[c_{0}+\sum_{n=1}^{\infty} c_{-n} z^{-n}\right]+\alpha_{3}\left[c_{0}+\sum_{n=1}^{\infty} c_{-n^{\prime}} z^{-n}\right]\left[a_{0}+\sum_{n=1}^{\infty} a_{-n} z^{-n}\right] \\
& =\delta Z_{d Z}^{d}\left[c_{0}+\sum_{n=1}^{\infty} c_{-n} Z^{-n}\right] \\
& =\delta Z\left[\sum_{n=1}^{\infty}(-n) c_{-n} Z^{-n-1}\right] \tag{2.35}
\end{align*}
$$

Equating the coefficients of like powers of Z we obtain from equation (2.33)

$$
\begin{equation*}
\varepsilon_{1} a_{0}-\alpha_{1} a_{0}^{2}-\gamma_{1} a_{0} c_{0}=0 \tag{2.36}
\end{equation*}
$$

From equation (2.34) we have,

$$
\begin{equation*}
-\varepsilon_{3} c_{0}+\alpha_{3} c_{0} a_{0}=0 \tag{2.37}
\end{equation*}
$$

From this equation, we get

$$
\begin{equation*}
a_{0}=\varepsilon_{3}^{\prime} \alpha_{3} \tag{2.38}
\end{equation*}
$$

And from equation (2.35) we have,

$$
\varepsilon_{1} a_{0}-\alpha_{1} a_{0}^{2}-\gamma_{1} a_{0} c_{0}=0
$$

or $\quad \gamma_{1} c_{0}=\varepsilon_{1}-\alpha_{1} a_{0}$

$$
=\quad \varepsilon_{1}-\frac{\alpha_{1} \varepsilon_{3}}{\alpha_{3}}
$$

or. $c_{0}=\frac{\varepsilon_{1} \alpha_{3}-\alpha_{1} \varepsilon_{3}}{\alpha_{3} r_{1}}$
Equation (2.7) yields in the similar way as in the last. case,

$$
\begin{equation*}
\delta=-\frac{k}{q \alpha_{3}} \tag{2.40}
\end{equation*}
$$

Reverting, to the variable t, we thus obtain the following asymptotic behaviour for the three populations $N_{1}(t), N_{2}(t)$ and $N_{3}(t)$ as $t \cdots \infty \quad-$
$\lim _{t \rightarrow-\infty} N_{1}(t)=a_{0}=\frac{\varepsilon_{3}}{--}$
$\lim _{t \rightarrow \infty} N_{2}(t)=b_{-q} e^{\left(k / a_{3}\right) t}$
$\lim _{t \rightarrow-\infty} N_{3}(t)=c_{0}=\frac{\varepsilon_{1} \alpha_{3}-\alpha_{1} \varepsilon_{3}}{\alpha_{3} \gamma_{1}}$

Thus, from the above equation we again find that the prey population N_{1} uniquely goes to the value $\varepsilon_{3} / \alpha_{3}$ as $t->\infty$, while the predator population N_{3} tends to the value $\varepsilon_{1} \alpha_{3}-\frac{\alpha_{1} \varepsilon_{3}}{\alpha_{3} \gamma_{1}}$ and N_{2} vanishes exponentially. The constant b_q is determined by the requirement

$$
\begin{gathered}
\left(b-q^{a^{a} 3}\right. \\
c_{0}^{\alpha_{2}}
\end{gathered}
$$

where A is a constant determined by the initial conditions.

```
CASE - III:- When k = 0.
```

As. $k=0$, the right hand side of equation (2.17) reduces to A as $Z-->\infty$. So in this case we have the following expansions for $N_{2}(Z)$ and $N_{3}(Z)$,

$$
\begin{align*}
& N_{2}(Z)=b_{0}+\sum_{n=1}^{\infty} b_{-n} Z^{-n} \tag{2.43}\\
& N_{3}(Z)=c_{0}+\sum_{n=1}^{\infty} c_{-n} z^{-n} \tag{2.44}
\end{align*}
$$

and the expansion for $N_{1}(Z)$ remains the same as in equation (2.9).

Substituting equations (2.9), (2.43) and (2.44) in thefirst equation of (2.2), we get

$$
\begin{align*}
& \varepsilon_{1}\left[a_{0}+\sum_{n=1}^{\infty} a_{-n^{2}} Z^{-n}\right]-\alpha_{1}\left[a_{0}+\sum_{n=1}^{\infty} a_{-n^{2}} Z^{-n}\right]\left[a_{0}+\sum_{n=1}^{\infty} a_{-n^{2}} Z^{-n}\right] \\
& -B_{1}\left[a_{0}+\sum_{n=1}^{\infty} a_{-n^{2}} Z^{-n}\left[_{0}+\sum_{n=1}^{\infty} b_{-n^{2}} Z^{-n}\right.\right. \\
& -\gamma_{1}\left\{a_{0}+\sum_{n=1}^{\infty} a_{-n} Z^{-n}\right]\left[c_{0}+\sum_{n=1}^{\infty} c_{-n} Z^{-n}\right] \\
& \left.=\delta Z Z_{d Z}^{d} a_{0}^{d}+\sum_{n=1}^{\infty} a_{-n} Z^{-n}\right] \\
& =\delta 2\left[\sum_{n=1}^{\infty}(-n) a_{-n} Z^{-n-1}\right] \tag{2.45}
\end{align*}
$$

Again stustituting equations (2.9), (2.43) and (2.44) in the second equation of (2.2) we have.

$$
\begin{align*}
& \left.-\varepsilon_{2}\left[b_{0}+\sum_{n=1}^{\infty} b_{-n} Z^{-n}\right]+\alpha_{2}\left[b_{0}+\sum_{n=1}^{\infty} b_{-n} Z^{-n}\right]_{0}^{[a}+\sum_{n=1}^{\infty} a_{-n} Z^{-n}\right] \\
& \left.=6 Z-\frac{d}{d Z} b_{0}+\sum_{n=1}^{\infty} b_{-n^{-n}} Z^{-n}\right] \\
& =\delta Z\left[\sum_{n=1}^{\infty}(-n) b_{-n} z^{-n-1}\right] \tag{2:46}
\end{align*}
$$

And lastly substituting equations (2.9), (2.43) and (2.44) in the last equation of (2.2) we get.

$$
\begin{aligned}
&-\varepsilon_{1}\left[c_{0}+\sum_{n=1}^{\infty} c_{-n} Z^{-n}\right]+\alpha_{3}\left[c_{0}+\sum_{n=1}^{\infty} c_{-n} Z^{-n}\right]\left[a_{o}+\sum_{n=1}^{\infty} a_{-n} Z^{-n}\right] \\
&= d Z--\left[c_{0}+\sum_{n=1}^{\infty} c_{-n} Z^{-n}\right]
\end{aligned}
$$

$$
\begin{equation*}
=\delta Z\left[\sum_{n=1}^{\infty}(-n) c_{-n} Z^{-n-1}\right] \tag{2.47}
\end{equation*}
$$

Equating the coefficients of like powers of Z we obtain from equation (2.45)

$$
\begin{equation*}
\varepsilon_{1} a_{0}-a_{1} a_{0}^{2}-\beta_{1} a_{0} b_{0}-\gamma_{1} c_{0} a_{0}=0 \tag{2.48}
\end{equation*}
$$

From equation (2.46) we have,

$$
\begin{equation*}
-\varepsilon_{2} b_{0}+a_{2} b_{0} a_{0}=0 \tag{2.49}
\end{equation*}
$$

And from equation (2.47),

$$
\begin{equation*}
-\varepsilon_{3} c_{0}+\alpha_{3} a_{0} c_{0}=0 \tag{2.50}
\end{equation*}
$$

