
Dissertation su' m tted to the Jawaharlal Nehru University

in partial fuffilp1ent of the, requirements for the

award of the Degree of

MASTER OF PHILOSOPHY

KALPANA S. A.

SCHOOL Ofi COMPUTER AND SYSTEMS SCIENCES
J~WAHARLAL NEHRU UNIVERSITY

NEW DELHI -110067

INDIA .

1984

Certifica. te

The research work embodied in this dissertation has

been carried out in the School of Computer and Systems Science,

Jawaharlal Nehru University, New Delhi- 110067, entitled

"Computer Perform~nce Evaluation".

This work is original and has not been submitted in

part or full for ~my other degree Oil diploma. of any other

University.

}J,f.~.
Dr. N.P. Mukherjee
Dean
School of Computer & System$
Jawaharlal Nehru University
New Delhi - 110067. .,

Sciemces

-- -J_}} r,
::> ·<[·(/.~

___-Kalpa~~Js.A.
Student

Dr. R. Sa.dananda
Supervisor

s 43 :

Aa<NOWLEOOEMENT

I acknowledge my guide Dr.R.Sadananda who has

been remarkably encouraging all through.

I also wish to acknowledge the anonymous examiner

who gave • very valuable critical comments which enabled

me to present my work in a better form. My heart felt

thanks to him.

Lastly, my work has taken the shape as it is now

due to the flCOJless and efficient typing of Mr. Chandrasekar.

Contents

1. Introduction •• 1

2. Objectives of Performance Evaluation •• s

3. Mechanisms of evaluation • • i.~

.&. Quantitative evaluation of performance •• 2.:3

5. Case Study : Conputer Systems for educational use •• Si

6. Conclusion • • ~~

Appendix I s Evaluation of the

HPlOOO Architecture

Bibliography

1. INTRODUCTION

Every working system needs .an evaluation of its

performance for efficient running and satisfactor)7 behaviour.

For engineering and other technical systems there are some

predetermined formulae and design criteria for evaluation.

However, sin.ce the conpt.Iter design trade-offs are changing

at a rapid rate~ evaluation methods are also gaining newer

frameworks. There has been no distinct standard method

designed as yet. An approach to a simple optimization

technique for evaluation of the performance of a computer

system has been the framework of this dissertation.

The characteristics chosen for evaluation vary widely

with the kind of application the system has- Educational,

Commercial, Scientific etc., and with the intention of the

evaluation being conducted - study purpose, to buy a computer,

to choose a system etc. This dissertation intends to give

an overview of one of the techniques used for performance

evaluation taking into account a few of the architectural

features which are more important a.nd interesting than

most others.

In a similar manner, evaluation can be performed using

the software features or any other attribute which might

prove more important for some particular application. The

characteristics of the specification prescribed for perfor

mance evaluation vary largely depending on the kind of system

to be evaluated and on the perspective with which the

: 2 :

evaluator looks at it. Every system has some defin.ed

function or a set of functions to perform. Hence the

first and foremost condition of performance is the

satisfactory functioning of its defined function.

•satisfactorily functioning• is technically termed as

"correctness•. Therefore correctness is the prerequi~ite

for all other requirements. Verification of correctness

is not subjective because for almost all systems, deciding

whether they work correctly or not is comparatively easy.

For example, a means of tranSpOrt must move. a bulb must

glow, a bridge must not collapse, and an amplifier must

amplify an electric signal.

Once correctness is established, the next performance

specification Which must be satisfied, so that the user

comnuni ty might find tbe system acceptable, is the factor

that how well the system performs its functions. Now arises

the choice of performance requirements which is more

subjective than laying down correctness specifications.

However, performance requirement can be to a great extent.

expressed quantitatively so that verification is not more

complicated than the verification of correctness. For

example, the maximum speed of a car with a load of 700 Kgs.

is to be greater than 100 Xrns/hr : the efficiency of an

: 3 :

electric transformer must be greater than 900.,.(and its

regulation must be less than 10% for a given load range.

But, from an evaluator's perspective, what is more

subjective is the relative importance given to the

different aspects of performance~ for example, t.he speed

of a car may have a secondary importance with respect to

the realiability, lifetime, fuel consumption, comfort,

and ease of driving of the car.

TO draw a strict margin between correctness and

performance of a system is not really possible. Correctness

can actually be looked upon as one of the important and

essential aspects of performance. Hence in this dissertation,

performance will indicate as to how well a syet~ assumed

to perform correctly., ~rks~ only correctness is not enough

to make a system acceptable to its users. Performance

requirements also play an important role in the acceptance

of a system by its users. For example, if a clock can move

its hands at regula.r intervals of time, then it can be said

to be performing its function correctly but unless it

maintains the required accuracy .1 t will not be acceptable

to its users.

