A Study of Synchronization Techniques
n .
Distributed Database Systems

Dissertation submitted in partial fulfiiment of
the requirements for the Degree of

MASTER OF PHILOSOPHY

[21p.

PARTHA SARATH! ACHARYA

SCHOOL OF COMPUTER AND SYSTEM SCIENCES

JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI—110067

1985



CERTIFICATE

This work embodied in this disscttaﬁion has
been carried out at the School of Computer and Systems
Sciences, Jawaharlal Nehru University, New Delhi-1ll0067.
This work is original and has not been submitted so far,
in part or full, for any other degree or diploma of any
University,

(S bt

{ PARTHA SARA ACHARYA)
' Student

SLDBL AN L

( PROF. K.K. NAMBIAR)
Dean

O Loeoins

(DR. P,C. SAXENA)
Supervisor

School of Computer and Systems Sciences
Jawaharlal Nehru University
New Delhl - 110067



ACKNOWLEDGEMENTS

I wish to cxpress.my deep sense of gratitude to
my Supervisor, Dr. P.C. Saxena, Assistant Professor,
School of Computer and Systems Sciences, Jawaharlal
Nehru University, for his valuable guidance,
enthusiastic cooperation and encourageﬁent. He has heen
a constant source of inspiration throughout this work,

v I am grateful to Professor K.K. Nambiar, Dean,
School of Computer and Systems Sciences, Jawaharlal Nehry
University for his cooperation and providing me with all
the facilities in completing this worxk.

I am thankful to my friend and classmate
Mr. R.C. Tripathy for his timely help and discussions.

My thanks are also due to the faculty and other
staff for their cooperation and help in many ways.

I also thank Mr. S.K. Sapra for typing the
dissertation so neatly,

Finally, I am grateful to Council of Scientific
and Industrial Research, New Delhi for providing me with
the financial assistance that made the woxk possible,

(<hoh

. { PAKTHA SARATHT ACHARYA)



Preface

Distributed database system, 3 recent evolution
in database technology has emerged from the successful
combination of databases and computer networks. In such
a8 system, an integrated database is built on top of a
computer network rather than on a sihgle computer, The
data constituting the database are placed at various sites
of the computer network, and individual application
programmes run by the corresponding computers access and
update data at different sites,

The distributed database technology faces
‘completely new problems and a great amount of research
work has been done in order to solve them, Concurrency
control is one such problem which gets complexified due to
the distributed nature of the database system in contrast
‘to the centralized systems where the problem is relatively
simpler. The synchronization techniques studied in this
- dissertation have been designed to solve the problem of
concurrency control in distributed systems,

This woyk has been divided into five chapters,
Chapter 1 presents an overview of distributed databases
which is an introduction to distributed systems. Chapter &
discusses the problem of concurrency cont:ol that arises in

such systems, Chapter 3 contains the basic synchronization



techniques viz. two-vhase locking and timestamp ordering,
suqggested and used to address this problem, Chapter 4
discusses two advanced techniques viz, Conflict analysis
and reservation list that eliminate some of the short-
comings encountered in the techniques of the preceding
chapter, 'Chapter 5 embodies the techniques suggested by
integrating the basic méthods of two-phase locking and |
timestamp ordering,

At the end, a list of references has been given

for further reading.
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CHAPTER ~ 1




AN VERVIEA OF DISTRIBUTED DATARASES

For last fifteen years, computers have been
extensively used for building powerful and integrated
database systems, Such database systems have found wide-
ranging applications in various fields like commercial,
scientific, technical and other organizations. However, in
recent years availability of low cost computers and of
computer networks has given rise to a new type of system
which eliminates many of the short-.comings of centralized
databases and fits more naturally in the decentralized
structures of many organizations, This system is known as
distributed database system which, unlike the centralized
ones, has databases stored with different computers at
different sites of a comnuter network.

This chapter formally introduces a distributed
database system, Section 1.l presents a precise definition
of distributed databases followed by the motivotions leading
to the organization of distributed database system in
section 1,2, Section 1,3 presents a comparative picture of
various features of distributed and centralized systems,
Preiiminary ideas and architecture of a distributed database
management system (DDBMS) required for the understanding of
synchronization techniques have been presented in section 1.4,
The last section lists the areas or organizations of

distributed database apnlications,



1.1

Distributed database
A distributed database is a collection of data

distributed over different computers of & computer
network and it is characterized by the following (CERIBA4) :

i)} Each of the computers (i.e. processor along with its
memoYy and peripheral devices) of the network is referred
to as a site which has autonomous processing capability,
ii1) Each site also participates in the execution of |
global applications or distributed applications in which
a site might require to access data residing at more than
one site. The existence of global applications is
considered the discriminating characteristic of distributed
databases with respect to a set of local databases.
Illustration

Suppose there is a bank having more than one

branch (say three) situated at geographically different
locations. Each branch has a computer with one or more
than one teller terminals and the computer controls the
account database of that branch, Each computer with its
local account database at one branch constitutes one site
of the distributed database. Computers at various branches
are inter connected by a communication network. Such a

system is known as distributed database system (Figure 1).
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Applications issued by teller terminals of a
particular branch may need to access only the account
databﬂse of that branch. These applications are
independently processed by the computer of that branch
and are called local applications. A debit or credit
applicatioﬁ on an account stored at the same branch at
which it is issued is an example of local application.

An application requested to transfer funds from
an account of one branch to an account of another branch
requires updating the database at two different sites,
Such an application is called » global application.

Distributed databases can also be built on local
networks unlike the preceeding example where the databases
are placed at geoqraphically different locations,
Illustration |

Suppose the computers and corresponding databases
of the above example are removed to a common building
and are connected with a local network, Then each
processor and its database constitute a site of the local
computer network and the system is also known as
distributed database system because the characteristics

of distributed databases remain satisfied (Fiqure 4).



COMPUTER CENTRE
DB2
T A T
B 1, -7
RANCHIS T — compuTER COMPUTER] | _
T—1 1 2 —t— T
T— ~ T
LOCAL
NE TWORK
1" T
| T
BRANCH 3
COMPUTER— T
3 T
T |7
DB3

BRANCH 2

FiG.2 A DISTRIBUTED DATABASE ON A LOCAL NETWORK



1.2

Motivations for distributed systems
Technological changes like price-perfommance

revolutions in micro-.electronics, development of
efficient communication systems and growing complexity
of user needs are the major motivations for distributed

database systems (DAVI 81).
Microelectronics technoloqy

Technological advances like low-cost manufacturing of

large scale and very large scale integrated circuits
(1LSI & VLSI) and largew.sized memoxy chips have brought in
a8 falling trend in hardware price. This has made it
easier and cheaper to install a multi-comnuter system
(both in centralized as well as distributed database
systems) consisting of several processors than to invest
in a large and complex multiprogrammed uniprocessor.
Communication technology

Use of simple and cheap technologies as twisted
pairs, coaxial cables, miczn—wéva transmission as well as
sophisticated technologies like fibre optics in local
area computer networks has prompted the building of
distributed database systems out of several processing
elements,
User needs

Usually, o:ganizatidns 1ike industries, banks;
inventory systems, hospitals and public administratinn



sysiems exhibit decentralized functional structures
because activities in these orgsnizations are decentra-
lized by nature. Thus & decentralized style of
management is more suitable for such organizations in
contrast to conventional centralized style, For instance,
it may be more profitable to provide each department of
an organization with its own small computer and the
required database of that department. Consequently,
local tasks of a department are run and contrﬁlled by
the people of that department who understand them best;
in addition, they have other databases of the system
placed in various departments at their disposal due to
the network system, Thus a distributed database system
simplifies the task of decision.making and hence the
task of management and improves overall efficlency,
Distributed database system is also economic.,
The possibility of installing processing elements with
required databases (i.e. databases containing infoimations
relevant for particular locations) at various locations
brings in the advantage of reduced communication cost.
Besides, in a distributed system, a lot of processing
can be conducted on local computers in contrast to all
processings being handled by one central but remote big

mainframe computer,



1.3

Distributed database approach supports a smooth
incremental growth where an organization grows by
adding new, relatively autonomous organizational units
{new branches, new warehouses efc.). Such an addition,
unlike in case of centralized database, does not affect
the functioning of already existing units,

In distributed database systems, database can
be replicated at each other site (fully redundant
database) or at some of the sites {partially redundant
database} depending on the need of the user. Such
replications provide the system with higher reliability
and availability. Because, failure of a particular
site does not prevent the system from being operational.
If the system does not contain redundant data, effect of
each failure is confined to those applications which use
the data of the failed site, Availability and faster
access tn data is achieved due to the possibility of
storing portions of the database near to where they are

frequently used.

Comparative features of distributed & centralized databases
Distributed databases allow design of systems

which has different features from traditional centralized

systems, Centralized control, data independence,



reduction of redundancy, integrity, recovery concurrency
control, privacy and security are the various features
that characterize the traditional database approach.
Centralized control

Centralized control is an essential feature of
traditional systems because it provides an organization
with a central cormmand over its infommation resources.

The database administrator quarantees the safety of the
data,

However, in distributed databases centralized
control is de-emphasized. A global database administrator
takes care of the whole database whereas the local database
administrators have the responsibility of their respective
local databases, often with @ high degree of site autonomy,
A distributed database may also be designed with global
database administrators accompanied with complete
centralized control,

Data independence

Data indepence is a major‘objectiva of centralized
database system and is defined as the immunity of appli-
cation programmes to the actual orgasnization of data, It
has the_advantage that programmes are not affected by

changes in storage structures and access strateqy.



In distributed database, data independence has
the samé importance as in traditional systems in addition
to a new aspect, knoﬁn as distribution transparency,
pistribution transparency provides a centralized view
of the databases to the programmes implemented in the
system. Consequently, the movement of data from one
site to another does not affect the correctness of
programmes, though the speed of execution gets affected,

Reduction in data redundancy

In centralized systems, reduction in data
redundancy is desired to avoid inconsistency and to
prevent wastage in storage space,

However, in case of distributed databases,
redundancy is a desirable feature; because replicated
copies of databases guarantee reliability of the system
and enhances its availability in spite of wastage in
storage space. The problem of inconsistency arises when
updates are‘not pexfommed consistently on all cppies,
This problem is related to concurrency control which
has been discussed in chapter 2.

Integrity, recovery and concurrency control

The problems of integrity, recovery and

concurrancy dantxnl in traditional database system arxe

resolved by the use of transactions., A transaction is



a sequence of executable operations which either are
performed in entirety or are not performed at all and
thus is an atomic unit of execution., For instance,
the debit operation is a transaction which is either
executed or none is executed,

Same approach is made to these problems in case
of distributed database systems where the problems are
further complexified due to distribution. Atomic
transactinns ensure integrity of the database; however,
the atomicity is threatened by site failures or
concurrent execution of different transactions. Site
failures may cause the system to stop in the midst of
transaction execution, thereby violating the atomicity
requirement. Concurrent execution of two or more
transactions may permit one transaction to observe an
inconsistent, transient state created by another
transaction during its execution,

_ Recovery and synchronization techniques take
care of the prablem.of preserving the transaction
atomicity during site failures and concurrent execution
of transactions,

privacy and security

In traditional databases, privacy and security
are ensured by the database adminigtratbrs having

centralized control and specialized contrnl procedures,



In case of distributed databases with a high
~ degree of site autonomy, privacy is maintalned by the
local database administrators; but the security is

threatened because of the communication network,

Distributed Database Management System

A distributed database management system (DIBMS)
is a collection,of sites interconnected by a network
(DEPP 76, R)TH 77). Each site is a computer with one or
both the following software modules : a transaction
manaqer (TM) or a data manager {(DM). TMs supervise
interactions between users and the DDEMS while DMs
interact with the database. ALl the sites are inter-
canhectad by a network which is & computer-to-computer
communication system. The network is assumed to be
perfectly reliable with the following required conditions :
firstly, the communication system is capable of
transmitting messages between sites without distortion
or error; secondly, between any pair of sites the network
delivers messages in the oxder they are sent,
Database |

The database in LUBMS consists of a collection of
logical dota items, denoted ".r X, Y, Z. In practice,
these may be files, tacards etc. A 1ogica1 database state

is an assignment of values to the logical data items



composing the database, Each logical dataitem may be
stored at any DM in the system}or redundantly replicated
at several DMS, A stored copy of a logical dataitem is
called a stored dataitem or simply a dataitem, A

stored database state is an assignment of values to the
stored dataitems in a database.

Transactions

Users interact with the DOBMS by executing
transactions. A transaction is a sequence of operations
on one or more data-items in order to change the state
of the database, If is, in fact an on-line query
expressed through application programmes written in a
generxal purpose programming language,

An imnortant oroperty of the transaction is that
it is atomic in nature. Thus, each transaction if
executed alone on an initially consistent database, must
terminate and must leavo’?he database in a new consistent
state.

