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In view of the various applications of graph 

theory. we would .like to have a precise way of eeying 

that a given graph ia le.omorphic to the subgraph of 

some other graph, even though they ere drawn ol' labeled 

differently,. To this encl. a great deal of work ha& been 

dona by varioos authors. notably by Ullmann, Chehraman, 

Wong end Au• and by Cheng and flueng. Ull•ann 1 Ghehraman, 

et4!al, and Cheng and Huang geva backtrack algorithms 

involving a refinement procethsre in the backtzoack pro­

·cedure. ln what follows, we give a backtrack algorithm 

in which a refinement ts adopt.ed before backt:r:acking 

procedure. we briefly cu.t~vey, in:,Ctu!Jpter-(1). tha tech-
\ 

nJ.ques used by earlier authors for the aubgraph. lao-

morphism and related problems. 

By making aft appeal.to the topology ot graphs, 

we give, in Chaptar(2), our refinement procedure and 

the backtrack algorithm• Thu backtrack algorithm given 

in Chaptar(2) 1:& a modified version of Ullmann's algorith?m· 

tn § 2.2. ~· me illuatr•1te our refinoment pt'ocedure 

by mean& of an example~ In §2~1, we describe the algo-. 

rithm, and in §2.4,, we diseuse the correctness of the 



l'efJ.nement procedure and eff.1e1ency of the algor.i\hm. 

The algorithm, given in § 2.), ta cone1del'ably 

faster than all the other known algorithms for certain 

gtephs. 

. ........... . 
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CHAPTER 1 

A BRIEF HIStoRICAL .SURVEY 

1.1 Introduction:- In the past four decades we have 

seen a steady-development of Qraph Theory and it's 

applications wbic h during the last ten to .fifteen years 

have blossomed into a. new period or intense ectivit.y. 

So~ measure ·of this rapid expansion is indicated by 

the observation that until 1957 there was exaccly one 

book on Graph Theory [14} and now we .have about ) 

dozen books on Qrrp h Theory and that over e period of 

one ye a.r more than SOO pa~rs on Graph Theory are 

published. Tbe main reason for this acceleration in 

Graph Theory is in 1 ~'a demonstrated applic att.on. 

Any system involving a blna.ry relation can be 

represented by a graph. 

Because ot ·their 1ntut1ve diagrammatic repre­

sentation, graphs have been found extremely useful 

in modeling systems arising in. Physical Scien::es 

[ 4, 7, 11] , Engineering (13, S, 1 ~] , Social 

Sciences [1 i} and economic problems [6 ]. 
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1.2. Some :Sesi£ Definitions 1· In what follows. we 

shall use term.s m<l detin1tt ons given in Harary (1:t] • 

Q.rapb.:- A graph G consists of a .finite nonempty set. 

V•V(.G) o£ p points (also called nodes or vertices) 

ttoget,ber w1 t.h a prescrl bed set X or q unordered pairs 

ot distinct point·s ot V~ Eacb pair \u,v) _of points 

is a line (also called edge) o• G and. e is said to 

~imele Gr§Ph:- We say th.et a graph .is simple ·if it 

bas no loops and no parallel edges. 

Degree.:- The. degree of a point vi in graph G, denoted 

4s, or deg ~:l , is the number of lines incident with v1 • 

In a directed graph. the outdegree odl v) of a point v 

is the number .of points adjacent from it , and the 

1ndegreo idtv) is the. number of points ad.jacent to it.. 

Directed Gr.aph:• A directed graph or digraph D consist 

of finite monempty set· V of points together with a 

prescribed collection X or ordered pairs of distinct 

points., The elements or X a:re directed lines or arcs. 

By definition a di_graph hae no loops or multiple arcs. 
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Regular Gr§Ph:- A graph is called. regular it a11 .it's 

vertices are of the same d.egrec. If this degree is K" 

then the graph is called K-regular or regular of 

degree K,-

Adjacency Mat-rix:- the adjacency matrix A•ta1.;] ot e 

labeled grsph G with P points is the P x P matrix in 
· 1:.F '\\i 

'idlich a1J•t U.s adjac,,nt wit b v j and a13-o otherwiee. · 

Thus there is a one-to-one correspondence between 
' 'bl . 

labeled. grapbs with P points and P x P syrnFtric binary 

matrices With. zero diagonal. 

Similarly, the adjaca.ncy matrix or a labeled dia~ 

graph D is defined as A•A (D) • ( a13J , where a1;~•1 
.if arc (y~ • v3 ) is in D and is zero otherwise. Thus 

A(D} is not necessarily symmetric. 

Tbe incidence matrix B•ib1j] associated \rl.t.b a 

graph G, is defined to be a P x Q matrix·' in which the 

_ points and lines are. labelled, end in which bu•1 if 

v1 and ~j ~--· ~, are incident and bij-o otherwise. where 

P ani Q are tbe number of pointe and edges o£ tb.e graph 

respectively. 
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tncidenc e Matrix:• The incidence matrix B• ~i.j] associ.at· 

-ed 14th a grsph G, is defined to be a PXQ matrix, 

in whi.cb the poirt s md lines are labelled., and in W1ich 

b1 j•1 if V1 af¥1 ~j are incident and blj-o otbe rwise, 

wm re P and Q a.re the number of point s and eclges of the 

graph respa cti vely. 

Degree Seguenc .a:- A degree sequence of graph is merely 

a l1sti~ of the 4egrees ·of t.he vertices o£ the graph. 

Indegree f!ld outdegree .sequences are similarly defined. 

In terms of ttle adjacency matrix, the degree sequence 

can be generated by Sl:mming the n)Ws and columns corres­

ponding to each vertex. 

qrder of a Gr!i£!!:- The number of vertices of ·a finite 

graph is called it's order. 

fath:- A walk ot• a graph G is an alternating sequence· 

ot points and lineS V'g t Gi t Vf. ., • • • • • • • •, Yn•t., en• 
•n• beginning and ending with points, in which eacb line 

e1 is incident wlt,h the t<wo points immediately prece­

ding md following it. This walk joins vo and "n• ana 
may .also be denoted v0 , v1,v2••••••• v8 , it. is closed 

if v
0

-vft and. is open o~berwise. lt is a trail 1! all 

all tbe li.ne s are distinct • and e. path it all the points 

are distinct. 
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Circuit:- A circuit is a path a 1 , a2••• ••• aq in which 

initial vertex at, eo1ncid.:es with the fi:nal vertex aq • 

.. 
Connected Graph:- A graph is connected it every pair 

of points are joined by a path. A maximal connected 

subgrapb of G is called a connected componf!!flt or simply 

a component of G~ Thus, a disconnected graph has a.t 

least two components~ 

I 

~ubgrap~~- A graph G is a subgraph or a1 if all the 

nodes ana edges or G are in G 1_. 

