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ABSTRACT

Analysis of the asymptotic behaviour of component
populations in a few three species ocosystems: viz. the oné prey
two predator system under the condition of no self interaction
and competition for the predator populations and the two pre& one
predator system without self interaction and compqtition terms
for the prey populations is done. This has been carried out by
exploiting the constraint that exists in the subspace of the two
populations and by using Laurent séries expahsions/ in the
asymptotic region in an appropriately chosen variable. We are
able to ébtain the results on'the asymptﬁtic behaviour of the
component populations as t ime tends to ‘infinity. These

behaviocurs are alsoc verified by numerical analysis on the

computer using the standard Runge-Kutta approximation method.
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CHAPTER - 1

INTRODUCTION

The stud} of the three species‘ecosystem models occupies  an
impoftant place in theoretical ecology. The elucidation of these
models will lead to ctues to an understanding of the morqvcomplex
multispecies systems . The ecosystem models, as described by =a
set of differential equations, are in general non-linear. Due to
the nonlinearity, it is very difficult to judge the .exact
behaviour of the component populations in the long run, as

usually the non-linear equations can not be solved exactly.

A great deal of work has been done on three species models.
The works of Parrish and Saila (1870), Cramer and May (1872) and
Bhat and Pande (1880, 1981) are notable in this context . The

implications of the result of a three step prey-predator food

chain {Bhat and Pande, 1981) are quite interesting. “In 'the
model three populations Nl' Nz and N3 are considered; with N2
preying on N1 and N3 preying on NZ' The modelu contained ghe
prey-predator interactions and self interaction  for the
population Nz‘ All the interact{éns were taken to be of the
Lotka-Volterra form. Due to nonlinearity of the equations, the
model was not solvable analytically. However, the behaviour of

the component populations was described using ‘numerical methods

for a certain range of parameters occurring in the model. It was



found that both N1 and N3 rose indefinitely while Nz reached a
finite constant value asymptotically. Even though the results

are quite satisfactory, the lack of an analytical base is felt.

Varma and Pande (19863 first tried to give some strong
analytical base to the above results. Although they were not
able to get the exact solutions, they obtained analytically the
. behaviour of thg populations in the asymptotic regién' as

t -=--> o00.

In the present dissertation, we extend the work of the above
authors to the one prey-two predator system and the two prey-one
predator system. In the case of one prey-two predator system the
self interaction and competition ferms are excluded for the
predator pepulations, whereas in case of the two prey-one
predator system the self-~interaction and compeitition terms for
the .prey populations are excluded. These results give the

earlier results a more strong analytical base.

Our resu}ts have been obtained by exploring a constraint
that exists in the subspace of two populations, and by using
suitable Laurent series expansiongs in the asymptotic region for
an appropriately chosen variable. Vie are able to obtain resuits
on the asymptotic behaviour of the three spedies. The precise
conditions pertaining to the asymﬁtotic behaviour are also
obtained. The method used for the purpose is quite sfmple and

has got reasonably good applicability.



Al]l] the results obtained in the above manner are verified by
numerical analysis on the computer. The verification has been
carried out on H._P. 9836A computer, using the - Runge-Kutta

approximation method.



CHAPTER ~ 11
REVIEW OF SOME ECOSYSTEM MODELS

We shall build up the three species ecosystem model step by

step, starting with the single species system, and analyse it
explicitely in this chapter. Thg lattef is the simplest of "
possible - systems realised only under extremely special
conditions. Let us assume an "unlimited environment'". It can be

further ;ssumed that the individdals have no effect on one
another ., and that the rate of growth per individual is the same
for all individuals and is a constant in time. If we denote this
rate by o« and the population by Nltt), then the dynamiéa of

this system is given by the eguation

le :
- = a N ) _ €1.13

dt

which has the simple solution,

N, (o) e Ot (1.2)

i

Nltt)
where NI(O) is the population at time t = 0.

This is the well! known Malthusian picture of population growth
where the ﬁopulation rises exponentially with t ime (Pielou,

19773 .



But in reality the environment is not an unlimited one. The
food available to the population is sooner or later going to get
limited because of the "rising population. Peari-Verhulst
suggekted a modification of ¢« to (»0~ BNI) which leads to a
fall in the rate with increase in population. The equétion.
then, is

dN

- =z (a -8B NIJNI ' (1.3)
dt

and the solution to this "Pearl-Verhulst logistic equation" iz:

N (t)

]

_______________ (1.4)

where the constant eato is given in terms of the injtial

population N1(°) by,

(as B}y - NI(O)

a
I I S (1.8
Nlto)

The soclution has an asymptotic value as t ---> ©, which is o8
The value N1 = G/B g the maximum that the population can reach
and is therefore called the "carrying capacity" of the given
environment.

Now we consider that there are two populations N1 and NZ
such that N, take its food directly from the environment, as in

1

the earlier models, but Nz derive its food from N1 only. The



presence of‘Nz thus affects the growth rate a. Considering the
simplest possibility we replace o by (a - AINZJ. where - Al is a
positive constant. So we get,
dN, ' _
-— = (a - X,N?) Mi ) {(1.6)
dt e

The second term on the right hand side in this equation describes
the interaction between the two populations. Such an interaction

term should clearly also govern the rate of change of the

population Nz. but the contribution should new be positive. We
thus have,
sz
- « AN N (1.7)
dt 212
where XZ is a positive constant. 1f the population N2 is left
to itself, it should obviously die out. Assuming that thé decay

rate per individual, say y; is a constant in time and is the same

for all individuals, we immediately have,

dN
- — « am YN : : - (§1.82
dt

where Y is again positive. The complete equation for the

evolution of the population Nz can therefore be written as:

sz

dt

= ~YN_ + XM_NN €1.9)



This system, given by equation (1.6} and (1.9) is the well known
Lotka-Volterra model (Pielou, 1877), describing a two species

prey-predator system.

Equations (1.6 and (1.9) are coupled nonlinear equations
which cannot be solved énalytiéally. We have to consider soﬁe
approximations and with the help of nqmerical methods we can
solve them. In view of its nonlinear nature, it is unlikely that
the full information conteni of this systeﬁ is uncovered by such
methods . {It may be noted that equation (1.3) is also nonlinear.
However, its simple form enables us to solve it exactly by direct
integrationi. However, an exact result, can be established.
This was done originaiiy by Volterra (1827). Volterra observed
that the system possesses a conserved quantity, using which it
can be proved that the system traces closed trajectories in the

1 1 2

N - Nz phase space. This shows that N and N arevoscillatory

as functions of t, implying their continued co-existence.

Arguments similar to those used in 6onstructing the Lotka-
Volterra model caﬁ also be used for two species sysgems where the
two species are no more prey and predator, but instead, 'both
derive their food directly from the environment and compete with
each other for the same. We simply keep positive signs for the
first terms on the right hand sides in equations (1.6) and (1.93,
and keep negétive signs for both the interaction terms. it is

possible that the growth of the two populations can also Dbe



influenced by "self-interaction" as in the case of equation
(1.3). Incorporating that also, we have,
dN . .
Lo N, - oNE - NN
dt 11 it 1712
(1.10)
dN
2 ~ : 2
gt €aNp = 9Ny N, - BN,

where all the parameters ¢ B are positive

1 ’

constants.

This is the well known Gause-Witt mode l for the two

competing species. Here also the nonlinear - nature of these
coupled equations make it difficult to sclve them gxactly. It is
posSible, however, to show that this system does possess stable

eduilibrium under certain conditions .given by certain inequality
relations between the various parameters involved. This may be
achieved by graphical metliods using isoclines.‘~ Another approach
is to consider the linearised version of the equations in the
neighbourhood of the equilibrium points and to use the so called

Hurwitz~-Routh criteria.

It is straight forward to generalize the above ideas to
incorporate more than two species either with prey-predator
interactions or with competition. One can also construct modelis

wherein some pairs "have prey-predation relationships and the



others have only competition. it is quite simple, then, to write

the full structure of the general K-species model .

