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Preface 

Distributed database system, a recent evolution 

in database technology has emerged from the successful 

combination of databases and computer networks. In such 

a system. an integrated database is built on top of a 

computer network rather than on a single computer, The 

data constituting the·database are placed at various sites 

of the computer network, and individual application 

programmes run by the corresponding computers access and 

update data at different sites. 

The distributed database technoloqy faces 

completely new problems and a great amount of research 

work has been done in order to sol. ve them. Concurrency 

control is one such problem which gets. complexified due to 

the distributed nature of the database system in contrast 

to the cen·tralized systems Where the problem is relatively 

simpler. The synchronization techni~ues studied in this 

· dissertation have been designed to solve the problem of 

concurrency control in distributed systems. 

This work has been divided into five chapters. 

Chapter l presents an overview of distributed databases 

which is an introduction to distributed systems. Chapter ~ 

discusses the problem of concurrency control that arises in 

such systems. Chapter 3 contains the basic synchronization 



teGhniques viz. two-ohAse locking and timestamp oidering, 

suggested and used to address this problem. Chapter 4 

discusses two advanced techniques viz. Conflict analysis 

and reservation list that eliminate some of the short­

comings encountered in the techniques of the preceding 

chapter. ·Chapter 5 embodies the techniques suggested by 

.integrating the basic methods of two-phase locking and 

timestamp o~ering. 

At the end, a list of references has been given 

fo-r further reading. 
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AN 'JVERVIE/1 :)F DISTRIB:.ITEO DATAJ.lASES 

For last fifteen years, computers have been 

extensively used for building powerful and integrated 

database systems. Such database systems have found wide­

ranging applications in various fields like commercial, 

scient.ific, technical and other organizations. However, in 

recent years availability of low cost computers and of 

computer n~twnrks has given rise to a new type of system 

which eliminates many of the short-comings of centralized 

databases and fits more naturally in the decentralized 

structures of many organizations. This system is kno\~ as 

distributed database system which, unlike the centralized 

ones, bas databases stored with different C3mputers at 

different sites of a conmuter network. 

This chapter formally introduces a distributed 

database system. Section 1.1 presents a precise definition 

of distributed databases followed by the motivations leading 

to the organization of distributed database system in 

section 1.2. Section 1.3 presents a comparative picture of 

various features of distributed and centralized systems. 

Preliminary ideas and architecture of a distributed database 

management system ( DDBMS) required for the understanding of 

synchronization techniques have been presented in section 1.4. 

The last section lists the areas or organizations of 

distributed database ap~lieations. 

1 



1.1 Distributed database 

A distributed database is a collec.tion of data 

distributed over different computers of a computer 

network and it is characterized by the following ( CERI84) : 

1} Each of the computers (i.e. processor along with its 

memoxy and -peripheral devices) of the network is referred 

to as a site which has autonomous processing capability. 

11) Each site also part.icipates in the execution of 

global applications or distributed applications in which 

a site might require to access data residing at more than 

one site. The existence of global applications is 

considered the discriminating characteristic of distributed 

databases with respect to a set of local databases. 

Illustration 

Suppose there is a bank having more than one 

branch (say three) situated at geographically different 

locations. Each branch has a computer with one or more 

than one teller terminals and the computer controls the 

account database of that branch. Each computer with its 

local ac~ount database at one branch constitutes one site 

of the distributed database. Computers at various branches 

are inter connected by a comrr:unication network. such a 

system is known as distributed database system (Figure l). 
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FIG.1 A DISTRIBUTED DATABASE Of\! A GEOGRAPHICALLY 
DISPERSED NEi'WORK. 



Applications issued by teller texminals of a 

particular branch may need to access only the account 

database of that branch. These applications are 

independently processed by the computer of that branch 

and aR called local applications. A debit or credit 

application on an account stored at the same branch at 

which it is issued ·is an example of local application. 

An application requested to transfer funds from 

an acc~unt of one branch to an account of another branch 

requires updating the database at two different sites. 

Such an application is called a global application. 

Distributed databasos can also be built on local 

networks unlike the preceeding example where the databases 

are placed at geographically different locations. 

Illustration 

Suppose the computers and corresponding databases 

of the above example are removed to a common building 

and are connected with a local network. Then each 

proce5sor and its database constitute a site of the local 

computer network and the system is also known as 

distributed database system because the characteristics 

of distributed databases remain satisfied (Figure 2). 
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1.2 Motivations for distributed §Ystems 

Technological changes like price-perfoxmance 

revolutions in micro-electronics, development of 

efficient communication systems and growing complexity 

of user needs are the major motivations for distributed 

database systems (DAVI 81). 

Mieroelectronic.s technology 

Technological advances like low-cost manufacturing of 

large scale and very large scale integrated circuits 

(LSI & VLSI) and large-sized memoxy chips have brought in 

a falling trend in haxdware price. This has made it 

easier and cheaper to install a multi-comnuter system 

(both in centralized as well as distributed database 

systems) consisting of several processors than to invest 

in a large and complex multiprogrammed uniprocessor. 

Communication technology 

Use of simple and cheap technologies as twisted 

pairs, coaxial cables, micro-wave transmi.ssion as well as 

sophisticated technologies like fibre optics in local 

area computer networks has prompted the building of 

distributed database systems out of several processing 

elements. 

User needs 

lJsually, organizations like industries, banks, 

inventory systems, hospitals and public administration 



systems exhibit decentralized functional structures 

because activities in these organizations are decentra­

lized by nature. Thus a decentralized style of 

management is more suitable for such organizations in 

contrast to conventional centralized style. For instance, 

it may be more profitable to provide each department of 

an organization with its own small computer and the 

required database of that department. Consequently, 

local tasks of a departrnent are run and controlled by 

the people of that department who understand them best: 

in addition, they have other databases of the system 

placed in various departments at their disposal due to 

the network systeM. Thus a distributed database system 

simplifies the task of decision-making and hence the 

task of management and improves overall efficiency. 

Uistributed database sy·stem is also economic. 

The possibility of installing processing elements with 

required databases (i.e. databases containing informations 

relevant for particular locaticms) at various locations 

brings in the advantage of reduced communication cost. 

Besides. in a distributed system, a lot of processing 

can be conducted on local computers in contrast to all 

processings being handled by one central but remote big 

mainframe computer. 



Distributed database approach supports a smooth 

incremental growth where an organization grows by 

a~dlng new, relatively autonomous organizational units 

(new branches, new warehouses etc.). such an addition, 

unlike in case o.f centralized database, does not affect 

the functioning of already existing units. 

In distributed database sy~tems, database can 

be replicated at each other site (fully redundant 

database) or at some of the sites {partially redundant 

database) depending on the need of the user. Such 

replications provide the system with higher reliability 

and availability. Because, failure of a particular 

site does not prevent the system from being operational. 

If the system does not contain redundant data, effect of 

each failure is confined to those applications which use 

the data of the failed site. Availability and faster 

access to data is achieved due to tha possibility of 

storing portions of the database near to where they are 

frequently used. 

1.3 Comparative features of distributed & centralized databases 

Distributed databases allow design of systems 

which has different features from traditional centralized 

systems~ . Centralized control, data independence. 



reduction of redundancy, integrity, recovery concurrency 

control, privacy and securi~y are the various features 

that characterize the traditional database approach. 

Centralized control 

Centralized control is an essential feature of 

traditional systems because it provides an organization 

with a central command over its infoxmation resources. 

The database administrator guarantees the safety of the 

data. 

However, in distributed databases centralized 

control is de-emphasized. A global database administrator 

takes eare of the whole database whereas the local database 

administrators have the responsibility of their respective 

local databases, often with a high degree of site autonomy. 

A distributed database may also be designed with global 

database administrators accompanied with complete 

centralized control. 

Data independenct 
' 

Data indepence is a major objective of centralized 

database system and is defined as the immunity of appli­

cation programmes to the actual organization of data. It 

has the advantage that programmes are not affected by 

changes in storage structures and access strategy. 



In distributed database, data independence has 

the same importance as in traditional systems in addition 

to a new aspect, known as distribution transparency. 

Oistributlon transparency provides a centralized view 

of the databases to the programmes implemented in t.he 

system. Consequently, the movement of data from one 

site to another does not affect t.he correctness of 

prograt~~nes. though the speed of execution gets affected. 

RQduction in data redundan§Y 

In centralized systems, reduction in data 

redundancy is desired to avoid inconsistency and to 

prevent wastage in storage space. 

However, in case of distributed databases, 

redundancy is a desirable feature; because replicated 

copies of databases guarantee reliability of the system 

and enhances its availability in spite of wastage in · 

storage space.The problem of inconsistency arises when 

updates are not perfo11Ded consistently on all cppies. 

This problem is related to concurrency control which 

has been discussed in chapter 2. 

Integrity, recovery and concurrency control 

The problems of integrity, recovery and 

concurrency control in traditi~nal database system are 

resolved by the use of transactions. A transaction is 



a sequence of executable operations which either are 

perfo:tmed in entirety or are not perfoxmed at all and 

thus is an atomic unit of execution. For instance, 

the debit operation is a transaction which is either 

executed or none is executed. 

Same approach is made to these problems in ease 

of distributed database systems where the problems are 

further complexified due to distribution. Atomic 

transactil'lns ensure integrity of the database.: however, 

the atomicity is threatened by site failures or 

concurrent execution of different transactions. Site 

failures may cause the system to stop in the midst of 

transaction execution, thereby violating the atomicity 

requirement. Concurrent execution of two or more 

transactions may pe~it one transaction to observe an 

inconsistent, transient state created by another 

transaction during its execution. 

Recovery and synchronization techniques take 

care of the problem of preserving the transaction 

atomicity during site failures and concurrent execution 

of transactions. 

~ivacy and security 

In traditional databases, privacy and security 
' 

are ensured by the database administrators having 

centralized control and specialized e~ntrol procedures. 



In case of distributed d•tabases with a high 

degree of site autonomy, privacy is maintained by the 

local d•tabase administrators; but the security is 

threatened because of the communication network. 

1.4 Distributed Database Management System 

A distributed database management system (DJBMS) 

is a collection of sites interconnected by a network 

(DEPP 76, R1nt 77). Each site is a computer with one or 

both the following software modules 1 a transaction 

manager ( TM) or a data manager (OM) • TMs supervise 

interactions between users and the DDBWS while OMs 

interact with the database. All the sites are inter­

connected by a network which is a comput.er-to-computt>r 

communication system. The network is assumed to be 

perfectly reliable with the following required conditions : 

firstly, the communication system is capable of 

transmitting messages between aites without distortion 

or error; secondly. between any pair of sites the network 

delivers messages in the order they are sent. 

Database 

The database in UJBMS consists ~f a collection of 

logical data items, denoted · ·.' X, Y, t.. In practice, 

these may be files, records etc. A logical database state 

is an assignment of values to the logical data items 



composing the database. Each logical dataitem may be 

stored at any DM in the system or redundantly replicated 

at several DMS. A stored copy of a logical dataitem is 

called a stored dataitem or simply a dataitem. A 

stored database state is an assignment of values to the 

stored dataitems in a database. 

Transactions 

Users interact with the DDBMS by executing 

transactions. A transaction is a sequence of operations 

on one or more data-items in order to change the state 

of the database. It is, in fact an on-line query 

expressed through application programmes written in a 

general purpose programming language. 

An imoortant oroperty of the transaction is that 

it is atomic in nature. Thus, each transaction if 

executed alone on an initially consistent database, must 

terminate and must leave.the database in a new consistent 

state. 

system architecture 

A DuBMS contains f~ur components {Fig.3): 

transactions, TMS, ~S and data. Transactions communicate 

with TMS, TMS communicate with DMS, and op.·s manage the 

data. TMS do not comrr:unicate with other Dh1S, nor do ONS 

communicate with other OMS. 
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TMS supervise transactions. Each transaction 

executed in the DDBMS 1s supervised bf a single TM, 

meaning that the transaction issues all of its database 

operations to that TM. Any distributed c:omputation that 

is needed to execute the transaction is managed by the 

™· 
Fuur operations are defined at the transaction-

1M interface. Read operation retrievs the value of a 

dataitem from the database. ffrite operation writes into 

the database i.e. creates a new logical database state 

in which a dataitem has a new value. Begin and end 

operations ~r~ used to indicate starting and ending of 

transaction executions. 

several commercially available uDBMss were 

developed by the vendors of centralized database 

management systems. They contain additional components 

which extend the capabilities of centralized DBHSs by 

sup90rting communication and c~operation between the 

DDBMSs which are installed at different sites of a 

computer network. 

A DDSMS may be ot two types del)ending on the 

local OBMSs used in the system : homogeneous and 

heterogeneous. In homogeneous ODBMS, each site has the 

same local DBMS, even if the c~mnuters and/or the 



operating systems are not same. However, a heterogeneous 

ODBMS uses at least two different OBMSs in the system. 

1.5 ~istributed· Database aoplications (SCHR 80) 

The following systems make use of distributed 

database management systems •. 

~~ufaeturing control s~stems 

These systems are structurally hierarchic. A 

central database is used for the overall scheduling and 

control of the manufacturing process and lo~l databases, 

close to the process units, store only infoxmations that 

is needed for supporting the local tasks. 

Inventory systems 

The inventory systems often present a hierarchic 

structure, with master stores and geographically 

distributed minor stores., The master stores may be 

connected through a generalized network and they can be 

the central nodes of star networks connecting the minor 

stores closed to each of them~ 

Soma inventory infoxmations (viz. quantities in 

local stores) are locally distributed without replication 

and heavy updating problems; however,. other infoDmations 

{viz. prices) are on the contrary replicated with full 

dependence. 



