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ABSTRACT 

Analysis of the asymptotic behaviour of component 

populations in a few three species ecosystems, viz. the one prey 

two predator system under the condition of no self interaction 

and competition for the predator populations and the two prey one 

predator system without self interaction and competition terms 

for the prey populations is done. This has been carried out by 

exploiting the constraint that exists in the subspace of the two 

populations and by using Laurent series expansions, in the 

asymptotic region in an appropriately chosen variable. We are 

able to obtain the results on the asymptotic behaviour of the 

component populations as time tends to -infinity. These 

behaviours are also verified by numerical analysis on the 

computer using the standard Runge-Kutta approximation method. 
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CHAPTER - 1 

INTRODUCTION 

The study of the three species ecosystem models occupies an 

important place in theoretical ecology. The elucidation of these 

models will lead to clues to an understanding of the more complex 

multispecies systems. The ecosystem models, as described by a 

~et of differential equations, are in general non-linear. Due to 

the nonlinearity, i t is very difficult to judge the exact 

behaviour of the component populations in the long run, as 

usually the non-linear equations can not be solved exactly. 

A great deal of work has been done on three species models. 

The works of Parrish and Saila (1970), Cramer and May (1972) and 

Bhat and Pande (1980, 1981) are notable in this context. 

implications of the result of a three step prey-predator 

chain (Bhat and Pande, 1981) are quite 

model three populations N
1

, N
2 

and N
3 

preying on N
1 

and N
3 

preying on N
2

. 

interactions and s e 1 f 

interesting. In 

are considered; with 

The model contained 

interaction for prey-predator 

population N
2

. A 1 1 the interactions were taken to be of 

Lotka-Volterra form. Due to nonlinearity of the equations, 

The 

food 

the 

Nz 

the 

the 

the 

the 

model was not solvable analytically. However, the behaviour of 

the component populations was described using 'numerical 

for a certain range of parameters occurring in the model. 

1 

methods 

It was 



found that both N
1 

and N
3 

rose indefinitely while N
2 

reached a 

finite constant value asymptotically. Even though the results 

are quite satisfactory, the lack of an analytical base is felt. 

Varma 

analytical 

and Pande (1986) first tried to give some strong 

base to the above results. Although they were not 

able to get the exact solutions, they obtained analytically the 

behaviour 

t ----> 00. 

of the populations in the asymptotic region as 

In the present dissertation, we extend the work of the above 

authors to the one prey-two predator system and the two prey-one 

predator system. In the case of one prey-two predator system the 

s e 1 f interaction and competition terms are excluded for the 

populations, whereas in case of the two prey-one predator 

predator system the self-interaction and compeitition terms for 

the the prey populations are excluded. These results give 

earlier results a more strong analytical base. 

Our results have been obtained b~ exploring a constraint 

that exists in the subspace of two populations, and by using 

sui table Laurent series expansions in the asymptotic region fo .. r. 

an appropriately chosen variable. We are able to obtain results 

on the asymptotic behaviour of the three species. The precise 

pertaining to the asymptotic behaviour are conditions 

obtained. The method used for the purpose is quite simple 

also 

and 

has got reasonably good applicability. 
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All the results obtained in the above manner are verified by 

numerical analysis on the computer. The verification has been 

carried out on H.P. 9836A computer, using the · Runge-Ku t t a 

approximation method. 
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·CHAPTER ·- I I 

REVIEW OF SOME ECOSYSTEM MODELS 

We shall build up the three species ecosystem model step by 

step, starting with the single species system. and analyse it 

explicitely in this chapter. The latter is the simp 1 est of 

possible· systems. realised only under extremely special 

conditions. Let us assume an "un1imited environment". It can be 

further assumed that the individuals have no effect on one 

another, and that the rate of growth per individual is the same 

for all individuals and is a constant in time. If we denote this 

rate by a and the population by N
1
Ct), then the dynamics of 

this system is given by the equation : 

= 

which has the simple solution, 

= at 
e 

where N
1 

(o) is the population at time t = 0. 

( 1. 1) 

( 1. z) 

This i s the well known Malthusian picture of population growth 

where the population rises exponentially with time CPielou, 

1977). 



s 

But in reality the environment is not an unlimited one. The 

food available to the population is sooner or later going to get 

. 
limited because of the rising population. Pearl-Verhulst 

suggested a mod i f i c a t i on o f a to (a- B N
1 

l which leads to a 

fa 1 1 in the rate with increase in population. The equation, 

then, is 

= ( 1 . 3) 

and the solution to this "Pearl-Verhulst logistic equation" iB: 

where the 

:: 

- act-t) 
1 + e o 

constant 
at 

e o i s 

population N
1 

Col by, 

at 
(a/Bl- N

1
(o) 

e o = 
N 

1 
( o l 

( 1. 4) 

given in terms of the initial 

( 1. 5) 

The solution has an asymptotic value as t ---> oo, which is eva. 

The value N
1 

= a,a is the maximum that the population can reach 

and i s therefore called the "carrying capacity" of the given 

environment. 

Now we consider that there are two populations N
1 

such that N
1 

take its food directly from the environment, as in 

the earlier models, but N
2 

derive its food from N
1 

only. The 
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presence of _N 2 thus affects the growth rate a. Considering the 

simplest possibility we replace u by ( a - X 
1 

N
2 

J, where. is a 

positive constant. So we get, 

= ( J . 0' 
The second term on the right hand side in this equation describes 

the interaction between the two populations. Such an interaction 

term should clearly also govern the rate of change of the 

popu 1 at ion N
2

, but the contribution should now be positive. We 

thus have, 

ex: ( 1. 7) 

where x
2 

is a positive constant. If the population N
2 

is laft 

to itself. it should obviously die out. Assuming that th~ decay 

rate per individual, say y; is a constant in time and is the same 

for all individuals, we immediately have, 

a: ( 1 . 8) 

where y is again positive. The complete equation for the 

evolution of the popula~ion N
2 

can therefore be written as: 

= - y N + 
2 

( 1 . 9) 
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'I'his system, given by equation (1.6) and (1.9) is the well known 

Lotka-Volterra model (Pielou, 

prey-predator system. 

1977), describing a two species 

Equations ( 1 - 6) and (1.9) are coupled nonlinear equations 

which cannot be solved analytically. We have to consider some 

approximations and with the help of numerical methods we can 

solve them. In view of its nonlinear nature, it is unlikely that 

the full information content of this system is uncovered by such 

methods .. [It may be noted that equation (1.3) is also nonlinear_ 

However, its simple form enables us to solve it exactly by direct 

integration]. However, an exact result, can be established. 

This was done originally by Volterra (1927)_ Volterra observed 

that the system possesses a conserved quantity, using which i t 

can be proved that the system traces closed trajectories in the 

- N
2 

phase space. This shows that N
1 

and N
2 

are oscillatory 

as functions of t, implying their continued co-existence. 

Arguments similar to those used in constructing the Lotka-

Volterra model can also be used for two species systems where the 

two species are no more prey and predator, but instead, both 

derive their food directly from the environment and compete with 

each other for the same. We simply keep positive signs for the 

first terms on the right hand sides in equations (1.6) and ( 1. 9) 

and keep negativ~ signs for both the interaction terms. I t i s 

possible that the growth of the two populations can also be 



influenced by "self-interaction" as in the 

( L 3). Incorporating that also, we have, 

= 

= 

where all the parameters £
1

, 

constants. 

8 

case of 

This i s the well known Gause-Witt model for 

competing species. Here also the nonlinear nature 

equation 

(1.10) 

the two 

of 

coupled equations make it difficult to solve them exactly. 

these 

I t i s 

possible, however, to show that this system does possess stable 

e q u i 1 i b r i um u n de r c e r t a i n con d i t i on s , g i v en by c e r t a i n i n e qua 1 i t y 

relations between the various parameters involved. This may be 

achieved by graphical methods using isoclines.- Another approach 

i s to consider the linearised version of the equations in the 

neighbourhood of the equilibrium points and to use the so called 

Hurwitz-Routh criteria. 

I t i s straight forward to generalize the above ideas to 

incorporate more than two species e i the r with prey-predator 

interactions or with competition. One can also construct models 

wherein some pairs -have prey-predation relationships and the 
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others have only competition. I t i s q u i t e s imp l e , then , t o w r i t e 

the full structure of the general K-species model. 

But as reported earlier, the main difficulty in t hi 5 

approach is to solve these coupled ~onlinear equations without 

any approximation. The numerical analysis that we may perform 

for different points or even regions of the parameter space, will 

never give us the full information content of these equations. 

I t i s thus important -to construct models which are more 

tractable, hopefully even exactly solvable. 

Let us consider the form (a- a log N
1

l (Gompertz, 1825; 

Gomantain, 1974). Equation (1.3) is then replaced by, 

= (1.11) 

which has the solution, 

exp [ f 1 og N 
1 

( o) -at - a;al e 1 (1.12) 

The solution is capable of yielding the same kind of population 

growth as we find in the Pearl-Verhulst model, the expression for 

a;B 
e the carrying capacity now being 

In a similar way, the inhibition of the growth rate a for 

the population N
1 

due to its interaction with population N
2

, may 
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also be considered in the form ( a >. t 1 og N
2

) 

c a - The growth rate for can 

modified to (-6 + in place of ( -6 

get the follQwing coupled equations to describe an 

two species prey-predator system. 

= 

= -aN + z 

instead of 

also be 

We thus 

interacting 

(1.13) 

This system of nonlinear equations can be solved exactly. 

This model with "logarithemic" interaction terms which we 

may call the Gompertz model can easily be generalised to cover 

the Gause-Witt case and the results are quite satisfactory., It 

is interesting to note that this approach can cover various multi 

species interacting systems, with i t s solvability remaining 

intact. 