But as reported earlier, the main difficulty in this
approach is to solve these coupled nonlinear equations without
ahy approximation. The numeric;I analysis that we may perform
for different points or even regions of the parameter space, will
never give wus the full information content of these equations.
It is thus important -to const;uct models which are more

tractable, hopefully even exactly solvable.

Let us consider the form (a - 8 log NIJ (Gompertz, 1825;
Gomantam, 1874). Equation (1.3) is then replaced by,
dN

--= = (08-8 log N) N, (1.11)
dt

which has the solution,

a/f -
Nl(t) = .e / exp [flog NI(O) - a/BY e 8t1 (1.12)

The solution is capable of yielding the same kind of population

growth as we find in the Pearl-Verhulst model, the expression for

a/B
the carrying capacity now being e / .

In a similar way, the inhibition of the growth ratea for

the population N1 due to its interaction with population Nz. may
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also be considered in the form ( & - Ailog N, 'jnstead of
C o - A Nz). The growth rate for NZ can also be
modified to (-8B + lzlog Nij in place of (-B + lzNi)" We thus

get the follewing coupled equations to describe an interacting

two species prey-predator system.

§¥£ = aN, - A N log N
dt 1 171 2
(1.133
f¥§ = -BN_ ¢+ AN_log N
dt 2 2 2 1

This system of nonlinear equatfons can be solved exactly.

This model with "logarithemic” interaction terms which we
may call the Gompertz model! can easily be geheralisea to cerr
the Gause-Witt case and the results are quite satisfactory. It
is interestidg to note that this approach can cover Yarious mﬁlli

species interacting systems, with its solvability remaining

intact.

Now we discuss” the Gompertz model for some of the three
species ecosystems. For instance we consider the one prey-two
predator system (Bhat and Pande, 1983). Lét the prey population

be denoted by N, and the predator populations by N, and N, . . The

i Z 3

t ime dévelopment of these poputations will be governed :
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(il by natural growth (for NIJ and decay (for Na and N3) terms,
which in the absence of any interactions will lead to the usual

eprnential ‘rise for the prey and exponential fall for the

predators, and

(iil by the various self interaction and mutual interaction

terms. All theée interaction terms are written in the Gompertz
form. The s«quations describing the model are,
él = FINI = oN,log NI'— BNylog N, - y /N log N,
r(xz = ~e,N, + aN,log N, - ezN'zlog N, - yznzlog N, €1.14)
ﬁa = —e3N3 + “3“3109 N? - 33N3!og Nz - Y3N31dg N3

where Ni' ﬁz and ﬁ3 stand for the respective time derivatives.
The signs of various terms depend on whether they repreéent self
interaction, compefition or. prey-pedation. The sign is negative
for the former two, and as for the latger, the term has a’
negative sign in the equation for the time develoﬁmentr of the
prey population and posftive sign in the corresponding equation
for the predator population. The €y terms are here ghe natural
growth and decay terms;: those carrying.the constaﬁts ay 31 and
Y3 Aare self interaction terms; and szand 84 terms represent

competition between the two predator populations and the

remaining terms represent the prey-predator interactions.
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Introducing the notation,

X1 = log N,; X = log N_; X_. = 1log N

1 2 2 3 3

we can rewrite equations (i.14) as,

Xp = gy —ag X - B X, - Y X
=z - a - - .

X, €yt UK, - BX, - Y X, (1.15)
= -€ a - B8 -

X3 3 * %%, 3¥, T Ya¥;

The above model yields solutions which can possess stable

equilibrium, implying co-existence of all the three species.

The above was the general situation where we considered all
the different types of interactions. It is of much interest to
see what happens when some of the above interactions are absent .
We take for instance the case with no competition and self

interaction for the predators. Soc we have

Thus equations (1.18) reduce io,

= € - O - B -
Xy 1 X 1 Xz 7 Yy
¢ = _e€ a ' (1.163
X, 2 v %% -
X = -€_ + o ¥
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We solve these wequations by differentiating once the first

egquation and substituting from second and third the values of X

2
and X3. So we get,
X1 = Av— BX1 -~ alxl ) (1.17)
where,
= 8 ¢ €
A 15 + Y1 3 and
= 8 a «a
B 1% % Y1 %

Equation {(1.17) is a nonhomogeneous linear equation, the full

solution of which is,

A E t E,t
X, = === + D, e + D,e €1.18)
B

where Di and'Dz are two arbitrary constants and,

[ - 01 + (%z - 4BJ1/z B}
El 2 e m e o e o am . — — — —_—
2
(1.19)
{ - ai - (u 2._ 48]1/21
E T e e e -
2 2
x x
when E1 and Ez are complex, we have E1 = Ez and D1 = DZ' Fof

real E1 and Ez; D1 and Dz are alsoc real.

Substituting the wvalues of Xi from equation (1.183 in the

last two equations of (1.16) and integrating we obtain,
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D E. t D E_t
1
X, = C. + Kt +a. [ -2- el &+ 2. o2 (1.20)
2 1 z ' C -
1 2
8 D E.t D E.t
X. = €. - 21 gkt +ea_. -1 o1 L2 o2 (1.21)
3 2 3 b2 - -
Yy 1 2
where,
vy, [a_e - a € ]
K = _-1__—?._2_-—_2_%__ and

C1 and Cz are two integration constants connected by,

' A
8 - Y @ e . € = .
1€y 7 "M% v %y 0 (1.22)
B
which is obtained when the expressions for Xl, XZ and X3 are
substituted in the first equation in (1.16).
1t is clear from equation (1.189) that E1 and Ez always - have
negative "real parts. Therefore, X1 (and hence Ni) is -always
finite and non-vanishing. For t —-—-=>0 , it acquires the value,
A
X (t ~=-=> ) = e-- (1.23)
1
B
As regards Xz and X3. due to the presence of the term linear in
t, as t -——-> 0, one of the predator populations blow up and the

other vanishes. Clearly, under the condition
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(0263 - 03 %) > 0, (1?24)
Nztt -—= 03 - > 00
Na(t --=>® )  e———- > 0

and'under the condition
(0233 - §3 %) < 0, (1.28)
Nz(t -—=> %) e > 0
N, Ct ~-=3>® 3 e > 0

For both Nz and N3 to remain finite and coexist, the constraint

K = 0 => (azes— “3‘:2) = 0, A _ (1.26)
i mp a /¢ = a [€ ' i i
or simply a/ 2 3/ 37 has to be satisfied.
In that case,
===3% 00 =
Xz (t ) C1
(1.272
—_—-3 00 =
X3 (t 3 CZ

we get a very similar result in the case of'tyo prey-one predator
system when we exclude.competition and self interaction for the
prey populations. As t ---> ©, one of the prey populations blow
up and the other vanishes, whereas under the constraint K = 0 all

the three populations coexist.
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The above system can also be discussed within the Lotka-

{ and the

predator populations by Nz and NB' The dynamics of the system

Volterra model, with the prey population denoted by N

for the case with no competition and self interaction K for

predators is then given by,

; 5 _
= € - Q - B 1 -

Ni iNi lNi 1N2N2 Y1N1N3
= —-€N a :

Nz ZNZ + ZNZNI -(1.28)
= - E s 3

Ny aNg * 5NN

A - B - Y =

. M, N, Ny =0 (1.29)
€+ @ N = 0

! z 1 (1.30)
_€ a -

3 v ey 0

Equation (1.30) gives,

N = -2 - 22 ' €1.31)
1

The possibility of all populations remaining finite and non-

vanishing cannot be rTuled out. But in view of the lack of exact

solution for equation €1.282 nothing definite can be said

’

analtytically in this regard. But when we look at the results

obtained by numerical analysis under the conditions :
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, .
Ci) I,
o2 %
£ €
(ii)d -g > —é and
: [+ 3 a
2 3
€ €
ciiiy -2 ¢ -8
[s 3 a
2 3

We see the following s

Under condition (il there 15 co-existence of all the three

populations. Under condition (ii}, the population N steadily

2
‘vanishes while population N1 and N3 oscillate with decreasing
amplitude about a finite value at which they finally settle.
Under condition (iii)d N3 vanishes and N1 and Nz reach certain

finite values.

