
A Study of Synchronization Techniques
.
Ill

Distributed Database Systems

Dissertation submitted in partial fulfilment of

the requirements for the Degree of

MASTER OF PHILOSOPHY

PARTHA SARATHI ACHARYA

SCHOOL OF COMPUTER AND SYSTEM SCIENCES

JAWAHARLAL NEHRU UNIVERSITY
NEVV DELHI--110067

1985

CERTIFICATE

This work embodied in this dissertation has

been carried out at the School of Computer and Syst•s

Sciences,. Jawaharl•l Nehxu tkliversity, New Delhi-110067.

This work is original and has not been submitted so far,

in part or full, for any other degree or diploma of any

University.

~~LCN--
< PRJF. K.K. NAMBIAH)

Dean

f.S~~if(
(PARTHA SARA ntl ACHARYA)

student

~~.f'Ma!~
(DR. P.C. SAXENA)

Supervisor

school of Computer and Systems Sciences
Jawaharlal Nehru t~iversity

New Delhi - 110067

ACJSNO•YLEDGEM~TS,

t wish to express my deep sense of gratitude to

my Supervisor, Dr. P.C. Saxen•, Assistant Pxofessor,

School of Computer and Systems Sciences, .Jawaharlal

Nehru university, for his valuable guidance,

enthusiastic cooperation and encouragement. He has been

a constant source of inspiration throughout this work.

I am grateful to Professor K.K. Nambiar, Dean,

School of Computer and systems Sciences, Jawaharlal Nehru

University for his cooperation and providing me with all

the facilities in completing this work.

I am thankful to my friend and classmate

Mr. R.C. Tripathy for his timely help and discussions.

My thanks are also due to the faculty and other

staff for their cooperation and help in many ways.

I also thank Mr. S.K. Sapra for typing the

dissertation so neatly.

Finally, I am grateful to Council of Scientific

and Industrial Research, New Delhi for providing me with

the financial assistance that made the work possible.

,

Preface

Distributed database system, a recent evolution

in database technology has emerged from the successful

combination of databases and computer networks. In such

a system. an integrated database is built on top of a

computer network rather than on a single computer, The

data constituting the·database are placed at various sites

of the computer network, and individual application

programmes run by the corresponding computers access and

update data at different sites.

The distributed database technoloqy faces

completely new problems and a great amount of research

work has been done in order to sol. ve them. Concurrency

control is one such problem which gets. complexified due to

the distributed nature of the database system in contrast

to the cen·tralized systems Where the problem is relatively

simpler. The synchronization techni~ues studied in this

· dissertation have been designed to solve the problem of

concurrency control in distributed systems.

This work has been divided into five chapters.

Chapter l presents an overview of distributed databases

which is an introduction to distributed systems. Chapter ~

discusses the problem of concurrency control that arises in

such systems. Chapter 3 contains the basic synchronization

teGhniques viz. two-ohAse locking and timestamp oidering,

suggested and used to address this problem. Chapter 4

discusses two advanced techniques viz. Conflict analysis

and reservation list that eliminate some of the short­

comings encountered in the techniques of the preceding

chapter. ·Chapter 5 embodies the techniques suggested by

.integrating the basic methods of two-phase locking and

timestamp o~ering.

At the end, a list of references has been given

fo-r further reading.

COO TENTS

Paqe

CERTIFICATE

ACKNOWLEDGEMENTS

PREFACE

·CHAPTER 1 AN OVERVIEW OF DISTRIBUTED DATABASES .1.-19

1.1 Distributed database 2
1.2 Motivations for distributed

systems 6
1.3 Comparative features of

distributed and centralized
databases 8

1.4 Distributed database management
system 12

1.5 Distributed database applications 16

CHAPTER 2 COOCURRENCY C~TROL 2().42

2.1 Nhat is concurrency control 20
2.2 Transaction-processing model 26

2.2.1 Centralized transaction
processing model 26

2.2.2 Distributed transaction
processing model 29

2.3 Transaction and c~nslstency 3l
2.4 Serializability 33

2.4.1 Ser1alizabil1ty in a
centralized database 35

2.4.2 Serializabilit\.in a
distributed da base 39

Pages

CHAPTER 3 SYNCHIQ4 IZATI]\1 TECI-N IQUES BASED (]'.1
T~O.. PHASE LOCKING AND T I.MESTAMP
OR>ERlNG 43-78

3.1 Two-phase locking 43

3.1.1 ·Case of centralized
database 43

3.1.2 Case of distributed
database ~

3.1.3 Mana~ement of distributed
dead ocks 56

3.2 Timestamp ordering (T/0)
techniques 69

3.2.1 The Basic timestamp
mechanism 70

3.2.2 The c~nservative-timestamp
ordering method 75

CHAPTER 4 S\'NCHR':l4IZATI ltJ TECt~I<~UES BASED 00
C~FLICT GRAPHS AND RESERVATI~ LISTS 79-97

4.1 Conflict analysis 79

4.1.1 Conflict graphs 81
4.1.2 Timestamp.. based protocols 85

4.2 Reservation Lists 86

CHAPTER 5 INTBJRATEO C~URRENCY C~TROL 98-117

5.1 Decomposition of concept of
serializt~bility 99

5.2 Integrated concurrency control
methods 102

5.3 Conclusion 115

8IBL!'X3RAPHV 118-.121

CHA.PfER- l

AN 'JVERVIE/1 :)F DISTRIB:.ITEO DATAJ.lASES

For last fifteen years, computers have been

extensively used for building powerful and integrated

database systems. Such database systems have found wide­

ranging applications in various fields like commercial,

scient.ific, technical and other organizations. However, in

recent years availability of low cost computers and of

computer n~twnrks has given rise to a new type of system

which eliminates many of the short-comings of centralized

databases and fits more naturally in the decentralized

structures of many organizations. This system is kno\~ as

distributed database system which, unlike the centralized

ones, bas databases stored with different C3mputers at

different sites of a conmuter network.

This chapter formally introduces a distributed

database system. Section 1.1 presents a precise definition

of distributed databases followed by the motivations leading

to the organization of distributed database system in

section 1.2. Section 1.3 presents a comparative picture of

various features of distributed and centralized systems.

Preliminary ideas and architecture of a distributed database

management system (DDBMS) required for the understanding of

synchronization techniques have been presented in section 1.4.

The last section lists the areas or organizations of

distributed database ap~lieations.

1

1.1 Distributed database

A distributed database is a collec.tion of data

distributed over different computers of a computer

network and it is characterized by the following (CERI84) :

1} Each of the computers (i.e. processor along with its

memoxy and -peripheral devices) of the network is referred

to as a site which has autonomous processing capability.

11) Each site also part.icipates in the execution of

global applications or distributed applications in which

a site might require to access data residing at more than

one site. The existence of global applications is

considered the discriminating characteristic of distributed

databases with respect to a set of local databases.

Illustration

Suppose there is a bank having more than one

branch (say three) situated at geographically different

locations. Each branch has a computer with one or more

than one teller terminals and the computer controls the

account database of that branch. Each computer with its

local ac~ount database at one branch constitutes one site

of the distributed database. Computers at various branches

are inter connected by a comrr:unication network. such a

system is known as distributed database system (Figure l).

tOM~UTffi
~~ I

TT TTTT
.....

FIG.1 A DISTRIBUTED DATABASE Of\! A GEOGRAPHICALLY
DISPERSED NEi'WORK.

Applications issued by teller texminals of a

particular branch may need to access only the account

database of that branch. These applications are

independently processed by the computer of that branch

and aR called local applications. A debit or credit

application on an account stored at the same branch at

which it is issued ·is an example of local application.

An application requested to transfer funds from

an acc~unt of one branch to an account of another branch

requires updating the database at two different sites.

Such an application is called a global application.

Distributed databasos can also be built on local

networks unlike the preceeding example where the databases

are placed at geographically different locations.

Illustration

Suppose the computers and corresponding databases

of the above example are removed to a common building

and are connected with a local network. Then each

proce5sor and its database constitute a site of the local

computer network and the system is also known as

distributed database system because the characteristics

of distributed databases remain satisfied (Figure 2).

COMPUTER CENTR.E

DB1

T --l-...r--.1------,

T
BRANCH1 T

T

T

LOCAL

NETWORK

DBi

T

T

T
T
T

BRANCH 3

BRANCH2

FIG. 2 A DISTRIBUTED DAIABASE ON A LOCAL NETWORk

1.2 Motivations for distributed §Ystems

Technological changes like price-perfoxmance

revolutions in micro-electronics, development of

efficient communication systems and growing complexity

of user needs are the major motivations for distributed

database systems (DAVI 81).

Mieroelectronic.s technology

Technological advances like low-cost manufacturing of

large scale and very large scale integrated circuits

(LSI & VLSI) and large-sized memoxy chips have brought in

a falling trend in haxdware price. This has made it

easier and cheaper to install a multi-comnuter system

(both in centralized as well as distributed database

systems) consisting of several processors than to invest

in a large and complex multiprogrammed uniprocessor.

Communication technology

Use of simple and cheap technologies as twisted

pairs, coaxial cables, micro-wave transmi.ssion as well as

sophisticated technologies like fibre optics in local

area computer networks has prompted the building of

distributed database systems out of several processing

elements.

User needs

lJsually, organizations like industries, banks,

inventory systems, hospitals and public administration

systems exhibit decentralized functional structures

because activities in these organizations are decentra­

lized by nature. Thus a decentralized style of

management is more suitable for such organizations in

contrast to conventional centralized style. For instance,

it may be more profitable to provide each department of

an organization with its own small computer and the

required database of that department. Consequently,

local tasks of a departrnent are run and controlled by

the people of that department who understand them best:

in addition, they have other databases of the system

placed in various departments at their disposal due to

the network systeM. Thus a distributed database system

simplifies the task of decision-making and hence the

task of management and improves overall efficiency.

Uistributed database sy·stem is also economic.

The possibility of installing processing elements with

required databases (i.e. databases containing informations

relevant for particular locaticms) at various locations

brings in the advantage of reduced communication cost.

Besides. in a distributed system, a lot of processing

can be conducted on local computers in contrast to all

processings being handled by one central but remote big

mainframe computer.

Distributed database approach supports a smooth

incremental growth where an organization grows by

a~dlng new, relatively autonomous organizational units

(new branches, new warehouses etc.). such an addition,

unlike in case o.f centralized database, does not affect

the functioning of already existing units.

In distributed database sy~tems, database can

be replicated at each other site (fully redundant

database) or at some of the sites {partially redundant

database) depending on the need of the user. Such

replications provide the system with higher reliability

and availability. Because, failure of a particular

site does not prevent the system from being operational.

If the system does not contain redundant data, effect of

each failure is confined to those applications which use

the data of the failed site. Availability and faster

access to data is achieved due to tha possibility of

storing portions of the database near to where they are

frequently used.

1.3 Comparative features of distributed & centralized databases

Distributed databases allow design of systems

which has different features from traditional centralized

systems~ . Centralized control, data independence.

reduction of redundancy, integrity, recovery concurrency

control, privacy and securi~y are the various features

that characterize the traditional database approach.

Centralized control

Centralized control is an essential feature of

traditional systems because it provides an organization

with a central command over its infoxmation resources.

The database administrator guarantees the safety of the

data.

However, in distributed databases centralized

control is de-emphasized. A global database administrator

takes eare of the whole database whereas the local database

administrators have the responsibility of their respective

local databases, often with a high degree of site autonomy.

A distributed database may also be designed with global

database administrators accompanied with complete

centralized control.

Data independenct
'

Data indepence is a major objective of centralized

database system and is defined as the immunity of appli­

cation programmes to the actual organization of data. It

has the advantage that programmes are not affected by

changes in storage structures and access strategy.

In distributed database, data independence has

the same importance as in traditional systems in addition

to a new aspect, known as distribution transparency.

Oistributlon transparency provides a centralized view

of the databases to the programmes implemented in t.he

system. Consequently, the movement of data from one

site to another does not affect t.he correctness of

prograt~~nes. though the speed of execution gets affected.

RQduction in data redundan§Y

In centralized systems, reduction in data

redundancy is desired to avoid inconsistency and to

prevent wastage in storage space.

However, in case of distributed databases,

redundancy is a desirable feature; because replicated

copies of databases guarantee reliability of the system

and enhances its availability in spite of wastage in ·

storage space.The problem of inconsistency arises when

updates are not perfo11Ded consistently on all cppies.

This problem is related to concurrency control which

has been discussed in chapter 2.

Integrity, recovery and concurrency control

The problems of integrity, recovery and

concurrency control in traditi~nal database system are

resolved by the use of transactions. A transaction is

a sequence of executable operations which either are

perfo:tmed in entirety or are not perfoxmed at all and

thus is an atomic unit of execution. For instance,

the debit operation is a transaction which is either

executed or none is executed.

Same approach is made to these problems in ease

of distributed database systems where the problems are

further complexified due to distribution. Atomic

transactil'lns ensure integrity of the database.: however,

the atomicity is threatened by site failures or

concurrent execution of different transactions. Site

failures may cause the system to stop in the midst of

transaction execution, thereby violating the atomicity

requirement. Concurrent execution of two or more

transactions may pe~it one transaction to observe an

inconsistent, transient state created by another

transaction during its execution.

Recovery and synchronization techniques take

care of the problem of preserving the transaction

atomicity during site failures and concurrent execution

of transactions.

~ivacy and security

In traditional databases, privacy and security
'

are ensured by the database administrators having

centralized control and specialized e~ntrol procedures.

In case of distributed d•tabases with a high

degree of site autonomy, privacy is maintained by the

local d•tabase administrators; but the security is

threatened because of the communication network.

1.4 Distributed Database Management System

A distributed database management system (DJBMS)

is a collection of sites interconnected by a network

(DEPP 76, R1nt 77). Each site is a computer with one or

both the following software modules 1 a transaction

manager (TM) or a data manager (OM) • TMs supervise

interactions between users and the DDBWS while OMs

interact with the database. All the sites are inter­

connected by a network which is a comput.er-to-computt>r

communication system. The network is assumed to be

perfectly reliable with the following required conditions :

firstly, the communication system is capable of

transmitting messages between aites without distortion

or error; secondly. between any pair of sites the network

delivers messages in the order they are sent.

Database

The database in UJBMS consists ~f a collection of

logical data items, denoted · ·.' X, Y, t.. In practice,

these may be files, records etc. A logical database state

is an assignment of values to the logical data items

composing the database. Each logical dataitem may be

stored at any DM in the system or redundantly replicated

at several DMS. A stored copy of a logical dataitem is

called a stored dataitem or simply a dataitem. A

stored database state is an assignment of values to the

stored dataitems in a database.

Transactions

Users interact with the DDBMS by executing

transactions. A transaction is a sequence of operations

on one or more data-items in order to change the state

of the database. It is, in fact an on-line query

expressed through application programmes written in a

general purpose programming language.