Banking systems, 

In banking systems, there is a greater need to 

guarantee the database integrity than in the above 

mentioned systems. Therefore in banking systems the 

need is particularly felt for a central control, 

corresponding to a hierarchical architecture of the 

information system. Re?licated inf~rmation, such as 

personal accounts which are kept at the proper local 

agency and at the central agency, are periodically 

ref'reshed. 

The developments in this field are expected to 

create the 'chequeless society•, or even •moneyless 

society' • with com!>uter communication between each 

purchase place and the buyer•s personal account. For 

each purchase, tha buyer's credit is checked, and, if 

p@rmissible, his bank account is reduced and the seller's 

account increased. 

Corgorat~ database 

A c~rn~>ration r•presents an organization with 

many autonomous divisions, e~ch of which can keep its 

own data~se.. Same data of general intere$>t can also 

be shared, typically, summary data can be maintained at 

high levels of the organization for strategical planning 

purposes. · 



Law enforeeme~\ sxstems, 

These systems include the information systems 

of the police, where data about criminals or terrorists 

are gathered. This kind of application seems naturally 

oriented towards distribution, since having the data 

available where they are needed is important; the data 

storage location is also distributed, since each police 

station usually keens data belonging to its geographical 

area. 

Medical, !Jstem.s, 

DUBMS may be applied to realize centralized hospital 

infcu:mation systems, where data about patients • treatments 

can be stored. 

Developments in this field wauld be able to 

provide a global architecture of medical information 

system which might consist of a general system connecting 

the computers storing the population's health databases, 

each of these computers would be the centre of a 

hierarchical system connecting the hospitals belonging to 

the same geographical area. 

~bli~ admin~stration !fstems 

These systems include demographic. fiscal. 

territorial information and other anpltcat1ons like 

managing of motor vehicle records or of telephone 

directories., 
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Increased population mobility makes the 

availability of demographic infoxmation necessary also 

in places other than the hometown, therefore the local 

demographic databases should be globally connected. 

Fiscal information sh~uld also be supported by 

a distributed system in order to have a larger control 

upon everybody's activities. 

Territorial information can be distributed in 

order to make urban or agricultural planning easier, 

by gathering local data and processing them. 



CHAPTER- 2 



C~CUFlRENCY C~TROL 

This chapter has been devoted to the discussion 

on the problem of concurrency control in database systems. 

Section 2.1 introduces concurrency control with examples 

and section 2~2 presents a simple model of a DDBMS where 

steps of processing user interactions with the system 

have been discussed; in fact, this section helps in the 

understanding of the various steps that a transaction 

wishes to execute and presents a picture of an overall 

database management system where techniques to solve the 

problem of concurrency control are to be applied. 

Section 2.3 deals with the properties of valid trans­

actions and the notion of database consistency that is 

to be maintained despite multiple access of the database 

by various transactions •. Section 2.4 discusses the 

concept of serial1zabil1ty which provides a key to the 

resolution of the problem of concurrency control. 

2.1 ·Nhat is concurren:y control 

Concurrency control is the activity of 

coordinating·concurrent accesses to a database in a 

multi-user database management system {DBMS). A multi­

user database may be centralized or a distributed one~ 



In centralized database 1 f the database 1 s 

accessed by a single user, programmes accessing the 

database are run one at a time, thereby making the 

access serial; however, lf it is accessed by more than 

one user, there is always a possibility that the data. 

base or more specifically a particular data item in the 

database may be accessed by some or all the user 

simultaneously and this simultaneous access is called 

concurrent access. Airline reservation system may be 

taken as an example (ULLM 84). It is a system with a 

centralized database where many sales agents may be 

selling tickets and changing lists of passengers and 

counts of available se•ts. If two or more agents run 

programmes to access the database, there is a possibility 

that a particular seat may be sold twice which is 

certainly an undesirable effect. Such problems arise 

due to concurrent access on database and is known as 

concurrency control problem. 

In distributed database management systems (UOBMS). 

two or more users access databases stored at different 

sites of the network., For instance, in a banking system 

designed as a DDBMS, a particular account stored in some 

specified database may be required to fie accessed by two 

or more users for retrieval or updating 



user•s retrieval operation interfere with another•s 

updating then the system would provide undesirable 

outputs to the users therefore. it is essential to 

prevent database operations perfomed by one user from 

interfering with operations ~rformed by another and 

this is achieved by concurrency control. The problem 

of concurrency control in ODBMS is more complex than 

that in centralized database systems because ( 1) usen 

may access data stored in databases of many different 

computers in a distributed system, and (~) a concurrency 

control mechanism at one com~Jter can not instantaneously 

know abOut interactions at other computers ( BEifl 81) • 

Examele of uncontrolled concurr•nt access 

The following example illustrates two out of a 

ntnber of ways in which users interfere beeause of 

uncontrolled concurrent access to databases. 

Let there be an on-line electronic fund transfer 

system accessed by automated teller machines ·situated 

at remote sites to process the transactions. The 

transaction of a customer, requests for data retrieval 

followed by computations on the data and for storage of 

the result back into the database. 

l) suppose two customers simultaneously try to deposit 

money into the same account with a previous balance of 
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Rs.lOO. The first customer deposits Rs.50 and the 

second deposits Rs.lOO ( Pig.4). The new balance in the 

account is the balance computed by either the first or 

the second customer depending on the oxder by which 

storing operation is executed. If first customer's 

storage operation precedes the second, the new balance 

in the account becomes Rs.~OO : otherwis•, it %emains 

as Rs .l~. ntus the net effect of both the deposits on 

the database is incorrect; although two customers 

de~osit money, the da~abase only reflects one activity; 

the other deposit is lost by tho system. This is a 

lost update anomaly because of concurrent execution of 

transactions. 

2) Suppose two customers simultaneously execute the 

following transactions on a person's savings account 

and checking account. Originally, these accounts have 

Rs.~ and Rs.50 respectively (Fig.5). 

Customer l : Transfer Rs.lOO from the person•s 

savings account to his checking account. 

Customer 2 : Print the person•s total balance in 

savings and checking account. 

In the absence of cnncurrenc:y control these 

two transactions 1n'terfere. The first transaction reads 

the savings balance, subtracts Rs.lOO and stores the 
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result back in the database. Since the concurrency 

control is absent, the second transaction may start 

reading the savings and checking balance at this point 

and prints the total as Rs.l50. Then the first 

transaction completes by reading the checking balance 

and then adding to Rs.lOO and finally storing the 

result in the database. unlike the previous case, the 

final values written into the database are correct; 

however, the retrieval by the second customer is 

incorrect which should have been Rs.250 instead of Hs.l50. 

This is an inconsistent retrieval anomaly due to 

uhcontrolled execution of concurrent transactions. 

2.2 Transaction-processing model 

Knowledge of the environment where transactions 

are processed is essential to understand the solution 

of concurrency eantrol problem. The basic framework of 

transaction processing models, for centralized as well 

as distributed databases have been described in this 

section. 

~.2.1 Centralized transaction processing model 

A centralized DBMS has one transacti,n manager 

(TM) that supervises the transaction and one centralized 

database under the supervision of a data manager (OM). 

A transaction T accesses the D1M.~ by i-ssuing the following 



t 

operations which are processed by TM. 

BEGIN a By this operation, the TM sets a private 

workspace for the transaction where the workspace acts 

as a temporaxy buffer for values read from and written 

into the database. 

READ (X) : When this command is issued, the copy 

of X is searched for by TM in the r•s private workspace. 

If the eopy exists, it is used by T ; otherwise, the tM 

retrieves a copy of X from the database and giVe$ it to 

T and puts it into T's private workspace. 

WRITE (X. new value) : The TM again checks the 

private workspace for a copy of X and if it is found, 

the value is updated to new value. This •write• 

operation does not store the new value into the 

permanent database. 

END : The TM requests the DM to store back the 

updated value into the permanent database from the 

r•s private workspace. Then T finishes its execution 

and its private workspace is discarded. 

Two-phase Commitment 

Above steps are correct insofar as a transaction 

once started need not be aborted and restarted before 

the completion of its execution (aborting a transaction 

and restarting it by the system is essential in the 



synchronization techniques discussed in later 

chapters). In case of restarting of a transaction, 

if the system requires the transaction to be aborted 

before all the involved data items in the database 

are updated to tho new value, the database reflects 

the partial effect of the transaction and the effect 

1 s to be avoided. 

Such partial effect can be avoided by 

requiring that each transaction either cttmrnits (the 

completion of a transaction is called •commitment') 

by updating a 11 the involved data 1 terns in the 

permanent database or does not, at all, start this 

updating. This property of transactions is called 

•atomic commitment •. Two-phase commitment is a 

procedure to implement this property (LAMP 76, GRAY 78). 

Suppose a transaction T is updating data item X andY. 

When T issues its END, the first phase of two-phase 

commitment begins, during which the OM issues the 

prewrite command that stores the values of X and Y fram 

T • s private workspace into sacure storage. If the 

DBMS fails during this phase. no harm is done. since 

none of T'S update have yet been applied to the 

permanent database. During the second phase. the TM 

issues write co~nd to DM to copy the values of X andY, 



into the s~ored database. If DBMS fails during the 

second phase, the database may cont.in incorrect 

infoxmation, but since the values of X and Y are already 

there on the secure storage, this inconsistency can be 

rectified when the system recovers. 

2.2 • .2 I!1strib,uted transaction nrocessing model 
I 

ODBMS has already been described in section 1.4 

and it consists of more than one TM and OM and thus 

differs from centralized model in two aspects ( BE:Ffi 8.1.): 

1) In centralized UBMS, it has been silently assumed 

t.hat ( i) private works-paces are pa;rt of the TM and 

(ii) data could freely move between a transaction and 

its workspace, and between a workspace and the OM. 

However, these assumptions do not hold good in case of 

DDBMS because TMS and.DMS run at different sites and 

the movement of data between a TM and a OM may be 

expensive. These aspects relating to how T reads and 

writes data in the workspaces are studied under query 

optimization problem which has no direct effect on 

concurrency control. 

~) The problem of implementation of two-phase commitment 

is eomplexified by the possibility that one site may 

fail while the rest of the system continues to operate. 

Because, if the failed site contains incorrect informations 



in its database due to system failure, other sites 

may access those infoxmations, thereby producing 

undesirable msults. Thus the procedure for the 

implementation of atomic commitment of transactions 

is modified (the details. of this procedure appear in 

HAFM 00). 

In DDBMS, a transaction T accesses the system 

by issuing BEGIN, READ, WRITE and rND operations. They 

are processed as follows : 

BEGIN : A private workspace for T _is created by 

the TM. 

READ (X) : The TM checks T's private workspace to 

sea if a copy of X is present. If so, that copy's 

·value is made available to T. otherwise the TM asks 

the OM to place the stored value of X in the workspace 

where it is received by T. 

i~RITE ( X,_ new-value) : The value of X in T 1 s 

private workspace is updated to new value, assuming 

the wotkspace contains a value of x. 
e!U : When this operation is requested, tw()o.phase 

commitment begins. Por each X updated by T, and for 

each stored copy of x1 of X, prewrite ( x1) is issued 

to each OM where the copy is stored. This co~~~nand 

copies the value of X from r•s private workspace onto 



secure storage at respective sites. After all prewrites 

are processed, the new value is finally stored from 

the secure storage into the permanent database. Then 

r•s execution comes to end. 

2.3 Transaction and Consistengy 

A transaction, a sequence of operations, is an 

atomic unit of database access, which is either executed 

or not executed at all and it has the following 

properties (CERI 84). 

Atomicity : Either all the operations constituting 

the transaction are perfomed or none are perfo:r:med. 

In case there is an interruption due to a failure, during 

the execution of operations, tho partial results of 

already executed steps are rolled back and the original 

values of the affected dataitems prior to the beginning 

of the transaction are restored. Interruption of a 

transaction occurs because of two typical ~asons : 

(l) transactions abort for restarting purpose and 

(2) system crashes. 

Durabilitx : 'lnce a transactian commits, the system 

must g~1rantee that the results of its operations are 

never lost, independent of subsequent failures. The 

results preserved by the system are stored in the database. 



Isolation : An incomplete transaction can not 

reveal its results to other transa~tions before its 

cornmi tment. This property is needed in order to avoid , 

the problem of cascading aborts (also called the domino 

effect) i.e. the necesslty to abort all the transactions 

which have observed the partial results of a transaction 

that was later aborted. If, however, some of these 

transactions had already committed. we would have to 

undo already committed transactions, thu5 violating the 

transaction durability property. 

Seriatizability : This is the most important 

property which orovides the foundation for concurrency 

control and in fact concurrency control is the activity 

of guaranteeing transaction's serializability. If 

several transactions are executed concurrently, the 

result must be the same as if they are executed serially 

in some order. 

Consistenc;y ( Es;ya 76) 

In database systems. users access shared data 

under the assumption that the data satisfies certain . 

consistency assertions called consistency constraints. 

For example, let there be a banking system where there 

are two accounts with balances Rs.~ and Rs.300. If a 

transaction transfers money from one account to another, 



the consistency constraint that the sum of the balances 

in bath the accounts is Rs.~ is required to be 

satisfied. 

If the values of the data items of a database 

satisfy the consistency canstraints, the state of the 

database is called a consistent state. In fact, a valid 

transaction when executed alone, transfo~s the databAse 

into a new consistent state; that is, a transaction 

preserves consistency. Thus it can be relevantly 

c3ncluded that a set of transactions if executed 

serially, also takes the database from a consistent 

state into a new consistent state. 

