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SYNOPS1S

in view of the various applications of graph
thoory, we would like to have a pracise way of hayiﬁg
that a given graph s lsomorphic to the subgraph of
same other graph, even though they eare dtawﬁ or labeled
differently, To this end, a great deal of work has been
done by various authors, notasbly by lillmann, Ghahraman,
Wong and Au, and by theng and Huang, Ullmann, Ghahrhman,
st.anl, and Cheng and Huang geve backtrack algorithms
involving a refinement procoedure in the backirack proe
cedure, In what follows, we give a backtrack algorithm
in which a refinanent is adopted befors backtracking
procedure., e briefly survey, ini.ﬁbaptar-(i), the teche
nigues used by aaﬁiier authors for the subgraph isoe
morphism and related problens.

8y meking en appeal to the topology of graephs,
we give, in Chapter{2), our rsfinement procedure and
the backtrack algﬁrithm% The becktrack slgorithm given
in Chapter(2) is a modified version of Ullmenn®s algorithm.

In §2.2.4 we illustrate our refinement procedurs
by means of an example. In §2,3, ue describe the algo~.

rithm, and in §2.4, we discuss the corrcotness of the



refinement procedure and efficisncy of the algorithm,

The aiigntithm, given in 82,3, is considerably
faster than all the other knouwn algorithms fnr certain

graphs,
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CHAPTER 1

A _BRIEF HISTORICAL SURVEY

1.1 Introduction:~ In the past four decades we have
seen a steady-development of Graph Theory and it's
applications which during the last ten to fifteen years
have blossomed into a2 new period of intense activity.
Some measure of this rapid expansion is indicated by
the observation that until 1957 there was exactly ome
book on Graph Theory (15_\_ and 'xmw we have about 3
dozen books on Gragph Thwry and that over a period of
one year more than 500 papers on Graph Theory are
published. The mzin reason for this acceleration in

Graph Theory is in it's demonstrated applicatfon.

Any system involving a binary relation can be
represented by a grzph.

Because of their intutive diagrammatic repre-
sentation, graphs have been found extremely useful
11_1 modeling systems srising in Physical Sciermces
(4, 7, 1] , Engineering (13, 5, 19] , Social
Sciences [12] and economic problems [&]. |



1.2. Some Besic Definitions 3- In what follows, we
shall use temms and definiti ons given in Harary {1 3] .

Graph:~ A greph G consiste nf a finite nonermpty set.
Va¥(G) of p points {also called nodes or mrtices)
together with a preseribed set X of q unordered pairs
of diaﬁimt points of V, BEach pair (u,v} of points
is a line (also called edge) ok G and e is said to

join u end v,wwueke e=(uv).

Simple Graph:- We say thet a graph is simple if it

has no loops end no parsllel edges.

Degrea:- The degree of a point vy in graph G, denoted
di or deg vy , is; the number of lines incident with vy,
In a di:rectéé groph, the outdegree odlv) of a point v
 is the number of point s adjacent from it, and the
indegrea 1&&#‘} is the aumber of points adjacemt to it.

Directed Graph:~ & directed greph or digrsph U consist
of fini‘t.e monempty set V of points togethér‘" with a
prescribed collection ._JL of ordered pairs of distinct
points. ?ha elements of X are directed limes or arcs.

By definition a digreph has no loops or multiple arcs.



Regular Graph:- A graph is cslled reguler if all it's
vertices are of the same degree. If this degree is K,
then the groph is called Keregular or regular of

degree K.

Adjacency Matrix:- The adjacency matrix An‘-_aiﬂ of a

labeled graph G with P poim;s is the P x P matrix in
- EFW :
vhich aij-i Ms ad.‘iaeem; with v3 and aﬁwﬂ otherwise.

Thus there is a on e-te»one cormspoademe bet.vreen
labeled graphs with P pcint.s and P x P symftric binary
matrices with zero diagonal.

Similarly, the adjacancy matrix of a lai_:eled dia-
graph D is defiaad as A=A4(D) “'{ai ﬂ, where ai‘;jﬂfiﬁ
if arc {vg , v5 ) is in D and is zero otherwise. Thus
AMD) is not necessai'ily symmetric.

The incidence matrix Be Y'bﬁ] associated with a
greph G, is defined ™ be a P x ¢ matrix, in which the
_points and lines are labelled, end in which bﬁﬂ if
vy and 84 - are incident and bij-ﬂ otherwise, where
P and Qf sre the number of pointes snd edges of the graph
respe ctively. "



Incidence Matrix:- The incidence matrix Bs B’ij] associate
ed with a greph ¢, is defined ® be a PIQ matrix,

iﬁ which the poims and liﬁea\ are labelled, 2nd in vhich
byget if V3 and ej are incident snd by y=0 otherwise,

where P and { are the number of poimts and edges of the
graph respe ctively.