The way performance has been interpreted up to this

point, it can be rightly said that performance is the technical

: 4 I

equivalent of the economic notion of value. That is,

performance is the criterion Which makes a system

valuable to its users. But it is just one face of the

coin in the real economic world. The other side is the

cost. Hence~ for each desirable system requirement, it

is necessaJ:y to determine the cost of having it, the

cost of not having it, the cOSt related to the dates

at which it may be satisfied, and so on. However in

this dissertation the cost aspects of the systems to be

evaluated will not be considered because of the complications

involved in relating directly the costs with the performance

attributes in spite of the fact that performance and cost

can•t be separated and performance evaluation should always

be acconJ>anied by some form of cost evaluation.

Performance is actually a subjective concept. But

there have been attenpts to translate subjective definitions

of performance into technical terms, and to quantify and

hence to objectively evaluate performance. Performance

evaluation can thus be regarded as a technical activity

whose purpose primarily is the quantitative assessment of

performance. A study of various aspects of the performance

evaluation is collectively designated as Performance

Evaluation Studies.

: 5 :

2. OBJECTIVES OF PERFORMANCE EVALUATION

Computers are hereby considered as engineering

products. Performance evaluation of computers, though

underdeveloped, is as essential as the other older branches

of engineering. All conputer systems are designed to

perform certain functions related to the processing of

information. The efficiency of these systems is a matter

of technical, economical, and social importance. The

different systems in a computer have different functions

and nature. The different systems could be computer

installations, computer systems, computer networks, system

components, operating systems, programs, programming languages,

and language translators. Their performance would be

evaluated by their designers, manufacturers, managers,

maintainers, and users. The objective of this dissertation

is to evaluate computer systems in general and a few

architectural features in particular.

A few definitions concerning system evaluation

are as follows:

a) Cont>uter System : It i·s a collection of hardware
components like central and inpu~output processors,

memories, peripheral devices, interfaces, etc., and
of software components like operating systems,
compilers, assemblers, loaders etc.

' 6 :

b) Resources s The different components of a system
are called resources.

c) System parameters : Each coRpOnent has its own

attributes which form the system parameters.

d) Public software and public data bases : Software
accessible to all the users of a system like
compilers, editors, assemblers. debuggers, etc.

e) Workload : A collection of inputs like programs,
data, Commands, etc., which are produced by the
users is the workload.

f) load parameters : The attributes of the workload
are called load parameters.

g) Performance index : It is a descriptor which is
used to represent a system's performance or some

of its aspects.

PERFORMANCE INDICES:-

Performance being a subjective Concept. the performam e

indices which one evaluator uses to assess a system may be

different from the ones used by other.evaluators. That is,

if a set of computer systems in the same price range is

considered, and a group of different evaluators is asked

to rank them, then it is likely that each one of them will be

ranked differently by different evaluators. This happens

: 7 '

because, each evaluator will use his own individual,

subjective performance indices. Thus the ranking suggested

by each person will show the value that person attaches to

that system. This happens because of the subjectivity of

performance aspects. So, subjectivity would be restricted

to their choice and to the relative weights given to them.

The weights proposed will differ for different categories

of people like manufacturers, installation managers,

company executives, field engineers, systems programmers,

operators, application programmers and common users. Hence

this subjectivity notion is changed to more objective,

possibly quantifiable, technical Performance Indices.

But a problem arises when certain performance indices

cannot be quantified. FOr example, tbe ease of use of a

system, the structuredness of a program or of a language,

and the power of an instruction set. Performance indices

which can be quantitatively evaluated are the efficiency of

a system, its speed in processing a given task or a set of

tasks, and its promptness in responding to external stimuli.

The most popular classes of performance indices for

computer systems are as follows:

: 8 :

1. PRODUCTIVI 'lY :

DEFINITION : It is the volume of information

processed by the system in a unit time.

EXAMPLES :

Throughput rate

Production rate

Capacity, i.e. 1 maximum throughput rate

Instruction execution rate

Data processing rate

2. RESPONSIVENESS :

DEFINITION : It is the time between the presentation

of an input to the system and the appearance of the corres

ponding output.

EXAMPLES :

Response Time

Turnaround Time

Reaction Time

3. PERCENT UTILIZATION :

DEFINITION : It is the ratio between the time a

specified part of a system is used (or used for some specified

purpose) during a given interval of time and the duration

of that interval.

: 9 :

Hardware Module (CPU, Memory, I/O channel, I/O device,

Utilization}.

Operating system module utilization

Data Base Utilization

DIMENSIONS :

Indices of productivity have the dimension volume X

time-1, the indices of responsiveness have the dimension

time, and the indices of utilization are dimensionless.

To measure the volume or quantity of information

processed by a system, there is no standard unique way.

The different measures of volume used depend on the system

and its workload, on the language used by the progranmers

to describe their algorithms to the machines, on the language

of the machine itself, and on the way the system is organized.

DIFFERENCE BETWEEN PERFOR~CE ANALYSIS AND SYNTHESIS :

If the values of performance indices have to be

determined for given values of installation parameters, then

the task is called performance analysis. The converse, that is

the realization of the parameter from given values of indices

is called performance synthesis. Synthesis methods are used in

I 10 I

system design. Theeraluation techniques used in this

dissertation are essentially pe~formance analysis techniques.

PHASES OF AN EVALUATION STUDY. :

A concept close to performance evaluation study is

the continuous monitoring of activities. The objective of

continuous monitoring of activities is to keep the system's

performance under observation in order to detect perfDrmance

problems as fDOn as they arise.