An imoortant oroperty of the transaction is that

it is atomic in nature. Thus, each transaction if

executed alone on an initially consistent database, must

terminate and must leave.the database in a new consistent

state.

system architecture

A DuBMS contains f~ur components {Fig.3):

transactions, TMS, ~S and data. Transactions communicate

with TMS, TMS communicate with DMS, and op.·s manage the

data. TMS do not comrr:unicate with other Dh1S, nor do ONS

communicate with other OMS.

TRANS~CTION ::[:
: TM

TRANSACTION
DM 1-----1

TRANSACTION

DM
TRANSACTION

TRANSACTION

TRANSACTION
DM

TRANS~CTION~----,
: TM ~L--------1

TRANSACTION
DM

FIG.3 DDBMS SYSTEM ARCHITECTURE

TMS supervise transactions. Each transaction

executed in the DDBMS 1s supervised bf a single TM,

meaning that the transaction issues all of its database

operations to that TM. Any distributed c:omputation that

is needed to execute the transaction is managed by the

™·
Fuur operations are defined at the transaction-

1M interface. Read operation retrievs the value of a

dataitem from the database. ffrite operation writes into

the database i.e. creates a new logical database state

in which a dataitem has a new value. Begin and end

operations ~r~ used to indicate starting and ending of

transaction executions.

several commercially available uDBMss were

developed by the vendors of centralized database

management systems. They contain additional components

which extend the capabilities of centralized DBHSs by

sup90rting communication and c~operation between the

DDBMSs which are installed at different sites of a

computer network.

A DDSMS may be ot two types del)ending on the

local OBMSs used in the system : homogeneous and

heterogeneous. In homogeneous ODBMS, each site has the

same local DBMS, even if the c~mnuters and/or the

operating systems are not same. However, a heterogeneous

ODBMS uses at least two different OBMSs in the system.

1.5 ~istributed· Database aoplications (SCHR 80)

The following systems make use of distributed

database management systems •.

~~ufaeturing control s~stems

These systems are structurally hierarchic. A

central database is used for the overall scheduling and

control of the manufacturing process and lo~l databases,

close to the process units, store only infoxmations that

is needed for supporting the local tasks.

Inventory systems

The inventory systems often present a hierarchic

structure, with master stores and geographically

distributed minor stores., The master stores may be

connected through a generalized network and they can be

the central nodes of star networks connecting the minor

stores closed to each of them~

Soma inventory infoxmations (viz. quantities in

local stores) are locally distributed without replication

and heavy updating problems; however,. other infoDmations

{viz. prices) are on the contrary replicated with full

dependence.

Banking systems,

In banking systems, there is a greater need to

guarantee the database integrity than in the above

mentioned systems. Therefore in banking systems the

need is particularly felt for a central control,

corresponding to a hierarchical architecture of the

information system. Re?licated inf~rmation, such as

personal accounts which are kept at the proper local

agency and at the central agency, are periodically

ref'reshed.

The developments in this field are expected to

create the 'chequeless society•, or even •moneyless

society' • with com!>uter communication between each

purchase place and the buyer•s personal account. For

each purchase, tha buyer's credit is checked, and, if

p@rmissible, his bank account is reduced and the seller's

account increased.

Corgorat~ database

A c~rn~>ration r•presents an organization with

many autonomous divisions, e~ch of which can keep its

own data~se.. Same data of general intere$>t can also

be shared, typically, summary data can be maintained at

high levels of the organization for strategical planning

purposes. ·

Law enforeeme~\ sxstems,

These systems include the information systems

of the police, where data about criminals or terrorists

are gathered. This kind of application seems naturally

oriented towards distribution, since having the data

available where they are needed is important; the data

storage location is also distributed, since each police

station usually keens data belonging to its geographical

area.

Medical, !Jstem.s,

DUBMS may be applied to realize centralized hospital

infcu:mation systems, where data about patients • treatments

can be stored.

Developments in this field wauld be able to

provide a global architecture of medical information

system which might consist of a general system connecting

the computers storing the population's health databases,

each of these computers would be the centre of a

hierarchical system connecting the hospitals belonging to

the same geographical area.

~bli~ admin~stration !fstems

These systems include demographic. fiscal.

territorial information and other anpltcat1ons like

managing of motor vehicle records or of telephone

directories.,

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Increased population mobility makes the

availability of demographic infoxmation necessary also

in places other than the hometown, therefore the local

demographic databases should be globally connected.

Fiscal information sh~uld also be supported by

a distributed system in order to have a larger control

upon everybody's activities.

Territorial information can be distributed in

order to make urban or agricultural planning easier,

by gathering local data and processing them.

CHAPTER- 2

C~CUFlRENCY C~TROL

This chapter has been devoted to the discussion

on the problem of concurrency control in database systems.

Section 2.1 introduces concurrency control with examples

and section 2~2 presents a simple model of a DDBMS where

steps of processing user interactions with the system

have been discussed; in fact, this section helps in the

understanding of the various steps that a transaction

wishes to execute and presents a picture of an overall

database management system where techniques to solve the

problem of concurrency control are to be applied.

Section 2.3 deals with the properties of valid trans­

actions and the notion of database consistency that is

to be maintained despite multiple access of the database

by various transactions •. Section 2.4 discusses the

concept of serial1zabil1ty which provides a key to the

resolution of the problem of concurrency control.

2.1 ·Nhat is concurren:y control

Concurrency control is the activity of

coordinating·concurrent accesses to a database in a

multi-user database management system {DBMS). A multi­

user database may be centralized or a distributed one~

In centralized database 1 f the database 1 s

accessed by a single user, programmes accessing the

database are run one at a time, thereby making the

access serial; however, lf it is accessed by more than

one user, there is always a possibility that the data.

base or more specifically a particular data item in the

database may be accessed by some or all the user

simultaneously and this simultaneous access is called

concurrent access. Airline reservation system may be

taken as an example (ULLM 84). It is a system with a

centralized database where many sales agents may be

selling tickets and changing lists of passengers and

counts of available se•ts. If two or more agents run

programmes to access the database, there is a possibility

that a particular seat may be sold twice which is

certainly an undesirable effect. Such problems arise

due to concurrent access on database and is known as

concurrency control problem.

In distributed database management systems (UOBMS).

two or more users access databases stored at different

sites of the network., For instance, in a banking system

designed as a DDBMS, a particular account stored in some

specified database may be required to fie accessed by two

or more users for retrieval or updating

user•s retrieval operation interfere with another•s

updating then the system would provide undesirable

outputs to the users therefore. it is essential to

prevent database operations perfomed by one user from

interfering with operations ~rformed by another and

this is achieved by concurrency control. The problem

of concurrency control in ODBMS is more complex than

that in centralized database systems because (1) usen

may access data stored in databases of many different

computers in a distributed system, and (~) a concurrency

control mechanism at one com~Jter can not instantaneously

know abOut interactions at other computers (BEifl 81) •

Examele of uncontrolled concurr•nt access

The following example illustrates two out of a

ntnber of ways in which users interfere beeause of

uncontrolled concurrent access to databases.

Let there be an on-line electronic fund transfer

system accessed by automated teller machines ·situated

at remote sites to process the transactions. The

transaction of a customer, requests for data retrieval

followed by computations on the data and for storage of

the result back into the database.

l) suppose two customers simultaneously try to deposit

money into the same account with a previous balance of

EXECUTION
OF 1j

ADD Rs.SO

WRITE RESULT
131\C!(INTO

!>AT A SASE

DATABASE

/
Rs.IOO I [Rs. 100

i t
Rs.ISO I
~

FIG.4 LOST UPDATE ANOMALY

EXECUTION
OFT,

R~AD BALAt.JCE

ADD RS.IOO

WRITE RE~W\.T
BACI< INTo

I:>ATABASE

Rs.lOO. The first customer deposits Rs.50 and the

second deposits Rs.lOO (Pig.4). The new balance in the

account is the balance computed by either the first or

the second customer depending on the oxder by which

storing operation is executed. If first customer's

storage operation precedes the second, the new balance

in the account becomes Rs.~OO : otherwis•, it %emains

as Rs .l~. ntus the net effect of both the deposits on

the database is incorrect; although two customers

de~osit money, the da~abase only reflects one activity;

the other deposit is lost by tho system. This is a

lost update anomaly because of concurrent execution of

transactions.

2) Suppose two customers simultaneously execute the

following transactions on a person's savings account

and checking account. Originally, these accounts have

Rs.~ and Rs.50 respectively (Fig.5).

Customer l : Transfer Rs.lOO from the person•s

savings account to his checking account.

Customer 2 : Print the person•s total balance in

savings and checking account.

In the absence of cnncurrenc:y control these

two transactions 1n'terfere. The first transaction reads

the savings balance, subtracts Rs.lOO and stores the

EXECUTION

OF~

REAb SAVINGS
BALA.NCE.

DATABASE

Rs. 200

SUBTRACT Rs.IOO IRs. IOO J

\
/

\NRlTE RESULT BACI<

TO DATABASE

READ CHECKING

BALANCE [Rs s~J
t

ADD Rs.IOO I Rs. 150 J
WRITE RESULT BACK

TO DATABASE. \

S Rs.!OO

c 50

Rs. 150

EXECUTION
OF Tz

RE.AD SAVINGS

ANt> Gi-!EC.KlNG

BALANCE

PRINT SUM

5 = SA\/li\JGS BALANCE&. c = CHECKING BALANCE

FIG,5 INCONSISTENT RETRIEVAL ANOMALY

result back in the database. Since the concurrency

control is absent, the second transaction may start

reading the savings and checking balance at this point

and prints the total as Rs.l50. Then the first

transaction completes by reading the checking balance

and then adding to Rs.lOO and finally storing the

result in the database. unlike the previous case, the

final values written into the database are correct;

however, the retrieval by the second customer is

incorrect which should have been Rs.250 instead of Hs.l50.

This is an inconsistent retrieval anomaly due to

uhcontrolled execution of concurrent transactions.

2.2 Transaction-processing model

Knowledge of the environment where transactions

are processed is essential to understand the solution

of concurrency eantrol problem. The basic framework of

transaction processing models, for centralized as well

as distributed databases have been described in this

section.

~.2.1 Centralized transaction processing model

A centralized DBMS has one transacti,n manager

(TM) that supervises the transaction and one centralized

database under the supervision of a data manager (OM).

A transaction T accesses the D1M.~ by i-ssuing the following

t

operations which are processed by TM.

BEGIN a By this operation, the TM sets a private

workspace for the transaction where the workspace acts

as a temporaxy buffer for values read from and written

into the database.

READ (X) : When this command is issued, the copy

of X is searched for by TM in the r•s private workspace.

If the eopy exists, it is used by T ; otherwise, the tM

retrieves a copy of X from the database and giVe$ it to

T and puts it into T's private workspace.

WRITE (X. new value) : The TM again checks the

private workspace for a copy of X and if it is found,

the value is updated to new value. This •write•

operation does not store the new value into the

permanent database.

END : The TM requests the DM to store back the

updated value into the permanent database from the

r•s private workspace. Then T finishes its execution

and its private workspace is discarded.

Two-phase Commitment

Above steps are correct insofar as a transaction

once started need not be aborted and restarted before

the completion of its execution (aborting a transaction

and restarting it by the system is essential in the

synchronization techniques discussed in later

chapters). In case of restarting of a transaction,

if the system requires the transaction to be aborted

before all the involved data items in the database

are updated to tho new value, the database reflects

the partial effect of the transaction and the effect

1 s to be avoided.

Such partial effect can be avoided by

requiring that each transaction either cttmrnits (the

completion of a transaction is called •commitment')

by updating a 11 the involved data 1 terns in the

permanent database or does not, at all, start this

updating. This property of transactions is called

•atomic commitment •. Two-phase commitment is a

procedure to implement this property (LAMP 76, GRAY 78).

Suppose a transaction T is updating data item X andY.

When T issues its END, the first phase of two-phase

commitment begins, during which the OM issues the

prewrite command that stores the values of X and Y fram

T • s private workspace into sacure storage. If the

DBMS fails during this phase. no harm is done. since

none of T'S update have yet been applied to the

permanent database. During the second phase. the TM

issues write co~nd to DM to copy the values of X andY,

into the s~ored database. If DBMS fails during the

second phase, the database may cont.in incorrect

infoxmation, but since the values of X and Y are already

there on the secure storage, this inconsistency can be

rectified when the system recovers.

2.2 • .2 I!1strib,uted transaction nrocessing model
I

ODBMS has already been described in section 1.4

and it consists of more than one TM and OM and thus

differs from centralized model in two aspects (BE:Ffi 8.1.):

1) In centralized UBMS, it has been silently assumed

t.hat (i) private works-paces are pa;rt of the TM and

(ii) data could freely move between a transaction and

its workspace, and between a workspace and the OM.

However, these assumptions do not hold good in case of

DDBMS because TMS and.DMS run at different sites and

the movement of data between a TM and a OM may be

expensive. These aspects relating to how T reads and

writes data in the workspaces are studied under query

optimization problem which has no direct effect on

concurrency control.

~) The problem of implementation of two-phase commitment

is eomplexified by the possibility that one site may

fail while the rest of the system continues to operate.

Because, if the failed site contains incorrect informations

in its database due to system failure, other sites

may access those infoxmations, thereby producing

undesirable msults. Thus the procedure for the

implementation of atomic commitment of transactions

is modified (the details. of this procedure appear in

HAFM 00).

In DDBMS, a transaction T accesses the system

by issuing BEGIN, READ, WRITE and rND operations. They

are processed as follows :

BEGIN : A private workspace for T _is created by

the TM.

READ (X) : The TM checks T's private workspace to

sea if a copy of X is present. If so, that copy's

·value is made available to T. otherwise the TM asks

the OM to place the stored value of X in the workspace

where it is received by T.

i~RITE (X,_ new-value) : The value of X in T 1 s

private workspace is updated to new value, assuming

the wotkspace contains a value of x.
e!U : When this operation is requested, tw()o.phase

commitment begins. Por each X updated by T, and for

each stored copy of x1 of X, prewrite (x1) is issued

to each OM where the copy is stored. This co~~~nand

copies the value of X from r•s private workspace onto

secure storage at respective sites. After all prewrites

are processed, the new value is finally stored from

the secure storage into the permanent database. Then

r•s execution comes to end.

2.3 Transaction and Consistengy

A transaction, a sequence of operations, is an

atomic unit of database access, which is either executed

or not executed at all and it has the following

properties (CERI 84).

Atomicity : Either all the operations constituting

the transaction are perfomed or none are perfo:r:med.

In case there is an interruption due to a failure, during

the execution of operations, tho partial results of

already executed steps are rolled back and the original

values of the affected dataitems prior to the beginning

of the transaction are restored. Interruption of a

transaction occurs because of two typical ~asons :

(l) transactions abort for restarting purpose and

(2) system crashes.