System architecture

A DOBMS contains four components (Fiqg.3):
transactions, TMS, DMS and data. Transactions communicate
with TMS, TMS communicate with DMS, and DMS manage the
data, TMS do not comrunicate with other DMS, nor do OMS

communicate with other DMS.
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- TMS supervise transactions, Each transaction
executed in the DDBMS §s supervised by a single M,
meaning that the transaction issues all of its database
aperations to that TM. Any distributed computation that
is needed to execute the transaction is managed by the
™.

Four operations are defined at the transaction-
M interface. Read operation retrievs the value of a
dataitem from the database, iirite operation writes into
the database i.e. creates a new logical database state
in which a dataitem has a new value, Begin and end
operations are used to indicate starting and ending of
transaction executions,

Several commerclally available 0DEMSs were
developed by the vendors of centralized database
management systems, They contain additional components
which extend the capabilities of centralized OUBMSs by
supporting communication and c¢noperation between the
DDRMSs which are installed at different sites of a
computer network,

A DDBMS may be of two types depvending on the
local DBEMSs used in the system : homogeneous and
heterogeneous. In homogeneous DDBMS, each site has the

same logal DBMS, even if the computers and/or the



operating systems are not same., However, a heterogeneous

DDBMS uses at least two different DBMSs in the system,

Distributed Database applications (SCHR 80)

The following systems make use of distributed
database management systems,
Manufacturing control systems

These systems are structurally hierarchic. A
central database is used for the overall scheduling and
control of the manufactdring process and locél databases,
close to the process units, store only informmations that
is needed for supporting the local tasks.
Inventory systems

The inventory systems often present a hierarchic
structure, with master stores and geographically
distributgd minor stoxes,' The master stores may be
connected through a generalized network and they can be
the central nodes of star networks connecting the minor
stores closed to each of them.

Some inventory informations (viz. quantities in
local stores) are locally distributed without replication
and heavy updating problems; however, other infomations

(viz. prices) are on the contrary replicated with full

dependence,



Banking systems v _

In banking systems, there is a greater need to
guarantee the databsse integrity than in the above
mentioned systems. Therefore in banking systems the
need is particularly felt for a central control,
corresponding to a hierarchical architecture of the
information system. Renlicated information, such as
personal accounts which are kept at the proper local
‘agency and at the central agency, are periodically
refroshed, .

The developments in this field are expected to
create the ‘chequeiess society', or even ‘moneyless
society', with comouter communication between each
purchase place and the buyer's personal account, For
each purchase, the‘buyer's credit is checked, and, if
permissible, his bank account is reduced and the seller's
account increased.

Corporate database

A corporation represents an organization with

many autonomous divisions, each of which can keep its
‘own database. Some data of general interest can also
be shared, typlecally, summayy data can be maintained at
high levels of the organization for strategical planning

© pUrposes,



Law _enforcement systems
These systems include the information systems

of the police, where data about crimiqgls or texrorists
are gathered. This kind of application seems naturally
oriented towards distribution, since having‘the data
available where they are needed is important; the data
storage location 1s also distributad; since each police
station usually keens data belonging to its geographical
area.

Medical systems

DUBMS may be apnlied to realize centralized hospital
information systems, where data about patients' treatments
can be stored,

Developments in this field would be able to
provide a global architecture of medical information
system which might consist of 2 general system connecting
the computers storing the population's health databases,
each of these computers would be the centre of &
hierarchical system connecting the hospitals belonging to
the same geographical area.

Public administration systems

These systems include demographic, fiscal,
territorial information and other applications like
managing of motor vehicle records or of telephone

directories,.



Increased population mobility makes the
availability of demographic information necessary also
in places other than the hometown, therefore the local
demographic databases should be globally connected.

| Fiscal information should also be supported by
a distributed system in order to have a larger control
upon everybody's activities, |

Territorial information can be distributed in
order to make urban or agricultural planning easier,

by gathering local data and processing them,
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2.1

CONCURRENCY CONTROL

This chapter has been devoted to the discussion
on the problem of concurrency control in database systems.
Section 2.1 introduces concurrency control with exsmples
and section 2,2 presents a simple model of 2 DDBMS where
steps of processing user interactions with ihe system
have been discussed; in fact, this section helps in the
understanding of the various steps that a transaction
wishes to execute and presents a picture of an overall
database management system where techniques to solve the
problem of concurrency control are to be applied,
Section 2.3 deals with the properties of valid trans-
actions and the notion of database'consistency that is
to be maintained despite multiple access of the database
by various transactions, Section 2.4 discusses the
concept of serializability which provides a key to the

resolution of the problem of concurrency control.

#hat is concyrrency control

Concurrency control is the activity of
coordinating concurrent accesses to a database in a
multi~user database management system (DRMS). A multi.

usexr database may be centralized or a distributed one,



In centralized database if the database is
accessed by 3 single user, programmes accessing the
database are run one at a time, thereby making the
access serial; however, 1f it is accessed by more than
one usex, there is always a possibility that the data.
base or more specifically a particular data item in the
database may be accessed by some or all the user
simultaneously and this simultaneous access is called
concurrent access. Airline reservation system may be
t2ken as an example (ULLM 84), It is & system with a3
centralized database where many sales agents may be
selling tickets and changing lists of passengers and
counts of available seats, If two or more agents run
programmes to acceéss the database, there is a passibiliﬁy
that a parxticular seat may be sold twice which is
certainly an undesirable effect. Such problems arise
due to concurrent access on database and is known as
concurrency control problem.

In distributed database management systems (UDBMS),
' two or more users access databases stored at different
sites of the network, For instance, in a banking system
designed as a DDBMS, a particular account stored in some
specified database may be required to be accessed by two

or more users for retrieval or updating pur




user's retrieval operation interfere with anotherts
updating then the system would provide undesirable
outputs to the users therefore, it is essential to
prevent database operations performed by one user from ‘
interfering with operations pgrformed by another and
this is achieved by concuriency control. The problem

of concurrency control in DDBMS is more complex phan
that in centralized database systems because (1) users
may access data stored in databases of many diffexrent
computers in a distiibuted system, and (2) a concurrency
control mechanism at one computer can not instantaneously

know about interactions at other computers (BERN 8l1),

Example of uncontrolled concurrent access |
The follawing example illustrates two out of a2

number of ways in which users interfere because of
uncontrolled concurrent access to databases.

Let there be an on-line electronic fund transfer
system accessed by automated teller machines situated
at remote sites to process the transactions., The
transaction of a customer, requests for data retrieval
followed by computations on the data and for storage of
the result back into the database.
1)} sSuppose two customers simultaneously txy to deposit

money into the same account with a previous balance of
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Rs,l00, The first customer deposits Rs.30 and the
second deposits Rs.l00 (Fig.4). The new balance in the
account is the balance computed by either the first or
the second customer depending on the oxrder by which
storing operation is executed. If first customer’'s
storage operation precedes the second, the new balance
in the account becomes Rs.200 ; otherwise, it remains
as 25.150. Thus the net effett of both the deposits on
the détabase is incorrect; although two customers
deposit money, the database only refle€ts one activity;
the other deposit is lost by the system. This is a
~lost update anomaly because of concurrent aexecution of
transactions,
2) Ssuppose two customers simultaneously execute the
following transactions on 3 person's savings account
and checking account. Originally, these accounts have
Rs.2«00 and Rs.50 respectively (Fig.5).

Castomer L : Transfer Rs.l00 from the person's
savings account to his checking account.

Customer 2 : Print the person's total balance in
savings and checking account,

In the absence of concurrency control these

two transactions intexfere. The first transa’ction reads

the savings balance, subtracts Rs.lO0 and stores the
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2.2

result back in the database. Since the concurrency
control is absent, the second transaction may'staxt
reading the savings and checking balance at this point
and prints the total as Rs.130. Then the first
transaction completes by reading the checking balance
and then adding to Rs,100 and finally stoxing the
result in the database. Unlike the previous case, the
final values written into the database axe correct;
however, the retrieval by the second customer is
incorrect which should have been Rs.230 instead of Hs.150.
This is an inconsistent retrieval anomaly due to

uhcontrolled execution of concurrent transactions.

Transaction-processing model
Knowledge of the environment where transactions

are processed is essential to understand the solution

of concurrency control problem., The basic framework of

‘transaction processing models, for centralized as well

as distributed databases have been described in this

section.

Centralized transaction processing model

A centralized DBMS has one transactisn manager
{ ™) that supervises the transaction and one centralized
database unde: the supervision of a data manager (DM).

A transaction T accesses the DIMS by issuing the following



operations which are processed by TM,

BEGIN : By this operation, the TM sets a private
workspace for the transaction where the workspace acts
as a temporary buffer for values read from and written
into the database,

READ {X) : When this command is issued, the copy
of X is searched for by TM in the T'S private workspace.
If the copy exists, it is used by T ; otherwise, the T™™
retrieves a copy of X from the database and gives it to
T and puts it into T's private workspace.

WRITE (X, new value) : The TM again checks the
private workspace for a copy of X énd if it is found,
the value is updated to new value, This ‘write?
operation does not store the new value into the
permanent database,

END : The TM requests the D4 to stoxe back the
updated value into the perxmanent database from the
T'S private workspace. Then T finishes its execution
and its private workspacc is discaxded.

Two~phase Commitment

Above steps are correct insafar as a transaction
once started need not be aborted and restarted before
the completion of its execution (aborting a transaction
‘and restarting it by the system is essential in the



Asynchronization techniques discussed in later
chapters). In case of restarting of a transaction,
if the system requires the transaction to be aborted
before allAthe involved data items in the database
are updated to the new value, the database reflects
the partial effect of the transaction and the efféct
is to be avoided,

Such partial effect can be avoided by
requiring that each tran;action either commits (the
completion of a transaction is called tcommitment?®)
by updating all the involved data items in the
permanent database or does not, at all, start this
updating. This property of transactions is called
‘tatomic commitment', Two-phase commitment is a
procedure to implement this property { LAMP 76, GRAY 78).
Suppose a transaction T is updating dats iftem X and Y.
when T issues its END,vthe first phase of two-phase
commitment 5egins. during which the DM issues the
prewrite command that siores the values of X and Y from
Tts private workspace into secure storage. If the
DBMS fails during this phase, no harm is done, since
none of T'S update have yet been applied to the
permanent database. During the second phase, the ™™

issues write command to DM to copy the values of X and Y.



into the stored database, If DBMS fails during the
second phase, the database may contain incorrect
informmation, but since the values of X and Y are already
there on the secure storage, this inconsistency can be

rectified when the system recovers.

Distributed transaction processing model
DDBMS has alfcady been described in section 1.4
and it consists of more than one TM and DM and thus

differs from centralized model in two aspects (BERN 8l1):
1). In centralized DBMS, it has been silently assumed
that‘(i) private workspaces are part of the TM and

(i) data could freely move between a2 transaction and
its workspace, and between a workspace and the DM,
However, these assumptions do not hold good in case of
DDBMS because TMS and DMS run at different sites and
the movement of data between @ TM and a DM may be
expensive. These aspects relating to how T reads and
writes data in the workspaces are studied under query
optimization problem which has no direct effect on
concurrency control,

4) The problem of implementation of two.phase commitment
is complexified by the possibility that one site may
fail while the rest of the system continues to operate,

Because, if the failed site contains incorrect infomations



in its database due to system failure, other sites
may access those inforxmations, thereby producing
undesirable results. Thus the procedure for the
implementation of atomic commitment of transactions
is modified (the details of this procedure appear in
HAVM 80).,

In DDBMS, a transaction T accesses the system
by issuing BEGIN, READ, WRITE and END operxations. They
are processed as follows :

BEGIN : A private workspace for T_is created by
the TM. | .

READ (X} : The ™™ checks T's private workspace to
see i1f a copy of X is present. If so, that copy's
value is made available to T. Othexwise the TM asks
the DM to place the stored value of X in the workspace
where it is received by T.

WRITE (X, new.value) : The value of X in Tts
private workspace is updated to new value, assuming
the workspace contains a value of X,

END : when this operation is requested, two-.phase
commitment begins, For each X updated by T, and for
each stored copy of Xg of X, prewrite (xi} is ASSued
to each DM where the copy is stored. This command

copies the value of X from T'S private workspace onto



N

secuyre storage at respective sites, After sll prewrites
are processed, the new value is finally stored from
the secure storage into the permanent database. Then

T'S execution comes to end.

Transaction and Consiétengz
A transaction, a sequence of operations, is an

atomic unit of database access, which is either executed
or not executed at all and it has the following
properties (CERI B84).

Atomicity : Either all the operations constituting
the transaction are performed or none are perfomed,
In case there is an interruption due to a failure, during
the execution of operations, the partisal results of
2lready executed steps are rolled back and the original
values of the affected dataitems prior to the beginning
of the transaction are restored. Interruption of &
transaction occurs because of two typical reasons :
(1) transsctions abort for restarting purpose and
(<) system crashes,

Durability : ‘Ince a transaction commits, the system

must guarantee that the results of its operations are
never lost, independent of subsequent failures, The

results preserved by the system are stored in the database.