Thus, from equation (2.49) and (2.50) we get,

$$
\begin{equation*}
a_{0}=\frac{\varepsilon_{2}}{a_{2}}=\frac{\varepsilon_{3}}{\alpha_{3}} \tag{2.51}
\end{equation*}
$$

b_{o} and c_{o} are given by equation (2.48).

$$
\varepsilon_{1}-\alpha_{1} a_{0}-\beta_{1} b_{0}-\gamma_{1} c_{0}=0
$$

or $\quad \beta_{1} b_{0}+\gamma_{1} c_{0}=\frac{\varepsilon_{1} \alpha_{2}-\varepsilon_{2} \alpha_{1}}{\alpha_{2}}$

Here we put the value of a from equation (2.51). So.

$$
\begin{equation*}
b_{0}=\frac{\varepsilon_{1} \alpha_{2}-\varepsilon_{2} \alpha_{1}-\gamma_{1} \alpha_{2} c_{0}}{\beta_{1} \alpha_{2}} \tag{2.52}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{0}=\frac{c_{1} \alpha_{2}-\varepsilon_{2} \alpha_{1}-\alpha_{2}^{\beta}{ }_{1} b_{0}}{\alpha_{2}^{\gamma}} \tag{2.53}
\end{equation*}
$$

bo and co are determined by the equation

$$
\begin{gather*}
\mathbf{b}_{\mathbf{o}_{3}}^{\alpha_{3}} \tag{2.54}\\
\mathbf{c}_{0}^{\alpha_{2}}
\end{gather*}=A
$$

Where A is a constant determined by initial conditions.

Now reverting to the variable t we have the following asymptotic behaviour for the populations $N_{1}(t), N_{2}(t)$ and $N_{3}(t)$ as $t \ldots-\infty$.
$\lim _{t \rightarrow-\infty_{\infty}} N_{1}(t)=a_{0}=\frac{\varepsilon_{2}}{\alpha_{2}}=\frac{\varepsilon_{3}}{\alpha_{3}}$

$\lim \quad \varepsilon_{1} \alpha_{2}-\varepsilon_{2} \alpha_{1}-\alpha_{2} \beta_{1} b_{o}$
$\lim _{t \rightarrow \infty} \mathrm{~N}_{3}(\mathrm{t})=\mathrm{c}_{0}=\cdots \cdots \alpha_{2} \gamma_{1}$

Thus. all the three populations tend to constant values as ymptotically. However, whereas N_{1} necessarily tends to $\varepsilon_{2} \boldsymbol{\prime}_{\alpha_{2}}$ 。 the others tend to constants which are determined by the initial conditions.

SECTION - II

TWO PREY-ONE PREDATOR STSTEM

In this section we consider the two prey-one predator system. Let the prey populations be denoted by N_{1} and N_{2} and the predator population by N_{3}. The system under consideration is described by the following set of equations :

$$
\begin{align*}
& \mathbf{N}_{1}=\varepsilon_{1} N_{1}-\gamma_{1} N_{1} N_{3} \\
& \dot{N}_{2}=\varepsilon_{2} N_{2}-\gamma_{2} N_{2} N_{3} \tag{3.1}\\
& \dot{N}_{3}=-\varepsilon_{3} N_{3}+\alpha_{3} N_{1} N_{3}+\beta_{3} N_{2} N_{3}+\gamma_{3} N_{3}
\end{align*}
$$

where the parameters $\varepsilon_{1}, \quad \gamma_{1}, \quad \varepsilon_{2}, \gamma_{2} ; \varepsilon_{3}, \quad \alpha_{3}, \quad \beta_{3} \quad$ and γ_{3} are positive and the dots on the N 's signify the respective time derivatives. \ln terms of variable Z defined by,

$$
Z=e^{\delta t}
$$

where $\delta>0$, the above equation become.

$$
\begin{align*}
& \delta_{Z}^{--1} \underset{d Z}{d N}=\varepsilon_{1} N_{1}-\gamma_{1} N_{1} N_{3} \\
& \delta Z \underset{d Z}{--\underline{N}}=\varepsilon_{2} N_{2}-\gamma_{2} N_{2} N_{3} \tag{3.2}\\
& \delta Z \underset{-Z}{d Z}=-\varepsilon_{3} N_{3}-\gamma_{3} N_{3}^{2}+\alpha_{3} N_{1} N_{3}+\beta_{3} N_{2} N_{3}
\end{align*}
$$

From the first two equations of (3.2). equating the values of N_{3} in the similar way as in the previous section we get,

which on integration leads to.

$$
\frac{\mathrm{N}_{1}}{\gamma_{2}}{ }_{\mathrm{N}_{2}}^{Y_{1}}=\mathrm{B} Z^{(j / \delta)}
$$

where B is a constant determined by the initial conditions and

$$
\begin{equation*}
j=\gamma_{2}^{\varepsilon}{ }_{1}-\gamma_{1} \varepsilon_{2} \tag{3.4}
\end{equation*}
$$

In view of the self interaction term present in the last equation of (3.2) which generally leads to frictional damping and saturation, we look for a solution of the system of equations such that $N_{3}-->$ constant as $t-->\infty$, or in view of the positivity of , we look for,
$\lim _{Z-\infty} N_{3}(Z)=c_{0}$

Thus around $Z=\infty$, we have the following Laurent expansion for $N_{3}(Z):$

$$
N_{3}(Z)=c_{o}+\sum_{n=1}^{\infty} c_{-n} Z^{-n}
$$

We then have,

$$
\lim _{Z--\infty} \quad Z \frac{d}{--}\left(\log N_{3}\right)=0
$$

The last equation of (3.2) can be written as,

$$
\delta Z-\frac{d}{d Z}\left(\log N_{3}\right)=-\varepsilon_{3}-\gamma_{3} N_{3}+\alpha_{3} N_{1}+\beta_{3} N_{2}
$$

Using equation (3.7) we get,

$$
\begin{aligned}
\lim _{Z-\rightarrow \infty} \alpha_{3} N_{1}+\beta_{3} N_{2} & =\varepsilon_{3}+r_{3} c_{o} \\
& \equiv D
\end{aligned}
$$

where D is a constant greater than ε_{3}.

Thus, the Laurent expansions of $N_{1}(Z)$ and $N_{2}(Z)$ around $Z=\infty$ should be,

$$
\begin{align*}
N_{1}(Z) & =a_{0}+\theta_{3} f(Z)+\sum_{n=1}^{\infty} a-Z^{-n} \tag{3.8}\\
N_{2}(Z) & =b_{0}-a_{3} f(Z)+\sum_{n=1}^{\infty} b_{-n} Z^{-n}
\end{align*}
$$

where $f(Z)$ will be again a polynomial in Z with some leading power z^{m}, where m>0. In view of the fact that populations should always be positive. ide.. $N_{1}(Z) . N_{2}(Z)>0$ for all $Z>0$,
we must have f(Z) identically equal to zero. Thus we should have the expansions for $N_{1}(Z)$ and $N_{2}(Z)$ as,

$$
\begin{align*}
& N_{1}(Z)=a_{0}+\sum_{n=1}^{\infty} a_{-n} z^{-n} \tag{3.11}\\
& N_{2}(Z)=b_{0}+\sum_{n=1}^{\infty} b_{-n} z^{-n}
\end{align*}
$$

Substituting (3.11) and (3.12) in equation (3.3) we get.

$$
\left[a_{0}+\sum_{n=1}^{\infty} a-n^{-n}\right]^{Y_{2}} \quad j / \delta
$$

$$
\left[b_{0}+\sum_{n=1}^{\infty} b_{-n} z^{-n}\right]_{1}^{Y_{1}}
$$

Three cases now arise corresponding to $j>0, j<0$ and $j=0$.

