KNOWLEDGE « BASED RESOLUTION SYSTEM

Dissertation Submitied in Partisl Fulfiloent
of the Fequirements for the Degres of

LPASTER OF PHILOSOPHY

o682

VIJAY KUMAR SINGHAL

SCHOOY, OF COMPUTER AND SYSTEMS SCIBNCES
JATAHARLAL NEHRY UNIVERSITY
NEY DELML « 110 O67



CERTIRICATE

The ressarch work entitled ®KNOULEDGE.BASED
RESOLUTION SYSTEI® and embodied {n this dissertetion has
heen c\a:ﬁ“iad out in the School of Computer and Systems
Sefences, Jewshorlel Nehro University, Hew Delhli « 110 067,

The work is original and has not Desn submitted
in part or full for any other degyee or diploms of amy
University,

R S adoneando Ry OF
{DR. R. SADARANDA) ' { VIJAY KUMAR SINGHMAL)

Supesrvisor Student

bt 1 ‘f_‘:f;/__

( PFOF, DILIP K. BANERJIT)
Dean

SCHOOL OF COMPUTER AND SYSTEMNS SCIRNCES
JAVAHARLAL WEHRU UNIVERSITY
NEZ DELHI « 110 067



| DEDICATED
To my late grend.parents
YAI'AY and YBABAY
whose blessings ere slways with ne,



I am deeply grsteful to my supervisor Dr, R,
Sadananda, Assoclote Professorx, School of Computer andd '
Systems Sclences, Jowaharlal Nohru University, New Delbhi,
whose frank casoperation end efficient guldance enabled
me to complete this work successfully. Thyoughout oy stay
in this School, I enjoyed his valushls sungestions and
affectionate natura,

I sincerely expraess oy gratitude to Prof, Dilip K,
Baneril, Desn and Prof, HN.P, Mukherjee, Ex-Dean of the
School, for providing me with all the facilities during my
study and project work.

I take this rxore opportunity to thank sll of ay
friends and classefellows for their h&lp'wi ancoursgenent
st various stoges of my study, I also thank whole of the
faculty and the staff, especlally Mr, C.A, Thokur, Section
Officexr of the School, for theirx cowoperation,

Next, I express ny t‘inp respects to nmy parents
end elder brothers, Ur, Fom turtl Singhel and Shrl Govind
Swoyoop Singhal, ferl thetir love, sssistence and support
given to me throughout my student.life.

Ly special thonks are also due to Mr, 5K, Sspm
for typing this dissertation with cere and patience.

VIJAY KUMAR SINGHAL



1, INTRODUCTION
2., PIEST «» ORDER PREDICATE CALCULUS
2,1 Syntex

3.

4.

3.

2,2 Semantics
2.3 Vartiebles snd Quantifiers
2.4 Validity end Setinfisdility

THE RESDLUTION AND ITS REFINEMENTS

3.} Bosic Resolution System
3.1.1 Substitution and Unification
3.1.2 Fosolvents
3.1.3 The Resolution Principlse

3.1.4 Sourndness ond Completensss
of Resolution

3,2 Refinements of Resolution
3.2.1 Simplificetion Stretegles
3.2.2 FRefinement Strategles
3,2.3 Oxdering Strategles

4,2 The Nature of Knowledge
4,3 Representation of Knowledge

DESIGNING THE KNOULEIGE « BASE

3.1 An Overview

5.2 Design of the Knowledge<Baae
9.2.1 Thumbd Rules
8,2.2 The Data-Bose
B.2.3 Globsl Declaretions

¥
S
5

PoEbE R owow o -

BEYSR B BREE BESES



CHAPTERS ., | Page No.
&, COMCEPTPFERENCE '
6,1 Coding and Attributes
6,2 Concept Formation
6,3 Inforence Phase
6.4 An Example

7. THE KNOJLEDGE - DASED RESOLUTION SYSTEM

7.4 The Algorithm
7.2 Explonsotion
7.3 Examples

8., CONCLUSIONS

EREIFEEEIFT R



CHAPTER » 1
INTRODUCT TON

In humsn beings, the ability of performing certsin
taske, such as solving puzzles, proving theorems, playing
games, writing programs or even driving o car, is colled
*intelligence', In othor words, such 2 type of tasks require
intelligence, ‘*Artificial Intelligence' 4s sn ares of study
in Computer Scisnce vhich zoncorns with realising intellliqence
in this sense by machines, |

Hers we aTre concorned with *problem solving®. Much
of the Artificlsl Intelligence remearch has concentrated on
£t. In its bDroaedest sense, ﬁmbim solving enhcompasses ill :
of Computer Science becesuse eny computation task can be |
regerded as s problem to be sslved (4], A way to leemn
about intelligence is to study the probdlem solving behoviour
of a human being, ,

rechenicel theorem proving is an important subjsct
in Axtificiel Intelligence, I hss long boen man's ambition

to find genorsl decision procedures to prove theorenms,
| techsnical theorem proving techniques have been applied to
meny aress, such as propram enslysis, program synthesis,
deductive question.onswering systems, problenesolving systems
and Fobot technology. These techniques are finding
increasing number of applicstions in real 1ife situstions (3],

A major breskthrough in mechanicel theorem proving
was mode by Robinson [17)in 1963, He devel:ped @ single
inference ritle, ealhd the *resolution principle', which
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wss shown to be highly efficient and eesily implementable
on Commuters, Since then many improvemants of the resolution
principle hove boen nade,

The epplication of Data Bose concopts in the field
of Artificiel Intellioence 15 increasing rapidly in rocemt
yeara., These datsebpsés are conceptually differont and
therefora they are kmwladganhaaaa yas they are populazrly
known, This work is an effext to develop & rusolution
system based on the application of the knowledge-base to
meke the loplementation of the yesolution principle essier,
vore sfficient, less.sxpensive ond time-soving. |

Formal end logicsl models are becoming important
tools of Computer Sclence. In porticuler, there seems to Do
guite s few concopts and modele in synbolic logic which can
be used for modelling problems in end axound Computer Sclence,
In our work, we have used the firsteorder Wiwtﬁ celeulus
due to its simplicity and power of expresslion, Ue hove
tried to give g brief introduction of firsteorder logic in
Chaptere2, | :

In Chaptore3, we have Teproduced the resolution
principle and some svarch strategles, which are also beling
implemanted in our knowledge-based resolution systen,

Ue have given a brief description of vhst we
mean by the 'inowledgowbase?, in Chaptersd., In Chaptors3,
we make 2 brief survey of knowledge-basses so far icplemented
by different programs, end give the design of the knowledge-
base of our syoctem,
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As 2 porticular domain of problems, upon which
v wish to apply the syoctem developed by us, we have chosen
a8 system, cslled ‘Conceptference*, which has besn developsd
by Sadanands and Mahabals (18]. In Chaptore8, wo qive &
brief introduction of Conceptference,

Ue have given the text of the algorithm of the
knowledgeebased rasolution system, alongwith its explanation
and two exemples of its application, in CheptoreT. In the
iast chepter, we have matde cur comments and conclusions on
the work done and slso discussed about the further possibl.
lities arising out of our efforte,




FIRSTAORDER PREDICATE CALBULUS

Solutions to meny problems miaht regquire loglcal
analysis., For this purpose,we need some kind of fommal
language, in which we con stote premisss and make valid
loaical deductions, The *first.orxder loglct or 'firxst.orxdex
predicate calculus' is & system of logic in which 1% ie
possible o express much of mathematics and many statements
of evexydsy lsnguzge.

Constder the following sxamples of deduction of
“statements ¢

1) Rem is o man,

2) | way man is moxrtsl,

3) Therefore, Fem is mortel,

Let us denotes #x is 2 man' by tam{'n} and 'x is
mortal® by MORTAL(x). Then, we can represent the above
statements as 3

1) 1N Ram)

2) Y, AN x)s) PORTAL x)

3) IORTALL Ram)
where symbol *%¢ means 'for all' and '3' means ‘implies’.

In this example, ‘MAN' and 'LORTAL' are 'predicates’,
which can heve values 'True' or 'False'; 'x* is a ‘variabdle’,
which cen have any value in 1ts vange; and *Ram® is & i
teonstant?, which denotes a perticulsr velue of variable xa,

This systen hes 3 number of rules of iInference
that allow us to meke valid logical deductions of new
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statements from 2 set of glven statements, GBecause of its
gonerality and logical pover, the predicate calculus ic vary
suitable for a wide ronge of epplications, Row wo glve the |
syntax snd semantics of the fipet-order prodicste calculus.

2.1 SYRTAX

The bosie alphsbet of first-oxdexr predicete
celeulus consizsts of the following set of symbols 3

(1) Punctustion moxks 3 *,%, *(*, *)!

{2) Loglcal Symbols 3 '~¥not), *»'(implies),
| ‘At{and), *V*{or)

(3) Varisbles 1 %, ¥y Zs «os
{4) Constents 1 8, by €4 e
(5) Function lettexrs 1 f, g, Ny «os
{8} Predicate lettoxrs t Py Q Ay sae

Using these symbols we can construct meny
expressions, Some closses of such expressions erxe defined
as follows 3

1. Terms 3
{e) A constent is » tomn,
{b) A variable is & torm,
(¢} X £ 15 o function symbol end ts.eeert en 74,

are Loims, then ‘{t‘ﬁ‘b"l’tn} is & tern.