Isolation : An incomplete transaction can not
reveal its results to other transattions before its
commitment. This property is needed in order to avoid
the problem of cascading aborts {(also called the domino
effect) i.e., the necessity to abort all the transactions
which have observed the partial results of a transaction
that was later aborted, If, however, some of these
transactions had already committed, we would have to
undo already committed transactions, thus violating the
transaction durability property.

Sexrializability : This is the most important
propexty which provides the foundation for concuxrency
control and in fact concurrency control is the activity
of guaranteeing transaction's serializability, If
several transactions are executed concurrently, the
result must be the same as if they are executed sexially
in some oxder,

Consistency (ESWA 76)

In database systems, users access shared data
under the assumption that the data satisfies cerxtain
consistency assertions called consistency constraints,
For example, let there be a banking system whaere there
are two accounts with balances Rs.200 and Rs. 300, If a

transaction transfers money from one account to another,



the consistency constraint that the sum of the balances
in both the accounts is Rs.500 is required to be
satisfied. |

If the values of the data items of a database
satisfy the consistency constraints, the state of the
database is called a consistent state. In fact, a vaiid
transaction when executed alone, transforxms the database
into a new consistent state; that is, a transaction
pfeserves consistency., Thus it can be relevantly
concluded that a set of transactions if executed
serially, also takes the database from a consistent

state into a new consistent state.

Serializability

Serial execution of a set of transactions, is
definitely & cdrrect method for running concurrent
transactions because it guarantees the database
consistency. However, it prohibits the temporal inter-
leaving of transaction steps and thus severly affects the
perfomance by increasing the transaction-response time
and reducing the system throughput (KOHL 81). Hence
concurrent execution of transactions by interleaving
the transaction steps is necessaxry for increasing the

performance efficiently of the system; of course with



the condition that thé execution of these steps

preserves the consistency of the database. It may be
noted here that transactions producé incorrect output

if their steps are interleaved arbitrarity for concurrent

execution which has been illustrated in the following

example,

Example

Supnose in a8 banking system, there sre three
accounts A, B & C with balances Rs.200, Rs,l00 and Rs.50
respectively. Two transactions T, and T, are required
to be executed on them,

TJ.. : BEGIN
READ ACC A obtaining A Balance
READ ACC B obtaining B Balance
WRITE ACC A as A Balance - Rs,l00
WRITE ACC B as B Balance + Rs,.100
END

1‘2 : BEGIN
READ ACC B obtaining B Balance -
READ ACC C obtaining C Balance
WRITE ACC B.as B Balance - Rs,30

WRITE ACC C as C Balance # Rs.30
END



2,4,1

These two transactions T, and T2 when executed,
electronically transfer Rs.lO0 from ACC A to ACC B and
Rs.50 from ACC B to AGC C respectively.

The consistency constraint in this case is
that the sum of the account balances must be constant.
If ihe transactions are run serially i.e, T, beqgins its
executiosn after Ty or T; begins its exécution.afte; T,
it is obvious that the consistency is maintained.
However, if 12 s allowed to run between the first and
second write operations of Ty in the final state ACC A
contains Rs,l100, ACC.B contains Rs.z0C and ACC.C contains
Rs.100 with the sum of the balances being set to Rs,.400
instead of Rs.3950, which comprises an inconsistent
state,

Thus it is necessary to provide 3 system with a
mechanism that allows only those concurrent executions
which are able to nroduce consistent database states.
The correctness of the order in which the transaction
steps are interleaved is determined by serializability

of transactions.

Serializability in a centralized database

Let Ri(x) and»wi(x) denote read and write

| operations issued by a transaction T1 for the data item

Xx. A sequence of operxations perfomed hy a set of



transactions form a schedule (also called as 2 hiStory
or 109). "Foxr example, the following is a schedule for
three transactions Ti’ Tj and Tk :

S) ¢ Ryl x)wi(v)ﬁk(x)Rj(x)Wk(v)"j(ﬂ
Two transactions Ty and Tj execute serially in a
schedule S if the last operation of Ti precedes the
first operation of Tj in 5 (or vice versa); otherwise,
they execute concurrently, A schedule is said to be

serial if no transactions execute concurrently in it,

For example, the following schedule is seriel :
S, ¢ ~i(x)wi(x)85(y)wj(xmj{x)Rk(x)wk(y)

In fact, a serial schedule defines an order among the
transactions as in the case of S., the oxder of
operations indicates that Tj(Rj, wj; Hj) executes after
Ti(Ri’ Wi) and Tk(w ' Rk) executes after Ti(Rj, wj. Rj).
Hence the execution of a serfal schedule is equivalent
to the serial execution of the transactions forming
the schedule,

However, if & schedule is coancurrent (like sl),
their correctness is based on serializability : |

A schedule is correct if it is serializable, that is
it is computationally equivalent to a serial schedule,



The term 'computationally equivalent' means if the
execution of a schedule prodyces the same output and
has the same effect on the database as that of some
serial schedule, it is said to be computationally
equivhlent to the serial schedule. Since execution of
serial schedules produces correct output and every
serializable schedule is equivalent to a serial one,
every serializable schedule is also correct,

After defining serializable schedule, it is
‘required to develop a correct concurrency control
mechanism which ensures that all executions axe
serializable or in other woxds the mechanism allows
transactions to execute operations in such a sequence
that only serializable schedules are produced.

In order to énalyzé the serislizability of a
schedule and correctness of cdncurrency control
mechanism, we need the following two conditions which
can be checked for determining whether two schedules
are equivalent { PAPA 77, PAPA 79).

Condition 1 : Each read operation reads data
item values that are praduced by
the same write operation in both
schedules,



Condition 2 : The final write operation in each
data item is the same in both
schedules,

These conditions are applied in the analysis of
concurrency control mechanism through the concept of
conflicts between operations. |

Two operations are said to be in conflict if
they operate on the same data item, one of them is a

write operation and they are from different transactions.
For examplae, @i(x). xvj(x> .<ﬂ1(x). wj(b

axe pairs of conflicting operations because each pair
contains a write operation and also each operation in

3 pair operates on 2 single data item. <i§i(x). Rj(%}:>,
<f§i(x). w&(yz>> are examples of nonconflicting

operations since these requirements are not satisfied,

The condition for the equivalence of schedules
can be restated by using the notion of conflicts in
the following way :

- Two schedules S and 5, are equivalent if for

each pair of conflicting operations 01 and Oj

such that 0i precedes O, in Spe then also O

5 i

" precedes Oj in Sy

- The following example shows how 8 schedule is checked



for serializability :

Examnle : Let there be two schedules S and S!?

~ represented by the following sequences of operations.

S : Ri(x) W (x) Rj(x) Wj(y)

S*: Ri(x) w(y) ﬂi(x) Rj(x)

These two schedules are equivalent because the unique
pair of conflicting operations <:§1(x). RJ(£I>>
appears in the same orxder in both the schedules, The
first schedule § is a serial schedule because the
operations of the transaction T1 precede all the
operations of the trans;ction Tj' The second schedule
S' is a serializable schedule for it is equivalent to
serial schedule S,

The example also shows that in the serial
schedule S, transaction Ti’precedes transaction Tj and
this oxdering of transactions is forced by the
conflicting operations. Thus, in general it may be
stated that precedence of transactions in the

serialization orxder does not depend on the oxder of

e xecution of the first operation of the transactions,

but on the oxder of conflicting operations only (CERI 84).

serializability in distributed database
In case of distributed database sysiems, there

are 8 number of sites operating simultaneously. A



transaction introduced into the system at a site may
require to perform operations at several other sites
and in this way each site may have to process operations
of several transactions concurrently. The séquence of
operations performed by transactions at a particular
site is called a local schedule, For example, if there
are a distributed transactions Ty Ti’ csay Tn to be
executed at m sites, then the execution is modeled by a

set of local schedules Sl' 32’ eseey Sm.

Ensuring serializability of a set of transactions
in distributed systems is more complex because a local
concurrency control mechanism applied at each node is
not sufficient to guarantee the correctness of the
execution of a set of distributed transactions. This
has been illustrated in the following example,

Example

i.et there be two transactions having fdllowing
schedules under execution at two different sites :

31(81te 1) : Ri(x)wi(x)Rj(x)wj(x)

splsite 2) : Ry(y)45(y)Ry(y);ly)

These ‘local schedules are individually serisl; howeverx
there is no global serial sequence of execution of both

transactions because in $;» transaction Ti precedes



transaction Tj and in 52. transaction Tj precedes Ti'
Thus 2 stronqgest condition than the serializabhility of
local schedules is required to guarantee serializability
of distributed transactions,

The execution of transactions Tl’ cow o Tn is

correct if :

1) Each local schedule is serializable

4) There exists a total oxdering of T;, ....T,
such that, if Ty precedes Tj in the total orxdering
then thexre is a serial schedule S! such that s, is
equivalent to Sy' and all operations of Ty precede
that of Tj in 5, ' for each site K where both transactions
have executed some action (CERI 84).

Papadimit~riov et al., have expressed the above

condition using the notion of conflicts in a proposition.

proposition (PAPA 77, PAPA 79, STEA 76)

Let T, TZ’ coes Tn be a set of transactions
and let E be an execution of these transactions
modeled by schedules Sye ceen S E is correct (or
serializable if there exists a total ordering of such
transactions for each pair of cénflicting operations
04 and Oj from transactions Ti and Tj respectively,

0; precedes Oj in any schedule S;, ..., S if and only

if Ti precedes Tj in the total oidering.



This proposition provides the foundation for
devising a distributed concurrency control mechanism
which would be correct if it allows only correct
execution of distributed traﬁsactions. In other words,
the mechanism has to guarantee that the conflicting
operations for a set of transactions are processed in
certain relative orxders in order to attain serialize-
bility of execution of the transactions. An algorithm
designed to maintain such order among the conflicting
opexations is called a3 synchronization technique to

ensure correct execution of distributed transactions.
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3.1

3.1.1

SYNCHRONIZATION TECHNIQUES
BASED ON TWOePHASE LOCKING & TIMESTAMP ORDERING

This chapter presents a description of the basic
synchronization techniques developed for correctly
executing concurrent transactions with maximal
caﬁcurrency. Section 3.1 describes the teéhnique of
two-phase locking both for centralized and distributed
database system and also discusses the management of
deadlocks that arise in the implementation of the
technique. In section 3.2, two types of timestamp
oxrdering techniques have been presented : basic timestamp
oxdering and conservative timestamp ordering (CERI 84)
Two other techniques like conflict graphs and reservation

list have been described in chapter 4,

Iwo phase locking (2PL)

The synchronization techniques based on the.
approach of two phase locking have been discussed
separately for centralized and distributed databases.

Case of centralized database

Whenever a transaction accesses a data item in a
centralized database, it immediately locks it to prevent
other transactions to access the same item during its

own period of accession, In fact, in the simplest case



each data item has a unique lock which is held by at

most one ttansactioﬁ at a8 time. However, if a transaction
attempts to lock a data item that is already locked, it
must either wait until the other transaction has released
the lock or abort itself or pre-empt the other transaction,
Each dataitem already locked and modified by an aborted
or pre-empted transactinn is iestored to the state it

was in prior to the transactions beginning and then it is
~unlocked, This operation preserves the consistent state
of the database even if an incomplete transaction unlocks
the dataitem. _

There are two modes in which dataitems are
locked : |
1) A transaction locks a dataitem in shared mode if it
wants only to read the dataitem .

2) A data item is locked in exclusive mode if a
transaction wants to write into the data item.

Locking of a dataitem by shared and exclusive
modes of more than one transaction is not arbitrarxy.
Following rules govern the compatibility of lock~modes :
1) A transaction can lock a dataitem in shared mode 1f
it is not locked at 2ll or it is locked in shared mnde
by another transaction.
<) A transaction can lock a dataitem in exclusive mode
only if it is not locked at all.



Conflicts

Two transactions are said to be in conflict if
they want to lock the same data item with two incompatible
modes ¢ _
1) If both the transactions attempt to lock on the same
dataitem and one is applying readlock (i.e. shared mode)
wheress other is applying writelock (i.e. exclusive mode),
the resulting situation is known as shared-exclusive or
read.write (rw) conflict, |
2) 1f both the transactions attempt to lock on the same
dataitem and one is aoplying writelock (i.e. exclusive
mode) whereas other is also applying writelock (1i.e.
exclusive mode), the situation is called exclusive-
exclusive or write.write (ww) conflict.
| Synchronizations performed to avoid 1w and ww
conflicts are known as rw synchronization and ww
synchronization respectively (BERN 8l).
Correctness of ZPL mechanism (CERI 84)

Eswaran et at (BS4A 76) have proved that

concurrent execution of transactions is correct if the
following rules are observed :

1) Transactions are well-formed i.e. each of them
always locks a data item in shaxed mode beforc reading

it and always locks a data item in exclusive mode before
writing it,



2) Comoatibility rules for locking are observed,

3) Each transaction does not request new locks after

it has released a lock. This means for each transaction,
there is a8 first phase during which new locks are
acquired {growing phase) and a second phase during

which locks are only released (shrinking phase). 1In
fact this condition names the mechanism as two phase
locking.