The various phases of an evaluation study which are

formed by grouping related activities together are as followss

PHASE I : '!'he need for a study arises

PHAS~E II I The objectives of the study are formula ted.

PHASE III • A plan of the study is prepared. •

PHASE IV : The plan iS implemented.

PHASE v • The results are interpreted. •

Every phase listed above will include a few or all of

the activities aimed at gathering information about the system

and its installation; reading system manuals, examining logic

diagrams, flowcharts and program listings; questioning operators

and other system installation staff members; interviewing

users; measuring workload parameters.; collecting' data about

system usage; interpreting accounting data: and so on.

s 11 :

CLASSIFICATION OF EVALUATION STUDIES s

Like all other studies, evaluation studies may also

be classified along different dimensions depending upon

their objectives. Bu~ the most conventional classification

is the one mentioned ~low dividing it into three categories :

a) selection studies

b) Improvement studies

c) Design Studies

SELECTION STUDIES : A need for this kind of study arises

when a new installation bas to be configured and procured.

These problems include :

1. Selection of the processing roode : It is concerned

with the installation being set up and with the processing

mode that will be most useful to the user o:mmunity. The

main modes are batch, interactive, open-shop or closed shop,

direct access, and real-time. Selecting the processing

mode gives the installation designers information regarding

effectively restricting the field of acceptable hardware

and software solutions.

2. Vendor Selection : The main problem that arises during

the design of a new installation and the procurement of a new

system in place of an existing computer installation is that

: 12 I

of vendor selection. Many other factors like the economical

and technical constraints restrict this problem to a

smaller perspective. But, all the same~ it still exists

because a Choice bas to be made out of a number of

alternatives whose ability to meet the performance

requirements of the installation vary. Hence a comparison

has to be made. While making this kind of competitive

selection, various alternatives are praposed by different

vendors who in turn offer one or more configurations based

on the design of their hardware and software components.

So, a selection made under such circumstances is termed as

vendor selection.

3. Installation selection : To satisfy a given information

processing need, there can be several available installations.

Choosing the most suitable one for the re~ired application

is the Installation selection problem. It could be selecting

among the different computing facilities in an organization,

by a department, a group or an individual programmer to

satisfy his needs. It could also be the selection of a service

bureau Which is a company or an external installation Which

sells computer time for the processing of a given workload.

In some ways this problem is similar to the vendor selection.

However, they differ in their economic aspect.

: 13 :

4. System Component Selection : This class deals with

the upgrading or expanding problems of a given system, thus

improving upon the current system. That is, some components

must be added to the already existing systems, running in

an existing installation. The components to be selected can

be software modules like operating systems, accounting

packages, software measurement tools, compilers, data-base

systems, etc., and hardware modules like primary-memory

boxes. central and I/O processors, disc drives, tape drives,

multiplexers, and so on.

s. Application Program Selection : In this class the

selection is done precisely by the particular user and not

by the installation• s management, some examples of problems

of this kind are s

a) The selection of one among several languages

offered by an installation for the coding of a given program.

b) The selection of one among several packages existing

in an installation for the execution of a given task.

c) The selection of one among several packages existing

in the market for the satisfaction of a certain information

processing requirement.

: 14 • •

2. I,K)ROVEMENT STUDIES : This kind of study comes

into picture when there is an installation already existing

and some rrodification has to be made to improve its performance

or decrease its cost, or both. Another problem encountered

in improvement studies is that the system has to be tuned;

that is~ its parameters have to be adjusted so that it could

suit some new environment. This, in turn., results in the

upgrading of a system by either adding one or more components

or by optimizing the already existing resources. As examples

of system upgrading are - increasing the size of the primary

memory., adding one or more CPU's or replacing an .old CPU by a

faster one, rearrangement of information within one of the

storage devices, or among several of them, and the modification

of the connections between I/O devices and I/O processors.

Thus the outcome of improvement studies are that : the same

workload can be processed in a shorter time, and in this way

reducing the number of operations staff involved; better

performance attracts more customers; the procurement of larger,

more.expensive system may be postponed or avoided because of

the increased ability of the current system to cope with an

expanded workload; and the addition of a hardware component

to the configuration may be made unnecessary by the changes

suggested by an improvement study. Modification also means to

determine as to which components seem superfluous and can be

: 15 :

removed so that the system's performance will not change

appreciably. An improvement study may result in a

substantial increase in performance with relatively little

effort.

3. DESIGN STUDIES : 'lhey are concerned with the

performance evaluation of the design of computers, coaputer

components, operating systems, programs, and languages.

Unlike the other two classes where the study is undertaken

by the users, in this class the study is done by the

manufacturers. This is done to determine how a conputer

system capable of satisfactorily handling certain infOrmation

processing tasks can be constructed. Here a lot of

creativity is needed. The pre-existing components should

be properly made use of and combined in new fashions to

meet new requirements.

The design problem is stated as follows :

Produce an implementable description of a system

Which satisfies the given design specifications. The

specifications could be - functional specification~

performance specification, or cost specification.