Thus, we see that the results in the Lotka-Volterra mocdel
are very similar to what we obtained in the Gompertz model. They
are identical as to which populations survive and which one dies
out, but in place of the indefinitevrise of 6né of the surviving

populations in the Gompertz model, we now have the corresponding

population reaching a finite constant value. That is the
situation as regards case (ii) and {(iiil. The results in case
i) are totally similar in the two cases. Similar agreement

between .the resulits of the Lotka-Volterra model and those of the
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Gompertz model is also obtained for the two ‘prey—one predator
case (Ph.D thesis: Bhat, 1980). In fact, the main purpose in
discussing in detail the solvable Gomperﬁz model was to obtain
some guidelines as to ﬁhat kind of numerical solutions to expect
in the Lotka-Volterra case under different conditions. The
problem of obtaining more general results analytically in éase of

the LotkafVolterra model, of course, remains unsclved.

N

In this dissertation we are able té obtain the behaviour of
the three species systems'analytically in.the asymptotic region
as t -=-=> 00 . We again deal with the cases when competetion and
self interaction for the predators is excluded in the one prey-
two predator system and when the competition and self interaction
for the prey i3s3 excluded in the two prey-one predaﬁor4 system.
The details of our approach and our results are presented in the
next chapter . In the chapter following that we present some
numerical examples done in the computer, which illustrate the

analytically obtained results of the earlier chapter.

The approach followed in obtaining the analytical results of

the next chapter was first used by Varma and Pande (1986).



CHAPTER - 111!

RESULTS ON SOME THREE SPECIES LOTKA-VOLTERRA MODELS

IN THE ASYMPTOTIC REGION

‘In this chapter we carry out an analysis of certain three
species ecosystems within the Lotka-~Volterra model. In Section 1
below we consider .the one prey-two predator system in which
competition and self intera;tion terms are excluded for the
predator populations. in Section Il we deal with the two prey-
one predétor system and in this case we do not consider self

interaction and competition terms for the prey populations.

It is not possible to write the exact solutions of the above
systems. However, important "information about the populations
can be ascertained by analysing the behaviour of the Systems in
the asyﬁptotic region as t --->o00 . The results are obtained by
exploring the constraint that exists in the subspace of the two
populations .&nd using suitable Laurenf series ekpansions in an
appropriately chosen variable in the asymptotic region. We also
rillustrate. in the next chapter, our analytical' results with

numerical calculations done in the Computer.

19
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SECTIOE -~ 1|
ONE PREY-TWO PREDATOR SYSTEM
We now consider the one prey-two predator system. - Let the
prey population be denoted by N1 and the predator populations by

Nz and N3. The system under consideration is described by the

following set of equations

. 2
N = € - o -~ B -
1 lNi !Ni ININZ Y1N1N3
N_= -¢ a o .
2 zNz + ZNZNl , (2.1
= - a
Ny €3Ny v %N,N,

e, o, B ¥y , €, a € a
where all the paramgters 1 1 1 1 2 > 3 and 3 are
positive and the dots on the N's signify time derivatives. Let

8¢
us define a variable Z such that Z = e t; where § 5> 0. The above

equations in terms of Z can be written as :

dN )

8 --% = € - @ - -

2 Ny Ny BNN, - YN N,
dz
dN :

§2 --= = -€_N_ + @ _N_N ' (2.2)
4z T2 2712
dN

§7 -2 - _&e o

Z 3N * TN, Ng
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From second equation of (2.2), we get,

i dN

2
§2 -- -=-% = -e_ + aN
2 2 1
Nz éZ
1 dN
or Nl = ;- I 62 ;q“‘ d—-z-— + EZ ]
2 2

Simjlarly, we have from third equation of (2.2),

1 dN3
- 8 PR
Ni [ Z + 53 ]

Gs N3 dz

Equating equations (2.3) and (2.4), we have,

1 . dN_ 1 1 i dN

-- [ &8Z --% + 53 ] = - [ 82 -=- -—=-Z & 53 3
a @
2 dz Nz 3 Na dz
sz YA dN3 z “263 - a3 2
or, (13 —_——— - - QZ e e T e — - ——
8
N2 d2 N3 dz
dN, dN, k dz
or, “3 - - uz - = - -
Nz N3 8 YA
where,
k = uz % - asez

Integrating equation (2.5) we havei

u3log.Nz - azlog N3 = ( k/68) log Z + log A

(Z2.3)

(2.4%)

2.8%)

(2.6)



a .
3
N k/8
or, log -~=-~- = log A 2
Nuz
3
a
st k /g
or, ~-=-- = A 2 .
a
N 2
3

where, A is a

In view

constant determined by the

21

initial

of the self interaction term present in the

€2.7)

conditions.

first

equation of (2.2) which generally leads to frictional damping and

‘saturation (Volterra,

of equations such that N1

.of the positivity of 6; we look

lim
Z-->0

Ni(Z) a

where ao is a constant.

1927) we

-

This would

look for a sclution of the
constant ag t ~--> 0 | or
for,

imply around 2Z =

following Laurent expansion for Ni(Z)

® -n
N.(2) = a + L a 2
1 o -n
n=1
We then have,
d
lim Z -- (log Ni) =
Z~-=> dZ

system

in view

(2.8)

0 the

(2.9)

(2.10)
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Now first equation of (2.2} can be written as,
d

62 -- (log N,) = € -o N -8 N. -~ YN €(2.113
1 : :
az 1 1 172 13

Using equation (2.10), we get,

lim (€ - aN - B N - YN = 0
s 00 1 12 T 12 13
or, lim (8N + YN, 2 = €, - @ a (2.123
g 102 13 1 1%
= C

where C is a constant. Thus the Laurent expansions of N

Z(Z) and
'N3(ZJ around Z = o should be,
@0 -n
N_(Z) = b + Y £(Z2)Y + I b Z (2.13)
2 0 1 ~-n .
n=1
@ -n
N_(Z) = ¢ - B f(Z2) + T ¢ 2 (2.14)
3 o 1 n=g P

where f(Z) will be a .polynomial in Z with some leading power Zm,

where m > 0. The above general results will satisfy equation
(2.12). However, in view of the fact that our populations should
always be positive, i.e., NZ(Z), N3(Z) > 0 for all Z > 0, we must
have f(Z) identically equal to zero. This is because ctherwise,
at least for very large Z, where the leading terms will be
coming from £(Z), either NZ(Z) {when f(Z) is negativel or N_(Z)

3

{when f(Z) is positivel will become negative. We thus conclude
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that the desired expansions for NZ(Z) and N_(Z) have to be,

3
0 “n
N, (2Z) = b+ tr b 2 (2.185)
2 o -n
n=ti
® -n
N_(Z3 = ¢ + r ¢c 2 (2.16)
3 o -n
n=1i .
Substituting equations (2.18) and (2.16), equation (2.7) can now
be written in the form,
e _ a
[b°+zb_nz“13 ’
n=1 k/s .
———————— - e e = A Z _ . (2.17)
0 a
[l ¢ +§% ¢ 2 n ] z
o -n
n=1
Three casés now arise corresponding to k > 0, k < 0 and k = 0

We consider them one by one.
CASE - I: - When k > 0.

