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PREFACE

One of the most significant contribu
tions to the Data Base Management Technology in recent
years has been the development of relational point of
view of a data base. The relational model of data base
formalizes the organization bf and access to highly
structured data.. The model provides a view of data that
is elegant in its simplicity and encourages the appli-
cation of abstract mathematical reasoning. & substan-
tial amount of research activity has surrounded the
field since its inceptionh in the work of Codd in
1?247. In that time, several issues related to the model

have been studied intensively. Among them are :

1. The characterization of semantic
constraints on the data, and

2. The selection of data base design scheme.

The theoretical work in this area will be
of little utility without a major effort at reducing
fheury to practice. Thus, there is a need for the
design and aralysis of algorithms that are reguired for

2 good data base system.

Let wus first describe the most important

area of relational data base which is the issue of
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semantic constraints and may be given in wvarious
disguise. For exzample, values may be‘cnnstrained to lie
with in certain dumaiﬁs, as in "salaries may not be more
then Rs.10,000. "5Such constraints take the form of
predicates ranging over single domains of salaries.
Another class of constraints take the form of “values
from domain X depends on values from domain Y according
to rule Z ".The classic example of data dependency is
the functional dependency, which asserts that, values
for one set of attributes are uniquely determined by
another set of attributes. An example of functiaonal

dependency is the statement:

* HNo employee of a company has two different

salaries. "

Functional dependencies were first
described in full generality by Codd in 1971, although
they have been recognized for a long time taking the
form of keys. Many other forms of data dependencies have
been described, e.g9. multivalued dependencies, join
dependencies, {irst-order hierarchical dependencies

and implicational dependencies.

In comparison to some other varieties of

dependencies, functional dependencies are easily under-
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standable and readily identifiable. Furthermore funct-
ional dependencies are special cases of nearly all
other types of dependencies. A comprehensive understan-
ding of functional dependencies can help to fnrmulate
the practical implication of other types of dependenci-
es. All the work on functional dependencies are based on
the axiomatization of functional dependencies developed
by Armstrong in 1%74. VWang and  Wedekind proposed an
algorithm to synthesize the relational schema from a
set of functional dependencies. &Another approach uas
made by Bernstein to design a relational data base
schema from a 9iven set of functional dependencies.
Every problem dealing with {unctional dependencies
requires a manipulatinn of functional dependencies
according to the axioms put forth by Armstrong. In 1777
Bernstein has given a graph theoretic approach - a tree
model for the derivation of functional dependencies
and also prbpnsed a procedure to solve the membership

problem for functional dependencies.

The main objective of the approach given in
this dissertation is also to solve the membership
problem for functional dependencies. It has shown here
that, the proposed algorithm is f{faster than the

algorithm proposed by Bernstein.
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The organization of the dissertation
iz as follows: 1In first chapter the basic concepts of
the relational model for databases are given and alsg a
detailed discussion about data dependencies, normaliza-

tion and normal forms are presented.

In Ehapter two the theoretical bases for
the data dependencies in general, and the implication
praoblem of functional dependencies, multivalued depen-
dencies and join dependencies in particular, are

discussed.

The chapter three starts with a simple
algorithm for the membership problem for functional
dependencies and‘then the algorithm has been modified
by using a simple data structure for implementaiinn

purpose.
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I. INTRODUCTION

Data Base &System was introduced in
late 1750's to overcome therprnblems arising in the use
of conventional file systems, such as: (1) The
inability to efficiently integrate numerous large files
and (2) The inability to support higher level data and
file organizations. The major elements of a data base
system are, the data base, queries and their query
programmes, file organization and data management
functions. The data base is the repository of all data
of interest to the user of the system. The gueries in
their form in the computer as query programmes, repres-
ent the users in the system and create its actions. File
organization is necessary to expedite uperatibns, and
the data management functions represent the set of all
operative programmes in the data base system, necessary

for storage retrieval and space management.

There are three approaches to define
the data base. The first approach is from designer’s
point qf view and deals with the technical aspects
of data base technology, and is defined by Cardenas

[111] as * a database is a collection of occurrences of



record types; where the record types are interrelated

by means of specific relationships"®.

The second approach is concerned with
its application puint of view from the standpoint of
organization. According to Mandell, " a data base is a
grouping of data elements, structured to fit the

information need of an organization”.

Date ([151,1%781,p-7) states, 'a‘database iz a
collection of occurrences of stored operational data
used by the application systems of some particular
enterprise”.

The third approach is a combipation of
both technical point of view and application view of
the database technology, and is defined by Kroenke as
" a data base allows an organization’s data- to bke
processed as an integrated whole. It reduces artificia-
lity imposed by separate files for separate
applications and permit users to access data 'in a

manner which is more natural to them".

A& Data Base Management System (DBMS)

is a software interface bLetween the user and the
physical storage of .data in the computer, which
handles the physical storage and the retrieval of

information in a database. It also has the important
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capability of associating |any 1logical relationships
of data elements (for ex#mple, employee names are
logically associated with |Job-skill classifications,
Salary, Department, etc.),|H regardless of the physical
organization or location | of the individual data

elements in the database. [ Hence all the different

logical relationships of dapta elements required by
multiple wusers® application can be accommodated from
one data source without| changing the physical
organizations of the data in|the database. Furthermore
insertions, deletions and modifications of data

elements can be done without affecting all applicafiun

programmes that use the s%me database. This greatly
reduces flexibility and prpgramme maintenance cost
considerably. With a DBM3,| the user need not be
concerned with the physical anatinn organization and
the procedure for accessing information needed for his

particular purpose.

Data Maodels

In the context of data base systems, a
data model is a term used to denote any faormally
definable class of data structures, which can be used
as the basis {for the design and development of various

data processing applications. According to McGee, a

(4



data model is a way of viewing data, it provides a
basis for the construction of a DBM5. Three kinds of

important data models have bLeen proposed. They are:

(1) The Hierarchical data moadel
{Bleirf101}.

(2) The Hetwork data model (BachmanI31j

CODASYLI 121, 1?71 ).
(3) The Relational data model

(Codd[131).

Hierarchical data models are embodied
in the f{orm of IBM’s Information Management System
{IM5) and MRI’s System Z2000(52K). In the Hierarchical
approach the data base is represented by an ordered
tree, the nodes of which usually correspond to
entity types, which are represented by tables of data,
and arcs between the nodes correspond to the functional

relationships between the tables.

The importance of MNetwork approach
grows after it is put forth by the Data Base Task
Group (DBTG) of the Conference on Data System Languages
(CODASYL) in 1976, In MNetwork approach, data is
represented by records and links, and the relationships
between records are called as sets. The data structure

is represented by 2 network structure.



Ihe Relational Model

The cnnﬁept of relaiinnal model of data
was first proposed by Codd [131 in 1767. In this system
one vieﬁs the database as a set of relations, where the
term relation has been derived from the mathematical
definition of relations. Conceptually, a relatipn can
be viewed as a table in which each row corresponds to
records of files known as gntity {(or tuple) and each
column corresponds to field of records known as an
attribute. There exist a set of possible values asso-
ciated with each attribute in a relation, called the

domain of that attribute.