During the shrinking ohase, éltransaction may
release its exclusive locks at any time and this may
allow other:transactions to observe its result before
its commitment; thus to avold such an undesirable
occurrence it is required that transactions hold all
their exclusive locks until commitment.

Granularitz'of locking

In general, each transaction may lock dataitems*
of & database at record level or at file level. In the
former case conflicts between transactions arise when
two transactions want to access the same recoxrd, 1In
" the latter case, conflicts are instead determined when
two transactions need to access the same file. Since
the former case occurs with much less probability,
locking at the record level allows more concurrency than

locking at the file level. This aspect of relating the



size of the abjécts which are locked, with a lock
operation {s known as granularity of locking. It is
preferable in DAMSs to provide locking at the recoxd
level (CERI 84).

In a centralized database, all transactians are

performed according to the following scheme :

(Begin application)

Begin Transaction '

Acquire locks before reading or writing

Commit

Release locks

{End application)
This scheme guarantees well-formedness and two-phasedness
of transactions and consequently preserves the database
consistency,
Deadlock

Deadlock is a major problem and can be illustrated
by the following example (ULLM 84).

Exanple Suppose there are two transactions
T, and T2 whose locking and unlocking operations with
two dataitems A & B are shown below (the main execution

portions of the transactions have not been shown)



Ty ¢+ 10CK A T, ¢ LOCK B
LOCK B DCK - A
UNLOCK A INLOCK B
UNLOCK B UNLOCK A

Suppose T, and T2 begin execution at about the same time,
Tl requests and is granted a lock on A and T, requests

and is granted a lock on B. Then T; requests a lock on B,
and is forced to wait because T, has a lock on that item,
Similarly, T, requests a lock on A and must wait for T; to
unlock A. Thus neither transéctian can proceed; each is
waiting for the other to unlock a needed item, so both

Ty and T, wait forever.

A situation in which each member of a set S of
two ox more transactions is‘waiting to lock an item
currently locked by some other transaction in the set S
is called a deadlock.

Following are the approaches made to resolve the
‘deadlock problem in centralized databases :

1) Each transaction is required to request all its locks
at once, and let the system grant them all, if the

related datawitems are not locked prior to the request made.
Else, if one or more items are already locked by another
transaction, the system does not grant the lock and the

process is made to wait. In case of the above example,



the system grants locks on both A and B to T, if it
requests first and T completes execution; then fz

~ locks them and carries on the execution,

2) Another approach is to oxder the dataitems in an
arbitrary manner and all transactions are required to
lock them in this orxder, In case of the above example,
if A precedes B in the ordering, then T locks A before
locking B; at this moment, T, would request a lock for

A before B and would find A already locked by T, and
would not be able to reach B, Thus B would be available
to T, when requested by it, T would complete and rclease
the locks when T, could proceed, This approach can be
shown to work perfectly in general case.

3) In this approach; transactions are éllcwed to run
freely till the system discovers the deadlock. Deadlocks
are discovered by waits for graphs., The graph contains
nodes to represent transactions and arcs T, 5 T, to
signify that ttansaction‘“rl is waiting to lock an item
on which T2 holds lock. If the system finds a cycle in
such a graph, deadlock is detected; then it aborts and
restarts one of the involved transactions and the effects
of this incomplete transaction on the state of database is

cancelled..



3.1.2

3:1.201

Case of distributed database

imnlementation »f Z°L mechanism in centralized
database is easy because each dataitem exiszts as one
cony only; conseguently a transaction is able tn
discover a dataitem being locked by another transaction.
However, data redundancy, necessary for relisbality,
avallabllity and improved access time complexifies the
implementation of 4PL mechanism in distributed database,
This is because, two transactions which hold conflicting
lacks on two copies of tho same dataitem stoxed at
different sites could not know thelr mutual existence;
and in such a case, lacking of a dataitem becomes
useless, Thus the implementation of 47L in distributed
database is perfomed in 3 different manner and four
methods (BEMN 8l) for the purpose have been described
below,
Basic <Vl Implementation

The basic 2pPL is imolewmented by means of a ZPL
scheduler wiich is a software module that receives the
lock requasts and lock releases and processes them
according to ZPL specifications, These schedulers are
kept distributed aldng with the database, For instance,
the scheduler for dataitem X is placed at the site where

X is stored., Two fundamental operations are requited to



be performed on X :

1) To read X, a readlock (i.e, lock in shared mode)
may be implicitly requested by read comrand on the
data :

i) 4f the lock is granted by the scheduler,
the read operation is carried on. |

ii) othdrwise, the request is placed on a
waiting queue for the desired item till the item is
free; after it is free the operation is carried on,
Waiting may result in a deadlock and is resolved by
methods described later in this chapter {Subsegtion 3,1.3).

By this reading opeatisn, the required data X is
retrieved from the database to the transaction's private
workspace. The value of X is then updated to the new
value at the workspace and then is to be written into
the database fraom the worksnace.
2) To write into X, writelock (i.e. lock in exclusive
mode) may be implicitly requested by a prewrite
command (not write commend in order to achieve two
phase cbmmit) on the data :

1) 4if the lock is granted, the write operation
is carried on.

ii) otherwise, it is made to wait in a queue

till the item is free and then the required operxation is



carried on. In case of a deadlock, it is resolved
according to methods of subsection 3.1.3,

| After an operation on a dataitem is over,
corresponding locks are released by lock-release
operations which are different for readlock and
writelock. Then the operations on the waiting queue
are processed in first-in/first-out oxder.

If basic 2PL is used for dealing with multiple
copies of data, shared locks are acquired on one copy,
while exclusive locks are acquired on all copies,

That means for a logical dataitem X, having copies
Xj«eeeXys @ transaction may read one ¢npy and need
only obtain only one readlock on that copy; however
while updating, it must obtain writelock on all copies
of X.

3.1.2.2 primaxry cony ZPL imonlementation
This technique pays attention to redundancy

(ST 79). In this method of implementation one copy

of each logical data item is named as the primary copy

of that item, A transaction requiring the data item

for its execution, obtains lock on it stored only in the
- primaxy copy of the item., All the read and write

operations of the transaction are processed on that

¢o>ny and then update messages are sent to other coples,



Read and write operations on a dataitem are processed

in the following way; let x; be the primaxy copy of 2
dataitem X.

1)} To read Xj» soOme other copy of X, the site of the

- transaction communicates with the primary site as well
as with the site that stores x, and readlock is acquired
on x; at the primary site. If the lock is granted,
item is read; otherwise, the request is made to wait
till the item is free,

For readlock this technique requires more
communication than basic «PL; because in basic 2PL,
data item is read from only the site where it is
stored and consequently one message is sent, whereas
in the primaxy copy 2PL, two messages are sent,

2) To write into X, @ transaction issues prewrite
commands to all sites where the data is stored but
the writelock is requested on x; only. If the lock is
granted, write command is executed and then update
messages are sent to all copies, otherwise the
transaction waits till the item is free,

For writelocks, primaxry copy ZPL does not
require extra communication over the basic zPL counter-
part because write operations are similar except only

that the writelock is obtained at a particular site.



3.1.2.3 Voting 2PL imolementation

This approach exploits data redundancy and is
due to Thomas (THM 79); A transaction issues requests
to all sites that hold a required data item. These
sites acknowledge the receipt of the requests by saying
“Lock set" or %“Lock blocked" depending on whether the
required item is locked or already under lock of some
other transaction, The orig%nal site (i.e. where the
said transaction originates) receives acknowledgements
from othér sites and count the number of lockset
responses : if the number is strictly greater than the
number of copies which are not locked, the site hehaves
as if all locks are set; otherwise, it waits fér more
lockset operations from sites that originally said
“lock blocked® till the number of locksets become a
majority. Because of waiting, there may arise deadlocks
which can be resolved by techniques given in subsection
3.1.3,

l) To read X, a transaction requests readlocks on all
coples of X. when a majority of locks are set, the
transaction may read any cnpy.

2) To write into X, the concemed site sends prewrites
to other sites with copies of X as a request for locks,

when the majority of locks are granted to the transaction,



the site sends write request when the involved data
item X is undated, Since only one transaction can
hold a majority of locks on X at a time, only one
transaction writing into X can be in its second commit
phase at any time (BEMN 8l1), All copies of X thereby

have the same sequence of writes applied to them,

3.1.2.4 Centralized 2PL implementation

In this method of imnlementation one 2PL
scheduler is placed at a single site unlike the
previous methods where schedulers are distributed
(ALSB 76a, GARC 79a)., Here, appropriate locks are
ohtained from the central 2PL scheduler before accessing
data at any site, |
1) To read X from a site where X is not stored, the
site first requests a readlock on X from the centrsl
site and waits for the central site to acknowledge that
the lack has been set. Then the read request is sent
to the site of X to read the data.

. Since the lock is obtained in a raund-about
way, the communication is moxe than basic ZPL
implementatlon and the cost of communication overhead
thereby increases.
<) To write into X, a site issues nreﬁrite request to

the central site for a write-lnck on X. After the lock



3.1.3

is obtained, it issuyes write request which is
processed,

Here, the communication is also more for the
same reason as above i.e, the prewrite does not request

locks implicitly.

Management of distributed deadlocks
In distributed database management systems,

deadlocks can arise in any of the preceding implementation
of locking methods. The problem of deadlock resolution
gets complexified in distributed systems because of the
involvement of transactions originating from several
sites,
Illustration

Suppose in a distributed database system, there

are three sites S,, S, and 53 with the following accounts

Sp ¢ ACC X S, ¢ ACC Y )
ACC Y ACC £

3 ¢ ACCZ

Three transactions T,, T2 and 73 are executed respectively

at 5, S, and Sq.

<
';'l : BEGIN : 1'2 : BEGIN '1‘3: BEGIN
READ ACC X 3 READ ACC Y REBAD ACC Y
ARITE ACC Y 3 WRITE ACC Z ; ARITE ACCZ

END. mno : ENDc

-e



Let these transactions be executed concurrently with
each transaction issuing its READ before any transaction
issues its END, To preserve consistency the transaction
would attempt to update all the coples of a particular
dataitem. The transactions would proceed in the
following steps :

Step 1 : Tl obtains readlock on ACC X
T, obtains readlock on ACC Y
T, obtains readlock on ACC Z
Step :

e
-4
-

requires writelocks on ACCY both st S, and S,
T, requires writelocks on ACCZ both at S, and 53
3 requires writelocks on ACCX at Sy

However writelocks would be obtained only aftervthe .
readlocks are released i.e,

Tl would not get writelock on ACCY at S, until Tﬁ
releases the readlock on it and T, must wait.

T2 would not éet writelock on ACCZ at S4 until T3
releases readlock on it and T2 must wait,

T3 would not get writelock on ACCX at 5 until T,
releases readlock on it and T, must wait,

Thus, T, waits for T s T, waits for T3 which also
waits for Tl‘ In such a situation.'transactions wait for
locks which would never be available t»> them because a
readlock would be released only after the completion of a

transaction; but the comnletion.is not possible and



deadlock results,

Deadlock situations can be characterized by
waits-for graphs (HOLT 72, KING 74), which have been
discussed in deadlock resolution in case of centralized
databases (Section 3.1). The existence of a deadlock is
concluded from the existence of akcycle in the waits=for
graph, Figure 6 illustrates the deadlock situstion of
the above examnle.

Following techniques are available for resolving
deadlock situation, |

1) Time-<out method

2) Deadlock prevention method

3) Deadlock detection methad

1) Time.out method .
4ith this method, a transaction is aborted after

a8 given time interval has passed after the fransaction
enters a wait state. In fact, this method does not use
waits-for graphs, but simply observes if any transaction
waits for a dataitem beyond a specified time interval,
If this interval opasses away, the transaction is aborted
and again restarted.

The main broblcm with timesut method is the

choice of a good time interval, If the interval is longer,
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"then transactions would unnecessarily stay in deadlock
before being aborted; if it is made shorter, transactions
not in deadlock, but waiting for some dataitem would be
unnecessaxily aborted, That to, it is more difficult to
choose a workable time interval in disttibuted'systems
than in centralized database because of the less
predictable behaviour of the communication network and
of remote sites. |

Timeout method is acceptable for lightly loaded
systems but not convenient for congested systems.
Because in latter systems, short timeouts may induce
cascading effect due to system overload, This happens
when a transaction is aBorted. not because it was in
deadlock, but because the system was overloaded and
therefore slow, leading to long waiting of the transaction;
The abort osperation causes additional delay due to
additional message exchanges and work to be performed
by the local systems, Such delays cause other transactions
to be aborted and so on.
2) Deadlock prevention method

With the deadlock preventisn scheme, a transaction
is aforted and restarted if there is a possibility that
deadlock might occur. Since related transaction is not

allowed to wait for the concerned data item, the



possibility of occurrence »f deadlock is totally
eliminated,

Deadlock prevention is carried on in the
following way : if a transaction T; issues 3 lock request
for a dataitem which is held by another transaction Ty
then a prevention test is applied; if the test indicates
that there is a risk of deadlock, then T; is not allowed
to enter a wait state. .Instead. either Tl is aborted and
restarted, or T, is aborted and restarted., The previous
algorithm is called nonpre.emptive and the second is
called pre-emptive.

