
A MEMBERSHIP ALGORITHM FOR
FU·NCTIONAL DEPENDENCIES lN

RELATIONAL DATABASE

Dissertation
submitted to Jawaharlal Nehru University

in partia-l fulfilment of the requirements for the award of
the Degree of

MASTER OF PHILOSOPHY

RAMA CHARAN TRIPATHY

SCHOOL OF COMPUTER AND SYSTEM SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI

1986

DECLARATION

The research work entitled "A Membership

Algorithm for Functional Dependencies in Relational

Database• embodied in this dissertation has been

carried out at the School of Computer and System Scien-

ces, .Jawaharlal Nehr·u Univer·sity, Ne'"'' Delhi. This wor·k

is original and has not been submitted so far in part

or full to any other University or institution for the

awar·d of any other· degr·ee or· diploma.

f I 2 JUN 1986
rt ty;;;;.J·,,..(,.'a

Rama Char~i::ilhy

Pr·of. K. K. Nambiar· Dr. P. C. Saxena

Dean

Dedicated to

my respected father,

from whom I learned

patience and perseverance.

ACKNOWLEDGEMENT

I wish to express my sincere appreciation

and deep gratitude to my supervisor, Dr. P. C. Saxena,

Associate Pr·ofessor·, School of Computer· and System

Sciences, Jawahar lal Neht· u Un i ver·si ty, t~e,., Delhi for·

his keen interest, capable guidance, invaluable

encour·agement, inspiration for· har·d work, constructive

criticisms, ad·w·ice,

M.Phil coursework

patience and wisdom during my

and particularly throughout the

planning and completion of this dissertation.

I am indebted to Professor· K. K. Nambiar·,

Dean, School of computer and System Sciences, Jawahar

lal Nehru University for providing me all kinds of

facilities and co-operation in completing this work and

with whom I have t~e pleasure of having free discus

sions.

My thanks are also to the faculty members

and other staff of the school for providing me help

and guidance.

In working so long on my M.Phil degree, I have

been sustained by the relationships and help of many

i i

friends. My thanks to Mr.P. S. Acharya and Mr. Surendra

Kumar for their co-operation and helpful discussions.

My special gr·atitude to my family for·

their continuous encouragement and support throughout

my academic car·eer·.

Finally I am gr·ateful to Ja~.>1ahar·lal Nehru

University, New Delhi for providing me the financial

assistance.

Rama Char·an Tr ipathy

i i i

TABLE OF CONTENTS

Acknowled~ement ii

Preface

Chapter-! 1-2?

1.: Introduction 1

1 z 1.:. Data Bils:e Mana~ement S:n::::temii 1

3

5

1z4~ Operation~ on Relation~ 10

1z5~ Data Dependenciez 1~

1 .. 5.;.1~ Functional Dependencie~ 15

1.5a~~ Multi~alued Dependencie~ 16

19

1.5.~. Join Dependencien 1S

1~6~ HormaliEation and Normal Form~ 20

22

Chapter-11 28-3?

z~ Implication Problem:;;; for D::tt:a Dependencies ze

2z1~ Introduction za

~-~ Inference Rules for Data Dependencie~ 20

Inference Rules for Functional Dependencie5 31

... ~ ~
~z~~..:..~ Inference Rules for Multivalued Dependencie~

Mixed Inference Rules for FD:s :3.nd M'~'DE 34

2~2~~~ Inference Rule~ for Join Dependencie~

213~ The Clo~ure~ of Dependencies

2;11: Chapter "Jumm3.r;· 3.nd Remark~

Ch3.ptar-III

3~ The l!lember:hip Al9orithm for

Function3.1 dependencies

3.1~ Introduction

3z2~ The Member~hip Al9orithm

3~2.1~ Proof or Termin3.tion of Alijorithm

3~3~ A Line3.r Time Algorithm for Implementation

36

37

40--57

~0

40

42

47

of Algorithm-! uzing 3. ~imple d3.ta structure 43

31 4. An=tl :r~ i n9 the member :;;;hip 3.lgor i thm

3~5~ Applic3.tion of the member~hip 3.lgorithm

3"6~ Conclu:;;;ion

Dibilofjr.aphy

54

56

57

53

PREFACE

One of the most significant contribu

tions to the Data Base Management Technology in recent

years has been the development of relational point of

view of a data b~se. The relational model of data base

formalizes the organization of and access to highly

structured data. The model provides a view of data that

is elegant in its simplicity and encourages the appli

cation of abstract mathematical reasoning. A substan-

tial amount of r·esearch activity has surrounded the

field since its inception in the work of Codd in

1969. In that time, several issues related to the model

have been studied intensively. Among them ar·e

1. The characterization of semantic

constraints on the data, and

2. The selection of data base design scheme.

The theoretical work in this area will be

of little utility without a major effort at. reducing

theory to practice. Thus, there is a need for the

design and analysis of algorithms that are required for

a good data base system.

Let us first describe the most important

area of relational data base which is the issue of

vi

semantic constraints and may be given in various

disguisea For· example, values may be constrained to lie

with in certain domains, as in •salaries may not be more

then Rs.10,000. •such constraints take the form of

predicates ranging over single domains of salaries.

Another class of constraints take the form of •values

from domain X depends on values fr·om domain Y accor·ding

to rule Z •.The classic example of data dependency is

the functional dependency, which asserts that, values

for one set of attributes are uniquely determined by

another· set of attributes. An example of functional

dependency is the statement:

• No employee of a company has two different

salar· ies. •

Functional dependencies were first

described in full generality by Codd in 1971, although

they ha-ve been r·ecognized for· a long time taking the

form of keys. Many other forms of data dependencies have

been described, e.g. multi-valued dependencies, join

dependencies, first-order hierarchical dependencies

and implicational dependencies.

In comparison to some other varieties of

dependencies, functional dependencies are easily under-

vii

standable and readily identifiable. Furthermore funct

ional dependencies are special cases of nearly all

other types of dependencies. A comprehensive understan

ding of functional dependencies can help to formulate

the practical implication of other types of dependenci

es. All the work on functional dependencies are based on

the axiomatization of functional dependencies developed

by Armstrong in 1974. Wang and Wedekind proposed an

algorithm to synthesize the relational schema from a

set of functional dependencies. Another approach was

made by Bernstein to design a relational data base

schema from a given set of functional dependencies.

Every problem dealing with functional dependencies

requires a manipulation of functional dependencies

accor·ding to the axioms put forth by Ar·mstr·ong. In 1979

Ber·nstein has ghlen a gr·aph theoretic approach - a tr·ee

model for the derivation of functional dependencies

and also proposed a procedure to solve the membership

problem for functional dependencies.

The main objective of the approach given in

this dissertation is also to solve the membership

pr·oblem for· functional dependencies. It has shown here

that, the proposed algorithm is faster than the

algorithm proposed by Bernstein.

viii

The organization of the dissertation

is as follows: In first chapter the basic concepts of

the relational model for databases are given and also a

detailed discussion about data dependencies, normaliza

tion and normal forms are presented.

In chapter two the theoretical bases for

the data dependencies in general, and the implication

problem of functional dependencies, multivalued depen-

dencies and join dependencies in particular, are

discussed.

The chapter three starts with a simple

algorithm for the membership problem for functional

dependencies and then the algorithm has been modified

by using a simple data structure for implementation

purpose.

ix

I. INTRODUCTION

Data Base System was introduced in

late 1960's to overcome the problems arisin9 in the use

of conventional file systems, such as: U > The

inabilit:i to efficiently inte9r·ate numerous lar9e files

and (2) The inability to support hi9her level data and

file or9anizations. The major elements of a data base

system are, the data base, queries and their query

pro9rammes, file or9anization and data mana9ement

functions. The data base is the repository of all data

of interest to the user of the system. The queries in

their form in the computer· as query pr-ogrammes, repr·es

ent the users in the system and create its actions. File

or9anization is necessary to expedite operations, and

the data mana9ement functions represent the set of all

oper·at i ve pr·o9r·ammes in the data base system, necessar-y

for stora9e retrieval and space mana9ement.

There are three approaches to define

the data base. The first approach is from desi9ner's

point of view and deals with the technical aspects

of data base technolo9y, and is defined by Cardenas

[111 as • a database is a collection of occurrences of

1

record types~ where the record types are interrelated

by means of specific relationships•.

The second approach is concerned with

its application point of view from the standpoint of

organization. According to Mandell, • a data base is a

grouping of data elements, structured to fit the

information need of an organization•.

Date ([15l,19B1,p-7) states, •a database is a

collection of occurrences of stored operational data

used by the application sy·stems of some particular·

enterpr· i se•.

The third approach is a combination of

both technical point of view and application view of

the database technology, and is defined by Kroenke as

• a data base allows an organization 7 s data to be

processed as an integrated whole. It reduces artificia-

1 it;· imposed separate files for separ·ate

applications and permit user·s to a·ccess data in a

manner which is more natural to them•.