CASE - I:- When j > 0 .

With the same argument as in the previous section for this case, as $2-->\infty_{0}$ we put $b_{0}=0$ and get the following asymptotic expansions for $N_{1}(Z)$ and $N_{2}(Z)$:

$$
\begin{align*}
& N_{1}(Z)=a_{0}+\sum_{n=1}^{\infty} a_{-n} Z^{-n} \tag{3.14}\\
& N_{2}(Z)=\sum_{n=h}^{\infty} b_{-n} Z^{-n} \tag{3.15}
\end{align*}
$$

We now substitute equations (3.6). (3.14) and (3.15) in all the three equations of (3:2) respectively and equating coefficients of like power of Z as in the previous section, we obtain,

$$
\begin{equation*}
c_{0}=-\frac{\varepsilon_{1}}{r_{1}} \tag{3.16}
\end{equation*}
$$

and,

$$
\begin{equation*}
a_{0}=\frac{\varepsilon_{1} \gamma_{3}+\varepsilon_{3} \gamma_{1}}{a_{3} \gamma_{1}} \tag{3.17}
\end{equation*}
$$

Constraint (3.3) then yields,

$$
\begin{equation*}
\delta=\frac{j}{h \gamma_{1}} \tag{3.18}
\end{equation*}
$$

Reverting to the variable twe obtain the following asymptotic behaviour for the populations $N_{1}(t), N_{2}(t)$ and $N_{3}(t)$:

$$
\begin{aligned}
& \lim _{t \rightarrow-\infty} N_{1}(t)=a_{0}=--\frac{\varepsilon_{1}}{\gamma_{3}}+\frac{r_{3}}{\gamma_{1}}{ }_{1}^{\gamma_{1}} \\
& \lim _{t \rightarrow \infty} N_{2}(t)=b_{\left.-h^{-\left(j / \gamma_{1}\right.}\right) t} \quad-\cdots \\
& \lim _{t \rightarrow-\infty} N_{3}(t)=c_{0}=\varepsilon_{1} / \gamma_{1}
\end{aligned}
$$

Thus in this system we find that the predator population N_{3} uniquely goes to the value $\left(\varepsilon_{1} / \gamma_{1}\right.$ j as $t--->\infty$, whereas one of the prey populations, N_{1}, tends to the value $\varepsilon_{1}-\frac{\gamma_{3}}{\alpha_{3}} \varepsilon_{1}^{\varepsilon_{3}}-\gamma_{1}-\quad$ and N_{2} vanishes exponentially.

The constant b_{-h} is determined through

$$
\frac{r_{2}}{a_{\left(b_{-h}\right.}^{o_{1}}{ }^{\gamma_{1}}}=B
$$

where B is a constant appearing in equation (3.3) and is determined by the initial conditions.

CASE - II:- When j < 0

As $j<0$, the right hand side of equation (3.13) tends to zerofor $2 \cdots \infty$. So in this case we have $a_{0}=0$, and then the asymptotic expansions for $N_{1}(Z)$ and $N_{2}(Z)$ should be.

$$
\begin{align*}
& N_{1}(Z)=\sum_{n=s}^{\infty} a-n^{-n} \tag{3.21}\\
& N_{2}(Z)=b_{0}+\sum_{n=1}^{\infty} b_{-n} Z^{-n} \tag{3.22}
\end{align*}
$$

whereas, the expansion for $N_{3}(2)$ remains the same as in equation (3.6).

Substituting equations (3.6), (3.21) and (3.22) in all the three equations of (3.2) respectively, and equating coefficients of like powers of Z, we obtain,

$$
\begin{equation*}
c_{o}=-\frac{\varepsilon_{2}}{\gamma_{2}} \tag{3.23}
\end{equation*}
$$

and
constraint (3.3) yields.

$$
\begin{equation*}
\delta=-\frac{j}{---} \frac{s \gamma_{2}}{} \tag{3.25}
\end{equation*}
$$

Reverting to the variable t we obtain the following asymptotic behavious for the populations $N_{1}(t), N_{2}(t)$ and $N_{3}(t)$:

$$
\lim _{t-->_{\infty}} N_{1}(t)=a_{-s} e^{\left(j / \gamma_{2}\right) t} \quad--->0
$$

$$
\begin{aligned}
& \underset{t \rightarrow-\infty}{\lim } N_{3}(t)=c_{0}=-\frac{\varepsilon}{\gamma} \frac{2}{2}
\end{aligned}
$$

Thus in this case we again find that the predator population N_{3} uniquely goes to the value ($\varepsilon_{2} / \gamma_{2}$) as $t-->\infty$, in which case one of the prey populations, N_{2}, tends to the value and N_{1} vanishes exponentially. The constant and is determined through,

$$
\begin{equation*}
\frac{\left(a-\frac{s}{y_{0}}\right)^{Y} 2}{\gamma_{1}}=B \tag{3.27}
\end{equation*}
$$

where, B is a constant determined by initial conditions.

CASE- II: - When $j=0$

In this case for $Z-\cdots \infty$, equation (3.13) reduces to,

$$
\left[a_{0}+\sum_{n=1}^{\infty} a_{-n^{-n}} z^{r_{2}}\right.
$$

which emplies the following Laurent expansions for $N_{1}(Z)$ and $N_{2}(Z)=$

$$
\begin{align*}
& N_{1}(Z)=a_{0}+\sum_{n=1}^{\infty} a-n^{-n} \\
& N_{2}(Z)=b_{0}+\sum_{n=1}^{\infty} b_{-n} Z^{-n} \tag{3.29}
\end{align*}
$$

whereas the expansion for $N_{3}(Z)$ is as usual as in equation (3. 6). Substituting equations (3.6), (3.29) and (3.30) in the equations of (3.2) respectively and equating coefficients of like powers of Z we obtain,

$$
\begin{align*}
& \varepsilon_{1} \quad \varepsilon_{2} \\
& c_{0}=-\bar{\gamma}_{1}=-\overline{\gamma_{2}} \tag{3.31}\\
& a_{0}=\varepsilon_{3} \gamma_{1}+\gamma_{3} \varepsilon_{1}-\gamma_{1} \beta_{3} b_{0} \gamma_{1} \tag{3.32}
\end{align*}
$$

and

$$
\begin{equation*}
\text { bo }_{0}=-\varepsilon_{3} \gamma_{1}+\gamma_{3} \frac{\varepsilon_{1}-\gamma_{1}}{\gamma_{1}} \alpha_{3} a_{0} \tag{3.33}
\end{equation*}
$$

Now reverting to the variablet we get the following asymptotic behaviour for the populations $N_{1}(t), N_{2}(t)$ and $N_{3}(t)$:

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} N_{1}(t)=a_{0}=\varepsilon_{3} \gamma_{1}+\gamma_{3} \varepsilon_{1}-\gamma_{1} \beta_{1} b_{0} a_{1} \\
& \lim _{t \rightarrow-\infty} N_{2}(t)=b_{0}=-\varepsilon_{3} \gamma_{1}+\gamma_{3} \varepsilon_{1}-\gamma_{1} \varepsilon_{3} a_{0}{ }_{1} \\
& \lim _{t \rightarrow \infty} N_{3}(t)=-\frac{\varepsilon_{1}}{\gamma_{1}}=-\frac{\varepsilon_{2}}{\frac{2}{2}}-
\end{aligned}
$$

Thus all the populations tend to constant values asymptotically. However, whereas N_{3} necessarily tends ($\varepsilon_{1} \boldsymbol{j}_{1} \boldsymbol{r}_{1}$ the others tend to constant values which are determined by the initial conditions.

