A MEMBERSHIP ALGORITHM FOR FUNCTIONAL DEPENDENCIES IN RELATIONAL DATABASE

Dissertation
submitted to Jawaharlal Nehru University in partial fulfilment of the requirements for the award of the Degree of
MASTER OF PHILOSOPHY

RAMA CHARAN TRIPATHY

The research work entitled "A Membership Algorithm for Functional Dependencies in Relational Database" embodied in this dissertation has teen carried out at the School of Computer and System Scioncess, Jawaharlal Nehru University, Hew Delhi. This work is original and has not been submitted so far in part or full to any other University or institution for the award of any other degree or diploma.

Prof. K. K. Nambiar
Dean

Min Saxons

Supervisor
Dedicated to
my respected father,
from whom l learned
patience and perseverance.

ACKNOWLEDGEMENT

Abstract

I wish to express my sincere appreciation and deep gratitude to my supervisor; Dr. F. C. Saxena, Associate Frofessor, Gchool of Computer and System Griences, Jawaharlal Nehru University, Hew Delhi for his keen interest, capable guidance, invaluatle encouragement, inspiration for hard work, constructive criticisms, advice, patience and wisdom during my M.Fhil coursework and particularly throughout the planning and completion of this dissertation.

I am indebted to Professor K. K. Nambiar, Dean, School of computer and System Sciences, Jawaharlal Nehru University for providing me all kinds of facilities and co-operation in completing this work and With whom I have the pleasure of having free discussions.

My thanks are also to the faculty members and other staff of the school for providing me help and guidance.

In working so long on my M. Fhil degree, I have been sustained by the relationships and help of many
friends. My thanks to Mr.F. S. Acharya and Mr. Gurendra Kumar for their co-operation and helpful discussions.

My special gratitude to my family for their continuous encouragement and support throughout my academic career.

Finally I am grateful to Jawaharlal Nehru University, New Delhi for providing me the financial aэsistance.

Rama Charan Tripathy

TABLE OF COHTEHTS

Fange
Acknotigdgement ii
Prefince $\because i$
Chapter－I 1－23
1s Introduction 1
1：1：Data Banse Management $\mathrm{S}_{\text {；}}$ Itemī 1
1： 3 ：Data Modelㅍ 3
1：3：Relational Data Model 5
1：A：Operations on Relationy 10
1：5：Data Dependenciez 12
1：5：1：Functional Dependencief 15
1．5：Z：Multi：Zalued Dependencieㅍ 16
1：5：3：Hierarchical Dependenciez 18
1：Si：$A=$ Join Dependencief 16
1：G：Hormalisation and Hormal Forma 30
1：G：1：Hormal Form玉 32
Chapter－II 29－37
Z：Implication Froblemz for Data Dependencies 20
2．1：Introduction 23
彐コ．Inference Rule玉 for Data Dependenciex 20
Z：ㅋ：1：Inference Rulef for Functional Dependencief 31
코콬．Inference Rulē for Multivalued Dependencies 33
Z：2：3s Mixed Inference Rulez for FDz and mule 34
콕 4 ：Infergnce Rulez for Join Dependencigz 36
코 The Clowures of Dependencieg 37
Z： 4 ：Chapter Summar；and Remark 37
Chapter－III 40－5？
I：The Member I hip Algorithm for
Functiongl dependencieg 40
3．1：Introduction 40
고킁 The Member三hip Algorithm 42
3：2．1：Froof af Termination of Algorithm 47
3：$=$ A Linear Time Algorithm for Implementation of Algarithm－1 uミing 3 imple dョta 三tructure 49
3：4：Anal；ining the memberinip zlgorithm 54
3：5ix Application of the member 56
 57
Bibilography 58

PREFACE

One of the most significant contribu tions to the Data Base Management Technology in recent years has been the development of relational point of view of a data base. The relational model of data base formalizes the organization of and access to highly structured data. The model provides a view of data that is elegant in its simplicity and encourages the application of abstract mathematical reasoning: A substan tial amount of research activity has surrounded the field Eince its inceptioh in the work of codd in 1787. In that time, several issues related to the model have been studied intensively. Among them are:

1. The characterization of semantic
constraints on the data, and
2. The selection of data base design scheme.

The theoretical work in this area will be of little utility without a major effort at reducing theory to practice. Thus, there is a need for the design and analysis of algorithms that are required for a good data base system.

Let us first describe the most important area of relational data base which is the issue of

Abstract

semantic constraints and may be given in various disguise. For example; values may be constrained to lie with in certain domains, as in asalaries may not be more then Rs.10,000. "Such constraints take the form of predicates ranging over single domains of salaries. Another class of constraints take the form of values from domain x depends on values from domain Y according to rule 2 . The classic example of data dependency is the functional dependency, which asserts that, values for one set of attritutes are uniquely determined by another set of attributes. An example of functional dependency is the statement:

- No employee of a company has two different Salaries."

Functional dependencies were first descrited in full generality by Cody in 1971, although they have been recognized for a long time taking the form of keys. Many other forms of data dependencies have been described; e.9. multivalued dependencies, join dependencies, first-order hierarchical dependencies and implicational dependencies.

[^0]standable and readily identifiable. Furthermore functional dependencies are special cases of nearly all other types of dependencies. A comprehensive understanding of functional dependencies can help to formulate the practical implication of other types of dependencies. All the work on functional dependencies are based on the axiomatization of functional dependencies developed by Armstrong in 1974. Wang and Wedekind proposed an algorithm to synthesize the relational schema from a set of functional dependencies. Another approach was made by Bernstein to design a relational data base schema from a given set of functional dependencies. Every protlem dealing with functional dependencies requires a manipulation of functional dependencies according to the axioms put forth by frmstrong. In 1979 Bernstein has given a graph theoretic approach - a tree model for the derivation of functional dependencies and also proposed a procedure to solve the membership problem for functional dependencies.

The main objective of the approach given in this dissertation is also to solve the membership problem for functional dependencies. It has shown here that, the proposed algorithm is faster than the algorithm proposed by Bernstein.

The organization of the dissertation is as follows: In first chapter the basic concepts of the relational model for databases are given and also a detailed discussion about data dependencies, normalization and normal forms are presented.

In chapter tho the theoretical bases for the data dependencies in general, and the implication problem of functional dependencies, multivalued dependencies and join tependencies in particular, are discussed.
The chapter three starts with a simple
algorithm for the membership problem for functional
dependencies and then the algorithm has been modified
by using a simple data structure for implementation
purpose.

I. INTRODUCTION

1.1 Data Gase Management Sqitemb

Data Base System was introduced in late 1760'ョ to overcome the protlems arising in the use of conventional file syjtems, such as: (1) The inability to efficiently integrate numerous large files and (z) The inability to support higher level data and file organizations. The major elements of a data base system are, the data base, queries and their query programmes, file organization and data management functions. The data base is the repository of all data of interest to the user of the system. The queries in their form in the computer as query programmes, represent the users in the system and create its actions. File organization is necessary to expedite operations, and the data management functions represent the set of all operative programmes in the data base system, necessary for storage retrieval and space management.

There are three approaches to define the data base. The first approach is from designer's point of view and deals with the technical aspects of data base technolog\%, and is defined by Cardenas [11] as " a database $i s$ a collection of occurfences of
record types; where the record types are interrelated by means of specific relationships".

The second approach is concerned with its application point of view from the standpoint of organization. According to Mandell: a data base is a grouping of data elements, structured to fit the information need of an organization".

Date ([15], 19G1,P-7) states, a database is a collection of occurrences of stored operational data used by the application systems of some particular enterprise".

The third approach is a combination of both technical point of view and application view of the database technology; and is defined by Kroenke as " a data base allows an organization's data to be processed as an integrated whole. It reduces artificiality imposed by separate files for separate applications and permit users to access data in a manner which is more natural to them".

A Data Base Management System (DBMS) is a software interface between the user and the physical storage of data in the computer, which handles the physical storage and the retrieval of information in a database. It also has the important

1.2 Data Model트

In the context of data tase systems, a data model is a term used to denote any formally definable class of data structures, which can te used as the basis for the design and development of various data processing applications: According to McGee, a
data model is a way of viewing data; it provides a basis for the construction of a DBMS. Three kinds of important data models have teen proposed. They are:
(1) The Hierarchical data model (Bleir[10]).
(2) The Network data model (Bachman[3]: CODASYL[12]; 1971).
(3) The Relational data model (Codd[13]).

Hierarchical data models are embodied in the form of IBM's Information Management System (IMS) and MRIs System 2000(GZK). In the Hierarchical approach the data base is represented ty an ordered tree, the nodes of which usually correspond to entity types; which are represented by tables of data, and arcs between the nodes correspond to the functional relationships between the tables.