{d) Ho other expressions are tems,
2., Atomic formulas (oxr Atoms)
{8) A predicate symbol is an etomic formula,
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(B} If t)s..cnetyn7l, ove terms and P is & predicate

symbol, then the expression P(tlu.ontn) is an
atomic formula,
{c) No other expzessions ore stomic formulas,
3.%elleformed formulas (wffs) o
{a) An stomie formule is a wif,
(b)) If A is a wif, 8o ls~vA, |
(e} If A and B are wifs, so is A3 { end hence, also
ANB and AVB, because AN Be~{A®~B) and AV Ba
(~A)wB}. |
2.2 SERANTICS
To make welleforymad formulss mesningful, we hove
to interpret them in torms of ‘domain' ond ‘sssignments’
of truth values to constents, function symbols and predicote
eymbols, sccuring in & formula in the firsteorder logic.
The welleformed formulas are soid to have the value *T' or
1E* depording on whether the assertions ore “true or false
oveyr the domain, -
Pefinitian ! An 'interprotation® or 2 'model' of a'r;ml;.h
formed formula ¥ in the firste.oxder logle conslsts of o
nonmenpty domoin D and an sssigmment of velues to cach
canstant, function symbol and pyedicate symb_ol oﬁmﬁm
in 7 as follows ¢
{a) PFor eﬁezy constant symbol, we sssion an slement
in D,
(b} For overy function symbol, we ossign & neppling
from D" to D, where DWDXDX,.ss Xy n times,
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(¢} For every predicate symbol, we esslion & mapping

tyom 0™ vo [ 7, R},

The value of & nonwatomic wellformed formula can
be computed recuysively from the values of {ts conponent
formules, In this computation, we use the f5llowing
definitions

(1) If X &8 any wtff, then ~X {resd 'not X') has value

Ty 4 X hos value F ond ~ X has value P, vhen X

has value T,

(2) 1f Xy and X, are any wifs, then the values of
| XyV %ge ¥y AL, ord XS X, ore given by the
following 'truth tablet &

i

X, Xy sz*zﬁ»"x’\xa X, %,

o

w4
ELE
o g o
e

f m oo

2.3 VARIABLES AND GUANTIFIERS

Sometimes to mawha;lm the domoin D, we speoak of
an interpretotion of the well.foymed formuls over D, Chen
we evaluste the truth rvelue of a formule in an intexprets
tion over the domain D, ( Vx) will be interpreted as ‘for
311 elemontes x in D* and (3 x) os *thore oxists an element
X in D', The sign 'V is called tho ‘univoresl quantifier’
and the correspaonding varisble, here x, is colled s
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‘univorsslly quantified voriable'. The sign 'J°* 4is called
‘existentisl quantifier' and the corsesponding varisble is
celled an ‘existentially quentified veriabdle’.

For intorprototion of & welle.formed formule
containing quantifiers aver 2 domein D, in addition to above
nentioned rules, we use the following two rules to evaluate
the well.fommed formuls

(1) (=) W is wamated to T 4f the truth value of

U 12 evsluoted to T for evexy x in D, othenvise

1t 1s evaluoted to F, ,

(2) (3x) W is evalustsd to T Lf the truth value of

7 is T for at least one x in D, otherwise it la

evalusted to F,

By truth teble method we con show that A {¥x)
P{x) always has the somo tryuth value as does (J x)eP{x))
similarly, ~( 3 x) Px) and (¥x) (~P(x}) ere squivalent,

2.4 VALIDITY AND SATISFIABILITY
Definition ¢ A wellwformed formula is called *valid® 1f
1t has the value T for its a1l interpretations.
Thus the welleformed formuls Pla)e (P(s) VP(b))
is valld because 1t slways has the value T regaxdless of
its interpretations, as it may be shown by the truth tabzt.
By truth table method we can alwoys determine the wvalidity
of » well.formad formuls thst does not contaln any quantifier,
then quentifiers occur we can not elwsys determine the
validity of thet welleformed formulsa, becsuse there does not
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exist any genersl mothod to evoluste the value of all of
the infinite interpretations ropresented by the quantifiers,

The velldity of cortetn kinds of formuler containing
quentifiers csn be determined. It has boen showm thot 1f o
- wellwformed formula is infoct velld then & procedure oxists
for verifying its wvalidity,
Definition ¢ A welleformed fotmula U ie miﬂ to be
*sstisfisblo or ‘consistent', {f thore oxists an intove
pretation I of W such that U has & value T undor this
intorprototion, The intorpratation I 15 ssid to be saotisfye
ing &,
Definition ¢ A wolleformed formula U is selid to be
‘unsoticficble! or Yinconsistent' 1f thore exists no intore
pretation satisfying U,

If tho same intorprototion satisfies each wif in
5 set of wife, then we soy thet this interprotation satisfies
the sot of welleformed formulos,
Definition s A welluformed forxrmula W 'logicslly follows?®
fron o sot S of wolleformed formulas, if every intorxpretstion
satisfying S also satisfles W,

A 'prooft, that & well~formed formuls U 4s &
1ogical concequence of & glven set S of wffs, 18 o
demonstration thet 7 logically follows from 8, OGiven sn
arbitrary wif 'V end on erbltrery set 5 of wifs, unfortunately
" thove can exist ns offective procedure which mey olwoys
decide vhether {7 logtcally follows from 5 op not, If W does
follow from S, thon there are procedures thot will always
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- detect it, bt {f U does not follow from S, these procew
dures will not slwoys be able to find this fact, 4
Ihaorem v A welleformed formuls U logically follows from
2 set S of well.formed formulas, if, and only 1f, the aet
8V(~ 1) 1e unsotisfiable.,

The above thesrem is very useful to determine
whether or not o welleformed formuls U follows from & set
S of wifs, To show that ¥ lopically fsllows from S5, wo
will show thet 5V{~ ) is unsatisfiadle, In oxder to
show that & set 5 of well.formed formulss is unsatisfiable,
we must show thot these exists no intarpretation for which
etch of the wifs in § has truth valuo T,

Fortunotely, some vory powerful procedures do
exist to perform this tosk, Thase procedures demand that
welleforned forxmules in ¢ set bs put in & specisl form
called *clause form', For the procedure to convert o
welleformed formula into clause form sepders ere roforred
to (10, 18],



CHAPTER3
THE RESOLUTION AND ITS REFINEMENTS

3.1 PASYC RESOLUTION SYSTEN

Some of the puxposes of programming 8 computer
to prove theorems concorn Arts.ﬂeiai Intelligence and
deduction. Uriting o thesrem proving program, vhich uses
mathematical logic sllows us to study daductions in its
purest form, Deduction is importent because it plays a
major mié, in solving many kinds of problems end not only
in Bathematics, Fér this purpose the programmer may develop
powerful, natural, intuitive Inferance rules %o which
heuristics can be edded cesily [20]0

| The *'resolution principle’ 1s such a powerful q |

end natural rule of inference, which was developsd by
Fobinson (17, Roughly speaking, the resolution principle
draws the most gonersl possible conclusion fyom two given
stotements, The eauélusian and tho two statements qemerelly
cantain varisbles, The resolutisn principle is move
natural, more intultive and easlexr for people ta use than
sre the inference rules used by earlier programs. Furthorw
moye, it is casler to think of heuristics to add to the
resolution prinetiple [20). Before discussing the resolution
principle, we discuse balow the unificstion and xésoivéhta._
3.1.1 itution and Unification |

The process celled ‘unification’ is 2 bdasic port of
the formal monipulstions performed in obtaining resolvents.
tie shall refer as *litcral' an atomic formulo or its negative,
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The torms of & Liternl can be verisble lotters, constont
M‘l;am or oxpressions metating of function letters ond
terms. A ‘sybstitution instance' of o literel 1s obtained
by substituting terms for variables in the litersl, For
exsmple, o substitution instence of the literel P{x,f(y),b)
could be Ma,f(a(z)).d} in which vartable x has been
substituted by o conotant *a* and y hos boen substituted
by 2 term glz), - '
Definision 5 A 'substitution® © is a finite set of ordorsd
potrs | (230%)eceecsltpevy)] o shore the potr (ty,v;) means
that the verisble v, is throughly substituted by the ternm
ty ond no two varisbles ore the same, 1.0, LIS Vyhv,.
Fox example, the substitution used in above
exatple to obtain an instence of P{x,f(y),b) 180 w{(a,x),
(at=)oy)}e
Definition : The 'composition® of two substitutions « and
¢ e dunoted by p 4 15 thet substitution obteined by
applying g to the temms of « snd then adding those poirs of
P » whose vorisbles do not occur among the varlsbles of «
For example the composition of ou-{ig( %0¥) o))
end B =m{(8,y2)¢ (Dey)alcsw)} is «p w [(glayb)yw)sle,x),
' {b,y)}. If o cubstitution 6 is spplicd to evory member of
s sst | L,) of Litersls, we danote the set of substitution
instances by (L] .
Refinition © A sot of literals {L,] 1s esld to be ‘unifisble’
if there exicts o substitution ¢ such thet Ly, sl e.. ..ol .
In such & csse, the substitution 0 £s seld toc be & *unifiex?

of {L.
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For example, ¢ = ({a,%),(b,y)] unifies {P{:.ﬂ.?)a
c).ﬂa,ﬂb).c}\ to yield (s, (b))},

Definition ¢+ A unifier A of a set of litersls {Lﬂ is
said to be the 'simplest® or ‘mostegenorsl uniffer! of {L,]
1f, for every unifier ¢ of {Li], thore oxists a substitution
§ such thot (L, w {L1, .

The corron instance produced by & mostegoneral
unifier {2 unique except for slphabetic verisnts, Fbr
example, the substitution )= {(by)] is the mostegenersl
ynifier for the set of literals in the above mentioned
examnle, .