The results of the present chapter are all summarised for convenience in Tables I and II.

TABLE - 1

MODEL: ONE PREY-TWO PREDATOR SYSTEM BEHAVIOUR for $t--->\infty$

$$
\begin{array}{ll}
\dot{N}_{1}=\varepsilon_{1} N_{1}-\alpha_{1} N_{1}{ }^{2}-\beta_{1} N_{1} N_{2}-\gamma_{1} N_{1} N_{3} & \text { CASE I }=k>0 \\
\dot{N}_{2}=-\varepsilon_{2} N_{2}+\alpha_{2} N_{2} N_{1} & N_{1}=a_{0}=\varepsilon_{2} / \alpha_{2} \\
\mathbf{N}_{3}=-\varepsilon_{3} N_{3}+\alpha_{3} N_{3} N_{1} & N_{2}=b_{0}=\left(\varepsilon_{1} \alpha_{2}-\varepsilon_{2} \alpha_{1}\right) / \beta_{1} \alpha_{2} . \\
& N_{3}=c_{-i} e^{-\left(k / \alpha_{2}\right) t}-\ldots>0
\end{array}
$$

Constraint:

$$
\text { CASE II : } k<0
$$

$$
-\frac{N_{2}^{\alpha}}{N_{3}^{\alpha}}{ }_{2}^{\alpha_{2}}=A Z^{k / \delta}
$$

$$
\begin{aligned}
& N_{1}=a_{0}=\varepsilon_{3} \prime a_{3} \\
& N_{2}=b_{-q} e^{\left(k / \alpha_{3}\right) t}-->0
\end{aligned}
$$

where

$$
N_{3}=c_{0}=\left(\varepsilon_{1} \alpha_{3}-\varepsilon_{3} \alpha_{3}\right) / \alpha_{3 Y 1}
$$

$$
k=\alpha_{2} \varepsilon_{3}-\alpha_{3} \varepsilon_{2}
$$

$$
\text { CASE III: } k=0
$$

$$
N_{1}=a_{0}=\varepsilon_{2} / \alpha_{2}=\varepsilon_{3} / \alpha_{3}
$$

MODEL: TWO PREY-ONE PREDATOR SYSTEM BEHAVIOUR for $t--\cdots \infty$

$$
\begin{array}{ll}
N_{1}=\varepsilon_{1} N_{1}-\gamma_{1} N_{1} N_{3} & C A S E I=1>0 \\
N_{2}=\varepsilon_{2} N_{2}-\gamma_{2} N_{2} N_{3} & N_{1}=a_{0}=\left(\varepsilon_{1} \gamma_{3}+\varepsilon_{3} \gamma_{1}\right) / \alpha_{3} \gamma_{1} \\
\dot{N}_{3}=-\varepsilon_{3} N_{3}+\alpha_{3} N_{1} N_{3}+B_{3} N_{2} N_{3}-\gamma_{3} N_{3}^{2} & N_{2}=b_{-h} e^{-\left(j / \gamma_{1}\right) t}--->0
\end{array}
$$

Constraint:

$$
N_{3}=c_{0}=\left(\varepsilon_{1} / \gamma_{1}\right)
$$

$$
-\frac{N_{1}}{N_{2}}{ }^{\gamma_{2}}-\bar{Y}_{1}--=Z^{j / \delta}
$$

$$
\begin{aligned}
& N_{1}=a_{-s} e^{\left(j / \gamma_{2}\right) t} \ldots 0 \\
& N_{2}=b_{o}=\left(\varepsilon_{3} \gamma_{2}+\gamma_{3} \varepsilon_{2}\right) /\left(\beta_{3} \gamma_{2}\right) \\
& N_{3}=c_{0}=\varepsilon_{2} / \gamma_{2}
\end{aligned}
$$

$$
j=\gamma_{2} \varepsilon_{1}-\gamma_{1} \varepsilon_{2}
$$

CASE III: $j=0$

$$
\begin{aligned}
& N_{1}=a_{0}=\varepsilon_{3} \gamma_{1}+\gamma_{3} \varepsilon_{1}-\gamma_{1} \beta_{3}{ }^{b} \gamma_{0} \\
& N_{2}=b_{0}=\varepsilon_{3} \gamma_{1}+\gamma_{3} \varepsilon_{1}-\gamma_{1} \varepsilon_{3}{ }^{a}{ }_{0} \\
& N_{3}=\left(\varepsilon_{1} / \gamma_{1}\right)=\left(\varepsilon_{2}^{\prime} \gamma_{2}\right)
\end{aligned}
$$

ILLUSTRATION OF THE ANALYTICAL RESULTS
 USING RUNGE-EUTTA APPROXIMATION METHOD

In this chapter we illustrate our previously obtained results using the Runge-Kutta approximation method for numerical analysis. This work has been performed on the H.P. 9836A Computer. The program used or the purpose is a standard RungeKutta fifth order method modified by Merson (see appendix). We fed our specific numerical inputs in the program and the results under different conditions were plotted:

The purpose of the Runge-Kutta method is to obtain an approximate numerical solution of a system of first order differential equations. We discuss here the derivation of a Runge-Kuta second order method, on the basis of which higher order methods can be derived.

Runge-Kutta method is an algorithm designed to approximate the taylor's series solutions. Let us for example consider the following system of differential equation,

$$
\begin{equation*}
\frac{d y_{i}}{d x}=y_{i},=f_{i}\left(x, y_{i}\right) \tag{4.1}
\end{equation*}
$$

where, $i=1,2,3, \ldots, n$.
with the initial condition, at $x=x_{0}$

$$
\begin{equation*}
y_{i}=y_{i}\left(x_{0}\right) \tag{4.2}
\end{equation*}
$$

We seek the values, $y_{i}\left(x_{0}+h\right) ;$ where $h i s$ an increment, of the independent variable x.

Expanding y_{i} about x_{o} in Taylor's series, we have,

$$
y_{i}\left(x_{0}+h\right)=y_{i}\left(x_{0}\right)+h y_{i} \cdot\left(x_{0}\right)+\frac{h^{2}}{--} y_{i} "\left(x_{0}\right)+
$$

We know the first derivatives,

$$
\begin{equation*}
y_{i}^{\prime}\left(x_{o}\right)=f_{i}\left[x_{0}, \dot{y}_{i}\left(x_{0}\right)\right] \tag{4.4}
\end{equation*}
$$

The total differential dy ${ }_{i}$ is witten as,

$$
\frac{d y_{i}^{\prime}\left(x_{0}\right)}{d x}=\frac{\partial f_{i}\left[x_{0}, y_{i}\left(x_{0}\right)\right]}{\partial x}+\frac{\partial f_{i}\left[x_{0}, y_{i}\left(x_{o}\right]\right]}{d y_{k}}
$$

or.

$$
\begin{equation*}
f_{k}\left\{x_{0}, y_{k}\left(x_{0}\right)\right\} \tag{4.5}
\end{equation*}
$$

where $-\frac{d y k}{d x}$ is replaced by $f_{k}\left[x_{0}, y_{k}\left(x_{0}\right)\right]$ and $k=1,2,3, \ldots, n$.