ﬂég ree Seg uenc2:- A degree aeéuence of graph is merely
a listing of the degrees af‘ the vertices of the graph.
Indegree eod cutdegree sequences are similarly defined.
in terns éf the adjaéency matrix, the degree sequence
¢an be generated by surmming the rows and columns corres-

ponding to each vertex.

Order of a Grophi- The number of vertices of a finite
graph is called it's order.

~ Bath:i~ A walk of a graph G is an slternating sequence
of points and 1ines Vg , @4, V4 sesenvece, Ynet? €no

v,, beginning and ending with points, in which each line
ey is incident Wwith the two points immediately prece~
ding md following it. This walk joins v, and vy, and
may also be denoted Vgs V4, V2seeecey Vp, it is closed
if Vo™Vn end is open otherwise. It is g trail if 21l
all the lines are distinct, and 2 psth if all the points

are distinect.



Circuit:~- A circuit is a path a,, 82secee. -aq in which

_ 1
initial vertex a; coincides with the final vertex aq°
C#nnected Graphs- A graph is connected if every pai:f-
of points are joined by 2 path. A maximal connected
subgraph of G is called 2 connected component or simply
2 component of G. ‘Ek_ms, a disconnected graph has at

least two components,

Subpraph:- A graph G is e subgraph of G' if all the

nodes and edges of & are in al,

Complete Graphi~ 4 simple gr@h in which there exists
sn edge between every pair of vertices is called 2

Complete Graph or ¢ligue.

Homomorphism:- Given two relational structures H and S

over the same predicate set and on sets X and Y respecte
ively, we say that o function F: X-> Y is a homomorphism
if for any predicete p, P(f{xg),eees, £l ) } holds

in S whenever p{x"...\.,: ¥,} holds in R. Ve write

F:ii=» 5 if £ is 2 homomorphism.

Monomorphism:~ A monomorphism is 2 homomorphism which is
one to one, f.e. fixy) = £{x,) implies x4 = Xy



Morphism:~ A morphism is @ monomorphism from one

structure to anothe r structure.

Reloti onal Structures- A4 finite relational structure
58 2 set of elemmts vith given properties and relations

between t&;em.

' 1.3. Isomorphism:- In drawing the geometric diagram

of a graph we have great freedem in the choice of the
location of the modes and in the form of the lines join-
ing them. This may make the diagrams of the same

graph look enmtirely differemt.

In view of various applications of Graph Theory,
we would like to have & precise way of ssying that two
graphs are reslly the sesme even though they 2re drawn

or labelled differently.

Definition:- Two graphs G, and G, amre seid to be

isomorphic if there exists a one-to-one correspondence
between their vertices and between their edges such

that the incidence relationship is preserved.

The isomorphism problem is thet of finding a
good algorithm for determining whether two giéén graphs
are isomorphic. The isomorphism problem has great pra~

ctical significame. For example, esch organic compound



ean be represented by its graphical structure. The
properties of chemical compounds charge with their
graphical structure., Thus, it is important to develop
techniques to méognize isomorphic graphs as having

the same structure. Apgain, the matehing of a2 structe-
ured sesrch query sgainst date structures in the data
bage of an information i*et»ri:aval system becomes a search
for isumorphism when the data structures are inter=-

| prated as digraphs. The practical need has stimuleted
seerch for efficient procedures for &ee iding whether

two given digrsphs are isomorphic.

The digrsph ipeomorphism problem is mors generai
than the graph isomorphism problen. Inféét._},o two given
directed graphs msy not be isomorphic but their under-
lying grszphs may be isomorphic.

UnN

In what follows, we shall consider onlyldirected
graphs and related results. '

1.10;' Lebelling Problem:~ Suppose that we are anslysing
a pilcture or scene, with the aim of deseribing it, amd
that we have detected a set of objects Bgpevesdy

in the scene, but have not identified them unembie
guously. The relationships that exist among the objects



can often be used to reduce, or even eliminate, the

ambiguity.

 Labelling [16] is a discrete model of ambiguity
reduction process and is similar to the filtering scheme
of Waltz [_21] .