Now we discuss· the Gompertz model for some of the three 

species ecosystems. For instance we consider the one prey-two 

predator system CBhat and Pande, 1983). Let the prey population 

be denoted by N
1 

a~d the predator populations by N
2 

and N3 . The 

time development of these populations will be governed : 



1 1 

(i) by natural growth (for N
1

l and decay (for N
2 

and N
3

J terms, 

which in the absence of any interactions will lead to the usual 

exponential r i s e for the prey and exponential fa l 1 for the 

predators, and 

( i i ) by the various self interaction and mutual interaction 

terms. AlI these interaction terms are written in the Gompertz 

form. The equations describing the model are, 

N 1 = 

(1.14) 

N
3

=-e:N + 
3 3 y 

3
N 

3
1 og N 

3 

where N
1

, N
2 

and N
3 

stand for the respective time derivatives. 

The signs of various terms depend on whether they represent self 

inte.ract ion, competition or. prey-pedation. The sign is negative 

for the former two, and as for the latter, the term has a 

negative sign in the equation for the time development 

prey population and positive sign in the corresponding 

for the predator population. The e: terms are here the 
1 

of the 

equation 

natural 

growth and decay terms; those carrying the constants a
1

, and 

are s e 1 f interaction terms; and Yz and a3 terms represent 

competition between the two predator populations and the 

remaining terms represent the prey-predator interactions. 
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Introducing the notation, 

x 1 =log N
1

; X 
3 

= I og N 
3 

we can rewrite equations (1.141 as, 

x1 ;:; 
£1 - a 1 x1 - !i 1 X 2 - Y 1 x3 

x2 = -E 
2 

+ a 2x 2 - 13 2x z - y zx 3 (1.15) 

x3 = -£ 
3 

+ a 3x 1 - a 3x z - Y 3x 3 

The above model yields solutions which can possess stable 

equilibrium, implying co-existence of all the three species. 

The above was the general situation where we considered all 

the different types of interactions. It is of much interest to 

see what happens when some of the above interactions are absent. 

We take for instance the case with no competition and s e If 

interaction for the predators. So we have 

a 
2 = = :: :: 0 

Thus equations (1.15) reduce to, 

x1 :: E - a 1 X 1 a 1 xz - Y 1 xa 

x2 = - E 
2 

+ azx 1 (1.16) 

x3 :: - E + a 
3x 1 3 



1 3 

We solve these equations by differentiating once the f i r s t 

equation and substituting from second and third the values of x2 

where, 

A = 

So we get, 

= A - BX 
1 

+ y E 
1 3 

and 

Equation {1.17) is a no~homogeneous linear equation, 

solution of which is, 

B 

E
1 

t 
+ 0 e + 

1 

A 
= 

where o
1 

and'o
2 

are two arbitrary constants and, 

= 

Ez = 

when E1 and 

real E1 and 

[ - a 
1 

[ - a 
1 -

+ ca 2 _ 4 B J 1 I 2 
1 

2 

(at 2 48)1/2] -
------------------------

2 

:« 

Ez are complex, we have E1 

Ez; 01 and 02 are also rea I . 

= Ez and 
:« 

01 

(1.17) 

the f u 1 1 

(1.18) 

(1.19) 

= 0
2

. For 

Substituting the values of x1 from equation (1.18) in the 

last two equations of (1.16l and integrating we obtain, 



+ 

x3 c2 
ftt 

Kt 
01 E 

1 
t 02 E 

2 
t 

= - + a e + -- e 
3 

Yt Et E2 

where, 

-Y1 £a2E3 a 3£ 2 J 
K = ----------------- and 

B 

c 1 and c
2 

are two integration constants connected by, 

which 

B c -
1 1 

is 

A 
a 

1 
B 

E : 0' 
1 

obtained when the expressions for x1' 

substituted in the first equation in (1.16). 

I t is clear from equation (1.19) that E
1 

and E
2 

14 

(1.20) 

(1.21) 

(1.22) 

are 

always have 

negative ·real parts. Therefore, x
1 

(and hence N
1

) is always 

finite and non-vanishing. For t --->00' it acquires the value, 

X ( t ---> 00 ) 
1 = 

As regards x
2 

and x
3

, 

A 
(1.23) 

B 

due to the presence of the term linear in 

t ' as t ---> oo, one of the predator populations blow up and the 

other vanishes. Clearly, under the condition 
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(Q £ - a £ ) > 0' 2 3 3 2 
(1.24) -

N
2 

C t ---> 00) -----> 00 

N
3 

C t ---> 00 ) -----> 0 

and under the condition 

ca e -a e:) < o, 
2 3 3 2 

(1.25) 

N2 ( t ---> oo) -----> 0 

------> 00 

For both N2 and N3 to remain finite and coexist, the constraint 

K = 

or simply 

0 = > 

a I£ 
2 2 

In that case, 

-'-->00 

(~ 

= 

) 

x3 c t --- > oo J 

£ -
3 

= 0, 

a
3

;e
3

, has to be satisfied. 

= 

= 

(1.26) 

(1.27) 

we get .a very similar result in the case of two prey-one predator 
\ 

system when we exclude competition and self interaction for the 

prey populations. As t ---> oo, one of the prey populations blow 

up and the other vanishes, whereas under the constraint K = 0 all 

the three populations coexist. 
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The above system can also be discussed within the Lotka-

Vo 1 t e r r a mode 1 , with the prey population denoted by N
1 

and the 

predator populations by N
2 

and N
3

. The dynamics of the system 

for the case with no competition and self interaction for 

predators is then given by, 

Ni £1 N 1 a 1 N t 
2 a 1 Nt Nz y 1 Nl N3 = - -

N2 = - e N 
2 2 

+ azN 2N 1 (1.28) 

N3 = - E N 
3 3 

+ a3N 3N 1 

Assuming all N. > 0, we obtain the equilibrium value N. from: 
1 1 

E a 1N 1 - e 
1N 2 

y 
1N 3 = 0 

1 
(1.29) 

- £ + a 
2 Nl = 0 

1 (1.30) 
- E + a 

3N1 = 0 
3 

Equation (1.30) gives, 

N1 
Ez £3 

= = (1.31) 

az ~ 

The possibility of all populations remaining finite and non-

vanishing cannot be ruled out. 

.solution for equation (1.28) 

analytically in this regard. 

But in view of the lack of exact 

nothing definite 

But when we look at 

can be said 
I 

the results 

obtained by numerical analysis under the conditions 
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( i ) = 

( i i ) 
e: 2 e: 3 

and > 
a a z 3 

e:z E 

( i i i ) 3 
< 

a a z 3 

We see the following 

Under condition ( i ) there is co-existence of a 1 1 the three 

populations. Under conditt·on (1·1·l,· th I t· N e popu a 1 on 
2 

steadily 

vanishes while population N
1 

and N
3 

oscillate with decreasing 

amplitude about a finite value at which they finally ·settle. 

Under condition (iii) N
3 

vanishes and N
1 

and N
2 

reach certain 

finite values. 

Thus, we see that the results in the Lotka-Volterra model 

are very similar to what we obtained in the Gompertz model. They 

are identical as to which populations survive and which one dies 

out, but in place of the indefinite rise of one of the surviving 

populations in the Gompertz model, we now have the corresponding 

population reaching a finite constant value. That i s the 

situation as regards case (ii) and (iii). The results in case 

( i ) are tot a 1 1 y s i m i 1 a r in the two cases. Similar agreement 

between the results of the Lotka-Volterra model and those of the 
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Gompertz model is also obtained for the two prey-one predator 

case (Ph.D thesis: Bhat, 1980). In fact, the main purpose in 

discussing in detail the solvable Gompertz model was to obtain 

some guidelines as to what kind of numerical solutions to expect 

in the Lotka-Volterra case under different conditions. The 

problem of obtaining more general results analytically in case of 

the Lotka-Volterra model, of course, remains unsolved. 

the 

as t 

se 1 f 

In this dissertation we are able to obtain the behaviour of 

three species systems analytically in the asymptotic region 

---> 00 We again deal with the cases when competetion and 

interaction for the predators is excluded in the one prey-

two predator system and when the competition and self interaction 

for the prey is excluded in the two prey-one predator system. 

The details of our approach and our· results are presented in the 

next chapter. In the chapter. following that we present some 

numerical examples done in the computer, which illustrate the 

analytically obtained results of the earlier chapter. 

The approach followed in obtaining the analytical results of 

the next chapter wa~ first used by Varma and Pande (1986). 



CHAPTER- tit 

RESULTS ON SOME THREE SPECIES LOT~-VOLTERRA MODELS 

IN THE ASYMPTOTIC REGION 

In this chapter we carry out an analysis of certain three 

species ecosystems within the Lotka-Volterra model. In Section I 

belpw we consider the one prey-two predator system in which 

interaction terms are excluded for the competition and self 

predator populations. In Section II we deal with the two prey-

one predator system and in this case we do not consider s e 1 f 

interaction and competition terms for the prey populations. 

It is not possible to write the exact solutions of the above 

systems. However, important information about the populations 

can be ascertained by analysing the behaviour of the systems in 

the as ymp tot i c reg i on as t --- > oo . The results are obtained by 

exploring the constraint that exists in the subspace of the two 

populations and using suitable Laurent series expansions in an 

appropriately chosen variable in the asymptotic region. We also 

illustrate, in the next chapter, our analytical results with 

numerical calculations done in the Computer. 