The iterative design methodology is shown by the

following flow-chart.

: 16 :

START

'oESI~N 1
INITIAL

.SY$TEM

SATISF~CTO~ l NO

YES
'

' \'

IOU'IPUT
SY,STEM

STOP

<

,MODIFY
SYSTE~

: 17 • .

' 3. MECHANISMS OF EVALUATION

The attributes considered for evaluating a system

will vary widely with the purpose and perspective of

evaluation. To start with, the techniques of measurement..

evaluation and benchmarking are considered in general in

this chapter.

Two broad classes into Which measurement techniques

can be grouped are hardware techniques and software techniques

Hardware techniques are further classified into standard

features which can be used for measurement and special

hardware-instrumentation techniques. Software techniques

can be Classified as simulation and analytical models or

measurement processes within the system.

HARDWARE MEASUREMENT

In the early stages of system development standard

hardware features were incorporated. For exanple,. the

IBl-1-650 allowed a person to set an address breakpoint by

switches at the console. The machine would run until this

address at which the breakpoint was set was reached and then

it would stop. At this stage the programner could examine

: 18 I

the registers or dump memory for further analysis. In

later stages of system development like the IBM-704 a

mechanism called the trapping transfer mode was introduced.

In this mode Whenever a transfer instruction was reached

the conputer would interrupt itself and Control would be

transferred to some fixed location Where the user program

recorded the event. Even these days on current machines

similar features exist but are operable only from the

maintenance panel. These features were initially incorporated

only to simplify program debugging. They did not prove

very useful for system measurement.

A representative of a hardware measuring device is

IBM's Systems Performance Activity Recorder (SPAR). It

consists of 256 high-impedent probes. They resemble the

probes used on an oscilloscope. They can be connected to

various circUit points to obtain logic pulses or levels;

several counters; clocks; basic logic elements such as AND

gates, CR gates, complement gates, flip-flops and comparators,

19 • •

a plug board1 and the ability to store the counter

contents on magnetic tape.

The probes can be connected to address lines, the

instruction counter,. mode flip-flops,. or other control and

information points. Then an event measure is created by

routing the probe signals* or more often the probe signals

in combination with a clock signal# through the logic

elements by plugboard programmin.g. The signal wich

represents the event is plugged into a cour:tter. These

counters can be dunped on to a tape at fixed intervals of

time or durrped on to a tape under event control. Some

systems like the SNUPER at UCLA have adopted the above

mentioned approach one step further. In this the event

signals and counters are connected directly to a general

purpose digital computer. The output of this computer can

be printed.

The advantage of this kind of hardware measurement

technique are that it (1) does not interfere with the

operation of the system., (2) allows very fine measurements

at the microsecond or submicrosecond level,p as well as

coarser measurements,. such as percent CPU utili?·ation,. and

: 20 :

(3) allows access to all parts of the system.

The obvious disadvantages of the hardware measurement

technique are that :-

1. The experiments must be carefully planned with a

knowledge of the hardware.

2. Only a limited number of experiments can be underta](en

at one time because the number of probes, counters# and

logic elements is limited.

3. 'I'he plugboard program must be carefully debugged,.

4. A person who knows the hardware is required to

perform the measurement, and

s. A considerable amount of time is required to set : up •
each experiment.

SOF'lWARE TECHNI OUES

SIMULATICN : It is a very corrrnon software technique for

measurement. The levels of detail at which simulation oodels

can be produced depends on the problems under consideration.

Hence it must be used with discretion.

The types of data that are useful in si~ation

are :- ,

·: 21 :

1. Distribution of user thinking time at the console

for various types of functions,.

2. Distribution of process memory requirements.

3. Distribution of processor time required to service

a request.

4. Distribution of time between blocking for terminal

I/O or other I/01 and

s. Distribution of shared memory requirements. The

simulator can then pick parameters from these distributions

for processes and use these data as an input tc the model.

The output of the model will be information about response

time, equipment utilization, etc.

ANALYTIC MOIELS : This involves mathematics like determining

the algebraic relationships of the variables under study or

some sophisticated techniques for studying random processes.

Due to the lack of advanced mathematical knowledge and due

to number of simplifying ~ssumptions reqUired, analytical

modelling techniques have not been very successful.

INTERNAL SYSTEM MEASUREf.ENT : They fall into three main

categories.

: 22 :

1. Event counting Which simply counts the number of

times an event occurs in. a given time.

2. Trace techniques which record data about events in

the sequence in which they occur.

3. Sampling techniques which periodically interrupt

the system and record the status of registers, calls,

tables, other data structures, hardware units, and so on.

BENCHMARKING : It arises because of the need to· derive

suitable yardsticks by which valid comparisons between

various systems can be made. Bench~rking represents a

traditional approach to system evaluation. In this a

suitable program whose functioning furnishes the required

information about a particular attribute is designed. This

program is taken as the benchmark. The results produced

by the same benchmark on various systems can be used for

conparison.

: 23 :

4. QUANTITATIVE EVALUATICI<J OP PSPORMANCE

This chapter involves a procedure for an evaluation

method which can be used (a' to compare alternative computer

system designs with respect to specific problem requirement.