A Data Base Management System <DBMS)

is a software interface between the user and the

ph;·sical stor-a9e of data in the computer·, which

handles the physical storage and the retrieval of

infor-mation in a database. It also has the impor-tant

c:apability of associating any logic:al r·elationships

of data elements (for· ex uiple, emplD)'ee names are

logic:ally assoc:iated with Job-skill c:lassific:ations,

Salary, Department~ etc:.), regardless of the physic:al

organization or loc:ation of the individual data

elements in the database. Henc:e all the differ·ent

logic:al relationships ta elements required by

multiple users, application c:an be ac:c:ommodated from

one data sourc:e without c:hanging the physic:al

or·ganizations of the data in the database. Furthermor·e

i nser·t i ens, deletions an modifications of data

elements c:an be done ,..,ithou affec:ting all applic:afion

programmes that use the s e database. This greatly

r·educ:es flexibility and gr·amme maintenance c:ost

considerably. With a DBMS, the user need not be

c:onc:erned with the physic:al oc:ation organization and

the proc:edure for ac:c:essing i formation needed for his

partic:ular purpose.

In the context of data base systems, a

data model is a term used to denote any formally

definable class of data struc:tures, whic:h c:an be used

as the basis for"the design and development of various

data proc:essing applications. Ac:c:ording to Mc:Gee, a

3

data model is a way of viewing data, it provides a

basis for the construction of a DBMS. Three kinds of

important data models have been proposed. They are:

(1) The Hierarchical data model

<Bleir[10l).

(2) The Network data model (Bachman[3lJ

CODASYL[12l, 1971).

(3) The Relational data model

<Codd[13l).

Hierarchical data models are embodied

in the form of IBM's Information Management System

<IMS> and MRI's System 2000<S2K). In the Hierarchical

approach the

tree, the

data base is represented by an ordered

nodes of which usually correspond to

entity types, which are represented by tables of data,

and arcs between the nodes correspond to the functional

relationships between the tables.

The importance of Network approach

grows after it is put forth by the Data Base Task

Group (DBTG) of the Conference on Data System Languages

<CODASYL) in 1976. In Network approach, data is

represented by records and links, and the relationships

between records are called as sets. The data structure

is represented by a network structure.

The concept of relational model of data

was first proposed by Codd [131 in 1969. In this system

one views the database as a set of relations, where the

term relation has been der i".;ed fr·om the mathematical

definition of r-elations. Conceptuall;,·, a t;.gls.t.!on can

be viewed as a table in which each row corresponds to

recor·ds of files knoL·m as gn!i.tz. (or· tyQJ.g) and each

column corresponds to field of records known as an

.si1Li!2..!Jte. Ther·e exist a set of possible values asso-

ciated with each attribute in a relation, called the

SQIDai!l of that attribute.

Formally, a relation can be defined as

follows <Date ,1981,[15l,p-84):

Given a collection of a sets D1 ,n
2

, ••••

••••••• ,D , (not necessarily distinct), a relation R
n

defined over the set {D 1 ,D~, ••••••••• ,D l is a subset
L n

of the cartesian pr·oduct D 1><D~X •••••••• XD. That is, R
.I.. • n

is a set of ordered n:-.t.bU~ . .l~a each of the for·m

(d 1 , d2 , •••••••• , dn) Nhere diE Di. Each element of R is

called a i.!JB.l~ of R. An attt~ibute is a name assigned

to a domain of a relation. While the domains of a

relation need not be distinct, the attribute names

assigned to them must be unique with in the relation.

A n-ary relation denoted by

R<A1 ,A~,···········,A) is also defined (Delobel [171)
L n

as:

-a set of attributes CA 1 ,A2 , ••••• ,AnJ'

-a sequence of domains DomCA.) for i=1,2, ••• ,n
1

which defines the potential value for each

attribute.

-a predicate denoted by IR<A1 ,A2 , ••.••.• ,An!l

which represents the potential evaluation of

the predicate when values are assigned to the

attributes according to their domains.

D respectively of a
n

relation R, then we use notation (1.3.1) for R.

R<A ,A , •••••••• ,A) 1.3.1
1 2 n

The attribute set of R is defined as:

U<A ,A •••••••••• ,A) 1.3.2
1 2 n

W~ will use (1.3.3) to designate the relation R on the

set of attributes U.

RCU) 1.3.3

The structure of relation is sometimes

called as the lntensiQn <Scheme) and the contents of a

relation is referred to as the extension. The contents

of a r·elation may var·y fr·om time to time. That is,

tuples may be modified, deleted from a relation, or/and

inserted in a relation. The contents of a relation in a

particular time is called as its illa12n~· Figure l.la

indicates a r·elational schema for a medical database

consisting of four relational schemes HOSPITAL <CODE,

NAME, ADDRESS, #OF BEDS), DOCTOR (DOCTOR B, NAME,

SPECIALIZATION), WARD (WARD CODE, NAME, #OF BEDS)

and STAFF <EMPLOYEE B, NAME, DUTY, SALARY). An insta

nce of the schema is shown in figure 1.1b.

Let R(U) be a relation on the set of

attributes U and let W be a subset of U, then W i~ a

candidate key of R if it can uniquely. identify the

tuples of R and no proper sub~et of W has this proper

ty. A relation may have more then one candidate key. An

attribute is said to be R£im~ if it appears in any

candidate key of the relation, otherwise it is called

a llQD~rime attribute.

Conventions: Upper-case letters A,B,C,...... from the

start of alphabet represent single attribute; upper

case let ter·s •••••• X, Y, Z from the end of alphabet

represent sets of attributes; and lower-case letters

r·,s,t,.. •• • fr·om the end of alphabet repr·esent tuples

of a r·elation.

a) An example of a relational schema (consisting of four

relational schemes)

HOSPITAL (CODE,NAME,ADDRESS,# OF BEDS)={(Hl,AM,DL,SOO>,

CH2,RL,ND,2SO>, (H3,JH,SD,Sd>J

DOCTOR <DOCTOR #,NAME,SPECIALIZATION> = { <Dl,RT,CN>,

(D2 , SK, SY) , (D3, NM, OP) , (D4 , At~, AT) , < DS, AP, FP) }

WARD <WARD CODE, NAME, #OF BEDS) = { <W1,XC,4S>,

CW2,YD,30), <W3,ZA,56>, <W4,UE,25), <WS,VF,35) J

STAFF <EMPLOYEE #,NAME,DUTY,SALARY> = { <10,DG,XX,650),

C2S,FH,XY,756), (1S,PA,NW,350), (23,RG,SU,21S>,

(26,DM,WK,234), <4S,SB,SN,S42> J

Figure l.la A medical database schema

3

b) An instance of the schema of the part •a•.

HOSPITAL (CODE, NAME, ADDRESS, tt OF BEDS)

H1 AM DL 500

H2 RL ND 250

H3 ..JH SD 50

DOCTOR (DOCTOR tt, NAME, SPECIALIZATION

D1 RT CN

D2 SK SY

D3 NM OP

D4 AN AT

D5 AP FP

WARD (WARD CODE, NAME, tt OF BEDS

W1 XC 45

W2 YD 30

W3 ZA 56

W4 UE 25

STAFF (EMPLOYEE tt, NAME, DUTY, SALARY)

15 PA NW 350

23 RG su 215

26 DM WK 234

45 SB SN 542

Figure 1.1b

9

One of the main advantages of the

relational approach is that, if the relations are

created to confirm certain mathematical constraints,

then the relations can.be manipulated mathematically.

The manipulation is accomplished through the data

manipulation languages (DML). There are a number of

ways in which relations can be manipulated. Several

relational systems provide a DML which is based on

r·elational algebra, other· systems pr·ovide languages

based on relational calculus. The relational algebra

suggested by Codd [131, is a collection of set

operations out of which the two most impor·tant

operations i.e. PrQ.iec:tiQ!l and Join ar·e discussed

below.

Let R be a relation defined on the set

of attributes U = lA1 ,A2 •••••• ,An}. For any W={A1 ,A2 , ••

•••• ,A }, or m"n that is wc;u, the B.f:Q.iec:i.!Q!:l of R m

on W is denoted by RlWl and is defined as:

Rl.-ll ={(a ,a , ••••••• ,a)J(a ,a , ••••• ,a)ERJ
1 2 m 1 2 n

In otherwords, we can think of the

projection of R on W as the operation that takes the

relation <instance) represented by R, then delete all

If An instam:e of a relation R (A, B, c, D, E) is

R (A, B, c, D, E,

al b..,. ..., c ...
L dl e..,. ...,

al b2 c..,. ..., dl e4

a2 b4 c1 d..,. ..., e4

a..,. ..., b1 c..,. ..., d2 e1

a..,.
....:. b2 c4 d4 e2

then the projection of R on CA, B, DJ is R[A, B, Dl,

given by:

R [A, B, D]

al b..,. dl w

al b2 dl

a ...
L b4 d..,.