The preﬁentian test must ensure that 1if T is
allowed to wait for T, then deadlock can never occur.
This is obtained by arranging transactions in a
particular orxrder, like in oxder of their priorities,

For two transactions Ti and Tj, T is allowed to wait
for Tj only if T; has got lower priority over Tj

{ If ti and Tj have equal priorities, Tican not wait for
Tj. or vice versa. This test prevents deadlock because,
for every edge <i%i . T5>> in the wait.for graph, T has
low prioxity than Tj. Since a cycle is a path from a
node to> itself and since T, can not have lower priority

than itself, no cycle can exist.



In distributed systems, *timestamps® are
used to decide the priority of transactions. Eath
transaction is assigned a unique number known as
timestamp. The timestamp of a transaction consists
of two parts : the local clock time at the beginning
of the transaction read at the site of its generation
and the unique site identifier which is appended to
the clocktime at lower order bits (THOM 79). That
the site does not send two transactions at the same
local clock time is ensured by requiring that the site
does not assign another timestamp until the next clock
tick (BERN 81), Thus timestamps introduced into the
system of different sites differ in their lower orxder
bits {since different‘sités,have different identifiers),
while timestamps assigned by the same site differ in
their higher order bits (since a particular site does
not use the same clock twice). Hence timestamps are
unique throughout the system and an old transaction
has lower timestamps than young ones and intuitively
they have higher priority as they are introduced to the
system earlier than the young ones.

Two timestamp-based deadlock prevention schemes

have been proposed in RDSE 78 :



Nonpre-emntive Method

If T requests a lock on a dataitem which is
already locked by Tj, then T, is permitted to wait only
if '1'i is older than Tj. If T; is younger than Tj’ then
T, is aborted and restarted with the same timestamp.
Because, it is always better to restart the younger
transaction, Therofbre, in oxder to obtain a nonpre~
emptive method, older transactions are allowed to wait
for younger transicticps which already hold a dataitem
and younger transactions are not allowed to wait for
older ones (CERI 84).

Pre-emptive Method

If Tiréquests a lock on a dataitem which is

5 is permitted to wait

only if it is younger than Tj ; otherwise Tj is
aborted and the lock is granted to T;« In this method,

already locked by Tj. then T

the older transactions are allowed to pre-empt younger
ones, and therefore only ysunger transactions wait for
older ones, |

The pre-emptive method hay cause the following
problem : suppose that Tj need to be pre-empted while
it is in the second phase of two.nhase commitment; in
such a case Tj can not be aborted., This problem is

resnlved if Ti is not pre-empted; a deadlock does not



arise in such a case because a transaction which is in
its second commitment phase can not be waiting for
dataitems,
3) Deadlock detection method

With this method, transactions wait for each
other in an uncontrolled manner and are only aborted
if a deadlock actually occurs (BERN 81), In oxder to
detect the deadlock, the system constructs globa;
wait-for graph and searches for cycles. if a cycle
is present, one of the transactions engaged in the
deadlock is aborted, thereby breaking the deadlock.
The aborted transaction is restarted and run to
completion,

Construction of global waits~for graph is a
major difficulty in distributed database systems
though it is easy to construct local waits-for graph
based on the waits.for relationships local to @ particuler
site of the distributed system, Thus it is necessaxry to
devise methods that efficiently combine the local waits.
for qraph into a global graph where thc>s¥stem would be
able to search for a deadlock cycle, Two techniques
have been explicitly described for the resolution of
deadlocks by detection : centralized deadlock detection
and hierarchical deadlock detectian,



Centralized deadlock detection (GRAY 78, STN 79)

With the centralized method, each site is
equipped with a local deadlock detector and a site is
chosen at which a centralized or global deadlock
detector is ruﬁ. The local deadlock detector has the
responsibility of discovering local deadlocks at the
site concerned; however the centralized deadlock
detector is responsible for building the distributed
waits~for graph (DWFG) by collecting and connecting
paxtia; informations received from various sites and
detects cycles in it, when 2 cycle is detected, the
centralized detector selects the transactions to be
aborted in order to break the deadlock situation,

Centralized deadlock detection 1s simple, but
has two main drawbacks :

1) The detection operation may stop owing to the
failures of the site where the centralized detector runs.
2) Building of DWFG at the centralized detector
requires large communication costs in case of other
sites of the network being located at far-off places,

At times, it may sn hannen that a deadlock 1h§alves

only a few sites which are close to one another, but

for the construction of D.FG, those sites would have to



communicate with the distant centralized detector,
The hierarchical controller method resolves the
problem of excessive communication cost.
Hierarchical deadlock detection (MENA 79)

With hierarchical method a tree of deadlock
detectors is built, inscead of having a set of local
deadlock detectors and a single centralized detector.
The detectors are arraqged in a tree as shown in the
figure (Fig.7). The local deadlock detectors (LDDS)
are placed at the leaves of the tree whereas the
nonlocal detectors are placed at non-leaf leaves,

Each local deadlock detector behaves like the
local detector of the centralized method ie it deter.
mines local deadlocks and transmits infoxmation about
global cycles to the nonlocal deadlock detectors at
the immediately higher level in the hierarchy. Each
of the nonlocal detectors detect deadlocks which
involve only the deadlock detectors which are below it
in the hierarchy. |

In figure 7, DD 1, IDD 2, .....LDD 5 are the
‘local deadlock detectors situated at five sites. A
deadlock involving site 1 and site 2 is detected at the
.immediately_higher_nonlocal detector i.e. NLDD 1l; however,
a deadlock involving site 1 and site 5 is detected only



NLDDO

NLDD 2

LDDI LDD5
SITE! SITE2 SITE3 SITES

NLDD = NONLOCAL DEADLOCK DETECTOR
LDD = LocAL DEADLOCK DETECTOR

FIG7 A TREE OF DEADLOCK DETECTORS



by NLDD? i.e. the highest level detector.

This approach of hierarchical detectors forx
detection of deadlocks is suitable for a group of
sites where most of the database access request is
within the group and few requests are sent to sites
outside the group.

Disadvantages with detection method

Both the methods, centralized as well as
hierarchical require that local waits-for informations
be transmitted to one or more deadlock detector sites
periodically., This periodic nature introduces two
problems firstly, a deadlock may prevail for several
minutes without being detected, céusing response«time
degradation, secondly, a transaction T may be restarted
for reasons other than concurrency control (like crash
of the originating site) and in such a case some
deadlock detector may find a cycle in the waits-for
graph that includes T until T's restart propagates to
the deadlock detector. Such a deadlock is known as
phantom deadlock and when a detector finds a phantom
deadlock it may umnecessarily restart a transaction
other than T.

Another disadvantage with the method of deadiack
detectinsn is that restarting of partially executed



transactions increases the overall cost of the method.,
This cost is reduced by predeclaration where all the
transaction's locks are obtained before its execution
and consequently, the system only restarts those

transactions that have not yet executed,

Timestamp ordering (T/))Techniques

The timestamp ordering technique assigns a
unique timestamp to each transaction to arrange the
transactions in a sequential manner, A transaction
that beqgins earlier has a smaller timestamp than a
later transaction and hence precedes in that sequence.
After timestamping, the transactions are processed so
that their execution becomes equivalent to a serial
execution in timestamp oxder. According to proposition
of chapter Z, this means that conflicting operations get
processed in the same order,

Conflicts are of two types depending on the
kind of synchronization required. For rw synchronization,
two operations conflict if {(3) both operate on the'same
dataitem and (b) one is read operation and the other
is write operation. For ww synchronizatiosn, two
aperations conflict if (a) both operate on the same

data item and (b) both are write opexations,



3.2.1

Below are described two timestamp ordering
mechanisms: basic timestamp mechanism and conservative

timestamp mechanism,

The Basic Timestamp Mechanism
The basic timestamp technique is implemented

by building a scheduler, a software module that receives
read or write operations according to timestamp specifi=
cations. The schedulers are distributed at various sites
along with the database. The basic timestamp algorithm
proceeds as foiiows :
1) A timestamp is assigned to each transaction when it
is initiated at the site of origin. Each read or write
Opération which is required by a transaction has the
timestamp of the transaction. Let this timestamp be TS.
For each dataitem X, let the largest timestamp

{i.e. timestamp of the last transaction that has been
processed on X) for read operation snd write operation
be R-~ts{X) and W-ts(X) respectively, These timestamps
are updated each time a transaction completes operation
on this data item,
<) To avold read-write conflict,

(a) the read operation of the& current transaction

with timestamp TS operating on data item X is :



(1) rejected if TS <#ets(X) and the transaction
is restarted with a new tiﬁestamp,
(1i) executed otherwise; then R -ts{X) is set to
max (R-ts(X), TS).
(b) the write operation of the new transaction with
timestamp TS on dataitem X is :
(1) reje:ted if T5<<R-ts(x) and the transaction
is restarted with a new timestamp,
(11) executed otherwise; then Wets(X) is set to
max {W-ts{(X), TS)
3) To avoid write-write conflict, the write operation of
the new transaction with timestamp TS on dataitem X is :
(1) rejected {f TS<W-ts(X) and the transaction
is restarted with a new timestamp,
(ii) executed otherwise and W.ts{(X) is set to TS.
4) The restarted transaction, on assignment of a new
timestamp which is certainly a larger timestamp is
executed in accordance with rules (2) and (3).

The basic timestamp mechanism is deadlockfree,
because transactions never wait: if a transaction does
not execute an operation, it is restarted, That an
operation can not be allowed does not depend on the fact
that another transaction is momentarily operating on the

same dataitem, but instead depends on the timestamp



associated with it, However, the deadlock freedom
is a result obtained at the cosi-af restarting
transactions,

Rules (2), (3) and (4) guarantee serializanility
because conflicting operations are executed in timestamp
order at all sites and hence the timestamp‘order is the
total oider that makes the executions correct, However,
abovc mechanism is integrated with two-phase ¢ommitéent by
using 'prewrite' operation to ensure that transactions are
atomic, |

Two phase commitment is incorporated by timestamping
prewrites and accepting or rejecting prewrites instead of
write dpe:ations. Once a scheduler accepts 2 pre.write,
it must guarantee to accept the corxresponding write no
matter when the write request arrives. For xw {or ww)
synchronization, once S5 accepts a prewrite (X) with
timestamp TS it must not output any read (X) (or write (X)
with timestamp greater than TS until the write (X) is
output. The incorporation is accomplished by
substituting rules 12)‘A(3) and (4) by the following :

2) Let TS be the timestamp of the prewrite operation
P of a transaction on dataitem X, The operatioﬁ is
(1) rejected if TS<R-ts (X) or TS< Wats(X)

and the issuing transactisn is restarted,



(11) Dbuffered along with its timestamp if
TS > R-ts (X) or TS > t-ts (X).
3) Let TS be the timestamp of read operation R on
data item X, The‘operation is
(1) rejected if TS € Wets (X)

(i1) executed if TS ) wets (X)
and only if there is no prewrite operation P(X) pending
on dataitem X having a timestamp TS (P) < Ts.

{111) buffered if there i{s one (or more)
prewrite operation P(X) with timestamp TS (P) < TS,
until the transaction which has issued P(X) commits.
Buffering is necessary because, if executed, the write
operation W(X) corresponding to the prewrite P(X) may
be rejected by TS (W) < R=ts (X)

(iv) eliminated from the buffer after it is
‘executed when no more prewrites with a smaller timestamp
than R are pending on it,

4) Let TS be the timestamp of write operation on
dataitem X. This is never rejected, But it has the
éossibility of being buffered if there is a prewrite
operation P(X) with a timestamp TS (P) < TS. The
operation is otherwise executed and eliminated from
the buffer, '



The use of prewrites is equivalent to
applying exclusive locks on dataitems for the time
interval between prewrite and the commitment (write)
or abort of the issuing transaction.

Thomas Write Rule

~ Let @ be a write operation on dataitem X and
suppose TS (4) € Wets (X). According to Thomas write
Rule { TWR), the write operation W can be ignored instead
of being rejected and restarted.

- The rule works correctly because if wi(x) and
wj(x) are two write operxations such that TS(“i)‘< rs(wj)
then the execution of Wy followed by vj is same as the
execution of Wj alone. Thus if Wi is ionored and wj is
executed, the final result obtained is same as if W,
were executed before wj.