The importance of Network approach grons after it is put forth by the Data Base Task Group (DBTG) of the Conference on Data System Languages (CODASYL) in 1976. In Network approach, data is represented by records and links, and the relationships between records are called as sets. The data structure is represented by a netwark structure.

The concept of relational model of data was first proposed by Codd [13] in 1767. In this system one viens the database as a set of relations, where the term relation has been derived from the mathematical definition of relations. Conceptually, a celation can be viewed as a table in which each row corresponds to records of files known as entity (or tuple) and each column corresponds to field of records known as an attribute. There exist a set of possible values associated with each attribute in a relation, called the gqmain of that attribute.

Formally, a relation can be defined as follows (Date, 1781, [15],p-84):

Given a collection of a sets D_{1}, D_{2}, \ldotss. D_{n} (not necessarily distinct), a relation R defined over the set $\left[D_{1}, D_{2}, \ldots \ldots . . . D_{n}\right\}$ is a subset of the cartesian product $D_{1} \times D_{2} \times \ldots \ldots . . . \times D_{n}$. That is, R is a set of ordered n-tuples each of the form ($d_{1}, d_{2}, \ldots, d_{n}$) where $d_{i} \in D_{i}$. Each element of $R i=$ called a tugle of R. An attribute $i s$ a name assigned to a domain of a relation. While the domains of a relation need not be distinct, the attribute names assigned to them must be unique with in the relation.

Suppose $A_{1}, A_{2}, \ldots . \boldsymbol{H}^{\prime} \cdot A_{n}$ are the names of the domains $D_{1}, D_{2}, \ldots . .$. , and D_{n} respectively of a relation R, then we use notation (1.3.1) for R.

$$
{ }_{1}^{R\left(A_{2}, A, \ldots, \ldots, A\right)} \quad 1.3 .1
$$

The attribute set of R is defined as:

$$
{ }_{1}^{U\left(A_{2}, A_{2} \ldots A_{n}\right)} \quad 1.3 .2
$$

We will use (1.3.3) to designate the relation R on the set of attributes U.
$R(U)$
1.3 .3

The structure of relation is sometimes called as the intension (Scheme) and the contents of a relation is referred to as the extension. The contents
of a relation may vary from time to time. That is, tuples may be modified, deleted from a relationg oriand inserted in arelation. The contents of a relation in a particular time is called as its instance. Figure i. ia indicates a relational schema for a medical database consisting of four relational schemes HOSFITAL (CODE, NAME: ADDREGG, \# OF BEDS), DOCTOR (DOCTOR \#, NAME, GPECIALIZATION), WARD (WARD CODE, NAME; \# OF BEDS) and STAFF (EMPLOYEE \#, NAME, DUTY, SALARY). An instance of the schema is shown in figure 1.16.

Let $R(U)$ be a relation on the set of attributes U and let W be a subset of U, then W is a candidate key of R if it can uniquely identify the tuples of R and no proper subset of W has this property: A relation may have more then one candidate key. An attribute is said tobe prime if it appears in any candidate key of the relationg otherwise it is called a non-prime attribute.

Conventions: Upper-case letters A,B,C,...... from the start of alphabet represent single attritute; uppercase letters $=.=. . x_{,}, 2$ from the end of alphabet represent sets of attributes; and lower-case letters r,s,t,:... from the end of alphabet represent tuples of a relation.

A Relational Schema and its instance

a) An example of a relational schema (consisting of four relational schemes)

HOSFITAL (CODE, NAME, ADDRESS, \# OF BEDS $)=(1 \mathrm{H} 1, A M, D L, 500)$; ($\mathrm{H} 2, \mathrm{RL}, \mathrm{ND}, 250$), ($\mathrm{H} 3, \mathrm{JH}, 5 \mathrm{D}, 50^{\circ}$) $)$

DOCTOR (DOCTOR \#, NAME, SPECIALIZATIOH) $=$ ($\mathrm{D} 1, \mathrm{RT}, \mathrm{CN})$, (D2, $5 K, G Y$), (DS, $N M, O F)$, (D4, AN, AT), (DS, AF,FF) ?

WARD (WARD CODE, NAME, \# OF BEDS) = [(W1, XC, 45), (W2,YD, 30), (WJ, ZA, 56), (W4,UE,25), (W5, WF, 35) \}

STAFF (EMFLOYEE \#, NAME, DUTY, GALARY) $=$ ($(10, \mathrm{DG}, \mathrm{XX}, 650)$, ($25, \mathrm{FH}, \mathrm{XY}, 756$), (15, PA, NW, 350), (23,RG, SU, 215); (26, DM, WK, 234), (45, GB, SN,542) \}

Figure $1.1 a$ A medical database schema
b) An instance of the schema of the part "a": HOSPITAL (CODE, NAME; ADDRESS; \# OF BEDS)
H1 AM DL 500

H 2 RL ND 250
H3 JH SD 50

DOCTOR (DOCTOR \#, NAME, SFECIALIZATION)
D1 RT CN

D2 SK SY
DJ NM OP
D4 AN AT
D5 AF FF

WARD (WARD CODE, NAME; \# OF BEDS)
W1 $x C \quad 45$

W2 YD 30
WJ 2A 56
W4 UE 25

STAFF (EMPLOYEE \#; NAME, DUTY; GALARY)

15	FA	NW	350
23	RG	SU	215
26	DM	WK	234
45	SB	SN	542

[^1]
1.4 Operitiong on Relation

One of the main advantages of the relational approach is that, if the relations are created to confirm certain mathematical constraints, then the relations can be manipulated mathematically. The manipulation is accomplished through the data manipulation languages (DML). There are a number of ways in which relations can te manipulated. Several relational 5ystems provide a DML which is tased on relational algetra, other systems provide languages based on relational calculus. The relational algebra suggested by Codd [13], is a collection of set operations out of which the two most important operations ise. Proiection and Join are discussed below.

Let R be a relation defined on the set of attributes $U=\left\{A_{1}, A_{2}, \ldots, \ldots, A_{n}\right\}$, For any $W=\left\{A_{1}, A_{2}, \ldots\right.$ \ldots, A_{m}^{3}, or $m \leqslant n$ that $i s w \in U$, the proiection of R on W is denoted by R[W] and is defined as:

$$
R[w]=\left\{\left(a_{1}, a, \ldots . . . a_{2}\right) /\left(a_{1}, a_{2}, \ldots . . a_{n}\right) \in R\right\}
$$

In otherwords, we can think of the projection of R on W as the operation that takes the relation (instance) represented by R, then delete all

If An instance of a relation $R(A, B ; C ; D, E)$ is

$$
\begin{array}{ccccc}
R(A, & b, & C, & D, & E_{1} \\
& a_{1} & b_{3} & c_{2} & d_{1} \\
& e_{3} \\
& a_{1} & b_{2} & c_{3} & d_{1} \\
& e_{4} \\
& a_{2} & b_{4} & c_{1} & d_{3} \\
& e_{4} \\
& a_{3} & b_{1} & c_{3} & d_{2} \\
& e_{3} & b_{2} & c_{4} & d_{4} \\
& e_{2}
\end{array}
$$

then the projection of R on $\{A, B, D\} i s R[A, B, D]$, given by:

$$
\begin{aligned}
& \text { RA, B, D] } \\
& a_{1} \quad b_{3} \quad d_{1} \\
& \begin{array}{lll}
a_{1} & b_{2} & d_{1}
\end{array} \\
& \begin{array}{lll}
a_{2} & b_{4} & d_{3}
\end{array} \\
& a_{3} \quad b_{1} \quad d_{2} \\
& \begin{array}{lll}
a_{3} & b_{2} & d_{4}
\end{array}
\end{aligned}
$$

Figure -1.2
columns except those labelled by attributes in W and finally identify the common tuples, as shown in figurei.2.

The Join operation which in some sense is inverse to the projection operation, in fact connects attributes of different relations together. The Join (natural Join) of a relation $R(X, Y)$ with a relation $S(Y, Z) i s$ denoted by R*S and is defined as:

$$
R * S=\{(x, y, z):(x, y) \in R \text { and }(y, z) \in S\} \quad 1.4 .2
$$

Figure 1.3 indicates an example of join operation.