(b) to determine the effect of change in key system para

meters and (c) in an iterative design improvement process.

Hence this model can characterize current system performance.

THE APPROACH

The framework involves the following components.

1. 1>. set of attributes cr descriptors.

2. A measure of how much of each of these attributes

is required for a particular problem.

3. An indication of the extent to which a structure

possesses each of these .attributes for that problem, and

4.- An indication of the relative importance of each

attribute to the problem being addressed.

These elements are combined to provide a ranking

from which the most suitable candidate can be selected.

• ~· i

Let A= Al• A2 1 •••• , An be the set of attributes

used to describe problem requirements and system character

istics. These attributes should be obtained independently

of any specific problemr and all attributes in the set

should be used to assess the merits of each candidate

system.

Let s • s 1• s 21 • • • • ,. Sn represent the set of

candidate systems considered for a particular problem. In

case only one system is evaluated for its performance then

the set s will consist of just one element. Each of these

s-ptems will be evaluated in terms of A.

The figure shows how the capabilities of individual

conputer systems can be conpared in terms of the elements

of the attribute set A.

: 25 :

requirements such that ri represents the arrount of Ai

required for a given problem, and let the Nxn matrix 0

describe the attributes of all the

candidate systems such that qji represents the extent

to which systems s j" 1 '$ j :S. N possesses attribute

Ai# 1 ~ 1.:::= n. The weighted differences between R and 0

will finally give the figure of merit that will eventually

result in the desired ranking. The importance of each

attribute has to be quantitatively expressed. The order

of the importance of each has to be chosen, i.e.,. which

attribute has the highest importance, which iS the next

and so on. Tb accomplish this, the chosen attribute set

A is rearranged in descending order of importance.

,,

I·O _".,

A~ --

The width of each rectangle gives the weight or importance

of each attribute. Let the set representing the weights be

: 26 :

Next# the weighted attribute dt_ has to be obtained. '!be

weight of each attribute is multiplied by the amount of

attribute by which the system exceeds the given requirement.

For a system St the weighted difference D.e. is
1)'\ "'{\

D-t := L_ clt\ - J &e.~ _ 1) w~
i-:. t i =-I

'!bus the set D = t Dl# D2t •••••• , o•f'epresents the set of

weighted difference1 for N systems.

If sk represents the most suitable systerrv then

l>Jt = Max. f D1, D21 • • • •• , Dlfj ~ 1 ~ k ~ N

If only one system is considered then its percentage

efficiency will be given as

x loo

: 27 :

Now1 the set of weights W has to be determined and assigned

to attributes

I
i

I

j \

'
0 ·(~--' ----·----"- '·

tv~ ...,...

o·o'------

-.!.-

IY\o

The figure shows the four ways in which the weights can be

assigned.

Class I : All attributes are assigned the same weights.

Wi = 1

Class II : Attributes have a linear r~lationship such that

A1 has a weight 1.0 and An has a weight zero. The intermediate

weights will depend on the slope

0JJ. :: I - (_i - I))
11.- I

I 28 I

Class III 1 The first n0 attributes have a weight 1.0

and the remaining (J'loooono) attributes display class II

characteristics.

[I; L_j.. c rn o c::.. m

vvj_ I -11-o :> mo L... _L ~rn.

1- -rn- 'Y1t>

Class IV : Exponential curves. Highest irrportance is -

attached to the first attribute and the remaining

attributes become relatively unimportant depending on

the constant in the exponent (between o.1 and 1.0)

For the above said classes, the value of Dl would be
Y\

,_) w~ :: 2 L tX.{A - I)

..t :: I
_A: I

CY\

}L Dt' I Coiei- I) D -SJ -
j:. I

{ - l [rx&. -I)l_/l- -'-)

.A-=-'
N\- I

i\\ -
V\

~ J)~= J_
i :.1

..

I 29 I

The results of the ~lementation of this model

are given next. The attribute values are determined by

experiments and system manuals. The min~um requirements

have been decided by interviewing the system maintenance

staff and the student users. However, a simpler, feasible

approach to evaluation involves assigning of weights

randomly to the attributes based on the individual judgement

of the evaluator.

For ranking the candidate systems in this case,

the attributes which are more important tc the specific

application in mind is first identified and then accordingly

they are assigned relative weights by mere judgement and

experience of the evaluator. These weights are so assigned

that they are proportional to the relative importance of

the attributes. For example in a particular case the

weights are developed by having a maximum of 100 points.

These are distributed in such a way among the features that

they reflect the relative value of each feature. The value

of such a process depends on the completeness of the

features selected, their independence (they shouldn•t

measure the same thing). and the additivity of the values

given to the different features. However, it is not

: 30 . •

possible to be very accurate. If two or more

systems are close in value, either of them could be

the right choice.

After the weights are assigned# each system is to

be studied and assigned a score (from 0 to 1.0) for each

technical feature. This scoring will take care of both,

the minimum requirement and the actual value of the

feature i.e. if the minimum requirement of CPU time for

one particular benchmark is o. 3 sec. then if for one of

the candidate systems this time is o.lS sees. then the

score allotted to this feature of the system can be

either o.s or something near about that depending on the

evaluator's viewpoint as unlike a direct ratio in the

previous methods.