~.4 Serializability 

serial execution of a set of transactions, is 

definitely a correct method for running concurrent 

transactions because it guarantees the database 

consistency. However, it prohibits the tempora 1 inter­

leaving of transaction steps and thus severly affects the 

perfonnance by increasing the transaction-response time 

and reducing the sy5tem throughput {KOHL 81) • Hence 

concurrent execution of transactions by interleaving 

the transaction steps is necessary for increasing the 

performance efficiently of the system; of course with 



the candition that the execution of these steps 

preserves the consistency of the database. It may be 

noted here that transactions produce incorrect output 

if their s.teps are interleaved arbitrarity for concurrent 

execution which has been illustrated in 'the following 

example. 

Example 

Supaose in a banking system; there are three 

accounts A, B & C with balances Rs.200, Rs.lOO and Rs.50 

respectively 4 Two transactions T 1 and 12 are required 

to be executed on them. 

T1 1 BEGIN 

READ ACC A obtaining A Balance 

READ AOG B obtaining B Balance 

WRITE ACC A as A Balance - Rs.lOO 

WRITE ACC B as B Balance + Rs.lOO 

ENO 

t 2 : BEGIN 

READ AOC B obtaining B Balance· 

READ ACC C obtaining C Balance 

WRITE ACC B .as B Balance- Rs.50 

WRITE ACC C as C Balance tto Rs. 50 

END 



2.4.1 

These two transactions r1 and r2 when executed, 

electronically transfer Rs.lOO from ADC A to ACC B and 

Rs.50 from ACC B to ACC C respectively. 

The consistency constraint in this case is 

that the sum of the account balances must be constant. 

If the transactions are run serially i.e. r2 begins its 

exeeuti~n after r 1 o~ r1 begins its execution after T~, 

it is obvious that the consistency is maintained. 

However, if r2 is allowed to run between the first and 

second write operations of r1 , in the final state ACC A 

contains Rs.lOO, ACC.B contains Rs.~ and AOC.C contains 

Rs.lOO with the sum of the balances being set to Rs.400 

instead of Rs.350, which comprises an inconsistent 

state. 

Thus it is necessary to provide a system with a 

mechanism that allows only those concurrent executions 

which are able to oroduce consistent database states. 

The correctness of the order in which the transaction 

steps are interleaved is determined by serializability 

of transactions .. 

~erializ~bility in a centralized database 

Let R1(x) and Wi(x) den?te read and write 

operations issu~d by a transaction t 1 for the data item 

x. A sequence of operations performed by a set of 



transactions fonm a schedule (also called as a histoty 

or lo-g). For example, the following is a schedule for 

three transactions r1, Tj and Tk : 

s1 : R
1

( x)W1(y)'\(x)Rj(x)\lk(y)Wj(y) 

Two transactions r1 and Tj execute serially in a 

schedule s if the last operation of r 1 precedes the 

first operation of Tj in S (or vice versa); othexwise, 

they execute concurrently. A schedule is aaid to be 

serial if no transactions execute concurrently in it. 

For example, the following schedule is serial l 

In fact. a serial schedule defines an order among the 

transactions as in the case of s~, the order of 

operations indicates that Tj(Rj, Wj' Rj) executes after 

r1(R1, w1) and Tk(Wk' }\)executes after r1(Rj' wj, Rj). 

Hence the execution of a serial schedule is equivalent 

to the serial execution of the transactions forming 

the schedule. 

However, if a schedulP. is c~ncurrent (like s1), 

their correctness is based on serializability : 

A schedule is correct if it is serializable. that is 

i.t i& computationally equivalent to a serial schedule. 



The term •comoutationalty equivalent• means if the 

execution of a schedule produces the same output and 

has the same effect on the database as that of some 

serial schedule, it is said to be computationally 

equivalent to the serial schequle. Since execution of 

serial schedules produces correct output and every 

serializable schedule is equivalent to a serial one, 

every serializable schedule is also c~rrect. 

After defining serializable schedule, it is 

required to develop a correct concurrency control 

mechanism whieh ensures that all executions are 

·serializable or in other words the mechanism allows 

transactions to execute operations in such a sequence 

that only serializable schedules are produced. 

In order to analyze tho serializability of a 

schedule and correctness of concurrency control 

mechanism. we need the following two conditions which 

can be checked for determining whether two schedules 

are equivalent (PAPA 77, PAPA 79). 

Condition l : Each read operation reads data 

item values that are pr~ueed by 

the same write operation in both 

schedules .• 



Condition 2 : The final write operation in each 

data item is the same in both 

schedules. 

These conditions are applied in the analysis of 

concurrency control mechanism through the concept of 

conflicts between operations. 

Two operations are said to be in conflict if 

they operate on the same data item, one of them is a 

write operation and they are from different transactions. 

For example, <i'1< x), .vj( x}>. <?!1< x), Wj( ~ 

are pairs of conflicting operations because each pair 

contains a write operation and also each operation in 

a pair operates on a single data item. ~i( x), Rj( x}> ., 
~1(x), wj<y}:> are examples of nonconflicting 

operations since these requirements are not satisfied. 

The condition for the equivalence of schedules 

can be restated by using the notion of conflicts in 

the following way : 

· Two schedules s1 and s2 arw equivalent if for 

each pair of conflicting operations o1 and Oj 

such that oi precedes oj in sl. then also 01 

precedes oj ins~. 

The following example shows how a schedule is checked 



for serializabitity : 

Examnle : Let there be two schedules S and s• 
represented by the following sequences of operations. 

S : Ri ( xl Wi( x) Rj( X) Wj(y) 

S t : Ri (.X) W ( y ) f'l i ( X) Rj ( X) 

These two schedules are equivalent because the unique 

pair of conflicting operations ~i ( x), Rj( ~ 
appears in the same order in both the schedules. The · 

first schedule S is a serial schedule because the 

operations of the transacti,•n r1 precede all the 

operations of the transuction Tj. The second schedule 

S' is a serializable schedule far it is equivalent to 

serial schedule s. 
The example also shows that in the serial 

schedule s, transaetinn r1 precedes transaction Tj and 

this oxderlng of transactions is forced by the 

conflicting operations. Thus, in general it may be 

stated that precedence of transactions in the 

serialization older does not depend on the older of 

execution of the first operation of the transactions, 

but on the oxder of conflicting operations only (CERI 84). 

~.4.2 Serializability in distributed database 

In ease of distributed database systems, there 

ara a number of sites operating simultaneously. A 



transaction introduced into the system at a site may 

require to perform operations at several other sites 

and in this way each site may have to process operations 

of several transactions concurrently. The sequence of 

operations perfo~ed by transactions at a particular 

site is called a local schedule. For example, if there 

are a distributed transactions r1, T~, ••• , T
0 

to be 

executed at m sites, then the execution is modeled by a 

set of local schedules s1 , s2 , •••• , sm. 

Ensuring seriatizability of a set of transacti~ns 

in distributed systems is mare complex because a local 

concurrency control mechanism aoplied at each n!')de is 

not sufficient to guarantee the correctness of the 

execution of a set ~f distributed transactions. This 

has been illustrated in the following example. 

Example 

l~et there be two transactions having following 

schedules under execution at two different sites : 

S l { Site l ) : Ri ( X) W i ( X) Rj ( X) ~~ j ( X) 

s2(Site 2) : Rj(y).Vj(y)R1(y);w1(y) 

These·local schedules are individually serial; however 

there is no global serial sequence of execution of both 

transactions because in s1 , transaction t 1 precedes 



transaction Tj and ins~, transaction Tj precedes r1• 

Thus a strongest condition than the serializability of 

local schedules is required to guarantee serializability 

of distributed transactions. 

The execution of transactions r1, ••• , Tn is 

correct 1 f : 

1) Each lacal schedule is serializable 

2) There exists a total ordering of T 1 , •••• Tn 

such that, if r 1 precedes Tj in the total ordering 

then there is a serial schedule sk such that Sk is 

equivalent to Sk' and all operatians of r1 precede 

that of Tj in sk' for each site K where both transactions 

have executed some action (CERI 84). 

Papadimit~rioo et al. have expressed the above 

condition using the notion of conflicts in a proposition. 

proposition (PAPA 77, ?A'PA 7Q, STEA 76) 

Let r1 , T2 , ···• Tn be a set of transactions 

and let E be an execution of these transactions 

modeled by schedules s1 , ••• , sm. E is correct (or 

serializable if there exists a total ordering of such 

transactions for each pair of conflicting operations 

o1 and Oj from transacti~ns r1 and Tj resp&ctively. 

oi precedes oj in any schedule sl' .•• ' sm if and only 

if t 1 precedes Tj in the total oxdering. 



This proposition provides the foundation for 

devising a distributed concurrency control mechanism 

which would be correct· if it allows only correct 

execution of distributed transactions. In other words. 

the mechanism has to guarantee that the conflicting 

operations for a set of transactions are processed in 

certain relative orders in order to attain seria liza­

bility of execution of the transactions •. An algorithm 

designed to maintain such order among the conflicting 

operations is called a synchronization technique to 

ensure correct execution of distributed transactions. 



CHAPTER- 3 



SYNCHR:NIZATI~ TEC~NIQUES 

ftASEO ~ T\0. AiASE LOCKING & TIMFSTf'MP ORDERINp 

This chapter presents a description of the basic 

synchronization techniques developed for correctly 

executing concurrent transactions with maximal 

concurrency. Section 3.1 describes the technique of 

two-phase locking both for centralized and distributed 

database system and also discusses the management of 

deadlocks that arise in the implementation of the 

technique. In section 3.2, two types of timestamp 

ordering techniques have been presented : basic timestamp 

oxdering and conservative timestamp ordering (CERI 84) 

Two other techniques like conflict graphs and reservation 

list have been described in chapter 4. 

3.1 Two phase l~cking (2P~£ 

The synchronization techniques based on the 

approach of two phase locking have been discussed 

separately for centralized and distributed databases. 

3.l.l case of centralized database 

Whenever a transaction accesses a data item in a 

centralized database, it tmmediately locks it to prevent 

other transactions to access the same item during its 

own period of accession. In fact, in the simplest case 



each data item has a unique lock which is held by at 

most one transaction at a time. However, if a transaction 

attempts to lock a data item that is already locked, it 

must either wait until. the other transaction has released 

the lock or abort itself' or pre-empt the other transaction. 

Each dataitem already locked and modified by an a~orted 

or pre-empted transact.i,n is restored to the state it 

was in prior to the transactions beginning and then it is 

unlocked. This operation preserves the consistent state 

of the database even if an incomplete transaction unlocks 

the dataitem. 

There are two m~des in which dataitems are 

locked : 

l) A transaction locks a d•taitem in shared mode if it 

wants only to read the dataitem • 

2) A data item is locked in exclusive mode if a 

transaction wants to write into the data item. 

Locking of a dataitem by shared and exclusive 

modes of more than one transaction is not arbitraxy. 

Following rules govern the compatibility of lock-modes : 

l) A transaction can lock a dat~item in shared mode if 

it is not locked at all or it is locked in shared mnde 

by another transaction. 

~) A transaction can lock a data item in exclusive mode 

only if it is not locked at all. 



Conflicts 

Two transactions are said to be in conflict if 

they want to lock the same data item with two incompatible 

modes ; 

1) If both the transactions attempt to lock on the same 

dataitem and one is applying readlock {i.e. shared mode) 

whereas other is applying writelock {i.e. exclusive mode), 

the resulting situation is known as shared-exclusive or 

read-write (r:w) conflict. 

2) If both the transactions attempt to lock on the same 

dataitem and on• is a~plyinq writelock (i.e. exclusive 

mode) whereas other is also applying writeloek (i.e. 

exclusive mode) 1 the situation is called exclusive­

exclusive or write-write (ww) conflict. 

Synchronizations perfo~ed to avoid rw and ww 

conflicts are known as nv synchronization and ww 

synchronization respectively ( BER'Il 81). 

Correctness of 2,Pl.. mechanism ( CERI 84l 

Eswaran et at (BS4A 76) have proved that 

concurrent. execution of transactions is correct if the 

following rules are observed : 

l) Transactions are well-fomed i.e. each of them 

always locks a data item in shared mode before reading 

it and always locks a data item in exclusive mode before 

writing it. 



2) Comoattbility rules for locking are observed. 

3) Each transaction does not request new locks after 

it has released a lock. This means for each transaction, 

there is a first phase during which new locks are 

acquired (growing phase) and a second phase during 

which locks are only released (shrinking phase). In 

fact this condition names the mechanism as two phase 

locking. 

During the shrinking ohase, a.transaction may 

release its exclusive locks at any time and this may 

allow other•transactions to observe its result before 

its commitment; thus to avoid such an undesirable 

occurrence it is required that transactions hold all 

their exclusive locks until commitment. 

~ranularity of locking 

In generalw each transaction may lock dataitems~ 

of a database at record level or at file level. ln the 

former case conflicts between transactions arise when 

two transactions want to access the same record. In 

the latter case." conflicts are instead detennined when 

two transactions need to access the same file. Since 

the former case occurs with much less probability, 

locking at the recoxd level allows more concurrency than 

locking at the file level. This aspect of relating the 



size of the objects which are locked, with a lock 

operation is known as granularity of locking. It is 

preferable in DBMSs to provide locking at the recoxd 

level (CERI 84). 

In a centralized database, all transactions are 

performed according to the following scheme : 

(Begin application) 

Begin Transaction 

Acquire locks before reading or writing 

Commit 

Release locks 

{End application) 

This scheme guarantees well-fomedness and two-phasedness 

of transactions and consequently preserves the database 

consistency. 