1.5 Data Dependencies

In relational datatase model, conceived by Codd, one viens the database as a collection of relations, where each relation is a set of tuples over some domains of values. One notable feature of this model is its being almost devoid of semantics. A tuple in a relation represents a relationship between certain values, but from mere syntactic definition one knows nothing about the nature of this relationship, not even whether it is one-to-one or one-to-many relationship. One approach to remedy this deficiency is to devise means to specify the missing semantics. This semantic specification is often called semantic or integrity

If the instances of two relations $R(A, B, C)$ and $S(C, D)$ are

$$
\mathrm{R}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}) \quad \text { S(C, D) }
$$

$a_{1} \quad b_{3} \quad c_{2}$
$r_{1} \quad d_{2}$
$\begin{array}{lll}a_{1} & b_{2} & c_{3}\end{array}$
$c_{2} \quad d_{2}$
$\begin{array}{lll}a_{2} & b_{4} & c_{1}\end{array}$
$\mathrm{C}_{3} \mathrm{~d}_{3}$
$\begin{array}{lll}a_{3} & b_{1} & c_{4}\end{array}$
$c_{4} d_{1}$
then the natural join of R and 3 (i.e. R*S) is given by:

$$
\begin{aligned}
& \text { R*S (A, B, C, D) } \\
& \begin{array}{llll}
a_{1} & b_{3} & c_{2} & d_{2}
\end{array} \\
& \begin{array}{llll}
a_{1} & b_{2} & c_{3} & d_{3}
\end{array} \\
& \begin{array}{llll}
a_{2} & b_{4} & c_{1} & d_{2}
\end{array} \\
& \begin{array}{llll}
a_{3} & b_{1} & c_{4} & d_{1}
\end{array}
\end{aligned}
$$

Figure-1.3
constraints, since they specify which datatases are meaningful for the application and which are meaningless. The constraints are called data dependencies or simply dependencies in database systems.

The study of dependencies began in 1932 with the introduction by Codd[14] of the Eunctional Degendencies. After the introduction, independently by Fagin [19] and Zaniole [34] in 1975, of Multivalued Dependencies, the field becomes chaotic for a few years in which various researchers introduced many new classes of dependencies.The situation has situated stabilized since 1700 with the introduction of Embedded Implicational Degendencies (EIDs). Essentially, EIDs are sentences in first order logic, stating that if some tuples fulfilling certain equalities; then either some other tuple must also exist in the data base or some values in the given tuples must be equal. The cnass of EIDs seems to contain most of the previousiy studied classes of dependencies. Recently De Bra and Faredaens[16] considered afunctional dependencieg, which are not functional dependencies. In the fonlowing subsection we give the tasic definitions of various kinds of dependencies and in the next chapter we will discuss the properties of some of the important data dependencies.

1.5.1 Eunctional Dependencies

Functional dependencies (abtr: as FDs) form a family of constraints, the properties of which have been studied extensively by Armstrong[2], Beeri et al[6], Fagin[21] and Nicolas[27]. We give the definations of $F D=$ below.

A functional dependency is a sentence denoted by $f: X->Y$, where X and Y are sets of attributes. An FD f: K->y holds in a relation $R(U)$ where X and Y are subsets of U, if for every tuple u and v of $R, \quad u[X]=\forall[X]$ implies $u[Y]=v[Y]$, i.e. the relation R obeys the $F D$ f: have the same projection on x also have the same projection on Y. Given f:X-ンY, we Eay that K functionally determines Y, or Y is functionally dependent on X. We usually write the FD f: $\mathrm{X} \rightarrow \mathrm{Y}$ simply as X-> Y.

FDs can also be represented by first-order logic as shown by Nicolas [27]. Consider the relation R(U), where $U=\{A, B, C, D\}$. The $F D$ is represented $b y$ the sentence:

$$
\left(\psi a b c_{1} c_{2} d_{1} d_{2}\right)\left(\left\{\text { Fabc }_{1} d_{1} \wedge \text { Fabc }_{2} d_{2}\right) \Rightarrow\left(c_{1}=c_{2}\right)\right)
$$

Where (\forall abc $c_{1} c_{2} d_{1} d_{2}$) is a shorthand for
 quantified and F is a relational symbol.

1.5.2 Multivalued Dependencies (abbr. MUDs)

The concept of functional dependencies is not sufficient to capture the various types of relationships that exist in relations. It is possible that the walues of the attributes in a set Y depends only on the values of the attributes in the set x, but there exist more than one Y-value for a given X -value. Such a relationship is not a functional dependency. Hence the concept of multivalued dependency (MUD) was introduced independently by Fagin [19] and Zaniolo [34] to describe such relationships.

Definition:- Let $R(U)$ be a relation schema and let Y be a subset of U, for each subset X of U and for each x-value x, we define
$Y_{X}=\{y$ for some tuple $t \in R, \quad t[X]=x$ and $t[Y]=y$, , where $t[X]$ is the X-component of the tuple t in R.
i.e. $\quad Y_{x}$ is a function that gives for each X-value, the set of Y-values that appear with this x-value in tuples of the relation.
n multivalued dependency 9 ; on a set of attritutes U is a statement $9: X->->Y$, where X and Y are subsets of U. Let Z te the complement of the union of X and Y in U.

A relation schema RiUl obeys the MvD $9: X->->Y$, if for every $X Z$-value $x \bar{x}$, that appears in $R_{;}$we have $Y_{X I}=Y_{X}=$ In other words, the MWD 9 is valid in R if the set of Y-values that appears in R with a given x, also appears with every combination of x and z in R.

Fagin [17] defined the MuD as: let R be a relation schema over U and X and Y are subsets of U. Let Z te the complement of the union of X and Y in U i.e. $Z=(U-X Y)$. Then the MUD $X->-\rangle Y$ holds in R if for all tuples r_{1} and r_{2} in $R r_{1}[X]=r_{2}[X]$, then there exist tuples r_{3} and r_{4} such that
(i) $r_{Z}[X]=r_{1}[X], \quad r_{J}[Y]=r_{i}[Y]$ and $r_{3}^{[2]}=r_{2}^{[2] ;}$
(ii) $r_{4}^{[X]}=r_{2}^{[X],} \quad r_{4}^{[Y]}=r_{2}[Y]$ and $r_{4}[Z]=r_{1}[z]$.

Like FDs, the MUDs can also be expressed in first-order logic. For example assume that $U=\{A, E, C, D, E\}$. Then the MVD $A B-$ - $->C D$ holds for a relation over U if the sentence

$$
\begin{aligned}
& \left.\left(\forall \operatorname{abc}_{1} c_{2} d_{1} d_{2} e_{1} E_{2}\right)\left(\text { Fabc }_{1} d_{1} e_{1}\right) \text { P (Fabc }_{2} d_{2} e_{2}\right) \\
& \Rightarrow \operatorname{Pabc}_{2}{ }_{3}{ }^{2}{ }_{1}
\end{aligned}
$$

holds, where p plays the role of the relation symbol.

1.5.3 Hierarchical Dependencieg

$$
\text { A relation } R\left(X, Y_{1}, Y_{2}, \ldots \ldots \ldots . . Y_{k}\right) \text {, }
$$

where X, Y_{1}, Y_{2}, \ldots. and Y_{k} are disjoint sets of attributes, obeys the $H D$ if for every x-value x we have

$$
\begin{array}{rl}
R\left(X, Y_{1}, Y_{2}, \ldots \ldots, Y_{K}\right)=R\left[X, Y_{1}\right] * & R\left[X, Y_{2}\right] * \ldots \ldots \\
\ldots \ldots * R\left[X, Y_{K}\right]
\end{array}
$$

which expresses the decomposability of the relation of R over $\left\{X_{,} Y_{1}, \ldots=, Y_{k}\right\}$ into k projections.

We shall say that a HD is a total hierarchical dependency (also called as a generalized multivalued dependency (GMVD)) if X is the empty set, since in this case the projection of R over the set attributes $C_{1}, Y_{2}, \ldots, \ldots Y_{k}$ is the projection of R respectively on $Y_{1}, Y_{2}, \ldots .$. , and Y_{k}.

1.5.4 Join Dependencieg

The MUDs characterize the lossless decomposition of a relation into two projections. However

MUDs are inadequate for expressing the conditions under a lossless decomposition of a relation into more than two projections. Join dependencies Here introduced to characterize this kind of lossless decomposition.

Definition:- Let $R(U)$ be a relation over an attribute set U, and $X_{1}, x_{2}, \ldots \ldots, \ldots, x_{n}$ are subsets of U such that $U X_{i}=U$, a n-join dependency (abbr. n-JD) is a sentence denoted as $*\left[x_{1}\right]\left[x_{2}\right] \ldots\left[x_{n}\right]$, also denoted $a s$ * [U]. The relation R is said to satisfy this n-JD if

$$
R=\stackrel{n}{\stackrel{n}{i=1}} \quad R\left[X_{i}\right]
$$

i.e if R is the join of its projections $R\left[x_{1}\right], \ldots .$.s[Kn. It follows that this Jd $*$ [U] holds for the relation if and only if R contains each tuple t for which there are tuples t_{1}, \ldots, t_{n} of R such that $t_{i}\left[x_{i}\right]=t\left[x_{i}\right]$ for each $i \quad(1 \leqslant i \leqslant n)$.