Formally, a relation can be defined as

follows (Date ,1781,I0151,p-84):

Given a collection of a sets D,,D

1!

+------3D_, (not necessarily distinct ), a relation R

~E s us
“

defined over the set {DI,DE,.........,DD} iz a subset

of the cartesian product D XDEX........XDn. That is, R

1

is a set of ordered n-tuples each of the form

(d,sd syecsanszesd ) where d.€ED.. Each element of R is
1’72 n i i

called a tuple of R. An attribute is a name assigned

to a domain of a relation. While the domains of a

relation need not be distinct, the attribute names

assigned to them must be unigque with in the relation.



A n-ary relation denoted by
R(ﬁl,Az,...}.......,An) is also &efined (Delobkel [171)
as:

- a set of attributes {AI,AZ,.....,An},

- a sequence of domains Dnm(ﬁi) for i=1,2,...,N
which defines the potential value 4Jor each
attribute.

- a predicate denoted by lR(AI,AB,.......,AH)l
which represents the potential evaluafiun of
the predicate when values are assigned to the

attributes according to their domains.

Suppose AI,AE,...g....,An are the names
of the domains DI,DZ........, and Dn respectively of a
relation R, then we uze pnotation (1.3.1) for R.
R(A ,A senceza:a3A) 1.3.1
1 2 n
The attribute set of R is defined as:
U‘A ,A IIIIIIIIII’A) 1-3.2
1 2 n
We will use (1.3.3) to designate the relation R on the

=at of attributes U.

R 1.3.3

The structure of relation is sometimes
called as the intension (Scheme) and the contents of a

relation is referred to as the extension. The contents



of a relation may vary from time to time. That is,
tuples may be modified, deleted from a relation, or/and
inserted in a relation. The contents of a relation in a
particular time is called as its instance. Figure 1.1a
indicates a relational schema for a medical database
consisting of four relational schemes HOSFITAL (CODE,
NAME, ADDRESS, # OF BEDS ), DOCTOR ( DOCTOR #, HNAME,

SPECIALIZATION ); WARD ( WARD CODE, NAME, # OF BEDS )

and STAFF (EMPLOYEE #, NAME, DUTY, SALARY ). &n insta-

nce of the schema is shown in figure 1.1b.

et R{(U) be a relation on the set of
attributes U and let W be a subset of U, then W iz a
candidate key of R if it can uniquely. identify the
tuples of R and no proper subset of W has this proper-
ty. A relation may have more then one candidate key. An
attribute is said to be prime 1if it appéars in any
candidate key of the relation, otherwise it is called

a hon-prime att#ibute.

Conventions: Upper-case le;ters AsByCycnence  from the
start of glphabet represent single attribute; upﬁer—
case letters ......X,Y,Z from the end of alphabet
represent sets of attributes; and lnwer—ﬁase letters
rsSsts..... from the end of alphabet represent tuples

of a relation.
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An example of a relational schema (consisting of four

relational schemes)

HOSPITAL (CODE,NAME,ADDRESS, # OF BEDS)={(H1,AM,DL,3500),

{H2,RL,ND,250), (H3,JH,5D,50):?

DOCTOR (DOCTOR #,NAME,SPECIALIZATIOM) = { (Di,RT,CHN),

{D2,58K,5Y), (D3,NM,0F), (D4,AN,AT), (DS3,AF,FF) ?

WARD (WARD CODE, MAME, # OF BED3) = { (W1,XC,45),

(W2,YD,30), (W3,ZA,548), (W4,UE,Z5), (WS,VF,83) I

STAFF (EMPLOYEE #,NAME,DUTY,SALARY) = { (10,DG,XX,450),
(253,FH, XY,7558), (15,PA,NW,350), (23,RG,5U,215),

(26, DM,WK, 234), (45,5B,5N,542) I

Figure 1.1a A medical database schema



b} An instance af the schema of the part "a®.

HOSPITAL ( CODE, NAME, ADDRESS, # OF BEDS)

H1 AM oL 500
H2 RL ND 250

H3 JH 5D 30

DOCTOR ( DOCTOR #, NAME, SPECIALIZATION )

D1 RT CN
D2 SK SY
D3 NM oP
D4 AN AT
D5 AP FP

WARD ( WARD CODE, NAME, # OF BEDS )

Wi XC a5
w2 YD 30
w3 zA 56
wa UE 25

STAFF ( EMPLOYEE #, NAME, DUTY, SALARY )

15 PA NW 350
23 RG SuU 215
26 DM WK 234
45 SB SN 542

Figure 1.1b

N



One of the main advantages of the
relational approach is that, if the relationz are
created to confirm certain mathematical constraints,
then the Eelatinns can be manipulated mathematicallvy.
The manipulation is accomplished through the data
manipulation languages (DML). There are a number - of
ways in which relations can be manipulated. Several
relational systems provide a DML which is based on
relational algebra, other systems provide languages

based on relational calculus. The relational algebra

suggested by Codd [131, is a collection of set
operations out of which the two most important
operations i.e. Preojection and Join are discussed
below.

Let R be a relation defined on the set

of attributes U = {A A .ccxuasAh 3. For any W={A ;A s.>»
1772 n 177°2

....,Am}, or m{n that is W&U, the projection of R

on W is denoted by RIWl and is defined as:

RIwl = {(a ;8 yesssesssa YA 48 5cccce5a }) ER)
1 2 m 1 2 n
In otherwards, we can think of the

projection of R on W as the operation that takes the

relation (instance) represented by R, then delete all



Ihe Prpjection operation

If An instance of a relation R ( A, B, C, D, E ) is

R (A, B, C, D, E, )
a, b3 Co d1 e,
a, b2 c d1 2,
a5 b4 c, d3 €a
a, b1 €5 d2 e,
a5 b2 Ca d4 e,

then the projection of R on (A, B, D} is RI[A, B, D1,

given by:

RIL A, B, D1

a, b3 d1

a, b2 d1

a2 b4 d3

33 b1 d2

a3 b2 d4

Figure~1.2

11



1.5

columns except those labelled by attributes in W and
finally identify the common tuples, as shown in

figurel.Z.

The Jgin operation which in some sense

is inverse to the projection operation, in fact

'cpnne:ts attributes of different relations together.

The Join ({(natural Join) of a relation R(X, Y) with
a relation S{Y, Z) is denoted by R¥5 and is defined as:
R¥S = {{x,y,z) | (%,%)ER and (y,z)ESG} -1.4.2

Figure 1.3 indicates an example of join operation.

In relational database model, conceived
by Codd, one views the database as a collection of
relations, where each relation is a set of tuples over
some domains of values. One notable feature of this
model is its being almost devqid pf semantics. A tuple
in a relation represents a relationship between certain
values, but from mere syntactic definition one knows
nothing about the nature of this relationship, not even
whether it is one-to-one or one-to-many relationship.
One approach to remedy this deficiency is to devise
means to specify the missing semantics. This semantic

specification 1is often called semantic or integrity



If the instances of two relations R(A,B,C) and 5(C,D) are

R( A, B, C

1 3 2
a, b2 C
a, b4 c,
as b1 Cq

then the natural join

given by:

)

of

and

13

5 ( i.e.
c, D
cx 43
|:3 dz
cy 43
c4 d1

Figure-1.3

)

Cc, D)
€, 93
c2 d2
C-, d_,
P ] o
c4 d1
R¥S5 ) is



constraints, since they specify which databases are
meaningful for the application and which are meaning-
less. The constraints are called data dependencies or

simply dependencies in database systems.