Deadlock 

Deadlock is a major problem and can be illustrated 

by the following example ( ULLM 84). 

Example Suppose there are two transactions 

r1 and T2 whose locking and unlocking operations with 

two datai terns A & B are sh':)wn below {the main execution 

portions of the transactions have not been shovm) 



Tl : LOCK A T2 : LOCK a· 

LOCK B lDCK · A 

LNLOCK A t.).ll.OCK B 

l~LOCK B \..1\lLOCK A 

Suppose r1 and r2 begin execution at about the same time. 

t 1 requests and is granted a lock on A and Tz requests 

and is granted a lock on B. Then r1 xequosts a lock on 8, 

and is forced to wait because r2 has a lock on that item. 

Similarly, r2 requests a lock on A and must wait for t 1 to 

unlock A. Thus neither transaction can proceed; each is 

waiting for the other to unlock a needed item, so both 

r1 and T~ wait forever. 

A situation in which each member of a set S of 

two or more transactions is waiting to lock an item 

currently locked by some other transaction in the set S 

is called a deadlock. 

F~tlowing are the approaches made t6 resolve the 

deadlock problem in centralized databases : 

l) Each transaction is required to request all its locks 

at once, and let the system grant them all, if the 

related data-items are not locked prior to the request made. 

Else, if one or more items are already locked by ahother 

transaction, the system does not grant the lock and the 

process is made to wait. In case of the above example1 



the system grants locks on both A and B to T1, if it 

requests first and r1 completes execution; then T2 
locks them and carries on the execution. 

2.) Another approach is to omer the dataitems in an 

arbitrary manner and all transactions are required to 

lock them in this oxder. In case of the above example, 

if A precedes B in the ordering, then T 1 locks A before 

locking B; at this moment, r2 would request a lock for 

A before B and would find A already locked by t 1 and 

would not be able to reach B. Thus a would be available 

to t 1 when requested by it. r1 would complete and release 

the locks when r2 could proceed. This approach can be 

shown to work perfectly in general case. 

3) In this appr~ach, transactions are allowed to run 

freely till the system discovers the deadlock. Deadlocks 
' 

are discovered by waits for graphs. The graph contains 

n~es to represent transactions and arcs t 1 ~ T2 to 

signify that transaction r1 is waiting to lock an item 

on which t 2 holds lock. If the system finds a cycle in 

such a graph. deadlock is detected; then it aborts and 

res~arts one of the involved transactions and ~he effects 

of this incomplete transaction on the state of database is 

eancellech. 



3.1.~ Case of distributed database 

[mplementati~n ryf 2~L mechanism in centralized 

database is easy because each dataitem exlsts as on• 

Cf!lrJY only: consequently s transacti,:-tn is able t.a 

discover a dataitem being locked by another transaction. 

However, data redundancy, necessaiY for reliabality, 

availability and improved access time cotnplexlfies the 

implementation of ~PI. mechanism in di stribut.ed database. 

This is because, two transaction~ which h~ld ~,nflictln9 

locks on two copies of the same dataitem stored at 

different sites C?uld n~t know the.ir mutual existence; 

and in such a case, locking of a dataitem becomes 

useless. Thus the lmpl&S!Jentation or :t.Pl. in distributed 

database is performed in a different milnner and four 

methods (HEft.! 81) for the purpnse have been described 

below. 

3.1.2.1 ~sie ~UL !molementati~ 

The basic ~PL is 1moleroented by means of a ~PL 

scheduler wl·ieh is a software module that receives the 

lock requests and lock releases and processes them 

aceoxdinq to 2Pt. specifications. These schedulers are 

ktmt distributed along with t.he database. For instance. 

the scheduler for dataitem X is placed at the site where 

X is stored. Two fundt~mantal operations are required to 



be perfnr:rned on X : 

1) To read X, a readlock (i.e. lock in shared mode) 

may be i~plicitly reque5ted by read comPand on the 

data : 

1) if the lock is granted by the scheduler, 

the read operati~n is carried on. 

ii) otherwise, the request is placed on a 

waiting queue for the desired item till the item is 

free; after it is free the operati~n is carried on. 

\~1ting may result in a deadlock and 1$ ~solved by 

methodS described later in this. chapter (Subsection 3.1.3). 

By this reading opeati~n, the required data X is 

retrieved from the database to the transaction's private 

workspace. The value of X is then updated to the ne¥1 

value at the workspace and then is to be written into 

the database from the workspace. 

~) To write into X, writelock (i.e. lock in exclusive 

mode) may be implicitly requested by a prewrite 

command (not write command in order t'l achieve two 

phase commit) on the data : 

1) if the lock is granted. the write operation 

is carried on-

ii) otherwise. it is made to wait in a queue 

till the itero is free and then the required operation is 



carried on. In case of a deadlock, it is resolved 

according to methods of subsection 3.1.3. 

After an operation on a dataitem is over, 

corresponding locks are released by lock-release 

operations which are different for readlock and 

wrltelock. Then the operations on the waiting queue 

are processed in first-in/first-out order. 

tf basic 2PL is used for dealing with multiple 

copies of data, shared locks are acquired on one copy, 

while exclusive locks are acquired on all copies. 

That means for a logical dataitem X, having co~ies 

x1 •••• ~. a transaction may read one copy an~ need 

only obtain only one nadlock on that copy; however 

while updating, it must obtain writelock on all copies 

of X. 

3.1.2.2 Primary cngy ~?L imolementation 

This technique pays attention to redundancy 

( ST'.'IJ 79) • In this method of implementation one copy 

of each logical data item is named as the primary copy 

of that item. A transaction requiring the data item 

for its execution, obtains lock on it stored only in the 

primary copy of the item. All the read and write 

operations of the transaction are processed on that 

C?~ and then update messages are sent to other copies. 



Read and write operations on a dataitem are processed 

in the following way; let x1 be the primary copy of a 

dataitem X. 

1) To read x1 , some other copy of x, the site of the 

transaction communicates with the primary site as well 

as with the site that stores xi and readlock is acquired 

on x1 at the primary site. If the lock is granted, 

item is read; otherwise, the request is made to wait 

till the item is free. 

F~r readlock this technique requires more 

communication than basic ~PL: because in basic 2PL, 

data item is read from only ·the site where it is 

stored and consequently one message is sent, whereas 

in the primary copy 2PL, two messages are sent. 

2) To write into x, a transaction issues prewrite 

commands to all sites where the data is stored but 

the writelock is requested on x1 only. If the lock is 

granted, write command is executed and then update 

messages are sent t, all copies, othexwise the 

transaction waits till the item is free. 

For writelocks, primary c~py 2PL does not 

require extra communication over the basic ~PL counter­

part because write operations are simdlar except only 

that the writelock is obtained at a pNrticular site. 



3.1.2.3 Xoting 2PL imolementation 

This approach exploits data redundancy and is 

due to Thomas ( THIM ?q). A transaction issues requests 

to all sites that hold a required data item. These 

sites acknowledge the recetpt of the requests by saying 

ti Lock set•~ or "Lock blocked" depending on whether the 

required item is locked or already under lock of some 

other transaction. The original site (i.e. where the 
I 

said transaction originates) receives acknowledgements 

from other sites and c~unt the number of lockset 

responses : if the number is strictly greater than the 

number of copies which are nnt locked, the site behaves 

as if all locks are set; otherwise, it waits for more 

lockset operations from sites that originally said 

11 lock blockedtt ti 11 tho number of lock sets become a 

majority. Because of waiting, there may arise deadlocks 

wht.ch can be resolved by techniques given in subsection 

1) To read X, a transacti~n requests readlocks on all 

copies of X. When a majority of locks are set, the 

transaction may read any c~py,. 

2) To write into x. the concemed site sends prewrites 

to other sites with copies of X as a request for locks. 

\-men the majority of locks are granted to the transaction, 



the site sends write request when the involved data 

item X is u!)dated. Since only one transaction can 

hold a majority of locks on X at a time, only one 

transaction writing into X can be in its second commit 

phase at any time ( BERJ 81). All copies of X thereby 

have the same sequence of writes applied to them. 

3.1.2.4 Centralized 2?L imnlementation 

In this method of imolementation one 2PL 

scheduler is placed at a single site unlike the 

previous methods where schedulers are distributed 

(ALSB 76a. GARC 79a). Here, appropriate locks are 

obtained from the central ~Pl. scheduler before accessing 

data at any site. 

l) To read X from a site where X is not stored, the 

site first requests a readlock on X from the central 

site and waits for the central site to aekno~ledgo that 

the l':lck has been set. Then the read request is sent 

to the site of X to read the data. 

Since the lock is obtained in a round-about 

way, the coonunicati::m is more than basic 2'PL 

implementation and tho cost of communication overhead 

thereby increases~ 

2.) To write into x,, a site issues orewrite request to 

the central site for a write-l?ck on x~ After the lock 



is obtained, it issues write request wryich is 

processed. 

Here, the communication is also more for the 

same reason as ab~v• i.e. the prewrite does not request 

locks implicitly. 

3.1.3 Management of distributed deadlock~ 

In distributed database managem~nt systems, 

deadlocks can arise in any of the preceding implementation 

of locking methods. The problem of deadlock resolution 

gets complexified in distributed systems because of the 

involvement of transactions originating from several 

sites. 

Illustration 

Suppose in a distributed database system, there 

are three sites s1, S~ and s3 with the following accounts 

s1 : ACC X ~ : ACC Y 

AGC Y ACC l 

Three transactions r1, T~ and T3 are executed respectively 

at s1, s2 and s3• 

1l : BEGIN ; 

READ ACC X ; 

4RITE ACC Y ; 

ENO. 

T2 : BEGIN ; 

READ ACC Y : 

~'IRITE ACC l 

END. 

t 3 : BEGIN ; 

ReAD ACC Y 

-fRI!E ACCZ ; 

END. 



Let these transactions be executed concurrently with 

each transaction issuing its READ before any transaction 

issues its END. To preserve consistency the transaction 

would attempt to update all the copies of a particular 

dataitem. The transactions would proceed in the 

following steps : 

step l : t 1 obtains readlock on ACC X 

12 obtains readlock on AOC Y 

r3 obtains readlock on AOC l 

step~ s t 1 requires writelocks on ACCY both at s1 and s2 
t 2 requires writelocks on ACCZ both at s2 and s3 
r3 requires writelocks on ACCX at s1 • 

However writeloeks would be obtained only after the 

readlocks are released i.e. 

r1 wauld not get writolock on ACCY at s2 until t 2 
releases the rea~lock on it and t 1 must wait. 

r2 would not get writelock on AOCZ at s3 until r3 
releases readlock on it and T~ must wait. 

r3 w~uld not get writelock on ACCX at s1 until r1 
releases readloek on it and r3 must wait. 

Thus, r1 waits forT~, T~ waits for t 3 which also 

waits for r 1 • In such a situation, transactions wait for 

locks which would never be available t~ them because a 

readlock would be released only after the eompletion of a 

transaction, but the c~m~letion is not possible and 



deadlock results. 

Deadlock situations can be characterized by 

waits-for graphs ( H1LT 72, KING 14), which have been 

discussed in deadlock resolution in case of centralized 

databases (Section 3.1). The existence of a deadlock is 

concluded from the existence of a cycle in the waits-for 

graph. Figure 6 illustrates the deadlock situation of 

tho above example. 

Following techniques are available for resolving 

deadlock situation. 

1) Time-out method 

2) Deadlock prevention method 

3) Deadl~ck detection method 

l) Time-out method 

ifith this method, a transaction is aoorted after 

a given time interva t has passed after the •ransaction 

enters a wait state. In fact, this method does not use 

waits-for graphs, but simply observes if any transaction 

waits for 8 dataitem beyond a specified time interval. 

If this interval oasses away, the transaction is al?orted 

and again restarted. 

The main problem with time?ut method is the 

choice of a good time interval. .If the interval is longer, 
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·then transactions would unnecessarily stay in deadlock 

before being a~orted; if it is made shorter, transactions 

not in deadlock, but waiting for some dataitem would be 

unnecessarily aborted. That to, it is mare difficult to 

choose a workable time interval in distributed systems 

than in centralized database because of the less 

predictable behaviour of the communication network and 

of remote sites .. 

Timeout meth:>d is acceptable for lightly loaded 

foYStems but not convenient for congested systems. 

Because in latter systems, short timeouts may induce 

cascading effect due to system overload. This happens 

when a transaction is aoorted, not because it was in 

deadlock, but because the system was overloaded and 

therefore slow, leading to long waiting of the transaction. 

The a6ort operation causes additional delay due to 

additional message exchanges and work to be perfoDmed 

by the local systems. such delays cause other transactions 

to be aborted and so on. 

~) Deadlock prevention method 

r1ith the deadlllck preventi:>n scheme, a transacti:m 

is aforted and rP.started if there is a possibility that 

deadlock might occur. Since related transaction is not 

allowed to wait for the concerned data item, the 



possibility of occurrence ~f deadlock is totally 

eliminated. 

Deadlock prevention is carried on in the 

following way : if a transaction r 1 issues a lock request 

for a dataitem which is held by another transaction r2 , 

then a prevention test is applied: if the test indicates 

that there is a risk of deadlock, then r 1 is not allowed 

to enter a wait state. Instead, either t 1 is aborted and 

restarted, or r2 is aborted and restarted. The previous 

algorithm is called nonpre-emptive and the second is 

called pre-emptive. 

The prevention test must ensure that if r1 is 

allov,Jed to wait for T2 then deadlock can never occur. 

This is obtained by arranging transactions in a 

particular order, like in order of their priorities. 