An n-JD characterizes exactly the lossless decomposition of R into n projections. The $J D$ can express multivalued dependencies and total hierarchical dependencies in a unified way. This follows directly from their definitions. A multivalued dependency $X->-3 Y$ can be represented by a $2-J D$ x[XY][YZ] and a total hierarchical dependency $K: Y_{1} \mid Y_{2}$ I............ Y_{k} can
be represented by the k-JD

$$
{ }^{*}\left[X Y_{1}\right]\left[X Y_{2}\right] \ldots\left[X Y_{K}\right] .
$$

1.6 Normalization and Normal Forma

The notion of normalization in relational database was first presented by Coddri4]. He observed that certain relations have structural properties those are undesirable for describing data bases. These undesirability stem from the fact that some attributes are related to each other in certain ways. For example consider the relation SUPF (SUFFLIER, TOWN, POPULATION). It三 intended meaning is that, whenever a tuple say (s,t,p) occurs in this relation, it means that " supplier s is located in the town t whose population $i s p . "$ The relation scheme in fact leads to the following data manipulation anomalies. First, notice that the population of a given town must appear. as many times as there are suppliers located in that town (data redundancy). Thus if the population of a town has to be updated, all the tuples in which it occurs have to be retrieved in order to update consistently the population of the town (updating anomaly). Now, if the last supplier located in a given town is deleted, then the population of this town is lost

Abstract

(deletion anomaly). Conversely, the population of a town can be recorded only when one knows at least one supplier located in that town (Insertion anomaly).

Abstract

To avoid data manipulation anomalies attempts have been made to introduce schemes with no undesirable structural properties for describing database. This consideration led to Codd [14] to define a process known as normalization, which consisting of converting a relational schema into another form that stores the same data but in different format and ensure the removal of undesirable anomalies and redundant attributes from the relational schemes. In [14] Codd has discussed the normalization of relations, which is based on a series of four normal forms which are; first Normal Form; Second Normal Form; Third Normal Forms and Boyce-Codd Normal Form.

Later in 1977, Fagin[19] discovered that even by putting a schema in Boyce-Codd Normal Form, not all the anomaly problems necessarily disappear. This led him to propose a new normal form called Fourth Normal Form. Forth Normal Form is defined in terms of functional and multivalued dependencies alone. It has shown by Fagin [19] that the concept of multivalued dependency is intimately related to the join dependencies. For exam-
ple, if U and v are the subsets of attributes of a relation R and if W is the set of attritutes of R not in U or V then the MVD $U->-\geqslant V$ holds in R if and only if R is the join of its projections R[Uv] and R[UW] i.e. if the JD m[UW, UW] holds in R. Hence multivalued dependencies are correspond to マーway decompositions of a relation. But Aho, Beeri and Ullman $[11$ have given a surprising example to show that a relation can be the join of three of its projections, without this join being the result of cascading 2-way projections. Fagin has introduced another normal form known as project and Join Normal Form (FJ/NF) and have shoun that, because of the above property the PJ/NF is stronger then the 4NF. These normal forms are discussed in the following subsection.

1.6.1 Normal Forms

The concept of functional dependencies and multivalued dependencies play significant roles in the theory which governs the Jecomposition of relations into subrelations in normal forms.

To show how certain undesiratle dependencies create problems, we will discuss the concept of partial functional dependencies; full functional depen-
dencies, key dependencies and transitive dependencies mentioned by Codd [14]. We will also discuss Fagin's notion of nontrivial multivalued dependencies.

Let R be a relation schema defined ower. the set of attributes U. We say that Y is fully dependent on X in R if
(i) X and Y are two disjoint subsets of attributes of relation R. (ii) $X->Y$ and (iii) Y is not functionally dependent on any proper subset of x.

If the condition (J) is not satisfied then we say Y is partially dependent on x in relation R.

If K is a subset of U_{3} then we say that K is a key (of the relation schema) if the FD $K-y U$ is in the schema R, and if there is no proper subset L of K such that the $F D L->U$ is also in the schema. We cal1 such a functional dependency $K->U$ a key dependency of R. That $i s$ the dependency $K-\geqslant U$ is a key dependency if it is a full FD in R.

Eiret Normal Form (1NF):

$$
\text { A relation schema } R \text { is said to be in }
$$

1NF if and only if all the underlying domains of each attribute of R contain atomic values.

Geecond Normal Eorm (2NF):

A relation schema R is said to be in 2NF if
(i) it is in 1 NF ; and
(ii) every non-prime attribute of R $i \equiv$ fully dependent on each candidate key of R.

Thirg Normal Eorm (3HF):

To define the third normal form we need to define "Transitive Dependenc;".

Given a relation schema R, suppose that K,Y, and $Z a r e$ three distinct collection of attri butes of R, and if the following conditions are true:
(i) $X->Y$
(ii) $Y \not \subset X$
(iii) $Y->Z$
then it follows that $X->Z$ and $Z \nmid X$.

Here Z is said to be transitively depe-
ndent on X in the relation R.
A relation schema R is said to be in JNF if,
(i) it is in 2NF, and
(ii) every non-prime attribute is nontransitively dependent on each candidate of R.

Boyce-Codd Normal Eorm (BCNF):

The BCNF can be defined in the following three distinct (but equivalent) wajE:
(1) A 1NF relation schema R with attritutes U is said
 the $F D$ ㄱ.>U is also in R.
(2) A 1NF relational schema R with attritutes is said to be in BCNF if $G f f$ i.e. if f can be derived from the set G, for each $F D$ in R, where G is the set of key dependencies in R.
(3) A 1NF relation schema R with attributes is said to be in BCNF if, for each FD fin R, there is a key dependency $K->U$ in R such that $K->U \vdash f$.

Thus the BCNF states that every set of attritutes which has another attritute functionally dependent upon it in a relation schema R, must be a candidate key of R.

Fourth Normal Eorm (4NF):
dependencies" proposed $t ;$ Fagin[17], is needed in describing the forth normal form relations.

Given a relation $R(U)$ where $U=\{X, Y\}$, then the multivalued dependencies $X->->Y$ and X->-> θ, where - is the null set, are necessarily hold for R. These are called trivial multivalued dependencies.

We now define the 4NF in the following ways:
(1) A 1NF relation R with attributes U is said in $4 N F$ if, for each non-trivial MvD' X->->Y holds for R, then so does the functional dependency $x \rightarrow U$ halds in R.
(2) A 1Nf relation schema R with attributes U is said to be in 4NF if, $G \perp m$ for each MVD m in R, where G is the set of key dependencies in R.
(3) A relation schema R with attributes U is in 4NF if, for every MUD m in R there is a key dependency $K->u$ of R such that (K->U) -m .

Thus a relation scheme R is said to be in Fourth Normal Form if, every MUD in R is a result of keys of R.

Ergiect-Join Normel Form: (FJ/NF)

1) A iNF relation schema R with attributes U is in PJiNF if KFi for each JD j in R, where K is the set of key dependencies of R.
2) A 1NF relation schema R with attributes U is in FJ/NF if, for each JD j in R; there is a key

II. IMPLICATION PROBLEMS FOR DEFENDENCIES

Abstract

The theoretical bases for data dependencies in a relational data model are discussed in this chapter in details. A set of axioms ise. infem rence rules for the family of functional dependencies has teen explained and it has been shown that these axioms are complete for this family: Also a complete set of inference rules for multivalued dependencies has been presented in this chapter. It has teen stated that the combination of inference rules for Fds and MUDs is not sufficient for the family of FDs and MVDs and thus additional rules (FD-MVD rules) have been given to complete the set of rules for FDs and MVDs. Also we have presented a complete set of inference rules for the set of join dependencies in this chapter: Furthermore the closure of a set of dependencies and also for a set of attributes and various types of covers of a set of $F D=$ are also discussed in this chapter.