Durabilitx : 'lnce a transactian commits, the system

must g~1rantee that the results of its operations are

never lost, independent of subsequent failures. The

results preserved by the system are stored in the database.

Isolation : An incomplete transaction can not

reveal its results to other transa~tions before its

cornmi tment. This property is needed in order to avoid ,

the problem of cascading aborts (also called the domino

effect) i.e. the necesslty to abort all the transactions

which have observed the partial results of a transaction

that was later aborted. If, however, some of these

transactions had already committed. we would have to

undo already committed transactions, thu5 violating the

transaction durability property.

Seriatizability : This is the most important

property which orovides the foundation for concurrency

control and in fact concurrency control is the activity

of guaranteeing transaction's serializability. If

several transactions are executed concurrently, the

result must be the same as if they are executed serially

in some order.

Consistenc;y (Es;ya 76)

In database systems. users access shared data

under the assumption that the data satisfies certain .

consistency assertions called consistency constraints.

For example, let there be a banking system where there

are two accounts with balances Rs.~ and Rs.300. If a

transaction transfers money from one account to another,

the consistency constraint that the sum of the balances

in bath the accounts is Rs.~ is required to be

satisfied.

If the values of the data items of a database

satisfy the consistency canstraints, the state of the

database is called a consistent state. In fact, a valid

transaction when executed alone, transfo~s the databAse

into a new consistent state; that is, a transaction

preserves consistency. Thus it can be relevantly

c3ncluded that a set of transactions if executed

serially, also takes the database from a consistent

state into a new consistent state.

~.4 Serializability

serial execution of a set of transactions, is

definitely a correct method for running concurrent

transactions because it guarantees the database

consistency. However, it prohibits the tempora 1 inter­

leaving of transaction steps and thus severly affects the

perfonnance by increasing the transaction-response time

and reducing the sy5tem throughput {KOHL 81) • Hence

concurrent execution of transactions by interleaving

the transaction steps is necessary for increasing the

performance efficiently of the system; of course with

the candition that the execution of these steps

preserves the consistency of the database. It may be

noted here that transactions produce incorrect output

if their s.teps are interleaved arbitrarity for concurrent

execution which has been illustrated in 'the following

example.

Example

Supaose in a banking system; there are three

accounts A, B & C with balances Rs.200, Rs.lOO and Rs.50

respectively 4 Two transactions T 1 and 12 are required

to be executed on them.

T1 1 BEGIN

READ ACC A obtaining A Balance

READ AOG B obtaining B Balance

WRITE ACC A as A Balance - Rs.lOO

WRITE ACC B as B Balance + Rs.lOO

ENO

t 2 : BEGIN

READ AOC B obtaining B Balance·

READ ACC C obtaining C Balance

WRITE ACC B .as B Balance- Rs.50

WRITE ACC C as C Balance tto Rs. 50

END

2.4.1

These two transactions r1 and r2 when executed,

electronically transfer Rs.lOO from ADC A to ACC B and

Rs.50 from ACC B to ACC C respectively.

The consistency constraint in this case is

that the sum of the account balances must be constant.

If the transactions are run serially i.e. r2 begins its

exeeuti~n after r 1 o~ r1 begins its execution after T~,

it is obvious that the consistency is maintained.

However, if r2 is allowed to run between the first and

second write operations of r1 , in the final state ACC A

contains Rs.lOO, ACC.B contains Rs.~ and AOC.C contains

Rs.lOO with the sum of the balances being set to Rs.400

instead of Rs.350, which comprises an inconsistent

state.

Thus it is necessary to provide a system with a

mechanism that allows only those concurrent executions

which are able to oroduce consistent database states.

The correctness of the order in which the transaction

steps are interleaved is determined by serializability

of transactions ..

~erializ~bility in a centralized database

Let R1(x) and Wi(x) den?te read and write

operations issu~d by a transaction t 1 for the data item

x. A sequence of operations performed by a set of

transactions fonm a schedule (also called as a histoty

or lo-g). For example, the following is a schedule for

three transactions r1, Tj and Tk :

s1 : R
1

(x)W1(y)'\(x)Rj(x)\lk(y)Wj(y)

Two transactions r1 and Tj execute serially in a

schedule s if the last operation of r 1 precedes the

first operation of Tj in S (or vice versa); othexwise,

they execute concurrently. A schedule is aaid to be

serial if no transactions execute concurrently in it.

For example, the following schedule is serial l

In fact. a serial schedule defines an order among the

transactions as in the case of s~, the order of

operations indicates that Tj(Rj, Wj' Rj) executes after

r1(R1, w1) and Tk(Wk' }\)executes after r1(Rj' wj, Rj).

Hence the execution of a serial schedule is equivalent

to the serial execution of the transactions forming

the schedule.

However, if a schedulP. is c~ncurrent (like s1),

their correctness is based on serializability :

A schedule is correct if it is serializable. that is

i.t i& computationally equivalent to a serial schedule.

The term •comoutationalty equivalent• means if the

execution of a schedule produces the same output and

has the same effect on the database as that of some

serial schedule, it is said to be computationally

equivalent to the serial schequle. Since execution of

serial schedules produces correct output and every

serializable schedule is equivalent to a serial one,

every serializable schedule is also c~rrect.

After defining serializable schedule, it is

required to develop a correct concurrency control

mechanism whieh ensures that all executions are

·serializable or in other words the mechanism allows

transactions to execute operations in such a sequence

that only serializable schedules are produced.

In order to analyze tho serializability of a

schedule and correctness of concurrency control

mechanism. we need the following two conditions which

can be checked for determining whether two schedules

are equivalent (PAPA 77, PAPA 79).

Condition l : Each read operation reads data

item values that are pr~ueed by

the same write operation in both

schedules .•

Condition 2 : The final write operation in each

data item is the same in both

schedules.

These conditions are applied in the analysis of

concurrency control mechanism through the concept of

conflicts between operations.

Two operations are said to be in conflict if

they operate on the same data item, one of them is a

write operation and they are from different transactions.

For example, <i'1< x), .vj(x}>. <?!1< x), Wj(~

are pairs of conflicting operations because each pair

contains a write operation and also each operation in

a pair operates on a single data item. ~i(x), Rj(x}> .,
~1(x), wj<y}:> are examples of nonconflicting

operations since these requirements are not satisfied.

The condition for the equivalence of schedules

can be restated by using the notion of conflicts in

the following way :

· Two schedules s1 and s2 arw equivalent if for

each pair of conflicting operations o1 and Oj

such that oi precedes oj in sl. then also 01

precedes oj ins~.

The following example shows how a schedule is checked

for serializabitity :

Examnle : Let there be two schedules S and s•
represented by the following sequences of operations.

S : Ri (xl Wi(x) Rj(X) Wj(y)

S t : Ri (.X) W (y) f'l i (X) Rj (X)

These two schedules are equivalent because the unique

pair of conflicting operations ~i (x), Rj(~
appears in the same order in both the schedules. The ·

first schedule S is a serial schedule because the

operations of the transacti,•n r1 precede all the

operations of the transuction Tj. The second schedule

S' is a serializable schedule far it is equivalent to

serial schedule s.
The example also shows that in the serial

schedule s, transaetinn r1 precedes transaction Tj and

this oxderlng of transactions is forced by the

conflicting operations. Thus, in general it may be

stated that precedence of transactions in the

serialization older does not depend on the older of

execution of the first operation of the transactions,

but on the oxder of conflicting operations only (CERI 84).

~.4.2 Serializability in distributed database

In ease of distributed database systems, there

ara a number of sites operating simultaneously. A

transaction introduced into the system at a site may

require to perform operations at several other sites

and in this way each site may have to process operations

of several transactions concurrently. The sequence of

operations perfo~ed by transactions at a particular

site is called a local schedule. For example, if there

are a distributed transactions r1, T~, ••• , T
0

to be

executed at m sites, then the execution is modeled by a

set of local schedules s1 , s2 , •••• , sm.

Ensuring seriatizability of a set of transacti~ns

in distributed systems is mare complex because a local

concurrency control mechanism aoplied at each n!')de is

not sufficient to guarantee the correctness of the

execution of a set ~f distributed transactions. This

has been illustrated in the following example.

Example

l~et there be two transactions having following

schedules under execution at two different sites :

S l { Site l) : Ri (X) W i (X) Rj (X) ~~ j (X)

s2(Site 2) : Rj(y).Vj(y)R1(y);w1(y)

These·local schedules are individually serial; however

there is no global serial sequence of execution of both

transactions because in s1 , transaction t 1 precedes

transaction Tj and ins~, transaction Tj precedes r1•

Thus a strongest condition than the serializability of

local schedules is required to guarantee serializability

of distributed transactions.

The execution of transactions r1, ••• , Tn is

correct 1 f :

1) Each lacal schedule is serializable

2) There exists a total ordering of T 1 , •••• Tn

such that, if r 1 precedes Tj in the total ordering

then there is a serial schedule sk such that Sk is

equivalent to Sk' and all operatians of r1 precede

that of Tj in sk' for each site K where both transactions

have executed some action (CERI 84).

Papadimit~rioo et al. have expressed the above

condition using the notion of conflicts in a proposition.

proposition (PAPA 77, ?A'PA 7Q, STEA 76)

Let r1 , T2 , ···• Tn be a set of transactions

and let E be an execution of these transactions

modeled by schedules s1 , ••• , sm. E is correct (or

serializable if there exists a total ordering of such

transactions for each pair of conflicting operations

o1 and Oj from transacti~ns r1 and Tj resp&ctively.

oi precedes oj in any schedule sl' .•• ' sm if and only

if t 1 precedes Tj in the total oxdering.

This proposition provides the foundation for

devising a distributed concurrency control mechanism

which would be correct· if it allows only correct

execution of distributed transactions. In other words.

the mechanism has to guarantee that the conflicting

operations for a set of transactions are processed in

certain relative orders in order to attain seria liza­

bility of execution of the transactions •. An algorithm

designed to maintain such order among the conflicting

operations is called a synchronization technique to

ensure correct execution of distributed transactions.

CHAPTER- 3

SYNCHR:NIZATI~ TEC~NIQUES

ftASEO ~ T\0. AiASE LOCKING & TIMFSTf'MP ORDERINp

This chapter presents a description of the basic

synchronization techniques developed for correctly

executing concurrent transactions with maximal

concurrency. Section 3.1 describes the technique of

two-phase locking both for centralized and distributed

database system and also discusses the management of

deadlocks that arise in the implementation of the

technique. In section 3.2, two types of timestamp

ordering techniques have been presented : basic timestamp

oxdering and conservative timestamp ordering (CERI 84)

Two other techniques like conflict graphs and reservation

list have been described in chapter 4.

3.1 Two phase l~cking (2P~£

The synchronization techniques based on the

approach of two phase locking have been discussed

separately for centralized and distributed databases.

3.l.l case of centralized database

Whenever a transaction accesses a data item in a

centralized database, it tmmediately locks it to prevent

other transactions to access the same item during its

own period of accession. In fact, in the simplest case

each data item has a unique lock which is held by at

most one transaction at a time. However, if a transaction

attempts to lock a data item that is already locked, it

must either wait until. the other transaction has released

the lock or abort itself' or pre-empt the other transaction.

Each dataitem already locked and modified by an a~orted

or pre-empted transact.i,n is restored to the state it

was in prior to the transactions beginning and then it is

unlocked. This operation preserves the consistent state

of the database even if an incomplete transaction unlocks

the dataitem.

There are two m~des in which dataitems are

locked :

l) A transaction locks a d•taitem in shared mode if it

wants only to read the dataitem •

2) A data item is locked in exclusive mode if a

transaction wants to write into the data item.

Locking of a dataitem by shared and exclusive

modes of more than one transaction is not arbitraxy.

Following rules govern the compatibility of lock-modes :

l) A transaction can lock a dat~item in shared mode if

it is not locked at all or it is locked in shared mnde

by another transaction.

~) A transaction can lock a data item in exclusive mode

only if it is not locked at all.

Conflicts

Two transactions are said to be in conflict if

they want to lock the same data item with two incompatible

modes ;

1) If both the transactions attempt to lock on the same

dataitem and one is applying readlock {i.e. shared mode)

whereas other is applying writelock {i.e. exclusive mode),

the resulting situation is known as shared-exclusive or

read-write (r:w) conflict.

2) If both the transactions attempt to lock on the same

dataitem and on• is a~plyinq writelock (i.e. exclusive

mode) whereas other is also applying writeloek (i.e.

exclusive mode) 1 the situation is called exclusive­

exclusive or write-write (ww) conflict.

Synchronizations perfo~ed to avoid rw and ww

conflicts are known as nv synchronization and ww

synchronization respectively (BER'Il 81).

Correctness of 2,Pl.. mechanism (CERI 84l

Eswaran et at (BS4A 76) have proved that

concurrent. execution of transactions is correct if the

following rules are observed :

l) Transactions are well-fomed i.e. each of them

always locks a data item in shared mode before reading

it and always locks a data item in exclusive mode before

writing it.

2) Comoattbility rules for locking are observed.

3) Each transaction does not request new locks after

it has released a lock. This means for each transaction,

there is a first phase during which new locks are

acquired (growing phase) and a second phase during

which locks are only released (shrinking phase). In

fact this condition names the mechanism as two phase

locking.

During the shrinking ohase, a.transaction may

release its exclusive locks at any time and this may

allow other•transactions to observe its result before

its commitment; thus to avoid such an undesirable

occurrence it is required that transactions hold all

their exclusive locks until commitment.

~ranularity of locking

In generalw each transaction may lock dataitems~

of a database at record level or at file level. ln the

former case conflicts between transactions arise when

two transactions want to access the same record. In

the latter case." conflicts are instead detennined when

two transactions need to access the same file. Since

the former case occurs with much less probability,

locking at the recoxd level allows more concurrency than

locking at the file level. This aspect of relating the

size of the objects which are locked, with a lock

operation is known as granularity of locking. It is

preferable in DBMSs to provide locking at the recoxd

level (CERI 84).

In a centralized database, all transactions are

performed according to the following scheme :

(Begin application)

Begin Transaction

Acquire locks before reading or writing

Commit

Release locks

{End application)

This scheme guarantees well-fomedness and two-phasedness

of transactions and consequently preserves the database

consistency.

Deadlock

Deadlock is a major problem and can be illustrated

by the following example (ULLM 84).

Example Suppose there are two transactions

r1 and T2 whose locking and unlocking operations with

two datai terns A & B are sh':)wn below {the main execution

portions of the transactions have not been shovm)

Tl : LOCK A T2 : LOCK a·

LOCK B lDCK · A

LNLOCK A t.).ll.OCK B

l~LOCK B \..1\lLOCK A

Suppose r1 and r2 begin execution at about the same time.

t 1 requests and is granted a lock on A and Tz requests

and is granted a lock on B. Then r1 xequosts a lock on 8,

and is forced to wait because r2 has a lock on that item.