Since k > 0, the right hand side of equation (2.17) tends

“to o for Z ~---> oo, whereas on the left hand side we are left

with the ratio of numerator and denominator which is a

constant. Thus, for right.hand side to be infinity we should put

¢, = 0 and then % c_nz'" will contribute for tﬂi positive powers
n=1

of YA wheh it goes to the numerator. Thus we are‘left with the

following expansions, for NZ(Z) and NS(Z) as 2 =--=> oo
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NZ(Z?

n
o

+
"t
o

N

‘ (2.18)
on |

N, (2] c YA (2.19)
3 -n ‘

Substituting equations (2.9), (2.18) and €2.19) in the first

.equation of (2.2), we obtain

- © - o0 -
e, ta +%a z27"1 -4, ta +2a 21 ta +z1 a 2z M
1 o -n 1 o -n o -n
n=1 n=1 n=1
0] 00
- 8. ta +z2a 2™ tb +3x b 2 M
1 o -n o) -n
n=1 n=1
o} o0 ~
-y, fa +z a 2™ 01 ¢ 2™
1 -n -n
n=1 n=i
d 0 -n
= §2 -- [a + I a_n Z ]
dZ n=1
© .
-n-1
= §2 [ £ (-n) a-nz ] (2.20)
n=1

Substituting equations (2.93, (2.18) and (2.19) in the second

equation of (2.2), we have,
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00 -n 00 -n 0 -n
-&;Z[bo+£b_nz 3+az [b°+£ b_nZ ][a°+2: a_nZ ]
n=1 n=1 n=1i
d o0 -n
= 82 -- I bo + L b_nz ]
dZ n=1i
® : n-1
= 62 ( I (-n) b_Z ' 1 (2.21)
n=1{
Lastly, substituting equations (2.913, (2.18) and (2.193), in the
last equation of (2.2), we get,
00 _ 00 _ 0 -
el Zc zZ ™1 +a,t £ c 2™ a +3:a _z "1
3 . ~n 3 . —n o -n
n=i .n=i n=1
d 00 - _
= 6z --1 £ c_ 2z " ]
dZ n=i
o -n-1
= 62 t I (-n) c¢__Z ° ] (2.22)
n=ij
Equating the coefficients of like powers of Z we obtain from
(2.20),
z .
€ a Y -B.,a b = 0 (2.23)
o 1 i 0o o
From (2.21), we have
~-€ o = (2.24)
2ot %2P6% 0 '
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Thus we have from (2.24)

a = --4_ (2.28%)
(o]

€, a - a,a z2 . 8B .a b = 0 (2.26)
1 o i o 1 o0 o .
€ - a - B =
or i 125 1bo 0
a,€
172
= € - ~--=-
or Bibo, 1 .
2
Here we put the value of a obtained from equation (2.25)]. Thus,
e, Q - € _a
b = —-1-%—*-—-—2-1- . . 02.27)
o] B« .
1 2

Equation (2.7) vyields,

ool a3 00 _uz k/§
t b +% b 2z "] t L c 2z ™M1 = A Z
o -n S ¢!
. n=1 n=i
«a ., —a k/é&
or b S¢c . z7'y ¢ < Az
o ~-1i
Rest of the terms vanishes in the limit 2 --->00 . So we have,
laz = k/&
or, § = k/ia ' : (2.282
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Reverting to the wvariable t, we thus obtain the following

asymptotic behaviour for the three populations N

1(t), ‘Nz(tJ and
N3(t).

i = = € a
lim Nl(tJ ao 2/ 2

t-->00

e, a, - €,0Q .

lim Nz(t) = bo = roz gl (2.29)
-

t 00 Blaz

—(k/ath
lim N3(t) = c_ie —————— > 0

t-->00

Thus, from the above equations we come to the conclusion that the

prey population N1 uniquely goes to the value ez/a2 as t --->00 ,
in which case one of the predator population Nz tends to the
( ‘eilaz -5 ul)
value ~-—-=---—--—------ and the other predator population N3
By%s
vanishes exponentially. The constant c_; is determined by the
requirement that,
a
b 3 :
S = A (2.30)
a
(c 3 2

where A is a constant appearing in equation (2.73 and 'is

determined by the initial conditions. \
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CASE - 11: - When k < 0.

As k < 0, the right hand side of equation (Z.i?) tends to
zero for 2 --->%, whereas on the left hand side we are again
left with the ratio of numerator and denominator which is a
constant. - So in this case for righ; hand side to be zero we

should put bo = 0 and then % b‘_nZ_n will contribute for the

n=1{
powers of Z. Thus we have the following expansions for Nz(Z) and
N3(Z), ag Z -=--~> ®
© . .
N (z) = I p z " (2.313
2 -n
n=q . :
m .
N,(2) = ¢ + I ¢ 277 (2.323
3 o] n=1 -n :

" whereas the expansion for Nl(ZJ remains as usual as in equation
(2.9).
Substituting equations (2.93), (2.31i) and (2.32) in first equation

of (2.2), we obtain

© o _ 00 -n
e, ta + L a z ™1 - a, ta +L a z "1 1a + £ a2z "1
1 o -n 1 o -n o _. —n
n=1 n=1i n=1
[o o] : 00 -n
- B, ta +Za z ™M1z op 2z M
1 o -n -n
n=1 n=q
00 o0 -n
- Y ta +Z a z2 %1 1ec +I ¢ 2™
1 -n o _. —n
n=1 n=1
d 0o -n
= 62 -- ta + L a_nZ ]
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8

(-n) a_nz‘“'11 : (2.33)

1

= 82 I

o

n

Again, substituting equations (2.9), €2.31) and (2.32) in the

second equation of (2.2) we obtain

® -n © -n © -n
-¢, [ £ b 2Z ] + a,l Z b 2Z ] [a + L a yA ]
2 -n 2 -n -n
n=q n=q n=1
d o
-n
= §2 -~ I I b_nZ ]
dZ n=g
® -n-1
= 82 [ £ (-n) b_nZ 3 (2.34)
n=q :

And lastly substituting equations (2.9), €(2.31) and (2.32) in the

last equation of (2.2), we get

(o 0] (0] [ o]
e, fc_+Z c zZ "1+ a, fc +Lc Z "1 ta +% a 2z "
3 o -n 3 ] -n l+] . -n
n=1 n=1 n=1
d 0 _
= 62 -- [ ¢ + L ¢ YA n]
dz- ° p=g 7
© _
= 62 [ L (-n) ¢ 2z MY (2.35)
n=1 -n

Equating the <coefficients of like powers of Z we obtain from

equation (2.33)

1]
o

(2.36)
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From equation (2.34) we have,
- %co + a3coa° = 0
From this equation, we get

ao = 23/ 0.3

And from equatioh (2.35) we have,

2
- Q - -
elao ]ao Yja CO 0
= € - a
or cho 1 o
Q. €
= e .~ --1.3_
1
a
3
8103 - 0183
or, co 2 eem e, —e—— -
3Yl

(2.37)

(2.38)

(2.39)

Equatioh (2.7) yields in the similar way as in the last case,

Reverting L to the wvariable t, we thus obtain’

asymptotic behaviour for the three populations Nl(t)'

N3(t) as t --->0% ,
. €3

lim N, (t) = a = .
t-->00 1 ° a

3

(k/ )t

lim Nz(tJ = b__ e B L > 0
t-->00 q

€4 Q a4 €
lim N (t) = ¢ = e S S -
t~->00 a vy

(2.40)

the following

Nz(t) and

(2.41)
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Thus, from the above equation we again find that the prey

population N, uniquely goes to the value € /& as t-->0 , while

1 3 3
€y 03 a4 €3
the predator population N3 tends to the value -------—----~ and Nz
. a
371.

vanishes exponentially. The constant b_q is determined by the
requirement
a

(b_ ) 3

---24.__ - ' (z2.42)

¢2
o]
o

where A is a constant determined by the initial conditions.

CASE - 111 :- When k = 0.

As- k = 0, the right hand side of equation (2.17) reduces to
A as Z --->00 . So in this case we have the following expansions

for NZ(Z) and N3(Z),

o -n .
N,(z) = b + Ibp 7 (2.43)
: n=1
® -n
N,(Z) = ¢ + 1 c_ 2 (2.44)
n=1 :

and the expansion for NI(Z) remains the same as in equation

(2.93.