TAR apnlies to those write operations that try
to place obhsolete information into the database. For
example, if we have a transaction that changes the price
of a commodity, the new price is not a function of the
previous price, 1If thexre is a correction on the previous
price pénding. we can simply ignore this correction after
the new price has been written. The rule is also called

tignore-obsolete-rule®,



The Consexvative Timestamp Orxdering Method
The conservative timestamping is a method for

eliminating restarts by buffering younger operations
until all older conflicting operations have been
executed., Thus buffering is a part of the norxmal
functioning of the method and helps in avoiding rejection
of operations and restarting of transactions.

The conservative timestamping is based on the
following requirements : .
i) Each transaction is executed at one site only and
does not activate remote programmes,
i1) A scheduler S, must receive all the read requests
(or write requests) from a different scheduler Sy in
timestamp order, Since it is assumed that the network
is a FIFD (First Input First Qutput) channel, this
requirement is accomplished by requiring that )
schedulers send read requests (or write requests) to other
schedulers in timestamp order.

Sending request messages in timestamp orxder
can be implemented in two ways :
i) It is possible to process transactions serially at
each site. But this does not satisfy the purpose of

concuxrency control,



il) Transactions can be executed by issuing ali read
requests before their main execution and all write
requests after their main execution. For instance,
if TS (Ti)'< TS (Tj),‘it is sufficlent to wait to
send Rj operations until all Ri operations have been
sept and to wait to send the wj operations until all
wi operations have been sent., Then the transactions
execute concurrently.
The canéervative timestamp algérithm proceeds
as follows : |
1) Each transaction is issued a unique timestamp when
it is initisted at its site of origin. Rach read or
write operation which is required by a transaction has
the timestamp of the transaction,
2) Read and (or) write request messages are sent to
the site or sites containing the data item required by
transaction in timestamp oxder.
Before going to next step, it is assumed that
a site i has at least one buffered read and one buffered
write operation from each other site of the network.
3) Read-write conflict {s avoided in.the following way
a) Pb: a read operation R that arrives at site i :
(i) 4if there is some write operation #¥ buffered
at site i such that
| TS (R) > TS (),



then R is buffered until these writes are executed,
(11) otherwise, R is executed,

(1ii) when R is bufférod or executed, buffered
operations are retested to see if they can now be
executed,

b) For a write operation W that arrives at site i :
(1) 4if therxe is some read operation R buffered
at site i such that
| TS (@) > Ts (R},
then W is buffered until these writes are executed,

(ii) otherwise, W is executed.

'(iil) When 4 is buffered or executed, buffered
operations are retested to see if they can now be |

executed,

4) To avoid write.write conflict for a write operation
W that arrives at site i :

(i) 4f there is some write operation «# buffered
at site i such that TS(W) > TS{+') then W is buffered
until these operations are executed,

(ii) otherxwise, W is executed.
(1i1) when W is buffered ox cxecut?d, buf fered

writes axe retested to see if they can now be executed.



Problems with Conservative Timestamp Ordering
Two phase commitment {s not a problem in

conservative timestamp ordering method because write
operations are never rejected, However, sbove imple.
mentation suffers from the following problems :

1) 1f a site never sends an operation to some other
site, then the assumption made in the above algorithm
does not hold and the second site stops outputting,
This problem is eliminated by requiring that each site
periodically sends timestamped Ynull" operations to each
other site, These operations have the sole purpose of
conveying timestamp information and thereby unblocking
real operations, Altematively, blocked sites
explicitly request for timestamped null operations from

other sites,

2) Due to the buffering of read operation, the
corresponding transaction is forced to wait and thus
while implementing conservative timestamp technique,
care must be taken to see thst waiting does not result
in a deadlock, The deadlock, if occurs, is avoided by

sending null operations after a sui;able timeout.
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4.1

SYNCHRONTZATION TECHNIQUES BASED
ON_CONFLICT GRAPHS AND RESERVATION LISTS

More efficient synchronization techniques have
been developed by refining the techniques of locking
and timestamp oxdering and by eliminating the
problems inherent in them. Conflict analysis approach
and reservation list ap;;;ach are two such methods
that work well in distributed database systems with
different amounts of data redundancy (KOHL 8l).

This chapter describes the methods of conflict

analysis and reservation lists,

Conflict snalysis
The method of conflict analysis is the

synchronization technique used in SDD-1, a system for
Distributed Databases, developed at the Computer

Corporation of America (RD&H 80). The system consists
of a collection of database sites intexconnected |
through a communication network. Figure 8 shows

configuration of the system consist;ng of three types
of virtual machines : transaction modules (TMs), data

modules (DMs) and a reliable network system ( RelNet).

- Each site can contain either one or both types of
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modules., DMs store physical data and behave much like
conventional nondistributed DBMSs, TMs are responsible
for supervising the execution of user transactions and
they in fact, work as an interface between the user's
perception of nondistributed data and the realities of
data distribution and redundancy.

SOD-1 uses two mechanisms to ensure serializa-

- bility of concurrently executed transactions, The first
mechanism, called conflict graph analysis, is a technique
for analyzing various "classes® of transactions to
defect those transactions that require little or no
synchronization (ROTH B0). Here, it is to be noted that
SDD.1l mechanism does not assume that evexry transaction
requires synchronization as strong as locking; because
there exist transactions that some databases do not at
21l require synchronizetion even though they have
overlapping write sets (BERN 80). The second mechanism
consists of a set of synchronization pratqcols based on
timestamps, which synchronize those transactions that
need it,.

4¢1.L Conflict Graphs
The database administrator defines “transaction

classes® which are named groups of commonly executed



-transactions at the time of system design. Each class
is defined by its name, a8 read-set, a write-set and the
THM at" which it runs. A transaction is & member of a
class if the transactions read-set and write-set are
contained in the class's read.set and write.set
respectively. The various transaction classes are not
nacessarily disjoint (R)TH 80). Conflict graph analysis
(described below) is actually performed on these classes,
not on individual transactions. Two transactions fxom
different classes enter a conflict if their classes do
S0,
Example
. Suppose there are three transaction classes
defined by their read and write-sets :
Cy ¢ read-set = {a ] , write.set = {a,, ¢,
02 ¢ read-set = {51! b2' c3} s Write-set =
{az, a4 Cps c3}
63 : read-.set = {al; bz} y Write-set = {az.cz.ca}
. Let there be three transactions i

Ty ¢ read.set = {bz} s Write-set = {az. a3§

: readw.set = {a,} , write.set = {€zs C4}

-
N

| T4 t reade.set = {ay} » write-set =]e41



Then it can be said that

Ty is 2 member of CZ'

Tz is a member of 62 and 03,
13 is 3 member of Cl.

Conflict graph analysis is a technique to
analyze the transactions on the basis of the predefined
transaction classes in oxder to detect_the presence of
conflict. A conflict graph is an undirected graph
that summarizes conflicts between transactions in
different classes, For'each class Ci’ the graph contains
two nodes, denoted ry and W which represent the read-
set and write-set of Ci- The edges of the graph are |
defined as follows (Fig.9) : (1) For each class C,
there is a vertical edge between ry and wy ; (2) for
each pair of classes C; and Cy (with 1 # j) there is a .
horizontal edge between g and w3 if and only if write-
set (Ci) intersects write-set (Cj) ;1 (3) for each pair
of classes Cy and Cj (with { # 3), there is a diagonal
edge between ry and w3 if and only 1f readset (Ci)
intersects writeset (Cj). The figure shows the conflict
graph for the abowe example.



C,READSET ={0,} C, READSET={a, b, C3} ¢ 4 READSET = §2,Cak
g ' i

C WRITESET = { &, C5} C, WRITESET =3 @, 0,C, C3WR\TESET={C~1)C,.)
%} <t

FIG.©9 CONFLICT GRAPH



4.1. .

Different kinds of edqges of 2 conflict graph
{(viz. horizontal edge or vertical edge) require different
levels of synchronization, Synchronization as strong
as locking is required only for edges that participate
in cycles. Thus, in general, the output of analysis of
conflict graph is a table that indicates |
1) for each class, which other classes it conflicts with and
11)for each such conflict, how much synchronization
(if any) is required to ensure serializability (BERN 8l).

It 1s assumed for convenience that each TM of SDD-1
is only permitted to supervise a particular class of
transactions and vice versa. Thus, when a transaction
T is submitted, the system determinas.the class to which
the transaction belongs and sends it to the TM that
supervises this class ofktransaction. The ™™
synchronizes the transaction against other transactions
in its class using a8 local mechanism similar to locking.
To synchronize the transactions against transsctions in
other classes, the ™M uses the synchxuniiation method (S)
specified by the conflict graph analysis. These methods

are called 'protocols?t.

Timestamp-based protocols
$DD-.1 uses four timestamp based basic protocols to

synchronize transactions after the conflict graph indicates



4.2

the amount of synchronization required by each
transaction., These are known as synchronization
protocols and vary according to the degree of
synchronization required and cost of use, For instance,
the least expensive protocol is intended for transactions
that can not interfere, such as reading the database to
generate & sales slip through 3 point-of-sale temminal,
The strongest and most expensive protocol is resolved
for unanticipated transactions that are not known
members of any of the predefined classes.

The rules that govern the selection of protocols
for use in various situation determined on the basis of
analysis of conflicts between transaction classes are
known as protocol selector rules, The details of the
protocols are complex and have been given along with the
selection rules in BERN £0.

Bernstein et al. {BERN 79) have shawn that the
conflict analysis approach guarantees internal as well
as mutual consistencies and allows more concurrency than

the classical locking approach.

Reservation Lists

Milan Milenkovic' proposed a new reservation

mechanism in 1979 for synchronizing cnneurrent updates



in distributed database systems that have high degree
of data redundancy (MILE 79). The mechanism, a
clever hybrid (KOHL 8l) of locking and timestamp.
ordering is based on the use of a reservation list
assoclated with every individually reservable database
entity., The list contains an entry (viz, timestamp of
the transaction) for each of the transactions that
intends to use the related entity. Milenkovic' has
devised algoxithms to allow the transactions in the
list to use one of two compatible synchronization
protocols to update the entity. The use of reservation
list ensures the maintenance of internal consistency
of individual copies and mutual consistency of
redundant copies in the database. This section presents
an algorithm for a fully redundant distributed database
>system. |
Assumptions

Following 1s the outline of underlying assumptions
of the proposed solution, |

Single-site access : It is assumed that all

entities required by a transaction may be found at a
single database site. This requirement is met when the
entire database is replicated at several nodes and

also met in some distributed database systems with
partial redundancy,



Iimestamps : Each transaction is assigned a
timestamp by the database site where it enters the
system, Timestamps are assumed to be unique and
nondecreasing.

Message segdencing : All messages sent from one
site to another are assumed to be delivered after a
finite but variable delay in the same o;der as they
were sent, No assumption about the relative oxrdering
of the messages sent from two sites to a thixd one is
made, This assumption is not fundamental to proposed
solution but helps to eliminate numerous implementation
details, |

System's availability : All sites and communi-

cation channels are assumed to be gvailable during the .
message exchange required by the algorithm, The
synchronization protocols used by the transattions
require regular message exchange between the database
sites in the course of update processing.
Solution

The synchronization scheme for fully redundant
distributed databases or a subset of the partially
redundant database systems that satisfy the single site
access assumption, allows transactions to use one of

two compatible protocols. Protocol P (for pessimistic)



requires transactions to preclaim and reserve database
objects prior to execution. But, under protocol O
(}or optimistic) the transaction is first tentatively
executed, arid the protocol subsequently checks whether
the tentative update can be made permanent or must be
rejected due to consistency conflicts, The protocols
are designed to be compatible with each other so that
they may be used in the same system concurxently and
thus increase its flexibility.

Protocol P :

As described by Milenkovict', when a transaction
T is submitted for execution to the database controller
residing at & site Si, the following set of rulés
constitutes protocol P : _ ‘

1. Timestamping : Si assignes a unique
timestamp, derived from S1'S clock and unique
identifier, to the transaction T, TS(T).

2. ;nternSL Reservation : Si reserxves entities
from T'S readwset, R S{(T) and writeeset, WsS(T), intemally,.
If any of those entities is already reserved, T'S request
is entered in the associated reservation list according
to its timestamp : after all older reservation requests
(whose timestamps are smaller than TS(T), and in front

of the younger ones,



3, Global Reservation : Si broadcasts a
reservation message on behalf of T. The reservation

message has the following fommat

Reserve ; sender's ID : 54,
timestamp ':>TS(T).
identity of the entities to be
reserved : «8(7)

All reservation broadcasts sent by a site must be ordered
according to the timestamp of the transactions themselves,
i.e. they must contain increasing, although not
necessarily consecutive timestamps.

4. Acknowledgements : Each site, upon receipt
of the reservation broadcast, reéerves entities contained
in #S{T) in its respective copy of the database according
to rule 2. when this process is completed, an acknowledge~
ment is returned to the site S5i.

Acknowledgement; responder's 1D, transaction : T

9, Execution : Transaction T is executed,
using Si's copy of the database, when the following
conditions are met,

{(a) An acknowledgement of the reservation broadcast
is received from each database site, and

(b)) T'S reservations become the oldest in Si ‘s
resexrvation lists associsted with the entities contained
in RS(T) and ws(T).