2,omElete Graph.:- A simple graph in which there exists 

~n edge between evezy pair of vertices is called a 

Complete Graph or clique. 

Homomo[Ehism:.. Given two r$lational structures R an.d S 

over the same predicate set and on sets X and Y respect• 

ively, we say that a f"'Wc'tion F: X~ Y is a homomorphism 

if for anr predicate p. p(t(x1), •••• • !(lb ) ) holds 

in S whenever p{x1 ., •• ~., x0 ) bolds in B. We write 

1: R _., S if £ is a homomorphism. 

~nomotphism:- A monomorphism is a. homomorphism which is 

one to one, i.e" f(x1 ) • f(x-2 ) implies x1 • x2• 



lt!orphi.sm:- A morphism is a monomorphism from one 

structure to anothe r &llructur.e. 

6 

Relatt onal Stmct.u:re:- A finite relational st,ructure . . -

is a set of elemd'ltts ~th given properties and. relations 

between them. 

1.). Isomornni~m:- In 4raw1ng the geometric diagram 

o.f a graph we have great freedom in the choice ,of the 

location 0 r the •odes and in ttte form or tbe lines join• 

ing them. This may make the di.agrams or the same 

graph look entirely different. 

In view of varlou$ applieation.s or Graph Theory, 

we would like to have a precise way of saying that two 

graphs are really the same even though they are drawn 

or labelled di£terently. 

Definition:- fwo graphs G1 and .o2 aae seid to be 

isomorphic if there .exists a one-to-on~ correspondence 

between their vertices and between their edges such 

tmt 'the incidence relationship is preserve<l. 

The isomorphism problem is tbB t of finding a" 

good al.gorithm for determining whether two given graphs 

are isomorphic. The isomorphism problem has great pra­

ctical significam e. For example • each organic compound 
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can be represented by its graphical structure. The 

p.roperties of chemical compounds ch~a with their 

gra.phical structure • Thus • it · is important to develop 

techniques to recognize isomorphic graphs as haVing. 

the same structure• Again, the matching or a st-ruct­

ured search query against data structures in the data 

base or an information retrieval system becomes a search 

!or :Lsomorphi.S& when the d,ata structures are inter• 

preted as digraphs. ·rne practical need has stimulated. 

search tor etficJe nt procedures for deciding \lrhether 

two given digraphs are isomorphic • 

The d.1graph. iaomorphism problem is more general 
I 

tilan the graph isomorphism ·problem. Ifi-f:lct, .two glven · 

directed graphs may not. be isomorphic but their under­

lying graphs may be isomorphic • 

UN 

,In ldlat follows, we shall consider only Adirected 

graphs and. related results. 

1.4. Lgb!llins Pro}tlem:- Suppose th.at we are analysing 

a picture or scone, with the aim of describing it, am 
that we have detected a set ot objects a1 , ••• ~~ 

in the scene, but have not identified them unsmbi• 

guously. The relationships that exist amollg the objects 
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ca.n ort.en be used tD reduce, or even eliminate 1 the 

ambiguity. 

Labelli~ [16] is a discrete model ot ambiguity 

reduction process and is similar to the filtering scheme 

of Walt,z [21] • 

Let. A• fa1 ....... ., &a\ be the set o£ objects to 

t.o be labeled 1 and L.;. -~11 , ••• ,~) the set of possibl·e 

labels. For any given object a1 , let t 1 ~ t be the 

set of labels that are compcatible (i.e .• possible for) 

object a1 , 1 .::: i ~ n. For each pair of objects ( 8t • aj}, 
/ 

where i+j • let Ltj! L1 1 Lj be the set o£ compatible 

pairs of labels; thus U ... , 11
} e Ls.j means that it is 

possible that a1 be labeled. 1 end ej be labeled. 1 1 • 

Here t 1 j depends on the relationship between a1 and 

aj in the sceilEh If a
1 

and aj are irrelevant to one 

enotmr • than there are no restrictions on the possible 

pairs of labels that t.hey can have, so tim t 1. tj • L1 XLj. 

By a labellingCli.. • (L
1

, •• • 1L )of A we mean an 
n 

assignment of a set or labels t 1 ~ L to each 41 E- A. 

We say that the labeling c( .is contained in the labelling 
1 1 1 . 1 . 

o< • (L1 • •••• , Ln)if L1 ! L1 , 1 ~1~n; in this case 

\~e write c( ~ o< 1 • 



Tho labelling ~ is called consistent if, for 

all 1 and j, we have 

9 

For 1 + j • this me an s that. for eaeh pair oC objects 

ta1 , aj) and each label 1 in L1 , there exists a .label 

1
1 

1n Lj that is compat,ible tdth 1, 1.e.:f (J.~ l 1 ) € L.ij ~ 
For i • j, the condition reduces to -

1 E L1 implies (1,1) e L11, 

i·n ot-her ?.O rds e·very label in L1 is .,n possible label for. 

ot· 

There always exist consistent labellings; in 

particular, the null labelling d.6=()l{ ••••• 9) is ~rivially 

consistent. On. the other band, if ct =0 .. 
1 

, •••• ,Lnl is 

non null consistent labelling, tben every L1 must be 

nonempt,y. It is easily see.n that there e:J1s~s a gree.test 

consistent labelli.r..g, i.e., a labelling, r:~. . .'~ such thst 
oC 

1 • ct. is cons is tent 
<:/) 