Substituting equations (2.98), (2.43) and (2.44) in the first

equation of (2.22, we get
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00 on ® _ ® _
e, la_+X a_2 "1 - ala_+ £ a_2 "1 ta_ +% a_2 "1
o] -n o -n o . -n
n=1 n=1 n=1
[0 0] [0 0]
-B.ta +La 2™ +r b 2z M
1 ] -n o -n
n=1 n=1
’ 00 _ oo
-y, ta +Z a 2™ te +xc z M
i o -n o) -n
n=1 n=1
d w _
= 8Z --0 a + I a_nZ n]
) dz n=1
[00]
-n-1 .
= 82 I (-n) a__2 ) (2.45)
n=1{

Again stustituting equations (2.9), (2.43) and (2.44) in the
second equation of (2.2) we have,

0
z

n=1 n=1 n

d 00
= 8z -t b+ Ib_ 2"
dZ n=1
= szt B (-m b_nz'“°11 (2:46)
n=1 .

And lastly substituting equations (2.9), (2.43) and (2.44) in the

last equation of (2.2) we get,

® , 1o
- L
€1[c0 +n_1c—nz 1l o+ a, o .

]
(=
N

t

|
—
[¢]
+

o ™8
Q
N
\nad
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(-n3 ¢z "1y
~-n

1

00
= 8§21 )

n

Equating the coefficients of like powers of Z we obtain

equation (2.45)

2 .
Eiao alao - Blaobo B choao - 0

From equation (2.46) we have,

|
]
o4
+
Q
o

o]

+4

Hj
o

bo and c0 are given by equation (2.48).

€ - a - B - =
1 1%0 lbo cho 0
€ga, ~ €,0
or ] b + Y. ¢ = _1-2_.._.__2__1
o 1 o a
2
Here we put the value of a from equation (2.51). So,
€E® - € a - Y
1 2 2 1 1 2 o
b T m e L e 2
o 8 a

(2

(2.

(2.

(2.

(2.

(2.

.47)

from

48)

49)

50)

51)

$2)
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and

c = -t.e____& 1l el 2 (2.53)
[e]

------ = A ' (2.54)

where A is a constant determined by initial conditions.

Now reverting to the variable t we have the following asymptotic

behaviour for the populations Nl(tJ, Nz(t) and N3(tl as t ---> 00
€
lim N (t) = a_ = Z . 3
t--> az a3
€,0 € 50 Yy a,€

lim N (t) = b_ = Sloe Lzt tlEle (2.58)
t-->00 81 (12

g €10, T €pay T ay By b,

lim

N.(t) = ¢ g S

t 00 3 ° a

w0 2 T
Thus, all the three populations tend to constant values
asymptotically. However, whereas N1 necessarily tends to ez/az,

the others tend to constants which are determined by the initial

conditions.
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SECTION - 11

TWO PREY-ONE PREDATOR SYSTEM

In this section we consider the two prey-one predator

system. Let the prey populations be denoted by N1 and N2 and the

predator populatibn by N3' The system under consideration is

described by the following set of equations

N = € -
1 1N1 Y1N1N3
= € -
Nz PL YZNZN3 (3.1)
N, = -€N_+ aNN_ + BNN_ + YN_°
3 33 3 13 323 33
where the parameters et Yy E,0 Y, €4, éa. 83 and Y, are

positive and the dots on the N’s signify the respective time

derivatives. In terms of variable Z defined by,

where &8> 0, the above equation become,

4z €1y Y1713

§Z fﬁé = e N, - y,NN (3.2)
<z 272 27273
dN, 2

82 --= = ~glNy - ygN;w v a NNy v 83NN

dz
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From the first two equatfons of €(3.2), equating the values of N

3
in the similar way as in the previous section we get,
i 1 le 1 1 sz
——— L 82 -- --% -~ éll = ==L 82 —- -== - g,
Yl N1 dZ Yz Nz dZ
‘ dN1 sz . j dz
or ‘Yz —— — Yl ——— - - - -~
N1 4 N2 § Z
which on integration leads to,
N Yz
oo - g gtifsed €3.3)
‘1
Nz

where B is a constant determined by the initial conditions and
i = Y_¢€ -y, € (3.4)

In view of the self interaction term present in the last equation
of (3.2) which generally leads to frictional damping and

saturation, we look for a solution of the system of equations

such that N3 ---> constant as t ---> o . or in view of the
positivity of , we look for,

lim N3(Z) = c oo (3.5)
Z--%0 °

Thus around 2Z = o0, ﬁe have the following Laurent expansion for

N3(ZJ
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00
N (z23 = ¢ +%f ¢ 2z " (3.6)
3 ] -n
n=1
We then have,
d
lim Z -- (log N3) = ] (3.73

Z~~)>0 dZ

The last'equation of (3.2) can be written as,

-d
§ -- = - -
Y (log N3) €, 73N3 + uaN1 + B3NZ
dz
‘' Using equation (3.7) we get,
Iim a3N1 + 83N2 = €5+ YgC (3.8)
Z-->00
= D

where D is a constant greater than 83.

Thus, the Laurent.expansions of NI(Z) and NZ(Z) around Z = o
should be,
N @ n
1(2) = ao + ﬂaf(Z) + I a_nZ (3.9
n=1
® -n
N,_(Z> = b - a_f(2) + b 2 (3.10)
2 o 3 n=y 0 ;

where fC(Z2) will be again a polynomial in Z with some leading
power Zm. where m>0. In view of the fact phat populations

should always be positive, i.e., N1(ZJ. NZ(Z) > 0 for all 2 > O,
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we must have f(Z) identically equal to zero.
the expansions for NI(Z) and NZ(Z} as,
© -n
N, (2) = a + & a Z
i o -n
i n=1
@ -n
N_(2Z) = b + ¢ b 2
2 o -n
n=1}
Substituting (3.11) and (3.12) in equation (3.3) we get,
(ee] R
fa +ta_2 ") 2
n=1 i’ 68
————————————————— = B 2
00 -n Y
(b +zp b 3z "1}
o -n
n=1
j » 0, 3 ¢ 0 and

Three cases now arise corresponding to

(3.

€3.

(3.

€3.

(3.

Thus we should have

113

123

131

this

14)

15)

CASE - ¥:- When j > 0.

With the same argument as in the previous section for
case, @5 Z ---> o0 we put bo = 0 and get the following asymptotic
expansions for Nl(Z) and NZ(Z)

(oo}
, -n

N, (2Z) = a + I a YA

1 o -n
n=1
@ -n
N_(Z3 = I b
2 -n
n=h
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We now substitute equations (3.613, (3.14) and {3.18) in all the
three equations of (3.2) respectively and equating coefficients

of like power of Z as in the previous section, we obtain,

€1
c I _ . (3.16)
o]

Yy

and,

€ Y3 * g3 Y
a = -2 23___ 73 1. (3.173
[o]

G3 Yy

Constraint (3.3) then yields,
§ = —m—ee ‘ . (3.18)

Reverting to the variable t we obtain the following asymptotic

behaviour for the populations N (t), N, (t) and N_(t)

1 3
. € Y + €, Y

lim N (t) = a_ = —-1—;§ ————— 3_.1.

t-->00 3 Ty

lim N_(t) = b e /Yt ______ > 0 (3.19)
2 P h

t--%00

lim N3(t) = e, F ell Y

t~-->>00

Thus in this system we find that the predator population N3

uniquely goes to the value ( 51/ YIJ as t ---> o0 , whereas one of

the prey populations, Nl' tends to the value ----=-----—---- and

Nz vanishes . exponentially.

s
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The constant b_h is determined through
Y2
a
---%-._-- = B (3.20)
Y
1
(b_h)
where B is a constant appearing in equation (3.3 and is
determined by the initial conditions.
CASE - Il:- When j ¢ O
As j < 0, the right hand side of equation (3.13) tends to
-~=> o0 So in this case we have ao = 0, and then the

zero for 2Z

asymptotic expansions for NI(Z)

Nl(Z)

"

"ot
&
N

NZ(Z)

n
o2
+

n
o
N

whereas, the

(3.63.