...:.

a..,. ..., bl d2

a3 b2 d4

Figur·e-1. 2

11

columns except those labelled by attributes in W and

finally identify

figure1.2.

is i nver·se

The

to the

the common tuples, as shown in

Join oper·ation 'which in some sense

projection operation, in fact

connects attributes of different relations together.

The Join <natural Join) of a relation R<X, Y) with

a relation S<Y, Z) is denoted by R*S and is defined as:

R*S = { <x,y,z) <x,)dER and (y,z)E:S} 1.4.2

Figur·e 1.3 indicates an example of join oper·ation.

In relational database model, conceived

by Codd, one views the database as a collection of

relations, where each relation is a set of tuples over

some domains of values. One notable feature of this

model is its being almost devoid of semantics. A tuple

in a relation represents a relationship between certain

values, but from mere syntactic definition one knows

nothing about the nature of this relationship, not even

whether it is one-to-one or one-to-many relationship.

One appr·oach to r·emedy this deficiency is to devise

means to specify the missing semantics. This semantic

specification is often called semantic or integrity

If the instances of two relations R<A,B,C> and S<C,D) ar·e

R< " B, c) S< c, D) "'

al b"'7 c2 cl d2 ...,

al b2 c"'7 ..., c2 d..,
L

a2 b4 cl c"'7 ..., d"'7
..J

a3 bl c4 c4 dl

then the natural join of R and s (i.e. RlS) is

given by:

R*S (A, B, c, D)

al b"'7 c2 d2
~

al b..,
.L

c"'7 ..., d"'7
..J

a2 b4 cl d2

a..,
..J bl c4 dl

13

constraints, since they specify which databases are

meaningf·ul for· the application and l·Jhich ar·e meaning-

less. The constraints are called data dependencies or

simply dependencies in database systems.

The study of dependencies began in 1972

\<Jith the introduction by Codd[14l of the Eync!...!Q.lle.!

J;!~Q~!Hl.§U£iE:2• After· the introduction, independent!)· by

Fagin [19l and Zaniole [34l in 1976, of ~Yl1iYe.!Y~~

J;!~~!1Q.s:ncis:.2., the field become:s chaotic· for· a fel•.l year·s

in which various rese~rcher:s introduced many new

classes of dependencies.The :situation ha:s situated

stabi 1 i:zed :since 1980 l'li th the introduction of Em!;!~Q.~~Q.

1m.al.i£.et i Q.Dal J;!~~!1den c i e.2_ (EID:s) • Essent i all,., EIDs

are sentence:; in fir:st order logic, stating that if

:some tuple:s fulfilling certain equalities, then either

:some other tuple mu:st also exist in the data ba:se or

some values in the given tuple:s must be equal. The

cnas:s of EID:s :seems to contain most of the previou:sly

studied cla:s:se:s of dependencies. Recently De Bra and

Paredaen:s[16l

which are not functional dependencies. In the fonlowing

subsection we give the basic definitions of various

kinds of dependencies and in the next chapter· \ie lii 11

!)

discuss the propertie~ of some of the important data

dependencies.

14

Functional dependencies <abbr. as FDs> form

a family of constraints, the properties of which have

been studied extensively by Armstrong£2l, Beeri et

al £6], Fagin£211 and Nicolas£273. We gi".;e the

definations of FDs below.

A functional dependency is a sentence

denoted by f:X->Y, l·lher·e X and Y ar·e sets of

attributes. An FD f:X->Y holds in a relation R<U> where

X and Y are subsets of U, if for every tuple u and v of

R, u[Xl=v£Xl implies u£Yl=v£Yl, i.e. the r·elation R

obeys the FD f:X->Y if for every two tuples of R, which

have the same projection on X also have the same

projection on Y. Giv·en f: X- >Y, .. ,e say that X

functionally deter·mi nes Y, or Y is functionally

dependent on X. We usually write the FD f:X -> Y simply

as X -> Y.

FDs can also be represented by first-order

logic as shown by Nicolas £273. Consider the relation

R<U>, where U={A,B,C,Dl. The FD is represented by the

sentence:

(~ abc
1

c
2

d
1

d 2 > <<Pabc 1d 1APabc2 d2 >=><c 1=c2 >>

Where Mt abc 1c 2 d 1d2 > is a shorthand for

'":'a.w:b'c'c 't'1:: ¥d "V'd i • e. each vaf" i ab 1 e is un i ·vef"·sall y
1 2 1 2

quantified and P is a relational symbol.

' C'

The concept of functional dependencies is

not sufficient to capture the various types of

relationships that exist in relations. It is possible

that the ·iialues of the attributes in a set y depends

onl7· on the ·values o-f the attributes in the set v but "'
there exist more than one Y-value for· a gi ·ven X-value.

Such a relationship is not a functional dependency.

Hence the concept of multivalued dependency <MVD) was

introduced independently by Fagin [191 and Zaniolo [341

to describe such relationships.

Definition:- Let R(U) be a relation schema and let Y

be a subset of U, for each subset X of U and for each

X-value x, we define

i.e.

y = { y
X

for some tuple t E R, t[X1=x and

t[Y1=y J, where t[X1 is the X-component

of the tuple t in R.

y
X

is a function that gives for each

X-value, the set of Y-values that appear

with this X-value in tuples of the

r·elat ion.

A multivalued dependency g, on a set of attributes U is

a statement g: X->->Y,. where X and Y are subsets of U.

Let Z be the complement of the union of X and Y in U.

16

A relation schema R<U> obeys the MVD g: X->->Y, if for

every XZ-value xz, that appears in R, we have Yxz = Yx.

In other words, the MVD g is valid in R if the set of

y..:.values that appear·s in R with a given x, also appear·s

with every combination of x and z in R.

Fagin [191 defined the MVD as: let R

be a relation schema over U and X and Y are subsets of

U. Let Z be the complement of the union of X and Y in U

i.e. Z=(U-XY>. Then the MVD X->-> Y holds in R if for

all

exist

r· .,[XJ,
L

then ther·e

tuples r·
3

and r·
4

such that

(i)

(i i)

r~[XJ
...J

=

r~[Zl =
...J

r [Xl =
4

r 4 rzl =

r·
1

[X1,

r .,[ZJ;
.0:.

r· [XJ,
2

r·
1

[Zl.

r·~[Yl
.._;

r· [YJ
4

=

=

r·
1

[Yl and

r· [Yl and

Like FDs, the MVDs can also be

f ir·st-or·der· logic. For· example assume

that U=[A,D,C,D,El. Then the MVD AB->->CD holds for a

relation over U if the sentence

= > Pabc.,d~e 1)
... .j

holds, where P plays the role of the relation symbol.

A hierarchical dependency (abbr. HD>

is a sentence denoted by X:Y
1

1Y2 1 ••••••••••••••• 1YK

lihere of

attributes.

A relation R(X,Y 1 ,Y2 , ••••••••••• ,Yk)'

where X,Y1 ,Y2 , •••••••••• and Yk are disjoint sets of

attributes, obeys the HD if for every X-value x we have

R(X,Y1 ,Y2 , •••••• ,YK) = RrX,Y 1 l * RrX,Y2 l *·········
....... * R[X,Ykl

which expresses the decomposability of the relation of R

over tX,Y1 , •••••••••• ,YkJ into k projections.

\Je shall say that a HD is a total hier-

archical dependency also called as ~ generalized

multivalued dependency (GMVD)) if X is the empty set,

since in this case the projection of R over the set

attributes tY 1 ,Y2 , ••••••• Yk} is the projection of R

respectively on Y1 ,Y2 , •••••• ,and Yk.

The MVDs ~hara~terize the lossless decom

position of a relation into two projections. However

18

MVDs are inadequate for expressing the conditions under

a lossless decomposition of a relation into more than

two projections. Join dependencies were introduced to

characterize this kind of lossless decomposition.

Definition:- Let R<U> be a relation over an attribute

set U, and x 1 ,x2 , ••••••••• ,Xn are subsets of U such

is a that Uxi = U, an-join dependency (abbr·. n-JD)

sentence denoted as * rX
1

lrX2 l •••••••••• [Xnl' also

denoted as * [Ul. The relation R is said to satisfy

this n-JD if

R =
n

* i=l
R[X.l

1

i.e if R is the join of its projections R£X 1 l, •••••••

••••• ,R[X]. It follows that this JD * [Ul holds for
n

the relation if and only if R contains each tuple t for

which there are tuples t 1 , •••• ,tn of R such that

t.[X.l = trX.l for· each i (1-'i~n>.
1 1 1

An n-JD characterizes exactly the lossless

decomposition of R into n projections. The JD can

express multivalued dependencies and total hierarchical

dependencies in a unified way. This follows di~ectly

fr·om their definitions. A multivalued dependency

X->->Y can be represented by a 2-JD *tXYl£YZl and a

total hierarchical dependency X:Y 1 :v2 1••...• :vk can

19

be represented by the k-JD

The notion of normalization in

relational database was first presented by Codd£141.