2. For any conaist.ent labelling oe we nave ot. ~ d.. • 

ae 
c( may be null, i .o. , there may not exist a non-

null conai.st,errt labelling.. We call a labelling un­

ambiguous if' i't is consistent and assie;ns only a single 

label to each object • 



10 

1 useful way o.f repre~enting labellings .is in 

terms or labe!U!.H5 nttwork. This is a graph G whose 

nodes are the pairs (1,1), for all l £1 ~n and all 

1 e L1 ~ The nodes ( i ~9.) and (J. , 1 1
) are joined by an 

1 . 
ere if and only if U . ., 1 ) E L13 • To any labelling 

« : 'L1, ••.•• ,Ln) there corresponds a subgraph Gac ot G 

whose nodes are the pairs (1 ,1) tor all 1 E- t 1 • rJ. is 

con.sistenct if and only if, .for each node (1,1) or Gcx 
1 

ani each j, there exists a node 'j ,1 ) or Gcx that is 

joined to ti ,1) by an arc. r:J. is unambiguous if and 

only if it is consistent and has only one node (l,t}, 

for each i. Renee. i.f cJ.. is unambigt.~ous, the subgraph 

G is a clique. 
<X 

1.5. Subg~m~.}§(!t!013Ehisqu- In many problems in pattern 

recognition it. is i.mport.snt to know if a particular feature 

is embedded in a: patten.1 under investigation. Such 

problems are basically labellixg problems and are easily 

described in the terminology of Graph Theory as a sear:ch 

for a subgraph 1somosphism. 

Definition;• Fer any two graphs G an<i a, G is said to be 

a subgraph or H if there exis~s a one to one eorrespondenae 

betw-e-en the vertices ot G and a, set of vertices or H 
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which prese~es incidence relationships. 

In the terminology of category theory • subgraph 

isomosphism 1 s gen.eral.ized as Graph monomorphism • If 

R is a. rela.ti coal structure describing a view o.f a known 

object and S is a relational structure describing a 

picture which is presented for analysis., we &:r.anslate 

the question ".Is the objectc in the picture"~ "rto the 

question ffis there a monomorphism f: R .. s. Similarly 

given a repertoire o£ relational structures R1 , ••• •Rn 
representi.ng views of known objects, ou~ aim may 'be to 

find all monomorphisms £rom. the R1 to $, l f i .f n. 

1.6. Baektrackin&:• Usi.ng a computer to. auwer ~cb 
. '~' 

questions as "How many ways are there to ••.•••••• ", 

'"List all possible ••••.••• ·"' • · or ffls there a wny to 

••••••• •", usually requir-Qs at1 exhaust! ve s~arch or 
the set of all potenti.al solutions. 

A general technique tor organising such searches, 

called backtrack [2,19, 1$ J 1 works by continually 

trying to extMd a partial solution. At each step of 

the search, 1f an e¥tension of the current, partial 

solu.t,ion is not. possible, we "baoktr.e.~k" to a shorter 

pnrtiel solution an: d try again. 
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Backtrack, however,. is only a general techniqa. 

It& straight forward a.ppl1cat1 on ~ypically results in 

algorithms whose time requirements are prohibitive. 

In order to bs useful, it is regarded only as a f'rame­

work within which to e.pproaoh. th·e probleJD. 

The Generslized Algorithm:- In the moat ge-neral case, 

we assume that the solution to a problem consists or 
e. vee tor ( a1 , a.2 , ••••• ) of finite but undetermined 

lengtb, satisfying ·certain constraints. Ea~h a1 is a 

member of g finite J linearly ordered set A1 • Thus 

the exhaustive .s.Q~re.h must consider the elements or 
"(_.· . 

A1 X A2 x •••••• X A1., for 1 = o, 1 ,2, •••• as potent.ial 

solutions. Initially we· .start with the null -vector 

( ) as OUZ" partial solution, and. tb.e constraints 

tell us lib 1c h of the members ot At are candidates for 

a1 ; cell dlis subset s1 • tie choose the .least .element 

of .S1 as a.t!• and now~ ~av~ the partial solution (a1). 

In general, the various conat.raints that describe 'the 

solutions tell us Wiich subset Sk o£ 1\.lt eonstitutee 

candidates for the ext.enslon or the partial solution 

Ca1, a2 •••••••• ~.1 ) to (a1, ~··••••••k). If' the 

partial solution ta,, a2 , ••••.•• ,ak_1) admite no 

possibili·ties far ~· then sk • fl • and so we backtrack 



and make a new choice for ~ ... 1 • It there are no new 

choice-s £or ak•t' we backtrack still fartbe r and 

make a new choice fbr ak_2 , and so on. 

We picture this process in.terms of depth first 

tree traversal (pre-order) • The subset or A1 X A 2 X ••• 

• •• X A1 ror J. • 0,1,2 ••••• , tbat is searchedJis repre­

sented as a search tree as fOllows: The root of the 

tree (the Otb level) is the null vector. lts sons are 

the choices for a1 and in gerer~, the nodes at the 

kth level are the choices ror '\• given the choices 

made for a1 1 a2 • •••• ,ak-t as indL cated by the ances­

tors ot these n<Xies. Dackarack traverses tb e tnodes 

ot tbe tl!ee as indicated by dashed lines. In asking 

whetm r a problem ha a a m l uti on ( a1 , a2 , ••• ) , we are 

asking wbethe r any norie_s in the tree are oo 1 ut.t. one. 

In asking for all soltrt#ions, we want all such no<les. 

1.1. Algoritblns Gild Their ComplexitY :• Algor1.tbms can 

be evaluated by a, variety of criteria~ Most often we 

shall be interested in the rate of growth or the time 

or space recpired to solve larger 8ld larger instances 

of a problem. With a. problem is associat,ed an integer, 

called the size or t.he problem, which 1s a measure of 

the quantity of input data,. For example, the size or 

a graph problem might be the number ot edges or the 

number or vertices • 
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The time needed by an algori tbm expressed as 

a function or the size or a problem is called the time 

complexity of the algorithm. The limiting behaviour 

of the complexity as size increases is eal.l.ed the 

asymptotic time complexity. 

It is the asymptotic complexity ·Of an algorithm 

which ultimat.ely detennines the size of problem that 

can be eolved by the algorithm. If an algorithm 

processes inputs of size .n in time cn2, ror some con­

stant c, then we say that the time complexity of that 

algorithm is O(n2), read "order n2". 

A polynomial time algorithm is defined as one 

whose mnnirg time, that is the number or elementary 

bit operatl ons it performs, on an .input string of 

length n is bounded above by some polynomial P n• P 

is the class of all problems tba t can be solved by 

such mt· algoritbm. All probl~ms with algorithms wbose 

runnitli ·time or number or outputs are necessarily 

exponen~ial in the number or· inputs are rot in P. 