Finally, each system is assigned a final figure

of merit by summing the products of every technical

feature's relative weight and the system's score for the

technical feature. Stated algebraically, the figure of

merit is

: 31 :

where w1 is the weight assigned to the ith attribute and

Si is the systems• score on the ith factor.

5. CASE STUD'f

Case Study : Computer systems for educational use.

For the purpose of evaluation of a computer system

for an educational environment, the major characteristics

of interest can be classified as :

1. Architectural Qualities

2. Software Qualities

This identification would eventually lead to

quantitative metrics. The case study will include only

the Architectural qualities.

: 32 I

1. Architectural Qualities :

1.1 Accessibility : This characteristic indicates the

extent to Which the architecture permits control over its

functional units. Two of the features which can be

categorized here are :

1.1.1 Access to processor states s i.e. user state when

only a subset of the instruction set can be

executed and a supervisor state, for executing all

privileged operations.

1.1.2 Security : This can be guaged by noting the

provisions provided by the architecture to

prevent unauthorized access to its components.

1.2 Addressability : The features of interest under

this characteristic are :

1.2.1 Addressing modes : The different types and the

flexibility of addressing modes provided by the

architecture for efficient access to data

structures.

: 33 :

1.2.2 Address range : This is the range of addresses

a program can actively reference.

1.2.3 Address Spaces : The architectures• ability to

support different address spaces like a

• Program segment, where only "plfhe." ecde...

(i.e., read - only) can be stored. This

feature is useful for supporting reentrant

programs and multiprogramming •

• Data segment for storing (terrporary} data

variables (i.e., random access).

• Communications segment which is a common

communication area that could be accessed

by different processes to exchange messages.

• I/O address space which can be assigned to

I/O peripherals.

1.3 Compatability : The features supported by the

architecture for upward compatability is measured

by this characteristic. For example,

: 34 :

1.3.1. Undefined opcodes : By having an undefined

opcode space, new instructions can he easily

implenented in future.

1.3.2 Virtualizability : This measures the ability of

the architecture to support a virtual machine

concept, Wherein a mechanism exists for a

privileged standalone program to run as an

unprivileged task and produce results identical

to those it produces as a privileged program.

1.4 Conceptual Integrity : The quaiity of an

architecture as exhibited by its, conplete,

coherent and consistent structure, so that

special or exceptional cases are minimized,

is indicated by this characteristic.

1.5 Context Switching : This characteristic measures

the architectures• ability to support and handle

changes in context (e.g. interrUpts and traps,

subroutines, process switch, etc.). Features

that merit consideration here are :

: 35 :

1.5.1 Context Switching Overhead : The overhead involved

in switching the processor state (e.g. context

switch time, the amount of processor state

information that needs to be saved, etc.). For

real-time applications, Context switching

overhead should be minimal.

1.5.2 Visibility to context switching : Factors of

interest are :

• The number of levels of exception allowed •

• Nesting of levels of context switches, and

• Provisions for masking under program/master

control.

1.6 Efficiency : This is defined as the extent to

which the architecture makes use of its resources.

Features that affect the architecture's efficiency are :

1.6.1 Compiler Complexity : The extent to which the code

generation process of the compiler iS simplified

is a measure of the compiler's complexity.

: 36 :

1.6. 2 Corrplexity of har.dware : The hardware corrplexity

of the architecture is determined by factors like :

• Component minimization : This contributes to

efficiency of space and speed, and the general

robustness of the architecture •

• Functional Modularity : This depends on the

extent to which the architecture supports a

modular design across its functions.

1.6.3 Cost of hardware : The efficiency of implementation

of the architecture (i.e., whether it is cost-

effective) is determined by the hardware costs.

1.6.4 OS Overhead : The overhead involved in supporting

operating system functions (e.g.# access control,

address translation, etc.) has a significant impact

on the overall efficiency of the system.

1.6.5 Performance : The performance of the architecture

can be determined by measures like :

• external job throughput (i.e. as visible

outside the system}

: 37 :

• raw speed of execution (i.e. the number of

operations per unit time}.

1.7 Feasibility : This indicates as to Whether the

architecture can be implemented using the state of the

art technology (e.g. VLSI, microprograrrming, hardwired,

distributed functionality, etc.).

1.8 Human Engineering : This characteristic deals with

the man-machine relationship and measures the extent to

which the architecture contributes to a convenient user

interface. Some of the factors that deal with this

aspect are :

1.8.1 Accessibility : The ability of the architecture to

permit a controlled access to its functional

corrponen ts.

1. 8. 2 Protection and Privacy : The extent to which the

architecture contributes to the system protection

from users and guarantees privacy to individual

users.

: 38 :

1.8.3 Responsiveness : The extent to which the

architecture is responsive to user demands.

1.8. 4 Runtime SUpport : This deals with features like

user friendliness, system messages. etc. that

establish a good rapport between the user and

the system.