19 



SECTJOJJ - I 

ONE PREY-TWO PREDATOR SYSTEM 

We now consider the one prey-two predator system. · Let the 

prey population be denoted by N
1 

and the predator populations by 

The system under consideration is described by 

following set of equations 

= _e: N 
2 2 

+ 

N 3 = -e: N + 
3 3 

aN Z 
1 1 

the 

( 2 - 1 ) 

where all the parameters e:
1

, a 
1 ' 

Y 
1 

, e: 
2 

, a
2 

, e: 
3 

a n d a 
3 

a r e 

positive and the dots on the N's signify time derivatives. Let 

us define a variable Z such 
6t 

that Z = e ~ where 

equations in terms of Z can be written as 

dN
1 

0 z --- = 
dZ 

0 z 
dN 

2 
= 

dZ 

6Z 
dN 

3 
= 

dZ 

-e: N 
2 z + a Z Nl Nz 

£3N3 + a 
3 Nl N3 

6 > 0- The above 

( 2- 2) 



From second equation of C2.2l, we get, 

1 dN Z 
oz = -£2 + a2N1 

Nz dZ 

1 dN
2 

or Nl = [ cSZ + £2 
a Nz dZ 

2 

Similarly, we have from third equation of (2.2), 

1 
[ 0 z + £3 

Equating ·equations C2.3l and (2.4), we have. 

1 

dN
2 a or, 

3 
Nz 

dN
2 

or. a 
3 

Nz 

where, 

k = 

z 

dZ 

dN
3 a 

2 

dN
3 a z 

N3 

- a e: 
3 2 

N3 

1 
= [ 6 z 

a 
3 

z a e: - a e: z 3 3 2 
= -----------

dZ 6 

Jr: dZ 
= 

c5 z 

Integrating equation C2.5l we have, 

= ( k I o) 1 og Z + 1 og A 

20 

( z . 3 ) 

( 2 . 4 ) 

( 2 . 5 ) 

( 2. 6) 
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"'3 
k/cS N2 

or, log = log A z 
a2 

N3 

a3 
k to Nz 

o r , = A z ( z . 7 ) 

a2 
N3 

where, A is a constant determined by the initial conditions. 

ln view of the self interaction term present in the f i r s t 

equation of (2.2) which generally leads to frictional damping and 

saturation (Volterra, 1927) we look for a solution of the system 

of equations such that N
1 

---> constant as t ---> oo , o·r in view 

of the positivity of cS, we look for, 

lim 
z-->oo 

= a 
0 

where a 
0 

is a constant. This would imply around Z 

following Laurent expansion for N
1 

<Zl 

= 

We then have, 

1 i m 
z--> .oo 

a 
0 

oo -n 
+ l: a Z 

n=t -n 

= 0 

( 2 . 8 ) 

= 00 the 

( 2 . 9 ) 

(2.10) 



Now first equation of (2.2) can be written as, 

Using equation (2.10), we get. 

or. 

I i m 
z-->oo 

( E: 
1 

I i m ( 6
1 

N
2 z--> oo 

aN -
1 2 

+ 

= 0 

£1 a a 
1 0 

c 

22 

(2.11) 

(2. 12J 

where Cis a constant. Thus the Laurent expansions of N
2

CZJ and 

should be, N
3 

CZJ around Z = 00 

where 

= 

= 

b + 
0 

c 
0 

Y
1 

f C Z J + ~ b Z - n 
n= 1 -n 

(2.13) 

oo -n a
1 

£ c z J + 1: c z 
n= 1 -n 

C 2. H l 

f(Z) will be a .polynomial in Z with some leading power zm 

where m > 0. The above general results will satisfy equation 

(2.12). However. in view of the fact that our populations should 

always be positive, i.e., N
2

CZJ, N
3

CZ) > 0 for all Z > 0, we must 

have f(Z) identically equal to zero. This is because otherwise, 

at least for very large Z, where the leading terms will be 

coming from f(Z), either N
2

CZJ [when f(ZJ is negative] or N
3

CZl 

£when f(Z) is positive] will become nega•tive. We thus ~onclude 



that 
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the desired expansions for N2 czJ and N
3

czJ have to be, 

= 

= 

b 
0 

c 
0 

oo -n 
+ 1: b z 

n= t -n 

oo -n 
+ 1: c z 

n= 1 -n 

(2.15) 

(2.16) 

Substituting equations C2.15J and C2.16), equation (2.7) can now 

be written in the form, 

[ b 
0 

oo -n 
+ 1: b z 

-n 
n=l 

oo -n a2 
c + £ c z ] 

o n=1 -n 

k/6 
= A Z (2.17) 

Three cases now arise corresponding to k > 0, k < 0 and k = 0 

We consider them one by one. 

CASE I: - When k > o_ 

Since k > 0, the right hand side of equation (2.17) tends 

. t 0 00 for Z ---> oo , whereas on the left hand side we are left 

with the ratio of numerator and denominator which i s a 

constant. Thus, for right hand side to be infinity we should put 

c = 0 and then 
0 

oo -n 
t c Z will -n contribute for the positive powers 

n=t 

of Z when it goes to the numerator. Thus we are left with the 

following expansions, for N
2

CZ) and N
3

CZJ as Z ---> 00 _ 



= 

= 

b 
0 

00 

+ 

l: c -n 
n=i 

~ b z-n 
-n 

n=1 

24 

(2.18) 

(2.19) 

Substituting equations ( 2 - 9 ) ' (2.18) ind (2.19) in the f i r s t 

equation of (2.2), we obtain 

a 
0 

oo -n 
+ l: a Z -n 

n=l 

= 

= 

-n 
l- a

1 
£a

0 
+ l: a Z 

n= 1 -n 

oo -n 
- B 

1 
£a

0 
+ l: a Z l 

n= 1 -n 

- y 1 

d 
0 z 

dZ 

0 z [ 

00 

(a + l: a Z-: n 1 
0 

n=1 
-n 

00 

[ a + I a z-n 

00 

t 
n=l 

0 
n=1 

-n 

-n-1 
(-nl a Z 

-n 

a 

b 
0 

00 

I 

0 

n=i 

Substituting equations (2.9), (2.18) and (2.19) in 

equation of (2.2), we have, 

oo -n 
+l: a Z l 

n=l 
-n 

oo -n 
+l: b z 1 

n=1 
-n 

-n 
c z . 
-n 

(2.20) 

the second 



- ~ [ b 
0 

00 
+ ,; b z-n 

-n n=1 
l + a 2 

= 6 z 

[b 
0 

d 

dZ 

= 6 z [ 

00 
+ t b z-n 

-n 
n=1 

[a 
0 

00 

t 
n=1 

b 
0 

00 
+ ,; b z-n 1 

-n 
n=1 

( ) b Z
-n-,t 

-n 
-n 

25 

.00 

+ ,; a Z -n 

·n = 1 -n 

( 2 . 2 1 ) 

Lastly, substituting equations (2.9), C2.f8J and (2.19), in the 

last equation of (2.2), we get, 

-£ [ 
3 

00 
,; c z-n 

-n n=i 
J + a [ 

3 

00 

t 
. n= i 

c z-n) 
-n 

= 

= 

d 
62 -- [ 

dZ 

00 

t 
n=i 

-n 
c 2 
-n 

62 [ 
00 

t 
n=i 

C-n) c Z 
-n 

a 
0 

oo -n 
+ t a Z 

-n-1 

-n 
n=1 

Equating the coefficients of like powers of Z we obtain 

( z. 20). 

£ a 
1 0 

a 2 Q 

1
a

0 
-.., a b 

1 0 0 
= 0 

From (2.21), we have 

-£ b + a b a = 
2 0 2 0 0 

0 

(2.22) 

from 

(2.23) 

(2.24) 



Thus we have from (2.241 

a 
0 = 

e:2 

And we have from (2.23) 

or 

ala b 
0 0 

= a b 
1 0 

or e: 
1 = 

26 

= 0 

0 

Here we put the value of a obtained from equation (2.25). 
0 

b 
0 

= 

Equation (2.71 yields. 

or 

b 
0 

00 

+ l b z-n 
-n 

n=1 

a 

= 

3 
()() _Q 

E c z-n J 2 

n= i -n 

k/6 
A Z 

k/6 
= A Z 

(2.25) 

(2.26) 

Thus. 

(2.27) 

Rest of the terms vanishes in the limit Z --->oo So we have, 

= 

or, 6 = k I ia 
2 

(2.28) 
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Reverting to the variable t ' we thus obtain the 

asymptotic behaviour for the three populations N
1
Ct), 

1 im 
t-->oo 

= 

= 

= 

a 

b 
0 

0 
= 

= 

£ I a 
2 2 

- c k 1 a
2 

l t 

c .e ------> 
- 1 

0 

following 

and 

( 2 - 2 9 ) 

Thus, from the above equations we come to the conclusion that the 

prey population N
1 

uniquely goes to the value £
2

1a
2 

as t --->oo, 

in which case one of the predator population N
2 

tends to the 

value and the other predator population N
3 

vanishes exponentially. 

requirement that, 

The constant c . is determined by 
- 1 

the 

= A (2.30) 

az 
( c . ) 

-1 

where A i s a constant appearing 

determined by the initial conditions. 

in equation ( 2 - 7 ) and i s 
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CASE- II: When k < 0. 

As k < 0 ' the right hand side of equation (2.17) tends to 

zero for Z --->co, whereas on the left hand side we are again 

1 e f t with the ratio of numerator and denominator which i s a 

constant. So in this case for right hand side to be zero we 

should put b = 0 and then C£ b Z -n w i 1 I contribute for the 
0 

n=t 
-n 

powers of Z. Thus we have the following expansions fGr N
2

CZl and 

N
3 

CZl, as Z ---> co 

co 

= E b Z -n 

= 

n=q 

c 
0 

+ 

-n 

co 
E 

n=1 

-n c z 
-n 

( 2 . 3 1 ) 

(2.32) 

whereas the expansion for N
1 

(Zl remains as usual as in equation 

( 2 . 9 ) . 

Substituting equation~ (2.9), (2.31) and (2.32) in first equation 

of (2.2), we obtain 

e: 
1 

[a 
0 

+ 
co -n 
E a Z 1 -

n=1 
-n 

-

-

= 

6 1 

y1 

[a 
0 

[a 
0 

[a 
0 

d 
cSz 

dZ 

+ 

+ 

co 
+ E a Z-n 1 

n= 1 -n 

co 
E a Z -n J 

n=1 
-n 

co 
E a z-n 1 

n=1 
-n 

co 

[a 
0 

00 
E 

n=q 

[ c 
0 

[a 
0 

-n 
+ E a Z 1 

n=1 
-n 

co 
+ E a Z-n J 

n= 1 -n 

b -'n 
z-n1 

co 
+ E c z-n J 

n=1 -n 
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= 6 z (2.33) . 