Putting the values of equations (4.4) and (4.5) in equation (4.3) we get.

$$
\begin{aligned}
& y_{i}\left(x_{0}+h\right)=y_{i}\left(x_{0}\right)+h f{ }_{i}\left[x_{0}, y_{i}\left(x_{0}\right)\right]+
\end{aligned}
$$

Equation (4.3) can also be written as.

$$
\begin{equation*}
y_{i}\left(x_{0}+h\right)-y_{i}\left(x_{0}\right)=f_{x_{0}}^{x_{0}^{+h}} f\left(x, y_{i}\right) d x \tag{4.7}
\end{equation*}
$$

According to the mean value theorem there exists an x such that for

$$
x=x_{0}+h, 0<\theta<1
$$

We have,

$$
\begin{aligned}
y_{i}\left(x_{0}+h\right)-y_{i}(x) & =\int_{x_{0}}^{x_{0}+h} f_{i}\left(x \cdot y_{i}\right) \cdot d x \\
& =h f_{i}\left[x_{o}+\theta h, y_{i}\left(x_{0}+\theta h\right\}\right]
\end{aligned}
$$

or

$$
\begin{align*}
y_{i}\left(x_{0}+h\right)= & y_{i}\left(x_{0}\right)+h a_{1} f_{i}\left[x_{0}, y_{i}\left(x_{0}\right)\right]+ \\
& h a_{2} f_{i}\left[x_{0}+p_{2} h, y_{i}\left(x_{0}\right)+q_{21} h\right]+\ldots \tag{4.8}
\end{align*}
$$

Here, a_{1}, a_{2}, p_{2} and q_{21} are so determined that if the right hand side of equation (4.8) were expanded in power of the spacing h, the coefficients of a certain number of the leading terms would agree with the corresponding coefficients in equation (4.3).

To avoid the higher Taylor series terms evaluation we express q_{21} as a linear combination of the preceding value of f_{i}. Thus, we have the approximation of the form

$$
\begin{equation*}
y_{i}\left(x_{0}+h\right)=y_{i}\left(x_{0}\right)+a_{1} k_{1 i}+a_{2} k_{2 i} \tag{4.9}
\end{equation*}
$$

where,

$$
\begin{align*}
& k_{1 i}=h f_{i}\left[x_{0}, y_{i}\left(x_{0}\right)\right\} \tag{4.10}\\
& k_{2 i}=h f_{i}\left[x_{0}+p_{2} h, y_{i}\left\{x_{0}\right)+q_{21} k_{1 i}\right]
\end{align*}
$$

Now for equation (4.6) to contain similar terms as in equation (4.9), $K_{2 i}$ must be expressed in terms of

$$
\begin{aligned}
& f_{i}\left[x_{o}, y_{i}\left(x_{o}\right\}\right], \quad \partial f_{i}\left[x_{0}, y_{i}\left(x_{0}\right)\right] \\
& \partial x_{i}\left[x_{o}, y_{i}\left(x_{o}\right)\right] \\
& \partial y_{k}
\end{aligned}
$$

This can be done by expanding $K_{2 i}$ in a Taylor series for function of two variables about x_{o} and $y_{i}\left(x_{0}\right)$. Thus,

$$
\begin{aligned}
& f_{i}\left[x_{0}+p_{2} h, y_{i}\left\{x_{0}\right\}+q_{2} K_{i i}\right]=f_{i}\left[x_{0}, y_{i}\left(x_{0}\right\}\right]+
\end{aligned}
$$

Substituting the first equation of (4.10) and (4.11) in equation (4.9) we get,

$$
\begin{equation*}
\left.\left.f_{k}\left[x_{0}, y_{k}\left(x_{0}\right)\right]\right\}\right]+\ldots \tag{4.12}
\end{equation*}
$$

Equating the coefficients of similar terms fromequations (4.6) and (4.12) we get the following set of equations

$$
\begin{align*}
& a_{1}+a_{2}=1 \\
& a_{2} p_{2}=1 / 2 \tag{4.13}\\
& a_{2} q_{21}=1 / 2
\end{align*}
$$

The above set contains four unknown constants. By arbitrarily assigning a value to one unknown and then solving for the other three. we can obtain as many different sets of values as we desire and in turn as many different sets of equations (4.9) and (4.10) as desired.

$$
\begin{aligned}
& y_{i}\left(x_{0}+h\right)=y_{i}\left(x_{0}\right)+a_{i} h f_{i}\left[x_{0}, y_{i}\left(x_{0}\right)\right]+a_{2} h f_{i}\left[x_{0}, y_{i}\left(x_{0}\right)\right]+
\end{aligned}
$$

$$
\begin{aligned}
& =f_{i}\left\{x_{0}, y_{i}\left(x_{0}\right\}\right\}+p_{2} h\left[\frac{\partial f}{f}\left[x_{0}, y_{i}\left(x_{0}\right)\right\}\right.
\end{aligned}
$$

For enample, if we choose $a_{1}=1 / 2$ in (4.13) then,

$$
\begin{align*}
& a_{2}=1 / 2 \\
& p_{2}=1 \tag{4.14}\\
& q_{21}=1
\end{align*}
$$

So our equation (4.9) takes the form

$$
\begin{equation*}
y_{i}\left(x_{0}+h\right)=y_{i}\left(x_{0}\right)+1 / 2\left(K_{1 i}+K_{2 i}\right) \tag{4.15}
\end{equation*}
$$

with

$$
\begin{align*}
& X_{1 i}=h f_{i}\left[x_{0}, y_{i}\left(x_{0}\right)\right] \tag{4.16}\\
& K_{2 i}=h f_{i}\left[x_{0}+h, y_{i}\left(x_{0}\right)+x_{1 i}\right]
\end{align*}
$$

These sets of equations may be used to solve the system of first order differential equations. In this method we require two evaluations of the first derivatives in order to obtain agreement with the Taylor series solutions through terms of order h^{2}, A solution obtained by the use of equation (4.9) in a step-by-step integration will have a per step truncation error of order h^{3}. since terms containing h^{3} and higher powers of here neglected in the derivation.

By generalising the above method one can derive the RungeKutta fifth order method. In our case we used the standard Runge-Kutta fifth order method modified by Merson. By this method we get the accuracy and minimum step size as desired. The computation is performed a first time using step size h_h.

The computation is again repeated, this time using step size $h_{2}=$ (h/2). Comparing these two values give an indication of the size of the error. lf these two values are not sufficiently close the step size is dicreased and the same procedure is repeated till such time we get the desired accuracy.

The numerical results for models described in the previous chapter, under different conditions; âre as below:

RESULTS

ONE PREY-TWO PREDATOR SYSTEM :

CASE I: For $K>0$, i.e. $\left(\alpha_{2} \varepsilon_{3}-\alpha_{3} \varepsilon_{2}\right)>0$

Initial values of the populations :
$N_{1}(0)=80$
$N_{2}(0)=70$
$N_{3}(0)=60$

Numerical inputs for different parameters :
$\varepsilon_{1}=0.12$
$B_{1}=0.11$
$\varepsilon_{2}=0.045$
$\gamma_{1}=0.0049$
$\varepsilon_{3}=0.0019$
$q_{2}=0.0039$
$\alpha_{1}=0.0014$
$\alpha_{3}=0.015$.

The situation for this case is represented by fig. 1.

CASE II: For $K<0$, i.e., $\left(\alpha_{2} \varepsilon_{3}-\alpha_{3} \varepsilon_{2}\right)<0$.

Initial values of the populations

$$
\begin{aligned}
& N_{1}(0)=80 \\
& N_{2}(0)=70 \\
& N_{3}(0)=60
\end{aligned}
$$

Numerical inputs for differnt parameters

$$
\begin{array}{ll}
\varepsilon_{1}=0.12 & \beta_{1}=0.11 \\
\varepsilon_{2}=0.045 & \gamma_{1}=0.0049 \\
\varepsilon_{3}=0.0019 & \alpha_{2}=0.0039 \\
\alpha_{1}=0.0014 & \alpha_{3}=0.015
\end{array}
$$

The situation for this case is represented by fig. 2.