2 The Inference Eules for Data Dependencies

The most important problem for dependency theory is the implication protlem i.e. the prob-
lem of deciding for a given set of dependencies G and a dependency 9 , whether Gi=g i.e. whether G logically implies 9. A dependency g is said to te logically implied by a set of dependencies G, if g is valid in every relation which obeys all the dependencies in G. In other words g is logically implied $E=G$, if there does not exist any counter example relation which obeys all the dependencies in G but does not obey 9. The reason for prominence of the problem is that an algorithm for testing implication of the dependencies enable us to test whether two given sets of dependencies are equivalent; or a given set of dependencies is redundant. Even though the significant of implication problem was not yet clear in 1974, it was studied by Armstrong [2] apparently out of mathematical interest. Armstrong characterized implication of functional dependencies by using an axiom system where an axiom system consists of axiom schemes and a set of inference rules. A derivation of a dependency 9 from a set of dependencies G, denoted by Gi-g, is a sequence $9_{1}, 9_{2}, \ldots9_{n}$ where 9_{n} is either an instance of the axiom scheme or follows from the preceding dependencies in the sequence by one of the inference rules.
complete for a family of dependencies if for each set G of dependencies from the family; the dependencies that are implied by the set of dependencies G are exactly those, that can be derived from it using the set of inference rules. That is a set of inferencerules is said to be complete if Gi-g entails Gl=g. The concept of completeness of a set of inference rules is of prime importance in a system where inference rules are these are used. If a complete set of rules is used then only the database designer can be assured that he has a complete knowledge of all dependencies that hold in a given tatabase: A complete set of inference rules is said to te minimal if no proper sutset of it is com plete. Armstrong's rules for functional dependencies are complete is one of the basic assumption in the works on functional dependencies. For multivalued dependencies a complete set of inference rules is given by Fagin[19] and Zaniolo[34] in somewhat restricted manner: Beeri et al [s] have removed these restrictions and presented a general complete set of inference rules for $F D=$ and MUDs. Mendeliane [25] further investigated atout the independence and redundancy of these rules and has given a minimal complete set of inference rules for multivalued dependencies. After the introduction of join dependencies by Rissenen[27], a complete axiomati-
sation of full join dependencies is presented by Sciore [31]. Detailed discussion for the inferencerules for FDs and MVDs are given in the following subsections.

2.2.1 Inference Rules for Functional Dependencies

Axiomatization of functional dependencies was studied by Armstrong [2]. He has presented a set of axioms governing the set of functional dependencies. It has been proved [2, 5 that this set of axioms is complete for the family of functional dependencies. The completeness of Armstrong's axioms for FDs is an important basis for research in this area (including the present dissertation work l. The complete set of axioms for the family of functionally dependencies is presented below.

ED Rules:
In the following ruless X, Y, Z and W are arbitrary subsets of u, where u is the set of all attributes. We write $X Y$ for the union of the two arbitFary sets X and Y.

FDi (Reflexivity): If $Y \subseteq X$ then $X-3 Y$.
FD2 (Augmentation): If $Z \subseteq W$ and $X-\geqslant Y$ then $X W-Y Y Z$.

FDJ (transitivity): If $X->Y$ and $Y->Z$ then $x->2$.

Qther used rules :-

FD4 (Fseudotransitivity): If $X-3 Y$ and $Y W->Z$ then $x W-2 Z$.

FDS (Union): If $X->Y$ and $X->Z$ then $X->Y Z$.
FDŚ (Decomposition):' If $X->Y Z$ then $X->Y$ and

$$
x->z .
$$

FDP (Frojectibility): If X - $>$ Y holds in $R(U)$ and Xeweu then x-y holds in R[w].

FDS (Reverse projectibility): If X->Y holds in a projection of $R(U)$ then $X->Y$ holds in $R(U)$.

If A and B are attributes of a relation R, then by applying the axiom FDi to $X=\left\{\begin{array}{c}\text { a }, ~ B\} \text { we get }\end{array}\right.$ $A B->A B, A B->A, A B->B, A->A$ and $B->B$.

Axiom FD2 means that, knowing f: can construct another functional dependency, say g: $X_{A}->Y$, where the attributes appearing on the left side of g consisting of the attributes of X plus some other extraneous attribute A, whose values have no effect on the values of Y selected by g.

For axiom FDJ, if the FDs $f: X->Y$ and $Y->Z$ holds in a relation R then the dependency $h: X->Z$ also holds in R.

In the above set of axioms; the Axioms FDI-FDJ are sufficient and the other additional axioms i.e. FD4-FDS are implied by the first three axioms. As an example, Axiom FD4 can be derived from the axioms FD1-FDJ as follows.

As our assumption we have $f: X-\rangle Y$ and
YW->Z. How from f and Axiom FD工 we get h: XW - Y Y $B y$ applying axiom FDJ to h we can derive an FD XW-ンZ, completing the claim. Similarly it is easy to show that the other axioms can also deriye from the first three axioms.

2.2.2 Inference Rules for Multivalued Dependencies

Abstract

A set of rules for multivalued dependencies has been presented by Beeri et al [6] and it has been proved that the given set is complete for the family of multivalued dependencies. The complete set of inference rules $i s$ explained telow. In the rules, X, Y, Z and W are arbitrary sets of attritutes. We use fy for the union of two sets X and Y.

MUD Rules :-

$$
\begin{array}{r}
\text { MVDO (complementation): If U=XYZ and } Y \text { Y } \mathrm{X} \subseteq \mathrm{X}, \\
\text { then } X-y-3 Y \text { iff } X-3->z .
\end{array}
$$

```
MuD (Reflexivity): If \(Y \subseteq X\) then \(K->->Y\).
MVDZ (fugmentation): If \(Z \subseteq W\) and \(Y->-3 X\) then
                    YW-ン-)XZ.
MuDJ (Transitivity): If \(X->->Y\) and \(Y->->Z\)
then \(X->->(Z-Y)\).
```

Qther useful rules are：－
MvD4（Pseudotransitivity）：If $X->->Y$ and YW－＞－＞Z then $X W->->(Z-Y W)$ ． MuDS（UNION）：If $X->->Y$ AND $X->->2$ then X－ンーンYZ．

MUDS（Decomposition）：If $X->-3 Y$ and $K->->Z$ then $X->->Y Z, X->->(Y-Z)$ and $X->->(Z-Y)$ ．

The validity of these rules have teen proved Ey Fagin［17］and Beeri et al in［5］．Beeri et al have proved that the inference rules MuDo－muds are complete for multivalued dependencies．Mendelzone［25］ has investigated about the independence and redundancy of these rules and proved that the set（MVDO，MWDI，MVDJ） forms a minimal complete set of inference rules for Multivalued Dependencies．

2．2．3 Mixed inference rules for FDe and MVDs

In the previous two subsections we deal with the implication problems of $F D_{s}$ and MUDs only i．e
given a set F of $F D s$ whether any other FD f is implied by F, and given a set G of M'VD whether any other MuD 9 is implied by G. The problem of implication of additional dependencies, that are implied by the combination of $F D D_{s}$ and MVDs i.e. by FUG, has been discussed thoroughly by Beeri et al [6], and the following rules have been proposed.

Mixed Rules:-
FD-MUD1: If $X->Y$ then $K->->Y$.
FD-MUDZ: If $X->->Y$ and $Z->Y^{\prime}$, where $Y D Y^{\prime}$ and Y and Z are disjoint then X-> Y^{\prime}.

Zaniolo [35] has pointed out that the rule FD-MUD2 has been defined in a restricted manner and presented an alternation and simple rule called mized trangitivity rule for FD_{s} and MVDE, which is defined as:

FD-MUDJ (Mixed transitivity): If $X->->Y$ and $Y \rightarrow Z$ then $X \rightarrow(Z-Y)$.

Zaniolo has shown that the set (FD1,FDI,FDJ,MUDO, MUD1,MUDZ,MVDJ,FD-MVD1,FD-MVDJ) is a complete set of inference rules for the combination of the FDs and MuDs.

2.2.4 Inference Rules for Join Dependencieg

Abstract

A complete set of inference rules has teen proposed by Sciore[J1] and has teen discussed below. In the following rules R and 5 represents two relational schemas defined over the attribute sets u and U respectively. We use the notation JI-D for the derivation of a dependency D from a set of dependency J, and 8 for the null set.

JD-Rules
 states that the dependency $x[X]$ is a trivial dependency in R.

JD1: (Covering rule).
[S]I-[R] if U=U and R covers S i.e. if for every subset Y of v there exist a subset x of U such that $Y \subset K$.