Again, substituting equations (2.9), (2.31) and (2.32) in the 

second equation of (2.2) we obtain 

00 

- £2 [ l: b z-n 1 + "z r -n 
n=q 

= tSZ 

= 

00 00 

l: b z-n J [a + l: 
-n 0 

n=1 n=q 

d 00 

-- l: b z-n J 

dZ 
-n 

n=q 

00 
l: (-n) b z-n- 1 J 

-n 
n=q 

a z-n 1 
-n 

(-2. 3 4) 

And lastly substi~uting equations (2.9), (2.31) and (2.32) in the 

last equation of (2.2), we get 

[ c 
0 

00 -n 
+l:c Z J+ 

n=l 
-n 

= 

= 

cSZ 

[c 
0 

d 

dZ· 

00 -n 
+ I c Z J [a 

0 
n=1 

c 
0 

-n 

00 
-n 

+ I c Z 1 
il= 1 -n 

00 
I C-n) c Z-n-l 1 

n=l 
-n 

(2.35) 

Equating the coefficients of like powers of Z we obtain from 

equation (2.33) 

E a -
1 0 

2 
aa -Yac =0 

1 0 1 0 0 
(2.36) 
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From equation (2.34) we have, 

0 + a c a 
3 0 0 = (2.37) 

From this equation, we get 

a = £3/ a3 0 
(2.38) 

And from equation (2.35) we have, 

2 
£1 8 o - a tao - Y 

1 
a c = 0 

0 0 

or y 1 co = £ a 
1 a o 1 

£ 
al£3 

= ------
1 a 

3 

£1 a3 - at £3 
o r , c = ------------- (2.39) 

0 
a 3 Y 1 

Equation C2.7l yields in the similar way as in the last. case, 

k 
a = 

R e v.e r t i n g . t o the variable t ' we thus obtain the 

asymptotic behaviour for the three populations N
1
Ct), 

N
3

Ctl as t ---> 00 

lim N
1

CtJ = 
t-->00 

= 

a 
0 

b 
-q 

c 
0 

= 
a 

3 

-----> 0 

= 

(2.40) 

following 

and 

(2.41) 
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Thus, from the above equation we again find that the prey 

population N
1 

uniquely goes to the value £I a as t--> oo , while 
3 3 

the predator population N
3 

tends to the value 
a Y 

3 1 . 

vanishes exponentially. The constant b is determined by 
-q 

the 

requirement 

c 
0 

= A (2.42) 

where A is a constant determined by the initial conditions. 

CASE- Ill When k = 0. 

As· k = 0, the right hand side of equation (2.17) reduces to 

A as Z --->oo . So in this case we have the following expansions 

for N
2 

c z J and N
3

CZJ, 

00 
z-n N

2 
c z J = b + 1: b 

0 
n=1 

-n 
(2.43) 

00 z-n N
3 

( Z) = c + 1: c 
0 

n=l 
-n 

(2.44) 

and the expansion for N
1 

CZl remains the same as in equation 

(2.9). 

Substituting equations (2.9), (2.43) and (2.44) in the f.irst 

equation of (2.2), we get 



[ a 
0 

00 

+ >: a Z-nl -
n= 1 -n 

a [a + 
1 0 

00 

>: 
n=l 

00 

a z-n] 
-n 

-y £a +E a Z-nJ 
1 o -n 

n=1 

d 00 

[ a 

[b 
0 

[ c 
0 

0 

00 

+ I 
n=l 

00 

32 

-n a Z 
-n 

b z-nJ 
-n 

-n 
+ I c Z 

-n n=l 

= ~ z -- [ 
dZ 

a 
0 

-n 
+I a Z J 

n=1 
-n 

00 

= oz [ >: (-n) 

n=l 

-n-1 
a Z 1 (2.45) 

-n 

Again stustituting equations (2.9), (2.43) and (2.44) in the 

second equation of (2.2) we have, 

- E: [ b 
2 0 

00 

+ I 

n=l 

b z- n J 
-n 

= 

= 

+ a 
2 

[ b 
0 

d 

00 

+I b z-nJ 
n = 1 -n 

00 

[a 
0 

6z --£ b 

dZ 
0 

+ I b z-n 
-n 

n=l 

~z £ ~ C-nJ b Z 
-n-1 

n=1 
-n 

00 
-n 

+ I a Z J 
n=l 

-n 

( 2 ; 4 6 ) 

And lastly substituting equations (2.9), (2.43) and (2.44) in the 

last equation of (2.2) we get, 

00 

+ >: c Z-nJ 
-n . 

n=1 

= 

[ c 
0 

d 
.sz 

dZ 

00 -n 
+ >: c Z J £ a 

0 
n=1 

[ c 
0 

-n 

oo -n 
+ I c Z J 

n=l 
-n 

oo -n 
+ >: a Z J 

n=1 
-n 



= o z r 
00 

E C-n) c Z-n- 1 J · 
-n 

n=1 

Equating the coefficients of like powers of Z we 

equation (2.45) 

e
1

a b - y
1

c a 
0 0 0 0 

= 0 

From equation (2.46) we have, 

-Eb + aba 
2 0 2 0 0 

= 0 

And from equation (2.47), 

- E C 
3 0 

a a c 
3 0 0 

= 0 + 

Thus, from equation (2.49) and (2.50) we get, 

a 
0 

= 
E 

2 

a 
2 

= 
a 

3 

b and c are given by equation (2.48). 
0 0 

£ 1 - a 

or B 
1 bo + 

Here we put 

b = 
0 

1 a o - B 1 b o - y1 c 0 = 0 

£1 a Z - e: 2a 1 
Y1co = -----------

a 
2 

the value of a from equation (2.51). 
0 

e:a -Ea -Y ac 
12 21 12o 

B a 
1 2 

33 

(2.47) 

obtain from 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

So, 

(2.52) 



and 

c 
0 

= 
a Y 

2 1 

- a B b 
2 1 0 

b and c are determined by the equation 
0 0 

a2 
c 

0 

= A 

34 

where A is a constant determined by initial conditions. 

(2.53) 

(2.54) 

Now reverting to the variable t we have the following asymptotic 

behaviour for the populations N
1 
(t), N

2
Ctl and N

3
Ctl as t ---> oo 

lim N
1

£t) = a
0 

= 
t-->oo 

I im N
2 

c t l = b 
t-->oo 

0 

1 im 
N J ( t l = c 

0 
t-->00 

Thus, a I I 

a s ymp t o t i c a 1 I y . 

= 

= 

£1a2 -£ 2a 1 - Yt a2c o 
= --------------------- CZ.55l 

B 1 a2 

€1a2 - € 2a 1 - a 2 Bl b o 

----------------------
a y 1 z 

three populations tend to constant values 

However, whereas N
1 

necessarily tends to £
2

1a
2

, 

the others tend to constants which are determined by the initial 

conditions. 
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SEC'TIOII- If 

TWO PREY-OWE PREDATOR SYSTEM 

In this section we consider the two prey-one predator 

system. Let the prey populations be denoted by N
1 

and N
2 

and the 

predator population by N
3

. The system under 

described by the following set of equations : 

N1 = ~\ Nl \ Nl N3 

N2 = EZN 2 y ZN 2N 3 

N3 - £ N +, a3N 1N 3 B 3N ZN 3 y 3N 3 
2 = + + 

3 3 

where the parameters £
1

, £2' 

positive and the dots on theN's signify the 

derivatives. In terms of variable Z defined by, 

0 t 
Z = e 

where ~ > 0, the above equation become, 

6 z 
dN

1 
= 

dZ 

6Z 
dN 

2 

dZ 
= £ 2 N 2 - Yz N 2 N 3 

6Z 
dN 

3 
= 

dZ 

consideration i s 

( 3- 1) 

respective t i roe 

( 3- 2) 
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From the f i r .s t two equations of ( 3- 2) ' equating the values of N3 

in the similar way as in the previous section we get, 

1 1 dN
1 1 1 dN 

2 
[ 6z - £ 1 ) = ISZ - £2 J 

y1 Nl dZ Y2 N2 dZ 

dN
1 dN

2 
dZ 

or Yz - y1 = 

N1 N2 6 z 

which on integration leads t 0' 

Nl 
Yz 

B z ( j /6 ) ----- = ( 3 - 3 ) 

Nz 
Y.l 

where B i s a constant determined by the initial conditions and 

= (3.4) 

In view of the self interaction term present in the last equation 

of (3.2) which generally leads to frictional damping and 

saturation, we look for a solution of the system of equations 

such that N
3 

---> constant as t ---> oo or in view of the 

positivity of , we look for, 

= c ( 3- s) 
0 

Thus around Z = oo, we have the following Laurent expansion for 



:: 

We then have, 

1 i m 
z--XX> 

c 
0 

00 
-n 

+ t c z 
-n 

n=1 

:: 0 

The last equation of (3.2) can be written as, 

d 
6Z Clog N

3
J 

dZ 

:: 

·Using equation (3.7) we get, 

1 i m a3 N 
1 

+ S 
3 

N z 
z-->oo 

= 

D 

where D is a constant greater than £
3

. 
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( 3 - 6 ) 

(3.7) 

( 3 - 8 ) 

Thus, the Laurent expansions o f N 
1 

( Z ) and N 
2 

( Z ) ·a r o u n d Z = oo 

should be, 

= 

= 

00 

a + 
0 

~ 3 fCZJ + t a_nz-n 

b 
0 

- a f(ZJ + 
3 

n=l 

00 
t b z-n 

-n 
n=1 

where f(Z) will be again a polynomial in Z with 

power where m>O. In view of the fact that 

should always be positive, 

( 3 - 9) 

( 3 - 1 0 ) 

some leading 

populations 



we must have f(Z) identically equal to zero. 

the expansions for N
1

CZ) and N
2

CZ) as, 

oo -n 
= a + E a Z 

o n=1 -n 

= b 
0 

oo -n 
+ E b Z -n 

n=l 

38 

Thus we should have 

(3.11) 

I I, 

(3.12) 

Substituting (3.11) and (3.12) in equation (3.3) we get, 

[a 
0 

[b 
0 

oo -n Yt 
+ E b Z 

-n 
n=1 

= 
j I 6 

B Z 

Three cases now arise corresponding to 

CASE- 1:- When > 0. 