The study of dependencies began in 1772
with the introduction by Codd{14] of the [Functipnal
Dependencies. After the introduction, independently by
Fagin [1?]1 and Zaniple [34]1 in 12746, of Multivalued
Dependencies, the field becomes chaotic for a few years
in which various researchers introduced many new
classes of dependencies.The situation has situated
stabilized since 1780 with the introduction of Embedded

Implicational Dependencies (EIDs). Essentially, EIDs

are sentences in first order logic, stating that if
some tuples fulfilling certain equalities, then either
spme other tuple must also exist in the data base or
some <values in the given tuples must be equal. The
cnass of EIDs seems to contain most of the previously
studied classes of dependencies. Recently De Bra and

Paredaensl14] considered afunctional dependengie

]

which are not functional dependencies. In the fonlowing
subsection we give the basic definitions of +various
kinds of dependencies and in the next chapter we will
discuss the properties of Some of the important data

dependencies.

14



Functional dependencies (abbr. as FDs) {form
a family of constraints, the properties of which have
been studied <tensively by Armstrongl2]l, Beeri et
alfal, Fagini211 and MNicolasiZ?]. We give the

definations of FDs below.

& functional dependency is a sentence
denoted by f1X->Y, where X and Y are sets of
atfributes. Aan FD f:X-2Y holds in a relation R{U) where
X and Y are subsets of U, if for every tuple u and v of
R, ulXI=vIX] implies ul¥l=vIY], i.e. the relation R
obeys the FD f:X-2Y if for every two tuples of R, which
have the same projection on X 8lso have the same
projection on Y. Given A{:X->Y, we  say that X
functionally determines ¥, or Y is f{functionally
dependent on X. We usually write the FD f:X -2 Y simply
as X -2 Y.

FDs can also be represented by first-order
logic as shown by Nicolas [ZP]. Consider the relation
R(U);, where U={A,B,C,D}. The FD is represented by the
sentence:

v abclczd

d.) {{Pabc,d A Fabc.d._ )=>(c
1% 292

192 =c )

1
Where % abc,c..d,d4.,) is a shorthand for
1727172

Lavbtc Yo Pd 2d i.e. each wvariable is universally
1 2 1 2

quantified and P is a relational symbol.

i



Multivalued Dependencies {(abbr. MVDs)

The concept of functional dependencies is
not sufficient to capture the various types of
relationships that exist in relations. It is possible
that the values of the attributes in a set Y depends
only on the values of the attributes in the set X, but
there exist more than one Y-value for a given X-value.
Such a relationship is not a functional dependency.
Hence the concept of multivalued dependency (MVD) was
introduced independently by Fagin'[l?] and Zaniolo [34]

to describe such relationships.

Definition:- Let R{U) be a relation schema and let Y
be a subset of U, for each subset X of U and for each
H-value x, we define
Y,= {y | for some tuple t€ER, tIXl=x and
tIYl=y 3, where tIX] iz the X-component
of the tuple t in R.

i.e. Yx is a function that gives for each
X-value, the set of Y-values that appear
with this X-value in tuples of the
relation.

A multivalued dependency g, on a set of attributes U is

a statement g X->~-3Y, where X and Y are subsets of U.

Let 2 bLe the complement of the union of X and ¥ in U.



A relation schema R{U} obeys the MVD g: X->-}Y, if for
every RZ-value xz, that appears in R, we have sz = Yx'
In other words, the MVD g is valid in R if the set of

Y-values that appears in R with a given x, also appears

with every combination of x and z in R.

Fagin [1%]1 defined the MVD as: let R
be a relation schema over U and X and Y are subsets of
U. Let Z be the complement of the union of X and Y in U

i.e. 2Z=(U-XY). Then the MVD X -3~ ¥ holds in R if for

all tuples Fl and r2 in R rIIX] = rEIX], then there
exist tuples r- and rg such that
{i) r3[x1 = FI[X], r3[Y] = FI[Y] and
r 21 = r[213
b i
tii) r IX1 = r [X1, r [¥Yl = r [¥Y] and
4 z 49 2z
r4[2] = FI[ZJ.

Like FDs, the MVDs can also be
expressed in first-order logic. For example assume
that U={A,B,C,D,E3. Then the MVD AB->-2CD holds for a

relation over U if the sentence

N
v ab:lczdldzelez) ((Pabcldlel) (Pab:zdzez)

=3 Pabczdzell

holds, where P plays the role of the relation symbol.



1.5.49

& hierarchical dependency (abbr. HD)
iz a zsentence denoted by x:YI'YZ""""""""'YK
where X,Yl,YE,..........,Yk are disjoint sets of

attributes.

A relation R(x’Yl’YE""""""’Yk,’

are disjoint sets of

where X,Y YE,..........and Y

1? k

attributes, obeys the HD if for every X-value x we have

R(x;vl,vz,....;.,vK) = RIX,Y¥;1 % RIX,Y, 1 ¥.........

sasenss ¥ R[X,Ykl

which expresses the decomposability of the relation of

over cx,vl,..........,vk} into k projections.

We shall say that a HD is a total hier-

archical dependency ( also called as a generalized
multivalued dependency (GMVD)) if X is the empty set,
gsince in this case the projection of R over the set

attributes (Y Yz,.......Yk} is the projection of R

1!

respectively on YI,YE,......,and Yk'

The MUDs characterize the lossless decom-

position of a relation into two projections. However



MVDs are inadequate for expressing the conditions under
8 lossless decomposition of a relation into more than
two projections. Join dependencies were introduced to

characterize this kind of lossless decomposition.

Definition:- Let R{(U) be a relation over an attribute
set U, and XI,XE,.........,KH are subsets of U such
that lei = U, a n-join dependency {abbr. n-JD) is a
sentence denoted as ¥ [X1][X2]"""""[Xn]’ also

denoted as ¥ [Ul. The relation R is said to satisfy

this n-JD 1if

3
]
0ok

RIX.1]
1

i=1

i.e if R is the join of its projections R[XIJ,.......
.....,R[Xn]. It follows that this JD ¥ [U) holds for
the relation if and only if R contains each tuple t for
which there are tuples tl"""tn of R such that

ti[K.] = t[Xi] for each 1 (1{ign).