He obser-ved that certain relations have str-uctur-al

properties those are undesirable for describing data

bases. These undesirability stem from the fact that

some attributes are related to each other in certain

,.,ays. For example consider the r-elation SUPP<SUPPLIER,

TOWN,POPULATION>. Its intended meaning is that, when

ever a tuple say (s,t,p> occurs in this relation, it

means that • supplier s is located in the town t whose

population is p.• The relation scheme in fact leads to

the following data manipulation anomalies. Fir-st,

notice that the population of a given town must appear

as many times as there are suppliers located in that

town (data redundancy). Thus i! the population of a

town has to be updated, all the tuples in which it

occur-s ha·ve to be r-etrieved in or·der· to update consis

tently the population of the town <updating anomaly).

No\·1, if

deleted,

the last supplier located in a given town is

then the population of this town is lost

~0

(~eletion anomaly). Conver5ely, the population of a

town can be recorded only when one knows at least one

supplier· located in that town <Inser·tion anomaly).

To avoid data manipulation anomalies

at tempts ha·,;e been ma~e to i ntr·oduce schemes .. ,i th no

undesirable structural properties for describing data-

base. This consi~eration led to Codd [141 to define a

process known as normalization, which consisting of

converting a relational schema into another form that

stores the same data but in differ·ent for·mat and ensur·e

the removal of undesir·able anomalies and r·edundant

attributes fr·om the relational schemes. In [141 Codd

has discussed the normalization of relations, which is

based on a series of four normal forms which are, First

Normal Form, Second Normal Form, Third Normal Forms and

Boyce-Codd Normal Form.

Later in 1977, Fagin£191 discovered that even by

putting a schema in Boyce-Codd Normal Form, not all the

anomaly prob 1 ems necessar. i 1 ,. disappear. This 1 ed him to

propose a new normal form called Fourth Normal Form.

Forth Normal Form is defined in terms of functional and

multivalued dependencies alone. It has shown by Fagin

£191 that the concept of multivalued dependency is

intimately r·elated to the join depen~encies. For exam-

21

ple, if U and V are the subsets of attributes of a

relation R and if W is the set of attributes of R not

in U or V, then the MVD U->->V holds in R if and only

if R is the join of its projections R[UVl and R[UWl

i.e. if the JD *[UV,UWl holds in R. Hence multivalued

dependencies are correspond to •2-way decompositions of

a relation. But Aho, Beeri and Ullman [ll have given a

sur·prising example to sho'·' that a r·elation can be the

join of three of its projections, without this join

being the result of cascading 2-way projections. Fagin

has introduced another normal form known as Project and

Join Normal Form (PJ/NF) and have shown that, because

of the above pr·oper ty the PJ /NF is stronger· then the

4NF. These normal forms are discussed in the following

subsection.

The concept of functional dependencies

and multivalued dependencies play significant roles in

the theory which governs the decomposition of relations

into subrelations in normal forms.

To show ho,., cer·tain undesirable depen-

dencies create problems, we will discuss th~ concept of

partial functional dependencies, full functional depen-

dencies, key dependencies and transitive dependencies

mentioned by Codd [141. We will also discuss Fagin 2 s

notion of nontrivial multivalued dependencies.

Let R be a relation schema defined over

the set of attributes U. We say that Y is fully depen-

dent on X in R if

(i) X and Y are two disjoint subsets of

attributes of relation R.

(i i) X-> Y, and

(iii) Y is not functionally dependent on

any proper subset of X.

If the condition (3) is not satisfied then we say Y is

partially dependent on X in relation R.

If K is a subset of U, then we say that

K is a key (of the relation schema) if the FD K -> U

is in the schema R, and if there is no proper subset L

of K such that the FD L->U is also in the schema. We

call such a functional dependency K-)U a key dependency

of R. That is the dependency K-)U is a key dependency

if it is a full FD in R.

A relation schema R is said to be in

'"\"'7
,/ a_'l

lNF if and only if all the underlying domains of each

attribute of R contain atomic values.

A relation schema R is said to be in 2NF if

(i) it is in lNF, and

(ii) every non-prime attribute of R

is fully dependent on each

candidate key of R.

To define the third normal form we

need to define •Transitive Dependency•.

Given a relation schema R, suppose that

X,Y, and Z are three distinct collection of attri

butes of R, and if the following conditions are true:

(i) X->Y

(i i) Y+>X

(iii) Y->Z

then it follows that X->Z and Z·OX.

Here Z is said to be transitively depe-

ndent on X in the relation R.
A relation schema R is said to be in 3NF if,

(i) i t is in 2NF, and

24

(ii) every non-prime attribute is non-

transitively dependent on each candi

date of R.

The BCNF can be defined in the

following three distinct <but equivalent~ ways:

(1) A 1NF relation schema R with attributes U is said

to be in BCNF if, for each non-trivial FD X->Y in R,

the FD X-·}U is also in R.

(2) A 1NF relational schema R with attributes is said

to be in BCNr if G 1- f i.e. if f can be .derived fr·om

the set G~ for each FD f in R, where G is the set of

key dependencies in R.

(3) A 1NF relation schema R with attributes is said to

be in BCNF if, for each FD f in R, there is a key

dependency K->U in R such that K->U l- f •

Thus the BCNF states that every set of

attributes which has another attribute functionally

dep~ndent upon it in a relation schema R, must be a

candidate key of R.

The concept of •trivial multivalued

dependencies• proposed by Fagin£171, is needed in

describing the forth normal Form relations.

Given a relation R<U> where U = CX,YJ, then

the multivalued dependencies X->->Y and X->-> e, where

• is the null set, are necessarily hbld for R. These

are called trivial multivalued dependencies.

We now define the 4NF in the following ways:

(1) A lNF relation R with attributes U is said in 4NF

' if, for each non-trivial MVD X->->Y holds for R, then

so· does the functional dependency X -> U holds in R.

(2) A 1Nf relation schema R with attributes U is said

to be in 4NF if, G ._ m for each MVD m in R, where G is

the set of key dependencies in R.

(3) A relation schema R with attributes U is in 4NF

if, for every MVD m in R there is a key dependency K->U

of R such that <K-)U) ._m.

Thus a relation scheme R is said to be

in Fourth Normal Form if, every MVD in R is a result of

keys of R.

We define the PJ/NF in the following ways:

26

1) A lNF relation schema R with attributes U is in

2)

PJ/NF if Kl- j for each

set of key dependencies

A lNF relation schema R

PJ/NF if, for· each JD

dependency J(->U in R
i

...,...,
J../

JD j in R, "'her·e K is the

of R.

with attr-ibutes u is in

j in R, ther·e is a key

!!UCh that (J(-)U)I-j.
i

II. IMPLICATION PROBLEMS FOR DEPENDENCIES

The theoretical bases for data

dependencies in a relational data model are discussed

in this chapter in details. A set of axioms i.e. infe

rence rules for the family of functional dependencies

has been explained and it has been shown that these

axioms are complete for this family. Also a complete

set of inference rules for multivalued dependencies has

been presented in this chapter. It has been stated

that the combination of i nfer·enc:e r·ules for· Fds and

M'v'Ds is not sufficient for· the family of FDs and

M'v'Ds, and thus additional r·ules (FD-M'JD r·ules)

have been given to complete the set of r·ules for· FDs

and M\t'Ds. Also we ha·v·e pr·esented a complete set of

infer·ence rules for· the set of join dependencies in

this chapter·. Fur ther·mor·e the closure of a set of

dependencies and also for a set of attributes and

various types of covers of a set of FDs are also discu

ssed in this chapter.

The most important problem for depen

dency theory is the implication problem i.e. the prob-

lem of deciding for a given set of dependencies G and

a dependency g, whether Gl=g i.e. whether G logically

implies g. A dependency g is said to be logically

implied by a set of dependencies G, if g is valid in

every relation which obeys all the dependencies in G.

In other words g is logically implied by G, if there

does not exist any counter· example r·elation ,.,hich ·obeys

all the dependencies in G but does not obey g. The

reason for prominence of the problem is that an algo-

rithm for testing implication of the dependencies

enable us to test l·Jhether· tl·m gi·v·en sets of dependen-

cies are equivalent, or a given set of dependencies is

redundant. Even though the significant of implication

problem was not yet clear in 1974, it was studied by

Armstrong [2] appar·ently out of mathematical inter·est.

Armstrong characterized implication of functional depe-

ndencies by using an axiom system l·lher·e an axiom system

consists of axiom schemes and a set of inference rules.

A derivation of a dependency g from a set of dependen-

cies G, denoted b)" G 1-g, is a sequence

g 1 ,g~,·········,g where g is either an instance of
L n n

the axiom scheme o~ follows from the pr·eced i ng

dependencies in the sequence by one of the inference

rules.