 Thers is an slgorithm, called the ‘unificotion
algorithm® that preduces the mostegenexsl unifier A for o
unifisble set (L,] of literals end reports failuve when the
set is not unifisble(d,17].
Definition ¢+ 17 & subsot of tho litersls in a cleuse {L,]
is unifisble by the mst-gmatal unifier 2 , then we call
the clouse | L], @ factor of {L,|. A clause wsy have more
than one factor dut only finitely many.
3.1.2 Besplvents

Vs ¢an now define the process by uvhich wo can
somotimes infer o mew clouse, colled & ‘zosolvent®, fyom
two §iven clouses, called the 'porent clauses®,

Definition ¢ Let tho parent clauses be L.\ and {:zsﬁ and
ne variebis is cormon in the two clouses. Suppose thot
3gtc{rg] em {myic {#y] Do two subsets of L] ond {8y
rospectively, such thot 8 mositegonoral unifler A exiots



i4

for tho set (1,10 {~my] « Then we soy thot the clouses
(g} and {u,} 'rosolve’ and that the new clause
Lrritglau [{ng=(ogph
is » Yesslvent of the two clauses,
The resolvient is an ‘inferxed clsuse’ and the
process of forming o reeolvent from two parent clauses s
called ‘sessiution'., If two clouses resolve they nmay hove
moxe than one resolvents becsuse there may ho more then
one ways to choose {1,| ond {mj} « In any cane, they can
have 2t most & finite numbor of resolvents,
As an exsmple, consider the two clsuses,
{ Ly = Plx £00)IVPLx, #(y)) Valy)
) andd {ﬁ%,kuaa?tz.ﬂfn)’)vw A z)
Thore arxe four diffexent resolvants of these two clauses,
as following 1 | |
(1) DPle,fly)) Valy) Vv alz)
(2) Bz, fla))vala)Ve ale)
(3) ala)V~alz)
(4) Px,#(a))VPx,£(2)) Vo M2, 82))
. 1 we vesvlve ~ Na)Va) end Ple), we get o),
 which 15 tho seme thing as inferred by Pla)w cle) (which is
- equivalent to ~M2)VQ(s) ) and P(s). Thus we see thet the
resolution 4s nothing dut & general rule of in#‘em.
3.2.,3 1} Juti

As indiceted in section 2.4, we desive to be edle
to tind 2 proof thet o welleformed formula U7 in the prediczte
caleculus logically follows from o set & of wifs, For this,
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1t 1s suffictent to show thot tho sot SV~ s unsotise
fiable. The process showing the unsatisfiebility of o set
of clauses is celled 'sofutstion process’,

It has beon shown thot if we add in an unsatis.
flable wet S of clsuses more clsuses genorated by the
resolution botwean the pairs of S, thon the now set will
sti1l Yo unsptiafisble and &f we continue to perfom
resolutions on tho sets thus obteined, then we will eventue
ally gemerate tho empty clause, donoted by 'HILY, showing
the unsatisficbility [9,10,14,17),

Lot us denote by R(S) the union of 5 with the sot
~ of 811 resalvents obtainablo between tho poirs of clouses
in S, and by R(5) we mean F(R(S)) etc. Then, if S &5
unsatisfioble, we are guarentecd for some finite n that
the empty clause will be conteined in RU(S).

The groph showing the process of rosolution is
called tho trefutation graph'., The refutstion gyaph for
the unsatisfiable set | Blx),~B(x) VC(x), ~C(a)V Db},
~€{e) VE(d), ~D{x)V ~ Bly}] 15 shown tn fig.l.

Bl x) ~ B %)V C{x)

~_

~€{e) VE(D) G ») ~ C{e)V B(b)

N N\

Eld) 9( b) ~ B{x) Vv E(ﬂ

\/

~E{y)

figwl
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NOBeRS ant Camploteness of Rassiution o
Soundneas and completeness of the vesslution
principle was established by Robinson (17]. The resolution
principle is sound, becsuse & clouse loglcslly implies
each of fis factors snd two clausos, taken together, imply
sach of their vesolvents [20]. It is also colled completa,
because 1f tho origincl set of clauses is unsatieflable,
then the ompty clause will eventually be produced in »
finite nunhoxr of epplicstions of tho resslution principle
and if the empty clause is aver produced then the original
set of clauses must have boen unsetisfisble, Gelow we
state tho completenoss theorem withaut proof,

Iheoxen (Completeness of the zesolution principle) :+ A set
5 of clauses is unsatisfiable if, and only if, thers is
deduction of the empty clsuse fron S,

The proof of the theovem is availsble in the
1itersture [9,10,14,17), The theorem implies thet the
generation of empty clause from a set of clauses by
rozolution is & mecessary and suffieclent condition for the
sot Doing unsetisfiladle. Therefors, to esteblish the
unsatisfiability of ¢ set of clauses we have 20 perform
only & finite number of spplications of the resolution,
3.2 REFINEMENTS OF RESOLUTION |

In section 3.1.3, we have seen that our sesrch
for & reputotion starts with a set 5 of clauses ond adding
to this set all of the resolventa from the poirs of clauses
in & to produce the set R{S). Next, all of the resoivents
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between the polrs of clauses in R(S) will be added to
produce the set R{R(S))eR%(S), and o on, umtil we get
&n ampty clause, This types of search is usually.
impractical because tho sets R{B);ﬁz(ﬁ'-)n... arow ton
zapidliy., At this place, we will consider some practical
ways 'm which the basic procedure can be altered keeping
soundness and comploteness presorved,

Fiprst, we will define gome torminology., By 2
trastriction® of procedure P we mesn & pmcédm which
anerates & subsot of deductions of P for all glven sets
and & propox subset of deductions for st lesst one given
set, A 'refinement® of procedure P i3 either & restriction
of P or a procodure that simply reoxders the development
order of deductions sssoclsted with P, Sometimes, we
refer to & rowordering sofinement s o *styateqgy’,

Practicol proof procedures depend on sssrch
strategios to apeed yp 2 seprch, These strategles are
of threo typess: simlificotion strategles, rofinement
strateglos and ordering straotegies., Hero we present a
brief discussion of these strotegies which sxe cosily
spplicable in tho knowledgeebosed resolution system -
described in this disserxtetion,

Eopetimes & soet of clauses can be simplified
Just by eliminotion of certoin clauses or literels in
the clauszes, Resolution is the most sligible procedure
for such eliminotion rules, These simplification ore
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such that the simplified set of cleuses is unsstisfiable
11, ond only 1f, the original set is unsstisfisble. We
consider them here briefly. |
{a) Pu $aze) Elimination t+ A litersl L is called
‘sure’ in & gim set af clsuses if 1t hes na instance
which 13 complementayy to an instance of enother litersl
in the set. Clsuses containing pure litorsls can safely
be removed 2t any time in the process and this mmiral
prosorves the unsatisfisbility,
(%) Iautolooy Eliminstion t A clause is called to bo o
%&mlagy‘, 41 1t containe 2 literal and its complement
bath, Such clauses moy be eliminated in goneral resolution,
. however not slwoys (10], without hitting the unsatiefio.
bility of the sot of clouses. The clsuse like Pla) va(nm)
NV~ ly) may at once be removed from the sot, |
Betinition 1 A cleuse {Lﬂ *subsumes® & clause {&'53 it
there exists & substitution D such thot (L] < {a,} .
In such & case clsuse M| 1s called o'subsumed clause’,

For example, P(x) subsumes Ply)\ Qlz).

A clause in 5 subsumed by snothor clouse in S
¢an bo eliminsted without affecting the unsstisfiability of
the rest of the set, Eliminating clauses subsumed by others
froquently leads to substantial reductions in the mmber of
~wesolutions to be porformed for finding & proof.

The subsumption algorithm, i.s, an algorithm
thet tests whether or not @ clouse L subsumes another clause
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M, 18 given in (3], In genersl, toutologies may be
eliminated as soon as they are generated during 2 search,
but subsumed clauses should be eliminated only after each
*lovel® has been comploted [14),

{4) ZIzuth Evalustion Elimination '+ Some authors introduce
elimination rules dased on eveluotion of litersl in sone
interpretotions, because it is sometimes possible to essily
svalusts the tyuth velue of literols, Tho ruls is steted
25 ¢ Ono ceén elinminote the derived clouse vhich contains a
1itersl that is oveluated to 'True' in the interpretation
end slimiriate & 1iteyal 4in & derived clouse Lf it is ‘false
in the interpretotion,

3,2.2.

Rafinement Strateqles
Refincment strategies state that not sll of the
possible resclutions need to be performed in oxder to find
g refutation, In other woxde, only resolutions botween
clauses meeting certain criterion need to de porformed, Us
shall denote by B (S) the union of S with the set of sll
resolvents between the pairs of 5 meeting critexrion C, e
siots that R (S)CR(S), BSuch & strategy is celled 'resolution
relative 2o C' and we compute aﬁ(s} etc., until for some
n, 32(53 contains the empty cleuse.

The potentiasl value of & refinement stxstegy is
that fewer resolutions need be performed at each level,
A refinement strategy is useful only 1f {ts use reduces
the total senxch effort including the offort needed to test
sgainst the eriterion C [14], Here, we consider one major



refinment strategy thet is very much useful for the
knowledge.baosed resolution system of this dissertation
and 1s also eosily udaptabio on conputers. \f\-

\

A *rmlutma 9mi grapht! or *nfut.pt.im grapht
is 2 structuze of nodes, each node being a cla Q.s Nodes
in the graph having no ancasters are colled '#in mdn’
which in fact correspord to clauses in 8, called \{‘b}xw
clauses', The node in the grash having no dsamms is
called the *yoot made! and it corresponds to the clause
| _'&m is pmvad by the graph, possibly the emply ml#une

Definitinn 3 A mf.matm greph Is called to be in
fancestsy-Flltered® {AP) farm if sach node in the greph
coxrasponds to either of the following ¢

(1) o basewclause,
{2.) an ireadiste descendiant of o bns&»clause. |
(3) on tmmediote doscendant of tws nonwbose clauses

A and B such thet A 1s an ancester ot B,

A bage clouse C in an AR.form groph is called &
'top node’ if every other node in the tree is eithor o bose.
clause ox ¢ descendant of C, The theorem given below
cleims thet an AR.form refutation graph nlways exists for
any unsatisfisble set of clauses, Thevefore, & mf'imnt
strategy besed on natchiag for AR.fom refutation graph
is complete. |
Ihsoxem ¢ Let G(NIL) be some refutation graph for an
unsatisfioble set S of clauses and lat C be 2.clause in 5
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occuring in G{NIL), Then a refutation graph G'(NIL)in
Afuform exists for S with C as o top node of GH(NIL),

Proof of the absve theorem can be found in (22)
a8 stated in (14), Trusting on the above theorem we con
reatiict our search of proof for the seprch of APF.form of
the refutation graph. Ue mote that the abave theoren also
gives us the frosdom of nslecting 5 top mode for the
Afwfoxm zefutation graph, Ve son utilize the obove theorem
an follows,

The top node mast be one that occurs in some
refutation greph, Ue select it from some subjet KCS
thot 1is certoin to contain only clauses thet occur in some
refutation graph, For exomple, K might be those claouses
originoting fronm the negstion of the inference to be proved,
Thus to resolve 2 palr (A,5) of clmmas, timf must sotisfy
the following criterion 3 . :

One membey of the paly dalongs ts S ond the othor is &
descendant of the top clause,

OR
One membex of the pelir is an oncoster of the other.