To simplify the use of covering rule, a set of four special cases have been given and are:

$$
\begin{aligned}
& \text { JDia: *[s]i-*[S,Y] if YCU. (add a set) } \\
& \text { JDib: *[G,Y,Z]:-*[S,YZ]. (replace a } \\
& \text { set by their union) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (add an attribute to a set) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { JD1d: } \left.\quad{ }^{\left[1 S_{1}\right.}, S_{2}, \ldots, S_{k}\right] 1-k\left[S_{1}, \ldots, S_{k-1}\right] \\
& \text { if } S_{k} \subseteq S_{j} \text { for some } j \neq k \text {. } \\
& \text { JDZ: (substitution rule). } \\
& \text { \{*[S, K]. *[R]\}: *[S,R] if U=K. } \\
& \text { JDS: (projection rule). } \\
& \text { *[S,YA]: } A[G, Y] \text { if } A \in U .
\end{aligned}
$$

The rule JDO is an axiom that allows us to infer only trivial dependencies. The rules JDi and JDJ allow us to infer from one given dependency another dependency that is less informative then the one that is given, where as the rule $J D 2$ allows us to combine two dependencies to yeild a third dependency that is more informative then either one of the given dependencies. It has teen proved by Sciore [31] that the set $\{J D O, J D 1, J D Z, J D J\}$ forms a complete set of inference rules for the set of $J D=i n$ a relational छchema.

2.J The Clogures gi Dependencies

The definition of the closure of a set of dependencies and the closure of a set of attributes with respective to a given set of dependencies and also the definitions of warious types of coverings of a set of functional dependencies are presented telow.

FDE and the \equiv get M of $G V D \equiv i . e . G=F M_{j}$ then the clozure of G denoted $b_{y} G^{+} i \equiv$ the \equiv Et of $F D_{\equiv}$ and muly that can be derized from the repeated application of FD rules； MUD rulem and their mimed rulea Similariz if F iz the三et of $F D \equiv$ ouer a met of attributes $U_{\text {；}}$ ，then the closure of F ，denoted $b ; F^{*} ;$ iE defined to be the Eet of all FDİ that can be obtained b；the 三uccezㅍize application of the rule天 rDi，FDI and FDS on the Eet F ．
 Hith rempect to a Fet of dependenciėo defined o：er a zet of attributes $U_{;} i \equiv$ denoted $b ; X^{+}$and $i \equiv$ defined aE the Eet of $\exists 11$ attributez that are found to be functio－ nal1\％dependent on $\varkappa_{;}$，thich are implied b； O_{2}

$$
i=e \quad \quad x^{*}=\left[A: X-: A \in G^{+}\right]_{1}
$$

 of another 三et of FD三F or 0 i三 Fizid to be equi：قalent to $F_{;}$if and onl；if $\mathrm{F}^{+}=\mathrm{S}^{+}$，
 non－redundant coier of another \equiv ot of $F D=F_{\text {；}}$ iff $G^{+}=F^{+}$ and there does not exizt \exists Eet of $\mathrm{FD} \equiv \mathrm{H}$ Euch that $H \subset \mathrm{C}$ and $\mathrm{H}^{*}=\mathrm{C}^{\text { }}$ ：
 minimum co：er of a Eet of $F D \equiv F_{;}$iff $F^{4}=G^{4}$ and there
does not exi天t \exists ㅌet H Hith fewer $F D \equiv$ then o such that $H^{+}=G^{+}$．
 Eet of $F D=F ;$ iff $F^{+}=(F-f)^{+}$．
 $f: x \rightarrow A$ be an FD in F^{+}An attribute B i三Ezid to be extraneou玉 or redundant in \because bith respect tof ir，$B \in Y$ and $[(\because-B) \rightarrow A]$ i \equiv in F^{+}．

The implication problem for data dependenciea in a relational databa三e ha：e bean explained throughl；in thi三 chapter．A complete 三et of inference rules for ris haz been presented and also the additiongl rule for 「D三 which are required for the manipulation of ather $\Gamma \mathrm{D} \equiv$ are giधen．A complete Eet of
 been pointed out that the combination of rulem for FDE
 and hence additional rules knoun a三 Mired Ruleइ ha：e been giधen to complete the \equiv et of rules for FDİ and
 Eet of JDE jre diEcuミ三ed．Furthermore the \because grious t；pes of coieri of \exists Eet of FDE are explained in this chapter：

3.1 Intioduction

The baミic concept under $1 ;$ ing the Eearch for 三uitable normal lormミ ma；be deEcribed as an attempt to de：elop a deミign methodolog；for relational databaミe ミchema．The $\equiv ; n t h e \equiv i \equiv$ and decompoミition appro－ aches are the tuo alternative $H z ; \equiv$ for obtaining \exists normalized databaミe Echema．There are ze：eral 三；nthe玉i玉 algorithm三 for de\＃igning a databāe \＃chema when onl； functional dependencies are given $[0,7,20]$ ，and all of
 ional dependencieg．A recent paper［A］de三cribex a $¥ \because n-$ the $=\mathrm{i}=\mathrm{algorithm} \mathrm{for} \mathrm{pro:iding} \mathrm{a} \mathrm{normali=ed} \mathrm{databaze}$ Echema when both runctional dependenciex and multi：a－ lued dependenciez are giथen．All these algorithme are built around a member玉hip teミt for functional and mul－ tivalued dependencies；where the memberझhip problem i戶 to determine whether a given ¥et of dependencies G implieミ another dependenc；？．In decomposition approach，a part of the problem $i=t o d e c i d e$ whether a nontriधial functional or multiधalued dependenc；hold三

Abstract

in a relation scheme. This decision problem can be solved by applying a membership algorithm fór dependencies as shown in [23]. Thus an efficient membership algorithm is an important tool for designing normalized database schemas.

Both functional and multivalued dependencies have inference rules as described in chapter-II, that can be used to infer a dependency 9 from a given set of dependencies G if and only if 9 is implied by G. In [4] Bernstein have used these rules to develop a linear time algorithm for functional dependencies: A similar approach used by Beeri [4] to devise an o(ligin) ftime membership algorithm for functional and multivalued dependencies , where liGu is the size of description of G. A refinmment of this algorithm based on an appropriate data structure has an o(minckinu; $\| \mathrm{GH}^{2}$) running time, where U is the get of all attributes and k and iUl are number of dependencies in G and number of attributes in U respectively is given in [23].

In this chapter we give a membership algorithm for functional dependencies and show that this algorithm is faster then the previous algorithms and also it requires a simple data structure for implementation.

We have organized this chapter as follows: In section two we describe the method for developing a membership algorithm for $F D_{s}$ and give a linear-time algorithm. In section three this algorithm has teen modified by using a simple data structure for efficient implementation of the algorithm. In section four we have analyzed the implementation of the algorithm. In section five the application of the membership algori= thm and section six carries some concluding remarks.

3.2 The Membership Algorithm

The membership problem for functional dependencies says that "Given a set of FDs G and an FD g, determine whether $g \in G^{*}$ i.e. whether g is in closure of the given set of FD_{5}. . We start with designing a simple algorithm for the membership problem for FDs and refine it by using a simple data structure for implementation purpose.

The memtership algonithm can te solved E; computing the closure of the given set of $\mathrm{FD}_{\mathrm{s}} \mathrm{G}$ i.e. G^{+}by using the complete set of inference rules for $F D s$. Eut the computation of G^{+}is a time consuming job, because even if G is very small the set of dependencies in G^{+}will become very large. It has shown that the
dependency $X-3 Y$ is in G^{+}if $Y \in X^{+}$, where X^{+}is the closure of the set of attributes x with respect to G and since the computation of x^{+}requires time proportional to the length of all dependencies in G as shown by Beeri et al [5], we will follow this method and develop an algorithm for which the implementation time can be reduced considerably. The algorithm is given in figure 3.1 and is descrited below.

In this section we consider the given FD $g: K->Y$ and a set of $F D_{s} G$. We assume that X and Y are disjoint, since X - 3 Y is a consequence of G if and only if $X->(Y-x)$ is a consequence of G.

The algorithm given in figure-3.i i.e. the Algorithm-1 uses the procedure FIND(Y) that computes Y^{\prime} which is a subset of Y, and is obtained by Eliminating the attributes from Y which are found to be functionally depending on x with respect to the set of $\mathrm{FD}_{\mathrm{s}} \mathrm{G}$. If Y^{\prime} is found to be a null set then, all the attributes in Y are depending on X with respect to G which implies that $x->y$ is in the closure of G i.e. $X->Y \in G^{+}$: To compute Y^{\prime} we will follow the procedure given telow.

Now ($Y-Y^{\prime}$) is depending on X, hence is a subset of the closure of set of attributes X i.e.

ALGORITHM-1

Input: A set G of $m \quad F D$'s on attributes $\left\{A_{1}, A_{2} ;\right.$ \ldots, A_{n}, and an FD $9: X->Y$. Output: 'YES' if $g \in G^{+}$; 'NO' if $g \notin G^{+}$.