(3.13) 

> 0. < 0 and = 0. 

With the same argument as in the previous section for this 

case, ~s Z ---> oo we put b = 0 and get the following asymptotic 
0 

expansions for N
1 

(Z) and N
2 

CZJ 

= 

= 

·a 
0 

00 

00 
+ 1: a z-n 

n= 1 -n 

1: b z-n 
-n 

n=h 

(3.14) 

(3.15) 
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We now substitute equations (3.6), (3.14) and (3.15) in all the 

three equations of (3.2) respectively and equating coefficients 

of like power of Z as in the previous section, we obtain, 

and, 

c 
0 

a 
0 

= 

= 

Constraint C3.3l then yields, 

(3.16) 

(3.17) 

6 = ----- (3.18) 

h Yt 

Reverting to the variable t we obtain the following asymptotic 

behaviour for the populations N
1
<tl, N

2
<tJ and N

3
Ct) 

Thus 

lim N
1

cu 
t"7->oo 

I im N 
2 

( t) 
t-->oo 

I im N 
3 

( t J 
t-->oo 

= 

= 

= 

a 
0 

= 
£1 y 3 + £3 y 1 

----------------
a 3 Y 1 

b_he-(j/y1Jt ------> 

c = £ 1/ y 
0 1 

0 

in this system we find that the predator 

(3.19) 

population N
3 

uniquely goes to the value ( £
1

/ y
1

J as t ---> oo, whereas one of 

the prey populations, N
1

, tends to the value 

vanishes exponentially. 
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The constant b 
-h 

is determined through 

y2 
a 

0 
B -------- = (3.20) 

y 
( b ) 1 

-h 

where B i s a constant appearing in equation ( 3 . 3 ) and i s 

determined by the initial conditions. 

CASE- II When < 0 

As < 0 • the right hand sjde of equation (3.13) tends to 

z e r o f o r Z - - -· > oo So in this case we have a = 0, and then the 
0 

asymptotic expansions for N
1 

CZJ and N
2

CZl should be, 

whereas, 

(3.6). 

= 

= b 
0 

+ 

00 
1: b z-n 

-n 
n=l 

(3.21) 

(3.22) 

the expansion for N
3

C2J remains the same as in equation 

Substituting equations (3.6), (3.21) and (3.22) in all the three 

equations of (3.2) respectively, 

like powers of Z, we obtain, 

and 

c 
0 

= 
£2 

Y2 

and equating coefficients of 

( 3 . 2 3 ) 



b 
0 

= 
~ y + y ~ 

3 - 2 3 2 -----n---------
3 y 2 

constraint (3.3) yields, 

41 

(3.24) 

6 = (3.25) 

sy2 

Reverting to the variable t we obtain the following asymptoti~ 

behavious for the populations N
1
Ct), NiCtl and N3 Ct) 

= 

1 i m N
2 

C t) = 
t-- >OO 

1 im N
3 

C t l = 
t-- >oo 

a 
-s 

• b 
0 

c 
0 

= 

= 

----> 0 

£3 Y2 + y3 ~ 2 
--------------- (3.26) 

B3 y 2 

~2 
---

y2 

Thus in this case we again find that the predator population N3 

uniquely goes to the value ( £
2
tr

2
l as t -->oo, in which case one 

of the prey populations, N
2

, tends to the value 
e3 Yz + Y 3 e 2 

--------------
B3 Yz 

and N
1 

vanishes exponentially. The constant a is 
-s 

determined 

through, 

y 
(a ) 2 

-s = B ( 3 . 2 7 ) 
b \ 

0 

where, B is a constant determined by initi~l conditions. 
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CASE- JJl: - When = 0 

In this case for Z ----> oo , equation (3.13) reduces to, 

[ a 
0 

[b 
0 

00 Y., 
+ 1: a z-n] c. 

n = 1 -n 

00 

+ 1: 
n=1 

y 
1 

= B (3.28) 

which em,plies the following Laurent expansions for N
1

CZJ and 

00 

N 
1 

( Z) = a + 1: a z-n 
0 

n=t 
-n 

(3. 29) 

00 z-n N
2 

c z J = b + 1: b 
0 

n=1 
-n 

(3.30) 

whereas the expansion for N
3

czl is as usual as in equation (3.6). 

Substituting equations (3.6), (3.29) and (3.30) in the equations 

of (3.2) respectively and equating coefficients of like powers of 

Z we obtain, 

and 

c 
0 

a 
0 

b 
0 

= 

-

= 

£ 1 

= 
Yz 

£3 Y1 + Y3 £1- Y1 83 bo 
----------------------------

a3 Y1 

£ 3 Y 1 + Y 3 £1 - Y 1 a3 ao 
----------------------------

8 3 Yt 

(3.31) 

(3.32) 

(3.33) 
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Now reverting to the variable t we get the following asymptotic 

behaviour for the populations N
1
ctl, N

2
Ctl and N

3
Ctl 

1 i m N
3 

( t J 
t-->00 

= a 
0 

= b 
0 

= 

= 

= 

£ 3 rt + r 3 £ t - r 1 a 3 b o 
--------------------------

a 3 Y1 

£3 Yt + Y3 £1 Yt £3ao 
----------------------------

6 3 y 1 

= 

(3.34) 

Thus all the populations tend to constant values as ymp tot i c a 1 I y. 

However, whereas N
3 

necessarily tends ( £
1

/ Y
1

J the others tend 

to constant values which are determined by the initial 

conditions. 

The re.sul ts of the present chapter are all summarised for 

convenience in Tables I and II. 



TABLE - I 

MODEL: ONE PREY-TWO PREDATOR SYSTEM 

= 

N 2 = EN + 
2 z 

N 3 = EN + 
3 3 

Constraint: 

where 

k = a E 
2 3 

a e: 
3 z 
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BEHAVIOUR for t ---> oo 

CASE I 

N 1 = a = 
0 

k ) 0 

e: 21 a 2 

N 
2 

= b = C E a -E a ) 1 S 
0 1 2 2 1 1 

a 
2 

CASE 

N1 = 

N2 = 

N3 = 

CASE 

Nl = 

c . 
-I 

I I 

a 
0 

b 
-q 

c = 
0 

I I I 

a = 
0 

----> 0 

k < 0 

= E 3 I a3 

C k I a 3 ) t --> 0 e 

C£1a 3 -e:J<lJ ) 1 a 3Y 1 

k = 0 

e: 2 I a 2 = e: 3 I a 3 

e: 1 a 2 - e: 2 a 1 - Y 1 a2 co 
N = b 

2 0 
= -------------------

N = c 
3 0 

St az 

e:1a2- e:2a1 -a2S lbo 
= -------------------

a 2 Y 1 



TABLE- II 

MODEL: TWO PREY~ONE PREDATOR SYSTEM 

Nl = £ Nl 
y 

N1N3 1 1 

Nz = EZN z Yz NZN3 

N3 - £ N a3N 1 N 3 S3N ZN 3 y3N3 
z 

= + + -
3 3 

Constraint: 

where, 

= 

45 

BEHAVIOUR for t ---->oo 

CASE I > 0 

Nt = 8 o = (£ 1 1 3 + £ 3 1 1)/a3y1 

N = c = 
3 0 

CASE I l : < 0 

Nt = a eC}Iyzlt ___ > 0 
-s 

N = b :: C£3yZ+ y 3 Ez) I ( 63 Yz J z 0 

N = c = £ Z I Yz 3 0 

CASE I I I : = 0 

N = a = 
1 0 

E3Y1 + Ya£1 - 1 t 6 3bo 
--------------------

a3 Y 1 

£ 3 11 + Y 3 £ 1 - Y 1 £ 3 a o 
N = b = --------------------

2 o B 3 Y 1 

N3 = (£ 1 1 y 1 J = C £ Z I y Z) 



CHAPTER IV 

ILLUSTRATION OF THE ANALYTICAL RESULTS 

USING RUNGE-~UTTA APPROXIMATION METHOD 

In this chapter we i 1 1 u s t r a t e our previously obtained 

results using the Runge-Kutta approximation method for numerical 

analysis. This work has been performed on the H.P. 9836A 

Computer. The program used or the purpose is a standard Runge-

Kutta fifth order method modified by Merson (see appendix). We 

fed our specific numerical inputs in the program and the results 

under different conditions were plotted~ 

The purpose of the Runge-Kutta method is to obtain an 

approximate numerical solution of a system of f i r s t order 

differential equations. We discuss here the derivation of a 

Runge-Kuta second order method, on the basis of which higher 

order methods can be derived. 

Runge-Kutta method is an algorithm designed to approximate 

the Tayldr's series solutions. Let us for example consider the 

following system of differential equation, 

where, 

dy. 
1 

dx 
= y.' = f.(x, y.l 

1 1 1 

= 1, 2, 3, ... , n. 

46 

( 4 . 1 ) 



With the initial condition, at x = x 
0 

= y.Cx l 
1 0 
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( 4 . 2 ) 

We seek the values, y. Cx + hl; 
1 0 

where h is an increment.of the 

independent variable x. 