A set of inference rules is.said to be

29

complete for· a family of dependencies if for· each

set G of dependencies fr·om the family, the dependencies

that are implied by the set of dependencies G are

exactly those, that can be derived from it usin9 the

set of inference rules.That is a set of inference rules

is said to be complete if GI-g entails Gl=g. The

concept of completeness of a set of infer·ence r·ules is

of prime importance in a system where inference rules

are these ar·e used. If a complete set of r·ules is used

then only the database designer· can be assured that he

has a complete knowledge of all dependencies that hold

in a given database. A complete set of inference r·ules

is said to be minimal if no proper subset of it is com

plete. Armstrong's rules for functional dependencies

are complete is one of the basic assumption in the

works on functional dependencies. For multivalued depe

ndencies a complete set of infer·ence r·ules is given by

Fagin[19l and Zaniolo[34l in some,·lhat r·estr icted man~

ner. Deer·i et al [6] ha·.;e removed these r-estrictions

and presented a general complete set of inference rules

for FDs and MVDs. Mendelzone [251 further investigated

about the independence and redundancy of these rules

and has given a minimal complete set of inference rules

for multivalued dependencies. After the introduction of

join dependencies by Rissenen[29l, a complete axiomati-

30

zation of full join dependencies is presented by Sciore

[311. Detailed discussion for the inference rules for

FDs and MVDs are given in the following subsections.

Axiomatization of functional dependencies

was studied by Armstrong [2]. He has presented a set of

axioms gover·ning the set of functional dependencies.

It has been pr·oved [2, 61 that this set of axioms is

complete for the family of functional dependencies. The

completeness of Ar·mstrong' s axioms ·for· FDs is an

important basis for research in this area including

the present dissertation work).The complete set of

axioms for· the family of functionally dependencies is

pr·esented below.

In the following rules, X,Y,Z and W are

arbitrary subsets of U, where U is the set of all

attributes. We write XY for the union of the two arbit

rary sets X and Y.

FDl <Ref lexi vi ty): If Y~ X then X->Y.

FD2 (Augmentation): If Z <: W and X- >Y then

XW->YZ.

FD3 <transitivity>: If X->Y and Y-}Z then

X->Z.

31

FD4 <Pseudotransitivity>: If X->Y and YW->Z

then XW-}Z.

FD5 <Union>: If X->Y and X->Z then X->YZ.

FD6 <Decomposition>:' If X->YZ then X->Y and

X->Z.

FD7 <Projectibility>: If X->Y holds in R<U> and

~w~u then X->Y holds in RlWl.

FD8 <Reverse projectibility>: If X->Y holds in

a projection of R<U> then X->Y holds in R<U>.

If A and B are attributes of a relation

R, then by applying the axiom FDl to X = CA, Bl we get

AD->AB, AB->A, AB->B, A->A and B->D.

can

g o VA
• AM

Axiom FD2 means that, knowing f:X->Y, we

construct another functional dependency, say

-> Y, where the attributes appearing on the left

side of g consisting of the attributes of X plus some

other extraneous attribute A, whose values have no

effect on the values of Y selected by g.

For axiom FD3, if the FDs f:X->Y and Y->Z

holds in a relation R then the dependency h:X->Z also

holds in R.

In the above set of axioms, the Axioms

FD1-FD3 are sufficient and the other additional axioms

i.e. FD4-FD8 are implied by the first three axioms. As

an example, Axiom FD4 can be derived from the axioms

FD1-FD3 as follows.

As our assumption we have f: X -} Y and

YY->Z. How from f and Axiom FD2 we get h: XW -} YW. By

applying axiom FD3 to h we can derive an FD XW->Z,

completing the claim. Similarly it is easy to show

that the other· axioms can also derive from the

first three axioms.

" " set of rules for multivalued depen-

dencies has been presented by Deeri et al [6] and it

has been proved that the given set is complete for the

family of multivalued dependencies. The complete set of

inference rules is explained below. In the rules, X,Y,Z

and W are arbitrary sets of attributes. We use XY for

the union of two sets X and Y.

M'v'DO (complementation): If U=XYZ and Yllzc;;x,

then X->->Y iff X->->Z.

MVDl <Reflexhli~)·): If Yc;;;.X then X->->Y.

M'v'D2 (Augmentation): If Z ~W and Y->->X then

YW->->XZ.

MVD3 (Transitivity): If X->->Y and Y->->Z

then X->-><Z-Y).

Q!her:. MSef.~l r.u.le,a e.r:~:-

M'v'D4 <Pseudotransitivity): If X->->Y and

YW->->Z then XW->-><Z-YW>.

M'.,'D5 (UNION>: If X->->Y AND X->->Z then

X->->YZ.

MVD6 <Decomposition): If X->->Y and X->->Z

then X->->Y Z, X->-><Y-Z> and X->-><Z-Y>.

The validity of these rules have been

proved by Fagin [191 and Beeri et al in [51. Beeri et

al have proved that the inference rules MVDO-MVD3 are

complete for multivalued dependencies. Mendelzone [251

has investigated about the independence and redundancy

of these rules and proved that the set CMVDO,MVD1,MVD3l

forms a minimal complete set of inference rules for

Multivalued Dependencies.

In the previous two subsections we deal

with the implication pr·oblems of FDs and M'JDs only i.e

34

given a set F of FDs whether any other FD f is implied

by F, and given a set G of MVDs whether any other MVD

g is implied by G. The problem of implication of

additional dependencies, that are implied by the

combination of FDs and MVDs i.e. by FUG, has been disc-

ussed thoroughly by Beeri et al [6J, and the following

rules have been proposed.

FD-MVDl: If X->Y then X->->Y.
I

FD-MVD2: If X->->Y and Z->Y', where
I

yjy' andY and Z are disjoint

I then X-)Y •

Zaniolo [35l has pointed out that the rule

FD-MVD2 has been defined in a restricted manner and

pr·esented an alter·nation and simple r·ule called m.i~~_g

.tr:._gnsi.tivit:t. r·ule for· FDs and M'w'Ds, "''hich is defined

a -· ::Ia

FD-MVD3 (Mixed transitivity): If X->->Y and

Y - > Z then X - > (Z - Y).

Zaniolo has shown that the set

£FD1,FD2,FD3,MVDO, MVD1,MVD2,MVD3,FD-MVD1,FD-MVD3l is a

complete set of infer·ence rules fot·· the combination of

the FDs and MVDs.

35

A complete set of inference r·ules has

been proposed by Sciore£31] and has been discussed

below. In the following rules R and S represents two

relational schemas defined over the attribute sets U

and V respectively. We use the notation JI-D for the

derivation of a dependency D from a set of dependency

J, and 8 for the null set.

JDO:

JDl:

e: -I-£Xl for any set X ~U. Which

states that the dependency I-£Xl is

a trivial dependency in R.

(Covering rule).

£Sli-£Rl if U=V and R covers S

i.e. if for every subset Y of V

there exist a subset X of U such

that Y~X.

To simplify the use of covering rule, a set of four

special cases have been given and are:

JDla: *£Sli-*£S,Yl if YEV.

JDlb: *£S,Y,Zli-*[S,YZl.

Cadd a set)

(replace a

set by their union)

JDlc: I-£S1 ,Sll- *£S1A,S2 l

(add an attribute to a set)

36

JD2:

JD3:

if sks. sj for some j#k.

(substitution rule).

(projection rule).

1-[S,YAll- *[S,Yl if AE'J.

The rule JDO is an axiom that allows us

to infer only trivial dependencies. The rules JDl and

JD3 allow us to infer· from one ghren dependenc)·

another dependency that is less informative then the

one that is given, where as the rule JD2 allows us to

combine two dependencies to yeild a third dependency

that is more informative then either one of the given

dependencies. It has been proved by Sciore [311 that

the set { JDO, JDl, JD2, JD3l for·ms a c:omplete set of

infer·ence rules for the set of JDs in a relational

schema.

The definition of the closure of a set of

dependencies and the closure of a set of attributes

with respective to a given set of dependencies and also

the definitions of various typee of coverings of a set

of functional dependencies are presented below.

If G is the union of the set F of

.......

.._)_,··

rD::: and the =:et M of MVD~ i&e. G:FUMj then the clo~ure

of G denoted b:i· G-+ i~ the :::et of Fl!:;;:; ~md IIWDa: th.3.t can

be der i·~·ed from the repe::t.ted application of FD rules 1

I'II"~"D rules .3.nd their mixed rule=:.. Simi l.a.r 1:;· if F is the

:s:et of FDE o~er a :::et of 3ttributes Uj then the closure

f
of F~ denoted b~ F ~ i::: defined to be the :::et of .3.11

FD~ that c::m be obt.3.ined b;-· the :::ucce::::;:i·;.;·e .appl ic::t.tion

of the rules: rDl~ FD2 .3.nd FD3 on the =:et F.