1.9 Modifiability : This characteristic describes

the extent to which the architecture is ame~able for

modifications in the systems hardware/software. Some

features that relate to this characteristic are :

1.9.1 Device Independence : This indicates whether the

architecture treats its functional units (e.g.

·I/O, memory) as logical entities.

1.9.2 Documentation : A well documented architecture

facilitates modifications to the design and

aids in debugging.

1.9.3 Microprogrammability : The extent to Which the

architecture is microprogrammable# which could be

used for augmenting the instruction set, modifying

: 39 . •

the architecture etc.

1.9.4 Modularity : The extent to which the architecture

support modular design.

1.9.5 Technology Independence s Implementation inde

pendence of the design so that advances in device

technologies can be easily incorporated into the

architecture.

Support for Languages:

1.10.1 Data format support : This describes the ability

of the architecture to support different data

formats efficiently with features like '

1.10.1.1 Functional units to handle different data

formats, e.g. floating-point unit, decimal-unit

etc.

1.10.1.2 Generic instructions with self identifying data.

1.10.2 Data Structures : The architecture 1 s'support of

major data structures depends on factors like :

: 40 :

1.10.2.1 Access mechanisms : Efficient access to data

structures is related to the flexibility of the

addressing modes.

1.10.2.2 Correspondence : This is a measure of the degree

of correspondence between the data structures

(e.g. arrays) and their representation in the

architecture. The greater the correspondence~

the lesser the conpiler complexity.

1.10.3 High-Level Programming : This indicates whether

the architecture can support very high-level

programming style, like functional languages

(e.g. pure LISP), logic programming (e.g.

PROLOG J, etc.

Testability : This defines the extent to which

the architecture fatcilitates testing procedures.

1.11.1 Hardware Testability : It depends on access to

internal components, which is restricted by

architecture design and modularity of design,

which enables testing of modules independently.

1.11.2

: 41 :

Software Testability : Software debugging is

aided by testing for anomalous conditions like

overflows, invalid data representations, I/O

errors1 bound checks etc.

: 42 :

6. CONCLUSION

Computer performance evaluation has been a

subjective study. However an attempt has been made to

reduce the subjectivity involved by a quantitative

evaluation strategy.

The methodology consists of identifying a set of

attributes in terms of which candidate computer systems

will be evaluated. The weighted difference between the

requirements and the extent to which a system possesses

an attribute determines the figure of merit of the syster

Which gives a quantitative •measure of goodness" of the

system.

The evaluation of the architectural qualities of

a computer system for educational use is given as a case

study.

A subjective assessment of the suitability of the

HPlOOO architecture for educational use is also givenl~~

The figure of merit assigned to the HPlOOO was SC»'.

APPENDIX l:

EVALUATION OF THE H.P.1000

ARCHITECTURE FOR EDUCATIONAL tEE

This Appendix gives a subjective assessment of
!

the suitability of the HP1000.£or use in1 an educational

anvironment. The system is evaluated against each feature

nentioned in Chapter IV.

L .1
cc. I

A ... essibility :

Access to processor states : The HP 1000 proldbits

~xecution of privileged instructions (mapping instructions

and all I/O instructions except those referencing select

~ode o1
the CPU status register and the overflow register).

rhis limits control of I/O and mapping operations to the

)perating system or other privileged programs.

Security : Provides for the detection of unautho-

r:ized access to merrory by a merrory protect logic on the cPU.

?rotects memory on a page-by-page basis against alteration

or entry by programmed instructions, except those involving

the A and B registers. A memory protect violation instruction

will interrupt the CPU and the address of the violating inst~CA.c.ii

will be saved in a register on the memory controller card,

from Which it can be made accessible in the A or B

register by a single Assembly language instruction.

An unimplemented instruction interrupt is also

generated when the CPU signals that the last instruction

fetched was not recognized.

1.2 Addressability :

Address modes 1 The instruction set provides for Direct,

multilevel-indirect, single word, double "'TOrd and register

implici~ indexed and indirect indexed addressing modes.

Address Range : The maximum memory expansion is upto

10.5 K pages of 20-48 bytes/page. 'Ihe merrory structure

allows 32 pages of 2048 bytes with direct access to

current or base page (page oo), indirect or indexed

access to all other pages.

Program Segment and Data Segment : The architecture

allows memory protection for ~~ite or read or reaq/write

on a page by page basis.

s A 3 s

1.3 Compatability :

A number of undefined op.codes exists which

can be used for the implerrentation of user defined

it:\structions as it supports user microprogramrnability

by an optional writeable control store card and an

easy to use Pascal like paraphraser.

1. 4 Conceptual Integrity :

The HP1000 has a consie.tent structure so that

exceptional cases are minimized.

1.5 Context Switching :

Context switching tin~ : 3.7 to 1.3 ~ sec.~

4 Jl sec. typical.

This is when there is no D~ interference. It

offers I/O device interrupt priority which depends upon

the I/O interface card position along the backplane

with respect to the CPU card.

Interrupt Masking : The I/O logic in.cludes an interrupt

mask register Which provides for selective inhibition of

: A 4 :

interrupt from specific interfaces under program

control. This capability can be progranmed to

tenporarily cut off undesirable in.terrupts from any .

combination of interfaces.