Similarly, r2 requests a lock on A and must wait for t 1 to

unlock A. Thus neither transaction can proceed; each is

waiting for the other to unlock a needed item, so both

r1 and T~ wait forever.

A situation in which each member of a set S of

two or more transactions is waiting to lock an item

currently locked by some other transaction in the set S

is called a deadlock.

F~tlowing are the approaches made t6 resolve the

deadlock problem in centralized databases :

l) Each transaction is required to request all its locks

at once, and let the system grant them all, if the

related data-items are not locked prior to the request made.

Else, if one or more items are already locked by ahother

transaction, the system does not grant the lock and the

process is made to wait. In case of the above example1

the system grants locks on both A and B to T1, if it

requests first and r1 completes execution; then T2
locks them and carries on the execution.

2.) Another approach is to omer the dataitems in an

arbitrary manner and all transactions are required to

lock them in this oxder. In case of the above example,

if A precedes B in the ordering, then T 1 locks A before

locking B; at this moment, r2 would request a lock for

A before B and would find A already locked by t 1 and

would not be able to reach B. Thus a would be available

to t 1 when requested by it. r1 would complete and release

the locks when r2 could proceed. This approach can be

shown to work perfectly in general case.

3) In this appr~ach, transactions are allowed to run

freely till the system discovers the deadlock. Deadlocks
'

are discovered by waits for graphs. The graph contains

n~es to represent transactions and arcs t 1 ~ T2 to

signify that transaction r1 is waiting to lock an item

on which t 2 holds lock. If the system finds a cycle in

such a graph. deadlock is detected; then it aborts and

res~arts one of the involved transactions and ~he effects

of this incomplete transaction on the state of database is

eancellech.

3.1.~ Case of distributed database

[mplementati~n ryf 2~L mechanism in centralized

database is easy because each dataitem exlsts as on•

Cf!lrJY only: consequently s transacti,:-tn is able t.a

discover a dataitem being locked by another transaction.

However, data redundancy, necessaiY for reliabality,

availability and improved access time cotnplexlfies the

implementation of ~PI. mechanism in di stribut.ed database.

This is because, two transaction~ which h~ld ~,nflictln9

locks on two copies of the same dataitem stored at

different sites C?uld n~t know the.ir mutual existence;

and in such a case, locking of a dataitem becomes

useless. Thus the lmpl&S!Jentation or :t.Pl. in distributed

database is performed in a different milnner and four

methods (HEft.! 81) for the purpnse have been described

below.

3.1.2.1 ~sie ~UL !molementati~

The basic ~PL is 1moleroented by means of a ~PL

scheduler wl·ieh is a software module that receives the

lock requests and lock releases and processes them

aceoxdinq to 2Pt. specifications. These schedulers are

ktmt distributed along with t.he database. For instance.

the scheduler for dataitem X is placed at the site where

X is stored. Two fundt~mantal operations are required to

be perfnr:rned on X :

1) To read X, a readlock (i.e. lock in shared mode)

may be i~plicitly reque5ted by read comPand on the

data :

1) if the lock is granted by the scheduler,

the read operati~n is carried on.

ii) otherwise, the request is placed on a

waiting queue for the desired item till the item is

free; after it is free the operati~n is carried on.

\~1ting may result in a deadlock and 1$ ~solved by

methodS described later in this. chapter (Subsection 3.1.3).

By this reading opeati~n, the required data X is

retrieved from the database to the transaction's private

workspace. The value of X is then updated to the ne¥1

value at the workspace and then is to be written into

the database from the workspace.

~) To write into X, writelock (i.e. lock in exclusive

mode) may be implicitly requested by a prewrite

command (not write command in order t'l achieve two

phase commit) on the data :

1) if the lock is granted. the write operation

is carried on-

ii) otherwise. it is made to wait in a queue

till the itero is free and then the required operation is

carried on. In case of a deadlock, it is resolved

according to methods of subsection 3.1.3.

After an operation on a dataitem is over,

corresponding locks are released by lock-release

operations which are different for readlock and

wrltelock. Then the operations on the waiting queue

are processed in first-in/first-out order.

tf basic 2PL is used for dealing with multiple

copies of data, shared locks are acquired on one copy,

while exclusive locks are acquired on all copies.

That means for a logical dataitem X, having co~ies

x1 •••• ~. a transaction may read one copy an~ need

only obtain only one nadlock on that copy; however

while updating, it must obtain writelock on all copies

of X.

3.1.2.2 Primary cngy ~?L imolementation

This technique pays attention to redundancy

(ST'.'IJ 79) • In this method of implementation one copy

of each logical data item is named as the primary copy

of that item. A transaction requiring the data item

for its execution, obtains lock on it stored only in the

primary copy of the item. All the read and write

operations of the transaction are processed on that

C?~ and then update messages are sent to other copies.

Read and write operations on a dataitem are processed

in the following way; let x1 be the primary copy of a

dataitem X.

1) To read x1 , some other copy of x, the site of the

transaction communicates with the primary site as well

as with the site that stores xi and readlock is acquired

on x1 at the primary site. If the lock is granted,

item is read; otherwise, the request is made to wait

till the item is free.

F~r readlock this technique requires more

communication than basic ~PL: because in basic 2PL,

data item is read from only ·the site where it is

stored and consequently one message is sent, whereas

in the primary copy 2PL, two messages are sent.

2) To write into x, a transaction issues prewrite

commands to all sites where the data is stored but

the writelock is requested on x1 only. If the lock is

granted, write command is executed and then update

messages are sent t, all copies, othexwise the

transaction waits till the item is free.

For writelocks, primary c~py 2PL does not

require extra communication over the basic ~PL counter­

part because write operations are simdlar except only

that the writelock is obtained at a pNrticular site.

3.1.2.3 Xoting 2PL imolementation

This approach exploits data redundancy and is

due to Thomas (THIM ?q). A transaction issues requests

to all sites that hold a required data item. These

sites acknowledge the recetpt of the requests by saying

ti Lock set•~ or "Lock blocked" depending on whether the

required item is locked or already under lock of some

other transaction. The original site (i.e. where the
I

said transaction originates) receives acknowledgements

from other sites and c~unt the number of lockset

responses : if the number is strictly greater than the

number of copies which are nnt locked, the site behaves

as if all locks are set; otherwise, it waits for more

lockset operations from sites that originally said

11 lock blockedtt ti 11 tho number of lock sets become a

majority. Because of waiting, there may arise deadlocks

wht.ch can be resolved by techniques given in subsection

1) To read X, a transacti~n requests readlocks on all

copies of X. When a majority of locks are set, the

transaction may read any c~py,.

2) To write into x. the concemed site sends prewrites

to other sites with copies of X as a request for locks.

\-men the majority of locks are granted to the transaction,

the site sends write request when the involved data

item X is u!)dated. Since only one transaction can

hold a majority of locks on X at a time, only one

transaction writing into X can be in its second commit

phase at any time (BERJ 81). All copies of X thereby

have the same sequence of writes applied to them.

3.1.2.4 Centralized 2?L imnlementation

In this method of imolementation one 2PL

scheduler is placed at a single site unlike the

previous methods where schedulers are distributed

(ALSB 76a. GARC 79a). Here, appropriate locks are

obtained from the central ~Pl. scheduler before accessing

data at any site.

l) To read X from a site where X is not stored, the

site first requests a readlock on X from the central

site and waits for the central site to aekno~ledgo that

the l':lck has been set. Then the read request is sent

to the site of X to read the data.

Since the lock is obtained in a round-about

way, the coonunicati::m is more than basic 2'PL

implementation and tho cost of communication overhead

thereby increases~

2.) To write into x,, a site issues orewrite request to

the central site for a write-l?ck on x~ After the lock

is obtained, it issues write request wryich is

processed.

Here, the communication is also more for the

same reason as ab~v• i.e. the prewrite does not request

locks implicitly.

3.1.3 Management of distributed deadlock~

In distributed database managem~nt systems,

deadlocks can arise in any of the preceding implementation

of locking methods. The problem of deadlock resolution

gets complexified in distributed systems because of the

involvement of transactions originating from several

sites.

Illustration

Suppose in a distributed database system, there

are three sites s1, S~ and s3 with the following accounts

s1 : ACC X ~ : ACC Y

AGC Y ACC l

Three transactions r1, T~ and T3 are executed respectively

at s1, s2 and s3•

1l : BEGIN ;

READ ACC X ;

4RITE ACC Y ;

ENO.

T2 : BEGIN ;

READ ACC Y :

~'IRITE ACC l

END.

t 3 : BEGIN ;

ReAD ACC Y

-fRI!E ACCZ ;

END.

Let these transactions be executed concurrently with

each transaction issuing its READ before any transaction

issues its END. To preserve consistency the transaction

would attempt to update all the copies of a particular

dataitem. The transactions would proceed in the

following steps :

step l : t 1 obtains readlock on ACC X

12 obtains readlock on AOC Y

r3 obtains readlock on AOC l

step~ s t 1 requires writelocks on ACCY both at s1 and s2
t 2 requires writelocks on ACCZ both at s2 and s3
r3 requires writelocks on ACCX at s1 •

However writeloeks would be obtained only after the

readlocks are released i.e.

r1 wauld not get writolock on ACCY at s2 until t 2
releases the rea~lock on it and t 1 must wait.

r2 would not get writelock on AOCZ at s3 until r3
releases readlock on it and T~ must wait.

r3 w~uld not get writelock on ACCX at s1 until r1
releases readloek on it and r3 must wait.

Thus, r1 waits forT~, T~ waits for t 3 which also

waits for r 1 • In such a situation, transactions wait for

locks which would never be available t~ them because a

readlock would be released only after the eompletion of a

transaction, but the c~m~letion is not possible and

deadlock results.

Deadlock situations can be characterized by

waits-for graphs (H1LT 72, KING 14), which have been

discussed in deadlock resolution in case of centralized

databases (Section 3.1). The existence of a deadlock is

concluded from the existence of a cycle in the waits-for

graph. Figure 6 illustrates the deadlock situation of

tho above example.

Following techniques are available for resolving

deadlock situation.

1) Time-out method

2) Deadlock prevention method

3) Deadl~ck detection method

l) Time-out method

ifith this method, a transaction is aoorted after

a given time interva t has passed after the •ransaction

enters a wait state. In fact, this method does not use

waits-for graphs, but simply observes if any transaction

waits for 8 dataitem beyond a specified time interval.

If this interval oasses away, the transaction is al?orted

and again restarted.

The main problem with time?ut method is the

choice of a good time interval. .If the interval is longer,

T'l! MUST WAll FOR T1
""' TO REL.EA~E READLOCI<

ON Ace ><. AI 5 1

T, MUST WAIT FOR T2 10 REL.EAGE

REAt>LOCK ON ACC Y AT 52

T 2. MUS,. WAIT FOR T3
TO ReLEASE REI>.DLoCK

ON ACC Z AT 5 3

FIG.6 WAIT-FOR-GRAPH AND DEADLOCK SITUATION

·then transactions would unnecessarily stay in deadlock

before being a~orted; if it is made shorter, transactions

not in deadlock, but waiting for some dataitem would be

unnecessarily aborted. That to, it is mare difficult to

choose a workable time interval in distributed systems

than in centralized database because of the less

predictable behaviour of the communication network and

of remote sites ..

Timeout meth:>d is acceptable for lightly loaded

foYStems but not convenient for congested systems.

Because in latter systems, short timeouts may induce

cascading effect due to system overload. This happens

when a transaction is aoorted, not because it was in

deadlock, but because the system was overloaded and

therefore slow, leading to long waiting of the transaction.

The a6ort operation causes additional delay due to

additional message exchanges and work to be perfoDmed

by the local systems. such delays cause other transactions

to be aborted and so on.

~) Deadlock prevention method

r1ith the deadlllck preventi:>n scheme, a transacti:m

is aforted and rP.started if there is a possibility that

deadlock might occur. Since related transaction is not

allowed to wait for the concerned data item, the

possibility of occurrence ~f deadlock is totally

eliminated.

Deadlock prevention is carried on in the

following way : if a transaction r 1 issues a lock request

for a dataitem which is held by another transaction r2 ,

then a prevention test is applied: if the test indicates

that there is a risk of deadlock, then r 1 is not allowed

to enter a wait state. Instead, either t 1 is aborted and

restarted, or r2 is aborted and restarted. The previous

algorithm is called nonpre-emptive and the second is

called pre-emptive.

The prevention test must ensure that if r1 is

allov,Jed to wait for T2 then deadlock can never occur.

This is obtained by arranging transactions in a

particular order, like in order of their priorities.

For two transactions Ti and Tj, r1 is allowed to wait

for Tj only if r1 has got lower priority over Tj

(If T1 and Tj have equal priorities, Tican not wait for

Tj• or vice versa. This test prevents deadlock because,

for every edeye (r1 • Tj) in the wait-far graph. T has

low priority than Tj. Since a cycle is a path from a

node t~ itself and since ri can not hAve lower priority

than itself. no cycle can exist.

In distributed systems, •timestamps• are

used to decide the priority of transactions. Eath

transaction is assigned a unique number known as

timestamp. The timestamp of a transaction consists

of two parts : the local clock time at the beginning

of the transaction read at the site of its generation

.,nd the unique site identifier which is appended to

the clocktime at lower order bits (THJM 79). That

the si.te does not send two transactions at the same

local clock time is ensured by req1Jiring that the site

does not assign another timestamp until the next clock

tick (BEHN 81). Thus timestamps introduced into the

system of different sites differ in their lower order

bits (since different sites have different identifiers),

while, tim~stamps assigned by the same site differ in

their higher order bits (since a particular site does

not use the same clock twice). Hence timestam~s are

unique throughout the system and an old transaction

has lower timestamps than y:>ung ones and intui-tively

they have higher priority as they are introduced to the

system earlier than the young ones.

Two timestamP-based deadlock prevention schemes

have been proposed in R1SE 78 :

Nonpre-emotive Method

If r 1 requests a lock on a dataitem which is

already locked by Tj• then r1 is permitted to wait only

if t 1 is older than Tj. If Ti is younger than Tj' then

Ti is aoorted and restarted with the same timestamp.

Because, it is always better to restart the younger

transaction. Therefore, in ordP.r to obtain a nonpre­

emptive method, older transactions are allowed to wait

fGr younger trans~~ti~~s wh\ch already hold a dataitem

and younger transactions are not allowed to wait for

older ones (CERI 84).