For two transactions Ti and Tj, r1 is allowed to wait 

for Tj only if r1 has got lower priority over Tj 

(If T1 and Tj have equal priorities, Tican not wait for 

Tj• or vice versa. This test prevents deadlock because, 

for every edeye (r1 • Tj) in the wait-far graph. T has 

low priority than Tj. Since a cycle is a path from a 

node t~ itself and since ri can not hAve lower priority 

than itself. no cycle can exist. 



In distributed systems, •timestamps• are 

used to decide the priority of transactions. Eath 

transaction is assigned a unique number known as 

timestamp. The timestamp of a transaction consists 

of two parts : the local clock time at the beginning 

of the transaction read at the site of its generation 

.,nd the unique site identifier which is appended to 

the clocktime at lower order bits ( THJM 79). That 

the si.te does not send two transactions at the same 

local clock time is ensured by req1Jiring that the site 

does not assign another timestamp until the next clock 

tick (BEHN 81). Thus timestamps introduced into the 

system of different sites differ in their lower order 

bits (since different sites have different identifiers), 

while, tim~stamps assigned by the same site differ in 

their higher order bits (since a particular site does 

not use the same clock twice). Hence timestam~s are 

unique throughout the system and an old transaction 

has lower timestamps than y:>ung ones and intui-tively 

they have higher priority as they are introduced to the 

system earlier than the young ones. 

Two timestamP-based deadlock prevention schemes 

have been proposed in R1SE 78 : 



Nonpre-emotive Method 

If r 1 requests a lock on a dataitem which is 

already locked by Tj• then r1 is permitted to wait only 

if t 1 is older than Tj. If Ti is younger than Tj' then 

Ti is aoorted and restarted with the same timestamp. 

Because, it is always better to restart the younger 

transaction. Therefore, in ordP.r to obtain a nonpre­

emptive method, older transactions are allowed to wait 

fGr younger trans~~ti~~s wh\ch already hold a dataitem 

and younger transactions are not allowed to wait for 

older ones (CERI 84). 

Pre-emotive Method 

tf r 1requests a lock on a dataitem which is 

already locked by Tj' then T1 is permitted to wait 

only if it is younger than Tj ; othe~ise Tj is 

aoorted and the lock is granted to Ti. In this method, 

the older transactions are allowed to pre-empt younger 

ones, and therefore only younqer transactions wait for 

older ones. 

The pre-emptive method may cause the following 

problem : suppose that T j need to be pre-empted while 

it is in the second phase of two-ohase commitment; in 

such a case Tj can not be al:;orted. This problem is 

resolved if 11 is not pre-empted; a deadlock does not 



arise in such a ease because a transaction which is in 

its second commitment phase can not be waiting for 

data items. 

3) Deadlock detection method 

With this meth~, transactions walt for each 

other in an uncontrolled manner and are only a\3orted 

if a deadlock actually occurs (BERN 81). In oxder to 

detect the deadlock, the system constructs global 
I 

wait-for graph and searches for cycles~ if a cycl~ 

is present, one of the transactions engaged in the 

deadlock is a~orted, thereby breaking the deadlock. 

The a~Grted transaction is restarted and run to 

completion. 

c~nstruction of global waits-for graph is a 

major difficulty in distributed database systems 

though it is easy to construct local waits-for graph 

based on the watts-for relationships local to a particular 

site of the distributed system. Thus it is necessary to 

devise methods that efficiently combine the local waits­

for graph into a global graph where the system would be 
/ 

able to search for a deadlock cycle. Two techniques 

have been explicitly described for the resolution of 

deadlocks by detectiOn : centralized deadlock detection 

and hierarchical deadlock detection. 



Centralized deadlock detection (GRAY 7R, STJN 79l 

With the centralized method, each site is 

equipped with a local deadlock detector. and a site is 

chosen at which a centralized or global deadlock 

detector is run. The local deadlock detector has the 

responsibility of discovering local deadlocks at the 

site concerned; however the centralized deadlock 

detector is responsible for building the distributed 

waits-for graph (Diif'G} by collecting and connecting 

partial informations received from various sites and 

detects cycles in it,. When a cycle is detected, the 

centralized detector selects the transactions to be 

aD'orted in order to break the deadlock situation. 

Centralized deadlock detection is simple, but 

has two main drawbacks : 

1) The detection operation may stop owing to the 

failures of the site where the centralized detector runs. 

2) Building of m~FG at the centralized detector 

requires large communication costs in case of other 

sites of the network being located at far-off places .• 

At times, it may so han~en that a deadlock involves 

only a few sites which are close to one anothex:, but 

for the construction of D.JFG, those sites would have to 



communicate with the distant centralized detector. 

The hierarchical controller method resolves the 

problem of excessive communication cost. 

Hierarchical deadlock detection ( MENA 79) 

With hierarchical method a tree of deadlock 

detectors is built, ins~ead of having a set of local 

deadlock detectors and a single centralized detector. 

The detectors are arra~ged in a tree as shown in the 

figure (Fig.7). The local deadlock detectors (LDDS) 

are placed at the leaves of the tree whereas the 

nonlocal detectors are placed at non-leaf leaves. 

Each local deadlock detector behaves like the 

local detector of the centralized method i£.it deter­

mines local deadlocks and transmits information about 

global cycles to the nonlocal deadlock detectors at 

the immediately higher level in the hierarchy. Each 

of the nonlocal detectors detect deadlocks which 

involve only the_deadlock detectors which are below it 

in the hierarchy. 

In figure 7, LDD 1, LDD 2, ••••• LDO 5 are the 

local deadlock detectors situated at five sites. A 

deadlock involving site 1 and site 2 is detected at the 

immediately higher nonlocal detector i.e. NLDD 1; however, 

a deadlock involving site 1 and site 5 is detected only 
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by NLOD1 i.e. the highest level detector. 

This approach of hierarchical detectors for 

detection of deadlocks is suitable for a group of 

sites where most of the database access request is 

within the group and few requests are sent to sites 

outside the group. 

Disadvantages with detection method 

Both the methods, centralized as well as 

hierarchical require that local waits-for informations 

be transmitted to one or more deadlock detector sites 

periodically. This periodic nature introduces two 

problems : firstly, a deadl~ck may prevail for several 

minutes without being detected, causing response-time 

degradation, secondly, a transaction T may be restarted 

for reasons other than concurrency control (like crash 

of the originating site) and in such a case some 

deadlock detector may find a cycle in the w•its-for 

graph that includes T until t•s restart propagates to 

the deadlock detector. such a deadlock is known as 

phantom deadlock and when a detector finds a phantom 

deadlock it may unnecessarily restart a transaction 

other than T. 

Another disadvantage with the method of deadlock 

detection is that restarting of partia tly executed 



transactions increases the overall cost of the method. 

This cost is reduced by predec1aration where all the 

transaction's locks are obtained before its execution 

and consequently • the system only restarts those 

transactions that have not yet executed. 

3.2 Timestamg ordering (T/1)Technigues 

The timestamp ordering technique assigns a 

unique timestamp to each transaction to arrange the 

transactions in a sequential manner. A transaction 

that begins earlier has a smaller timestamp than a 

later transaction and hence precedes in that sequence. 

After timestamping, the transactions are processed so 

that their execution becomes equivalent to a serial 

execution in timestamp order. According to proposition 

of chapter ;t, this means that conflicting operations get 

processed in the same order. 

Conflicts are of two types depending :>n the 

kind of synchronization required. For l'W synchronization. 

two operations conflict if (a) both operate on the same 

data item and (b) one is read nperation and the ott-er 

is write operation. For ww synchronizati'ln, two 

~perations C3nflict if (a) both operate on the same 

data item and (b) both are write operations. 



3:.2.1 

Below are described two timestamp ordering 

mechanisms:· basic timestamp mechanism and conservative 

timestamp mechanism. 

The Basic Timestame Mechanism 

The basic timestamp technique is implemented 

by building a scheduler, a software module that receives 

read or write ooerations according to timestamp specifi­

cations. The schedulers are distributed at vt~rious sites 

along with the database. The basic timestarop algorithm 

proceeds as follows : 

1) A tlmP.stamp is assigned to each transaction when it 

is initiated at the site of origin. Each read or write 
I 

operation which is required by a transaction has the 

timestamp of the transaction. Let this timestamp be rs. 
For each dataitem X, let the largest timestamp 

(i.e. timestamp of the last transaction that has been 

processed on X) for read operation and write operation 

be R-ts{X} and W-ts(X) respectively~ These timestamps 

are updated each time a transaction completes operation 

on this data item. 

2) To avoid read-write conflict, 

(a) the read operation of th¥ current transaction 

with timestamp TS operating on data item X is : 



( !) rejected if TS < W..ts( X) and the transaction 

is restarted with a new timestamp, 

{ii) executed otherwise; then R -ts(X) is.set to 

max (~ts{X), TS). 

(b) the write operation of the new transaction with 

timestamp TS on dataitem X is : 

( i) reje :ted if TS < R-ts( X) and the transaction 

is restarted with a new timestamp, 

(11) executed otherwise: then W-ts(X) is set to 

max ( <1-ts( X), TS) 

3) To avoid write-write conflict, the write operation of 

the new transaction with timestamp TS on dataitem X is : 

( 1) rejected if TS < t'i-ts( X) and the transaction 

is restarted with a new timestamp, 

. (11) executed otherwise and w-ts(X) is set toTS. 

4) The restarted transaction, on assignment of a new 

timestamp which is certainly a larger timestamp is 

executed in accordance with rules (2) and (3). 

The basic timestamp mechanism is deadlockfree, 

because transactions never wait: if a transaction does 

not execute an operation, it is restarted. That an 

operation can not be allowed does not depend on the fact 

that another transaction is momentarily operating on the 

same dataitem, but instead depends on the timestamp 



associated with it. However, the deadlock freedom 

is a result obtained at the cost.of restarting 

transactions. 

Rules (2), (3) and (4) guarantee serializaallity 

because conflicting operations are executed in timestamp 

order at all sites and hence the timestilmp order is the 

total order that makes the executions correct. However, 

above mechanism is integrated with two-phase commitment 1'f 

using •prewrite• operation to ensure that transactions are 

atomic. 

Twa phase commitment is 1nc~rporated by timestamping 

prewrites and accepting or rejecting prewrites instead of 

write operations. Once a scheduler accepts a pre-write, 

it must guarantee to accept th~ corresponding write no 

matter when the write request arrives. Por rw (or ww) 

synchronization, once s accepts a prewrite {X) with 

timestamp TS it must not output any read (X) (or write (X) 

with timestamp greater than TS until the write (X) is 

output:. The incorporation is accomplished by 

substituting rules f2), (3) and (4) by the following : 

2) Let TS be the timestamp of the prewrite operation 

P of a transaction on dataitem x. The operation is 

(1) rejected if TS<R-ts (X) or TS<tV..ts(X) 

an~ the issuing triinsacti?n is rest~rted. 



(11) buffered along'with its timestamp if 

TS > P...ts (X) or TS / ~ts {X). 

3) Let TS be the timestamp of read operation R on 

dat.a item x. The operation is 

( 1) rejected if TS < :·1-ts (X) 

(ii) executed if TS) ~ts (X) 

and only if there is no prewrite operation P(X) pending 

on dataitem X having a timestamp TS ( P) <. TS. 

(iii) buffered if there is one (or more) 

prewrite operation P(X) with timestamp TS ( P) < TS, 

until the transaction which has issued P( X) commits. 

Buffering is necessary because, if executed, the write 

operation W(X) corresponding to the prewrite P(X) may 

be rejected by TS ( \"') < P....ts (X) 

(iv) elf.minated from the buffer after it is 

executed when no more prewrites with a smaller timestamp 

than R are pending on it. 

4) · lAt TS be the timestamp of write operation on 

dataitem X. This is never rejected. But it has the 

possibility of being buffered if there is a prewrite 

operation P(X) with a timestamp TS ( P) < TS.. The 

operation is otherwise executed and eliminated from 

the buffer .. 



The use of prewrites is equivalent to 

applying exclusive locks on dataltems for the time 

interval bt!tween prewrlte and the commitment (write) 

or abort of the issuing transaction. 

Thomas Write Rule 

Let w be a write operation on dataitem X and 

Stappose TS ( .~) < w-ts (X). Accordin9 to· Thomas write 

Rule ( TWR), the write operation '14 can be ignored instead 

of being rejected and rest.a·rted. 

The rule works correctly because if •~1 (X) and 

Wj(X) are two write operations such that TS(W1) < TS{Wj) 

then the execution of w1 followed by ~~j is same as the 

execution of wj alone. Thus if wi is iqnored and wj is 

executed, the final result obtained is same as if w1 
were executed before tfj. 

THR apolies to those write operations that try 

to place obsolete information into the database. For 

example, if we have a transa~ion that changes the price 

of a commodity, the new price is not a function of the 

previous price. If there is a correction on the previous 

price pending. we can simply ignore this correction after 

the new price has been written. The rule is also called 

uignor ... obsolete-rule'". 



The Conservative Timestamg Ordering Method 

The conservative timestamplng is a ~ethod for 

eliminating restarts ~ buffering younger operations 

until all older conflicting operations have been 

executed. Thus buffering is a part of the normal 

functioning of the method and helps in avoiding rejection 

of operations and rest.artin.g of transactions. 

The e?nservative timestampinq is based on the 

following requirements : 

i) Each transaction is executed at one site only and 

does not activate remote programm~s. 

ii) A scheduler s1 must receive a 11 the read requests 

(or write requests) from a different scheduler sj in 

timestamp order. Since it is assumed that the network 

is a FIFO {First Input First output) channel. this 

requirement is accomplished by requiring that 

schedulers send read requests (or write requests) to other 

schedulers in timestamp order. 