An n-JD characterizes exactly the lossless
decomposition of R inton projections. The JD can
express multivalued dependencies and total hierarchical
dependencies in a unified way. This follows directly
from their definitions. A multivalued dependency
X-3-3Y can be represented by a 2-JD ¥LXY1IYZ]l and a

total hierarchical dependency X:YI:YZR..........:Yk can

1%



1.6

be represented by the k-JD

* [XYIJ[XYZJ-.-.--.-.---[nYK]-

The notion of normalization in
relational database was first presented by Coddii14].
He observed that certain relations have structural
properties those are undesirable for describing data
bases. These undesirakility stem from the fact that
some attributes are related to each other in certain
ways. For example consider the relation SUPP(SUPPLIER,
TOWN, POPULATION). Its intended meaning is that, when-
ever a tuple say {(s,t,p) occurs in this relatinﬁ, it
means that " supplier s is located in the town t whose
population is p." The relation scheme in fact leads to
the fpllowing data manipulation anomalies. First,
notice that the population of a given town must appear
as many times as there are suppliers located in that
town (data redundancy). Thus if the population of a
town has to be updated, all the tuples in which it
occurs have to be retrieved ih order to update consis-
tently the population of the town (updating anomaly).
Now, if the last supplier located in a given town is

deleted, then the population of this town 1is lost



{deletion anomaly). Conversely, the population of a
town can be recorded only when one knows at least one

supplier located in that town (Insertion anomaly).

To avoid data manipulation anomalies
attempts have been made to introduce schemes with no
undesirable structural properties for describing data-~
base. This consideration led to Codd [14] to define a
process known as normalization, which consisting of
cnnverting a relational schema into another form that
stores the same data but in different format and ensure
the removal of undesirable anomalies and redundant
attributes from the relational schemes. 1In [14]1 Codd
has discussed the normalization of relations, which is
based on a se;ies of four normal forms which are, First
Normal Form, Second Normal Form, Third Normal Forms and

Boyce-Codd Hormal Form.

Later in 1777, Faginl1?1 discovered that even by
putting a schema in Boyce-Codd Hormal Form, not all the
anomaly problems necessarily disappear. This led him to
propose a new normal form called Fourth Normal Form.
Forth Normal Form is defined in terms of functional and
multivalued dependencies alone. It has shown by Fagin
[1?]1 that the concept of multivalued dependency is

intimately related to the join dependencies. For exam-
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ple, if U and V are the subsets of attributes of a
relation R and if W is the set of attributes of R not
in U por Vv, then the MUVD U->->V holds in R if and only
if R 1is the join of its projections RIUV and RIUW]
i.e. if the JD *tUU,UU] holds in R. Hence multivalued
dependencies are correspond to "Z-way decompositions of
a relation. But Aho, EBeeri and Ullman [11 have given a
surprising example to show that a relation can be the
join of three of its projections, without this join
being the result of cascading 2-way projections. Fagin
has introduced another normal faorm known as Prqject and
Join Normal Form (FJ/NF) and have shown that, because
of the above property the PI/NF is stronger then the
4NF. These normal {orms are discussed in the following

subsection.

Normal Forms

The concept of functional dependencies
and multivalued dependencies play significant roles in
the theory which governs the decomposition of relations

into subrelations in normal {forms.

To show how certain undesirable depen-
dencies create problems, we will discuss thé concept of

partial functional dependencies, full functional depen-

-l
]



dencies, key dependencies and transitive dependencies
mentioned by Codd [14]1. We will also discuss Fagin’s

notion of nontrivial multivalued dependencies.

Let R be a relation schema defined over
the set of attributes U. We say that ¥ is fully depen-

dent on X in R if

{i) X and ¥ are two disjoint subsets of

attributes of relation R.
(ii) X-3Y, and
(iii) ¥ is not functionally dependent on

any proper subset of X.

If the condition (3) is not satisfied then we say Y is

partially dependent on X in relation R.

If K is a subset of U,.then we say that
K is a key ( of the relation schema ) if the FD K -3 U
iz in the schema R, and if there is no proper subset L
of K such that the FD L->U is also in the schema. UWe
call such a functional dependency K-XU a key dependency

pf R. That is the dependency K-2U is a key dependency

if it is a full FD in R.
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A relation schema R is said to be in
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INF if and only if all the underlvying domains of each

attribute of R contain atomic values.

A relation schema R is said to be in ZNF if
{i) it is in 1MNF, and
{ii) every non-prime attribute of R
iz fully dependent on each

candidate key of R.

G e i s e s i e

To define the third normal {form we

need to define "Transitive Dependency”.

Given a relation séhema R, suppose that
R:;Y¥y and Z are three distinct collection of attri

butes of R, and if the following conditions are true:

(i) X-2¥Y
(ii) Y&3X
(iii) Y->32

then it follows that K-»Z and Z+3X.

Here Z is said to be transitively depe-

ndent on K in the relation R.
A relation schema R is said to be in 3NF if,

{i) it is in 2NF, and



(ii) every non-prime attribute is non-

transitively dependent on each candi-

date of R.

Boyce-Codd Mormal Eorm (BCNF):

The BCNF can be defined 1in the

following three distinct (but equivalent) ways:

{1) A INF relation schema R with attributes U is said
to be in BCNF if, for each non-trivial FD X-:Y in R,

the FD X-:U is also in R.

(Z2) A INF relational schema R with attributes is said
to be in BCNF if G b~ f i.e. if f can be derived from
the set G, for each FD f in R, where G is the set of

key dependencies in R.

(3} & INF relation schema R with attributes is said to
be in BCNF if, far each FD ¥ in R, there is a key

dependency K-2U in R such that K-~>U ¥ + .

Thus the BCHF states that every set of
attributes which has another attribute functionally
dependent upon it in a relation schema R, must be a

candidate key of R.

Fourth MNormal Farm (4NF):

The concept of "trivial multivalued



dependencies™ proposed by Fagin[i?l, i3 needed in

describing the forth normal form relations.

Given a relation R{(U) where U = {(X,Yl, then
the multivalued dependencies X-3-3Y and ¥->-> €, where
& is the null set, are necessarily hold for R. These

are called trivial multivalued dependencies.

We now define the 4NF in the following ways:

EY

{1) & INF relation R with attributes U is said in 4NF
if, for each non-trivial MYD X-3>->Y holds for R, then

s does the functional dependency X -3 U holds in R.

(2) A 1N relation schema R with attributes U is said
to be in 4NF if, G — m for each MVD m in R, where G is

the set of key dependencies in R.

(3} & relation schema R with attributes U is in 4NF
if, for evéry MVD m in R there is a key dependency K->U

of R such that (K->U) bm.

Thus a relation scheme R is said to bLe
in Fourth Normal Form if, every MVD in R is a result of
keys of R.

FProject-Join Normal Form: (FPJ/NF)

We define the FJ/NF in the following ways:



1) f INF relation schema R with attributes U is in
PI/MNF if KFj for #ach JD §j in R, where K is the

set of key dependencies of R.

2) A INF relation schema R with attributea U i3 in
FI/NF i+, for each JD j in R, there iz a key

dependency K «~>U in R such that (K ->U)l—j.
i i

3
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I1. IMPLICATION FROBLEMS FOR DEFENDENCIES

The theoretical bases for data
dependencies in a relational data model are discussed
in this chapter in details. A set of axioms i.e. infe-
rence rules for the family of functiunal dependencies
has been explained and it has been shown that these
a<ioms are complete for this family. Also a cumpletel
set of inference rules for multivalued dependencies has
been presented in this chapter. It has Leen stated
that the combination of inference rules for Fds and
MVDs is not sufficient for the family of FDs and
MVDs, and thus additional rules ( FD-MVD rules )
have been given to complete the set of rules for FDs
and MVDs. Also we have presented a complete set of
inference rules for the set of join dependencies in
this chapter. Furthermore the closure of a set of
dependencies and alsoc for a set of attributes and
various types of covers of a set of FDs are also discu-

ssed in this chapter.