The state or an algorithm 1s defined to be tbe 

combinatJ. on of the loca.tion or the instruction current­

ly being executed end the v,alues or all variables. 

An algor:l..tbm. is said to be deterministic if tor· any 

g1 ven state there is at most one valid next state" Thus . ' ' 
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a deterministic algorithm can do only ore thing at a 

time.. A nondeterm1.n1stic algorithm. is one in which. 

fb r my glven sta;te • there may be ·more than one valid 

ne.:xt state. Thus. a nondeterministic algorithm ean 

do more than on e thing at a. tim·e. The cla.ss NP. 1s 

defined to be the class or all problems that oan be 

solved by non-deterministic .algor11#hms t.'het run in 

polynomial time. Clearly P ~ IP. 

A problem P 1s <hlf1ned t:o be NP-bard if a 

deterministic polynomia.l time algorithm for its 

solution can be used to .obtain a deterministic poly• 

· nomial tt me algorithm for evezy problem in NP. Thus, 

a problem is NP-h.ard 1f 1t is at least as bard as 

f#lY problem. in NP. An NP-bard problem in NP . is called 

NP•comp~te, such problems are at least as hard as 

any problem in NP, but no harder [ 1S]. 



16 

1.6 •. Subsrmh Isomomhism Algorithmfl .. A Survex:-

Subgraph Isomorphism problem ia much mo.re com ... 

plie ated t.h.an graph Isomorphism problem~ However, 

in what follows w~ shall consider only graph isomor­

phism problem, eveBthough, digraph isomorphism problem 

is more general than the 1somorpb1 sm problem. 

It we ba ve two graphs G and H . ot orders m and n 

respe eti vely, m c. n and if the two graphs are labeled 

arbitrarily, then the subgraph isomorphism problem · 

can be ·solved by brute force enumerati,on method. 

However., such a meth al can be efficient tor very small 

graphs. 

thus, 1n ordar to find a good algorithm (i.e. 

an algorithm whit: h is not exponential., but polynomial 

in the length or input) some indirect methods have 

beQD .used based on various properties of the graphs. 

Fi.rs~, p1"9eedures have been developed that part1t.ion 

the set. .of vet;,t1ces of the t.wo graphs on the basis of 

a. common property shared by ell ver.ti,ces in the block 

of the partition. One such common property is the degrt 

sequence of the voetiees an.d vertices with the same 

degree are placed in one block. By submitting the 
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two grep h.s to a battery of procedures 1 'based on a 

variet.y of propert.ies none hopes" eventually to establish 
~R APM · 

sub'isomorphism or lack o£ it~ A number of heuristic 

algorithms ha~e been devised which rau in this class • 

.A second approach is the br.ute roro.e enumeration method 

foll0\1ed by some ref.inemant. procedure. This consistt~~ 

or the class of backtrack algor1tlbms. some authors 

have de vi sed backtrack algorithms alongwith a refine ... 

ment procedure t-hich does the early pruning o£ 1nfeasi-
' 

ble subtrees rmm 'the backtrack tree~ 

A th.ird approach is algebraic and is basically .. 
category theoretic and aims t,o t1 nd all monomorphiem.s 

of one graph into another!· However~ this approach is 

logically the same as the second approach .above. 

In llbat. follows, we giv('} a brief accoUnt of all 

the heuristic and backtrack procedures known tor the 

subgrq>h isomorphism and related results. 
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Backtrack .Algorit.bm or. Salton and Sussengurth (16]:-

Salton and Sussengurtb developed a tcrpological 

structure ma.tch1ng procedu.re for subgraph .isomorphism. 

Based on tb.e degree· ee:q~ence of the two graphs, they 

partitioned tne vertices o:r the graphs in1;o disjoint 

classes and developed bel:lristie ;:L:t, algorithm to match 

vertices of the two gra.phs o.n the basis or their connecti­

vity pat.tem.s .• 

Result o.f Sakai, Nagao and Ma.tsusbima ~1iJ,l- In an 

attempt to analyse pbot.ographs taken by aeroplanes, 

earth eatelUtes 1etc •. t Sakai, Nagao and M•tsu.shlma 

gave an al.gor1thm to detect ~opologically equivalent 

substractures in two pictliires. They treated. the problem 

of tindi~ parts in two pictures which are in a l.inear 

transformation rela ~on. 

GenyJil.j.zed Jtesv!t of Barrow, Ambler §Pd Burstall: [1] : 

Barrow, Ambler and Burstall [1] in 1972 developed techni­

ques tor scene anal.ysS:s. that 1.s, of deducing from a 

single two dimensional image the organizationn ot the 

scene which it depicts, in terms o£ object,s and their 

interrelati.cmsbips. To this end they considered the 

idea or a tinit e relati onal structure and described 
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hierarchi.eal matchi~ precess to find whet,her one 

structure is a. oobstrueture of another. They separated 

the process into two parts, one or which is dependent, 

on tb e ao'tion ot relational struet,ures ard their mono­

morphisms, and tbe otb~r is a .more general algebraic . 

notion of a. hierarchical descriptive. system couched 

in cat.egory tbeontic t;erminology, am hence allowing 

other in'terp~etatl ens Of the notion of morphism and 

structures • ott& r then relational structures, which can 

be used to cope wit.h the case where the relations are 

replaced by real valued functions and approximate matches 

are desired. .. 

Thus they developed formalisms to compare so 

hierarchy or structures 'fd th a gi.ven picture structure 

and .find all monomorphi sms f'rorn the structures in the 

hierarchy to the picture structure. Such monomorphisms 

describe tba picture by saying t-hat some known object 

occurs in 1 t.. 

A Proceflu.re bY Walt,i:- Waltz [21] considered the problem 

of ascertaining enapes or unfamiliar objects and tbat 

or factoring out shadows when looking at scenes. To 

this md he gave procedure which construct three dimen­

sional descriptions from ~1Jle drawing which are obtained 
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from scenes composed or plane faeed obje eta under 

various lighting conditions and assigned labels ~o 

line s~gments and junctions in the scene. He sub­

divided one or .more edge labels .into several new labels, 

embodying finer distinctions and then recompu1ie4 ebe 

junc1#ion label lists t.o include these new distinctims. 

Creat.:lng a large list of junction labels, Waltz describes 

method of using selection rules to eliminate as ma.ny 

labels as possible em the basis of rela.tively local in­

formation md develop-ed filter programme to remove 

labels lib icb cannot be part or any trotal scene labelli.ng 

be.sed on the context or t.he. junction. 