Hith re:;:pect to a ~et of dependencie=: G defined o~er .3.

l
set or .3.ttributeE uj iE denoted b~ X ::t.nd iE defined as:

the =:et of .3.11 .3.ttribute~ th.3.t .3.re found to be functio-

n.a.ll:; dependent on ·~:~o which are implied b:; G.z.

I
~ ·~ [A

of .3.nother :s:et of FD::: F or G is: S.3.id to be equi~::t.lent

to F; if and onl:; if .,. r.+ r- ~ u ~

non-redundant co~er of another =:et of FDs F~
+ .. iff o~r

::t.nd there does not exi:::t .3. :::et of FD~ H :::uch th.3.t H C G

.. 4
.3.nd H ~o ~

minimum co·_·er of .3. set of FD=: F i

38

•• • iff F =G .3.nd there

doe:: not ex i et a ::et H 1-1i th fewe,. 'FDE then 0 s:uch that

+ ...
H =a ~

~ ..
::at or rD= r • if r r ., !F- o _

-f :X->A

Let

..
be an FD in F ...

r be a 9iven set of

An attribute B is said

.:md

to be

extraneous:: or redund.:mt in :-'.: tiith re:;::pect tor if; BC::X

and [0~-B) -)AJ iE in F+ _

The implication problem for

data dependenc ie:; in a relational databa:e ha·.·e bean

explained through!~· in this chapter. A complete set of

inference rules for FDs ha:; been pre:ented and also the

3.ddition:1l rule: for FD::: uhich are required for the

m:1nipulation of other FD::: are 9iven. A complete :::et of

inference rules for M~D:; h3E been explained and it has

been pointed out that the combination or rule: for FDs

and M';.;'D: iE not complete for the rami!;· or FDE and M'}D;;

and hence additional rules known as Mixed Rules ha~e

been given to complete ~he :et or rules for FD: and

M~D:. nlso a complete set of inference rules for the

set of JD: are diecus:ed. Furthermore the ·~·ariou::: t:;pe:::

of covers or a set of FD::: are explained in this

chapter.

III~ A MEMDER~HIP ALGORITHM FOR FUNCTIONAL

DEPENDENCIES

The b~~ic concept underl~ing the ~e~rch

for :=uitable norm~l form:= ma;· be de::cribed a:: ~n

~ttempt to develop a de::i9n methodolo9~ for rel~tional

dat3.b;J.:;;e :=chem~. The :=:;nthes: is: and decompo:: it ion appro

ache;: are the tuo alternati· .. ·e t·J~:.;:.: for obtiilining 3.

normali=ed databa::e s:chema. There are se~eral =~nthes:is:

algorithms: for des:igning a databa~e ;:chema Hhen onl~

functional dependencies: are given [Q,?,~Ol,and all of

them u:::e ::ome sort5 of co·:er of the ')i·:en :iiet of funct

ional dependencies:_ A recent paper [41 de::cribe:: a ~~n

the:::i:: algorithm for pro·_·idin<J a normali=ed datab=:~.se

:chama uhon both runct ion::1l dependenc iez: =:~.nd mul t L·a-·

lued dependencie~ are <Ji~en_ nil these algorithms are

built around u membership te::t for functional and mul

tivalued dependenciesj Hhere the membership problem is:

to determine Hhether a 9iven ~et of dependencies G

implies: =:~.nether dependenc~ g. In decomposition

approachj a part of the problem is to decide Hhether a

nontrivial functional or multivalued dependenc~ holds

in a relation scheme. This decision problem can be
,

solved by applying a membership algorithm for dependen-

cies as shown in [231. Thus an efficient membership

algorithm is an important tool for designing normalized

database schemas.

Both functional and multivalued dependencies

have inference rules as described in chapter-11, that

can be used to infer a dependency g from a given set of

dependencies G if and only if g is implied by G. In [41

Bernstein have used these rules to develop a linear

time algorithm for functional dependencies. A similar

appr·oach used by Beeri £41 to devise an o<IIGI4 P·time

membership algorithm for functional and multivalued

dependencies '
where IIGU is the size of descr·iption

of G. A refinement of this algorithm based on an

appropr·iate data str·uctur·e has an o(minCk2
1UI ,11Grt2 J)

running time, where U is the set of all attributes and

k and lUI are number of dependencies in G and number of

attributes in U respectively is given in £231.

In this chapter we give a membership

algorithm for functional dependencies and show that

this algorithm is faster then the previous algorithms

and also it requires a simple data structure for

implementation.

41

We have organized this chapter as follows:

In section two we describe the method for developin9

a membership algorithm for FDs and give a linear-time

algorithm. In section three this algorithm has been

modified by using a simple data structure for efficient

implementation of the algorithm • In section four we

have analyzed the implementation of the algorithm. In

section five the application of the member·ship algor·i-

thm and section six carries some concluding remarks.

The membership problem for functional

dependencies says that •Given a set of FDs G and an FD

• g, deter·mine whether· gEG i.e. whether· g is in closur·e

of the given set of FDs • We start with designing a

simple algorithm for the membership problem for FDs and

refine it by using a simple data structure for

imp 1 ementat ion pur· pose.

The membership algorithm can be solved

by computing the closure of the given set of FDs G i.e.

G+ by using the complete set of inference rules for

. + FDs. But the computat1on of G is a time consuming job,

because even if G is very small the set of dependencies

in
+ .

G w1ll become very large. It has sho"m that the

dependency X->Y is in G,. if vex+ wher·e v+ is the
'

1'\

closure of the set of at tr· ibutes X with r·espect to

G and since the computation of X+ r·equir·es time

pr·oport ional to the length of all dependencies in G as

shown by Beeri et al [51, we will follow this method

and develop an algorithm for which the implementation

time can be reduced con~iderably • The algorithm is

given in figure 3.1 and is described below.

In this section we consider the given

FD g:X->Y and a set of FDs G. We assume that X and Y

are disjoint, since X->Y is a consequence of G if and

only if X-)(Y-X) is a consequence of G.

The algorithm given in figure-3.1 i.e.

the Algorithm-! uses the pr·ocedur·e FIND(Y) that com

putes v1 which is a subset of Y, and is obtained by

eliminating the attributes from Y which are found to be

functionally depending on X with respect to the set
I

of FDs G. If Y' is found to be a ~ull set then, all the

attributes in Y are depending on X with respect to G

which implies that X->Y is in the closure of G i.e.

X->Y e: G~ To I compute Y we will follow the procedure

given below.

I Now (Y-Y) is depending on X, hence is a

subset of the closure of set of attributes X i.e.

43

ALGORITHM-!

Input: A set G of m FD's on attributes {A1 ,A2 , •

•••••.. ,An} and an FD g: X -> Y •

Output: 'YES' if + g€G ; • NO' if +
g¢G •

1. Attributes are represented by integers bet-

ween 1 and n.

2. FD's are represented by integers between 1

and m.

3. DEPEND is a set of attributes found to be

functionally depending on the set X so for.

4. Y1 is a subset of attributes of the set Y,

which are not yet found to be functionally

depending on X so for.

5. QUEUE is a set of FD's whose left hand sides

are found to be asubsets of DEPEND so for.

ALGORITHM:-

(1) make QUEUE empty;

(2) DEPEND = X;
I

(3) Y' = Y;

44

(4) put every dependency of G with a left

hand side a subset of DEPEND, on QUEUE;

(5) whil~ ((QUEUE is not empty) AND CY =B)) ~Q

(6)

(7)

(8)

(9)

(10)

(11)

(13)

I remove a dependency g with right

side RS(g/) fr·om QUEUE;

if RS Cg/) ¢DEPEND ~hell

.Q~in

DEPEND= <DEPEND U RS(g/));

Y1 = <Y1 - RSCg1));

foL every dependency gi in G

(with left side LS(gi)) ~Q

if (CLS (gi) f:: DEPEND) AND (gi ¢QUEUE))

then QUEUE= (QUEUE U gi);

(14) RETURN Y1 ;

(15)

<16)

(17)

(18)

~nd FIND •

.Q~in ''*main procedure *!)

Y1 = FIND(Y);

if Y1 ·= B U* the null set *f)

~l§~ PRINT 7 N0 7
;

Figur·e-3. 1

45

I + . (Y-Y) ex w1th respect to G. So by computing the
I

closure of X we can determine y' by substracting the
I

closure of X from Y. Hence to compute Y' we have to

compute the closure of X i.e. "'i th r·espect to

G. Let DEPEND be a set variable to hold these

attributes i.e. the closure of X. The set DEPEND is

initialiLed to X since by FDl (the Reflexivity rule
. I

The set Y' is initialiLed to Y. While the
I

procedure iterates the values of DEPEND and y' change

repeatedly in such a way that

(i) X->DEPEND is always a consequence of G and
I

(ii) Y1 = <Y-DEPEND) = Y- (the new attributes

added to DEPEND in each iteration>

select an FD,

Now to add new attributes to DEPEND, we

I say g _in G whose left side is a subset

of DEPEND but the right side is not. By pseudotransiti-

vity rule <FD4) for functional dependencies, the right
I

side of the FD g' is functionally dependent on X and

hence can be added to DEPEND and simultaneously the

right side of g 1 (sa)· RS<g 1)) 'iill be substracted from

v1 , since X->RS(g/) EG+. We can continue selecting the

FDs of G in this manner, addin~ and substracting their

ri9ht 5ides to DEPEND and from v1
respectively, until

no more FDs satisfying this condition. If during any

4lt

iteration we will find that (Y-Y1) is a null set

then we can conclude at that point that X->Y is in

closure of F and hence it will be unnecessary to

iterate further until g all the dependencies of G are

checked. The method is formally implemented as Algo-

rithm-1 given in fig.3.1 and the details of an effi-

cient implementation based on an appropriate data stru-

cture followed by a proof of correctness are described

in the following section.