The Inference Rules for Data Dependencies

The most important problem for depen-

dency theory is the implication problem i.e. the prob-

t
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lem of deciding for a given set of dependencies G and
a dependency g, whether Gi=g i.e. whether G logically
implies g. A dependency g is said to be logically
implied by a set of dependencies G, if g is wvalid in
everf felatinn which obeys all the dependencies in G.
In other words g9 is logically implied by G, if there
does not exist any counter example relation which obeys
all the dependencies in G but does not obey g. The
reason fuf prominence of the problem is that an algo-
rithm for testing implication of the dependencies
enable us to test whether two given sets of dependen-
cies are equivalent, or a given set of dependencies is
redundant. Even though the significant of implication
problem was not yet clear in 1774, it was studied by
Armstrong (2] apparently out of mathematical interést.
Armstrong characterized implication of {functional depe-
ndencies by using an axiom system where an axiom system
consists of axiom schemes and a set of inference rules.
& derivation of a dependency g from a set of dependen-
cies G, denoted by Gl-g9, is a sequence
'gl,gz,......;..,gn where 9, is either an instance of
the axiom scheme or follows from the preceding

dependencies in the sequence by one of the inference

rules.

A set of inference rules is.said to ke

3
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complete for a family of dependencies if for each
set G of dependencies from the family, the dependencies
that are implied by the set of dependencies G are
exactly those, that can be derived from it using the
set of inference rules.That is a set of inference rules
is said to be complete if Gl-g9 entails Gi=g. The
concept of completeness of a set of inference rules is
of prime importance in a system where inference rules
are these are used. If a complete set of rules is used
then only the database designer can be assured that he
has a complete knowledge of all dependencies that hold
in a given database. A complete set pof inference rules
is said to be minimal if no proper subset of it is com
plete. Armstrong’s rules for functional dependencies
are complete 1is one of the basic assumption in the
works on functional dependencies. For multivalued depe-
ndencies a complete set of inference rules is given by
Faginl1%1 and Zaniqln[34] in somewhat restricted man-
ner. Beeri et al [5] have removed these restrictions
and presented a géneral complete set of inference rules
for FDs and MVDs. Mendelzone [251 further investigated
about the independence and redundancy of these rules
and haé given a minimal complete set of inference rules
for multivalued dependencies. After the introduction of

join dependencies by Rissenenl?l, a complete axiomati-



zation of full join dependencies is presented by Sciore
[211. Detailed discussion for the inference rules {nr‘

FDs and MVDs are given in the fpllowing subsections.

Axiomatization of functional dependencies
was studied by Armstrong [21. He has presented a set of
axioms governing the set of functional dependencies.
It has been proved {2, &1 that this set of axioms is
complete for the family of functional dependencies. The
completeness of armstrong’s axioms for FDs is an
important basis for research in this area { including
the present dissertation work ).The complete set of
axioms for the family of functionally dependencies is

presented below.

ED Rules:
In the feollowing rules, X,Y¥,2 and W are
arbitrary subsets of U, where U is the set of all

attributes. We write XY for the union of the two arbit-

rary sets X and Y.

FD1 (Reflexivity): If Y& X then X-3¥.

FDZ {Augmentation): If Z&W and X->Y then

FDZ (transitivity): If X->Y and Y-2Z2 then



FD4 (Pseudotransitivity): If X-2Y and YW-32
then XW-2Z.
FD3 {(Union): If X->¥ and X->Z then X-:YZ.

FD& (Decomposition): If X->YZ then X-Y and

FD? (Frojectibility): I{ X-3Y holds in R(U) and

XCWEU then X->Y holds in RIWI.

FD8 (Reverse projectibility): If X-3>Y holds in

a projection of R(U) then X-:Y holds in R(U),

If A and B are attributes of a relation
R, then by applying the axiom FD1 to X = {A, B} uwe get

AB->AB, AB-A, AB->B, A-:A and B-:B.

AxXxiom FDZ means that, knowing §f:1X-2Y, we
can construct another functional dependency, say
g: XA -> Y, where the attributes appearing on the left
side of g consisting of the attributes of X plus some
other extraneous attribute A, whose values have no

effect on the values of Y selected by 9.

For axiom FD3, i{ the FDs f:iX-2Y and Y-22Z
holds in a relation R then the dependency hiX-3>7 also

holds in R.

(]
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In the above set of axioms, the Axioms
FD1-FD3 are sufficient and the other additional axioms
i.e. FD4-FDG are implied by the first three axioms. As
an example, Axiom FD4 can be derived from the axioms

FD1-FD3 as follows.

AS our assumption we have f: X -2 Y and
YW->Z. How from + and Axiom FDZ we get h: XW - YW. By
applying axiom FD3 to ﬁ we can derive an FD XWw-3>Z,
cnméleting the claim. 3Similarly it is easy to show
that the other axioms can also derive from the

first three axioms.

Inference Rules for Multivalued Dependencies

A set of rules for multivalued depen-
dencies has been presented by BEBeeri et al [4]1 and it
has been pruved that the given set is complete for the
family of multivalued dependencies. The complete set of
inference rules is explained below. In the rules, X,¥Y,Z2
and W are arbitrary sets of attributes. We use XY for

the uniaon of two sets X and Y.

VDO (complementation): If U=XYZ and YAZC X,

then X->-2Y iff X-2-22.

i
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MVD1 (Reflexivity): If Y& X then X-:-3Y.

MVDZ2 (Augmentation): If Z2C€VW and Y->-3>X then

MYD3 {(Transitivity): If R->-2Y and Y->-32

then X->-2(Z2-Y).

MyD4 (Pseudotransitivity)l If X-3>-3Y and
YW->-3Z2 then RW-->(Z-YW).

MVDS (UNION): If X-:-3Y AND X->-2>Z then
¥-3-3YZ.

MVD4s {(Decomposition): If X-¥-3Y and X-¥-3Z2

then X-3-3Y Z, H-»-2{(Y-2) and X->->(2-Y).

The <wvalidity eof these rules have been
proved by Fagin [17]1 and Beeri et al in [51. Beeri et
al have proved that the inference rules MVDO-MVDI are
complete for multivalued dependencies. Mendelzone [Z35]
has investigated about the independence and redundancy
of these rules and proved that the set (MVDO,MVD1,MVDZ]
forms a minimal complete set of inference rules for

Multivalued Dependencies.

8
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Mixed inference rules for Flls and MVDs

In the previous two subsections we deal

with the implication problems of FDs and MVDs only i.e



given a set F of FDs whether any other FD f is implied
bty F, and given a set G of MVDs whether any other MV
g iz implied by G. The problem of implication of
additional dependencies, that are implied by the
combination of FDs and MVDs i.e. by FUG, has been disc-
ussed thoroughly by Beeri et al [48], and the following

rules have been proposed.