Method of RO§enfqld .1 HWIIJ\'iel and Zucker:... Rosenfeld, 

Hummel and Zucker[16]described several models for analy­

sing a picture or scene with the aim oi: describing it 

unambiguously, by using the relatf.onsb_ip that erlst among 

the objects in the picture.. To this end they gave & 

parallel algo~it.hm ,for constructing ~he grea.test consis-
1 

tent labelling or the picture under consideration. Their 

algorithm is basical]Jt a parallel version or the filter­

ing proce~s used. :by waltz[21]. 
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Backtrack Algorithm by Ullmann:- Ullmann[20]in 1916, 

improved upon the bru,te fcree enumeration procedure for 

d~tectln.~ subgraph. isomorphism by using the topology of' 

t.he graph. His method is ai.mil3r to th.~t or SnJ. ton end 

Sussenguth [U!] except 1'JW t hi,s pro cess does not work on 

the two gl}lphs separately and in the or~anization of the 

refinement procedure. 

- ... 
Ullman designed the enumeration algorithm t.o find 

all of the isomorphisms between a g1 ven graph Gcot order m, 

am a furthe r ~ ven graph H of' order n, m s n, given by 

thei.r adjacency matrices A • [t\ij]and B • [b1j] res­

pectively. Defini~ 140 to be an m X n elermnt matrix 

M0 
• [mij]in aecordanc e with 

1 if the degree of the jth vertix of H 1s 

greater than or equal to the degree of the 

ith vertex or a. 

o otherwt se. 

Tha algorithm defines an m (rows) I n(eolumn.s) 

mat.rix 141 whose elements are 1's and o•s sooh that. each 

row contains exactly ono 1 and :no column contains more 

1 [ 1 .] than one 1" The matrix M • •a;-3 is used to permute. 

1H- 1177 
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the rowe atd columns or ll to produce a rurthar matrix 
1 1 f C. Specifically, C • [cij]• M (M B) , wberiJ T denot:es 

t.ransposi.tion. If i't is true ·that 

•••••• (1) 

for all 1 ~ 1 ~ m, 1 ~ j ~ n, then M1 ;specifies an 

isomorphism between G and a subgrapb of H. In tb.is 

case, U mlj • 1, then the Jth point ~r H corresponds 

to the ith point or G in tbls isomorphism. 

fo reduce the amoun.t or computation required. 

ro r finding subgraph isomorphisms, Ullmann. employed. a 

refinement procedure that eliminates some of the 1 •s 

from the matrices M, t.h.\1$ eliminating successor nodes 

in the tree search. The refinement proc.edure\\refineu 

works in th.e followiq; manner: 

Let v~1 md V~j be ve~ices in G aad H respect­

i.vely and let t vo( 1 t ••• J v~ x• ••• vg( ~ 1 be the set of direct 
1 

descendants of' V«i. Let M be the matrix associa:t.ed 
0 

w1 th any given isomorphism under ttl(• "1' ) .• By definition 

or su bgraph isomorphism 1 t is necessary that if Vo<t 

corresponds to V~j in the isomorphism. then .for each 
• 

I•t ,2, •••• ~ there must exist a point. V~Y in H that is 

.adjacent to V~j , a1ch that v~7 corresponds to v~x 1n 
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'the isomorphism. lf v137 corresponds to V~x in the 
.. 1 

isomorphism, then the element of M that corresponds 

to ivol.x' V~y \is 1. Therefcr.e 1£ vc(1 corresponds to 

V ~ . .1 in ar:'Y .isomorphism under M, then tor each 

.I• 1 ,2,. ••• ., 1 there must be a 1 in M corresponding to 

some f V~x' v137\ such that VJ?>Y :is adj.acent. to V~j • 

Thus, if Vo.1 corresponds ~o V /3j in any isomorphism under 

M_, then 

The refinetmnt procedure simply tests each 1 in 

M. to filii ttbether·condition· (2} is satisfied. For any 

~•ij • 1 such tha1i (2) is not satisfied., m1j • 1 is 

changed to m1 j • .o. Such changes m~ cause condittion 

(2J to be no longer eati.sfi·ed for further 1 •s in Iii, so 

th~t further cb anges can be made, and so on. lnf'act
1
, 

~he re£inenent procewre applies condition (2) 1n turn 

to each 1 in M, and i.t then does this over and over 

again until there is en iteration in ltbich all the 

1•s in Mare processed and none of them is changed too. 

However, the t"efinene-nt procedure may leave M unchanged •. 

A necessary and sut£1c:1en. t cotlliition f·cr subgreph 
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isomorphism is 1:h at the retinenent procedure leaves 

M1 unchenged •. This follows 'because it Mt is un.ehanged 

by the refinement procedure then (2) holds for each 1 

in r~ 1 
• Therefore M 1 specifies a one to one mapping . 

or G into if such that if 'two vertices are adjacent in 

G 'then the two correspondS. ng vertices in H are adjacent. 

The algor it. bm uses an n-bi t binary vector 

~ F 1 , • • • • t lt"'1, • • • ,F n' to rec<.r d whi.ch columns have bGen. 

used at an intermediate state of the computation; F1•1 

1£ the S.tb column has been used. the algorithm also 

uses a vectortH1 •••• , Hd••••·•• H111 ~to record which 

·column bas been selected at \'h ich depth: Hd • K .if tbe 

Kth column has been selected at depth d. In the 

algorithm, the ·matrix Md is ~ stored copy of m.atrix 

M at depth d. 

The Algoritbm\20) 

Step 1. 

Step 2~ 

M-t-1°,, d• 1, a1 *0 

tor all 1•1~.-.,m set Fi e f 
refine M, if exit FAIL, then terminate algorithm 

It the ra is no value or j such. that mdj•1 

and FJ • 0 tben got to step 7. 

Md • M 

if d • 1 then K-Hf else K • 0 



Step 3"' 

Step 4. 

Step 5. 

Step 6~ 

Step 1. 
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if IDdk • 0 or Fk • 1 then got to step ). 

for ell j + K se-t. mdj • 0 

refine M, if' exit FAIL then go to step s. 
J 

Ir d .c m t.h'tn go to step 6 else give output 

to indicate t-hat an isomorphism has been 

found. 