Both the loop i.e. the outer loop of

lines (5)-(13) and the inner loop of lines (10)-(13)

ar·e finite loops because G I and Y ar·e finite sets.

At each iter·ation of the outer· loop, the inner· loop

adds a number of FDs to the set QUEUE. But, since the

condition, if (gi ¢QUEUE> then add 9 to QUEUE in

line <11>, prevents a dependency to be added more than

once to the set QUEUE , hence at most m dependencies

can be added to QUEUE. Again since the outer loop is

executed at best once for each member of QUEUE the

algorithm ultimately r~aches to the point that either
I

QUEUE will become empty or· y' become empty (since for·

each dependency QUEUE during any iteration its right

side is / substracted fr·om the set Y) ,

loop ter·minates.

47

and hence the

The
I

t t · of Y' compu a 1on (i.e. lines (6)-(13))

in the algor· i thm-1 r·equires an efficient

implementation. In this subsection we descr·ibe a data

str-ucture for- a fast on-line execution of the procedure

FIND(Y) that r-uns in OIIDH time, where ~GH is the

size of the description of the set of FDs G, and the

fast algor-ithm is given in figur-e 3.2.

In algorithm-2, we assume that the attr-ibutes

of the set {A1 , A~, ••••••• , A } which are appearing on
L n

FDs of G, are r~pr-es•nted by the numbers 1,2, •••••••• ,n

respecti-vely and also we associate number·s

1,2, ,m with dependencies gl,g2, ••••• gm

r-espectively, of G. A linked list LIST(i) for each

attr·ibute A.
1

appearing in G, is constructed where,

LIST(i) contains a pointer to each FD that has the

attr-ibute A. on its right side. We also associate a
1

counter COUNTER(j) for each dependency g.
J

in G where,

the counter· initially specifies the number· of

attributes on the left sides of the FDs of G. The

linked lists and the counters can be constructed in a

single pass over G in ORGH time. During the execution

of the algorithm COUNTER(j) indicates the number of

48

of the algorithm COUNTERCjl indicates the number of

attributes on the left side of the dependency g.'
J

which are not belonging to the current value of the set

DEPEND.

The procedure UPDATE is used to update the

counters whenever some attributes are added to DEPEND.

When COUNTERCjl associated with the dependency j

becomes zero, the left side of the FD j is a

subset of DEPEND, hence the FD j is put on the set

QUEUE, where QUEUE is the set of all dependencies whose

left sides are subsets of the current value of DEPEND.

The algorithm-2 given in figure 3.2 operates

essentially as in algorithm-! by succesfully adding new

attr·ibutes to DEPEND and substracting the new

attributes from v1
• When a set of attributes say R is

added to DEPEND in one iteration and which were previo-

usly not belonging to DEPEND, then each attribute of

R is removed from the left sides of the FDs on which

it appears, by calling the pr·ocedur·e UPDATECRl, which

updates the COUNTER as well as QUEUE. The algor· i thm

continues until either· QUEUE becomes empty or Y
1

becomes empty.

49

ALGORITHM-2

l!:U!U t: A set G of m FDs on attributes !A A

't1 ' .
1 2

• • • • 'A } and an FD g:X->Y • n

.QUtJ2.Yj;: •yEs• if + gEG ; •t-~o• if g¢G.f. •

1. Attributes are represented by integers between

1 and n.

2. FDs are represented by integers between 1

and m.

3. LS(j) and RS(j) are arrays of sets containing

attributes appear·ing on left and r·ight sides of

the FD j respectively, for· each jE.G.

4. DEPEND is a set of attributes found to be

functionally depending on X so far.
I

5. Y1 is a subset of attributes of the set Y,

which are not yet found to be functionally

depending on X so far.

6. R is a subset of DEPEND that has not yet

been examined.

7. COUNTER[jl is an array containing number of

attributes on the left side of each FD j

which are not yet found to be in DEPEND.

8. LIST[il is an ar·r·ay of FDs specifying for

each attr·ibute Ai' the FDs with the

attr·ibute " on their· left sides. M.
1

9. QUEUE is set of FDs, whose left sides ar·e

subsets of DEPEND.

ALGORITHM:-

ar·o~dur·e UPDATE <R>:

(1) for:. ever·y attr·ibute A on R do

(2) for:. every dependency j on LIST(i) do

(3) COUNTER(j) = <COUNTER(j)-1);

(4) if COUNTER(j) = 0 th~

(5) put j on QUEUE;

.§:nd UPDATE.

(6) INITIALIZE: ~Q i = 1 to n

(7) LIST (i > =O;

(8) do j = 1 to m

(9) COUNTER(j) = O;

51

15)

(10)

(12)

(13)

(14)

(16)

(17)

(18)

(19)

(20)

(21)

<22)

(23)

(24)

(25)

do for each attr-·ibute iELS[jJ;

LIST£il = (LIST£il U {j}J;

COUNTER[jl = CCOUNTER£jl +1J;

make QUEUE empty

DEPEND - v. - "'
I y. = Y;

UPDATE(XJ;

whi!~ ((QUEUE is not empty) AND <Y is not

empty)) gQ

r-·emove a dependency i from QUEUE;

if RS£ i l ¢DEPEND 1he!l

TEMP = DEPEND;

= <DEPEND U RS[ilJ; DEPEND

v' =
I

(y I - RS [i]) ;

R = <DEPEND- TEMPJ;

UPDATE(R);

(26) RETURN Y;

~nd FIND.

52

(27)

(28)

(29)

(30)

Q~in (/* main procedure *I)

Y1 = FIND(Y);
I

if Y' = 8 (/* the null set *I)

then PRINT ,YES"

!Use PRINT 'NO";

i.

Figure-3.2:- A Linear Time Algorithm for the Membership

Problem for FDs.

53

To prove the correctness of the angorithm-2

we first examine the initialize step (i.e. lines (6)-

(17)). Lines (6) to (13) consists primarily of a scan

of G, performing a constant number of operations for

each attribute on the left sides of FDs of G, therefore

this part terminates (since the number of attributes

is finite) and takes time OUGD. At the initialize

step, the followings hold.

(i) For· each g in G, COUNTER(i) = I LS (i) I,
i

wher·e l LS (i) I is the length of the left

side of the FD gi.

(i i) For· each ,. in the set CA1,A2, ••••• An}' "i

LS (i) contains a 1 ist of FDs with A on n.
1

their· left sides.

(iii) The set QUEUE is initialized to empty

set and
I

the sets DEPEND and Y' ar·e

initialized to X and Y respectively,

where X and Y are the left side of the

given FD g:X->Y, respectively.

54

The total cost of all the calls to the

procedur-e UPDATE in lines (17) and <25> can be computed

as follows.

The cost of executing the lines (1)-(5) once is

distributed among the dependencies on LIST<iL Putting

a dependency j on QUEUE requires a constant time

since only a pointer has to be moved. So a constant

time is assigned to each dependency on LIST(i) in one

iteration of the loop. During the execution of FIND<Y>

each LIST (i) is traversed at .most once, and the

cumulative cost of each dependency is proportional to

the length of its left side. Thus, the total cost of

all calls to the procedure UPDATE is no more than

Oil G :1 t i me.

The main body of the algorithm is the loop

of lines (18)-(25). To prove the termination of this

loop, we note that the loop is executed once for each

member of QUEUE. Since each dependency is put on QUEUE

not more than once at mostm dependencies can be added

to the set QUEUE. Thus the loop of lines (18)-(25) can

execute at mostm-times and therefore must terminate in

OUGU time. Hence the entire algorithm terminates and

the running time of the procedure is OUGH time. While

the worst case time of the algor-i th•-2 is Oil G :J, the

55

running time will be frequently much batter. First, if

0 contains many FDs whose left sides are disjoint from

X (the closure of X with respect to 0), then these

FDs will never be added to QUEUE and hence QUEUE will

become empty much earlier and the number of iteration

of the loop on lines (18>-<25) will become very less.