6. Update broadcast : Si aoplies updates of
T {(WS(T)) to its copy of the database, removes intemal

resexrvations made on behalf of T, and broadecasts an

update message to all other sites,

Update ; values of the entities to be
updated : WS(T)

7. Completion : Upon receipt of the update
message, each site applies the specified updates to its
copy of the entities contained in 43(T), as soon as the
reservations set on behalf of T become the oldest in the
related resefvation lists. Each such reservation is
subsequently removed.

Because of the reservation scheme, the
advantage with this protocol is that there is no need
to reject concurrent updates involved in consistency
conflicts., Each site is allowed to accept all the
transaction load it can handle, because the existence of
some transactions in progress does not prevent it from
initiating the new ones, irrespective of whether they
overlap or not. ‘

Secondly, protocol P does not require pemmanent
storage of timestamps because a8 timestamp ceases to
exist when the associated transaction completes its

execution..



Thirdly, the efficiency of the protocol is
further enhanced because of relatively low delay and
communication overhead due to the communication and
reservation of only the writesets of updating
transactions,

Lastly, timestamp ordering of transactions
quarantees mutual consistency of all copies of the
database and absence of deadlocks. The transactions
generated in the sysiem always complete execution in
finite time because of the fact that a transaction may
wait only for transactions that are older than it.
Protocol O :

Protocol O was designed to remove the restriction
contained in protocol P that database entities must be
preclaimed and reserved before the execution of a
transaction can begin., This aims at imnroving
efficiency for certain transactions that would otherwise
have to reserve large portions of the database just to
guarantee that all objects that are needed have been
preclaimed,

. Undex the protacol 0, after timestamping of a
transaction T the entities required by it are locked
locally at the initiating site and the transaction

executed using these entities. All updates are



tentatively recorded by that site which then
communicates with other sites in order to determine
whether an older transaction executed elsewhere in
the system obsoletes the work of T. Based on the
infommation gathered from other sites, the initiating
site decides whether to accept or reject the
tentative updates of the executed transaction and
announces its decision to the rest of the system,

Accoxrding to Milenkovic (MILE 79) when a
transaction is submitted to a database site s5i, the
following steps constitute protocol O,

1, Timestamping : Si assigns a unique
timestoamp t0 T = TS(T),

4. Execution : Si begins execution of T and
locks each entity required by T. If an entity requested
by T is not available, T is blocked and its request is
entered in the associated lock/reservation list according
to timestamp of T, If a younger transaction initiated
by Si owns the entity, the ownership is revoked and the
said transaction is restarted. »Hestarting of a
transaction consists of discarding of its tentative
updates and releasing of its locks,

when all internal locks are granted to T,

execution of T is completed and its updates arxe



tentatively recorded elsewhere in the database {but not
in the database proper) by Si.

3. Tentative update : Si broadeasts a
tentative update message on behalf of T. This message
contains the values of the entities mo&ified w T and
its timestamp, TS(T). All update broadcasts sent by
a site must follow the timestamp ordering of the related
tranéactions.

4, Ackngwledgements and rejections ¢ Each

recepient of the tentative update broadcast records
reservations for the entities contained in uwS(T) in
its lock/resexvation lists according to the timestamp
of T. If & younger intemal transaction owns some of
the specified entitlies, it is restarted, If an updste
broadcast has already been sent on behalf of the
restarted transaction, a reject message is sent to all
other sites, This message will cause the reservations
and the tentative updates of the restarted transaction
to be discarded by 211 other sites as well., Following
this process, each site acknowledges the receipt of
broadcast to Si.

5. Update broadcast : If T is still active
when all acknowledgements are received, Si makes the

updates of T pexmanent, That is, Si applies to its



copy of the database the values contained in

wS(T) and broadcasts @ make permanent message,

6. Completion : Each recepient of the make
permanent broadcast makes the updates contained in
WS(T) permanent in its copy of the database, 8s soon as
the related reservations become the oldest in its lock/
xeservation iists. Such reservations are subsequently
removed,

| Under protocol 0, transactions lock the required
entities of the inftiating site but reserve them at all
other sites. The difference between lock and reservation
is that locks do not have to be globally confixmed and,
when granted, the related entities may be accessed and
tentatively modified,

' In this protocol, internal consistency is
preserved by local locking of the entities when the
transaction is under execution. But the mutual consis-
tency among the copies of the database is maintained by
rejection of obselete updates as ensured by rule 4,

However, the protocol can not guarantee that trans-
actions run under it are completed in finite time because
of restarting of some transactions, Since a transaction

is assigned newer timestamps each time it is restarted and



the number of restarts is unbounded, completion of
such transactions in finite time is uncertain, This
problem is resolved by keeping track of the number
of restarts for each unsuccessful transaction, Wwhen
this number exceeds a predefined limit, affected
transaction is allowed to run under protocol P and
thus completed in finite time,

Both the protocsls described above are concerned
only with updating transactions, Read only transactions
can be executed in one of the following ways :

i) The system may regard the read only transaction as

a "null update txansaétion“ (empty write set) and run
under protocol P or Q, as apnropriate. However, read
only transaction executed in this way unnecessarily

uses overhead of intersite communication and causes delay,
though the transaction observes the consistent state of
the database as of its timestamp.

ii) entities required by a read only transaction are
locked intermally (in sharable mode) at the initiating
site, and the local database copy is read when all locks
éra granted. In this way the transaction is guaranteed
to see a consistent state of the database, but not

necessarily as of its timestamp.



Comparision of protocols P and O

1) Protocol P accepts and completes a2 transaction in
finite time unlike protocol 0.
2) Both the protocols require a comparable number of
intersite messages and incur the same communication
delay for accepted transactions,
3) Protocol O imnoées higher storage requirements on
thevsystem, because all sites are supposed to keep the
tentative updates until their fate is resolved.
Milenkovi'c states : “Protocol P should be
used for transactions that are long and/or expensive
to run, in order to avoid costly restarts. Protocol O
on the othervhand. should be used for transactions that
are known to have low probability of conflicts, or for

which preclaiming of resources is inefficient.®



CHAPTER = 3



Integrated Concurrency Control

The previous two chapters describe the various
techniques for synchronization of concurrently executed
transactions in distributed database systems. The
techniques of locking and timestamp orﬁering'ére the
two basic approaches made to maximize concurrency while
praocessing such transactions. Implementation of locking
Scheme‘is possible in different ways : basic two phase
locking (basic «PL), primary copy «PL, voting ZPi, and
centralized Zpl; that of timestamp'ordering (T/0) is
possible in ways like basic T/0O, or conservative T/O.
However, better impiementation methods can be constructed
by combining the above approaches.

A distributed database system experiences two
types of conflicts : read-write and write-write, The
techniques described in chapter 3 consist of using &
particular type of implementsation (either one of ZPL
implementations or one of T/O implementations) for
both the types of conflicts. However, Berustein et al,
(BERN 8l) have suggested methods by using various types
of implementations separately for rw and w synchroni-

zations.



5.1 Decompasition of Concept of Serializabilitx‘
The serializability of execution of a set of

transactions has been characterized in the proposition
of chapter 2, 1In this proposition the two types of

| conflict (rw and ww) have been treated under the general
notion of>conf1ict; Bermstein et al, have decompdsed
this concept of serializability and restated the
condition of serializability by distinguishing these
two types of conflicts,

Let E ﬁg an execution of a set of transactions
modeled by a set of schedules. The following binary
relations, Genoted by * &5 ¥ with various subscripts have
been defined on transactions in E : for each pair of

transactions Ty and Ty
1) Tg » yw Tj if in some schedule of E, T; reads
some data=-item into which Tj subsequently writes ;
2) T4 wr Tj if in some schedule of E, T; writes
into some data item that Tj subsequently reads ;
3) Tivq "W Tj if in some schedule of E, Ty writes
into some data item into which Tj subsequently writes ;
4) T, 9 pwr Tj if Ty9 Tj or Ti > wr Tj ;
%) Ti > Tj if Ti e J— Tj or Ti > W 'l'j
The relationship * 5 " intuitively means ®"in any

serxialization must precede." For example, T1 > rw Tj



means “Ti in any serialization must precede Tj“.
Because, according to the proposition, if Ti reads x
before T, writes into x, then the hypothetical seriali-
zation in the proposition must have T preceding Tj.

Every conflict between operations in E is
represented by an ¢ & ¥ relationship. Therefore the
proposition can be restated in terms of * o5 %,

The pronosition originally says that E is
serializable if there is a total ordering of transactions
such that for each pair of conflicting operations 04
apd Oj from distinct transactions Ty and Tj ( respectively),
04 precedes Oj in any schedule iff Ti precedes Tj in the
total ordering. This lsatter condition holds if and only
if the relation ®* 5 ¥ is acyclic. Such a relation is
acyclic if there is no sequence Ty, » 72'»72 > T3.....

Tn-l - Tn Such that Tl = Tn‘ Otherwise, the relation
is cyclic and in that case it is meaningless to say that
a particular transaction precedes another particular
transaction. Hence the serializability of an execution
of a set of transactions can be ascertained by knowing
whether the relation ® -~ % is acyclic over these
transactions. Bernstein et al. decomposed the

?  ywp °nd
{(according to the definition of binary relation

relation ¥ & v into its components ¥

n
“"7’ww



{5) above) and restated the propssition using them,
The decomposed components are representatives of the

read-write and write.write conflicts respectively.

Restated pnroposition (BERN 80a)

et * & . and " 5 v be associated with
execution E. E is serializable if (a) " » WL and

v 5 wwy are acyclic, and (b) there is & total ordering
of transactions consistent with all v o :wx? and all

L w" relationships.
This proposition is sn immediate consequence of

the first proposition (BEMN 8l1) and indicates the

following facts ;

1} This way of characterizing serializability decomposes

the problem of concurrency control into two parts :

firstly, the relations * Y and ¥ o | * must be

¥ xwr
acyclic and secondly, a total order among transactions
is to be maintained in consistence with these rulatians
in ordexr to ensure serializability of ihe transactions,
2) The proposition implies that xw and ww,conflicts
can be synchronized independently except under fﬁé,ﬁ
condition that there must be a total ordering of
transactions consistent with both types of conflict.
That xw conflicts are synchronized is ensured by tﬁc

fact that v * i{s acyclic and synchronization of ww

7 xwr



conflicts 1s ensured by the fact that v - is
keyclic., However, in addition to both the relations
being acyclic, there must be a serial oxder consistent
with all * 5 * relatfons. In fact, this serial oxder
integrates the two independent techniques and completes
the solution of the oroblem of concurrency control in
distributed database-systems.

5.2 Inteqrated Concurrency Control Methods

L4
7 qwy M

"o ww"relatianships are acyclic with respective

Bernstein et al, show that the *

techniques used and in addition, they provide an
interface between the independent techniques. This
interface, in fact, quarantees the total oxdering of

- the involved transactions in confimation with the
condition of ﬁart {b) of Bernstein's proposition.

Various concurrency control methods have been

listed that can be constructed using the different
techniques of two-phase locking and timestamp orderxing,
For instance, a synthesis has been made between two-
phase locking for rw synchronization and timestamp

- ordering for ww synchronization in oxrder to construct
a more efficient concurrency control method than a
combination of a pure ZPL technique {or timestamp

ordering technique) for both rw and ww conflict could



provide. The following 1s the description of a few
of the proonsed integrated methods.
Pure 2PL methods

These methods are results of yhe combination
of different types of two phase locking techniques like
basic 2PL, primary copy ZPL, voting 2PL and centralized
ZzPL. Three of these methods have been described below
for illustration,

Bach of these methods ensure serializability
because each satisfies the required conditions : firstly,
any two phase locking technique attains an acyclic
YO gwr 0T o 0 relation when used for xw or ww
synchronization (BERN 79 b, ESWA 76, PAPA 79) which is
a réquisite condition according to the restated
proposition; secondly, the total ordering of the
transactions consistent with all * » _ " and all

x
- % yelationships also exists and this orxder 4is

ww
the serialization oxder in which transactions obtain
locks, This serialization oxder acts as the interface
that binds together the independent techniques used for
w and ww synchronization., In addition to the interface,
two-phasedness of the transactions need to be preserved
i.e, while constructing integrated two-phase locking

methods, it is to be seen that all locks needed for both



rw and ww techniques must be obtained before any lock
is released by either technique (BERN 81).

Each of the above methods can be further refined by the
choice of deadlock resolution technique as described in
section 3,1.3,

Method 1 : Basic 2PL for xw synchronization and

primary copy 4PL for ww synchronization,

In this method, a conflict between readlock and
writelocks is resolved by basic 2PL technique, whereas,
that between two writelocks by primary copy £PL
technique.