For exsmple, the AR.form of tﬁai refutstion gmph
of fig.ek is given in fig.«2, where the clouse 3(%) io
taken as the top clsuse, |

If ve denote by R, (S) tha miem of 5 with the
‘sot of sll resolventis hetwesen palirs of 8 81iowed Yy AR=foxm
strategy, then by the sbove tm&m we aye gusvanteed that,
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1f S is unsatisfiablo, then therxe will exist some n such
thet empty clause belongs to Bup(S)s

Bl x) ~ B n) VC{ x)
\/
(%) ~Gla)ViKe)
\/

D b) Nﬂﬂ)\/r\/ Ely)
~ &y) ~Cle)V E(d)}
ryﬁl ¢)

3,2.3 Oxdn 13
Within the ronge éf rosolution cholices provided
by the verious refinement strategies, it it sometimos
possible to sesrch for s refutation by corefully ordering
the resolutions to bo performed., Oxdering strategles do
not prohibit any perticular types of resolutions but
mevely provide guidenéo about which one should be performed
firet,

EA0 5 b 3%t N KPR it I

Temy vory eofficient orxdering a@tataéws aye tht
tunitepreference strotegy! end the 'fewest-components
strefeqgy'., The unit.preforence strateqy mokes use of
unit,{ or onselitoral)clouses, ond unit factors which ore
unit clouses, One perforams resolution opeorations vhere
ot loont onmo poryent clause 1s o unit cleuse, $.2. 'unit
resolutions?, bofore it is mormally bo performed under the



given seorch plan, It is an obwious strategy, since the
| object of genersting resolvents is to produce the anpty
clousé, _

The foveest.companont siratogy orders rosolutions
according to the lenpths of the resolvents producsd, Thus,
thase two clauses that will produce the shortest recolvent
are rosolved first, This stretegy is sone chet expensive
to spply becouse of its longthy computastion, In cur
© knowledge~based resslution system, we will use this |
strateny in o slightly changed ranner, 1.2, smong ali
possible resolvents of a seolected paly of clousss, we will
consider thet one first which is of the shortest length,
S0, we csll this strategy ss the 'shortestelangth strateqy'.

The sbove two ordering strotagies ove mado use
in our system in cddition to nmpu._ﬁwtlm stratecios
erd APefore proof strategy.



THE KNOULEDGE » DASH

The word ‘knowledge’ is & key to much of modemn
theozen proving, Someshow, weo want to use the latest
asvalloble knowledne accumulated by the humans to help
divect search for the proof., The use of knowledas and
bullt.in procedures partially eliminotes the nocd for
long list of axioms, which tend to slow up proofs end
excessive smount of memoxy (4). Such knowledge must be
organised in & way thot is easy to use and change.

U store informotion and Imowledge in & specisl
type of data base, called 'knowledgeebizse, ond pracess
that informotion to obtain othexr informotions ond interroe.
gete tho knowledge-bsse whon necesssry to snswer questions,
The centrsl ides behind this is thot facts sre stared sdont
-objects, 1,0, terms arxlsing in & proof, rothor thon
predicates. Also knowledgo ie stored ahout concopts in
form of procedures or lists or other dato-structures.

Aeea:d{ng to Davis (6], ald thoorem proving
pragroms have at least two cowmronentst the *Infersnce
Engine* and the 'Knowledge-Base®,
28 ghown in fig.3, The kmiwhdg&-

base is the progrems store of task gnigm«
‘ _ ‘ Engine
specific knowledge that makes
possible high performance, ond the iégawlm
' se

inference engine 1z an interpreter
that uses the knowledge-base to fg.e3
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solve problem at hond repeatedly sslacting knowledge.
sources from the knowledgeebase and applying them,

 The knowledgewbase is theorsticslly, if not
physically, & different concept from thaot of dats.bsse.
“hile in data~bose we store raw date ond iInformstion, in
knowledge-base we store what we cell *knowledge’, in.
gonersl sense, o |

It is not always possible to give 2 formsl

definition of Inowledge, In first sight, we can say thot
"km!eégs-base’ consints of the facts, rules, actions
| ond anything thet is not Just o dota but 1s used in
aacisiamkimf To understand the knowledge complotely,
we will have to turn to o peper by Newell [ 13), in which
he has tried to ewxplain the concept of ‘knowledge* with
. reforence to whot he calls the 'knowledge level?,

4,1} THE KNOVLEDGE LEVEL

 The system at the knowledge level is called the
sgent, which is a composition of e set of sctions, o set
of gosls ard 2 Doddy, The medium at the knowledge level
1s the knowledge. The agont processes its knowledge to
determine the asctions to be taken and actions ore selocted
to attain the sgenth gosls, then we say that o system ia
at tho knowledge ievel, wo want to say thot the system
has some knowledge and some goals and we ¢on rvely thet
the system will do whotever is within ite powers of
knowledge to obtain the goals,.
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The behovioural law thot governs an agent and
permits of 1t behoviour is the *rotisnolity prineciple?,
which is formulated o8 follows 1
By plo of Rationality ¢ If an sgent hos knowledge thot
one of its sctions will lesd to one of its goazs. then the
sgent will select thot action, .

This principle 1s silent shout what happens vhen

the principle applies to more than one actions for o given
goal or to more then one goel in & given situstion, These
short-comings can be coversd by adding two auxiliety
principles as following s

3 ¢ For glven knowledge,

if action A, anﬁ action Ay hs:th lead to a goal G, then
both actions are selected,

afarence to jaint satinfactin Par given knowledge,
1f goal G, has t&w set of mlectcd actions {Agq)and gosd
G, has tho set of selected octions | Angl + then the
effactive set of selected sctions iz the intersection of
() ond {a5y] |
4.2 THE RATURE OF KNOWLEOGE
Knowledge iz defined to be tho medium ot tho

knowledge lovel, This cen be put into o complete defini
‘tion given by Newelll3las follows

Knowlednos 1 “hatever con de sscribed to an agent, such
that its behoviour can be computed according to the
principles of rationslity.
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Accordingly, knowledge is to be cherscterized
entizely functionslly, L.e. in torms of what it does,
and not physically, 1.e. in terms of physical objects,
with particuler properties and relatlons, because knov.
ledge is not just 2 collection of symbolic expressions
plus sowe stetic oxgenisaotion, it requires both processes
and data-structures, |
How 3t works 1t Plg.4,shows the situation which involves
on obsorver snd sn asgent, The observer treots the agunt
as & system ot the knowledge level, having knowledge K
and goals G with posaible actions A, 80 thet he can
predict the sgent's actions using the principle of
retionolity. (hst the sgent really has is & symbol system
8, that yéxmit; it Lo carxy out the calculstions of what
sction 1t will take, bocouse it has kmowledps K and goals
G with actions A in the envirpenment. Thus the agent hss
the knowledgs 2y virtue éf & system thot provides the
abillity to act 2s if it had the knowledge., The total
system runs without belng ary physicsl structure that i3
the knowledge. .

Pleger [16hos defined the knowledge to be of
) types s *stetic’ and ‘dynsmict. For this, he gives
axample of a bicycle (fig.=3). The stetic knowledge
ebout bieycle iz : hight, shepe, velative position of
Wm&s. cheracteristicas of components, price, colour
stc., end the dynemtic knowledge 1s : function of the whole
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device, 1.e, to tyanslcie the upsdown pumping of leqs
into the forwerd motion, and function of eosch camponent,
Doth types of knowledge, he says, are not indspendent,
but they are distinpuishable,

In o brosder sense, wo can define the knowledge
1o ba of two types t 'concrete’ and ‘obstract'. The
concrete knowledge concerxns with the individual phenomens,
entities oy relationships in the madel of the reality, ond
the abstract knowledge concemms with the mt;etpmﬂuom
of concrets informotions and by which we could draw
inferences and conclusions sbout othor facts,

4,3 FEREPREGENTATION OF IQXNLEDGE

Thore axe myzrald issuss concerning the design,
construction, meintenence end refinement of expert know-
ledge-bases. Tho haxdest ones sre the design of the
representotion approprists o the processing thot will be
carried out and the acquisition of this knowledas(21).
Designing o uniform representstion facilitates meintaining
an evolving knowledge.base and permits checks of redunw
dency and consistency, Fnigmham(S] discusses some of
the social factors that influence the design of a knowe
ledge representation. In fact, each of us is ettacking
the problem of representing 2 knowledge of how thinge
work in the warld, then using that knowlaedgs to understand
perceptions(16], |
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Recelling Neweli{13), the principle of rations.
ity prov_ides & general functional equation for knowledge,
The problem of sogont is to find systems and symbol level
that are solutions to this functionsl squation and hence
can sorve as representation of knowledge. logics provide
~ solutions to this problem, te cen find many situstions in
which agent's knowledge can be cherscterized by on
expression in & logic and from which we csn derive sctions
to toke. |

A logic is not the knowledge itself, 1t is Sjust
8 repraesentotion of the hnowledge, thet is & structure ot
the symhol lewel, If we are given loglcal espressions
{byls Boys them by seying that the agent knows {Ly|, we
peen %o soy that the agant knows a1l that he con infor
from the eonjunction of {Ly . |

The theory of knowledge level provides o
definition of representstion as *a symbol system thot
sncodas the body of knowledge', Uithaut providing e
theoxy of represaentation it suggests thst & useful way
of thinking about representation is the ides that ‘the
Tepresentation is the knowledge plus its sccess', In
other words, the representstion consists of & system for
providing occess €5 a body of knowladge.