CASE III: FOT $K=0$, i.e. $\left(\alpha_{2} \varepsilon_{3}-\alpha_{3} \varepsilon_{2}\right)=0$

Initial values of the populations

$$
\begin{aligned}
& N_{1}(0)=80 \\
& N_{2}(0)=70 \\
& N_{3}(0)=60
\end{aligned}
$$

Numerical inputs for different parameters

$$
\begin{array}{ll}
\varepsilon_{1}=0.12 & B_{1}=0.15 \\
\varepsilon_{2}=0.045 & \gamma_{1}=0.005 \\
\varepsilon_{3}=0.0019 & \alpha_{2}=0.0039 \\
\alpha_{1}=0.004 & \alpha_{3}=0.015
\end{array}
$$

The situation for this case is represented by fig. 3.

TWO PREY-ONE PREDATOR SYSTEM :

CASE I : - For j>0, i.e. $\left(\boldsymbol{\gamma}_{2} \boldsymbol{\varepsilon}_{1}-\gamma_{1} \boldsymbol{\varepsilon}_{2}\right)>0$

Initial values of the populations

$$
\begin{aligned}
& N_{1}(0)=90 \\
& N_{2}(0)=60 \\
& N_{3}(0)=40 .
\end{aligned}
$$

Numerical inputs for different parameters :

$$
\begin{aligned}
& \varepsilon_{1}=0.18 \\
& \gamma_{2}=0.0032 \\
& \varepsilon_{2}=0.0049 \\
& \gamma_{3}=0.002 \\
& \varepsilon_{3}=0.09 \\
& \alpha_{3}{ }^{\prime}=0.0019 \\
& r_{1}=0.0021 \\
& \beta_{3}=0.17
\end{aligned}
$$

The situation is represented by FIG. 4.

CASE II: For $\mathrm{j} \leqslant 0.1 . e .\left(\boldsymbol{\gamma}_{2} \varepsilon_{1}-\boldsymbol{\gamma}_{1} \varepsilon_{2}\right)<0$.

Initial values of the populations:

$$
\begin{aligned}
& \mathbf{N}_{1}(0)=90 \\
& \mathbf{N}_{2}(0)=60 \\
& \mathbf{N}_{3}(0)=40 .
\end{aligned}
$$

Numerical inputs for different parameters :

$$
\begin{array}{lll}
\varepsilon_{1}=0.18 & \gamma_{2} & =0.0032 \\
\varepsilon_{2}=0.0049 & \gamma_{3}=0.0023 \\
\varepsilon_{3}=0.18 & \alpha_{3}= \\
\gamma_{1}=0.0014 \\
& =0.0021 & B_{3}=0.12
\end{array}
$$

The situation is represented by FIG. 5.

CASE III: For $\mathrm{j}=0$. i.e. $\left(\gamma_{2} \varepsilon_{1}-\gamma_{1} \varepsilon_{2}\right)=0$.

Initial values of the populations :

$$
\begin{aligned}
& N_{1}(0)=90 \\
& N_{2}(0)=60 \\
& N_{3}(0)=40 .
\end{aligned}
$$

Numerical inputs for different parameters :

$$
\begin{aligned}
& \varepsilon_{1}=0.18 \\
& \varepsilon_{2}=0.0049 \\
& \varepsilon_{3}=0.12 \\
& r_{1}=0.0016
\end{aligned}
$$

$$
\begin{aligned}
& \gamma_{2}=0.004 \\
& \gamma_{3}=0.005 \\
& \alpha_{3}=0.003 \\
& \beta_{3}=0.2
\end{aligned}
$$

The situation is represented by FlG. 6.

CHAPTER - V

SUMMARY OF THE RESULTS

ln this dissertation we have discussed three species ecosystem models within the framework of Lotka-Volterra model. We have analysed the one prey-two predator system in which the competition and self interaction terms are excluded for the predator populations and the two prey one predator system vithout the self interaction and competition terms for the prey populations. We have obtained the asymptotic behaviour of the component populations in these two systems as $t \rightarrow->\infty$. It has been done by exploiting a constraint that exists in the subspace of the two populations. We further used Laurent series expansions in the asymptotic region in an appropriately chosen variable. The conclusions drawn fromour analytical results and numerical analysis are as below.

Let us first consider the one prey-two predator system without the self interaction and competition terms for the predator populations. We observedifferent behaviour of the component populations under different circumstances. Let us discuss the result for the CASE I, i.e., $\quad>0$, of the system. We find that the prey population N_{1} goes to a finite constant value as $t \rightarrow \infty$. Also. one of the predator populations N_{2} tends to a finite value whereas the other predator population N_{3} vanishes exponentially. This situation is represented by flG. 1 which has been plotted with the help of the Computer using
methods of numerical analysis. The population N_{3} shows steady decrease to the zero value. The populations N_{1} and N_{2} oscillate with decreasing amplitudes about a finite value for which they finally settle.

For the CASEII. i.e.. when K o o, our analytical results show that the prey population N_{1} goes to a unique finite value as $t \rightarrow \infty$. This time the predator population N_{3} tends to a finite value while N_{2} is annihilated exponentially. Our specimen results of this situation are plotted in flG. 2. This situation is quite similar to the above one except that here we have the annihilation of the population N_{2} instead of N_{3}.

It is interesting to note that for the CASEIII, i.e., when K. $=0$, he have all the populations remaining finite and non vanishing i.e. there is coexistence of all the three populations. This situation is represented by FiG. $3 . \quad$. 1 its seen that all the populations show oscillations with decreasing amplitudes about a finite value for which they finally settle. These values are not all independent of initial conditions. Repeating the calculations with changed inputs we find that this general trend persists.

Next we have considered the two prey-one predator system with the exclusion of competition and self-interaction terms for the prey populations. When we take into account CASE I. i.e. when $j>0$, we find that the predator population N_{3} goes to a
unique constant value as $t \rightarrow->\infty$. Also one of the prey populations, N_{1}, tends to a constant value and the other, N_{2}. vanishes exponentially. This situation is presented in FlG. 4. For CASE II, i.e., when j<0, we find that the predator population N_{3} goes to a unique constant value as $t-\infty$, the prey populations N_{2} tends to a constant value and N_{1} dies out. This situation is plotted inflG. 5. Finally, for CASE III, i.e. when $j=0$, we obtain all the three populations to have finite and non-vanishing values, i.e. there is co-existence of all populations. This situation is shown in FlG. 6. After a few initial fluctuations, all the three populations reach certain finite constant values. These values are not independent of initial conditions. However, the same pattern is repeated for different initial conditions.

The method we have used is quite simple and can be used whenever there exists a constraint in the subspace of to populations of the interacting species.