Data $\operatorname{structure\Xi :~}$

1. Attributes are represented by integers between 1 and n.
2. FD's are represented by integers tetween 1 and m.
3. DEFEND is a set of attributes found to be functionally depending on the set x so for.
4. Y^{\prime} is a subset of attributes of the set Y, which are not yet found to be functionally depending on x io for.
5. QUEUE is a set of FD's whose left hand sides are found to be asubsets of DEPEND so for.

ALGORITHM: -

procedure FIND(Y):
begin
(1) make QUEUE empty;
(2)
(3)

DEFEND $=X ;$
$Y^{\prime}=Y ;$
put every dependency of G with a left hand side a subset of DEPEND, on QUEUE; while ((QUEUE is not empty) AND (Y = 8)) do begin remove a dependency g^{\prime} with right side RS(${ }^{\prime}$) from queUE; if $\operatorname{RS}\left(9^{\prime}\right) \not \subset$ DEFEND then begin DEPEND $=\left(\right.$ DEPEND $\left.\cup \operatorname{RS}\left(g^{\prime}\right)\right)$; $Y^{\prime}=\left(Y^{\prime}-\operatorname{RS}\left(g^{\prime}\right)\right\} ;$ for every dependency \mathcal{G}_{i} in \mathbf{G} (with left side Ls(gi)) do $\underline{i} f\left(\left(\operatorname{LS}\left(g_{i}\right) \subseteq\right.\right.$ DEFEND $)$ AND ($g_{i} \notin$ QUEUE)) then QUEUE $=$ (QUEUE $\cup \boldsymbol{9}_{i}$); end end;
RETURN $Y^{\prime} ;$
End FIND.
begin (/* main procedure *:
$\mathrm{Y}^{\prime}=\operatorname{FIND}(\mathrm{Y}) ;$
if $Y^{\prime}=\varnothing\left(i^{*}\right.$ the null set $* / f$
then FRINT "YES"

$$
\text { el } \equiv \underline{e} \text { FRINT 'NO'; }
$$

End.

Figure-3. 1
$\left(Y-Y^{\prime}\right) \in X^{+}$with respect to G. So $b y$ computing the closure of X we can determine Y^{\prime} by substracting the closure of X from Y. Hence to compute Y^{\prime} we have to compute the closure of x i.e. x^{+}with respect to G. Let DEFEND be a set variable to hold these attributes i.e. the closure of x. The set DEFEND is initialized to x since by FDl (the Reflexivity rule, $x->x \in G^{+}$. The set Y^{\prime} is initialized to Y. While the procedure iterates the values of DEFEND and Y^{\prime} change repeatedly in such a way that

> (i) $X->$ DEFEND is always a consequence of G and (ii) $Y^{\prime}=(Y-D E F E N D)=Y$ - (the new attributes added to DEFEND in each iteration)

Now to add new attributes to DEFEND, we select an $F D$, say g^{\prime} in G whose left side is a sutset of DEFEND Eut the right side is not. By pseudotransitivity rule (FD4) for functional dependencies, the right side of the FD g^{\prime} is functionally dependent on x and hence can be added to DEFEND and simultaneously the right side of g^{\prime} (say RS(g')) will be substracted from Y^{\prime}, since $X->R S\left(g^{i}\right) \in G^{*}$. We can continue selecting the FDs of G in this manner, adding and substracting their right sides to DEFEND and from Y^{\prime} respectively, until no more FD_{s} satisfying this condition. If during any
iteration we will find that $\left(Y-Y^{\prime}\right)$ is a null set then we can conclude at that point that x - $>y$ is in closure of F and hence it will be unnecessary to iterate further until 9 all the dependencies of G are checked. The method is formally implemented as Algo-rithm-1 given in fig. 3.1 and the details of an efficient implementation tased on an appropriate data stru" cture followed by a proof of correctness are descrited in the following section.

3.2.1 Proof of termination of Algorithm-1

3.3 A linear time algorithm for imglementation of Algorithmal using a gimple data structure

In algorithm-2, we assume that the attributes of the set $\left\{A_{1}, A_{2},=\cdots=-A_{n}\right\}$ which are appearing on FDs of G, are represented by the numbers $1,2, \ldots, \ldots, \ldots, n$ respectively and also we associate numbers 1,2,........m with dependencies $9_{1}, 9_{2}:=.=9 \mathrm{~m}$ respectively, of G: A linked list LIST(i) for each attribute A_{i} appearing in $G, i s$ constructed where; LIST(i) contains a pointer to each FD that has the attribute A_{i} on its right side. We also associate a counter COUNTER(j) for each dependency 9 in G wheres the counter initially specifies the number of attributes on the left sides of the FDs of G. The linked lists and the counters can be constructed in a single pass over G in Olig time. During the execution of the algorithm COUNTER(j) indicates the number of
of the algorithm COUNTER(j) indicates the number of attributes on the left side of the dependency $\mathbf{g}_{\mathbf{j}}$, which are not belonging to the current value of the set DEFEND.

The procedure UPDATE is used to update the counters whenever some attributes are added to DEPEND. When counter(j) associated with the dependency j becomes zero; the left side of the $F D$ is a subset of DEFEND, hence the FD j is put on the set QUEUE, where QUEUE is the set of all dependencies whose left sides are subsets of the current value of DEFEND.

The algorithm-2 given in figure 3.2 operates essentially as in algorithm-1 by succesfully adding new attributes to DEFEND and substracting the new attributes from Y^{\prime}. When a set of attributes say R is added to DEPEND in one iteration and which were previously not belonging to DEPEND, then each attribute of R is removed from the left sides of the $F D_{s}$ on which it appears; by calling the procedure UPDATE(R), which updates the COUNTER as well as QUEUE. The algorithm continues until either QUEUE becames empty or Y^{\prime} becomes empty.

ALGORITHM-2

Ingut: A set G of $m F D s$ on attributes A_{1}, A_{2} : \ldots, A_{n} 3 and an FD $9: X->Y$.

Output: "YES" if $9 \in G^{+}$; NO" if $g \notin G^{+}$.

Data structures:-

1. Attributes are represented by integers between 1 and n.
2. FDs are represented by integers between 1 and m.
3. LS(j) and Rs(j) are arrays of sets containing attributes appearing on left and right sides of the FD j respectively, for each $j \in G$.
4. DEFEND is a set of attributes faund to be functionally depending on x so far.
5. Y^{\prime} is a subset of attributes of the set Y, which are not jet found to be functionally depending on X so far.
6. R is a subset of DEPEND that has not yet been examined.
7. COUNTER[j] is an array containing number of attributes on the left side of each FD j which are not yet found to be in DEFEND.
B. LISTli] is an array of FD_{s} specifying for each attribute A_{i}, the $F D_{s}$ with the attribute A_{i} on their left sides.
8. QUEUE is set of $F D_{5,}$ whose left sides are subsets of DEFEND.

ALGORITHM: -
procedure UPDATE(R):
begin
(1)
end;
end UPDATE.
grogedure FIND (Y):
begin

INITIALIZE: do $i=1$ to n

LIST(i) $=0$;
end;
do $j=1$ tom
COUNTER(j) $=0 ;$
do for each attribute $i \in L S[j] ;$ LIST[i] $=$ (LISTIi] U\{j\};

COUNTER[j] $=($ COUNTER[$\mathbf{j}]+1) ;$ end
end;

```
            make QUEUE empty
            DEPEND = X;
                Y'=Y;
            UFDATE(X);
                    while ((QUEUE is not empty) AND (Y is not
                    empty)l do
begin
            remove a dependency i from QuEUE;
            if RG[i]& DEPEND then
                begin
```

```
            TEMP = DEFEND;
            DEFEND = (DEFEND U RS[i]);
                Y'=(Y' - RS[i]);
                R = (DEPEND - TEMF);
                UPDATE(R);
            end
            end;
                    RETURN Y;
```

 End FIND.
 begin (f* main procedure $\% /$)
(27)
(28)
(29)
(30)
$Y^{\prime}=F I N D(Y) ;$
if $Y^{\prime}=\theta(/ x$ the null set $* i)$
then FRIHT ${ }^{\text {Y Y }}$ Y ${ }^{\text {P }}$
else PRINT 'NO';
end.

Figure-3.2:- A Linear Time Algorithm for the Membership Problem for FDs.