Concrete mewgt van easily be represented
 using some kind of date structures, for exsmple, lists,
tables ote,. FPor sbastract knowledge, two approdches exist,
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Flxst, tho declsorative spproach, which 45 basad on
formulas using some rethematical nototion, for exsmple,
predicate caleulus, and second, the praductive spproach,
in which the inowledge 4is huilt into procedures which
deol with modifying the knowledge-base and answoring
queries,

Artificisl Intolligence contsins morw systems
thot ore not logics,but con be used as geprosentation of
the knowledge, Similorly, msny concepts of science
subjocts bring some reprosentstional structures very close
to the needs of Artificiol Intelligence. Good exemples
 oxe ologobroic mathemotics and chemical notations (131,



CHAPTER » 9
DESIGNING THE IKLEDGE » BASE

9,1 AN OVERVIEY _

In Chspter.4, we have given an intzoduction of
knowledge, 1ts representation and knowledge-bose, Hexe
we wish to discuss briefly some spprosches of the
reprosentation of knowledge used by differsnt vvmgxam.

Schonk and Abelson(19] have baen invastigsting
techiniques o ropresent the type of largey.sterso typed
pattorns of 'howwtowdn.it' knowledoe, called 'seriptst,
to be used for understanding uultisontence short storles,

Minsky (21 introduces *freme' as o dotow
structure to yepresent 5 steresetyped situstion, like
being in o cortain kind of living room or going to e
child's birth.day party, Attached to sach frome arxe
several kinds of infoxmotion., Some of this infoxmstion
~ 4s sbout how to use the frame, some is about whot one

can expect to happen next, some is sbout what to do if
thoas expectations are not confimmed, Colloctions of
relsted fromes sre linked together ints *‘frame systems®,
The effect of important sctions axe mirrored by trans.
formations detween the frams of a system,

Automstic theorem provers of Ballantyne and
‘Bledsoe(1] use the knowledge-base in their programs and
implement tho pracedural representstion of knowledge,
in which they stote rules in forw of tebles.



Consultation

¥

W\

Explanation

Patient
Data.Bose

Knoviledgoe
Base ol

\/

Questions
snswaring

Program

/

Kaoslodaom
acquition

figw6 § LYCIN Systes

Davig and othess(7) heve developed & knowledge
‘based upplication program, célled the HYCIN systenm, éaﬁ
used *‘production rulog' as & knowiedge representotion,
As show in fig.~06, the system has siu components : four
progrens, tho knowledgoebese and tho patient detswbase,
ALl of the cystem's knowledge of infectious deseose is
conteined within the imowledge.ba2se, Date about & specific
patient collocted during s consultstion is stored in the
potient dota.bdase, Arrows indicate the direction of the
infornation flow,

The MYCIN system wes developed originally to
provide consuitative advice on diagnosis end therspy of
infectious desecses, In perticulor bacterisl infections
in the bilzod, They ssy that production rules offer o
krawlodgesropregentation thot greastly fecilitates the
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gccomplishment of these gosls, Such rules are straight
foreayd enough to make feasidle many interesting foatures
beyond porformsnce, yot powerful enough to supply |
significant problem solving capabilities (7],

Eoch of IYCIN's rules 15 a simnle conditionol
stotement, The premises is constsoined to be » Boolesn
expression, the action conteinsone ox mo¥e conclusions
and sach is completely rodulsr snd independent of tho
othors., It slso has some shart.comingg bocause 4t is
not always easy to map & sequence of desired aclions orx
tosks into o got of production rulos, whose gosl directed
involcation will prove thot sequénce.

Borstow(2) in his paper on outomstic programming
uses tho krowledge-base and represonts the hnowledge in
form of rules in his system, cslled PECOS. His experie
mental technique was to select o porticular programning

domain, elementaxy syombolic pmgraming and o particulay
| progromming task, the icplicetion of obstroct algorithm,
#nd to try to codify the knowledge necded for the domein
and the task; The form used to express the knowledge was
8 set of rules, cach intended to embody one smell fact
about elementory symbolic progromming, A computer system,
i.a. PECOS, was then bullt for opplying such rules to tosk )
of implimenting obstract algorithm,

The resulting knowledge-bage consists of about
faur hundred rules ésaling with o variety of symbolic
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progysmming concepls, The most distract concepts are
collections and mepping alongwith the appropriate
operations, for exsmple, testing the cembership in o
collection, computing the inverse image of en object
under & mapping ete., and contrel structures, for
example, enumerxating the objects in ¢ collection. The
implementation techniques covordd by the rules include
the representstion of collection as linked 1ists,
axraye (both oxdered and unordored} end Boolean meppings,
the representation of mapping as tables, sets of pairs,
property list markings and inverted moppings, PECOS
write the yesulting progrem in LISP,

Detatlod explenation of PECOS and represens.
tetion rules is given in Borstow(3], |

Davis (6] rises o gquestion t how can we insure
that the knowledge inbedded in & progrem is epplied
effectively? Treditionelly, the snswer to this qusstion
hes bosn sought in different problem solving pevadigms
ard in different approaches to encoding and indexing
knowlaedge, Parsdiges explored hove included mosnseend
analysis, resolution, hsuristic sesrch, problem reduction
ete,, while indexing and retrievel heve beoen bosed on nome,
effact ond contoxt, All of these baing mfui, hoawaver,
share a cormon shortecoming, that is, they become iIn
inaffective in the face of o sufficliently loxge inowledge.
base, The problem now Lo 3 how can wo moke it possible
for o system to continug functioning in the face of o
vory large numbar of plausibly useful chunits of knowledge?



'In reference to the sbove question, Davis (6
proposes & frameewoxk for viewing issues of knowledge
indexing and retrieval, thot includes whot appesrs to
be & useful perspective on the concept of & ‘strategy?,
He views strategles oz 5 peans of contyolling invocation
in situstions whore traditions} selestion mechaniom
bocomes ineffective. He uses 'metaegulos! os o meens
to opocify styotegles, The infomation in mta-mlea
1s the advice ohout the likely utility of object level
rules, It can help guide pmmm*s wrfazmmo. sut
it 1o different in kind from the Mfummm.m:ﬂaé
in on object levol rules, Adding meto~rules to the
systom vequired only a minor oddition ';a the control
structure of the system. . o

A peper by Pikes(9) describes o demsnstrotien
system, colled *Odyssey®, which wes designed to show how
tosk domoin knowledge could be used to help 5 user ts
prepsze foX o business trip. The domoin knowledge in
Gdyssay desls with the structure of the trips, the steps
involved in tyip prepevation, properties of dates ond
timen, cities, simﬂaiﬁc. The project thet bullt the
syoten was facussed on the problem of representing
knowledge and using it effectively. He haos developod
& "froce oxiontedt style of pmgmmg that conbines
tho featuzes of freme stryuctured knnwiaége mpmmtattm
s i (11}, and sbiect oxiented programming, as in [(19).



5.4 DESIGN OF THE KNOULEIGELBASE

| In this section, we give the design of the
knowledgee.base itmplemented in the rosolution system of
this dissertation. Our knowledgosbase consists of three
parts 1 thunmb rules, dstsebosse ond global declarations,
In the fixst part, we give some guiding rules to govemn
our search for 2 refutsiion groph, These zules include
all the search strztegies, which we want ta leplement in
our sysctem ond which have been discussed in section 3.2,
e hove stoted these guiding rules as simple conditional
statemonts of overy.dey Erglish, By doing so we come
rmuch nearer to "production.rulest of Davia, Buchsnan
ard Shortiiffe(7], which have been discussed in section 5.1,

The second part, thot is doteebhase, contains the

dats end informotion shout clsuses of the problem in hond,
and they help the system in deciding which rule is applie
cable where, The thixd, end loast, part contains some
global declarations, axioms oy sssumpstions, which are
used in semantic semse of the clauses, or in other words,
in tyuth gvaluotion of the litersls of clauses,

Hexe wo present oll the rules ond thelr
explanations t |
Fulew] (Purs<iftoral Elimination Fule} 3 If & clause C
contains & litorol L such thal there are no instences of
L which is complomentazy to on insténce of eny literal in
othor ¢claouses, thsn remove clsuse C,
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This rule 2llows us to remove thase clauses,
vihich conteln any 'pureeliteral’, The following four
- rules are relpted to other sirplification atrategles 1
Rulaeg { Tautology Elfminstion Rule) ¢ If & clouse C
contoins literals L, and L, such that on instonce of L,
is complerentazy to an inctonce of L,, then romove the
clause C, |
Bule=3 (Subsumedwclouse Elimination Rule) 1 If & clouse C,
subsumes onothor clouse C,then xemove the clause Coe
Fulsed (Truth.avaluotion Eliminotion FuleeX) t If &
clause G contoins & literal L, vhose truth wolue is
evalucted to ‘trust, then remove the cleuse C,
Eulee3 (Truthecvoluation Eliminstion Rule-1X) ¢ If o
clause © containg o 1literal L whose truth volue 1._3-
evalusted to ‘folse’, then remove the litoxal L from the
clause C, |

As stated earlior, shove five zules ore mothing’
but the simplification strptegles discussed in section
2.3.1, Pirst the given set of clouses i3 tested agoinst
these five rulco ond 1f 0 zule s found to be applicoble
‘%o some clause, the system takes sction eccording to thaot
rule. Applicability of oll these rules is tested with
help of ths other tws ports of the knvwledge-bose, os
we will discuss loter, |

Iow, we glve the fundsmental zule of the
renolution progens, which decides the roesolvability of
two given clauses,



Bule=6 (Resolvability Fulae) & 1f thore exist clouses C;
and C, such that C, contains & litezsl L, and C, contains
8 uwmx_ La sueh thot an instance of Ly is complenmtosy
to en instonte of L., thon C, may be resolved with C,.