Expanding yi about X 
0 

in Taylor's series, we have, 

Y. Cx +h) = y. Cx ) + h y. '(x ) 
1 0 1 0 1 0 

+ --
2! 

y."Cxl+. 
1 0 

We know the first derivatives, 

y.' (X ) 
I 0 

= f.£x y.Cx )J 
I 0 I 0 

The total differential dy.' is written as, 
. 1 

dy. '(X) 
I 0 

af.£x, y.Cx lJ 
1 0 1 0 

af.[x, y.Cx lJ 
1 0 1 0 

= ---------------- + ---------------
dx a x dx 

o r , 

dx 
=y."Cxl= 

1 0 

dy.'Cx l 
l 0 

where 
dx 

af.[x ,y.Cx )J 
1 0 1 0 

ax 

af.[x ,y.<x ll 
l 0 I 0 

+ --------------

a Yk 

fk [xo ,yk Cxo) 1 

= 1 • 2 , 

( 4 . 3 ) 

( 4 . 4 ) 

( 4 . 5 ) 

3, ... , n. 

Putting the values of equations C4.4l and C4.5l in equation (4.3) 

we get , 



2! 

y.Cx) + hf.(x 
I 0 I 0 

ilf.fx .y.Cx )J 

[--!_--~--~--~--
a x 

3t.rx .y.Cx )J 
1 0 1 0 . 

+ --------------
3· y 

k 

Equation (4.3) can also be written as, 

y. Cx +h) - Y. Cx ) 
1 0 I 0 

= 
X +h 
!

0 

X 
0 

f. (x,y. )dx 
I 1 
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According to the mean value theorem there exists an x such 

for 

X 

We have, 

= X + 
0 

h, 

y
1
. ex +h) - y. Cxl 

0 1 

or 

o < e < 

= 

= 

X +h 
0 

f f.Cx,y.J dx 
I 1 

X 
0 

y.Cx +h) 
I 0 

= y.Cx ) + ha
1

f .lx , y.Cx )J 
1 0 1 0 1 0 

+ 

+ q h J + 
21 

( 4 - 6 ) 

( 4 - 7 ) 

that 

( 4 - 8 ) 

Here, a 1 ' are so determined that i f the right hand 

side of equation C4.8) were expanded in power of the spacing h' 

the coefficients of a certain number of the leading terms would 

~gree with the corresponding coefficients in equation (4.3). 
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To avoid the higher Taylor series terms evaluation we 

express as a linear cembination of the preceeding value of 

f. Thus, we have the approximation of the form 
1 

y.Cx·+h) = y.Cx) +a k +a K 
1 0 1 0 1 1i z 2i 

( 4 . 9 ) 

where, 

= hf .lx , y.Cx )J 
l 0 1 0 

(4.10) 

= h f . [X + Pz h, Y. (X ) 
1 0 1 0 

Now for equation C4.6) to contain similar terms as in equation 

(4.9), K
2

i must be expressed in terms of 

f. [X 

af.lx, y.Cx )J 
I 0 1 0 

and 
1 0 

ax 

This can be done by expanding K
2

i in a Taylor series for function 

of 

af.lx ,y.Cx )J 
[--~--~--~--~--] 

a x 

= f. lx 
1 0 

' 

Thus, 

y.Cx )J + 
1 0 

af.lx, y.Cx JJ 
--~--~---~--~--] 

a Yk 

+ 



= f. [X 
I 0 

af.[x 'y.(x )] 
I 0 I 0 

Y. (X ) ) + Pz h 
l 0 

af.[x ,y.(x )J 

[--~--~--~--~-
ay 

k 

a x 

I 

Lfk[xo, yk(xoJl 
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+ (4.11) 

Substituting the first equation of (4.10) and (4.11) in equation 

(4.9) we get, 

= 

Equating 

+ a
1
hf. [x , y. (x )J 

I 0 I 0 
+ ·a Z h f . [X , y. (X ) ] + 

I 0 I 0 

af.[x, y.(x )] 
1 0 I 0 

[fpz---------------J + qz1 
ax 

af.[x 'y.<x )) 
(--~--~---~--~--] 

a Yk 

+ (4.12) 

the coefficients of similar terms from equations ( 4 . 6 ) 

and (4.12) we get the following set of equations 

= 

= 1 I Z (4.13) 

= 1 I 2 

The above set contains four unknown constants. By arbitrarily 

assigning a value to on~ unknown and then solving for the other 

three. we can obtain as many different sets of values as we 

desire and in turn as many different sets of equations (4.9) and 

(4.10) as desired. 
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For en amp I e , i f we choose a 
1 

= 1 I 2 in ( 4 . 1 3) then , 

az = 1/2 

P2 = (4.14) 

q21 = 1 

So our equation (4.9) takes the form 

y.Cx +h) 
.J 0 

= (4.15) 

with 

= hf.[x, y.Cx )J 
J 0 1 0 (4.16) 

= hf.£x +h, y.Cx) + K
11
.J· 

1 0 1 0 

These sets of equations may be used to solve the system of first 

order differential equations. In this method we require two 

evaluations of the first derivatives in order to obtain agreement 

with the Taylor series solutions through terms of order A 

solution obtained by the use of equation (4.9) in a step-by-step 

integration will have a per step truncation error of order 

since terms containing h 3 and higher powers of h were neglected 

in the derivation. 

By generalising the above method one can derive the Runge-

Kutta f i f t h order method. In our case we used the standard 

Runge-Kutta fifth order method modified by Merson. By this 

method we get the accuracy and minimum step size as desired. The 

computation i s performed a first time using step size h
1 = h. 



The computation is again repeated, this 

sz 

t i me. us in g step size h -2 -

(h/2). Comparing these two values give an indication of the size 

of the error. If these two values are not sufficiently close the 

step size is dicreased and the same procedure is repeated t i I I 

such time we get the desired accuracy. 

The numerical results for models described in the previous 

chapter, under different conditions; are as below : 

RESULTS 

ONE PREY-TWO PREDATOR SYSTEM 

CASE I: 

Initial values of the populations 

N 1 CO) = 80 

N
2

CO) = 70 

N
3

COl = 60 

Numerical inputs for different parameters 

£ = 0. 1 2 
1 

a = 0. 11 
1 

Ez = 0.045 Y1 = 0.0049 

E3 = 0.0019 ~ = 0.0039 

al = 0.0014 a3 = 0. 015. 

The situation for this case is represented by FIG. 1. 



CASE II: For K < 0, i . e. , ( a E 
2 3 

Initial values of the populations 

N
1

CO) = 80 

N
2

CO) = 70 

N
3

COl = 60 

a E ) < 0 3 z . 

Numerical inputs for differnt parameters 

E = 0. 1 z B = 0 . 11 1 1 

E2 = 0.045 yl = 0.0049 

E3 = 0.0019 az = 0.0039 

a = 0.0014 a = 0.015 
:1 3 

The situation for this case is represented by FIG. 2. 

CASE I I I : For K 

Initial values of 

N 
1 

( 0) = 80 

N
2 

co J = 70 

N
3 

( 0 l = 60 

= 0 r i . e. £ 

the populations 

a 
3 3 

£ ) = 0 
2 

Numerical inputs for different parameters 

E = 0. 1 2 B 1 = 0. 1 5 
1 

E = 0.045 y1 = 0.005 
2 

= 0.0019 a = 0.0039 £3 2 

al = 0.004 a3 = 0.015 

The situation for t hi 5 case i s represented by FIG. 3. 
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TWO PREY-ONE PREDATOR SYSTEM : 

CASE I For j > 0, i.e. 

Initial values of the populations 

N 
1 

( 0) = 90 

N
2 

co J = 60 

N
3 

( 0) = 40. 

£ 
1 

Numerical inputs for different parameters : 

£1 = 0.18 Y2 = 0.0032 

e:z = 0.0049 y3 = 0.002 

£3 = 0.09 
~ = 0.0019 

y1 = 0.0021 a3 = 0. 1 7 

The situation is represented by FIG. 4. 

CASE I I : For < 0 , i . e . e: -
1 

Initial values of the populations 

N
1

COl = 90 

N2 COJ = 60 

Numerical inputs for different parameters : 

£1 = 0. 1 8 Yz = 0.0032 

£2 = 0.0049 y3 = 0.0023 

£3 = 0. 18 a3 = 0.0014 

yl = 0.0021 a3 = 0. 1 2 

The situation i s represented by FIG. 5. 
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CASE I I I : For = o. i.e. ( Y2 e:1- Y1 e:2l = 0. 

Initial values of the populations 

N 1 COl = 90 

N
2

CO) = 60 

N
3

COJ = 40. 

Numerical inputs for different parameters : 

£1 = 0. 1 8 y2 = 0.004 

£2 = 0.0049 y3 = 0.005 

£3 = 0. 1 2 a3 = 0.003 

yl = 0.0016 fi3 = 0.2 

The situation i s represented by FIG. 6. 
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In this 

CHAPTER - V 

SUMMARY OF THE RESULTS 

dissertation we have discussed three species 

ecosystem models within the framework of Lotka-Volterra model. 

We have analysed the one prey-two predator system in which 

competition and s e 1 f interaction terms are excluded for 

the 

the 

predator populations and the two prey one predator system without 

the s e 1 f interaction and competition terms for the 

populations. We have obtained the asymptotic behaviour of 

prey 

the 

has component populations in these two systems as t -->oo . I t 

been done by exploiting a constraint that exists in the subspace 

of the two populations. We further used Laurent series 

in the asymptotic region in an appropriately chosen expansions 

variable. The conclusions drawn from our analytical results and 

numerical analysis are as below. 