Substituting equations (3.6},

equations of (3.2)

like powers of Z, we obtain,

and

respectively,

and N_(2)

2 should be,

(3.21)

(3.22)

expansion for N3(2) remains the same as in equation

(3.21) and (3.22) in all the three

and equating coefficients of

' (3.23)
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3. 2 3 2
bo e B-"§T" " (3.24)
3 2
constraint (3.3) yields,
)
§ = - - (3.25)
5Y,
Reverting to the variable t we obtain the following asymptotic
behavious for the populations Ni(tJ, Nz(t) and N3(t)v:
lim N, (t) = 177t ———=> 0
i -8
t"')m
€, Y + Y_ €
lim N, () ='b = -_-§__B§____§__§_ (3.26)
t-->00 ° 3 Y2
€
lim N3(tJ = c° = —;é
t —~>00 2

Thus we again'find that the predator

in this case

'uniquely Qoes to the value ( EZ/YZ) as t --»0 , in

of the prey populations. N tends to the value

2!
'and N1 vanishes exponentially. The constant a_s
through,
Y
(a_s) 2
..........Y ______ = B
b 1

population N3

which case one

is determined

€3.27)

where, B is a constant determined by initial conditions.



CASE -~ 15i: - When j = 0
In this case for Z ----> © , equation (3.13)
©
Y
fa + La 2z ™M 2
o ~-n
n=1i
- e - > - - - an - ——— = B
Y
w —
b +z b 2z M !
o -n
n=1
which emplieﬁ the following Laurent expansions
Nz(ZJ
o)
-n
N (2) = a + I a 2
i o -n
n=1
oo -n
N_(Z) = b + §$ b yA
2 (o} -n
n=1
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reduces to,

(3.28)

for NI(Z) and

(3.293

(3.30)

whereas the expansion for N3(ZJ is as usual as in equation (3.6).

Substituting equations (3.6),

of (3.23) respectively and equating coefficients of

Z we obtain,
El CZ
CO = ———— = -
Y4 Y2
.. . f3Yy T Y31 T M B3 bo
O (!3 Yl
and
Y
b . .3 Y1 Y73 T M % 3 \
. .

€3.29) and €(3.30) in the equations

like powers of

(3.31)

(3.322

(3.33)
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Now reverting to the variablie t we get the following asymptotic

"behaviour for the populations N (t), N,(t) and N_(t)

2 3
. €3 Yy * Yy €y - Yy Bib,
lim Nl(t) = ao 2 emem e i amel Gk ARt
t-*)& 3 1
€ Y + Y € - Y € a
lim N, (t) = b = S S S g--i—-———l--i—g— (3.34)
t-->m 3 Yj
€y €2
lim N_(t) = —=->- = -_%_
3
t-->00 : Yj Yz

Thus all the populations tend to constant values asymptotically.
However, whereas N3 necessarily tends ( ell Yl) the others tend

to constant values which are determined by the inftial

conditions.

The results of the present chapter are all summarised for-

convenience in Tables 1 and I1].
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TABLE - 1
MODEL: ONE PREY-TWO PREDATOR SYSTEM BEHAVIOUR for t ---»> o
N-eN-aNz—BNN— N N CASE 1| k > 0
17 &Ny 174 1Ny T Yy NN,
- - = = €
N, SNa v NNy Ny, =8, 2/ %2
. = - = = - 8 a
N3 63N3 + a3N3N1 Nz bo (elaz ezal)/ ) 2
N = ¢ ec(k/az)t ee=> 0
3 -1
Constraint: ' CASE 11 : k ¢ O
N 3 N /
= a = € a
3 3
__?a__ - A Zk/6 1 o
2
N3
N = b e(k/a3)t -5 0
2 -q
where N3 = c (€1°3_€3°3)/°‘3'_Y1
k = o € 3 - a3 ez
CASE I11 k = 0
N1 = ao = (-:Z/OLz = 83/0.3
:~:lctz-c-:zo;1 -Ylo.zc
N = b e kel
& o 81 az
8102 - € al _GZBIb
N_ = ¢ T e m e e e e e =
3 o a
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TABLE - I1

MODEL: TWO PREY-ONE PREDATOR SYSTEM BEHAVIOUR for t ---->00
= € - Y
N1 { N1 1 N1N3 CASE 1 i > 0
= £ - =
N, 2Na = Y NpN; Ny =8, 7 leyvg *egvydfogyy
2 -(i/y, 3t
= - - —-=>
N3 €3N3 + QBNINS + %Nst Y3N3 Nz b_h 1 0
N3 = co = ( 51/71)
Constraint: CASE 11: j < 0
Y » j
N 2 . N, = a e(J/Y:»':]t --> 0
1 BZ1/6 1 -5
Yi -
NZ
N,= b = (e y,+y 5¢6,0/08,7,)
where, N3= co = ez/ Y2
e 2T T TR P

CASE 11l: j = 0

b *3 Yy
€3 * Y3fy T Y4€33,
Na'-' b = —-==---- E ————————————
° 3 Yy
z = /oy
Ny = ey xy) = Ceplivyg




CHAPTER 1V

ILLUSTRATION OF THE ANALYTICAL RESULTS

USING RUNGE-XUTTA APPROXIMATION METHOD

In this chapter we illustrate our previously obtained

i

results using the Runge~-Kutta approximation method for numerical

analysis. This work has. been performed on the H.P. 9836A
Computer. The program used or the purpose is a standard Runge-
Kutta fifth order method moedified by Merson (see appendix). We

fed our specific numerical inputs in the program and the results

under different conditions were plotted.

The purpose of the Runge-Kutta method is to obiain an
approximate numerical solution of a system of first order
differential equations. We discuss here fhe derivation of a
Runge-Kuta second order method, on the basis of which highe;

order methods can be derived.

Runge-Kutta method is an algorithm designed to approximate
the Taylor's series solutions. Let us for example consider the

following system of differential equation,

§

dyi
—_———— = y.' = f (x, y.) (4.1)
i i i
dx
where, i = 1, 2, 3, . N

46
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With the initial condition, at x = xo

y. = y.(x ) ’ (4.2)

We seek the values, yi(x° + hl; where h is an increment,of the

independent variable x.

Expanding Y, about X in Taylor's series, we have,

hz
= ’ —_— n
yi(x0+h) yi(xo) + h yi (xo) + 1 yi (xo) + ... (4.3)
We know the first derivatives,
Y, (xo) = fi[xo' yi(xo)] : (4.4)

The total differential dyi' is written as,

dy. "(x ) 3f. Ix , y. (x )] If Ix , y.(x )1 dyk
__________ - o e . - = —— - o - — - - + ——— o ——— - - - —
dx 9 x 8yk dx
or,
dy . "(x ) _ 3f [x ,y.(x )} 3f (x ,y. (x )]
o i o
—————————— = vy "(x ) = e m e —mmm - 4 mmmomsm e — -
dx I X ayk
v .5)
fk[xo yk(xo)] . (4.8
dyk
where —----- is replaced by f [x , y,(x )1 and k =, 2, 3,....,n.
dx k o k o

Putting the values of equations (4.4) and (4.5) in equation (4.3)

we get,
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yi(x0+hJ = y.(x )Y + hf [x , yi(xo)] +
2
h 9f Ix ,y (x )1 If [x .y (xo)]
- [——mmm o2 $ e e m——
‘ + . fk[xo. Yk(xoill (4.6)
2! 3 x ¢ 'y
k
Equation (4.3) can also be written as,
xo+h
yi(xo+h) - yi(xol = xf fi(x,yi)dx . (4.7)
o