Sending request messages in timestam~ order 

can be implemented in two ways : 

i) It is possible to process transactions serially at 

each site.. But this does not satisfy the purpose of 

concurrency control., 



il) Transactions can be executed by issuing all read 

requests before their main execution and all write 

requests after their main execution. For instance, 

if TS (T1 ) < TS (Tj)' it is sufficient to wait to 

send Rj operations until all R1 operations have been 

sent and to wait to send the wj operations until all 

"i operations have been sent. Then the transactions 

execute concurrently. 

The conservative timestamp algorithm proceeds 

as follows : 

l) Each transaction is issued a unique timestamp when 

it is initiated at its site of origin. Rach read or 

write operation which is required by a transaction has 

the timestamp of the transaction. 

2) Read and (or) write request messages are sent to 

the site or sites containing the data item required by 

transaction in timestamp order. 

Before going to next step, it is assumed that 

a site i has at least one buffered read and one buffered 

write operation from each other site of the network. 

3) Read-write conflict is avoided in the following ~y : 

a) For a read operation R that arrives at site i : 

(i) if there is some write operation w buffered 

at site 1 such that 

TS ( R) > TS ( .4) , 



then R is buffered until these writes are executed. 

(11) otherwise, R is executed. 

(iii) ~en R is buffered or executed, buffered 

operations are retested to see if they can now be 

executed. 

b) For a wrtte operation W that arrives at site i : 

(1) if there 1$ some read operation R buffered 

at site i such that 

TS ( •'I) > TS ( R), 

then \4 is buffered until these writes are executed. 

otherwise, W ls executed. ( ii) 

( 111) When ~ is buffered or executed, buffered 

operations are retested to see if they can now be 

executed. 

4) To avoid write-write conflict for B write operation 

W that arrives at site i : 

( i) if there is some writ.e operation ¥1 buffered 

at site i such that TS( ~) > TS( •i'). then w is buffered 

until these operations are executed, 

(11) othexwise, W is executed. 

{iii) When W is buffered or executed, buffered 
• 

writes are %etested to see if they can now be executed •. 



Problems with Conservative Timestamp Ordering 

Two phase cotTJnitment is not a problem in 

cons~rvative timestamp ordering method because write 

operations are never rejected. However, above imple­

mentation suffers from the following problems : 

1) If a site never sends an operation to some other 

site, then the assumption made in the above algorittun 

does not hold and the second site stops outputting. 

This problem is eliminated by requiring that each s~te 

periodically sends timestamped ~nulla operations to each 

other site. These operations have the sole purpose of 

conveying timestamp information and thereby unblocking 

real operations. Alternatively, blocked sites 

explicitly request for timestamped null operations from 

other sites. 

2) Due to the buffering of read operation, the 

corresponding transaction _1~ forced to wait .,nd thus 

while implementing conservative timestamp technique, 

care must be taken to see thot waiting does not result 

in a deadlock. The deadlock, if occurs, is avoided by 

sending null operations after a sui~able timeout. 



CHAPTER- 4 



SYNCH~Il.ATICJ.l TECHNIQUES BASCO 

(~ COO FLICT GAAPtfS AND RESERVATICJl LISTS 

More efficient synehronization techniques have 

been developed by refining the techniques of locking 

and timestamp oxdP-ring and }jy eliminating the 

problems inherent in them. Conflict analysis approach 

and reservation list approach are two such methods 

that wotk well in dist.ributed database systems with 

d_ifferent amounts of data redundancy (KOHL 81). 

Thi~ chapter describes the methods of conflict 

analysis and reservation lists. 

f.l c~nflict analysis 

The method of conflict analysis is the 

$ynchronization technique used ln SDD-l, a system for 

Distributed Databases, developed at the Computer 

Corporation of America (ROTH 00). nte system consists 

of a collection of database sites interconnected 

through a communication network. · Pigure 8 5hOws 

configuration of the system consisting of three types 

of virtual machines ; transaction modules (TMs), data 

modules (DfAs) and a reliable network system ( RelNet). 

Each site can contain either one or both types of 
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modules. OMs store physical data and behave much like 

conventional nondistrlbuted DBMSs. TMs are responsible 

for supervising the execution of user transactions and 

they in fact, work as an interface between the user•s 

perception of nondistributed data and the realities of 

data distribution and redundancy. 

SDD-l uses two mechanis~s to ensure serial1za­

bility of concurrently executed transactions. The first 

mechanism, called conflict graph analysis. is a technique 

for analy%ing various • classes• of transactions to 

defect thoso transactions that require little or no 

synchronization (ROTH 00). Here. it is to be noted that 

SDD-l mechanism does not assume that evezy transaction 

requires synchronization as strong as locking; because 

there exist transactions that some databases do not at 

a 11 require synehronizcation even though they have 

overlapping write sets (BEHN 80}. The second mechanism 

consists of a set of synchronization protocols based on 

timestamps, which synchronize those txansactions that 

need it. 

4.1.1 Conflict Graph!! 

The database administrator defines ••transaction 

classes" which are named groups of commonly executed 



·transactions at the time of system design. Each class 

is defined by its name, a read-set, a write-set and the 

TM at· which it runs. A transaction is a member of a 

class if the transactions read-set and write-set are 

contained in the class•s read-set and write-set 

respectively. The various transaction classes are not 

necessarily disjoint (JtlTH 80). Conflict graph analysis 

(described below) is actually perfonned on these classes, 

not on individual transactions. Two transactions from 

different classes enter a conflict if their classes do 

so. 

Examole 

suppose there are three transaction classes 

defined by their read and write-sets : 

cl : read-set a t a:t. J ' write-set a ~82.' c31 

c2 : read-set • tal, b2' c3 J ' wrtt .... set • 

{a2' 83' c2' c3 J 

c3 : read-set • {al' b2} • write-set • { a2,c2,c3} 

_ Let there be three transactions s 

Tl : read-set • [ b2} • write-set • l 82• a3~ 

T2 • read-set • {.a1 ~ writa-set • tc~, c3} • • 
T3 1 read-set a {a2 } • writ .. set =l c3 ~ 



Then it can be said that 

t 1 is a member of c2, 

12 is a member of c2 and c3 , 

T3 is a member of c1 • 

rA)nfliet graph analysis is a technique to· 

analyze the transactions on the basis of the predefined 

transaction classes in order to detect the presence of 

conflict. A conflict graph is an undirected graph 

that summarizes conflicts between transactions in 

different classes. For each class c1 , the graph contains 

two nodes, denoted r 1 and wi, which represent the read­

set and write-set of ci. The edges of the graph are 

defined as follows ( Fig.9) : (1) For each class c1, 

there is a vertical edge between r1 and w1 ; (2) for 

each .pair of classes c1 and Cj (with i ~ j) there is a 

horizontal edge between i'fi and Wj if and only if write­

set (C1) intersects write-set (Cj) ; (3) for each pair 

of classes ci and Cj (with 1 ~ j), there is a diagonal 

edge between r 1 and wj if and only if readset {c1) 

i.ntersects writeset ( Cj). The figure shows the conflict 

graph for the aboye example. 
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Different kinds of edges of a conflict graph 

(viz. horizontal edge or vertical edge) require different 

levels of synchronization. Synchronization as strong 

as locking is required only for edges that participate 

in cycles. Thus, in general, the output of analysis of 

conflict graph is a table that indicates 

1) for each class, which other classes it conflict~ with and 

ii)for each such conflict, how much synchronization 

(if any) is required to ensure ser1alizability ( BEFN 81). 

It is assumed for convenience that each tM of SU0-1 

is only permitted to supervise a particular class of 

transactions and vice versa. Thus, when a transaction 

T is submitted, the system determines the class to which 

the transaction belongs and sends it to the TM that 

supervises this class of transaction. The TM 

synchronizes the transaction against other transactions 

in its class using a local mechanism similar to locking. 

To synchronize the transactions against transactions in 

other classes, the TM uses the synchronization method (S) 

specified by the conflict graph analysis. These methods 

are called 'protocols•. 

4.1.~ Timestarno-based orotocols 

sDD-l uses four timestamp based basic protocols to 

synchronize transactions after the c~nflict graph indicates 



the amount of synchronization required by each 

transaction. These are known as synchronization 

protocols and vary according to the degree of 
/ 

synchronization required and cost of use. .For instance, 

the least expens1 ve protocol is intended for transactions 

t.hat can not interfere. such as reading the database to 

generate a sales slip through a point-of-sale terminal. 

The strongest and most expensive protocol is resolved 

for unantieipated transactions that are not known 

members of any of the "redefined classes .• 

The rules that govem the selection of pntocols 

for use in various situation determined on the basis of 

analysis of eonflicts between transaction classes are 

known as protocol selector rules. The details of the 

protocols are complex and have been given along with the 

selection rules in BE~ 80. 

Bernstein et al. { BER-l 7Q) have shown that the 

conflict analysis approach guarantees internal as well 

as mutual consistencies and allows more concurrency than 

the classical locking approach., 

'·2 Reservation Lists 

Milan Mllenk~vic• proposed a new reservation 

mechanism 1n 1979 for synchronizing c~ncurrent updates 



" 

in distributed database systems that have high degree 

of data redundancy (MILE 79). The mechanism, a 

clever hyorid (K0HL 81) of locking and timestamp 

ordering is based on the use of a reservation list 

associated with every individually reservable database 

entity. The list contains an entry (viz. timestamp of 

the transaction) for each of the transactions that 

intends to use the related entity. Milenkovic• has 

devised algorithms to allow the transactions in the 

list to use one of two compatible synchronization 

protocols to update the entity. The use of reservation 

list ensures the maintenance of internal consistency 

of individual copies and mutual consistency of 

redundant copies in the database. This section presents 

an algorithm for a fully redundant distributed database 

system. 

Assumgtions 

Following is the outline of underlying assumptions 

of the proposed solution. 

Single-site access : It is assumed that all. 

entities required by a transaction may be found a~ a 

single database site. This requirement is met when the 

entire database is replicated at several nodes and 

also met in some distributed database systems with 

partia 1 redundancy. 



Timest~mps : Each transaction is assigned a 

timestamp by the database site where it enters the 

system.. Timestamps are assumed to be unique and 

nondecreasing. 

Message segueneing : All messages sent from one 

site to another are assumed to be delivered after a 

finite but variable del~y in the same order as they 

were sent. No assll?lption about the relative ordering 

of the messages sent from two sites to a third one is 

made. This assumption is not fundamental to proposed 

solution but helps to eliminate numerous implementation 

details. 

§Xstem•s availability : All sites and c:ommuni­

cat~on channels are assumed to be ~vailable during the 

message exchange required by the algorithm. The 

synchronization protocols used by the transactions 

require regular message exchange between the database 

sites in the course of update processing. 

Solution 

The synchronization scheme for fully redundeant 

distributed databases or a subset of the partially 

redundant database systems that satisfy the single site 

access assumption. allo\Ns transactions to use one of 

two compatible protocols.. Protocol P (for pessimistic) 



requires transaetions to preclaim and reserve database 

objects prior to executio~. But, under protocol 0 

(for optimistic) the transaction is first tentatively 

executed, and the protocol subsequently checks Wheth~ 

the tentative update can be made pexmanent or must be 

rejected due to consistency conflicts. The protocols 

are designed to be compatible with each other so that 

they may be used in the same system concurrently and 

thus increase its flexibility. 

Protocol P : 

As described by Milenkovic•, when a transaction 

T is submitted for execution to the database controller 

residing at a site si, the following set of rules 

constitutes protocol P s 

l. Ttmestamoing : Si assignes a unique 

timestamp, derived from Si'S clock and unique 

identifier, to the transaction T, TS(T). 

2. {nternal Reservation : Si resarves entities 

from r•s read-set, R s( T) and write-set, #'IS( T), intexnally. 

If any of those entities is already reserved, r•s request 

is entered in the associated reservation list according 

to its timestamp : after all older reservation requests 

(whose timestamps are smaller than TS(T), and in front 

of the younger ones. 



3. Gl!lbal Reservation : Si broadcasts a 

reservation message on behalf of T. The reservation 

message has the following foDnat : 

Reserve ; sender's ID : 51, 

timestamp t TS(T), 

identity of the entities to be 

reserved s -~( T) 

All reservation broadcasts sent by a site must be ordered 

according to the timestamp of the transactions themselves. 

i.e. they must contain increasing, althryugh not 

necessarily consecutive timestamps. 

4. Acknowledgements : Each site, upon receipt 

of the reservation broadcast, reserves entities contained 

in ~(T) in its respective copy of the database according 

to rule ~. ~4\en this process is completed, an acknowledge­

ment is returned to the site Si. 

Acknowledgement; responder's ID, transaction : T 

5. Execution s transaction T is executed, 

using si•s copy of the database, when the following 

conditions are met. 

(a) An acknowledgement of the reservation broadcast 

is received from ea~h database site, and 

(b) T'S reservations become the oldest in Si •s 

reservation lists associated with the entities contained 

in RS( T) and ~;s{ T) • 



6. Uelate broadcast : Si aoplies updates of 

T (WS(T)) to its copy of the database, removes internal 

reservations made on behalf of T, and broadcasts an 

update message to all other sites. 

Update : values of the entities to be 

updated : ~15( T) 

7. Comoletlon : Upon receipt of the update 

message. each site applies the specified updates to its 

copy of the entities contained in .~(T) 1 as soon as the 

reservations set on behalf of T become the oldest in the 

related reservation lists. Each such reservation is 

subsequently removed. 