Let 

without 

predator 

component 

us f i r s t 

s e 1 f 

consider the one prey-two predator 

the interaction and competition terms 

populations. We observe different behaviour 

populations under different circumstances. 

system 

for 

of 

Let 

the 

the 

us 

discuss the result for the CASE I, i . e . , K > 0, of the system. 

we find that the prey population N
1 

go•s to a finite constant 

value 

to a 

as t -->oo. Also, one 

finite value whereas 

of the predator populations N
2 

tends 

the other predator population N
3 

vanishes exponentially. This situation is represented by FIG. J 

which has been plotted with the help of the Computer using 

56 
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methods of numerical analysis. The population N
3 

shows steady 

decrease to the zero value. The populations N
1 

and N
2 

oscillate 

with decreasing amplitudes about a finite value for which they 

finally settle. 

For the CASE II, 'e- ' when K < 0, our analytical results 

show that the prey population N
1 

goes to a unique finite va1ue as 

-->oo. This time the predator population N
3 

tends to a finite 

value while i s annihilated exponentially. specimen 

results of this situation are plotted in FIG. Z. This s i t ua t ion 

is quite similar to the above one except that here we have the 

annihilation of the population N
2 

instead of N
3

. 

" 

It is interesting to note that for the CASE III, i . e. , when 

K = 0 • we have all the populations remaining finite and non 

vanishing i . e. , there is coexistence of a 1 1 the three 

populations. This situation is represented by FIG. 3- I t i s 

seen that all the populations show oscillations with decreasing 

amplitudes about a finite value for which they finally settle. 

These values are not a I I independent of initial co n d i t i o n s . 

Repeating the calculations with changed inputs we find that this 

general trend persists-. 

Next we have considered the two prey-one predator system 

with the exclusion of competition and self-interaction terms for 

the prey populations. When we take into account CASE I, - e-' 

when > 0. we find that the predator population N3 
goes to a 
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unique constant value as t --> 00 . Also one of the prey 

populations, N 1 • tends to a constant value and the other. N
2

• 

vanishes exponentially. This situation is presented in FIG. 4 . 

For CASE I I • i . e . r when 0 r we find that the predator 

population N3 goes to a unique constant value as t -->co. A 1 so. 

the prey populations Nz tends to a constant va·l ue and N1 dies 

out. This situation i s plotted in FIG. s. F ina 1 1 y. for CASE 

I I I , i . e. ·when -· 0 • we obtain a 1 the three populations to have 

finite and non-vanishing values, . e. r there is co-existence of 

all populations .. This situation is shown in FIG. 6. After a few 

initial fluctuations, all the three populations reach certain 

finite constant values. These values are not independent 

initial conditions. However, the same pattern is repeated 

different initial conditions. 

The method 

there 

we have used is quite simple and can 

whenever exists a constraint in the subspace 

populations of the interacting species. 

be 

of 

of 

for 

used 

two 
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10 
20 
30 
40 
r;;o 
60 
70 
80 
90 
100 
110 
120 
130 
140 
1!70 
160 
170 
180 
190 
200 
210 
220 
230 
240 
2!70 
260 
270 
280 
290 
300 
310 
320 
330 
340 
3!70 
360 
370 
380 
390 
400 
410 
420 
430 
440 
4!70 
460 
470 
480 
490 
r;;oo 
!710 
!720 
!730 
?40 
r;;r;;o 
?60 
?70 
?80 
?90 
600 
610 
620 
630 
640 
6?0 
660 
670 
680 
690 
700 
710 

APPENDIX I 

REM RUNGA KUTTA METHOD MODIFIED BY MERSON 
REM ONE PREY TWO PREDATOR SYSTEM 
REt'1 k > 0 
DIM WC10) 1 AkC10) 1 BkC10) ,XOC10l,XC10),X1C10),X2C10),X3C10) 
D I t1 X4 C 1 0 J , ><t? C 1 0 J F ( 1 0 ) . 
INPUT "D I t1ENS I ON CJF D IFF. EQ. " , Nn 
COM A,B,C,D,Ee,Ff,G,D1 
A=.18 
B=.0021 
C=.0049 
D=.0032 
Ee=.09 
Ff=.0019 
G= ~- 17 
D1=.002 
READ Hh,Tin~TendiHprint 
DATA .1,0.~luOO,. 
FOR I=1 Tu Nn 
READ XOCI) 
NEXT I 
DATA 90,60,40 
J=O 
Acc1=1.E-4 
Acc2=1.E-6 
Hmin=l.E-7 
ALPHA OFF 
GIN IT 
GRAPHICS ON 
FRAME 
AXES 1.~1A20,10,10,10 
r·10tJE 4u .,. 0 
LABEL "fime Vrs Population Size" 
t10VE 40 8!7 
LABEL "One Prey-Two Predator System" 
~10VE 70 8 0 
LABEL "k>O" 
M01,)E ? , 8? . 
Label$="Populat1on Size" 
FOR I=1 TO 1? 
LABEL Label$CI,IJ 
NE><T I 
MOVE 10 78 
LABEL "70" 
MOVE 10 ?8 
LABEL ''SO" 
MOVE 10 38 
LABEL "30" 
MOVE 10 18 
LABEL "iO" 
MOVE 80 3 
LABEL "firne(Secs)" 
MOVE 1?,3 
LABEL "0" 
MOVE 6!7 3 
LABEL "it?O" 
MOt..JE 11? 3 
LABEL "300" 
MOVE 123,?8 
LABEL "1" 
t10VE 123,26 
LABEL "2" 
MOVE 44 10 
LABEL "3". 
MOVE 120,60 
LABEL "N" 
MOVE 120 28 
LABEL II 1'-1"' 
MOVE 41 12 
LABEL "~I" 
MOVE ? 90 
PRINT ?. INITIAL X= " ; X 0 ( 1) 



720 
730 
740 
7?0 
760 
770 
780 
790 
800 
810 
820 
830 
840 
8?0 
860 
870 
880 
890 
900 
910 
920 
930 
940 
9?0 
960 
970 
980 
990 
1000 
1010 
1020 
1030 
1040 
10?0 
1060 
1070 
1080 
"1090 
1100 
1110 
1120 
1130 
1140 
11?0 
1160 
1170 
1180 
119 0 
1200 
1210 
1220 
1230 
1240 
12?0 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
13?0 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 

MOVE ? 87 
PRINT rl INITIAL Y= 11 

; XO ( 2) 
MOVE ? 84 
PRINT I. IN I "f. I AL Z= 11 

; X 0 (3 ) 
MOVE ?,so 
PRINT ' A, B, C, D, Ee , 11 

MOUE ? 77 
PRINT A·B;C;D;Ee 
MOVE ? 74 
PRINT ?oFf G D1 11 

MO~JE 2 71' ' 
PRINT Fft•G;D1 
FOR I=1 0 Nn 
WCI)=XOCI) 
NEXT I 
Tout=Tin+30 
J=J+1 
IF J=1 THEN 1020 
MOVE CTf/2)+?,Zf 
Zf=XC1)+10 
LINE TYPE 1 
DRAW CTout/2)+?,Zf 
MOUE CTf/2)+?,Xh 
Xh=XC2)+10 
LINE TYPE 3 
DRAW CTout/2)+?,Xh 
MOVE CTf/2)+?,Xn 
Xn=XO) +10 
LINE TYPE 8 
DRAW CTout/2)+?,Xn 
Tf=Tout 
IF Tout<Tend THEN 10?0 
STOP 
T=Tout 
Tout=Tout+Hprint 
Rzero=1.E-7 
S=Hh 
I swh= 0 
Hsv=S 
Cof=Tout-T 
IF ABSCS)<ABSCCof) THEN 1160 
S=Cof 
IF ABSCCof/Hsv)<Rzero THEN 17?0 
Iswh=1 
FOR I=1 TO Nn 
XOCI)=WCI) 
NEXT I 
Ht=S*l./3. 
T=T+Ht 
CALL GuncCXOC*),Nn,FC*)) 
FOR - I= 1 TO Nn 
Xl C I )=Ht*FC I) 
NEXT I 
FOR I=l TO Nn 
XCI)=WCI)+X1CI) 
NEXT I 
CALL GuncCXC*),Nn,F(*)) 
FOR 1=1 TO Nn 
X2 C I )=Ht*FC I) 
NEXT I 
FOR I=l TO Nn 
XCI)=WCI)+CX1CI)+X2CI))/2. 
NEXT I 
T=T+. ?*Ht 
CALL GuncCXC*),Nn,FC*)) 
FOR I=l TO Nn 
X3C I )=Ht*FC I) 
NEXT I 
FOR I=l TO Nn 
XCI)=WCI)+.37?*X1CI)+1.12?*X3CI) 
NEXT I 
T=T+.?*S 
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1440 
14'?0 
1460 
1470 
1480 
149 0 
1'?00 
1'?10 
1'?20 
1'?30 
1'?40 
1'?'?0 
1'?60 
1'?70 
1'?80 
1'?90 
1600 
1610 
1620 
1630 
1640 
16'?0 
1660 
1670 
1680 
1690 
1700 
1710 
1720 
1730 
1740 
17'? 0 
1760 
1770 
1780 
1790 
1800 
1810 
1820 
183 0 
1840 
18?0 
1860 
1870 
1880 
1890 
1900 
1910 
1920 
1930 
1940 
19'?0 
1960 
1970 
1980 