This should bo noted that this zule glves the
noecessary end sufficient condition of twn clauses being
resolvable., The following rule is o refinement strategy,
cslled the ‘oncostiy-filteored foxm styoteqy’, discussed
in section 3,2.2, vhich tests chethor two resolvedble
clouses may be resolved according to tho criterion of
AF=form rofutotion graph,

BuleeT (Ancontry-Filtered Form Strategy) i Tws resolvable
cleuses C, and C, moy be resolved, Af ony one of the two
clauses 18 o boso clovse end the othor 1o & descendant of
the top clause ; or, Lf one of the two is on oncostor of
the ather,

The following two 2ulos zyepresent the ordoring
strateqies, descxibed in section 3.2.3, which Just defimo
the preference orong mare thon ones cholcoes
Bulpeq (UnitePreference Strategy) 1 Betwsen two clouses
€y and C,y which are othorwise squivalent in proporties,
prefer C, over C,, if it hes the lesser number of litezals
than C, .

Bile- {Shortest-Length Strotegy) 3  Betwesn o resolvents
R, and Rz of twy resolvable clsuses ﬁ’l end 62 prefor R,
over Ry, if R, hes lesser number of litexals thon R,
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The xules stated above cre the most inmportant
port of our knowledgee.base, They arve, however, helpless
without tho second pagt, 1.0, the datoebnse, which contoins
facls and informations about the clauses., In next section,
we prasent tho dota.boss, which helps tho syctanm in
deciding tho spplicability of these rules during 2 seaxch
for tho proof,

Us stoye two dote files on the dotowbase, The
£izst one is the 'CLAUSE.LFILEY, that keeps 2811 nacessayy
informotions about the cleuses having one yecord for
every clouse., The key to tho CLAUSE.FILE is the gorisl
musbor of tho clouse. A vecord of the CLAUSE.FILE is
shown end 1ts dateeitems axe exploined below 3

CLAUSE-FILE

CLAUSEND | CLAUSE. | PARENT. | PARENTe | HOWOR.
STATUS | CLAUSE.] | CLAUSE.2 | LYITERALS

| rowon. POSITIVE. | MEGATIVE. | LITERALS
PREDICATES | PREDICATES | PREDICATES

ond successive nstursl numbers for sthors).

- CLAUSE.STATUS t Oy &f the cleuse has not been removed.

{such o tlause is called @ *live~clouse®)
1, if the clause has been yemoved from the
L sot,

4
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PARENTWCLAUSE-1) [CLAUSE-NIS of the porent clauses, if
PARENT-CLAUSE.2 1! ¢he clause is not ¢ Dose-clouse;
O's 1f the clouse 15 o0 basowclouse,
MOLORLLITENALS 1 Totel number of literals occuring in
the clause,
NOWOPWPREDICATES 1 Total mumbor of predicotes sccuring
in the clause,
The 1ist of PREDICATEHOs of those
prodiestes vhich appgoy in tho ¢louse
in offimotive form, |
NEGATIVE~ The list of PREJICATESNOs of those
PREDICATES prodicates, which appeor in the
clguse in ncgetive form,
LITERALS 1 The list of all litersls oppeocring in
the clause, .

POSITIVEw
PREDICATES !

A xecoxd is kopt for each ¢louso in the given
‘gset and a5 s00n 08 & new cloune is gencreted during the
soarch, 6 now recard is crosted for that clouse in the
. CLAUBL-FILE, ond the process continuws, Thus this file
s of indefinite length, 1f during the search ¢ clouce
1o being removed froo the set, then the corresponding
CLAUSE-STATUS 15 sot to L', Removed clouses ofe ignored |
in further search. |

The CLAUSEPILG is used when testing o situstion
sgainot ory of the following zules 1 RuleeZ, fulew3,
Rulemd, Rulesd, Rules7 and Rule-8, The most important
use of this filo is made when testing agoinst the Rule7,
thot is, when we decide whethor & poir of cleuses con be
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resolved under the AR.fomm strotegy. This file holps
the system to check whethor & clause is o basewclouse, 8
descendant of the top=clause or an ancestex of the othor
clause,

The othor file 1s the PREDICATEFILE, which
consisls of ons record for sach predicote, which appeer
ih the given set of clouses, A recoxd of the PREDICATE
FILE is shown oand its dotoe-items are explained balow 3

PREDICATESFILE .
PREDICATE-ND | GLAUSESeU/ITH- CLAUSESwT1ITHe
POSITIVE-LITERALS | REGATIVE=-LITERALS
PREDICATE=ND s Serial numbder of the predicate and
the key to the PREDICATE-FILE.
CLAUSESwtTITHw The list of CLAUSENOs of those

LS -
FOSITIVE-LITERALS  ©  ¢yauses which contoin a literol

having this pradicate in offirmetive
form, ' ‘

CLAUSE-UITHw . The list of CLAUSE-NDs of these
NEGATIVE-LITLRALS clauses which contain ¢ litexul

' having this predicate in negotive

form,

This file fo utiliged 1n‘éeniding-ﬁhather or not

Fule~l, Fule.2 and Rule-6 sre spplicable in o situation
asising in the sesrch.

| The PREDICATE=PILE is of the fixed length for s
olvan problem, vhile the CLAUSE-PILE is of varying length,
henever & new clouse is odded in the set of clauses, or o



clouse iz yemoved f¥om 4{t, both files are updoted
sccordingly to koep the lstest information ovellable to
the system, |

The thisxd part of our knowledge.bose consists
of somo globol declarstions, axioms and xules of predicate
solculus, which ray be useful for the system to function
effectivoly, Glodal declerotions ore some semantic
informptions about the predicotes of 8 particuloy domain
of problems, For example, hero our problem domoin is
.'Ccmeptmmnm * of (18], vhich will bo doscribed in
Chaptor-6. In connection to this domaln, we con moke some
rules ohout the predicotes 1ike LEPY, ABOVE, INSIDE,
SQUARE ete¢, - Some oxamplas of such possible rules ore
given balow 1

{1) TRIANGLE, SQUAKRE, RECTANGLE ore unazy.

(2) LEFY, ABOVE, INSIDE ave binory.,

{3) LEPFT, ABOVE ore not tronsitive,

{(4) INSIDE is tronsitive,

This port of the knowlodge-bose is useful in
deciding sbout tho applicebility of fulewd ond Rule.9,
that ls, vhen we txy to ovaluste o 1litersl in o clsuse,.



CHAPTER - 6
COHCGEPTRERENCE

In oxder to select a domoin of problams to spply
upon which the knowledgesbased resolution system given in
this dissertation, we have chosen the system ‘Canceptfevence’
which was developed by Sodanends and Mohabola (18],

The system ‘'Conceptforence’ vworks in two phases.
In the first phose, colled Ryaining’'phase?, Conceptference
{2 axposed ta & domain of plctures i1dentified by their
pre-assioned names (see fig.~7) ond it dovelops ‘concepts!
of these plctures in terms of thelr spartisl ottributes
ond relationships and genoxotes intomnsl sepresentotion
- for them, These concepte ore stared by the system in the
form of welleformed formulos of the firetorder predicate
calculus, | |

In the second phase, called ‘infayence phase’,
the systen employs the resolution principlo to draw
inferences about exlstence, identification and description
of tha pletorinl objects of on axrbitrogy scene,

6,1 CODING AND ATTRIBUTES

The system is designed in LISP, Tho input of
the systen is hand coded. A typleel rectangle (flg..8)
ie oonded os below

(RECTANGLE ({a(Ll O)(b d)) Lo p
- An(2 0)(e )}tz 1)(b 4)) .8 ih
(d{1 e I3} | o ‘
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The first membor represents the name or desions.
tion and the second s a list of lists, esch of whose first
menber iz an oydered sequence followed by its cartesisn coe
ordinates followed by an unordered list of labels to which
the first has ¢ direct connsction,

Conceptference is oquipped with & se0quence of »
goonstric attribute detoctors, whose volues ore the varlous
attributas whenever 2 picture input is oysllsble,

 The set of values for the edhos detactors provided
in the méeaent implomentation consists of (1) number of aides,
{2) ratin of all sides mutuslly taken twn ot o time, {3} no,
of snglas, (4) rstio of various angles taken two ot o time,
{3) the grestest snple, {6) the least angle, {7) the thaat
side, (8) the leost side, {©) the rotis of the grestest angle
to the least englo, (10) the ratin of the gmt#sz slde to the
least side and {11} the censtant,{P/J/A), vhexe P is the perimeter
of o simply closed curve end A is the onclosed sree,

6,2 CONCEPT FORMATION o

A set of attribute detectors feed the LISP function
ABSTRACT1, which does the 'abstroction’, The azguments of
ABSTRACTL could be either lists generated by the stiribute
deteoctors or they ©suld be the yesult of some previous stage
of abstrsction., ABSTRACT2 is & LISP function designed to
generalize aesrm;. ABSTRACTZ accepts aybitraxy lists of
attribute lists &arxying on successively two 2t & time calling
ABSTRACTL repeatedly. |
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To initlalize the ‘concept of a trisnnle, for
instance, concaptfersnce works as follows 3 In the
initial phase, various triangles are coded as described
and the ottribute detectors together with ABSTRACTZ obtein
the tabstraction® of the concept of & trisngle, Ghen the
systen 1s exposed to & pet of three trisngles, the inter.
nediate rosult after the attyibuts lists sre formed may
Yook 1like s

( TRIANGLE{ 3{1.0 0.7 1.4)3(0,5 2.0 1.0) 90 43 1.4 1,0

{ TRIANGLE(3{1.7 0.3 1.2) 3(3.3 1,5 2,0) 90 30 2.0 1.0
3.0 2.0 3.2))

(TRIANGLE(3(L 1 1) (1 1 1) 60601 L 1 1 4,6))
They yield the *toncept! of ¢ triengle as @