Again, if during any iteration in loop ((18)-(25>>, it

will be found that Y1 is empty, the iteration will stop

and hence will decrease the

algorithm considerably.

running time of the

3.5 8eRli~~iign g£ m~m~~rahie el9Q£i~hm

'
The membership algorithm can be applied to

solve several FD problems that are related to automatic

achema synthesis such as:

(1) To elimanate redundant attributes from a given FD

with respect to a set of FDs.

(2) To find various types covers of a set of FDs such

as,the non-reduntant cover,the minimal cover and the

minimum cover which are required for synthesizing nor

malized database schemas from a set of FDs.

(3) Also since there exists an equivalence between FDs and

propositional formulas such as Horn clauses with at

·most one negative literal, the linear time algorithm

can also be applied to decide if a propositional

formula is a tautology.

56

One of the objective of this dissertation is

to develop an efficient algorithm for the membership

problem of the functional dependencies in relational

database. The advantages of the pr-oposed algor·i thm ar-e

in distinct contrast to the inadequacies of previous

resear-ch for· the member-ship pr-oblem. Ther-e have been a

number of methods proposed for this problem over the

years. For implementation point of view while the

algorithm given by Beeri and Bernstein is considered

to be a pioneer one, it has shown here that the

algorithm can be improved considerably to reduce the

implementation time.

57

BIBILOGRAPHY

lJ AHO, A. V., BEERI, C. AND ULLMAN, J. D. The theory of

joins in relational databases. ACM Trans. Database Syst.

4,3<Sept. 19791, pp.297-314.

21 ARMSTRONG, W. W. Dependency structures and database

relationships. Information Processing, North Holland,

.Amsterdam, 1974, pp.580-583.

3) BACHMAN, C. W. Data structure diagrams. Data Base

1,2(1969), pp.4-10.

q) BEERI, C. On the membership problem for functional and

multivalued dependencies in relational databases. ACM

Trans. Database Syst. 5(1980), pp.141-159.

51 BEERI, C. AND BERNSTEIN, P. A. Computational problem

related to design of normal form relational schemas.

ACM Trans. Database Syst. 4,1<March 1979), pp.30-59.

6) BEERI, C., FAGIN, R. AND HOWARD, J. H. A complete

axiomatization for functional and multi valued

dependendencies in database relations. Proc. ACM

SIGMOD, <Aug. 1977>, pp.47-61.

7) BEERI, C., BERNSTEIN, P. A. AND GOODMAN, N. A

sophisticate's introduction to database normalization

theory. Proc. 4th Int. Conf. Very Large Data Bases,

(Sept. 1978), pp.113-124.

58

(8) BERNSTEIN, P. A. Synthesizing th i r·d nor·mal for·m

relations from functional dependencies. ACM Tr·ans.

Database Syst. 1,4 <Dec. 1976), pp.277-298.

(9) BISCUP, J., DAYAL, U., AND BERNSTEIN, P. A. Synthesizing

independent database schemas. Proc. ACM SIGMOD Int. Conf.

Management of Data, (may 1979), pp.143-151.

(10) BLEIR, R. E. Treating hierarchical data structures in

(11)

the SDC time shared data management system <TDMS>. Proc.

ACM Natl. Conf. (1967>, pp.41-49.

CARDENAS, " "• F. Data Base Management Systems. Allyn

and Bacon, Boston, (1979).

(12) CODASYL. CODASYL DATA BASE TASK GROUP Report. Conf. on

data Syst. Languages, ACM, New York (1971).

(13) CODD, E. E. A relational model of data for large

shared data banks. Commun. ACM 13,6 (June 1970>,

pp.377-387.

(14) CODD, E. E. Further normalization of the data base

relational model. In Data Base Systems, Courant Inst.

Computr·. Sci. Symp. 6, R. Rustin, Ed., Pr·entice-Hall,

Englewood Cliffs, N. J., 1972, pp.33-64.

(15) DATE, C. J. An introduction to Data Base Systems, 3rd

Ed., Addison-Wesly, Reading, MA.

(16) DE BRA, P. AND PAREDAENS, Conditional dependencies for

hor·izantal decompositions. Proc. of lOth Int. Colloq.

on Languages Autometa and progr·amm i ng, 1981,

59

Barcelona. Appeared in Lecture notes in computer·

Science- Vol. 154, Springer-Verlag,1983, pp.67-82.

(17) DELOBEL, C. AND CASEY, R. G. Decomposition of a

database and theory of boolean Switching Functions,

IBM J. Res. Develop., 17,5(Sept. 1973), pp.374-386.

(18) FAGIN, R. The decomposition versus the synthetic

appr·oach to relational data base design. Pr·oc. 3r·d.

Int. Conf. Very Large Data Bases, pp.441-446.

(19) FAGIN, R. Multivalued dependencies and a new normal form

for relational databases. ACM Trans. on Database

Syst. 2, 3CSept. 1977), pp.262-278.

(20) FAGIN, R. Horn clauses and data dependencies. Proc.

12th ACM Syst. on Theory of Comput., 1980, pp.123-134.

(21) FAGIN, R. Functional dependencies in relational

database and propositional logic. IBM J. Res.Devlop.

21,6 (Nov. 1977), pp.534-544.

<22) GALLAIR, H. AND MINKER, J. <Eds). Logic and Data Bases.

(23)

Plenum Pr·ess, 1978, New York.

HAGIHARA, K., ITO, M., TANIGUCHI,

Decision problems for multivalued

K. AND KASAMI, T.

dependencies in

relational databases. SIAM J. Comput., 3,2 <May 1979),

pp.247-264.

(24) MAIER, D. Minimum cover·s in relational database model.

Pr·oc. 11th Annu. ACM Symp. THeor·y of Computing, 1979,

pp.330-337.

60

(25) MENDELZON, A. 0. On axiomatizing multivalued dependen-

cies in relational database. J. ACM, 26,1 (Jan. 1979),

pp.ll-14.

<26) NAMBIAR, K. K. Some analytical tools for· the design of

r·elational database systems. IEEE, 1980, pp.417-428.

(27) NICOLAS, J. M. First order logic formalization for

functional, multivalued and mutual dependencies. Proc.

ACM SIGMOD, 1978, 360-367.

(28) OSBORN, o. Testing for existence of a covering

Boyce-Codd normal form, Inform. Proc. Letters 8,1

(Jan • 1 979) , 11 - 14 •

(29) RISSANEN, J. Independent components of relations. ACM

Trans. Database Syst. 1977, 317-325.

(30) SAGIV, Y., DELOBEL, C., PARKER, D. S. AND FAGIN, R. An

equivalence between relational database dependencies

and a subclass of propositional logic. J. ACM, 28,3

<July 1981), pp.434-453.

(31) SCIORE, E. A complete axiomatization of full join

dependencies. J. ACM, 29,2 (Apr. 1982), 372-393.

<32) ULLMAN, J. D. Principles of Database Systems. Computer

Science Press, Rockville, Maryland, 1982.

(33) WANG, C. P. AND WEDEKIND, H. H. Segement Synthesis in

logical data base design. IBM J. Res. Develop. 19,1

<Jan. 1975), pp.71-77.

61

<34> ZANIOLO, C. Analysis and design of relational schemata

for database systems. Tech. Rep., Dept. of Comput.·

Sci., Univ. of California, Los Angles, Calif, July,

1976.

(35> ZANIOLO, C. Mixed transitivity for functional and

multivalued dependencies in database relations. Inf.

Proc. Letters, 10,1 (Feb. 1980), pp.32-34.

(36) ZANIOLO, C. and MELKANOFF, A. On the design of rei

tiona! database schemata. ACM Trans. Database Syst. 6,1

<Mar. 1982>, pp.1-47.

62

	TH18800001
	TH18800002
	TH18800003
	TH18800004
	TH18800005
	TH18800006
	TH18800007
	TH18800008
	TH18800009
	TH18800010
	TH18800011
	TH18800012
	TH18800013
	TH18800014
	TH18800015
	TH18800016
	TH18800017
	TH18800018
	TH18800019
	TH18800020
	TH18800021
	TH18800022
	TH18800023
	TH18800024
	TH18800025
	TH18800026
	TH18800027
	TH18800028
	TH18800029
	TH18800030
	TH18800031
	TH18800032
	TH18800033
	TH18800034
	TH18800035
	TH18800036
	TH18800037
	TH18800038
	TH18800039
	TH18800040
	TH18800041
	TH18800042
	TH18800043
	TH18800044
	TH18800045
	TH18800046
	TH18800047
	TH18800048
	TH18800049
	TH18800050
	TH18800051
	TH18800052
	TH18800053
	TH18800054
	TH18800055
	TH18800056
	TH18800057
	TH18800058
	TH18800059
	TH18800060
	TH18800061
	TH18800062
	TH18800063
	TH18800064
	TH18800065
	TH18800066
	TH18800067
	TH18800068
	TH18800069
	TH18800070
	TH18800071
	TH18800072
	TH18800073
	TH18800074