CALL GuncCXC*),Nn,FC*)) 
FOR I=1 TO Nn . 
X4 C I ) = H t *F C I ) 
NEXT I 
FOR I=1 TO Nn 
XCI)=6.*X4CI)+1.5*X1CI)-4.'?*X3CI)+WCI) 
NEXT I 
CALL GuncCXC*),Nn,FC*)) 
FOR I= 1 TO t~n 
X'? ( I ) = H t *F ( I ) 
t~EXT I 
FOR I=1 TO Nn 
XC I)=. '?*X5 (I) +2. *X4 C I)+. 5*X1 C I) +LJ C I) 
NEXT I 
FOR I=1 TO Nn 
WCI)=XCI) 
NEXT I 
FOR I=1 TO Nn 
AkCI)=ABSC.'?*Acc1*WCI))+Acc2 
BkCI)=ABSC-.'?*X'?CI)-4.5*X3CI)+4.*X4Cl)+X1Cl)) 
NEXT I 
FOR I=l TO Nn 
IF ABSCWCI))<Rzero THEN 1680 
IF BkCI)>AkCI) THEN 1770 
NEXT I 
IF Iswh=1 THEN 17'?0 
FOR I=1 TO Nn 
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IF 8kCI)>.03125*AkCI) THEN 1100 
NEXT I 
S=S*1.5 
GOTO 1100 
Hh=Hsv 
GOTO 1900 
Cof=.'?*S 
IF ABSCCof)>=Hmin THEN 1830 
S=Hmin 
IF Hsv<O. THEN LET S=-S 
IF' Is~"h=1 THEN 1750 
GOTO 1100 
FOR I=l TO Nn 
WCI)=XOC!) 
t~EXT I 
T=T-S 
S=Cof 
Is~"h=O 
GOTO 1100 
GOTO 880 
STOP 
END 
SUB GuncCX(*),NnfF(*)) 

F~0~c~)~A~x?i~=B~X~~)~~C1)-C*XC1)*XC2)-D*XC1)*XC3) 
FC2)=-Ee*X(2)+Ff*X(2)*XC1) 
FC3)=-G*XC3)+01*X(1)*XC3) 
SUB END 



10 
20 
30 
40 
?0 
60 
70 
80 
90 
100 
110 
120 
130 
140 
1?0 
160 
170 
180 
190 
200 
210 
220 
230 
240 
2?0 
260 
270 
280 
290 
300 
310 
320 
330 
340 
3?0 
360 
370 
380 
390 
400 
410 
420 
430 
440 
4?0 
460 
470 
480 
490 
?00 
?10 
?20 
?30 
?40 
5?0 
560 
?70 
?80 
590 
6 00 
610 
620 
630 
640 
650 
660 
'670 
680 
690 
700 
710 

APPENDIX II 

REM RUNGA KUTTA METHOD MODIFIED BY MERSON 
REM TWO PREY ONE PREDATOR SYSTEM 
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REM j>O 
DIM WC10) 1 AkC10) 1 BkC10),XOC10),XC10),X1C10),X2C10),X3C10) 
DIM X4C~OJ X?C10J FC10) 
INPUT "D H1ENS I ON 6F D IFF . EQ . " , Nn 
COM A,B,C,D,Ee,Ff,G,D1 
A= .12 . . 
B=.0014 
C=.11 
D=.0049 
Ee=.045 
Ff=.0039 
G=.0019 
D1=.01? 
READ Hh,TinATendiHprint 
DATA .1,0,1uOO,. 
FOR I=1 TO Nn 
READ XOCI) 
NEXT I" 
DATA 80,70,60 
J=O 
Acc1=1.E-4 
Acc2=l.E-6 
Hmin=·l. E-7 
ALPHA OFF 
GIN IT 
GRAPHICS ON 
FRAME . 
AXES 1A1A20,10,10,10 
~10~JE 4 u ·t 0 
LABEL "fime Vrs Population Size" 
~10UE 40 85 
LABEL "f~-Jo Pre)-•-One Predator System" 
MOVE 70 80 
LABEL "j>O" 
~10~JE 5, 8? . 
Label$="Populat1on Size" 
FOR I=1 TO 1? 
LABEL Label$ [I , I ] 
NEXT I . 
MOVE 80 3 . 
LABEL "fime(Secs)" 
MOVE 10 78 
LABEL "3?0" 
MOVE 10 ?8 
LABEL "2?0" 
MOVE 10 38 
LABEL "i?O" 
MOVE 10 18 
LABEL "SO" 
MOVE 15 3 
LABEL "0" 
110VE 67 3 
LABEL "75" 
110VE 11? 3 
LABEL "1SO" 
MOVE 123

1
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LABEL "1' 
110VE 123,27 
LABEL "3" 
MOVE 53 10 
LABEL "2" 
MOVE 120,80 
LABEL "H" 
MOUE 120,29 
LABEL "N" 
MO'-.JE 50 12 
LABEL "N" 
110VE 5 9 0 
PRINT ?.INITIAL X= ";XOCl) 



720 
730 
740 
7?0 
760 
770 
780 
790 
800 
810 
820 
830 
840 
8?0 
860 
870 
880 
890 
900 
910 
920 
930 
940 
9?0 
960 
970 
980 
990 
1000 
1010 
1020 
1030 
1040 
10?0 
1060 
1070 
1080 
109 0 
1100 
1110 
1120 
1130 
1140 
11?0 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1230 
1240 
12?0 
1260 
1270 
128 0 
1290 
1300 
1310 
1320 
1330 
1340 
13?0 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 

110'JE ? 87 
PRINT n It--1 IT I AL Y= " ; X 0 C 2 ) 
1'10'.lE ? 84 
PRINT "INITIAL Z= ";XOC3) 
MOVE ?1.80 
PRINT ' A, B, C, D, Ee , " 
M01..)E ? 77 
PRINT A;B;C;D;Ee 
MOVE ? 74 
PRINT "Ff, G , D1" 
MOVE 2 71 
PRINT Ff·G;D1 
FOR I=1 fo Nn 
WCl)=XOCI) 
NEXT I 
Tout=Tin+30 
J=J+1 
IF J=1 THEN 1020 
MOVE CTf/1)-10,Zf 
Zf=CXC1)/?)+10 
LINE TYPE 1 
DRAW CTout/1)-10,Zf 
MOVE CTf/1)-10,Xh 
Xh=CXC2)/?)+10 
L I t~E TYPE 3 
DRAW CTout/1)-10,Xh 
MOVE CTf/1)-10,Xn 
Xn = (X ( 3 ) /? ) + 1 0 . 
L I t~E TYPE 8 
DRAW CTout/1)-10,Xn 
Tf=Tout 
IF Tout<Tend THEN 10?0 
STOP 
T=Tout 
Tout=Tout+Hprint 
Rzer·o=1. E-7 
S=Hh . 
Iswh=O 
Hsv=S 
Cof=Tout-T 
IF ABSCS)<ABSCCof) THEN 1160 
S=Cof 
IF ABSCCof/Hsv)<Rzero THEN 17?0 
Isl"h=1 
FOR I=l TO Nn 
XOCI)=WCI) 
NEXT I 
Ht=S*1./3. 
T=T+Ht 
CALL GuncCXO(*),Nn,FC*)) 
FOR I=1 TO Nn · 
X1 (I )=Ht*FC I) 
t,lEXT I 
FOR I=1 TO Nn 
XC I )=W( I )+Xl< I) 
NEXT I 
CALL Gunc(X(*),Nn,F(*)) 
FOR I=1 TO Nn 
X2( I )=Ht*FC I) 
NEXT I 
FOR I=1 TO Nn 
XCI)=WCI)+CX1CI)+X2CI))/2. 
NEXT I 
T=T+.?*Ht 
CALL GuncCXC*),Nn,FC*)) 
FOR I=1 TO Nn 
X3C I )=Ht*F< I) 
NEXT· I 
FOR I=1 TO Nn 
X ( I ) = W C I ) + . 3 7? *X 1 ( I ) + 1. 12? *><3 ( I ) 
NEXT I 
T=T+.?*S 



1440 
14?0 
1460 
1470 
1480 
1490 
1?00 
1?10 
1?20 
1?30 
1?40 
1?? 0 
1?60 
1?70 
1?80 
1?90 
1600 
1610 
1620 
1630 
1640 
16?0 
1660 
1670 
1680 
1690 
1700 
1710 
1720 
1730 
1740 
17? 0 
1760 
1770 
1780 
1790 
180·0 
1810 
1820 
1830 
1840 
18?0 
1860 
187-0 
1880 
1890 
1900 
1910 
1920 
1930 
1940 
19?0 
1960 
1970 
1980 

CALL GuncCXC*l,Nn,FC*)) 
FOR I=1 TO Nn 
X4C I )=Ht*FC I) 
NEXT I 
FOR I=l TO Nn 
XCI)=6.*X4CI)+1.?*X1Cil-4.?*X3CI)+W(!) 
NEXT I 
CALL GuncCXC*),Nn,FC*)) 
FOR I=l TO Nn 
X?( I )=Ht*FC I) 
NEXT· I 
FOR I=1 TO Nn . 
XCI)=.?*X?CI)+2.*X4CI)+.?*X1CI)+WCI) 
NEXT I 
FOR I=l TO Nn 
WCI)=XCI) 
NEXT I . 
FOR I=1 TO Nn 
AkCil=ABSC.?*Acc1*WCI))+Acc2 
BkCil=ABSC-.?*X?Cil-4.?*X3CI)+4.*X4CI)+X1CI)) 
NEXT I . 
FOR I=1 TO.Nn 
IF ABSCWCI))<Rzero THEN 1680 
IF BkC!)>AkCI) THEN 1770 
NEXT, I 
IF Iswh=1 THEN 17?0 
FOR I=1 TO Nn 
IF 8k(l)>.0312?*AkCl) THEN 1100 
NEXT I 
S=S*1.? 
GOTO 1100 
Hh=Hsv 
GOTO 1900 
Cof=.?*S 
IF ABSCCof)>=Hmin THEN 1830 
S=Hmin 
IF Hsv<O. THEN LET S=-S 
IF Iswh=1 THEN 17?0 
GOTO 1100 
FOR I= 1 TO t·ln 
WCI)=XOCI) 
NEXT I 
T=T-S 
S=Cof 
Iswh=O 
GOTO 1100 
GOTO 880 
STOP 
END 
SUB GuncCXC*l,Nn~FC*)) 
COM A 8 C,D Ee Ft G 01 

F: FC1)=A*XCi)-B*Xi1~*XC3) 
FC2)=C*XC2l-D*XC2l*XC3) 
FC3)=-Ee*XC3)+Ff*XC1)*XC3)+G*XC2l*XC3)-D1*XC3)*XC3) 
SUBEND 
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