According to the mean value theorem there exists an x such that

for

We have,

o]
yi(x°+h) - y. (x) = g fi(x.yi)»dx

he [x + @h, y (x_+ gh)]

or
yi(x°+h) = yi(xo) + halfj[xo' yj(xo)] +
hazfi (xo + pzh, yi(on + qZIh? + L (4.8)
Here, al. az, p2 and q21 are so détermined that if the right hand

side of equation (4.8) were expanded in power of the spacing h,
the coefficients of a certain number of the leading terms would

agree with the corresponding coefficients in equation (4_.3).
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To avoid the higher Taylor series terms evaluation we

express qz1 as a linear combination of the preceeding value

of
fi' Thus, we have the approximation of the form
yi(x6+h3 = Yi(xo) + aikii + azxzi (4.9)
where,
k,. = hf Ix , y.(x )]
i i o i o (4. 103
k2j = hfi[x°+pzh. yi(xo) + quxii]

Now for equation (4.6) to contain similar terms as in equation
(4.93), K

23 must be expressed in terms of

This can be done by expanding KZi in a Taylor series for function

of two variables about x0 and yi(xo)' Thus,
fj[x°+pzh, yi(on + qziKii] = fx[f . Vv (xo)] +
af [xo,yi(x )1 : of . Ix , vy. (x J]]
_____________________________ +
pzh [ A ] + q21K1i
X



Substituting

(4.9) we get,
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i o
= f.[xo. yi(on] + pzh [ ——-—-— =2 3

A
(x Y1 + _ . (4.11)
o ‘

the first equatidn of (4.10) and (4.11) in equation

( ) = -
Y, x0+h yi(xo) + alhfi[xo' yi(on] + azhfi[xo. yi(xo)] +
3f. Ix , y. (x 21 af. Ix , yv. (x 11
2 i
a_h [ip2 ——————————————— 3 o+ P {------ - 3
I x BYk
fk[xo, yk(onll I o+ oL (4.122) -

Equating the

and (4.12) we

coefficients of similar terms from equations (4.6)

get the following set of equations

a, + az = 1
a,p, = 1/2 ‘ _ | (4.13)
azqz1 = 1/2

The above set contains four unknown constants. By arbitrarily

assigning a value to one unknown and then solving for the other

three, we can obtain as many different sets of values as we

desire and in

turn as many different sets of equations (4.9) and

(4.10) as desired.
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For enample, if we choose a1 = 1/72 in (4.13) then,
a‘z = 1/2
Pz = 1 ‘ . {4.14)
9y = 1

So our equation (4.9) takes the form

yj(xo+h) = yi(xo) + 1/2(K1j + KZi) (4.15)
with
K, . = hf {x , y.(x 11
ii i o i o (4 16)
sz = hfi[x°+h. yj(xo) + Kiil'

These 'sets of equations may be used to solve the system of first
order differential equations. In this method we require tﬁo
evaluations of the first dérivatives in order to obtain agreement
with the Taylor series solutions through terms of order hz. A
solution obtained by the use of equation (4.98) in a step-by—-step
integration will have a per step truncation error of order h3,
since terms containing h3 and highe; powers of h were neglected

in the derivation.

By generalising the above method one can derive the Runge-

Kutta fifth order method. In our case we used the standard

Runge-Kutta fifth order method modified by Merson. By this

method we get the accuracy and minimum step size as desired. The

computation is performed a first time using step size h1 = h.
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The computation is again repeated} this time. using step size h,_, =

2
th/23. Comparing these two values give an indication of the size

of the error. 1f these two values are not sufficiently close the

step size is dicreased and the same procedure is repeated titl

such time we get the desired accuracy.
The numerical results for models described in the previous
chapter, under different conditions; &dre as below
RESULTS
ONE PREY-TWO PREDATOR SYSTEM

CASE 1: For K > 0, 1.e. ¢

Initial values of the populations

Nj(O) = 80
Nz(O) = 70
N3(0) = 60

Numerical inputs for different parameters

el = 0.12 B1 = 0.11

€, = o.ogs _ vy 0.0049°
e = 0.0019 g = 0.0039
a, = 0.0014 @, = 0.015.

The situation for this case is represented by FIG. 1.



SE I1I: F < , i.e., a € -« €
CA I or K 0 i.e ( 2 3 3 2J < 0.

Initial values of the populations

NI(O) = 8¢
NZ(OJ = 70
N3(0) = 60

Numerical inputs for differnt parameters

e1 = 0.12 81 = 0.114
e, = 0.045 ' Y, = 0.0049
egg = 0.0019 : @, = 0.0039
@ = 0.0014 ¢, = 0.015

The situation for this case is represented by FIG.

CASE I1I1: For K = 0, i.e. ( a_ € _ -« €J) =0

Initial values of the populations

N1(0) = 80
Nz(O) = 70
N3(0) = 60

Numerical inputs for different parémeters

ex = 0.12 By, = 0.15
€, = 0.045 ~yy = 0.005
eg = 0.0019 | @ = 0.0039
% = 0.004 0, = 0.015

The situation for this case is represented by FIG.
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TWO PREY-ONE PREDATOR SYSTEM :

CASE I = - For j

Initial values of

1

NI(OJ

NZCOJ

N3(0)

i

90

60

the populalions

40.

Numerical inputs

61 = 0.
e, * 0
e = O
vy, = 0

The situation
CASE 11: For

Initial wvalue

Nl(Q)

1]

N, o)

N3(0?

is

s of

90

60

for different parameters

.0049 Y, = 0.
.09 03’ = 0
.0021 : B, = 0.

represented by FIG. 4.

the populations :

40.

Numerical inputs

€4 = 0.18 Y, = 0
& = 0.0049 Y3 = 0
e, = 0.18 a; = 0
Yy, = 0.0021 By = 0.

for different parameters

The situation is represented by FIG. §.

.0032.

002

.0019

17

.0032

.0023

.0014

12
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CASE 111: For j = 0, i.e. ( Yo €

Initial values of the populations

NX(O) = 80
NZ(OJ = 60
N3(0) = 40.

Numerical inputs for different parameters

Ei = 0.18
ez = 0.0048
€3 = 0.12
Y = 0.0016

i

The situation is represented by FIG. 6.

0.004

0.005

0.003
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CHAPTER - V
SUMMARY OF THE RESULTS
In ‘this disserfation we have diséussed three species
Aecosystem models within the framework of Lotka-Volterra model.
We have analysed the one prey-two predator systém in which the
competition and self interaction terms are excluded for tﬁe

predator populations and the two pre§ one predator system without

the self interaction and competition terms for the prey
populations. We have obtained the asymptotic behaviour of the
component populations in these two systems as t -->® . It has

been done by exploiting a constraint that exists in the subspace
of the two populations. We further used Laurent series
expansions in the asymptotic region in an appropriately chosen
variable. The conclusions drawn from our énalytical results and

numerical analysis are as below.

Let us first consider the one prey-two predator system

without the self interaction and competition terms for the

predator populations. We observe different behaviour of the
component populations under different circumstances. Let us
discuss the result for the CASE 1, i.e., K » 0, of the system.

We find that the prey population N goes to a finite <constant

1
value as t -->® . Alsc, one of the predator populations Nz tends
to a finite value whereas the other predator population N3

vanishes exponentially. This situatfon is represented by FIG. 1

which has been plotted with the help of the Conmputer using

56
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methods of numerical analysis. The population N3 shows steady

decrease to the zero value. The populations.N1 and NZ oscillate

with decreasing amplitudes about a finite value for which they

finally settle.

For the CASE 11, i.e., when K < 0, our analytical results

show that the prey population N, goes to a unique finite value as

1

t ~-->0 . This time the predator populatioh N3 tends to a finite
value while N2 is annihilated exponentially. Our specimen
results of this situation are plotted in FIC. 2. This situation

is quite similar to the above one except that he}e we have the

annihilation of the population NZ instead of N3.

rd

It is interesting to note that for the CASE 111, i.e., when

K = o, we have all the populations remaining finite and non
vanishing i.e., there is coexistence of atl the three
populations. This situation is represented by FIG. 3. It is

seen that all the populations show oscillations with decreasing
amplitudes about a finite value for which they finally settle.
These values are not all independent of initial conditions.
Repeafing the calculations with changed inputs we find that this

general trend persists-.