Mixed Bules:i-
FD-MVD1: If X-3Y then X-2>-3Y.
FD-MYD2: If X-3->Y and 2Z-3Y', where
Yoy’ and Y and Z are disjoint

then X—>Y/.

Zaniolo [351 has pointed out that the rule
FD-MVYD2 has been defined in a restricted manner and
presented an alternation and simple rule called nmixed

transitivity rule for FDs and MUDs, which is defined

as:

FD-MVDZ (Mixed transitivity): I X-r-2Y and

Y -3 2 then X -2 {2 - Y).

Zaninln has shown that the set
{FD1,FDZ2,FD3 ,MVDO, MVUDI, MVDZ,MVD3I,FD-MVD1,FD-MVD32 is a
complete set of inference rules for the combination of

the FDs and MVDs.
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for Join Dependencies

A complete set of inference rules has
been proposed by Sciorel31] and has been discussed
below. In the following rules R and 5 represents tﬁn
relational schemas defined over the attribute sets U
and V respectively. We use the notation Ji-D for the
derivation of a dependency D from a set of dependency

J, and & for the null set.

JDO: ai-¥[X1 for any set X&U. Which
states that the dependency ¥[X] is
a trivial dependency in R.

JD1: {(Covering rule).

¥[S1i-¥IRY  if U=Y and R covers

L4y

i.e. if for every subset Y of
there exist a subset X of U such
that YGX.
To simplify the use of covering rule, a set of four
special cases have been given and are:
JDia: ¥[S1i-%I5,¥Y1 if YEV. (add a set)
JDib: RIS, Y¥,211-¥[5,YZ1. {replace a
set by their union)
JDic: ¥I5, ,511- *[SIA,SEJ

{add an attribute to a set)
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JD1id: *[31,82,....,5k]!— *[51,...;5k_1]
if Skg'sj for some j¥#k.
JDZ2: (substitution rule).
(¥[5,X1.%[R1}!- ¥I5,R1 if U=X.

JD3: {projection rule).

¥[3,YAll- ¥I[3,Y1 if A€V,

The rule JDO is an axiom that allows us
to infer opnly trivial dependencies. The rules JD1 and
JDZ allow us to infer from one 4given dependency
another dependency that is less informative then the
one that is given, where as the rule JDZ allows us to
combine two dependencies to yeild a third dependency
that is more informative then either one of the given
dependencies. It has been proved by Sciore [311 that
the set { JDO, JD1, JDZ, JD3) forms a complete set of
inference rules for the set of JDs in a relational

schema.
The Closures of Dependencigs

.The definitinn of the closure of a set of
dependencies and the closure of a set of attributes
with respective to a given set of dependencies and also
the definitions of various types of coverings of a set
of functional dependencies are presented below.

Defipition 2.2.1: If G is the union of the set F of



FR= and the zet M of MVD= i.e. 63FUM; then the clozure
of § denoted by G+ iz the zet of FP= and HYDz that can
ke derived from the repeated application of FD rules;
M'D rulesz and their mixed rulez: Similarl; if F i= the
zet of FD= over a set of attributez U, then the clozure
of F, denoted by F'; iz defined to be the zet of all
FR= that can be obtained by the =ucce=z=zive application
of the rulez FP1, FP2 and FDP3 on the =et F.

Definition 2.2.2: The clozure of a =et of attributez ¥
uwith resz=pect to a set of dependenciez G defined orer a
zet of attribute=z U; iz denoted b X} and i= defined a:=

the =zet of all attributez that are found to be functio-

nally dependent on M; which are implied by G:
+
i:e: ¥ = A} X-2AE06 3:

Delinition 2:2:2%: A =et of FB= 6 i= =aid to be a cocer

of another =zet of FP= F or G iz =aid to be equialent

to F, if and onl- if T =o',

Definition 2.2:4: A =zet of FR= G i= =zaid to ke a

naon-redundant co-er of another =et of FR=z F; 1iff¥f G*?F+

il

and there doe= not exizt a =et of Fz H zu;h that HC §
and H*:G';
Definition 2.2.5: A =et of FD= 6 iz gaid to be a

r 4
minimum co.er of 2 =et nof FD= iff F =6 and there

i
-



does not exi=t a =s=et H uvwith fewer TD=z then G such that

Definition 2.2:48: &n D f iz zaid to ke redundant in a

zet of FDz F, iff FiatF-12".

i
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:3:'" Let F be a given =zet aof FD= and

£:X—>A be an FD in F'. An attribute B iz caid to be

Hi
i

extraneouz or redundant in M with rezpect to F i,

and [{¥-B) YAl i= in F' .

The implication problem for
data dependenciez in 2a relational databa=e ha_-e been
explained throughl, in thi= chapter. A complete =et of
inference rulez far 'Rz haz been prezented and alzo the
additional rulez for I'Dz which are required for the
manipulation of other FDz are nfiven. A complete =et of

inference rule=z for MDDz ha

m

been explained and it has
been pointed out that the combination of rules for FDs
and MYD= iz not complete for the lamily of D= énd M. D=
and hence additional rulez known as= Mixed Rulez have
been given to complete the =et of rule=z for FD=z and
M!D=: Als=o a complete =et of inference rulez for the
zet of JD= are dizcuzzed. Furthermore the —arious topes
of coverz of a =et of FD= are explained in this

chapter.

BE ¥



I11. A MEMBERSHIF ALGORITHM FOR FUMNCTIOHAL

DEPEMDEMCIES

T i i e v

The ba=zic concept underl ing the =earch

for =uitable naormal formz ma; be de=cribed a

8}

an
attempt to develop a dezign methodolog, for relational
databaze =chema. The =, nthesiz and decompozition appro-
achez are the tuwo alternative wa,=s for obtaining 2a
normalized database =chema. There are ze. eral = nthe=siz
algorithm=z for dezigning a databa=e zchema when onl:
functional dependenciez are given [0,7,201,and all of
them u=e =ome =ortz of co-er of the gi-en =zet of funct-
ional dependencie=. A recent paper [4] de=cribez a s, n-
thesisz algorithm for pro-iding a normalized database
schema when both functional dependenciez and multiv a-
lued dependenciez are g3iven. All theze algorithmz are
built around a memberzhip te=t for functional and mul-
tivalued dependencie=z; where the memberzhip problem is
to determine whether a given et ol dependenciez GO
implig= another dependenc: 9. In decompozition
appreach, 2a part of the problem iz to decide whether a

nontrivial functional or multivalued dependenc, holds



in a relation scheme. This decision problem can be
solved by applying a membership algorithm fér dependen-
cies as shown in [23]1. Thus an efficient membership
algaorithm is an important tool for designing normalized

database schemas.

Both functional and multivalued dependenciee
have inference rules as described in chapter-1I, that
can be used to infer a dependency g from a given set of
dependencies G if and only if g is implied by G. In [4]
Bernstein have used these rules to develop a linear
time algorithm for functional dependencies. A similar
aeproach used by Beeri [4] to devise an o(ﬂGﬂq)Ftime
membership algorithm for functional and multivalued
dependencies s wWhere Gl iz the size of description
of G. A refinement of this algorithm bLased on an
appropriate data structure has an u(min{kzlut,Han})
running time, where U iz the set of all attributes and
k and iU! are number of dependencies in G and number of
attributes in U respectively is given in [23].