$$
F I G-1
$$

$$
F I G-2
$$

FIG-3

$$
F I G-4
$$

$$
F I G-5
$$

$$
F I G-G
$$


```
\(1440 \quad\) CALL Gunc \((\times(*), N n, F(*))\)
\(1460 \quad 84(I)=H t * F(I)\)
1470 NEXT I
\(\begin{array}{ll}1480 & \text { FOR } I=1 \quad \text { TD } N n \\ 1490 & \times(I)=6 . * X 4(I)+1.5 * \times 1(I)-4.5 * \times 3(I)+W(I)\end{array}\)
1500 NEXT I
\(\begin{array}{ll}1510 \\ 1520 & \mathrm{CALL} \text { Gunc }(X(*), \mathrm{Nn}, \mathrm{F}(*))\end{array}\)
\(1530 \quad \times 5(I)=H t * F(I)\)
1540 NEXT I
\(1550 \quad \mathrm{FOR} I=1 \quad \mathrm{TO} \mathrm{Nn}\)
\(1560 \quad \mathrm{X}(\mathrm{I})=5 * \times 5(\mathrm{I})+2 . * X 4(I)+.5 * X 1(I)+W(I)\)
\(\begin{array}{ll}1560 & X(I)=: 5 * X 5(I) \\ 1570 & N E X T \\ 1580 & \text { FOR I }=1 \text { TO Nn }\end{array}\)
\(\begin{array}{ll}1580 & F O R \\ 1590 & W(I)=X(I)\end{array}\)
1600 NEXT I
\(1610 \quad\) FOR \(I=1\) TO Nn
\(1620 \quad \operatorname{AK}(I)=\operatorname{ABS}(.5 * \operatorname{Acc} 1 * W(I))+\operatorname{Acc} 2\)
\(1630 \quad B K(I)=A B S(-.5 * \times 5(I)-4.5 * \times 3(I)+4 . * \times 4(I)+X 1(I))\)
1640 NEXT I
\(1650 \quad \mathrm{FOR} I=1 \mathrm{TD} \mathrm{Nr}\)
```



```
1670 IF BK (I) 16 AK (I) THEN 1770
1680 NEXT I
1680 NEXT I
1690 IF I Swh=1 THEN 1750
\(\begin{array}{ll}1710 \\ 1720 & \mathrm{NE} \\ \mathrm{NE} X \mathrm{~T} & \mathrm{I})\end{array}\)
\(\begin{array}{ll}1720 & \text { NEXT I } \\ 1730 & S=5 * 1.5\end{array}\)
1740 GOTO 1100
\(1750 \quad \mathrm{Hh}=\mathrm{Hs}\)
1760 GOTO 1900
\(1770 \quad\) Cof \(=5 * 5\)
\(\begin{array}{ll}1780 \quad \text { IF ABS } \\ 1790 & 5=H m i n\end{array}\)
\(1790 \quad \mathrm{~S}=\mathrm{Hm}\) in
1800 IF \(H S \cup<0\). THEN LET \(S=-S\)
1810
1820
1820
1830
1840
1850
1860
1870
    Iswh \(=0\)
\(\begin{array}{ll}1880 \\ 1890 & \text { I } 5 \text { wh }=0 \\ 100\end{array}\)
1890 GOTO 1100
1900 GOTO 880
1910 STOP
1920 END
\(\begin{array}{ll}1930 \\ 1940 & \text { COM }\end{array}\)
    IF, Iswh=1 THEN \(1750^{\circ--5}\)
    GOTO 1100
    \(F Q R \quad I=1 \quad\) TO Nn
    \(W(I)=X 0(I)\)
    NEXT I
    \(T=T-S\)
    \(\mathrm{S}=\mathrm{Cof}\)
    \(\begin{array}{ll}\text { GOTO } & 1100 \\ \text { GOTO } \\ 880\end{array}\)
    STOP
    SUB Gunc (X(*), Nn \(F(*)\) )
COM A, \(\mathrm{B}, \mathrm{D}, \mathrm{Ee}, \mathrm{F}, \mathrm{G}, \mathrm{D} 1\)
    \(F: F(1\}=A * X(1)-B^{2} \times(1) * \times(1)-C * \times(1) * \times(2)-D * X(1) * X(3)\)
    \(1960 \quad F(2)=-E e^{*} \times(2)+F f * \times(2) * \times(1)\)
\(\begin{array}{ll}1970 & F(3)=-G * X(3)+D 1 * X(1) * X(3) \\ 1980 & S U B E N D\end{array}\)
```


APPENDIX II


```
    REM RUNGA KUTTA METHOD MODIFIED BY MERSON
```

 REM RUNGA KUTTA METHOD MODIFIED BY MERSON
 REM
 REM
 \(\operatorname{DIM} \mathrm{W}(10), \mathrm{AK}(10), \operatorname{BK}(10), \times 0(10), X(10), X 1(10), X 2(10), X 3(10)\)
 \(\operatorname{DIM} \mathrm{W}(10), \mathrm{AK}(10), \operatorname{BK}(10), \times 0(10), X(10), X 1(10), X 2(10), X 3(10)\)
 DIM \(\times 4\) (10) \(\times 5(10), F(10)\)
 DIM \(\times 4\) (10) \(\times 5(10), F(10)\)
 INPUT "DIMENSION OF DIFF.EQ.", Nn
 INPUT "DIMENSION OF DIFF.EQ.", Nn
 COM A,B,C,D,Ee,Ff,G,D1
 COM A,B,C,D,Ee,Ff,G,D1
 \(\mathrm{A}=.12\)
 \(\mathrm{A}=.12\)
 \(\mathrm{B}=.0014\)
 \(\mathrm{B}=.0014\)
 \(\mathrm{D}=.0049\)
 \(\mathrm{D}=.0049\)
 \(\mathrm{Ee}=.045\)
 \(\mathrm{Ee}=.045\)
 \(F f=.0039\)
 \(F f=.0039\)
 \(G=.0019\)
 \(G=.0019\)
 READ Hh, Tin Tend, Hprint
 READ Hh, Tin Tend, Hprint
 DATA \(.1,0,1000,1\)
 DATA \(.1,0,1000,1\)
 FOR \(\mathrm{I}=1\) TO Nn
 FOR \(\mathrm{I}=1\) TO Nn
 READ \(\times 0\) (I
 READ \(\times 0\) (I
 NEXT \(80,70,60\)
 NEXT \(80,70,60\)
 J=0
 J=0
 Acc1=1.E-4
 Acc1=1.E-4
 Acc \(2=1\). \(\mathrm{E}-6\)
 Acc \(2=1\). \(\mathrm{E}-6\)
 Hmin=1.E-7
 Hmin=1.E-7
 ALPHA OFF
 ALPHA OFF
 GINIT
 GINIT
 GRAPHICS ON
 GRAPHICS ON
 FRAME
 FRAME
 AXES \(1,1,20,10,10,10\)
 AXES \(1,1,20,10,10,10\)
 LABEL "time Urs Population Size"
 LABEL "time Urs Population Size"
 MABEL \(40+85\) Prey-One Predator Systern"
 MABEL \(40+85\) Prey-One Predator Systern"
 MOUE 70,80
 MOUE 70,80
 LABEL " \({ }^{\circ}>0^{\prime \prime}\)
 LABEL " \({ }^{\circ}>0^{\prime \prime}\)
 MOUE 5,B5
 MOUE 5,B5
 Label \(1=\) "Population Spize"
 Label \(1=\) "Population Spize"
 FoR \(\quad\) I=1 To 15
 FoR \(\quad\) I=1 To 15
 LABEL Label\$[I,I]
 LABEL Label\$[I,I]
 NEXT I
 NEXT I
 MOUE 80,3
 MOUE 80,3
 MABEL "†ime (Secs)"
 MABEL "†ime (Secs)"
 MOUE 10,78
 MOUE 10,78
 LABEL 3550
 LABEL 3550
 MOUE 1058
 MOUE 1058
 MABEL \(10,30^{\circ}\)
 MABEL \(10,30^{\circ}\)
 MOUE 10,18
 MOUE 10,18
 LABEL "50"
 LABEL "50"
 MABEL 15 On \(^{3}\)
 MABEL 15 On \(^{3}\)
 MOUE 67,3
 MOUE 67,3
 MOUE 115.3
 MOUE 115.3
 MOUE 123,78
 MOUE 123,78
 LABEL "1"
 LABEL "1"
 LABEL 123 3:27
 LABEL 123 3:27
 MOUE 53,10
 MOUE 53,10
 MOUE 120,80
 MOUE 120,80
 MOUEL 120,29
 MOUEL 120,29
 MOUE 50,12
 MOUE 50,12
 LABEL "N"
 LABEL "N"
 MOUE 5,90
 MOUE 5,90
 PRINT "INITIAL \(X=" ; \times 0(1)\)
    ```
    PRINT "INITIAL \(X=" ; \times 0(1)\)
```