Because of the reservation scheme, the 

advantage with this protocol is that there is no need 

to reject concurrent updates involved in consistency 

conflicts. Each site is allowed to accept all the 

transaction load it can handle, because the existence of 

some transactions in progress does not prevent it from 

initiating the new ones. irrespective of whether they 

overlap or not ... 

Secondlyt protocol P does not require permanent 

storage of timestamps because a timestamp ceases to 

exist when the associated transaction completes its 

execution •. 



Thirdly, the efficiency of the _protocol is 

further enhanced because of relatively low delay and 

co~unication overhead due to the communication and 

reservation of only the writesets of updating 

transactions. 

J ... astty, timestamp ordering of transactions 

guarantees mutual consistency of all copies of the 

database and absence of deadlocks. The transactions 

generated in the system always complete execution in 

finite time because of the fact that a transaction may 

wait only for transactions that are older than it. 

Proto co 1 0 : 

Protocol 0 was designed to remove the restriction 

contained in protocol P that database entities must be 

preelaimed and reserved before the execution of a 

transaction can begin. This aims at imrJroving 

efficiency for certain transactions that would otherwise 

have to reserve large portions of the da.tabase just to 

guarantee that all objects that are needed have been 

preclaimed. 

Under the protacol o, after t1mestamping of a 

transaction T the entities required by it are locked 

locally at the initiating site and the transaction 

executed using these entities. All updates are 



tentatively recorded by that site which then 

communicates with other sites in order to deteDmine 

whether an older transaction executed elsewhere in 

the system obsoletes the work of T. Based on the 

information gathered from other sites, the initiating 

site decides whether to accept or reject the 

tentative updates of the executed transaction and 

announces its decision to the rest of the system. 

According t? Milenkovic (MILE 79} when a 

transaction is submitted to a database site Si, the 

following steps constitute protocol o. 
1. Timestamoinq : Si assigns a unique 

timestamp toT- TS(T). 

2. Execution : Si begins execution of T and 

locks each entity required by T. If an entity requested 

by T is not available, T is blocked and its request is 

entered in the associated lock/reservation list according 

to timestamp of T4 If a younger transaction initiated 

by Si owns the entity, the ownership is revoked and the 

said transaction is restarted. Restarting of a 

transaction ~onsists of discarding of its tentative 

updates and releasing of its locks. 

¥'4hen all internal locks are granted t(> T • 

execution of T is completed and its updates are 



tentatively recorded elsewhere in the database (but not 

in the database proper) by 51. 

3. Tentative u~ate : Si broadcasts a 

tentative update message on behalf of r. This message 

contains the values of the entities modified by T and 

its timestamp, TS(T). All update broadcasts sent by 

a site must follow the timestamp ordering of the related 

transactions. 

4. Acknowledgemmts and rejections t Each 

recepient of the tentative update broadcast records 

reservations for the entities contained in ~6(T) in 

its lock/reservation lists according to the timestamp 

of T. If a younger internal transaction owns some of 

the specified entities, it is restarted. If an update 

broadcast has already been sent on behalf of the 

restarted transaction, a reject message is sent to all 

other sites. This message will cause the reservations 

and the tentative updates of the restarted transaction 

t~ be discarded by all other sites as well. Following 

this process, each site acknowledges the receipt of 

broadcast to Si. 

5. Up,date broadcast : If T is still active 

when all acknowledgements are received, Si makes the 

updates of T permanent. That is, Si applies to its 



copy of the database the values contained in 

WS(T) and broadcasts a make pe~anent message. 

6. Completion : Each recepient of the make 

permanent broadcast makes the updates contained in 

WS(T) pe~anent in its copy of the database, as soon as 

the related reservations become the oldest in its lock/ 

reservation lists. Such reservations are subsequently 

removed. 

Under protocol o, transactions lock the required 

entities of the initiating site but reserve them at all 

other sites. The difference between lock and reservation 

is that locks do not have to be globally confil'lfted and, 

when granted, the related entities may be accessed and 

tentatively modified. 

In this protocol, internal consistency is 

preserved by local locking of the entities when the 

transaction is under execution. But the mutual consis­

tency among the copies of the database is maintained by 

rejection of obselete updates as ensured by rule 4. 

However, the protocol can not guarantee that trans­

actions run under it are completed in finite time because 

of restarting of some transactions. Since a transaction 

is as~igned newer timestamps each time it is restarted and 



the number of restarts 1 s unbounded, completion of 

such transactions in finite time is uncertain. This 

problem is resolved by keeping track of the number 

of restarts for each unsuccessful transaction. When 

this number exceeds a predefined limit, affected 

transaction is allowed to run under protocol P and 

thus completed in finite time. 

Both the protoc~ls described above are concerned 

only with updating transactions. Read only transactions 

can be executed in one of the following ways : 

i) The system may regard the read only transaction as 

a ~null update transactionh (empty write set} and run 

under protocol P oro, as ap~ropriate. However, read 

only transaction executed in this way unnecessarily 

uses overhead of intersite communication and causes delay, 

though tho transaction observes the consistent state of 

. the database as of its timestamp. 

ii) Entities required by a read only transaction are 

locked internally (in sharable mode) at the initiating 

site. and the local database copy is read when all locks 

are granted.. In this way the transaction is guaranteed 

to see a consistent state of the database, but not 

necessarily as of its timestamp. 



Comparision of orotocols P and 0 : 

l) Pzotocol P accepts and completes a transaction in 

finite time unlike protocol o. 
~) Both the protocols require a comparable number of 

intersite messages and incur the same communication 

delay for accepted transactions. 

3) Protocol 0 im~oses higher storage requirements on 

the system, because all sites are supposed to keep the 

tentative updates until their fate is resolved. 

Milenk~vi•c states : uprotocol P should be 

used for transactions that are long and/or expensive 

to run, in order to avoid costly restarts. Protocol o 
on the other hand, should be used for transactions that 

are known to have low probability of conflicts, or for 

which preclaiming of resources is inefficient.• 



£HAPTER- 5 



t!'tegrated Concurrency Control 

The previous two chapters describe the various 

techniques for synchronization of concurrently executed 

transactions in distributed database systems. The 

techniques of locking and timestamp ordering are the 

two basic approaches made to maximize concurrency while 

processing such transactions. Implementation of locking 

scheme is possible in different ways ; basic twa phase 

locking (basic ~PL}, primary copy ~PL, voting ~PL, and 

centralized ~Pl.; that of timestamp ordering ( T/0) is 

possible in ways like basic T/0, or conservative T/0. 

H~wever, better implementation methods can be constructed 

by combining the above approaches. 

A distributed database system experiences two 

types of conflicts : read-write and write-write. The 

techniques described in chapter 3 consist of using a 

particular type of implementati'=ln (either one of 2PL 

implementations or one of T/0 implementations) for 

both the types of conflicts •. However, Berustein et al •. 

( BEm 81) have suggested methods by using various types 

of implementations separately for rw and WrN synchroni­

zations •. 



5.1 Deeompgsition of Concept of Serializabilitv 

The serializability of execution of a set of 

transactions has been characterized in the proposition 

of chapter 2. In this proposition the two types of 

conflict ( xw and ww) have been treated und"r the general 

notion of conflict; Bemstein et al. have decompOsed 

this concept of serializability and restated the 

condition of serializability by distinguishing these 

two types of conflicts. 

Let E be an execution of a set of transactions 

modeled by a set of schedules. The following binaxy 

relations, 6enoted by • ~ ~ with various subscripts have 

been defined on transactions in E : for each pair of 

transactions t 1 and T j 

1) r1 ~ rw Tj if in some schedule of E, r 1 reads 

5ome data-item into Ybich 'rj· subsequently writes : 

2) T1 ~ wr Tj if in some schedule of E, Ti writes 

into some data item that T j subsequently reads : 

3) t 1 ~ ww Tj if in some schedule of E, r 1 writes 

into soma data item into which Tj subsequently writes : 

4) t 1 _, 'r#r Tj if T1 .;y rw Tj or t 1 ~ wr Tj ; 

5) t 1 -, Tj if t 1 ~ 1\l'l:l' Tj or t 1 ~ ww Tj 

The relationship .. .., " intuitively means "in any 

serialization must precede.•• For example, r 1 ~ :rw Tj 



means •r1 in any serialization must precede T ju. 

Because. according to the proposition, if t 1 reads x 

before T j writes into "• then the hypothetical seriali­

zation in the proposition must have t 1 preceding Tj. 

Every c,,nfliet between operations in E is 

represented by an •• ~ • relationship. Therefore the 

proposition can be restated in terms of •• -7 ••. 

The proonsition originally says that E is 

serializable if there is a total oxdering of transactions 

such that for each pair of conflicting operations o1 
and oj from distinct transactions r1 and T j (respectively), 

o1 precedes Oj in any schedule iff r1 precedes Tj in the 

total ordering. This latter condition holds if and only 

if the relation " ~ '* is acyclic. such a relation is 

acyclic if there is no sequence T 1 ., r2 • T:£ ~ t 3 , •••• 

T 1 ~ T Such that r1 • r . ntherwise, the relation 
~ n n 

is cyclic and in that case it is meanin2less to say that 

a particular transaction precedes another particular 

transaction. Hence the serializability of an execution 

of a set of transactions can be ascertained by knowing 

whether the relation M - ~ is acyclic over these 

transactions. Bernstein et al. decomposed the 

relation 11 ~ " into its components " ~ rwr" and 

., ~ vm., (according to the definition of binary relation 



{5) above) and restated the prop~sition using them. 

The decomposed components are representatives of the 

read-write and write-write conflicts respectively. 

Restated nroposi tion ( REIN aoa) 

Let .. .., rwr~1 and '* ~ ww'' be associated with 

execution E. E is serializable if (a) '' ~ xwr'' and 

~ ~ ww~ are acyclic, and (b) there is a total ordering 

of transactions consistent with all at ~ r.~~rw and all 

" -1 ww" relationships. 

This proposition is an tmmediate consequence of 

the first proposition ( REJt.l 81) and indicates the 

following facts : 

l) This way of characterizing serializability decomposes 

the problem of concurrency control into two parts : 

firstly, the relations ti ~ ' 1 and *' • " must be rwr / ww 

acyclic and secondly, a total order among transactions 

is to be maintained in consistence with these relations 

in order to ensure serializability of the transactions. 

2) The proposition implies that rw and ww conflicts 

can be synchronized independently except under thc:t .. 

condition that there must be a total ordering of 

transactions consistent with both types of conflict. · 

That rw conflicts are synchronized is ensured by the 

fact that 11 '7 n~r"' is acyclic and synchronization of ww 



conflicts is ensured by the fact that " ~ WJ~~" is 

keyclic. However, in addition to both the relations 

being acyclic, there must be a serial oxder consistent 

with all 11 7 11 relations. In fact, this serial order 

integrates the two independent techniques and completes 

the solution of the nroblem of concurrency control in 

distributed database. systems. 

5. 2 rnt!Qrated. Concurrency Control Methods 

Bemstein et al. show thAt the " ~ n~r" and 

''~ ww" relationships are acyclic with respective 

techniques used and in addition, they provide an 

interface between the independent techniques. This 

interface, in fact, guarantees the total oidering of 

the involved transactions in confirmation with the 

condition of part (b) of Bernstein •s proposition. 

Various concurrency contr~l methods have been 

listed that can be constructed using the different 

techniques of two-phase locking and timestamp ordering. 

For instance, a synthesis has been made between two­

phase locking for rw synehron1%ation and timestamp 

· ordering for VM synchronization in oxder to construct 

a more efficient concurrency control method than a 

com~Unation of a pure 2PL technique (or timestamp 

ordering technique) for both rw and ww conflict could 



provide. The following is the description of a few 

of the pronosed integrated methods. 

Pure 2:PL methods 

These methods are results of the coatiination 

of different types of two phase locking techniques like 

basic 2PL, primary copy 2PL, voting 2PL and centralized 

~PL. Three of these methods have been described below 

for illustration. 

each of these methods ensure serializability 

because each satisfies the required conditions : firstly,· 

any two phase locking technique attains an acyclic 

.. ~ tt or • ,. " relation when used for xw or ww --, rwr / WrN 

synchronization ( BEm 79 b. ESWA 76, PAPA 79) which is 

a requisite condition according to the restated 

proposition; secondly, the total ordering of the 

transactions consistent with all • ~ r.wr" and all 

" - ww" relationships aLso exists and this omer ·is 

the serialization oxder in which transactions obtain 

locks. This serialization order acts as the interface 

that binds together the independent techniques used for 

rw and ww synchronization. In addition to the interface, 

two-phasedness of the transactions need to be preserved 

i.e. while constructing integrated two-phase locking 

methods, it is to be seen that all locks needed for both 



xw and ww techniques must be obtained before any lock 

is released by either technique (BE~ 81). 

Each of the above methods can be further refined by the 

choice of deadlock resolution technique as described in 
I 

section 3.1.3. 

Method 1 : · Basic 2-PL for xw synchronization and 

primary copy 2PL for ., synchronization. 

In this method, a conflict between readlock and 

writelocks is resolved by basic 2Pl. tecttnique, whereas, 

that between two writelock.s by primary copy 2PL 

technique. 

Suppose there is a logical dataitem X w~h 

copies x1 , • • • x., placed at various sites. If a 

transaction wants to read X it sends read command to •nv 
one site where a copy of X is stored. This command 

implicitly requests a readlock on th¥ copy of X at that 

site. To write into x, the transaction sends prewrite 

commands to every copy of X and the commands implicitly 

request writelocks on the copies. Bernstein et al. 

classify the writelocks into three types due to the fact 

that various types of \'lfritelocks need to be obtained at 

various copies for the locking conflict rules vary for 

writelocks from copy to copy of a dataitem. 