In this chapter we give a membership
algorithm for functional dependencies and show that
this algorithm is faster then the previous algorithms
and also it requires a simple data structure for

implementation.
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We have organized this chapter as follows:
In section two we describe the method for developing
a membership algorithm for FDzs and give a linear~time
algorithm. In section three this algorithm has been
modified by using a simple data structure for efficient
implementation of the algorithm . In section four we
have analyzed the implementation of the algorithm. In
section five the application of the membership algori-

thm and section six carries some concluding remarks.

The Membership Algorithm

The membership problem for functional
dependencies says that "Given a set of FDs G and an FD
g9, determine whether geG+ i.e. whether g is in closure
of the given set aof FDs . We start with designing a
simple algorithm for the membership problem for FDs and
refine it by wusing a simple data structure for

implementation purpose.

The membership algorithm can be solved
by computing the closure of the g9iven set of FDs G i.e.
G+ By wusing the complete set of inference rules for
FDs. But the computation of G+ is a time consuming job,
because even if G is very small the set of dependencies

+
in G will become very large. It has shown that the



dependency X-3Y is in 6 if Yex' , where %' is the
closure of the set of attributes X with resbect to
G and since the computation of X+ regquires time
proportional to the length of all dependencies in G as
shown by Beeri et al [35]1, we will follaow this method
and develop an algurithm for which the implementation
time can be reduced considerably . The algorithm is

given in figure 3.1 and is described below.

In this section we consider the given
FD giX->Y and a set of FDs G. We assume that X and Y
are disjoint, since X-2Y is a consequence of G if and

only if X->{(¥Y-X) is a consequence of G.

The algorithm given in figure-3.1 i.e.
the Algorithm-1 uses the procedure FIND{(Y) that com-
putes Y; which is a subset of Y, and is obtained by
eliminating the attributes from Y which are found to be
functionally depending on X with respect to the set
of FDs G. If YI is found to be a null set then, all the
attributes in Y are dependiﬁg on X with respect to G
which implies that X->Y 1is in the closure of G i.e.
X-2Y e:eﬁ To compute Y/ we will follow the procedure

given below.

Now (Y-Y/) is depending on X, hence is a

subset of the closure of set of attributes A i.e.



ALGORITHM-1

Input:

Output:

A set Gofm FD’s on attributes {Al;AE,.
.......,An} and an FD g X ~> Y .
'YES' if ge6's N0’ if géG' .

Data structures:

ALGORITHM: -

Attributes are represented by integers bet-
ween 1 and n.

FD’s are represented by integers between 1

and wm.

DEPEND is a set of attributes found to be

functionally depending on the set X so for.

Y{ is a subset of attributes of the set Y,

which are not yet +found to be functionally

wr

depending on X so for.

QUEUE is a set of FD's whose left hand sides

are found to be asubsets of DEPEND so for.

procedure FIND{Y):

begin

(1) make QUEUE emptyj

(2) DEFPEND

]
on

-

-

Yl

44



{4) put every dependency of G with a left

hand side a subset of DEFEND, on BQUEUE;

{3) while ((QUEUE is not empty) AND (Y = 8)) do
begin
(&) remove a dependency g/ Wwith right

side RS(g’) from QUEUE;

(7) if RS(g’) & DEPEND then
begin
(@) DEPEND = (DEPEND U RS(g’));
(9) v/ = «v/ - Rs(g' 113
(10) for every dependency 9; in G

{with left side LS(gi)) do

(11) _i_i((LS(gi)_C_:DEF'END) AND (gi¢QUEUE))

(13) then QUEUE = (QUEUE U gi)i

(14) RETURN Y’ 3

begin (/% main procedure ¥/)

(15) v/ = FIND(Y);
(16) if Y/ = 8 (/% the null set ¥/)
(17) then PRINT *YES®
(18) else PRINT *NO’;
end.

Figure-3.1
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(Y-YI) GX* Wwith respect to G. So by computing the
closure of X we can determine Yf .by substracting the

closure of X from Y. Hence to compute Yf we have to
compute the closure of X i.e. X+ with respect to
G. Let DEFEND be a set variable to hold these
attributes i.e. the closure of X. The set DEFEND is
initialized to X since by FD1 {(the Reflexivity rule )
X-3K € d: The set Yl is ipitialized to Y. While the
procedure iterates the values of DEPEND and Y/ change

repeatedly in such a way that

{i) X-*DEFEND 1is always a conseguence of G and

(ii) Y’ = (Y-DEPEND) = Y- (the new attributes

added to DEFPEND in each iteration)

How to add new attributes to DEFEND, we
select an FD, say ngin G whose left side is a subset
of DEFEND but the right side is ﬁnt. By pseudotransiti-
vity rule (FD4) for {functional dependencies, the right
side of the FD g; is functionally dependent on X and
hence can be added to DEPEND and simultaneously the
right side of g/ {say RS(g/)) will be substracted from
Y, since x—>RS(g")€G*. We can continue selecting the
FDs of G in this manner, adding and substracting their
right sides to DEFPEND and from Yl respectively, until

no more FDs satisfying this condition. 1If during any
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iteration we will find that (Y—Y/ }) is a null set

then we can conclude at that point that X-3¥Y is in
closure of F and hence it will be unnecessary to
iterate further until g ail the dependencies of G are
checked. The method is formally implemented as Algo-
rithm-1 given in fig.3.1 and the details of an effi-
cient implementation based on an appropriate data stru-
cture followed by a proof of correctness are described

in the following section.

Eroof of termination of Algorithm-1

Both the loop i.e. the outer loop of
lines (3)-(13) and the inner loop of 1lines (10)~(13)
are d{inite loops because G and Yl are {finite sets.
At each iteration of the outer loop, the inner loop
adds a number of FDs to the set QUEUE. But, since the
condition, if (giéuur-:uz) then add g to QUEUE in
line (11),  prevents a dependency to be added more than
once to the 5et QUEUE , hence at most m dependencies
can be added to GUEUE. Again since the outer loop is
executed at best once for each member of QUEUE the
algorithm ultimately reaches to the point that either
QUEUE will become empty or Y/ become empty (since for
each dependency QUEUE during any iteration its right
side is substracted from the set Yf), and hence the

lopp terminates.
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The computation of YI (i.e. linezs (8)-(13))
in the algorithm-1 requires an efficient
implementation. In this subsection we describe a data
structure for a fast on-line execution of the procedure
FIND(Y) that runs in ONGN time, where H#GH is the
size of the description of the set of FD=s G, and the

fast algorithm is given in figure 3.2.

In algorithm-2, we assume that the attributes
of the set {Al, AE""""’ An} which are appearing on
FDs of G, are represented by the numbers 1,2,........,0
respectively and also He associate numbers
1,250ccuncaym with dependencies PR PYEEERES- M
respectively, of G. A linked list LIST(i) for each
attribute Ai appearing in G, is constructed where,
LIST(i) containzs a pointer to each FD that has the
attribute Ai on its right side. We also associate a
counter COUNTER(j;) for each dependency g_i in G where,
the counter initially specifies the number of
attributes on the left sides of the FDs of G. The
linked 1lists and the cuunters_can be constructed in a
single pass over G in ONGH time. During the execution

of the 'algurithm COUNTER(j) indicates the number of
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of the algorithm COUNTER(j) indicates the number of
attributes on the left side of the dependency gj,

which are not belonging to the current value of the set

DEFPEND.