1.6 Efficiency :

The efficiency of the HP 1000 can be rated

quite high because the compilation speed, external job

throughput and the raw speed of execution are too good

for an educational environment.

1.7 Feasibility :

HP 1000 is microprograrrrned.

1.8 Human Engineering :

The HP1000 is very user friendly. Its functional

components are easily accessible and provides a convenient

user interface. Its response is adequate for an

educational environment.

: A 5 • •

1.9 Modifiability :

Device Independence : Its functional units {I/O and

memory} are not treated as logical entities but there

are separate instructions for I/O and mertPry references.

Dynamic tuning : It is ~upported by an optional control

store board. This gives the user the ability to convert

software routines that are frequently used or especially

time consuming to microcoded routines that typically run

2 to 10 times faster.

1.10 Support for 1 anguages :

It has bit manipulation instructions,

byte manipulation instructions,

\tv'Ord manipulation instructions,

dynamic mapping instructions,

double-integer,

single-precision floating point,

double-precision floating point

si~gle precision scientific instruction set,

vector instruction set both single and double

precis ions.

: A 6 :

Subroutine linkage : There is no specific methoQ for

parameter passing.

1.11 Testability :

They have microcoded and macrocoded self tests

which check the CPU, memory, and the I/O masters of

installed interfaces, either automatically on power-up

or when requested by an operator via the virtual control

panel.

1.12 Support for Systems Programming :

It has some SUpports like TBS, CBS, SBS.

: A? :

By using the class I graph for assigning the

1ights 'Wherein all attributes have the same weights

- 1

We have the following

12
0 1 • _E("'li -l)

i•l

«"t - 1.8 ~ = 1.7

o(2 • 1. 7 ~ = 1.9

of3 = 1. 9 ~ I: 1.7

0(4 I: 1.9 «to• 1.8

0(5 • 1.8 ~1- 1.8

0(6 = 1.8 «12- 1.8

6(.8) + (.7)3 + (.9)3

= 4.8 + 2.1 + 2.7- 9.6
12 = o.8

% performance = 8~

: 44 :

BIBLIOGRAPHY

1. Computer Systems performance Evaluation

By - Domenico Ferrari, 1978 Prentice-Hall, INC.

2. Computer Performance Evaluation

By - Philip J Kiviat~ 1976, Online Conferences

Limited, Uxbridge, England.

3. Software Design Strategies

By - Glenn D. Bergland, Ronald D. Gordon, Bell

Laboratories, Murray Hill, New Jersey.

4. A Computer Perspective

By the office of Charles and Ray Eames.

s. Fundamentals of Computer Science

By Andrew J.T. Colin, 1980, The Macmillan Press Ltd.

6. Timesharing System Design Concepts

By Richard W.Watsoh, 1970, McGraw-Hill Book Co. Ltd.

7. Timesharing Systems

By G.M.Bull and SF.G. Packham

1971 McGraw-Hill Book Company Ltd.

8. Fundamentals of Operating systems

By Donovan

• . 45 '

9. Conpiler Construction

By F.L.Bauer and J.Eickel~ Springer-Verlag

10. Computer organization

By V.Carl Hamacher~ Zvonko G. Vranesic 1978,

Mc-Graw Hill Book Company Ltd.

11. Principles of Compiler Design

By Alfred v. AHO, Jeffrey o. Ullman. 1979,

Addison-wesley Publishing Company.

12. Workshop on Microprocessor Architecture and systems,

Computer., PP• 49-51, Sept. 1976.

13. Fault Tolerant System Workshop, Research Triangle

Institute, Dec. 3- 5,. 197 s.

14. s. Chang, •• A rrodel for distributed Corrputer System

DesignM, IEEE Trans. Syst., Man., Cybern.,

pp.344-359, May 1976.

15. 'A Fremework for the Quantitative Evaluation of

Distributed Computer Systems•. - Mario J. Gonzalez.

JR., and Bernard w. Jordan, JR., pp.1087-1094,

Dec. 1980, IEEE Trans. Computer, TC.

	TH18250001
	TH18250002
	TH18250003
	TH18250004
	TH18250005
	TH18250006
	TH18250007
	TH18250008
	TH18250009
	TH18250010
	TH18250011
	TH18250012
	TH18250013
	TH18250014
	TH18250015
	TH18250016
	TH18250017
	TH18250018
	TH18250019
	TH18250020
	TH18250021
	TH18250022
	TH18250023
	TH18250024
	TH18250025
	TH18250026
	TH18250027
	TH18250028
	TH18250029
	TH18250030
	TH18250031
	TH18250032
	TH18250033
	TH18250034
	TH18250035
	TH18250036
	TH18250037
	TH18250038
	TH18250039
	TH18250040
	TH18250041
	TH18250042
	TH18250043
	TH18250044
	TH18250045
	TH18250046
	TH18250047
	TH18250048
	TH18250049
	TH18250050
	TH18250051
	TH18250052
	TH18250053
	TH18250054
	TH18250055