If there is no j 7 K soob that mdj • 1 and 

F j• 0 then goto step '7. 

M• Md 

go to step 3 • 

Hd • K, Fa:.r1 d • d.+1 

go to step 2. 

If d • 1 then terminate algorithm. 

Fa = 0, d • d. - 1 , M • Md. , K• K4 

go to step s. 
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Algebraic t-1ethod· of Ghabraman, Wong and Au:- Gbahraman, 

Wong and Au [9] used the backtrack proced~re of Ul~ann [20] 

and applied necessQry conditions for the existence or a 

monomorphi.sn during _the search ot the decision tree to 

prune infeasible subtrees and to:: reduce t:Jle extent of 

search. They proposed two necessary conditions (strong 

and weak) ror the existence or a subgraph isomorphism 

in terms of a cluster. The weak necessary conditions 

is eq~valent to t.!ul refinement process i.n [20] and 

the strong necessary condition imposed additional require­

.ment.s which can lead to an early pruning o£ 1nteasible 

~ubtrees. 

· Proeedur! qf.,CheM .and How:-. Cheng and Huang. [6] 

use a eombinati on or refinement ancl tree search by 

using the Ullmann's 0.1 matrix representation srul 

Bentiss [3 J elementary K .formula concept. They express 

the c~nstraints as a set or constraint nodes. In their 

result, node 1.s an expression which specifies the restJ"i­

etions about possi.ble mappings between vertices. They 

ga,ve a. parallel iroplem«lt8tiOn Of their technicpe. 
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CHAPTER 2 

2.1. IntrodueY, at,:- Given two graphs G arr.t B, the 

problem of detennining whether G is a subgraph or _H 

has importmt. applicatio ns in Pattern Recognition., 

Image Analysis, lnfcr:mation Processing, etc. The 

problem can be solved by brute force enumeration. method 

which 1s principally a dec1 sion tree search algorithm. 

However, sueb a method can be aractJ.cal for graphs 

or small size. 

Most o£ the previous works related to subgrapb 

isomorphism problem involve ( 1) a refinement procedure • 

ani (2) an exhtJ.ustive tree search. 

In view or the works ot Salton and Sussengurth [18] • 

Sakai. Nagao end Matsush1ma[17], Barrow, Ambler and 

Burstnll [1], Waltz[21], and Rosenfeld, Hwmnel and 

Zucker [16], Ullmann [20] in 1976 gave a backtrack algor1• 

th.m for subgraph isomo"hism problem. 
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UllnmriS algorithm consists of a decision tree 

search :~r.ethod which makes use of the degrees or the 

vertices of the two graphs. The matching of vertices 

is made by a .refineent proce4ure based on the connecti­

vity property or the \; wo graph a~ 

Ghabraman, Wong and Au[9]proposed an algorithm 

totally similar to that of Ullmann which usee a strong 

necessaty condition ror early pruning of infeasible 

subtrees. 

Cheng and Huang \_6)made use o£ Ullmann's algori­

thm (20) md K-f'ormula ot Btae,tiss t:3J 'to give an 

algorithm for .sub graph isomorphism. They used the 

K-formula to implerrent tho refinement procedure ot 

Ullmann t 20]. 

In what £o llows we propose to improve upon. the 

brute fbrce enumeration met.hoi, tor su.bgraph isomorphism, 

by introducing a procedure to eliminate meaningless 

search performed in all the earlier algorithms. To 

this eixi , based on the topology of graph G, we make a 

prep!'Ocessirg of Graph H atld 'then use Ullmann's aJ.gori­

'thm on the reduced graph. Thus we introduce a re.finement 

procedure before searching for a subgraph isomo~phism. 
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In §2.2 we illustJrate the proposed procedure 

by means of an example. In § 2 .• ) we describe the 

algorit,bm. We conclude tile chapter in § 2.4, where 

we discuss correctness and efficiency or the algorithm. 

2.1. Some ihu;ie Realts and Definitions:- We assume 

that we are gS. ven t.wo grapb.s G· and H of orders m and n 

respeeti vely 1 m 5 n. In order to tes't whether G is 

isomorphic to a sub graph of H, we shall subject. H t.o 

a ref1nermnt proeedt! re which is based on the topology 

of G. In order to fix .idoaa • we show, by means of a.n 

example, that if G is isomorphic to a wbgrapb S o£ H, 

then G will remain isomorphic to the same subgraph S 

of H 1 , where H 1 1s a. subgr~h of H a1d is obtained by 

deleting all the vertices o.f H which cennot be associat­

ed wi.t.b any vertex or G under any isomorphism. 

§1aPWle: Let the graphs G and R be of orders 5 &nd 10 

respecti vely. t: e assume tba t the two graphs are g1 ven 

in the f'or m of their adjae~ey matrix. 

We assun» tba t the vertices 1n the two· graphs 

have been labeled according to some order (this does not 

imply that the vertices are ordered in any way) • 
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c 

llf? A PH .. G GRAPH - H 

a b c d e ~ 
1 6 7 8 9 

a 0 1 1 1 1 1 0 0 0 0 
b 1 0 1 1 1 2 1 0 0 0 0 0 1 1 
c 1 1 0 1 1 3 0 1 1 1 0 0 1 1 
d 1 1 1 0 1 4 0 0 1 1 0 0 1 1 
e 1 1 1 1 0 5 1 0 0 1 0 0 1 1 

6 0 0 1 0 1 0 1 1 
~All J.2.f!L~ matrix of G 7 0 0 0 1 0 1 1 11 

8 0 0 0 0 1 0 1 1 
9 1 1 1 1 1 1 0 1 

10 0 1 1 1 1 1 1 0 

ll_d j a c en c :t m a t r i x of H 

'' 



GRAPH - H1 
GRAPH - H

2 

2 3 4 5 6 7 9 1 0 3 4 5 6 9 10 

2 0 1 0 0 0 0 1 3 0 1 1 1 1 1 
3 1 0 1 1 1 0 1 4 1 (} 1 1 1 
4 0 1 0 1 1 0 1 1 5 1 1 0 1 1 1 
5 0 1 1 0 1 0 1 1 6 1 1 1 0 1 1 
6 0 1 1 1 0 1 1 1 9 1 1 ~ 1 0 1 I 