Pre-emotive Method

tf r 1requests a lock on a dataitem which is

already locked by Tj' then T1 is permitted to wait

only if it is younger than Tj ; othe~ise Tj is

aoorted and the lock is granted to Ti. In this method,

the older transactions are allowed to pre-empt younger

ones, and therefore only younqer transactions wait for

older ones.

The pre-emptive method may cause the following

problem : suppose that T j need to be pre-empted while

it is in the second phase of two-ohase commitment; in

such a case Tj can not be al:;orted. This problem is

resolved if 11 is not pre-empted; a deadlock does not

arise in such a ease because a transaction which is in

its second commitment phase can not be waiting for

data items.

3) Deadlock detection method

With this meth~, transactions walt for each

other in an uncontrolled manner and are only a\3orted

if a deadlock actually occurs (BERN 81). In oxder to

detect the deadlock, the system constructs global
I

wait-for graph and searches for cycles~ if a cycl~

is present, one of the transactions engaged in the

deadlock is a~orted, thereby breaking the deadlock.

The a~Grted transaction is restarted and run to

completion.

c~nstruction of global waits-for graph is a

major difficulty in distributed database systems

though it is easy to construct local waits-for graph

based on the watts-for relationships local to a particular

site of the distributed system. Thus it is necessary to

devise methods that efficiently combine the local waits­

for graph into a global graph where the system would be
/

able to search for a deadlock cycle. Two techniques

have been explicitly described for the resolution of

deadlocks by detectiOn : centralized deadlock detection

and hierarchical deadlock detection.

Centralized deadlock detection (GRAY 7R, STJN 79l

With the centralized method, each site is

equipped with a local deadlock detector. and a site is

chosen at which a centralized or global deadlock

detector is run. The local deadlock detector has the

responsibility of discovering local deadlocks at the

site concerned; however the centralized deadlock

detector is responsible for building the distributed

waits-for graph (Diif'G} by collecting and connecting

partial informations received from various sites and

detects cycles in it,. When a cycle is detected, the

centralized detector selects the transactions to be

aD'orted in order to break the deadlock situation.

Centralized deadlock detection is simple, but

has two main drawbacks :

1) The detection operation may stop owing to the

failures of the site where the centralized detector runs.

2) Building of m~FG at the centralized detector

requires large communication costs in case of other

sites of the network being located at far-off places .•

At times, it may so han~en that a deadlock involves

only a few sites which are close to one anothex:, but

for the construction of D.JFG, those sites would have to

communicate with the distant centralized detector.

The hierarchical controller method resolves the

problem of excessive communication cost.

Hierarchical deadlock detection (MENA 79)

With hierarchical method a tree of deadlock

detectors is built, ins~ead of having a set of local

deadlock detectors and a single centralized detector.

The detectors are arra~ged in a tree as shown in the

figure (Fig.7). The local deadlock detectors (LDDS)

are placed at the leaves of the tree whereas the

nonlocal detectors are placed at non-leaf leaves.

Each local deadlock detector behaves like the

local detector of the centralized method i£.it deter­

mines local deadlocks and transmits information about

global cycles to the nonlocal deadlock detectors at

the immediately higher level in the hierarchy. Each

of the nonlocal detectors detect deadlocks which

involve only the_deadlock detectors which are below it

in the hierarchy.

In figure 7, LDD 1, LDD 2, ••••• LDO 5 are the

local deadlock detectors situated at five sites. A

deadlock involving site 1 and site 2 is detected at the

immediately higher nonlocal detector i.e. NLDD 1; however,

a deadlock involving site 1 and site 5 is detected only

LDPI

51TEl

NLDDO

NLDDI

LDD2 lDD3

SITE2 SITE3

\LDD4
511E4

NLDD-= NONLOCAL DEADLOCk DETECTOR

LDD-= LOCAL DEADLOCK DETECTOR

FIG. 7 A TREE OF DEADLOCK DE: TECTORS

LDD5
Sl E5

by NLOD1 i.e. the highest level detector.

This approach of hierarchical detectors for

detection of deadlocks is suitable for a group of

sites where most of the database access request is

within the group and few requests are sent to sites

outside the group.

Disadvantages with detection method

Both the methods, centralized as well as

hierarchical require that local waits-for informations

be transmitted to one or more deadlock detector sites

periodically. This periodic nature introduces two

problems : firstly, a deadl~ck may prevail for several

minutes without being detected, causing response-time

degradation, secondly, a transaction T may be restarted

for reasons other than concurrency control (like crash

of the originating site) and in such a case some

deadlock detector may find a cycle in the w•its-for

graph that includes T until t•s restart propagates to

the deadlock detector. such a deadlock is known as

phantom deadlock and when a detector finds a phantom

deadlock it may unnecessarily restart a transaction

other than T.

Another disadvantage with the method of deadlock

detection is that restarting of partia tly executed

transactions increases the overall cost of the method.

This cost is reduced by predec1aration where all the

transaction's locks are obtained before its execution

and consequently • the system only restarts those

transactions that have not yet executed.

3.2 Timestamg ordering (T/1)Technigues

The timestamp ordering technique assigns a

unique timestamp to each transaction to arrange the

transactions in a sequential manner. A transaction

that begins earlier has a smaller timestamp than a

later transaction and hence precedes in that sequence.

After timestamping, the transactions are processed so

that their execution becomes equivalent to a serial

execution in timestamp order. According to proposition

of chapter ;t, this means that conflicting operations get

processed in the same order.

Conflicts are of two types depending :>n the

kind of synchronization required. For l'W synchronization.

two operations conflict if (a) both operate on the same

data item and (b) one is read nperation and the ott-er

is write operation. For ww synchronizati'ln, two

~perations C3nflict if (a) both operate on the same

data item and (b) both are write operations.

3:.2.1

Below are described two timestamp ordering

mechanisms:· basic timestamp mechanism and conservative

timestamp mechanism.

The Basic Timestame Mechanism

The basic timestamp technique is implemented

by building a scheduler, a software module that receives

read or write ooerations according to timestamp specifi­

cations. The schedulers are distributed at vt~rious sites

along with the database. The basic timestarop algorithm

proceeds as follows :

1) A tlmP.stamp is assigned to each transaction when it

is initiated at the site of origin. Each read or write
I

operation which is required by a transaction has the

timestamp of the transaction. Let this timestamp be rs.
For each dataitem X, let the largest timestamp

(i.e. timestamp of the last transaction that has been

processed on X) for read operation and write operation

be R-ts{X} and W-ts(X) respectively~ These timestamps

are updated each time a transaction completes operation

on this data item.

2) To avoid read-write conflict,

(a) the read operation of th¥ current transaction

with timestamp TS operating on data item X is :

(!) rejected if TS < W..ts(X) and the transaction

is restarted with a new timestamp,

{ii) executed otherwise; then R -ts(X) is.set to

max (~ts{X), TS).

(b) the write operation of the new transaction with

timestamp TS on dataitem X is :

(i) reje :ted if TS < R-ts(X) and the transaction

is restarted with a new timestamp,

(11) executed otherwise: then W-ts(X) is set to

max (<1-ts(X), TS)

3) To avoid write-write conflict, the write operation of

the new transaction with timestamp TS on dataitem X is :

(1) rejected if TS < t'i-ts(X) and the transaction

is restarted with a new timestamp,

. (11) executed otherwise and w-ts(X) is set toTS.

4) The restarted transaction, on assignment of a new

timestamp which is certainly a larger timestamp is

executed in accordance with rules (2) and (3).

The basic timestamp mechanism is deadlockfree,

because transactions never wait: if a transaction does

not execute an operation, it is restarted. That an

operation can not be allowed does not depend on the fact

that another transaction is momentarily operating on the

same dataitem, but instead depends on the timestamp

associated with it. However, the deadlock freedom

is a result obtained at the cost.of restarting

transactions.

Rules (2), (3) and (4) guarantee serializaallity

because conflicting operations are executed in timestamp

order at all sites and hence the timestilmp order is the

total order that makes the executions correct. However,

above mechanism is integrated with two-phase commitment 1'f

using •prewrite• operation to ensure that transactions are

atomic.

Twa phase commitment is 1nc~rporated by timestamping

prewrites and accepting or rejecting prewrites instead of

write operations. Once a scheduler accepts a pre-write,

it must guarantee to accept th~ corresponding write no

matter when the write request arrives. Por rw (or ww)

synchronization, once s accepts a prewrite {X) with

timestamp TS it must not output any read (X) (or write (X)

with timestamp greater than TS until the write (X) is

output:. The incorporation is accomplished by

substituting rules f2), (3) and (4) by the following :

2) Let TS be the timestamp of the prewrite operation

P of a transaction on dataitem x. The operation is

(1) rejected if TS<R-ts (X) or TS<tV..ts(X)

an~ the issuing triinsacti?n is rest~rted.

(11) buffered along'with its timestamp if

TS > P...ts (X) or TS / ~ts {X).

3) Let TS be the timestamp of read operation R on

dat.a item x. The operation is

(1) rejected if TS < :·1-ts (X)

(ii) executed if TS) ~ts (X)

and only if there is no prewrite operation P(X) pending

on dataitem X having a timestamp TS (P) <. TS.

(iii) buffered if there is one (or more)

prewrite operation P(X) with timestamp TS (P) < TS,

until the transaction which has issued P(X) commits.

Buffering is necessary because, if executed, the write

operation W(X) corresponding to the prewrite P(X) may

be rejected by TS (\"') < P....ts (X)

(iv) elf.minated from the buffer after it is

executed when no more prewrites with a smaller timestamp

than R are pending on it.

4) · lAt TS be the timestamp of write operation on

dataitem X. This is never rejected. But it has the

possibility of being buffered if there is a prewrite

operation P(X) with a timestamp TS (P) < TS.. The

operation is otherwise executed and eliminated from

the buffer ..

The use of prewrites is equivalent to

applying exclusive locks on dataltems for the time

interval bt!tween prewrlte and the commitment (write)

or abort of the issuing transaction.

Thomas Write Rule

Let w be a write operation on dataitem X and

Stappose TS (.~) < w-ts (X). Accordin9 to· Thomas write

Rule (TWR), the write operation '14 can be ignored instead

of being rejected and rest.a·rted.

The rule works correctly because if •~1 (X) and

Wj(X) are two write operations such that TS(W1) < TS{Wj)

then the execution of w1 followed by ~~j is same as the

execution of wj alone. Thus if wi is iqnored and wj is

executed, the final result obtained is same as if w1
were executed before tfj.

THR apolies to those write operations that try

to place obsolete information into the database. For

example, if we have a transa~ion that changes the price

of a commodity, the new price is not a function of the

previous price. If there is a correction on the previous

price pending. we can simply ignore this correction after

the new price has been written. The rule is also called

uignor ... obsolete-rule'".

The Conservative Timestamg Ordering Method

The conservative timestamplng is a ~ethod for

eliminating restarts ~ buffering younger operations

until all older conflicting operations have been

executed. Thus buffering is a part of the normal

functioning of the method and helps in avoiding rejection

of operations and rest.artin.g of transactions.

The e?nservative timestampinq is based on the

following requirements :

i) Each transaction is executed at one site only and

does not activate remote programm~s.

ii) A scheduler s1 must receive a 11 the read requests

(or write requests) from a different scheduler sj in

timestamp order. Since it is assumed that the network

is a FIFO {First Input First output) channel. this

requirement is accomplished by requiring that

schedulers send read requests (or write requests) to other

schedulers in timestamp order.

Sending request messages in timestam~ order

can be implemented in two ways :

i) It is possible to process transactions serially at

each site.. But this does not satisfy the purpose of

concurrency control.,

il) Transactions can be executed by issuing all read

requests before their main execution and all write

requests after their main execution. For instance,

if TS (T1) < TS (Tj)' it is sufficient to wait to

send Rj operations until all R1 operations have been

sent and to wait to send the wj operations until all

"i operations have been sent. Then the transactions

execute concurrently.

The conservative timestamp algorithm proceeds

as follows :

l) Each transaction is issued a unique timestamp when

it is initiated at its site of origin. Rach read or

write operation which is required by a transaction has

the timestamp of the transaction.

2) Read and (or) write request messages are sent to

the site or sites containing the data item required by

transaction in timestamp order.

Before going to next step, it is assumed that

a site i has at least one buffered read and one buffered

write operation from each other site of the network.

3) Read-write conflict is avoided in the following ~y :

a) For a read operation R that arrives at site i :

(i) if there is some write operation w buffered

at site 1 such that

TS (R) > TS (.4) ,

then R is buffered until these writes are executed.

(11) otherwise, R is executed.

(iii) ~en R is buffered or executed, buffered

operations are retested to see if they can now be

executed.

b) For a wrtte operation W that arrives at site i :

(1) if there 1$ some read operation R buffered

at site i such that

TS (•'I) > TS (R),

then \4 is buffered until these writes are executed.

otherwise, W ls executed. (ii)

(111) When ~ is buffered or executed, buffered

operations are retested to see if they can now be

executed.

4) To avoid write-write conflict for B write operation

W that arrives at site i :

(i) if there is some writ.e operation ¥1 buffered

at site i such that TS(~) > TS(•i'). then w is buffered

until these operations are executed,

(11) othexwise, W is executed.

{iii) When W is buffered or executed, buffered
•

writes are %etested to see if they can now be executed •.

Problems with Conservative Timestamp Ordering

Two phase cotTJnitment is not a problem in

cons~rvative timestamp ordering method because write

operations are never rejected. However, above imple­

mentation suffers from the following problems :

1) If a site never sends an operation to some other

site, then the assumption made in the above algorittun

does not hold and the second site stops outputting.

This problem is eliminated by requiring that each s~te

periodically sends timestamped ~nulla operations to each

other site. These operations have the sole purpose of

conveying timestamp information and thereby unblocking

real operations. Alternatively, blocked sites

explicitly request for timestamped null operations from

other sites.

2) Due to the buffering of read operation, the

corresponding transaction _1~ forced to wait .,nd thus

while implementing conservative timestamp technique,

care must be taken to see thot waiting does not result

in a deadlock. The deadlock, if occurs, is avoided by

sending null operations after a sui~able timeout.

CHAPTER- 4

SYNCH~Il.ATICJ.l TECHNIQUES BASCO

(~ COO FLICT GAAPtfS AND RESERVATICJl LISTS

More efficient synehronization techniques have

been developed by refining the techniques of locking

and timestamp oxdP-ring and }jy eliminating the

problems inherent in them. Conflict analysis approach

and reservation list approach are two such methods

that wotk well in dist.ributed database systems with

d_ifferent amounts of data redundancy (KOHL 81).

Thi~ chapter describes the methods of conflict

analysis and reservation lists.

f.l c~nflict analysis

The method of conflict analysis is the

$ynchronization technique used ln SDD-l, a system for

Distributed Databases, developed at the Computer

Corporation of America (ROTH 00). nte system consists

of a collection of database sites interconnected

through a communication network. · Pigure 8 5hOws

configuration of the system consisting of three types

of virtual machines ; transaction modules (TMs), data

modules (DfAs) and a reliable network system (RelNet).