Suppose there is a logical dataitem X wikh
popies Xpo eee Xy placed at various sites. If a
transaction wants to read X it sends read command to any
one site where a3 copy of X is stored, This command
implicitly requests a readlock on the copy of X at that
site. Té write into X, the trensaction sends prewrite
commands to every copy of X and the commands implicitry
request writelocks on the copies., Bernstein et al.
classify the writelocks into three types due to the fact
that various types of writelocks need to be obtained at
various copies for the locking confliict rules vary for

writelocks from copy to copy of a dataitem,



(L) Rw writelock : such a writelock only conflicts
with readlock.
(18) ww writeiock : such 3 writelock conflicts with
another similar writelock,
(111) Rww writelock : Such a writelock conflicts with
readlocks, ww writelocks and also rww writelocks,

#hile using basic 2PL for 1w synchronization,
a transaction willing to read a data item X requests
for readlock on any copy of X. This readlock conflicts
with writelocks on all copies when another transaction
'is willing to write into X and that the prewrite of this
transaction attempts to obtain xw writelock (as this
writelock only conflicts with a readlock on the same
data item) on all the coples of X. Thus this type of xw
conflicts may be resolved at all copies. |

On the contrary, writelocks conflict with
another writelock only in the primary copy and thus it
is resolved only at that copy. Since a readlock can also
be obtained at the primary copy, the wrifealcck to be
used here should be rww type. ' |

Method 2 : Primaxry copy 4PL for 1w synchranizéiion
and voting 2PL for ww synchronization.
In this method, read-write conflicts are resolved

in the primaxry copy only whereas the write-write conflicts



ére resolved by requiring that a transaction can write
into a particular data item only when the system grants
majority of writelocks to the transaction.,

Suppose there are Copies X, «..X, of a logical
data item X and Xy is the primary copy of X. To read X,
a transaction sends read request which implicitly obtains
readlock on the primary copy x;. Once the readlock is
granted, the transaction can read any copy of X. However,
a transaction willing to write into X, first sends
prewrite commands to each site that stores a copy of X.
The prewrite command st the primarxy copy obtains a 1w
writelock which prevents other readlock requests from
accessing the item. Thus readwwrite conflicts are
resolved at the primary copny.

The ww synchronization 1; obtained by voting 2PL
technique. When & transaction issues prewrites in oxder
to write into x,, all prewrite (xi) commands except
prewrite (xl) request for a yww writelock on the primary
copy of X i.e. Xy where read commends in general are
alléwed to obtain readlocks. If the rww writelock can
not be set on this ¢npy, an rw writelock is set on Xy
before rww writelock is made to wait. A transaction
writes into every copy of the required dataitem if it is
granted a ww (or xww} writelock on majority of copies

of it,



Method 3 : Centralized 2ol for xw synchronization and
basic 2PL for ww synchronization.

Suppose there are coples of a logical data item X
residing at various sites., Since centralized 2PL
technique is used for mw synchronization, a transaction
before reading (or writing) any copy x; of X, obtains a
readlock {or xw writelock) on X from a centralized 2PL
scheduler,

Since the basic 2PL is used for ww synchronization,
before writing X, 8 transaction sends prewrites to every
site that stores a copy of X and these prewrites
implicitly request ww writelaocks on every copy of X.

When two such ww writelocks enter a2 conflict, one 131
processed and the other one is made to wait which is
processed after the first one releases the lock.

In all the above methads, readlocks are
explicitly released by speciai lock release commands
while writelocks are implicitly released by write commands
{ because prewrite command sets a writelock, after
required computations is performed, the data in the
original database position is updated in a two phase
. commitment manner where the write command takes the
updated data into the database by simultaneously

releasing the writelock on it).
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Pure Timestamp Ordering (T/0 Methods
The basic T/O technique, the conservative T/O

technique and Thomas write Rule {for ww synchronization
only) can be combined to form various integrated methods,
These methads quarantee serializability as each
of them satisfy the required conditions : firstly, the
technique of timestamp oxdering attains am acyclic
Y3 qup OF " S . relation when used for iw or ww
synchronization ; this is because each site processes
conflicting operations in timestamp oxder and thus

wwf relation 1s in

timestamp oxder ; since all transactions have unique

each edge of the® 5 " or*® 5

timestamps, no cycles are possible, Secondly, the total
ordering of the transactions consistent with all ® o, we
or* & ww“ relationships also exists and the timestamp
order is the valid serialization order that satisfies

the restated proposition.

Baecause two different T/D techniques are used
independently for rw and ww synchronization, the
interface between the techniques 1is maintained by
requiring that both techniques use the same timestamp
for any given transaction.

Three of the integrated methads have been

déscribed for the sake of illustration.



Method 1 : Basic T/O for rw synchronization and
~ conservative T/0 for ww synchronization,

A transaction is assigned a globally unique
timestamp which is used for both rw and ww synchroni-
zation. Each data item is assocliated with a read
timestamp R - ts and a write timestamp w-ts. In oxder
to achieve twowxphase commitment of a transaction, its
read and prewrite commands arxe buffered.

Let min- R-ts(x) and min-R-ts(x) be the
minimum timestamps of any buffered read{x) and
prewrite {(x) commands on data item x. Suppose R denotes
the read(x) command and P denotes a write(x) command..
The steps for the method would ba as follows
1} If ts{(R)a=ts{x), R is rejected,
else, if ts (R) > min - P -ts(x), R is buffered.
else R is output and R.ts{x) is set to max (R-ts(x),ts(R)).
2) Since conservative T/O is used for ww synchroni-
zation, a prewrite command is always buffered instead of
being rejected, '

3) If ts(w) > win-R-ts{x) or if ts(w) is greater than
the ﬁinimum timestamp of any buffered write command
from some transaction site, W is buffered. Else W is
output and w-ts(x) is set to ts(w),

4) when W is output, its prewrite is debuffered and

the buffered read and write commands are retested to



see if any of them can be processed for an output,

Method 2z : Basic T/0 for w synchronizaticn and
T4R for ww synchronization.

Here also, each dataitem is assqciated with
read and write timestamps as in the previous case,
however, the steps of the method are different and are
as follows :

1) 1If ts(R) < wW-ts(x), R is rejected. Else if ts(R) >
min-P-ts{x), R is buffered. Else R is output and
R-ts(x) is set to max (R-ts(x), ts(R)).

2) If ts(w)> wets(x), the write command is processed
as usual i.e. x is updated. 1If, however, ts{w) <
Wets{x), W is ignored according to TWR and it has no
effect on the databose, In this method, a scheduler
always accepts prewrite commands but never buffers
write commands,

3} when W is output, its prewrite is debuffered and
the buffered read commands and the write commands

(if any) are retested to see if any of them can be

processed for an output.

Method 3 : Conservative T/0 for rw synchronization

and TWR for ww synchronization,



In this method, each data item is required to
be associated with a read timestamp and a write tiﬁestamp
which are the timestémps of the yespective operations
that have slready been processed on the dataitem, Let
Min-wW-ts(Si) be the minimum timestamp of any buffered
write command from a site Si. Let the read command of
a transaction to be executed on 3 data item X be denoted
by R, @ prewrite commend by P and a write command by W,
Then the method consists of following steps :

1) 1If ts(R) > min-Wets(Si) for any Si, R is buffered;
else it is output,

2) A prewrite command is always buffered till the
write command arrives and if ts(w) < w=ts(X), ¥ has no
effect on the database; that is such write command is
ignored, Else, if ts(w) > wets(X), it is output.

3) when W is output, its prewrite is debuffered;
buffered read commands and of course, the 1ncdming
write commands (if corresponding prewrite comhand is
buffered) are retested to see if any of them can be
allowed to operate on the data. |

Mixed ZPL and timestamp ordering methods

These methaods are constructed by using two-phase
locking technique for rw(or ww) synchronization and
timestamp oxdering technique for ww {or rw) synchroni.

zation. However, in order to guarantee serializability



of executions, the methads must satisfy both the conditions
stated in the theorem :

ww
by acyclic, which is of course the case with each of «PL

1} The relation ¢ e’rwr? and ¥ 5 " are required to

and timestamp techniques,
2) It is required that there is a total oxdering of

transactions consistent with all ® " and all * 5 @

¥ rwr ww
relationships. This condition requires an interface to
be built between the independent techniques and that the
interface is required to guarasntee that the combined

" & ¥ relation (i.e. > wr U ww) remains acyclic.
This means, the interface must ensure that the seriali-
zation order induced by rw technique is consistent with
that induced by the ww technique. The interface given

below makes this guarantee.

The interface

In any «PL technique, a tiansaction'owns all the
locks it will ever own at the end of its growing phase
{the first phase of two.phase comritment discussed in
chapter 2), known as the lockéd point of the transaction.
Then, in a serial execution it is a fact that all
transactions start their execution at their respective
locked points and also that is the case with all seriali-

zable executions. Hence these locked points of an



execution determine the serialization oxder of the
execution. However, the serislization oxrder induced
by any timestamp ordering technique is obviously deter.
mined by the timestamps of synchtonized transactions,
There being different serialization orders for different
techniques, if one technique is used for rIw synchroni-
zation and another for ww synchronization, there would
be pxbblém of total ordering among the transactions,
This problem is resolved by requiring the locked points
to induce timestamps of the transactions {BERN 80bj.

Locked points induce timestamps in the following
way. FEach data item X of a database is required to be .
associated with a lock timestamp, L-ts(X). Wwhen a |
transaction T sets a lock, it simultaneously retrieves
Lmts(X). Wwhen T reaches its locked point, it is assigned
a timestamp, ts(T), greaster than any L-ts it retrieved.
When T releases it lock on X, it updates L-ts(X) to be
max {l=ts{x), ts(T)). |

It can be proved that timestamps genetated in
this way are consistent with the serialization order
induced by 2PL technigue i.e, ts(Tj) ts(Tk) if Tj must
precede Ty in any serialization induced by 2PL.

Proof
Let 1‘l and Tn be a pair df transactions such that

T; must precede Tﬁ in any serialization.



Thus there exist transactions Tl' T2’ cesy Tnul‘

Th such that fori = 1, ..., n=1
(a) Ti's locked point precedes TS locked point and
{b) Ti releases a lock on some data item X before Ti+1

obtains a lock on X.
If L is the L.-ts(X) retrieved by T, then

ts(Ti) L ts (Ti+l) and by induction ts(Tl) ts(Tn),

Therefore, timestamps generated are consistent
with the serialization order induced by ZPL (BERN 8l1).

A mixed method using basic 2PL for rw synchroni-
zation and Thomas wWrite Rule (TWR) for ww synchronization
has béen described below for the sake of illustration,
Wethod _ _

This method requires that evexry stored data item
have 3 lock timestamp L-ts and & write tiﬁestamp Wets.

Letvx be 2 logical data item with copies
Xis eses Xo. To read X, 3 transaction T issues read
command on any copy of X, say Xs . This command 1mp11c1tiy
requests a readlock on x; and vhen the readlock is granted,
Lpts(xi) is returmed to T,

To write into X, T issues prewrite commands on
every copy of X. These command request writelocks (or more
specifically known as xw writelocks that only conflict with

readlocks on X) on the corresponding cooies, and as sach



writelock is granted, the corresponding L.ts is
returmed to T. When T reaches the locked point i.e,
when all the required locks are obtained ts(T) is
calculated as described in the last section, This
timestamp is assigned to the write command which are
then sent for updating purpose.

These write commands are processed using Tﬁomas
write Rule, Let W be the write command to update Xy 3

1) 1f ts(w) > d—ts(xé), the write command is
processed as usual and consequently X3 is updated,

i1) 1if ts(w) < w—tstxj). 4 is ignored,

This method has the advantage over npure ZPL
methods in the sense that here transactions execute
concurrently aven if their write-sets intersect. This
is because, writelocks never conflict with other write.
locks and those obtained by prewrites are used only for
rw synchronization. Also, the write command of a
transaction is processed only after it is assigned a
timestamp which is induced by the locked point of the
transaction i.e. after the transaction obtains all of
its locks,

5.3Conclusion
This dissertation on synchronization techniques
does not contain all the techniques available in

literature, but concentrates on the basic frameworks



required to achieve maximal concurrency while running
concurrent transactions, |

All of the concurrency control mechanisms
discussed in last three chapters have been designed for
use in & distributed transaction.processing environment,
The data-items have been assumed to be independent
database entities directly associated with physical or
logical storage units (pages, records, or files).
Transactions have been assumed to consist of a sequence
of read and write operations and of course, with local
computations. Thus. the techniques are not able to
support concurrency control in a genersl distributed
environment; however, they pmvi'de‘ 2 general framework
~ that resolve the problems agising out of multiple
access to a shared data where database consistency need
" to be preserved.

Although various techniques have been developed
for synchronization of concurrent execution of trans-
actions, perfoxmance of a few of a them has been
avalusted. Factors influencing the performance when
the techniques are used, are system throughput and
transaction response time which are under the influence
of intersite communication, local processing, transaction

restarts and transaction blocking. The impact of these



factors varies from technigque to technigue {BERN 8l1),

Thus, a comprehensive analysis and comparision between
the various techniques need to be studied in order to

optimize their use in distributed database systems.
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