7 .c 0 0 0 1 0 1 1 10 1 1 1 1 1 0 
9 1 1 1 1 1 0 1 

10 1 1 1 1 1 1 0 

Adjacency m2trix of h1 Adjacency mat. r ix of H2 
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For testing whether G is a subgraph of H, 

we make use of the neigb.'bourbood. structure of the 

vertices of G end H. To this end • we first. calculate 

the <1egree sequences for Q .am. H • 

Lalz$ls o( V!rtices of G-: a b c d e 

Degree seguance for G -~ {1 .. , 4, 4, 4, ./t) 

Leb§l~o£ vertices of H : 1 2 3 4 ; 6 7 S 9 10 

Qegree stguence of H ;() 4 6 s 6 6 4 ) 9 d) 

We see from the d.egree sequence for H, that the 

vertices lebeled 1 md 8 have degree less than t.he degree 

ot every vertex in Q. Hence no vertex o£ G can be 

matcl'ed wt.th vertices labeled 1 and 8 in H. Thus, i.f 

G 1 s a subgraph of H, G will remain to be a subgraph ot 

H even if tbe vertices 1 and g and all edges incident 

with them ariJ removed fro·m H. Removing vertices labeled 

1 and El f'rom H • we get a new graph a
1

• 

Again from the adjacency matrix for H 
1 

• we 

calculate ~e degree sequence for H1• 

Label of vertic§& or H1 : ··2 3 4 S 6 7 9 10 

Degree Sequpce for 81 t t;, _6 1 5, S, 6, ) 1 11 7) 
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Again, ·til.~ vert#ices labeled. 2 and 7 in H1 have 

degree less than tbe degree ot ··every vertex in G.. In 

case G 1s a subgraph o.r H1., G must remain su.bgraph c£ 

H1 even if all tbe vertices labelled 2 am 1· .alongw1tb 

edges incident 'With them .are removed from H1 • Deleting 

vertices labeled 2 and 7 from H
1

, we get. a ne~ graph H
2

• 

Again, from ~he adjacency matrix of H2, we cal­

culate the degre~ ·sequence ffjr H2 • 

Latel of vertices of H2 : 3 4 S 6 9 10 

Degree Sequence .for 112 : (S, S, 5, S, S, ') 

I:nfact, in the above example all the subgraphs 

of H isomorphic to G can be easily found by inspection 

or 112 • The refinement procedure reduced the oomplez1ty 

of the problem considerably• 

Our algorithm for subgrnph isomorphism 1s to 

. appl'y the backtrack enumeration procedure atter refining 

the graph H. 
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2~3· the. Algorithm:- The graphs G and H are assumed 

to be g1 ven in the rorm ot tm 1r adjacency matr.ix. Let. 

the graphs G and H be or orders • and m. respect.i vely, 

• ~-m • We label the vertices of· G end H arbitrarily 

and using adjacency matrix, we calculate the degree ee­

quence or vertices et 0 t am find t.he smallest. degree 

from the degree sequence. Next we calculate the degrees 

or venices or H ODe by on.e. If the degree o£ any 

vertex of H is found to be less tha.n the smallest entry 

in the degree sequence ·Of G. then we delete that from H 
~\1''\.\0U'T 

W.ongwith all the edges ine~dent with that verte:x,~re-

labeling the graph, once again we calcul.ate the degree 

ot vertices or the resulting graph .and if the degree 

of any vertex i.s less than the degree o.f' every vertex or 
G, then thet vertex is deleted. We keep repeating this 

procedure until every vertex 1s of degree at le.ast as 

greet as the smallest entry in the degree sequence or 
G. I£ a~ my st2ge the order of thf! reduced graph of H 

becomes less than that of a, then the algorithm terminates. 

Let the vertices or H be labeled v1 , 1 =t:n. 
Our subgrapb isomorphism algor1tbm con.sists or two sub­

algorithms. namely Algorithm 1 and Algor.it.hm 2 •. Algor1• 

thm 1 is a nflnerrent procedure whieb is perf'ormed on 
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tha vert1cee ot g•eph "• Aleo, me eacsuma that., ,.,. 

1~t~n • 1• •t. 1e adJacent to "'•'• Aliottthm 2 consists 

of the bNte tol'ce enumel'atioft method given by t201 which 

oparetee on the na matr.b fi0 1 defined bJ 

'1 it the degl'se or Jth vsttea of' H is greater 

than op equal to the cfagt"ae of tho ith 

vertea ot G::•l 

Q othevwioe. 

whe•e 1~1~n, 1~J$m. In def1ft.lftg the mskiJC f'l0 1 we escume 
/ 

that the cotteecutJ.ve rowe labeled VJ. end ".l+1, ot .pto, al'e suCh 

that VJ. is edJacc:mt. to V!+1 1n gl'aph ,, , t!= 1~n·1 • 

Algorithm 2 ie tna enume~atton algo~1thrn deelgned to flftd 

all cat the J.eomotphlems between a t:.lvcn gl'aph ·G and eubga-~phs 

or e fu~the• given gwaph "• ~ot the adJacency matticee of 

G tattd H be gluen br A•[a.a.J] and Bo[b&J], J"eepoct1val.y. 

wo dof'iftc en ft1 GJatl'ix ·to be a ft(l'owl)d, (columna) 

metria whoso elements e~e ,1•e and D'e• euch that eaeh row 

oonteJ.ne e)u!ctly one 1 end no colum containe mo..-e than one 1. 

Tho metl'lx Pl,-{mtJ] le used to permute tho l'owa end column• 

of matr.lJC B to produce e futthel' matl"lM c,. Specifically, we 

dotlfte C•[OiJ} a M1 (PS1a)T 1 whol'e T denotes trenepos,ltlon. It lt 
. ·~ 

1e ttue the\ 

(alJa1)Jt=> (Ct.Jcs1), •••••••••••••~•(1) 
then "' epsc.l ties eft temotphlem batu1een G. and e eubglaph of H. 

• ...... 