Each site can contain either one or both types of

REL NET

FIG. 8 5DD -I CONFt GURA TION

modules. OMs store physical data and behave much like

conventional nondistrlbuted DBMSs. TMs are responsible

for supervising the execution of user transactions and

they in fact, work as an interface between the user•s

perception of nondistributed data and the realities of

data distribution and redundancy.

SDD-l uses two mechanis~s to ensure serial1za­

bility of concurrently executed transactions. The first

mechanism, called conflict graph analysis. is a technique

for analy%ing various • classes• of transactions to

defect thoso transactions that require little or no

synchronization (ROTH 00). Here. it is to be noted that

SDD-l mechanism does not assume that evezy transaction

requires synchronization as strong as locking; because

there exist transactions that some databases do not at

a 11 require synehronizcation even though they have

overlapping write sets (BEHN 80}. The second mechanism

consists of a set of synchronization protocols based on

timestamps, which synchronize those txansactions that

need it.

4.1.1 Conflict Graph!!

The database administrator defines ••transaction

classes" which are named groups of commonly executed

·transactions at the time of system design. Each class

is defined by its name, a read-set, a write-set and the

TM at· which it runs. A transaction is a member of a

class if the transactions read-set and write-set are

contained in the class•s read-set and write-set

respectively. The various transaction classes are not

necessarily disjoint (JtlTH 80). Conflict graph analysis

(described below) is actually perfonned on these classes,

not on individual transactions. Two transactions from

different classes enter a conflict if their classes do

so.

Examole

suppose there are three transaction classes

defined by their read and write-sets :

cl : read-set a t a:t. J ' write-set a ~82.' c31

c2 : read-set • tal, b2' c3 J ' wrtt set •

{a2' 83' c2' c3 J

c3 : read-set • {al' b2} • write-set • { a2,c2,c3}

_ Let there be three transactions s

Tl : read-set • [b2} • write-set • l 82• a3~

T2 • read-set • {.a1 ~ writa-set • tc~, c3} • •
T3 1 read-set a {a2 } • writ .. set =l c3 ~

Then it can be said that

t 1 is a member of c2,

12 is a member of c2 and c3 ,

T3 is a member of c1 •

rA)nfliet graph analysis is a technique to·

analyze the transactions on the basis of the predefined

transaction classes in order to detect the presence of

conflict. A conflict graph is an undirected graph

that summarizes conflicts between transactions in

different classes. For each class c1 , the graph contains

two nodes, denoted r 1 and wi, which represent the read­

set and write-set of ci. The edges of the graph are

defined as follows (Fig.9) : (1) For each class c1,

there is a vertical edge between r1 and w1 ; (2) for

each .pair of classes c1 and Cj (with i ~ j) there is a

horizontal edge between i'fi and Wj if and only if write­

set (C1) intersects write-set (Cj) ; (3) for each pair

of classes ci and Cj (with 1 ~ j), there is a diagonal

edge between r 1 and wj if and only if readset {c1)

i.ntersects writeset (Cj). The figure shows the conflict

graph for the aboye example.

C1 READSE T :: t a.2 }

FIG.9 CONFL1CT GRAPH

Different kinds of edges of a conflict graph

(viz. horizontal edge or vertical edge) require different

levels of synchronization. Synchronization as strong

as locking is required only for edges that participate

in cycles. Thus, in general, the output of analysis of

conflict graph is a table that indicates

1) for each class, which other classes it conflict~ with and

ii)for each such conflict, how much synchronization

(if any) is required to ensure ser1alizability (BEFN 81).

It is assumed for convenience that each tM of SU0-1

is only permitted to supervise a particular class of

transactions and vice versa. Thus, when a transaction

T is submitted, the system determines the class to which

the transaction belongs and sends it to the TM that

supervises this class of transaction. The TM

synchronizes the transaction against other transactions

in its class using a local mechanism similar to locking.

To synchronize the transactions against transactions in

other classes, the TM uses the synchronization method (S)

specified by the conflict graph analysis. These methods

are called 'protocols•.

4.1.~ Timestarno-based orotocols

sDD-l uses four timestamp based basic protocols to

synchronize transactions after the c~nflict graph indicates

the amount of synchronization required by each

transaction. These are known as synchronization

protocols and vary according to the degree of
/

synchronization required and cost of use. .For instance,

the least expens1 ve protocol is intended for transactions

t.hat can not interfere. such as reading the database to

generate a sales slip through a point-of-sale terminal.

The strongest and most expensive protocol is resolved

for unantieipated transactions that are not known

members of any of the "redefined classes .•

The rules that govem the selection of pntocols

for use in various situation determined on the basis of

analysis of eonflicts between transaction classes are

known as protocol selector rules. The details of the

protocols are complex and have been given along with the

selection rules in BE~ 80.

Bernstein et al. { BER-l 7Q) have shown that the

conflict analysis approach guarantees internal as well

as mutual consistencies and allows more concurrency than

the classical locking approach.,

'·2 Reservation Lists

Milan Mllenk~vic• proposed a new reservation

mechanism 1n 1979 for synchronizing c~ncurrent updates

"

in distributed database systems that have high degree

of data redundancy (MILE 79). The mechanism, a

clever hyorid (K0HL 81) of locking and timestamp

ordering is based on the use of a reservation list

associated with every individually reservable database

entity. The list contains an entry (viz. timestamp of

the transaction) for each of the transactions that

intends to use the related entity. Milenkovic• has

devised algorithms to allow the transactions in the

list to use one of two compatible synchronization

protocols to update the entity. The use of reservation

list ensures the maintenance of internal consistency

of individual copies and mutual consistency of

redundant copies in the database. This section presents

an algorithm for a fully redundant distributed database

system.

Assumgtions

Following is the outline of underlying assumptions

of the proposed solution.

Single-site access : It is assumed that all.

entities required by a transaction may be found a~ a

single database site. This requirement is met when the

entire database is replicated at several nodes and

also met in some distributed database systems with

partia 1 redundancy.

Timest~mps : Each transaction is assigned a

timestamp by the database site where it enters the

system.. Timestamps are assumed to be unique and

nondecreasing.

Message segueneing : All messages sent from one

site to another are assumed to be delivered after a

finite but variable del~y in the same order as they

were sent. No assll?lption about the relative ordering

of the messages sent from two sites to a third one is

made. This assumption is not fundamental to proposed

solution but helps to eliminate numerous implementation

details.

§Xstem•s availability : All sites and c:ommuni­

cat~on channels are assumed to be ~vailable during the

message exchange required by the algorithm. The

synchronization protocols used by the transactions

require regular message exchange between the database

sites in the course of update processing.

Solution

The synchronization scheme for fully redundeant

distributed databases or a subset of the partially

redundant database systems that satisfy the single site

access assumption. allo\Ns transactions to use one of

two compatible protocols.. Protocol P (for pessimistic)

requires transaetions to preclaim and reserve database

objects prior to executio~. But, under protocol 0

(for optimistic) the transaction is first tentatively

executed, and the protocol subsequently checks Wheth~

the tentative update can be made pexmanent or must be

rejected due to consistency conflicts. The protocols

are designed to be compatible with each other so that

they may be used in the same system concurrently and

thus increase its flexibility.

Protocol P :

As described by Milenkovic•, when a transaction

T is submitted for execution to the database controller

residing at a site si, the following set of rules

constitutes protocol P s

l. Ttmestamoing : Si assignes a unique

timestamp, derived from Si'S clock and unique

identifier, to the transaction T, TS(T).

2. {nternal Reservation : Si resarves entities

from r•s read-set, R s(T) and write-set, #'IS(T), intexnally.

If any of those entities is already reserved, r•s request

is entered in the associated reservation list according

to its timestamp : after all older reservation requests

(whose timestamps are smaller than TS(T), and in front

of the younger ones.

3. Gl!lbal Reservation : Si broadcasts a

reservation message on behalf of T. The reservation

message has the following foDnat :

Reserve ; sender's ID : 51,

timestamp t TS(T),

identity of the entities to be

reserved s -~(T)

All reservation broadcasts sent by a site must be ordered

according to the timestamp of the transactions themselves.

i.e. they must contain increasing, althryugh not

necessarily consecutive timestamps.

4. Acknowledgements : Each site, upon receipt

of the reservation broadcast, reserves entities contained

in ~(T) in its respective copy of the database according

to rule ~. ~4\en this process is completed, an acknowledge­

ment is returned to the site Si.

Acknowledgement; responder's ID, transaction : T

5. Execution s transaction T is executed,

using si•s copy of the database, when the following

conditions are met.

(a) An acknowledgement of the reservation broadcast

is received from ea~h database site, and

(b) T'S reservations become the oldest in Si •s

reservation lists associated with the entities contained

in RS(T) and ~;s{ T) •

6. Uelate broadcast : Si aoplies updates of

T (WS(T)) to its copy of the database, removes internal

reservations made on behalf of T, and broadcasts an

update message to all other sites.

Update : values of the entities to be

updated : ~15(T)

7. Comoletlon : Upon receipt of the update

message. each site applies the specified updates to its

copy of the entities contained in .~(T) 1 as soon as the

reservations set on behalf of T become the oldest in the

related reservation lists. Each such reservation is

subsequently removed.

Because of the reservation scheme, the

advantage with this protocol is that there is no need

to reject concurrent updates involved in consistency

conflicts. Each site is allowed to accept all the

transaction load it can handle, because the existence of

some transactions in progress does not prevent it from

initiating the new ones. irrespective of whether they

overlap or not ...

Secondlyt protocol P does not require permanent

storage of timestamps because a timestamp ceases to

exist when the associated transaction completes its

execution •.

Thirdly, the efficiency of the _protocol is

further enhanced because of relatively low delay and

co~unication overhead due to the communication and

reservation of only the writesets of updating

transactions.

J ... astty, timestamp ordering of transactions

guarantees mutual consistency of all copies of the

database and absence of deadlocks. The transactions

generated in the system always complete execution in

finite time because of the fact that a transaction may

wait only for transactions that are older than it.

Proto co 1 0 :

Protocol 0 was designed to remove the restriction

contained in protocol P that database entities must be

preelaimed and reserved before the execution of a

transaction can begin. This aims at imrJroving

efficiency for certain transactions that would otherwise

have to reserve large portions of the da.tabase just to

guarantee that all objects that are needed have been

preclaimed.

Under the protacol o, after t1mestamping of a

transaction T the entities required by it are locked

locally at the initiating site and the transaction

executed using these entities. All updates are

tentatively recorded by that site which then

communicates with other sites in order to deteDmine

whether an older transaction executed elsewhere in

the system obsoletes the work of T. Based on the

information gathered from other sites, the initiating

site decides whether to accept or reject the

tentative updates of the executed transaction and

announces its decision to the rest of the system.

According t? Milenkovic (MILE 79} when a

transaction is submitted to a database site Si, the

following steps constitute protocol o.
1. Timestamoinq : Si assigns a unique

timestamp toT- TS(T).

2. Execution : Si begins execution of T and

locks each entity required by T. If an entity requested

by T is not available, T is blocked and its request is

entered in the associated lock/reservation list according

to timestamp of T4 If a younger transaction initiated

by Si owns the entity, the ownership is revoked and the

said transaction is restarted. Restarting of a

transaction ~onsists of discarding of its tentative

updates and releasing of its locks.

¥'4hen all internal locks are granted t(> T •

execution of T is completed and its updates are

tentatively recorded elsewhere in the database (but not

in the database proper) by 51.

3. Tentative u~ate : Si broadcasts a

tentative update message on behalf of r. This message

contains the values of the entities modified by T and

its timestamp, TS(T). All update broadcasts sent by

a site must follow the timestamp ordering of the related

transactions.

4. Acknowledgemmts and rejections t Each

recepient of the tentative update broadcast records

reservations for the entities contained in ~6(T) in

its lock/reservation lists according to the timestamp

of T. If a younger internal transaction owns some of

the specified entities, it is restarted. If an update

broadcast has already been sent on behalf of the

restarted transaction, a reject message is sent to all

other sites. This message will cause the reservations

and the tentative updates of the restarted transaction

t~ be discarded by all other sites as well. Following

this process, each site acknowledges the receipt of

broadcast to Si.

5. Up,date broadcast : If T is still active

when all acknowledgements are received, Si makes the

updates of T permanent. That is, Si applies to its

copy of the database the values contained in

WS(T) and broadcasts a make pe~anent message.

6. Completion : Each recepient of the make

permanent broadcast makes the updates contained in

WS(T) pe~anent in its copy of the database, as soon as

the related reservations become the oldest in its lock/

reservation lists. Such reservations are subsequently

removed.

Under protocol o, transactions lock the required

entities of the initiating site but reserve them at all

other sites. The difference between lock and reservation

is that locks do not have to be globally confil'lfted and,

when granted, the related entities may be accessed and

tentatively modified.

In this protocol, internal consistency is

preserved by local locking of the entities when the

transaction is under execution. But the mutual consis­

tency among the copies of the database is maintained by

rejection of obselete updates as ensured by rule 4.

However, the protocol can not guarantee that trans­

actions run under it are completed in finite time because

of restarting of some transactions. Since a transaction

is as~igned newer timestamps each time it is restarted and

the number of restarts 1 s unbounded, completion of

such transactions in finite time is uncertain. This

problem is resolved by keeping track of the number

of restarts for each unsuccessful transaction. When

this number exceeds a predefined limit, affected

transaction is allowed to run under protocol P and

thus completed in finite time.

Both the protoc~ls described above are concerned

only with updating transactions. Read only transactions

can be executed in one of the following ways :

i) The system may regard the read only transaction as

a ~null update transactionh (empty write set} and run

under protocol P oro, as ap~ropriate. However, read

only transaction executed in this way unnecessarily

uses overhead of intersite communication and causes delay,

though tho transaction observes the consistent state of

. the database as of its timestamp.

ii) Entities required by a read only transaction are

locked internally (in sharable mode) at the initiating

site. and the local database copy is read when all locks

are granted.. In this way the transaction is guaranteed

to see a consistent state of the database, but not

necessarily as of its timestamp.

Comparision of orotocols P and 0 :

l) Pzotocol P accepts and completes a transaction in

finite time unlike protocol o.
~) Both the protocols require a comparable number of

intersite messages and incur the same communication

delay for accepted transactions.

3) Protocol 0 im~oses higher storage requirements on

the system, because all sites are supposed to keep the

tentative updates until their fate is resolved.