The procedure UPDATE is used to update the
counters whenever some attributes are added to DEPEND.
When COUNTER({ ) associated with the dependency j
becomes Zero, the left side of the FD 3 is a
subset of DEPEND, hence the FD j is put on the set
GUEUE, where QUEUE is the set of all dependencies whaose

left sides are subsets of the current value of DEFRPEND.

The algorithm-2 given in figure 3.2 operates
-essentially as in algorithm-1 by succesfully adding new
attributes to DEFEND and substracting the new
attributes from YI. When a set of attributes say R is
added to DEPEND in one iteration and which were previo-
usly not belonging to DEPEND, then each attribute of
R is removed from the left sides of the FDs on which
it appears, by calling the procedure UPDATE(R), which
updates the COUNTER as well as GUEUE. The algorithm
continues until either GUEUE becomes empty or YI

becomes empty.



ALGORITHM-2

Input: A set G of mFDs on attributes (A ,A
--n:,An} and an FD g:X")Y.

Output: *YES® if geG'; *"NO* if gd¢6'.

1. Attributes are represented by integers between
1 and n.

2. FDs are represented by integers betugen 1
and m.

3. LS(j) and R5{j) are arrays of sets containing
attributes appearing on left and right sides of
the FD § respectively, for each jeG.

4. DEPEND is a set of attributes found to bLe
functionally depending on X so far.

5. Yf is a subset of attributes of the set Y,
which are not yet found to be functionally
depending on X so far.

4. R is a subset of DEPEND that has not yet

been examined.

7. COUNTERIL;j1 is an array containing number of

attributes on the left side of each FD j

which are not yet found to be in DEPEND.



8. LISTIil is an array of FDs specifying Ffor
each attribute Ai, the FDs with the
attribute Ai on their left sides.

?. QUEUE is set of FDs, whose left sides are

subsets of DEFPEND.

ALGORITHM: -
procedure UPDATE(R):
begin
(1) for every attribute A& on R do
(2) for every dependency j on LIST(i) do
begin
(3) COUNTER({j) = (COUNTER(j)-1);
{4) if COUNTER(j) = O then
(3) put j on QUEUE;
end;
end UPDATE.

begin
(&) INITIALIZE: do i = 1 to n
(7) LIST(i)=03}
endj
(3) do j =1 tom
(?) COUNTER(j) = Oj
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(10)

(12)

(13)

(14)

(18)

(17)

(13)

(26)

Im
&
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do for each attribute i&€LS5S[j1;
LISTLil = (LISTLil1 U {j3);
COUNTERL;] = (COUNTERIL;1 +1)3

end

make QUEUE empty

DEFEND = Xj;

v/ = v;

UPDATE{(X) ;

+hile ((QUEUE is not empty) AND (Y is not

empty)) do

remove a dependency i from QUEUE;

end;j

RETURN Y;

end FIND.

if RS[i1€£ DEPEND then

begin
TEMFP = DEFEND;
DEPEND = (DEFEND U RSLil);
v/ = v/ - ReLiD;
R = (DEPEND - TEMP);
UPDATE(R) ;
end



begin (/¥ main procedure ¥/}

(27) v/ = FIND(Y) 3
(28) if ¥ =& (/% the null set %/)
(29) then FRINT °YES®
(30) else PRINT "NO’;
end.

Figure-3.21- A Linear Time Algorithm

Problem for FDs.

for the Membership



To prove the correctness of the angorithm-2
we Ffirst examine the initialize step (i.e. 1lines (&)~
{17) ). Lines (&8) to (13) consists primarily of a scan
of G, performing a constant number of operations for
each attribute on the left sides of FDs of G, therefore
this part terminates ( since the number of attributes
is finite ) and takes time OHGH]. At the initialize

step, the followings hold.

(i) For each g in G, COUNTER(i)
i

iLs(i) i,

where ILS(i)! is the length of the left

side of the FD 9;-

{(ii) For each Ai in the set CAI,AE,.....AH},
LS5(i) contains a list of FDs with Ai on

their left sides.

{iii) The set QUEUE is initialized to empty

set and the sets DEPEND and Y’ 27F
initialized to X and Y respectively,
vhere X and ¥ are the left side of the

given FD g:X-:Y, respectively.
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The total cost of all the calls to the
procedure UPDATE in lines (17) and (25) can be computed

as follouws.

The cost of executing the lines (1)-(5) once is
distributed among the dependencies on LIST(i). Putting
a dependency j on GUEUE requires a constant time
since only a pointer has to be moved. So a constant
time is assigned to each dependency on LIST(i) in Ene
iteration of the loop. During the execution of FIND(Y)
each LIST(i) is traversed at most once, and the
cumulative cost of each dependency is proportional to
the length of its left side. Thus, the total cost of
all calls to the prnceﬁure UPDATE is no more than

ouiGi time.

The main body of the algorithm is the loop
of 1lines (18)-(25). To prove the termination of this
loop, we note that the loop is executed once for each
member of QUEUE. Since each dependency is put on QUEUE
not more than once at most m dependencies can be added
to the set QUEUE. Thus the loop of lines (18)-(23) can
execute at most m-times and therefore must terminate in
6“6“ time. Hence the eﬁtire algorithm terminates and
the running time of the procedure is OUGUR time. While

the worst case time of the algorithe-2 is O0LGl, the
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running time will be frequently much batter. First, if
G contains many FDs whose left sides are disjoint from
gl { the closure of X with respect to G ), then these
FDs will never be added to QUEUE and hence QUEUE will
become empty much earlier and the number of iteration

of the 1loop on lines (18)-(23) will become very less.

Again, if during any iteration in loop ((13)-(23)), it

-will ke found that Y/ is empty, the iteration will stop

and hence will decrease the running time of the

alagorithm considerakly.

\

The membership algorithm can be applied to
solve several FD problems that are related to automatic
schema synthesis such as:

{1) To elimanate redundant attributes from a given FD
with respect to a set of FDs.

(2) To find various types covers of a set of FDs such
as,the non-reduntant cover,the minimél caver and the
minimum cover which are required for synthesizing nor-
malized database schemas from a set of FDs.

(2) Also since there exists an equivalence between FDs

propositional formulas such as Horn clauses with at

‘most one negative literal, the linear time algorithm

can also bke applied to decide if a preopositional

formula is a tautology.

sS4
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One of the objective of this dissertation is
to develop an efficient algorithm for the membership
problem of the fun:tinnal dependencies in relational
database. The advantages of the proposed algorithm are
in distinct contrast to the inadequacies of previous
research for the membership problem.There have been a
number of methods proposed for this problem over the
years. For implementation point of view while the
algorithm given by Beeri and Bernstein is considered
to be a pioneer one, it has shouwn here that the
algorithm can be improved considerably to reduce the

implementation time.
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