Next we have considered the two prey-one predator system
with the exclusion of competition and self-interaction terms for
the prey populations. When we take into account CASE I, i.e.,

when j > 0, we find that the predator population N3 goes to =&
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unique constant value as t -~-> o0 . Also one of the prey
populations, Nl' tends to a constant value and the other, NZ'
vanishes exponentially. This situation is presented .in FIGL 4.
For CASE 11, i.e., when j < 0, we find that the predator
population N3 goes to a unique constant value as t -->om . Also,
the prey populations Nzlfends to a constant value aﬁd N1 dies
out . This situation is plotted in FIG. 5. Finalfy. for CASE
IT1T, i.e, when j = 0, we obtain all the three populations to have
finite and non-vanishinngalues. i.e., there is co-existence of
all populations. This situation is shown in FIG. 6. After a few
initial fluctuations, all the three populations reach certain
finite constant values. Tﬁese values are not independent of

initial conditions. However, the same pattern is repeated for

different initial conditions.

The method we have used is quite simple and can be used
whenever there exists a constraint in the subspace of two

populations of the interacting species.
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APPENDIX I
REM RUNGA KUTTA METHOD MODIFIED BY MERSON
REN E§% PREY TWO PREDATOR SYSTEM
DIM W(10),Ak(10),Bk(10),X0¢10),XC10),X1(10),X2¢(10),X3¢10)
DIM X4(10},%5¢103,Fc10) .
INPUT "DIMENSION OF DIFF.EQ." ,Nn
coM a,B,C,D,Ee,Ff,5,D1 :
A=.18
B=.0021
C=.0049%
D=.0032
Ee=.09
Ff=.0019
G=:17
D1=.002
READ Hh,Tin,Tend,Hprint
pATA .1,0,1000,.1
FOR I=1"TO Nn
READ X0 (1)
NEXT 1
gggﬁ $0,60,40
Accl=1.E-4
Acc2=1.E-6
Hmin=1.E-7
ALPHA OFF
GINIT
GRAPHICS ON
giégEl 1,20,10,10,10
MOVE 48,90 °° 777 ,
LABEL "Time Urs Population Size"
MOUE 40,35

LABEL "One Prey-Two Predator System"

MOUE 10,58
LABEL "cSp»

MOUE 10,38

LABEL "3p"

MOUE 10,18

LABEL #{p*

MOVE 80,3

LABEL "Time(Secs)"

MOUE 15,3

LABEL 4% /
MOUE 65,3

LABEL #{&gn

MOVE 1153

LABEL "3H0"

MOUE 12% cg

MOUE "123,26
LABEL "21
MOUE 44,10

LABEL "3

MOVE "120,60

LABEL  '"N? _

MOVE 120,28 ‘
LABEL "N ,

MOVE 41,12

LABEL '"N"

MOVE 5,90

PRINT AINITIAL X= ";X0(1)
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FOR I=1 TO Nn
WCIy=X0C(1)
NEXT 1
Tout=Tin+30
J=J+1

IF J=1 THEN 1
MOUE (T§f-s23+5
ZfF=X(1)+10

Xh=xX(2) +

DRAW (Tout 2)+5 ,Xn
Tf=Tout

IF Tout<Tend THEN 1050
STOP

T=Tout

Tout=Tout+Hprint
Rzero=1.E-7

S=Hh

Iswh=0

Hsu=5

Cof=Tout-T
éFCABS(S)<QBS(CoF) THEN 1160
IF ABS(Cof/Hsuv)<Rzero THEN 1750
Iswh=1

FOR I=1 TO Nn

XOCIX=W(I)

NEXT 1

Ht=5#%1,-3,

T=T+Ht

cCalL Gunc(XD(*) sNn  F (%))
FOR I=1 TO

X1(I)= Ht*F(I)

NEXT I

FOR I=1 TO Nn
HKCII=W(I)+X1 (D)

NEXT 1 '
caLL Gunc(X(*) SN, F (%))
FOR I=1 TO

R2CI )= Ht*F(I)

NEXT 1

FOR I=1 TO Nn

X(I)= N(I)+(X1(I)+X2(I))/2
NEXT 1

T=T+.5#%Ht

CALL Gunc(X(#*) Nn ,F(#*))
FOR I=1 TO Nn
XK3CI)=Ht*F (1)

NEXT 1

FOR 1=1 TO Nn
X(I)=?(I)+.375*X1(I)+1.125*X3(I)

;.a
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APPENDIX ITI

G

BY MERSON

) ) ,XC10),X1¢10),X2¢10),X3(10)
FF.EQ." ,Nn

NAvED
zAo0Z

c

» IPRXIXIXXT
OO0OOROND AXE-.
« Oo

N—ow-— TP
: g
. ZX® <

T T

e

OMMoOOUDO—=000A0A0
oo bl QZ-——Mmm

L we T
v T Ol o~

ORIV b D

I
3
3
I
s b

CE-

ALPHA OFF

GINIT

GRAPHICS ON

£§2g51 1,20,10,10,10

MOVE 48,30 77 77 ,
LABEL "Time Urs Population Size"
MOUE 40,85 '
LABEL_"Two Prey-0One Predator Systen"
MOUE 70,80

LABEL "j>0Q"

MOUE 5,35 '
Label$="Population Size"

FOR I=1 TO 1%

LABEL Label$(1,1]

NEXT 1 e

MOUE 80,3 .

LABEL “"Time (Secs}"

MOUE 10,78

LABEL “3sqn

MOUE 10,58

LABEL "2&Qn

MOUE 10,328

LABEL "{Bgw

MOUE 10,18

LABEL "gg"

MOUE 15,3

LABEL g7

23
LABEL 75"
MOUE 115,3
LABEL "1%D"
MOUE 123 .78
LABEL "1°
MOVE "123,27
LABEL 31
MOUE 53 10
LABEL "2#
MOUE 120,80
LABEL "N

MOUE 50,12

LABEL "R

MOVE 5,50

PRINT *INITIAL X= ";X0(1)
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MOVE 5,87

PRINT AINITIAL Y= ";X0(2)
MOUE 5,84

PRINT AINITIAL Z= ";X0(3)
MOVE 5,30

PRINT % @&, B, C, D, Ee,"
MOVE 5,77

PRINT A;B;C;DjEe

MOUE 5,74

PRINT %Ff, G , D1"

MOVE 2,71

FOR I=1 T0 Nn
WCI)=X0C(1)
NEXT 1
Tout=Tin+30
J=J+1

IF J=1 THEN 1
MOVE (Tf-1)-
ZF=(X(1)/5)+

DRAW (Toutrs1)-10,Xh

MOUE (Tfr10- 1D,Xn

AXn=(X(3),5)+10

LINE TYPE 8

DRAW (Tout~1)-10,Xn

Tf=Tout

IF Tout<Tend THEN 1060

5T0OP

T=Tout

Tout= Touf+Hpr1nt

Rzero 1.E-7 '
=Hh

Cof=Tout-T

IFrﬁBb(S)<QBS(CoFJ THEN 1160
of

IF ABS(Cof/Hsw)<Rzero THEN 1750

Iswh=1

FOR I=1 TO Nn

RKOCIY=WCID

NEXT 1

Ht=5%1,.3,

T=T+Ht

CALL Gunc (X0 (*} Nn SEU#*))

FOR I=1 TO Nn

X1CId=Ht*F ()

X&*) SNN,F (%))
I
Nri
Y1(11+Y2(I))/2

(X(#*) N ,F(*))
0 Nn

T=T+.5%5
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