Milenk~vi•c states : uprotocol P should be

used for transactions that are long and/or expensive

to run, in order to avoid costly restarts. Protocol o
on the other hand, should be used for transactions that

are known to have low probability of conflicts, or for

which preclaiming of resources is inefficient.•

£HAPTER- 5

t!'tegrated Concurrency Control

The previous two chapters describe the various

techniques for synchronization of concurrently executed

transactions in distributed database systems. The

techniques of locking and timestamp ordering are the

two basic approaches made to maximize concurrency while

processing such transactions. Implementation of locking

scheme is possible in different ways ; basic twa phase

locking (basic ~PL}, primary copy ~PL, voting ~PL, and

centralized ~Pl.; that of timestamp ordering (T/0) is

possible in ways like basic T/0, or conservative T/0.

H~wever, better implementation methods can be constructed

by combining the above approaches.

A distributed database system experiences two

types of conflicts : read-write and write-write. The

techniques described in chapter 3 consist of using a

particular type of implementati'=ln (either one of 2PL

implementations or one of T/0 implementations) for

both the types of conflicts •. However, Berustein et al •.

(BEm 81) have suggested methods by using various types

of implementations separately for rw and WrN synchroni­

zations •.

5.1 Deeompgsition of Concept of Serializabilitv

The serializability of execution of a set of

transactions has been characterized in the proposition

of chapter 2. In this proposition the two types of

conflict (xw and ww) have been treated und"r the general

notion of conflict; Bemstein et al. have decompOsed

this concept of serializability and restated the

condition of serializability by distinguishing these

two types of conflicts.

Let E be an execution of a set of transactions

modeled by a set of schedules. The following binaxy

relations, 6enoted by • ~ ~ with various subscripts have

been defined on transactions in E : for each pair of

transactions t 1 and T j

1) r1 ~ rw Tj if in some schedule of E, r 1 reads

5ome data-item into Ybich 'rj· subsequently writes :

2) T1 ~ wr Tj if in some schedule of E, Ti writes

into some data item that T j subsequently reads :

3) t 1 ~ ww Tj if in some schedule of E, r 1 writes

into soma data item into which Tj subsequently writes :

4) t 1 _, 'r#r Tj if T1 .;y rw Tj or t 1 ~ wr Tj ;

5) t 1 -, Tj if t 1 ~ 1\l'l:l' Tj or t 1 ~ ww Tj

The relationship, " intuitively means "in any

serialization must precede.•• For example, r 1 ~ :rw Tj

means •r1 in any serialization must precede T ju.

Because. according to the proposition, if t 1 reads x

before T j writes into "• then the hypothetical seriali­

zation in the proposition must have t 1 preceding Tj.

Every c,,nfliet between operations in E is

represented by an •• ~ • relationship. Therefore the

proposition can be restated in terms of •• -7 ••.

The proonsition originally says that E is

serializable if there is a total oxdering of transactions

such that for each pair of conflicting operations o1
and oj from distinct transactions r1 and T j (respectively),

o1 precedes Oj in any schedule iff r1 precedes Tj in the

total ordering. This latter condition holds if and only

if the relation " ~ '* is acyclic. such a relation is

acyclic if there is no sequence T 1 ., r2 • T:£ ~ t 3 , ••••

T 1 ~ T Such that r1 • r . ntherwise, the relation
~ n n

is cyclic and in that case it is meanin2less to say that

a particular transaction precedes another particular

transaction. Hence the serializability of an execution

of a set of transactions can be ascertained by knowing

whether the relation M - ~ is acyclic over these

transactions. Bernstein et al. decomposed the

relation 11 ~ " into its components " ~ rwr" and

., ~ vm., (according to the definition of binary relation

{5) above) and restated the prop~sition using them.

The decomposed components are representatives of the

read-write and write-write conflicts respectively.

Restated nroposi tion (REIN aoa)

Let, rwr~1 and '* ~ ww'' be associated with

execution E. E is serializable if (a) '' ~ xwr'' and

~ ~ ww~ are acyclic, and (b) there is a total ordering

of transactions consistent with all at ~ r.~~rw and all

" -1 ww" relationships.

This proposition is an tmmediate consequence of

the first proposition (REJt.l 81) and indicates the

following facts :

l) This way of characterizing serializability decomposes

the problem of concurrency control into two parts :

firstly, the relations ti ~ ' 1 and *' • " must be rwr / ww

acyclic and secondly, a total order among transactions

is to be maintained in consistence with these relations

in order to ensure serializability of the transactions.

2) The proposition implies that rw and ww conflicts

can be synchronized independently except under thc:t ..

condition that there must be a total ordering of

transactions consistent with both types of conflict. ·

That rw conflicts are synchronized is ensured by the

fact that 11 '7 n~r"' is acyclic and synchronization of ww

conflicts is ensured by the fact that " ~ WJ~~" is

keyclic. However, in addition to both the relations

being acyclic, there must be a serial oxder consistent

with all 11 7 11 relations. In fact, this serial order

integrates the two independent techniques and completes

the solution of the nroblem of concurrency control in

distributed database. systems.

5. 2 rnt!Qrated. Concurrency Control Methods

Bemstein et al. show thAt the " ~ n~r" and

''~ ww" relationships are acyclic with respective

techniques used and in addition, they provide an

interface between the independent techniques. This

interface, in fact, guarantees the total oidering of

the involved transactions in confirmation with the

condition of part (b) of Bernstein •s proposition.

Various concurrency contr~l methods have been

listed that can be constructed using the different

techniques of two-phase locking and timestamp ordering.

For instance, a synthesis has been made between two­

phase locking for rw synehron1%ation and timestamp

· ordering for VM synchronization in oxder to construct

a more efficient concurrency control method than a

com~Unation of a pure 2PL technique (or timestamp

ordering technique) for both rw and ww conflict could

provide. The following is the description of a few

of the pronosed integrated methods.

Pure 2:PL methods

These methods are results of the coatiination

of different types of two phase locking techniques like

basic 2PL, primary copy 2PL, voting 2PL and centralized

~PL. Three of these methods have been described below

for illustration.

each of these methods ensure serializability

because each satisfies the required conditions : firstly,·

any two phase locking technique attains an acyclic

.. ~ tt or • ,. " relation when used for xw or ww --, rwr / WrN

synchronization (BEm 79 b. ESWA 76, PAPA 79) which is

a requisite condition according to the restated

proposition; secondly, the total ordering of the

transactions consistent with all • ~ r.wr" and all

" - ww" relationships aLso exists and this omer ·is

the serialization oxder in which transactions obtain

locks. This serialization order acts as the interface

that binds together the independent techniques used for

rw and ww synchronization. In addition to the interface,

two-phasedness of the transactions need to be preserved

i.e. while constructing integrated two-phase locking

methods, it is to be seen that all locks needed for both

xw and ww techniques must be obtained before any lock

is released by either technique (BE~ 81).

Each of the above methods can be further refined by the

choice of deadlock resolution technique as described in
I

section 3.1.3.

Method 1 : · Basic 2-PL for xw synchronization and

primary copy 2PL for ., synchronization.

In this method, a conflict between readlock and

writelocks is resolved by basic 2Pl. tecttnique, whereas,

that between two writelock.s by primary copy 2PL

technique.

Suppose there is a logical dataitem X w~h

copies x1 , • • • x., placed at various sites. If a

transaction wants to read X it sends read command to •nv
one site where a copy of X is stored. This command

implicitly requests a readlock on th¥ copy of X at that

site. To write into x, the transaction sends prewrite

commands to every copy of X and the commands implicitly

request writelocks on the copies. Bernstein et al.

classify the writelocks into three types due to the fact

that various types of \'lfritelocks need to be obtained at

various copies for the locking conflict rules vary for

writelocks from copy to copy of a dataitem.

(1) Rw writelock : such a writelock only conflicts

with readlock.

(11) WW wrltelock : such a writelock conflicts with

another similar writeloek.

(111) Rww writelock : such a writeloek conflf.cts with

readlocks, ww writelocks and also rww writelocks.

~ile using basic 2PL for rw synchronization,

a transaction willing to read a data item X requests

for readlock on any copy of X. This readlock conflicts

with writelocks on all copies when another transaction

is willing to write into X and that the prewrite of thi.s

transaction attempts to obtain r:w write lock (as this

writelock only conflicts with a readlock on the same

data item) on all the copies of x. Thus this type of rw

conflicts may be resolved at all copies.

On the contrary, writelocks conflict with

another writelock only in the primary copy and thus it

is resolved only at that coPY. Since a readlock can also

be obtained at the primaxy copy, the write-lock to be

used her& should be rww type.

Method 2 :

. · ..

Primary copy 2PL for rw synchronization

and voting 2PL for ww synchronization.

In this method, read-write conflicts are resolved

in the primary copy only whereas the write-write conflicts

are resolved by requiring that a transaction can write

into a particular data item only when the system grants

majority of writelocks to the transaction.

Suppose there are cooies x1, ..,. •"m of a logical

data item X and x1 is the primary copy of X. To read x,
a transaction sends read .request which implicitly obtains

readlock on the primaxy copY x1 • Once the readlock is

granted, the transaction can read any copy of x. However,

a transaction willing to write into x, first sends

prewrite commands to each site that stores a copy of x.
The prewrit.e command at the primaxy copy obtains a rw

wr.i,telock which prevents other readlock requests from

accessing the item. Thus read-write conflicts are

resolved at the primary copy.

The ww synchronization is obtained by voting 2PL

technique. v~en a transaction issues prewrites in ~rder

to write into x1, ~11 prewrite (x1) commands except

prewrite (x1) request for a rww writelock on the primary

COpY of X i.e. x1 where read commands in general are

allowed to obtain readlocks. If the rww writelock can

n~t be set on this copy. an rw writeloek is set on x1
before rwt1 writelock is made to wait. A transaction

writes into every copy of the required dataitem if it is

granted a ww (or rww) wri telock on majority of copies

of it.

•

Method 3 : Centralized 2'Pl. for rw synchronization and

basic 2PL for ww synchronization.

Suppose there are copies of a logical dat• item X

residing at various sites. · Since centralized 2PL

technique is used for rw synchronization, a transaction

before reading {or writing) any copy x1 of X, obtains a

readlock (or rw writelock) on X from a centralized 2PL

scheduler •

Since the basic 2PL is used for ww synchrJnization,

before writing x. a transaetion sends prewrites to every

site that stores a copy of X and these prewrites

implicitly request ww writeloeks on every copy of x.
When two such ww writeloeks enter a conflict, one is

processed and the other one is made to wait which is

processed after the first one releases the lock.

In all the above meth~s, readlocks are

explicitly released by special lock release commands

while writelocks are implicitly released by write commands

(because prewrite command sets a writelock, after

required computations is perfoxmed, the data in the

original database position is updated in a two phase

commitment manner where the write command takes the

updated data into the database by simultaneously

releasing the writelock on it).

107

•

~re Timestamp Ordering (T/O Methods

The basic T/0 technique, the conservative T/0

technique and Thomas write Rule (for ww synchronization

only) can be combined to form various integrated methods.

These methods guarantee serializability as each

of them satisfy the required conditions : firstly, the

technique of timestamp ordering attains an acyclic

tt ~ rwr" or " ~ ww• relation when used for rw or YIN

synchronization ; this is because each site processes

conflicting operations in timestamp oxder and thus

each edge of the " ~ rwr" or 11 ~ ww• relation is in

timestamp order : since all transactions have unique

timestamps, no cycles are possible. Secondly• the total

oxdering of the transactions consistent with all " ~ xwr•

or 1t ~ " relationships also exists and the timestamp . ww

oxder is the valid serialization older that satisfies

the restated proposition.

Because two different T/1 techniques are used

independently for rw and ww synchronization, the

interface between the techniques is maintained by

requiring that both techn~ques use the same timestamp

for any given transaction.

Three of the inte!rated methods have been

described for the sake of illustration.

Method l : Basic T/0 for rw synchronization and

conservative T/0 for ww synchron1%ation.

A transaction is assigned a globally unique

timestamp which is used for both J:W and \WI synchroni­

zation. Each data item is associated with a read

timestamp R - ts and a write timestamp w.-ts. In oxder

to achieve tw~hase commitment of a transaction, its

read and prewrite commands are buffered.

Let min- R-ts(x) and min-~ts(x) be the

minimum timestamps of any buffered read(x) and

prewrite (,x) commands on data item x. Suppose R denotes

the read{x) command and P denotes a write(x) command.,

The steps for the method would be as follows :

l) If ts(R)<'lf-ts(x), R is rejected.

else, if ts (R) > min - P -ts(x), R is buffered.

else R is output and ~ts(x) is set to max (R-ts(x),ts(R)).

2) Since conservative T/0 is used for ww synchroni­

zation, a prewrite command is always buffered instead of

being rejected.

3) If ts(w) > win-1\..ts(x) or if ts(w) is greater than

the minimum timestamp of any buffered write command

from some transaction site, W is buffered. Else W is

output and W.ts(x) is set to ts{w).

4) When W is output, its prewrite is debuffered and

the buffered read and write commands are retested to

see if any of them can. be processed for an output.

Method 2 : Basic T/0 for xw synchronization and

T'tlR for ww synchronization.

Here also, each dataitem is associated with

read and write timestamps as in the previous case,

however, the steps of the method are different and are

as follows :

1) If ts(R) < 'f~ts(x), R is rejected. Else if ts(R) >
min-P-ts(x), R is buffered. ElseR is output and

~ts(x) is set to max (~ts(x), ts(R)).

2) If ts(w) > w-ts(x), the write command is processed

as usual i.e. x is updated. If, however, ts{w) <
w..ts{ x), w is ignored according to TWR and it has no

effect on the database. In this method, a sc:hedulttr

always accepts prewrite commands but never buffers

write commands.

3) When w is output, its prewrite is debuffered and

the buffered read commands and the write commands

(if any) are retested to see if any of them can be

processed for an output.

Method 3 : Ccinservative T/0 for rw synchronization

and TWR for ww synchronization.

In this method, each data item is required to

be associated with a read timestamp and a write timestamp

which are the timestamps of the respective operations

that have already been processed on the dataitem •. Let

Min-W..t.s(51) be the minimum timestamp of any buffered

write command from a site Si. Let the read command of

a transaction to be executed on a data item X be denoted

by R, a prewri te command l7f P and a write comrr:and by w.

Then the method consists of following steps :

1) If ts(R) > min-W-ts(Si) for any 51, R is buffered;

else it is output.

2) A prewrite command is always buffered till the

write command arrives and if ts(w) < w-ts(X), i1 has no

effect on· the database: that is such write command is

ignored. Else, if ts(·;~) > w-ts(X), it is output.

3} When W is output, its prewrite is debuffered;

buffered read commands and of course, the incom~ng

write commands (if corresponding prewrite command is

buffered) are retested to see if any of them can be

allowed to operate on the data.