(TRIANGLE(3{ XL X2 %3) 3(X4 X3 X6)YL ¥2 Y3 Y4 ¥3 Y6 ¥7))

h An informsl intorpretation of the concept of a
triangle eould be 'A triangle 15 one with threo sides, thres
angles, the raotic of sides being ot varisnce from trisngle
to triangle as sre the ratio of anples, the length of the
grectest snd least sides, the ratio of the perinmetexr to the
square-s00ot of thoe snclosed syea®, |

6.3 INFERENCE PHASE | |

In its second phose, conceptference opsrates in the
domain of ¢ first-order theozy. The entize scone is expressed
in torms of welleformed formules of the fireteorder predicate
caleulus,. The names of the concspts formed in the first
phese exe indeed the predicste letters constituting the well.
formed formulas genersted in the secand phase,
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Besides, the systen g’&mratns binezy relations
‘such ss LEFT, ABOVE, INSIDE etc., betwean every pair of
neighbouring plctures expressed in the fomm of welleformed
formulas. To decide the neighbourhood we chosss oan
arbitrary minimum distance d, The distance is c2lculoted
as the least Euclidesn distence betwsen labsled comnrdinates
of the two pletures. | |

Conceptforence nccepts questions in the form of
gsertions expressed ss well.formed formules, The inference
mechanisp utilizes the resolution principle ofter converting
the set of well.formed formulas, into the clouse fomn,
The deductive strategy tokes into account the nsture of the
assextion to be estoblished,

6,4 AN EXANPLE
A description of fig.-9, | I B J L

is gencrated in tems of & set of 0 e
welle=formed formulos, some of whose | B A -
menbors sxe i | - | -

(1) RECTANGLE (P1) - L]

(2) SQUARE (P2) | flgwmo

(3} TRIANGLE (D3) :

{4) sSoUARE {P4)

{5). RECTANGLE {P3) | |

| In addition, the welleformed formulas expressing
the binary relotions Detwewn the nelghbours sre genersted,
some Hf which ore 1 |

(6) LeFT (P2 P3)

{7) LSBPFT (P3 P8)

(8) ABOVE (03 P9)
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Now, one intorrogeces sonceptference whother
thore extste on ohjoct vhose shape dnd vhose relations
with other objects leods one %o identify it os o *nose’.,
He definos the nose as 1 'A nose 1o something triengulax
in shape, surrounded by o mouth, rectangulsr in shspe; ond
¢ polr of eves, squarish in shavo. Ths mouth is below the
nose snd thore i one oye on the left ond the nose is to
the left of another aye', Or in toms of o -xfméu-fam
formuls 3 S

TRIAMGLE( X} A SQUARE(Y) A SQUARE( 2) A RECTANGLE( W)
A LEFTLY X) A LEFT(X Z)A ABOVE(X 17)% KOSE(X)

The negation of this implification sxpressed in

the clause fors is

 ~ TREANGLE( X) V ~ SQUARE( Y}V SQUARE( 2)Vr RECTANGLE( 1)
Ve LEFT(Y X))V~ LEFI{X Z)V~ ABWVELX W)V NOSE(X)
How the resolution principle is used to establish
ths existence of nose, which in identified 0s P3. The
refutation groph of this proof is glven in fig..10,



~ TRIANGLE( X) Vi SQUARE( Y} Vi~ SCUARE( Z2)
Vv RECTANGLE( ) VALEFT(Y XYV~ LEFT(X Z)
Vv AVE(X 7)) VROSE( %) TRIANGLE( P3)

L

~ SGUAREBL YV~ SCUARE( 2) Vv RECSTANGLE( W)
V/LEFI(Y P3) Ve LEPT P3)2) |
Viv ABOVE( 93 17) V/ NOSE( P3) SRQUARE( P2)

v SQUARE( 2)\/~ RECTANGLE( 11)\VMLEFT{ P2 P3)
Vn LEFT{ P3 Z)VAARWE(PS )/ NOSE( P3) . SQUARE( P4)

~ RECTANGLEL{ W)V LEFT( P2 P3)VLEFT( P3 P4)
Vi ABIVE( P3 17) V NOSE( P3) | RECTANGLEL P3)

~LEFTL P2 P3YV~ LEFT{ P2 P4)
Ve ABOVE( P3 PBYV ROSE( P3) LEPT( P2 P3)

~ LEPT( P3 P4)V~ ABWE(P3 PS) |
V NOSE( P3) | LEFI{P3 P4)

Aﬁﬁv&gm P3) V u0sSe p3) | ABIVE( P3 P5) |
Rose{ pP3)

flg-10



CHAPTER » 7
THE KNOULEDGE «» BASED RESOLUTION SYSTEM

7.1 THE ALGORITHM |

tle present here the alga-ritw of our knowledgew
based resolution system, This algorithm is based on
backtracking and works in co-operation with the thumb rules
stored in the first port of our knowledge-bese ond listed 'i.n
- section 5,2,1, Following 1s the text u!“ the algorithm

 Stepel t Select the top clause C, C,wC, Stock eempty,
Stepe2 3 Find & live-cleuse G, resolvable with G, ond
astisfying Rule~7 such thst C, hos not yet
baen resolved with C I It such & clauae
exists, then go to Step=3; else, memove C,,

S5tep«3 1 HKodify the dotewbase accu:dmg to the
deletion, _
Stepe4 t (Bschtracking) If stock io empty, then

termingte ; elgorithn foile; alse, c,.é.atack
and go to Stepe2,

Step.3 3 Find the set 5 of all resolvents of c; el G0

Stepe6 1 Remove all tautologles and subsumed clauses
fxom S, Apply Rulee4 and Rule.3, 1f epplicoble,
on the renaining set,

Steps7 1 If S* is empty, g0 to Stepe2,
Else, if S5' contains the emply clsuse, than
terminote t the se® is unsatisfisble;
else, &elem a resolvent C, from S' satisfyling

Step. 1 If G, subsumes any liveaclouse, remove it,

L.
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Step.10 3 Liodify the doteehose accaxding to addition
and deletfons (1f any) ond go %o Step.2,

In the following section we oxplain the above
slgoritim in detaeils,
7.2 EXPLANATION

Our seaxch for 6 refutation graph begins with
madifying the given aet of clasuses, which slss Includes
the negation of the set of inferred clauses, agcording to
Fule-l, Rule-2 and Rule.3 and storing CLAUSE.FILE snd
PIEDICATE-FILE on the dataw-base,

Then, our first step in the search is o seloct
8 top cloune C, preferring ons of the inferoad uiaﬁsea for
this purpose., Taking the top clouse as the current a‘laaée,
Gl, we fird & ¢louse cx roanlvable with Cy» which hos not
already been resolved with it znd which clao satisfles the
criterion of encestry-filtered form stroteny (Rules7),

If no such clouse exists, we note that the
clsuse C, is o redundant cleuse in the set, so e rerove
it from the set by setting the CLAUSE.STATUS of this
clouse to '1' ond go to stack for the next current clause,
At this point, 12 the stock s empty, the olgorithn fails
indicating thet efthexr the set i3 not unsatisfiable or the
top-clause needs to be replaced., e may replace the tope
clouse with next clause in the set ond yun the system
egain, 1f we have doubt about the gatistiabiuty of the
olven set.
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But, if C, oxists, then ot Step.3, we tind the
sot 5Y of all possible resolvents of ¢y end ca.

At Stepe6, we remsve a1l toutologies and subsumed
clouses, Lf any, from seof S* ond thon iy t@ evaluste the
literale of the remeining set, If wo succeed in somo case,
wa tako sctions acooyding to Fuleed and Rulswd, thot is,
we yerove those yosolvonts which contoin ony 1lterol
which is evoluoted to *true’ and those litegals which axe
evalusted to *false’,

- If tho remaining set 5' L9 enpty, then we @o
back to Step-2 for some other tholce of C,. Else, if
8¢ contaolns the omply clause, thon wo toxminote oux
search with tho conclusion that tho given 8ot of clouses,
including the negotion of the inferred slause, 1o
unsatisfioble, or in other woxds, the inferred clsuse
is o logicsl comsequence af the given set uf clouses,

If 6% is noithor empty nor contains tho emply
clause, thon we select 2 resolvont C, from S* according
to Fule=9 and store 1t &8s o new tlouss, The current
clause G; mw goes to the steck and ct'a betomes the now
current clausce, .o, Cye

At Stepe9, we check whethor G, subsumes ary
Jlveeclouse in tho groph. If so, wo delete such clouses
fyom the set not to consider them in onsverd socerch,

At the logt step, we nodify our cota-boses
secording to new additfons and deletions, &€ any, ond go
to Step-2 to carry on the sesrch,
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Examplos, glven in the next section, z;xust:ate
the application of this slgoritha, ’

7.3 DBXAMPLES

Examolewl 3 Consider the example of fig.ll, token fyon
Sadonanda ond Fohobals (18), in vhieh we hove the following
set of clouses ¢

(1} ~TRIANGLE( XV~ SQUARE(Y)V~S0UARE( 2)
Vv RECTANGLE( 7} Vo~ LEFT(Y X)VvLEPT(X Z)
Viv ABOIVELX 9)V 19sSE(X)

(2) RECTANGLE(PL)

(3) SQUARE(P2) — 1ot
(4) TRIAWGLE(P3) sz P4
{5) SGUARE( P4) | 03
{6) RECTANGLE{ PS) s
{7) LEFT({P2 P3) |

- {B8) LEPFI{P3 P4) ' fig.~11

£9)  AROVE( 23 P3)
{10) tose(P3)

The lost clouse is the negation of the inforred
clouse RISE(P3). Ue solest the negotion of inferred
clouse o8 the top-clause. So, the current clouse C 1 is
the topeclouse, i.e, ~1DSE(P3).

Row, we ses thot clause (1) 4s the only clause
thot hos the predicste NISE, so it con be yesolved with C,.