3.4 Anglyzing the membership algorithm

To prove the correctness of the angorithm-2 we first examine the initialize step (i.e. lines (6)(17)). Lines (6) to (i3) consists primarily of a scan of G, performing a constant number of operations for each attribute on the left sides of $F D s$ of G, therefore this part terminates (since the number of attributes is finite (and takes time Olig. At the initialize step, the followings hold.
(i) For each g_{i} in G, COUNTER(i) $=$ iLS(i)i, where iLS(i): is the length of the left side of the $\operatorname{FD} \mathrm{g}_{\mathrm{i}}$.
(ii) For each A_{i} in the set $\quad\left(A_{1}, A_{2}, \ldots \ldots A_{n}\right.$, LS(i) contains a list of FDs with \hat{H}_{i} on their left sides.
(iii) The set QUEUE is initialized to empty set and the sets DEFEND and Y^{\prime} are initialized to X and Y respectively, where X and Y are the left side of the given $F D$ g:X->Y, respectively.

The total cost of all the calls to the procedure UPDATE in 1 ines (17) and (25) can be computed as follows.

The cost of executing the lines (1)-(5) once is distributed among the dependencies on LIST(i). Putting a dependency j on QuEUE requires a constant time since only a pointer has to be moved. So a constant time is assigned to each dependency on LIST(i) in one iteration of the loop: During the execution of FIND(Y) each LIST(i) is traversed at most once, and the cumulative cost of each dependency is proportional to the length of its left side. Thus, the total cost of all calls to the procedure UPDATE is no more than OHGil time.

The main body of the algorithm is the loop of lines (18)-(25). To prove the termination of this loop; we note that the lop is executed once for each member of QUEUE. Since each dependency is put on QUEUE not more than once at most m dependencies can be added to the set QUEUE. Thus the loop of 1 ines (18)-(25) can execute at most m-times and therefore must terminate in OHG: time. Hence the entire algorithm terminates and the running time of the procedure is Oll \boldsymbol{f} it time. While the worst case time of the algorithin-2 is ofgh, the
running time will te frequently much tatter. rirst, if O contains many $F D_{s}$ those left sides are disjoint from x^{+}(the closure of x with respect to 0), then these FDs will never be added to QUEUE and hence QUEUE will become empty much earlier and the number of iteration of the loop on lines (13)-(25) will become very less. Again, if during any iteration in loop ((18) $\cdot(25)$), it will te found that Y^{\prime} is empty, the iteration will stop and hence will decrease the running time of the algorithm consideratly.

3.5 fgplication of membership algorithm

-

The membership algorithm can be applied to solve several FD problems that are related to automatic schema synthesis such as:
(1) To elimanate redundant attributes from a given $F D$ with respect to a set of $F D_{s}$.
(2) To find various types covers of a set of FDs such as,the non-reduntant cover, the minimal cover and the minimum cover which are required for synthesizing normalized datatase schemas from a set of $F \mathrm{D}$ s.
(3) Also since there exists an equivalence between FDs and propositional formulas such as Horn clauses with at most one negative literal, the linear time algorithm can also be applied to decide if a propositional formula is a tautolog\%.

3.6. Conclu크으

One of the objective of this dissertation is
to develop an efficient algorithm for the membership
problem of the functional dependencies in relational
database. The advantages of the proposed algorithm are
in distinct contrast to the inadequacies of previous
research for the membership protlem. There have been a
number of methods proposed for this problem over the
years. For implementation point of view while the
algorithm given by Beeri and Bernstein is considered
to be a pioneer one, it has shown here that the
algorithm can be improved considerably to reduce the
implementation time.

BIBILOGRAFHY

1) AHO, A. V., BEERI, C. AND ULLMAN, J. D. The theory of joins in relational databases. ACM Trans. Datatase Syst. 4,3(Sept. 1977), pp.297-314.
2) ARMSTRONG, W. W. Dependency structures and datatase relationships. Information Processing, North Halland, Amsterdam, 1974, pp.580-583.
3) BACHMAN, C. W. Data structure diagrams. Data Base 1,2(1967), pp.4-10.
4) BEERI, C. On the membership problem for functional and multivalued dependencies in relational databases. ACM Trans. Database Syst. 5(1980), pp.141-157.
5) BEERI, C. AND BERNSTEIN, F. A. Computational problem related to design of normal form relational schemas. ACM Trans. Database 5yst. 4,1(March 1979), pp. 30-59.
(5) BEERI, C., FAGIN, R. AND HOWARD, J. H. A complete axiomatization for functional and multivalued dependendencies in datatase relations. Proc. ACM SIGMOD, (Aug. 1777); pp.47-61.
6) BEERI, C., BERNSTEIN, F. A. AND GOODMAN, N. A sophisticate's introduction to database normalization theory. Froc. 4th Int. Conf. Very Large Data Bases, (Sept. 1978), pp.113-124.
(8) BERNSTEIN, F. A. Synthesizing third normal form relations from functional dependencies. ACM Trans. Database Syst. 1,4 (Dec. 1976), pp.277-298.
(9) BISCUF; J., DAYAL, U:, AND BERNSTEIN, F. A. Synthesizing independent database schemas. Froc. ACM SIGMOD Int. Conf. Management of Data, (may 1979), pp.143-151.
(10) BLEIR, R. E. Treating hierarchical data structures in the SDC time shared data management system (TDMS). Proc. ACM Natl. Conf. (1967), pp.41-49.
(11) CARDENAS, A. F. Data Base Management Systems. Allyn and Bacon; Boston, (1977).
(12)

CODASYL. CODASYL DATA BASE TASK GROUP Report. Conf. on data Syst. Languages, ACM; New York (1971).

CODD, E. E. A relational model of data for large shared data banks. Commun. ACM 13,6 (June 1970), pp.377-387.
(14) CODD, E. E. Further normalization of the data base relational model. In Data Base Systems, Courant Inst. Computr. Sci. Symp. 6, R. Rustin, Ed., Prentice-Hall, Englewood Cliffs, N. J., 1772, pp.33-64.

DATE, C. J. An introduction to Data Base Systems, Jrd Ed., Addison-Wesly, Reading, MA.
(16) DE BRA, F: AND PAREDAENS, Conditiohal dependencies for horizantal decompositions. Froc. of loth Int. Colloq. on Languages futometa and programming, 1981,

Barcelona. Appeared in Lecture notes in computer. Science- Val. 154, Springer-Verlag, 1983, pp.67-82. DELOBEL; C. AND CASEY, R. G. Decomposition of a database and theory of boolean Switching Functions, IBM J. Res. Develop: 17,5(Gept. 1973), pp.374-385. FAGIN, R. The Jecomposition versus the synthetic approach to relational data base design. Proc. Jrd. Int. Conf. Very Large Data Bases, pp.441-446. FAGIN, R: Multivalued dependencies and a new normal form for relational databases. ACM Trans. on Datatase 3y5t. 2, З(Sept. 1777), pp.262-278. MAIER; D. Minimum covers in relational database model. Froc. 1ith fnnu. ACM Symp. THeory of Computing, 1779, pp. 330-337.

MENDELZON: A. O. On axiomatizing multivalued dependencies in relational database. J. ACM, 26, (Jan. 1979), pp.11-14.

NAMBIAR, K. K. Some analytical tools for the design of relational database 5ystems. IEEE, 1980; pp.417-428.

NICOLAS, J. M. First order logic formalization for functionals multivalued and mutual dependencies. Proc. ACM SIGMOD, 1976, 360-367.

OGBORN, 3. 0. Testing for existence of a covering Boyce-Codd normal form, Inform. Froc. Letters $\mathrm{B}, 1$ (Jan. 1979), 11-14.

RISSANEN, J. Independent components of relations. ACM Trans. Database Syst. 1977, 317-325.

SAGIV, Y., DELOBEL, C., FARKER, D. S. AND FAGIN, R. An equivalence tetween relational database dependencies and a subclass of propositional logic. J. ACM, 20, 3 (July 1981), pp.434-453.

SCIORE, E. A complete axiomatization of full join dependencies. J. ACM, 29,2 (Apr. 1932), 372-39J.

ULLMAN, J. D. Frinciples of Datatase Systems. Computer Science Fress, Rockville, Maryland, 1932.

WANG, C. P. AND WEDEKIND, H. H. Segement Synthesis in logical data base design. IBM J. Res. Develop. 19,1 (Jan. 1975), pp.71-77.
(34) ZANIOLO, C. Analysis and design of relational schemata for database systems. Tech. Rep: Dept. of Comput. Sci., Univ. of California, Los Angles, Calif, July, 1976.
(35) ZANIOLO, C. Mixed transitivity for functional and multivalued dependencies in database relations. Inf. Proc. Letters, 10, 1 (Feb. 1980), pp. 32-34=
(36) ZANIOLO, C. and MELKANOFF, A. On the design of reltional database schemata. ACM Trans. Database Syst. 6, 1 (Mar= 1982), pp.1-47.

[^0]: In comparison to some other varieties of dependencies, functional dependencies are easily under-

[^1]: Figure 1.1b