~ixed 2PL and ~imestamp ordering methods

These methods are constructed by using two-phas•

locking technique for rw(or ww) synchronization and

timestamp ordering technique for ww (or rw} synchroni­

zation. However, in oxder to guarantee serializability

of executions, the methods must satisfy botb the conditions .
stated in the theorem :

l) The rf!lation '* ~ r.Nr• and ., -1 VM .. are required to

by acyclic, which is of course the case with each of ~PL

and timest•mp techniques.

~) It is required that there is a total oxdering of

transactions consistent with all 11 .., n~r'1 and all • ~ ww•

relationships. This condition requires an interface to·

be built between the independent techniques and that the

interface is required to guarantee that the combined

" ~ •• relation (i.e. ~ rwr U 7 ww> remains ac:yclic.

This means, the interface must ensure that the seriali­

zation order induced by rw technique is consistent with

that induced by the tiM technique. The interface given

below makes this guarantee.

The interface

In any ~PL technique, a transaction ·owns all the

locks it will ever own at: the end of its growing phase

. (the first phase of two-phase comr·~itment. discussed in

chapter 2), known as the locked point of the transaction.

Then, in a serial execution it is a fact that all

transactions start their execution at their respective

locked points and also that is the case with all seriali­

zable executions. Hence these locked points of an

execution determine the serialization order of the

execution. However, the serialization order induced

by any timestamp ordering technique is obviously deter­

mined by the timestamps of synchronized transactions.

There being different serialization orders for different

techniques, if one technique is used for rw synchroni­

zation and another for ww synchronization, there would

be problem of total ordering among the transactions.

This problem is resolved by requiring the locked points

to induce timestamps of the transactions (BE~ SOb).

Locked points induce timestamps in the following

way. Each data item X of a database is required to be .

associated with a lock timestamp, ~ts(X). When a

transaction T sets a lock, it simultaneously retrieves

L-ts(X). When T reaches its locked point. it is assigned

a timestamp, ts(T), greater than any L-ts it retrieved.

When T releases it lock on X, it updates L-ts(X) to be

max {I-ts(x), ts(T)).

It can be proved that timestamps generated in

this way are consistent with the serialization order

induced by 2Pl., technique i.e. ts{Tj) ts{Tk) if Tj must

precede Tk in any serialization induced by 2PL.

Proof

Let t 1 and Tn be a pair of transactions such that

T1 must precede T
0

in any serialization.

Thus there exist transactions t 1, t 2 , ••• , tn-1•

T
0

such that for 1 • 1, ••• n-1

(a) T 1 's locked point precedes T 1 .,:.1 s locked point and

(b) t 1 releases a lock on some data item X before Ti+l

obtains a lock on X.

If L is the r.-ts(X) retriev~ by r 1• 1, then

ts(t1) L ts (Ti+l) and by induction ts(T1) ts(T0).

Therefore, timestamps generated are consistent

with the serialization .order induced by ~PL (BEm 81).

A mixed method using basic 2PL for rw synchroni­

zation and Thomas Write Rule (TWR) for W# synchronization

has been described below for the sake of illustre~tion.

M•tbod

This method requires that every stored data item

have a lock timestamp L-ts and a write timestamp W.ts.

Let X be a logical data item with copies

x1, ••• , X,.· To read X, a transaction T issues read

,CODINind on any copy of x, say xi. This comnand implicitly

requests a readlock on x1 and when the readlock is granted,

L-ts{xi) is retumed to T.

To write into X, T issues prewrite commands on

every copy of x. These connand request writelocks {or more

specifically known as rw writelocks that only conflict with

readlocks on X) on the corresponding copies, and ~s each

writelock is granted, the corresponding L-ts is

returned to T. When T reaches the locked point 1. e.

when all the required locks are obtained ts(T) is

calculated as described in the last section. This

timestamp is assigned to the write command which are

then sent for updating purpose.

These write commands are processed using Thomas

~"iri te Rule. Let W be the write command to update xj :

i l if ts{ W) > · i'-ts(xj), -the wr:i te command is

processed as usual and consequently xj is updated.

11) if ts(W) < W-ts(·X:j)' N is ignored.

This method has the advantage over pure ~PL

methods in the sense that here transactions execute

concurrently even if their write-sets intersect. This

is because, writelocks never conflict with other write­

locks and those obtained by prewrites are used only for

rw synchronization. Also, the write command of a

transaction is processed only after it is assigned a

timestamp which is induced by the locked point of the

transaction i.e. after the transaction obtains all of

its locks.

5. 3Conclusion

This dissertation on synchronization techniques ..
does not contain all the techniques available in

literature, but concentrates on the basic frameworks

required to achieve maxima 1 concurrency while running

concurrent transactions.

All of the concurrency control mechanisms

discussed in last three chapters have been designed for

use in a distributed transaction-processing environment.

The data-it.ms have been assumed to be independent

database entities directly associated with physical or

logical storage units (pages, recoxds, or files).

Transactions have been assumed to consist of a sequence

of read and write operations and of course, with local

computations. !bus. tfie techniques are not able to

support concurrency control in a general distributed

environment; however, they provide a general framework

that resolve the problems ar:ising out of multiple

access to a shared data where database consistency need

· to be preserved.

Although various techniques have been developed

for synchroni2ation of concurrent execution of trans­

actions, perfomance of a few of a them has been

evaluated. Factors influencing the performance when

the techniques are used, are system throughput and

transaction response time which are under the influence

of intersit.e communication, local processing, transaction

restarts and transaction blocking. The impact of these

factors varies from technique to technique {BERN 81).

Thus, a comprehensive analysis and eomparision between

the various techniques need to be studied in order to

optimize their use in distributed database systems.

ALSB 76

BE~ 79

B~ 80

BER-.1 ~a

BEm 81

CERl 84

OAVI 81

RIRLIOORAPHV

ALSBERG, P.A., and DAY, J.D. "A princi?le for
resilient sharing of distributed resoureesn,
in Proc. 2nd Int. Conf. Software Eng ••
'"let. lq76, pp. 562-570.

BEft.lSTE IN, P .A. • SH t PMAN, 0. ;1. • and ~, ~ .s . ,
taFotmal aspects of serializability in database
concurrency control., , IEEE Trans. Softw. Eng.
SE-5, 3(May l97q), pp. 203-216.

BERNSTEIN, P.A., SHIPMAN, D.W., and R1TlfHH,JR.
nconcurrency eontr~l in a gystem for distributed
databases (SDO..D", ACM Trans. on Database Systems
5, l(Mareh 1Q90), pp. 18-51.

BE~STEIN, P.A., and Gcnil.MAN, N. "Timestamp
based alqorithms for c->ncurrency control in
distributed database systems••, Proc. 6th Int.
Conf. Very Large Data Bases, :'let. 1900.

BEmSTliGI, P.A., G01DMAN, N., and LAI. M.Y.
"Two Part ?roof Scheme for Database Concurrency
Control.,, in Pmc. 5th Berkeley Workshop
Distributed Data Management and Computer
Networks, Feb, 1980. ·

BEJtiSTEIN, P.A ... G >JL>MAN, N. 11Concurrency
Control in Distributed Database ~ystems"•
in Comouting Surveys 13, 2 (June lQ8l),
pp. 185-221.

CERl, s., PELAGATTl, G. h0istributed Databases
'Princioles and Systems•J - Me Graw-Hi 11 Book
Company, lQ84.

DAVIES, 0.·:1., H'.>LtER, E., JENSEN, E.D.,
KtMBLET"J-1, s.R., l.AMPSct~, l.W., LEIANNJ G.,
THURBER, K.J., and i~TS::tJ, R. \If. 111listributed
systems - Architecture and Implement•tion
V'll.l05, Lecture notes in Comouter Science,
Berlin, Springer-Verlag, lQ81.

DEPP 76

ESWA 76

GRAY 79

HOLT 72

KING 74

lAMP 76

DEPPE, M.E., and FRY, J.P. ')Distributed
databases : A summary of research• , in
Computer networks, 1, 2, North-HolLand,
Amstexdan, Sept. lq76.

ES.~ARAN, K.P., GRAY, J .N., lDRIE, R.A., and
TRA!GER, I.L, ~The notions of consistency
and predicate locks in a database system••,
Commun, ACM 19, ll (Nov. 1976) op. 624-633.

Gr\ii.:IA-M'1LINA, H. •• Perfoxmance of update
algorithms for replicated data in a
distributed database•. Ph.D. dissertation,
Computer Science Dept., stanford Univ.,
Stanford, Calif., June 1q7q.

GRAY, J.N. uNotes on database operating
systems41 , in Operating Systems : An Advanced
Course, Vol. 60, Lecture Notes in Comouter
Science, Soringer-Verlag, New York, 1978,
pp •. 393-481.

HAMMER, M.M., and SHIPMAN, D.if. ttReliability
mechanisms for SDD-1 : A system for distributed
databasesttf ACM Trans. Database Systems 5, 4
(Dec. 1qaoJ, pp. 431-466.

HJLT, R.C. nsome deadlock properties-of
Computer systems•, Comput. surv. 4, 3
(Dec. 1972), pp. 179-195.

KmG, P.F., C.1LLMtvER, A.J. "Database
Sharing - an efficient method for supporting
c~ncurrent processes", in Proc. lQ74 Nat.
Computer Conf., Vol. 42, AFIPS Press, Artin9ton,
va., 1974.

K'1HLER, W.H. '*A Survey of Techniques for
Synchronization and Recovery in Decentralized
Computer Systems", Comput. surv. 13, 2
(June 1981), pp. 149-183.

LAMPSOO, B. • and STUOOIS, H. ••crash recovery
in a distributed data stor•ge system,•~ Tech.
Rep, Computer Science Lab., Xerox Palo Also
Research Centre, Palo Also, Calif., 1976.

MENA 79

MILE 79

PAPA 77

ROSE 78

ft'JTH 77

JnTH 80

SCHR 00

MENASCE, D.A., and HUNTZ, R.R. •Locking and
deadlock detection in distributed databases,•
IEEE Trans. Softw. Eng. SE-5, 3 (May 1979),
pp. 19 5-:t.02 •

MILENKOVIC' M. "Synchronization of
concurrent updates in redundant distributed
databases•, Distributed Databases- edited
by c. delobel and ~. Litwin, Inria Sirius,
north Hotland, 1980 (original paper appeared
in 1979).

PAPAOIMITR!OU, C.H., BEft.JSTEm, P.A., and
ROTHN!E, J.B. ~some computational problems
relat~J to database concurrency control•, in
Proc. Conf. Theoretical Comouter Science,
Waterloo, Jnf. canada, Aug. 1977.

'PAPADIMITRIOU, C.H. 1'Serializability of
concurrent updates•, J. ACM 26, 4 (~ct. 1979)
pp. 631-653.

ROSENKRANTZ, D.J., STEAms, R.E., and
LEWIS, P.M. '•System Level Concurrency control
for aistributed database systems0 , ACM trans.
Database SYstem 3, 2 (June lQ78), ~p. 178-198

R'lTHN IE, J. B., and GOODNAN, N. "A survey
of research and development in distributed
database systems", in Proc. 3rd Int. Conf.
Very Large Dat.a Bases (IEEE), Tokyo,
Japan, Oct. 1977.·

ftlTJ+IIE, J.B. Jr., BEmSTEIN, P.A., Fox, S.,
GOOUMAN. N. HAMMER, M.. LAN.)EJG I T .A.,
REEVE, C., SHIPMAN, o.~v., and W~G, E.
fllntroduction to a system for distributed
.databases (SD~l)", ACM Trans. Database
Syst. 5, 1 (March 1980), pp. 1-17.

SCHREIBER, F.A., BALDISSEM, C., CERl. 5 ..
uotstributed Database Applications : An
overvie~, Distributed Databases- An
advanced course - Cambridge University Press.
Cambridge lqS).

STEA 76

ST~ 79

THOM 79

ULLM 84

STEAft.JS, R.E. t LEWIS, P .• M. It. and
RlSENKRATl, D.J. uconcurrency controls
for database systems", in Proe. 17th .
Symp. Foundations Computer Science (IEEE),
1976, op. 19-32.

STOOEBRAKER, M. ••concurrency control and
consistency of multiple copies of data in
distributed INGRES, IEEE Trans. Softw. Eng.
SE-5, 3 (tMy 1979), pp. 188-194.

THJMAS, R.H. 11 A solution to the concurrency
C·'lntr:>l problem for m:.Jltiple cr>py dattabases• •
in ·?roc. 1Q78 C'JMPCON Conf. (IEEE) , New York.

ULLMAN, J.D. - Principles of Database
Systems (2nd Edition) - Galgotia Publications.

···~Jr.

.#. /T'
.Af.'/

	TH17620001
	TH17620002
	TH17620003
	TH17620004
	TH17620005
	TH17620006
	TH17620007
	TH17620008
	TH17620009
	TH17620010
	TH17620011
	TH17620012
	TH17620013
	TH17620014
	TH17620015
	TH17620016
	TH17620017
	TH17620018
	TH17620019
	TH17620020
	TH17620021
	TH17620022
	TH17620023
	TH17620024
	TH17620025
	TH17620026
	TH17620027
	TH17620028
	TH17620029
	TH17620030
	TH17620031
	TH17620032
	TH17620033
	TH17620034
	TH17620035
	TH17620036
	TH17620037
	TH17620038
	TH17620039
	TH17620040
	TH17620041
	TH17620042
	TH17620043
	TH17620044
	TH17620045
	TH17620046
	TH17620047
	TH17620048
	TH17620049
	TH17620050
	TH17620051
	TH17620052
	TH17620053
	TH17620054
	TH17620055
	TH17620056
	TH17620057
	TH17620058
	TH17620059
	TH17620060
	TH17620061
	TH17620062
	TH17620063
	TH17620064
	TH17620065
	TH17620066
	TH17620067
	TH17620068
	TH17620069
	TH17620070
	TH17620071
	TH17620072
	TH17620073
	TH17620074
	TH17620075
	TH17620076
	TH17620077
	TH17620078
	TH17620079
	TH17620080
	TH17620081
	TH17620082
	TH17620083
	TH17620084
	TH17620085
	TH17620086
	TH17620087
	TH17620088
	TH17620089
	TH17620090
	TH17620091
	TH17620092
	TH17620093
	TH17620094
	TH17620095
	TH17620096
	TH17620097
	TH17620098
	TH17620099
	TH17620100
	TH17620101
	TH17620102
	TH17620103
	TH17620104
	TH17620105
	TH17620106
	TH17620107
	TH17620108
	TH17620109
	TH17620110
	TH17620111
	TH17620112
	TH17620113
	TH17620114
	TH17620115
	TH17620116
	TH17620117
	TH17620118
	TH17620119
	TH17620120
	TH17620121
	TH17620122
	TH17620123
	TH17620124
	TH17620125
	TH17620126
	TH17620127
	TH17620128
	TH17620129
	TH17620130
	TH17620131
	TH17620132
	TH17620133