The only rosolvent of these two clauses 1s 3

~ TRIAMGLE( P3)\/~ SQUARE( ¥) V'~ SQUARE( Z) U m:cmmm( W)
VA LEFT(Y P3)Vi LEFT{P3 Z)Vo ABOVE( P3 W)

Heve, wo note that the litersl ~1’5m&£( P3) is
svoluoted to *false' in light of clause (4), thet is
TRIANGLE{ P3}. Seo, we yemove this litorsl from the
rosolvent ond the remaining resalvent is 3

~ SCUAREL Y YV v SQUARE( Z) V/RECTRNGLE] () \A\/ LEF‘!’{Y 93)
VWWLEFT{ P3 Z) Vv ABDVE( P3 )

which L9 storxed as clause (11) on the dets~base, It may
be noted thet remaving the literel ~TRIANGLE( P3) from the
initial resslvent is equivalent to gesolving it with the
cleuse {4).

Now the current clause cx goes to the stack,
and the clsuse (1l) becomes new current clouse. The
ssorch for a resolwvable ¢louce with €, tokes us to cliuse
{3), which con be rosolved with C, with mma& to the
predicate sa}m The rescolution af these two clouses
produces three possible resolvents os follows ¢

{a) NWML&(H)VM LEFT{ P2 PA)V~ LEFR’P& P2)
~ ABIVE(P3 U)

{b) Nsmgzww RECTANGLE( W)V~ LEFT{ P2 P3)
VA LEFTI P2 Z) Vv ABOVEL P3 17)

{¢) ~ SQUARE(Y)\/~ RECTANGLE( W) Vv LEFT{Y P3)
Voo LEFTL P23 PRYVnv ADOVE( P3 W)

The resolvent (a) looks ke a &aﬁtahgy, but
we ¢an not be sure, bocause LEFT(XN ¥Y) is not eguivalent



to ~LEFILY X). Ve cen, however, evalucte literesls

“~LEFT{ P2 P3) and ~LEFT(P3 P2) with help of clause (7),

i.e, LGFT{P2 P3), Ue soe thot the former is false while
the loter is trve, so we remove this resalvent from the
set sccording to Fuls.4, Similarly, the litersl

~LEFT(P3 P2) io true in rossivent {¢), 8o we delete this
resnlvent, too, from the set, .

Now, the only sosolvent left in the set is the
resolvent {b), whose litersl ~LEGFT(P2 P3) is evalunted to
tfalse', so wo delete this literal from the resolvent
sceording to Rule-3, Thus the remsined resolvent is i

~ SIARE( 2) v RECTANGLE( ) Vo LEFT( P3 Z2)VVABIWVE( P33 1)
which is stored os clause {12) on the detawbase and the
dota-bose is uadified accoxdingly.

| Next, this now clause bacomes our new current
¢lause and two resolvable clsuses, now, areg

(1) SQUARE(P2) |
end {41) SQUARE(PS8)

.which ave clauses (3) and {9) respectively of our dotsebose,
The respective resolvents of these clauses with the ¢urrent
clausesore ¢

(1) ~RECTANGLE(W)VA LEFT(P3 P2)V~r ABWE(P3 )
and {11) ~RECTARGLE(W)V~ LEFT(P3 P4}V ABOIVE( D3 ©)

tle ses thaot the literal ~LEFT{P3 PR} of resolvent
(1) 15 avalusted to be txue with clause (7), 8o we ignote
this resolvent, Now, the remeining yesolvent hos a literal
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vLEFT(P3 P4), which can be evalusted os 'folsa’ in light
of clause (8), so, we delete this literal from the resolvent
and gat the following &
~ RECTANGLE( W)V ABOVE( P3 17)
which becomes clouse (13) ond new current clause, Now, two
clauses which satisfy Rule.7 ond sre resolvable with this
clause sre 3
(1) RECTANGLE(PL)
(2) RECTANGLE(P3)
t?ixgt, we resolve our current clause with {1) end
get tho :&mlm't a8 ¢
~ABDVE( P3 P1)
which, though does mi contain ony variable, can naot be
ovaluated tmdhr givan information. So, ve store this |
resslvent oo clouse {14) snd it bacomes the new current
clausa, faormer current clause going to stack,
At this mint; we find that there 12 no clouse
in our set uhich ¢ould be yesslved with this, Ss, we
remove our current clause from thé sot and backivrecking ‘
tusn ta'f.:he-vstf;gk for nou current eleuss. Thus, clouse (13)
egein bseama th&t:umt etiéuso.
This time 1t is vesolved with clouse (6) and glves
the resslvent C, 28
which is evalusted to be false in light of the clause (9),
i.e, ABOVE(P3 P5). So, aprlying Rule.3, the resolvent now



bacomes an empty clause, ond hente, we torminats the

seaxch with the conclusion that the sot of clouses i
unsatisfiable. In other words, tho infexred clouse HOSE(P3)
is 8 logicel consequence of the gliven set of clouses,

which means thot the oblect 3 in the given figure,

1.0, fig.~11, is rocopnined as & *nose*,

Exppplo=g ¢ Consider the following set of clouses ¢

(1) ~B{x)V~C(x)

{2) ~G{x)v D{x)

{3) ~F(n)VC(x)

(4) ~D{x)vwvB{x)

{(3) ~Fla)vB(x)

(8) ~Alx)VvE(x)VGle{x))
(7)) ~G(x}Vi{x)

{8) Alalx))V E(h(x))

Ve toke the clouse (1) as the tope.clsuse, which
is olso the initial current clause, Tem clouses (9) ond
{7) are resnlwsble with it., First, we resslve it with
clause {5), f.e. ~F(x}V B{x), w.r.t, the predicate B, and
get the reeolvant es

~CL xINV~ B %) | | |
which becomes clause (9) ond new current clouse, Next .
it s resolved with clause {3) w,.r.t. pxsiimtﬁ € ond we
get the resolvent os |
| ~F( %) | | |
vhich is stored as clsuse {10) mﬁ* bacomes new current
- clouse, Now, it 1s resolved with clouse {6) ond we get
the resnlvent as o |

~A )V 6l £ x) )}
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Proceeding in this way ond ofter some backe
tracking wo get the AF.form refutotion greph ss shown
in fig-l2, .

" it is t9 bs noted that before esch step of
resolution, we have to consult our knowledge-bese to
€ind whethor ¢ paiy of clouses 1s resoloble and vhethor

4t could be yesolved under the AR.foru strateqy.

After examining the examples given above, we
note tho following focts : First, mumbor of resolutions
hes been reduced due %0 eliminating some litanla' ofter
evalustion., Secondly, a lot of galculations znd
comparisions have also been soved, becouse the knowledge.
bane atonca mvidns necessary information, which may
teke a lot of time to find when evory ¢louse is examined
agoin and 2gsin, A resslution tekes morye time then
ovalusting & literal or retrieving some information fxom
the knowledge.bese, backuse our knowledgeebane is neithor
much big nor it is complex, end mumber of ¢clauses and
number of literxals in clausss is large.



Bl X}V S %) ~F{x)V B x)
eIV F ) wﬂﬂVmﬂ

~F(x) ~ AL x)V F{x)V G £{x})

A{ =)V G{ £{x)) | ~G{x) Vi x)
\A(x) er&m ~IE{ )V VB x)
~ARINVDE(x))  ~O(x) V D{x)
~ALXIVY G{ #{x))

Ag{x))V Fh{x))

#ih{x})

NIL

flgw~l2



CHAPTER = 8
CONCLUS TONS

The exomple-dgiven in the left chapter showsthot
the knowledgewbased resolution system described in this
dissestation is very effective snd sfficient for the given
domain of problems, It can e, however, seen thet it is
also vory effective for other types of problems, Decause
it {s & canercl proof procedure fos theorem proving, which
utilizes the resolution principlo os well as keunladge-base
to mske the search for the proof lesp.oxpensive and timee
seving.

A lot of work, of course, romoins to bo done,
becsuse tho prosented system it bazsod only on hasic
resalution nlongwith some mafinement strategies. Soma
othér proof procedures based on the resolution prineiple
hava besn developad recently, which 22 somehow more
effectivo snd efficlent, though more difflcult to apply
on the Computer, For example, Plzistod {&5] hes come with
@ poarticulsar kind of anilogy, which 1s spplied 2o
resolution theorsm proving in the firste.order predicate
celoulus,

He dofines o class of mappings, called 'ahstract
mappingst, which satisfy certain properties, These mappings
convert o set A of clouses into ¢ simpler set B of clsuses,
such that proofs from A coxrespond %o proofs from B having
& simllar structure. He hos glven some new inferance rules
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reloted to resslutions introducing sultieclauses
{owclouses), which ore multiesets of litorsls, {,e, with
esch literal in the meclouse, & count L kept of ‘how
many times it occurs' in the meclsuse, A wersion of
resolution, called Sleresolution, is defined for mwclaouses
ond in sddition mesbstroctions are defined, These map &
get A of m.clouses into & simpler set B, such that
gwnsaiuticm proofs from A tap onto mexesclution prosfs
in B hwing tho seme shape,

Tho e&vamaga of mesbstractions is thet they
preserve much more of the structure of & proof thon do |
ordinary abstrxactions, The use of abstractions ond rolsted
- methods of enalogy glves ¢ way to use sementic infoxmotion
. and specinlized knowledga.

In constrast of tho method of ebstrection of
Platsted (13], which require statements to be in clause
fnm, mrray [12] has developed o proof procedure, cslled
"ﬁécummlauaa', which considers & version of thoe firste
- opdex prodicate calculus, in which the statenents axe not
required to be in the clause form as reguired by stondaxd
resolution theorem provera. It requires the well.fommed
formulas to be quontifier-free and to have distinet
vﬁr&ab&n, in which all voriebles sre universelly quontified,
' ~ The presont system can be extendes by applying
thm above mantioned prosf procedyres, whmh may hwd us
to bulld moye effoctive and efficient thestem provers,
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