```
WN
WN
740
750
760
760
780
790
8010
800
810
810
820
830
830
840
850
860
870
880
890
900
910
920
30
930
940
950
950
960
960
980
990
1000
1010
1020
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1180
1190
1200
121
122
1230
1240
1250
1270
1280
1290
W
\(\stackrel{\rightharpoonup}{W}\)
いい
1340
1340
1360
1370
1380
1390
1400 FOR I \(=1\) TO Nr
\(1410 \quad \times(I)=W(I)+.375 * \times 1(I)+1.125 *<3(I)\)
1420
MOUE 5 BiN
MOUE 5,8 (TIAL \(Y=1 ; \times 0(2)\)
PRINT iINITIAL \(Z=" ; \times 0(3)\)
MOUE \(5, B 0\)
MOUE 5,7 ?
\(B, C, D, E e, "\)
PRINT Á; B; C;D;Ee
MOUE 5 , 34
MOUE 5 , "FANT, G DI"
MOUE 2 271
FOR \(I=1\) TO Nn
\(W(I)=\times 0(I)\)
NEXT I
Tout \(=T i n+30\)
\(J=j+1\)
IF J=1 THEN 1020
MOUE \((T f / 1)-10,2 f\)
\(Z f=(x(1) / 5)+10\)
LINE TYPE 1
DRAW (Tout/1)-10,Zf
MOUE \((T f / 1)-10, X H_{1}^{2}\)
\(X h=(x(2) / 5)+10\)
LINE TYPE 3
DRAW (Tout/1)-10, Xh
MOUE \((T f / 1)-10, X\)
\(X n=(X(3) / 5)+10\)
\(\mathrm{Kn}=(X(3) / 5)\)
LINE TYPE 8
DRAW (Tout \(<1\) )-10, Xn
Tf = Tout
IF Tout<Tend THEN 1050
STOP
\(T=\) Tout
Tout \(=\) Tout + Hprint
Rzer
\(=\mathrm{H}=\mathrm{Hh}\)
Iswh \(=0\)
\(\mathrm{Hsu}=\mathrm{S}\)
Cof = Tout-T
IF ABS (S)<ABS(Cof) THEN 1160
\(S=\mathrm{Cof}\)
IF ABS (Cof/Hsw)<Rzero. THEN 1750
I \(\mathrm{swh}=1\)
FOR \(I=1 \quad\) TO Nn
\(X 0(I)=W(I)\)
NEXT I
\(H t=S^{*} 1 . / 3\).
\(\mathrm{T}=\mathrm{T}+\mathrm{Ht}\)
CALL Gunc (XO (*) , \(\mathrm{Nn}, \mathrm{F}(*))\)
\(\mathrm{FDR} \mathrm{I}=1 \mathrm{TD} \mathrm{Nn}\)
\(\times 1(I)=H t * F(I)\)
NEXT I
FOR \(I=1 \quad \mathrm{TO} \mathrm{Nr}\)
\(X(I)=W(I)+X 1(I)\)
NEXT I
CALL Gunc ( \(\mathrm{FO}(*), \mathrm{Nn}, \mathrm{F}(*))\)
\(\times 2(I)=H t * F(I)\)
NEXT I
FOR I=1 TD Nr
\(X(I)=W(I)+(X I(I)+X 2(I)) / 2\).
NEXT I
\(T=T+.5 * H t\)
```



```
X3(I) \(=\mathrm{H} t * F(I)\)
NEXT I
\(\mathrm{FOR} I=1 \mathrm{TO} \mathrm{Nn}\)
\(\times(I)=W(I)+.375 * \times 1(I)+1.125 * \times 3(I)\)
NEXT I
\(T=T+.5 * S\)
```

```
```

$1440 \quad$ CALL Gunc (X (*) , Nn, F (*)

```
```

$1440 \quad$ CALL Gunc (X (*) , Nn, F (*)
$1460 \quad \times 4(I)=H t * F(I)$
$1460 \quad \times 4(I)=H t * F(I)$
1470 NEXT I
1470 NEXT I
$1480 \quad F 0 R \quad I=1$ TO Nn
$1480 \quad F 0 R \quad I=1$ TO Nn
$1490 \quad \times(1)=6 . * \times 4(I)+1.5 * \times 1(I)-4.5 * \times 3(I)+W(I)$
$1490 \quad \times(1)=6 . * \times 4(I)+1.5 * \times 1(I)-4.5 * \times 3(I)+W(I)$
1500
1500
1510
1510
1520
1530
1520
1530
1540
1540
1550
1550
1570
1570
1580
1580
1590
1590
1600
1610
1600
1610
1620
1620
1630
1630
1640
1640
1650
1660
1650
1660
1660
1660
1670
1670
1680
1680
1690
1690
1700
1700
1720
1720
1720
1720
1730
1730
1750
1750
1760
1760
1770
1770
1780
1780
1791
1791
1800
1800
1810
1810
1820
1820
1830
1830
1840
1840
1850
1850
1860
1860
1870
1870
1880
1880
1890
1890
1890
1890
1900
1900
1910
1910
1920
1920
1930
1930
1940
1940
1950
1960
1950
1960
1970
1970
1980

```
```

1980

```
```


REFERENCES

(1) Ahlfors, Lars U. (1966), Eomplex Analysis: McGraw Hill Book Company.
(2) Bhat, N. (1980) Ph.D.thesis 'Three Species Ecosystems in Gompertz and Lotka Volterra Models' S.E.S;J.N.U.,N.Delhi.
(3) Bhat,N. \& Fande, L.K. (1980), J.theor.Biol., U 83, 321
(4) Bhat,N. \& Pande,L.K. (1981), J.theor.Biol., U 91,429
(5) Butcher, J.C. (1964), J. Australian Math. Soc., U 4, 179
(6) Eramer,N.F. \& May,R.M. (1972), J.theor.Biol., U 34,289
(7) Gomantum, J. (1974), Bull.Math.Biol., U 36,347
(8) Gompertz,B.(1825),Phil.Trans.R.Soc., U 115,513
(9) Huston, U. \& Uickere, G.T. (1983), Mathemaical Biosciences, U 63, 253
(10) Jain, M.K. (1984), Numrical Solutions of Differential Equations, New Delhi : Wiley Eastern Limited
(11) James,M.L.; Smith, G.M. \& Wolford,J.C. (1977), Applied Numrical Methods for Digital Computation with Fotran and CSMP,NewYork: Harper \& Row Publishers.
(12) Mullen, A.J. (1984), Mathematical Biosciences, $\cup>2,71$
(13) Parrish,J.D. \& Saila,5.B. (1970), J.theor.Biol., U 27,207
(14) Pielou, E.C. (1977), Mathemetical Ecology, New York: John Wiley \& Sons.
(15) Pipes, Louis A.\& Harvill, Lawrence R. (1970), Applied Mathematics For Engineers find Physicists, Tokyo:McGraw Hill Kogakusha Ltd.
(16) Ralston, Anthony\& Wilf, Herbert, S. (1960), Mathimatical Methods for Digital Computers Vol.l, New York: John Wiley \& Sons.
(17) Stroud, A.H. (1974), Numrical Quadrature and Solution of Ordinary Differential Equations, Springer-Verlag.
(18) Varma, U.S. \& Pande,L.K. (1986), J. theor.Biol. (in press)
(19) Volterra, U. (1978), The Golden Age of Theoritical Ecology:19231940, Springer-Verlag.
(20) Whittaker, E.T. \& Watson, G.N. (1969), A Course of Modern Analysis, Cambridge: Cambridge Urivercity Press.