' In th.lo cesa, 1 t •1J =1, then the Jttt verts• or K corl'.e&ponds 

tc th& 1th vr.a·tew ot c:;· tn \hlo laomolphtGf!• 

Algol'ltttUt 2 WOJ'k$.-bV 0eftSJst1ng ell pa~eible matl'iC:GS fl1 
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GUCh that for eaCh Mel QVSI')f elemtmt lllJ ot M't, (flliJ•1:)-9(mJ.0J=1),. 

ror each such ma\r1M 111 the &J.gortthrn teeta to• J.aomorph1sftl 

by applying cond;ltlon(1)~ Metl'!coo Mf at'e genetated br syetemat. 

tlcallr l&etng the adJecencr etructw•e ot G ~ Cheftg1ng to 0 ell 
'. 

but one ot t.he 11e -'1ft aeeh ot \he l"OwtJ of Aj 3Ubject to the 

condltlon that no column of e matrix Mil mey contain mente ttt• 

one '• In the &eerch ttee, the terminal ,nodes a:re at d-.th d=n 

end they correspond to d!aUnct taetrtce~ "'• Each nontarm!ftel 

aode at depth d'Pco\ coJ'teeponds to a dlstinot ·metl'J.a M , : 

which dl tfel"a fl'om file 1ft that in d or the I'OUI8f~ all but one of 

the 1'e bae been changed to 0•, . 

The algorithm usee a c•bit binary vector \,r, t ••••• fit•••• r."\ 
to record which columns have belen used at en 1ntermed1ete ot.age 

o,f tha comptteticmJ· '1•1 lf tho ltn column has boen ueed•· The · 

algol'1thm eleo uses a vector \Ht••••• Hd, ••••• Mn J to recold 

which column has bean oelfi»cted at which depthJ ftd~:~JC it the kth 

column has been aalected et depth d•,,· 

Step 1• 

,,;•, 

Celculsto the degre·e of vertJ.eee or o.i, · 
V 1ftd the least deg»ee ••'. set 1=0.~ 

.1.=1+1 



step J. 

Step J~ 

Step •• 

Step 6. 
Step 1. 
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Celculate t.he degree d(VJ.) of the itt. 

veZ'tcx Vi ot "* .It d(¥&) <a, go ta etep J 

It m<n•(tbe total number' ot vertJ.coe deleted), 

~theft output •tto laomor-phln•., 

il 1~1 construct. A0
1 go to Algor1\ha 2. 

Delete the ·tth vel'tca o.f H. 

It i•m• canetl'uct, no, go to Algorithm a. 
It l<•t go to etep a. 

Mott•t d•1 J "'«4 . 
for 1•1•2•••••••""'• ee' Fs.=G 
It there Is no value of J such the' 

lldJ e 1 Oftd, 'J = 0 then go to etep ,, 

f\1 = PI 

Jt d~;1 then K-M1 1 else KaO 

KcK+1 

It· mdk-o at' f~c•' thon go to etap: J 

tor &11 J+k set mdJc:O 

It d < n then go to Stop 6 olea use canditton 

( t ) end give output .l t en ieomoph.lem ls round 
' 

lf there ie no J~k such that "'ccri and 

r JttfJ then go to a tap '~~ 

Mer\tJ 
go to etep J .• 

Hcr-K, rk•1t d=d+1t go to stap 2 

lf d=1 then elgo~.l·thfl tel'taineteo~ 
. "\~ 

Fk.O, dc=e-1,. f'=ftdf Ketldt~ go to, etep ~~> 
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2.4 &QNSLUSIO!J!J• 

GJ.ven eny two g~aphe a end "• · or ol'dorc n end • 

r-sspsc'&.vely• ft~m, lf G lo 1soanyru.c to e. eubgreph I .ot' H, 

then G will l'etnaJ.n to be leomor-pMc to the subgtaph s ot H 

even 1f ell the vsl"ttcoe of M which cannot be metthed to 

MJ verto~ ot G e~e deleted from "• In tectt we have 

a theorem to be proved. 
.. 

Itt,sarw:- If G 1o .lsomo..,nlc to a cubgreph s oF Ht ttum 

G w.f.ll rsma1tt to ba 1eomorphlc to the eubgroph s, or the 

oubg~eph "' 1 ot "• obtel.ned by deleting ell vart1cetJ. ot 

H wh1ch 8· .. 8 of degne less than the Otna11est deg•ee l.n the 
'· 

degree aequence of G;e• 

f!RO(t• Jt G 1s laomorphlc to e subg~raph S of H, ·then C 

end s nue·t have the same numbs~ ot Vert1eaa end •ttoee end 

eame topolog1ce1 stru~cture. (t.a., the s~e degree aequence 

end connect.l.vlty). Thue1 it thal"f> J.s a vertex'• or ff whlch 
i 

.to of degl'ee laea then the degl'eo ot every vel'tiil Ae c, 
than undel' en 1sotaol'ph1c mapp'ftth no vertex or G can be 

eesoctetcd wl\h •• Thu• theN cannot be a caepplng of G 

ctnto a subgl'aph ot H which cottte1ns • and eomo ve•tl.cse ot 

s. Tt\us • end t~ll the edgoe: incident with • cto not contl'lbUta 

to tho attuctu·re of S end hence can be &-eeoved troll H withou' 

effoct!ng S. Since :~lind :S ate el''bitra~'• the eaeult tollowsi· 
:~.. ~ ...... " •, ~·. , 

Given MY twc 9f'tlilho C -~ tt, it G .la iG?!J)O~ph.l.c; 
' 

t.o e oubgl'epht.ot H, then clearly G will temsln to be..,lsoMI'Phlc 

to the aame eubgraph ot M attel' deleting verticea whJ..ctt cemnot 

·\e matched to any ·v.e~·~ ~of a. sUch a· retinem~~t deattoye 
~ . . ·:; ·-

t'tte topology ot gcaph M ~t retains all att,uctur-e whic:h le 



relevent to the eubgrq1 b 1aomorpbism, A.gein, since 
. 0 

the adjacent rows ot the matrix M have label ot vertices 

of G, •tch are adjacerJ; 1a G, the use of Algorithm 2 

on J.1° leads to a traversal of, tbe graph Q 1n a .syatematic 

manner~ By using a suitable graph 1nvar1ent 1 .S.n the 

backtrack procedure, the number ot matrices M1 generated 

can be reduced. ·such a traversal of the Gre.ph a elem1• 

na't$S the useless search which is. performed in the 

algorithm given by Ullma~ J.-20J • 

Thus, tm use ot refinement proceciure in Algorithm 1, 

ani systematiC search pe rforme4 by Algorithm 2., reduces 

the complextt.y or the subg~aph isomorphism problem con• 

siderably. Thus our algorithm improves upon the result a 

given by earlier authors. 
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