(1) Rw writelock : such a writelock only conflicts 

with readlock. 

(11) WW wrltelock : such a writelock conflicts with 

another similar writeloek. 

( 111) Rww writelock : such a writeloek conflf.cts with 

readlocks, ww writelocks and also rww writelocks. 

~ile using basic 2PL for rw synchronization, 

a transaction willing to read a data item X requests 

for readlock on any copy of X. This readlock conflicts 

with writelocks on all copies when another transaction 

is willing to write into X and that the prewrite of thi.s 

transaction attempts to obtain r:w write lock (as this 

writelock only conflicts with a readlock on the same 

data item) on all the copies of x. Thus this type of rw 

conflicts may be resolved at all copies. 

On the contrary, writelocks conflict with 

another writelock only in the primary copy and thus it 

is resolved only at that coPY. Since a readlock can also 

be obtained at the primaxy copy, the write-lock to be 

used her& should be rww type. 

Method 2 : 

. .... · .. 

Primary copy 2PL for rw synchronization 

and voting 2PL for ww synchronization. 

In this method, read-write conflicts are resolved 

in the primary copy only whereas the write-write conflicts 



are resolved by requiring that a transaction can write 

into a particular data item only when the system grants 

majority of writelocks to the transaction. 

Suppose there are cooies x1, ..,. •"m of a logical 

data item X and x1 is the primary copy of X. To read x, 
a transaction sends read .request which implicitly obtains 

readlock on the primaxy copY x1 • Once the readlock is 

granted, the transaction can read any copy of x. However, 

a transaction willing to write into x, first sends 

prewrite commands to each site that stores a copy of x. 
The prewrit.e command at the primaxy copy obtains a rw 

wr.i,telock which prevents other readlock requests from 

accessing the item. Thus read-write conflicts are 

resolved at the primary copy. 

The ww synchronization is obtained by voting 2PL 

technique. v~en a transaction issues prewrites in ~rder 

to write into x1, ~11 prewrite (x1) commands except 

prewrite (x1) request for a rww writelock on the primary 

COpY of X i.e. x1 where read commands in general are 

allowed to obtain readlocks. If the rww writelock can 

n~t be set on this copy. an rw writeloek is set on x1 
before rwt1 writelock is made to wait. A transaction 

writes into every copy of the required dataitem if it is 

granted a ww (or rww) wri telock on majority of copies 

of it. 



• 

Method 3 : Centralized 2'Pl. for rw synchronization and 

basic 2PL for ww synchronization. 

Suppose there are copies of a logical dat• item X 

residing at various sites. · Since centralized 2PL 

technique is used for rw synchronization, a transaction 

before reading {or writing) any copy x1 of X, obtains a 

readlock (or rw writelock) on X from a centralized 2PL 

scheduler • 

Since the basic 2PL is used for ww synchrJnization, 

before writing x. a transaetion sends prewrites to every 

site that stores a copy of X and these prewrites 

implicitly request ww writeloeks on every copy of x. 
When two such ww writeloeks enter a conflict, one is 

processed and the other one is made to wait which is 

processed after the first one releases the lock. 

In all the above meth~s, readlocks are 

explicitly released by special lock release commands 

while writelocks are implicitly released by write commands 

(because prewrite command sets a writelock, after 

required computations is perfoxmed, the data in the 

original database position is updated in a two phase 

commitment manner where the write command takes the 

updated data into the database by simultaneously 

releasing the writelock on it). 
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~re Timestamp Ordering ( T/O Methods 

The basic T/0 technique, the conservative T/0 

technique and Thomas write Rule (for ww synchronization 

only) can be combined to form various integrated methods. 

These methods guarantee serializability as each 

of them satisfy the required conditions : firstly, the 

technique of timestamp ordering attains an acyclic 

tt ~ rwr" or " ~ ww• relation when used for rw or YIN 

synchronization ; this is because each site processes 

conflicting operations in timestamp oxder and thus 

each edge of the " ~ rwr" or 11 ~ ww• relation is in 

timestamp order : since all transactions have unique 

timestamps, no cycles are possible. Secondly• the total 

oxdering of the transactions consistent with all " ~ xwr• 

or 1t ~ " relationships also exists and the timestamp . ww 

oxder is the valid serialization older that satisfies 

the restated proposition. 

Because two different T/1 techniques are used 

independently for rw and ww synchronization, the 

interface between the techniques is maintained by 

requiring that both techn~ques use the same timestamp 

for any given transaction. 

Three of the inte!rated methods have been 

described for the sake of illustration. 



Method l : Basic T/0 for rw synchronization and 

conservative T/0 for ww synchron1%ation. 

A transaction is assigned a globally unique 

timestamp which is used for both J:W and \WI synchroni­

zation. Each data item is associated with a read 

timestamp R - ts and a write timestamp w.-ts. In oxder 

to achieve tw~hase commitment of a transaction, its 

read and prewrite commands are buffered. 

Let min- R-ts(x) and min-~ts(x) be the 

minimum timestamps of any buffered read(x) and 

prewrite (,x) commands on data item x. Suppose R denotes 

the read{x) command and P denotes a write(x) command., 

The steps for the method would be as follows : 

l) If ts(R)<'lf-ts(x), R is rejected. 

else, if ts ( R) > min - P -ts( x), R is buffered. 

else R is output and ~ts(x) is set to max (R-ts(x),ts(R)). 

2) Since conservative T/0 is used for ww synchroni­

zation, a prewrite command is always buffered instead of 

being rejected. 

3) If ts( w) > win-1\..ts( x) or if ts( w) is greater than 

the minimum timestamp of any buffered write command 

from some transaction site, W is buffered. Else W is 

output and W.ts(x) is set to ts{w). 

4) When W is output, its prewrite is debuffered and 

the buffered read and write commands are retested to 



see if any of them can. be processed for an output. 

Method 2 : Basic T/0 for xw synchronization and 

T'tlR for ww synchronization. 

Here also, each dataitem is associated with 

read and write timestamps as in the previous case, 

however, the steps of the method are different and are 

as follows : 

1) If ts( R) < 'f~ts( x), R is rejected. Else if ts( R) > 
min-P-ts(x), R is buffered. ElseR is output and 

~ts(x) is set to max (~ts(x), ts(R)). 

2) If ts(w) > w-ts(x), the write command is processed 

as usual i.e. x is updated. If, however, ts{w) < 
w..ts{ x), w is ignored according to TWR and it has no 

effect on the database. In this method, a sc:hedulttr 

always accepts prewrite commands but never buffers 

write commands. 

3) When w is output, its prewrite is debuffered and 

the buffered read commands and the write commands 

(if any) are retested to see if any of them can be 

processed for an output. 

Method 3 : Ccinservative T/0 for rw synchronization 

and TWR for ww synchronization. 



In this method, each data item is required to 

be associated with a read timestamp and a write timestamp 

which are the timestamps of the respective operations 

that have already been processed on the dataitem •. Let 

Min-W..t.s( 51) be the minimum timestamp of any buffered 

write command from a site Si. Let the read command of 

a transaction to be executed on a data item X be denoted 

by R, a prewri te command l7f P and a write comrr:and by w. 

Then the method consists of following steps : 

1) If ts(R) > min-W-ts(Si) for any 51, R is buffered; 

else it is output. 

2) A prewrite command is always buffered till the 

write command arrives and if ts( w) < w-ts( X), i1 has no 

effect on· the database: that is such write command is 

ignored. Else, if ts(·;~) > w-ts(X), it is output. 

3} When W is output, its prewrite is debuffered; 

buffered read commands and of course, the incom~ng 

write commands (if corresponding prewrite command is 

buffered) are retested to see if any of them can be 

allowed to operate on the data. 

~ixed 2PL and ~imestamp ordering methods 

These methods are constructed by using two-phas• 

locking technique for rw(or ww) synchronization and 

timestamp ordering technique for ww (or rw} synchroni­

zation. However, in oxder to guarantee serializability 



of executions, the methods must satisfy botb the conditions . 
stated in the theorem : 

l) The rf!lation '* ~ r.Nr• and ., -1 VM .. are required to 

by acyclic, which is of course the case with each of ~PL 

and timest•mp techniques. 

~) It is required that there is a total oxdering of 

transactions consistent with all 11 .., n~r'1 and all • ~ ww• 

relationships. This condition requires an interface to· 

be built between the independent techniques and that the 

interface is required to guarantee that the combined 

" ~ •• relation (i.e. ~ rwr U 7 ww> remains ac:yclic. 

This means, the interface must ensure that the seriali­

zation order induced by rw technique is consistent with 

that induced by the tiM technique. The interface given 

below makes this guarantee. 

The interface 

In any ~PL technique, a transaction ·owns all the 

locks it will ever own at: the end of its growing phase 

. (the first phase of two-phase comr·~itment. discussed in 

chapter 2), known as the locked point of the transaction. 

Then, in a serial execution it is a fact that all 

transactions start their execution at their respective 

locked points and also that is the case with all seriali­

zable executions. Hence these locked points of an 



execution determine the serialization order of the 

execution. However, the serialization order induced 

by any timestamp ordering technique is obviously deter­

mined by the timestamps of synchronized transactions. 

There being different serialization orders for different 

techniques, if one technique is used for rw synchroni­

zation and another for ww synchronization, there would 

be problem of total ordering among the transactions. 

This problem is resolved by requiring the locked points 

to induce timestamps of the transactions (BE~ SOb). 

Locked points induce timestamps in the following 

way. Each data item X of a database is required to be . 

associated with a lock timestamp, ~ts(X). When a 

transaction T sets a lock, it simultaneously retrieves 

L-ts(X). When T reaches its locked point. it is assigned 

a timestamp, ts( T), greater than any L-ts it retrieved. 

When T releases it lock on X, it updates L-ts(X) to be 

max {I-ts( x), ts( T)). 

It can be proved that timestamps generated in 

this way are consistent with the serialization order 

induced by 2Pl., technique i.e. ts{Tj) ts{Tk) if Tj must 

precede Tk in any serialization induced by 2PL. 

Proof 

Let t 1 and Tn be a pair of transactions such that 

T1 must precede T
0 

in any serialization. 



Thus there exist transactions t 1, t 2 , ••• , tn-1• 

T
0 

such that for 1 • 1, ••• n-1 

( a) T 1 's locked point precedes T 1 .,:.1 s locked point and 

(b) t 1 releases a lock on some data item X before Ti+l 

obtains a lock on X. 

If L is the r.-ts(X) retriev~ by r 1• 1, then 

ts(t1) L ts (Ti+l) and by induction ts(T1) ts(T0 ). 

Therefore, timestamps generated are consistent 

with the serialization .order induced by ~PL ( BEm 81). 

A mixed method using basic 2PL for rw synchroni­

zation and Thomas Write Rule ( TWR) for W# synchronization 

has been described below for the sake of illustre~tion. 

M•tbod 

This method requires that every stored data item 

have a lock timestamp L-ts and a write timestamp W.ts. 

Let X be a logical data item with copies 

x1, ••• , X,.· To read X, a transaction T issues read 

,CODINind on any copy of x, say xi. This comnand implicitly 

requests a readlock on x1 and when the readlock is granted, 

L-ts{xi) is retumed to T. 

To write into X, T issues prewrite commands on 

every copy of x. These connand request writelocks {or more 

specifically known as rw writelocks that only conflict with 

readlocks on X) on the corresponding copies, and ~s each 



writelock is granted, the corresponding L-ts is 

returned to T. When T reaches the locked point 1. e. 

when all the required locks are obtained ts(T) is 

calculated as described in the last section. This 

timestamp is assigned to the write command which are 

then sent for updating purpose. 

These write commands are processed using Thomas 

~"iri te Rule. Let W be the write command to update xj : 

i l if ts{ W) > · i'-ts( xj), -the wr:i te command is 

processed as usual and consequently xj is updated. 

11) if ts(W) < W-ts(·X:j)' N is ignored. 

This method has the advantage over pure ~PL 

methods in the sense that here transactions execute 

concurrently even if their write-sets intersect. This 

is because, writelocks never conflict with other write­

locks and those obtained by prewrites are used only for 

rw synchronization. Also, the write command of a 

transaction is processed only after it is assigned a 

timestamp which is induced by the locked point of the 

transaction i.e. after the transaction obtains all of 

its locks. 

5. 3Conclusion 

This dissertation on synchronization techniques .. 
does not contain all the techniques available in 

literature, but concentrates on the basic frameworks 



required to achieve maxima 1 concurrency while running 

concurrent transactions. 

All of the concurrency control mechanisms 

discussed in last three chapters have been designed for 

use in a distributed transaction-processing environment. 

The data-it.ms have been assumed to be independent 

database entities directly associated with physical or 

logical storage units (pages, recoxds, or files). 

Transactions have been assumed to consist of a sequence 

of read and write operations and of course, with local 

computations. !bus. tfie techniques are not able to 

support concurrency control in a general distributed 

environment; however, they provide a general framework 

that resolve the problems ar:ising out of multiple 

access to a shared data where database consistency need 

· to be preserved. 

Although various techniques have been developed 

for synchroni2ation of concurrent execution of trans­

actions, perfomance of a few of a them has been 

evaluated. Factors influencing the performance when 

the techniques are used, are system throughput and 

transaction response time which are under the influence 

of intersit.e communication, local processing, transaction 

restarts and transaction blocking. The impact of these 



factors varies from technique to technique {BERN 81). 

Thus, a comprehensive analysis and eomparision between 

the various techniques need to be studied in order to 

optimize their use in distributed database systems. 
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