Let A={ag,eeesey 8y De the set of objects to
to be labeled, and Le §1,,...,0 | the set of possible
labels. For any given 'ab;"iéci; a3, let L-ish be the
'se:‘ of labels that are compatible (i.e. possible for)
object a;, 121 £n. For each pair of objiacts {ay, aj),
where 1%}, let Lijgi‘.i 4 I;‘j be the set of compatible
pairs of labels; thus {1 , 11} € I‘."l;j mesns that it is
possible thet a, be lebeled 1 and a, be labeled at,

J

Here L, . depends on the relationship between g4 and

Ly g

., in the sceans. If s, and aj gre irrelevant to one

J i

smother, then there are no restrictions on the possible
- Linju

a

poirs of labels that ﬁhey can have, so that I"l 5

By a labellingde (L,,.—..,ian)of A we meon an
assignment of a set of labels L, €L to each di € A,

We say that the labeling « is contained in the labelling
1 .
& = (L}, seeey LHIF L, €LY, 1242n; in this case

ve write o £ °(' .



The labelling & is called coensistent if, for
all i and j, we have

( $4%x Ly) M’ig ¢ for all 1 €Lp

For 1 # j,; this means that for esch pair of objects
ia » 2y ) and each label 1 in Ly, there exists & label

l in L that is compatible with 1, i.e., il, 11)

3 Lyst

For i = j, the condition reduces to

1€L; dmplies (1,1) € Byygs |
in other words every lsbel in I’i iz a possidie lshel for
a4«

There always exist consist.ent labellings, in
partieular, the null labelling A G {F{eecee, ) is Krivially
consistent. On the other hend, if d wiL,,.“.,LH) is
non null consistent labelling, then every Ly must be
nonempdy. It is sasily seen that there exists a greatest
consistent labelling, i.e., 3 labelling o(q’ such that
L 18 o is congistent

, @«
2. For any consistent lahelling & we nave o €o

<L may be null, i.e., there may not exist a non-
.'null conglistent lsbelling. We esll & labelling une
ambiguous if it is consistent end assigns only a single
label to each object.
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& useful way of representing 1ahelli@gs is in
terss of lgbelling network. This is a grgphvG»whose
nodes are the pairs (i,1), for all 1 i <n and all
X el,, The nodes (1,3) and (3, 11) are Jjoined by an
are if and only if (1, §ﬁ§ Eiis. To any labelling
o« = {Lygeees,b ) there corresponds a subgraph Gy of G
whose nodes are the psirs {1,1) for 211 1 € Li’ & ia
consistent if and only if, for eaeh noﬁe {4,)) of G
amd esch j, there exists & node (j, l ) of G, that is
joined to {4,1) by en arc. « is unombiguous if and
only if 4t is consistent znd has only one node (1,1},
for esch 4, Hence, if & iz unambigucus, the subgraph
G is a clique. -

1.5. Subgraph Isomogphismi- In many problems in patteran
recognition it is lmportant to know if a particular feature
is embedded in 3 pattern under investigation. 3Such
prohlems-are basically labelling pfeblems and are easily
described in the terminology of Graph Theory as & search

for a subgraph isomosphism.

Definition:~ For any twe graphs & and H, G is said to be
a gubgraph of H if there exists a one to one correspondence

between the vertices of G snd 3 set of vertices of H
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which preserves incidence relationships.

In the terminology of category theory, Subgraph
isomosphism is generalized es Graph monomorphism. If
R is 3 relationzl structure describing 2 view of & krown
object and S 1is a relational structure desetibiﬁg a
picture which is presented for analysis, we tranglate
the question "Is the object in the picture™ “to the
question "ls there a monomorphism f: R« 5. Similarly
given'a repertoire of relational structures 31,,...ﬁn.
representing views of known objects, our aim may be to

find all monomorphisms from the Ri to 8§, 1 <£i<nm.

1.6. Backtracking:- Using a computer to answer guch
questions as "How many ways are there to ‘ﬁ.....;",
"List all possible «...ee. ™, or *Is there a'way to
.;..;...“, usually reguires an sxhaustive search of

the set of sll potential solutions,

i general technique for organising such searches,
ealled backtrack [2,19, 15'], vorks by continuaslly
trying te.ext‘md a partial so‘lut.imi. At each step of
the search, if an exyension of'bhe curfent'partial
sclution is not possible, we "backtrock¥ to a ghorter

partisl sclution and try again,
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Backtrack, however, is only a general technique.
Its streight fbrward spplication tyﬁieally resuits in
algorithms whose time requirements are prohibitive.
In order t¢ %= useful, it is-fegérded only as a frame=

work within which to approach the problem.

The,ﬁeﬁeraiized Algorithm:~ In the most genersl case,

we.asaume that tha'solu%ian to a preoblenm conéista of

& vector (319 8,9 .g...};@f finite but undetermined
length, satisfying certain conatraints. Esch a4 is 8
member of =8 finite, linéarly ordered set-ki¢ Thus
the exhaustive»géarch nmust consider the elements of
&1 X Az x......)x Ai, for i = 0,1,2,..++ as potential
solutions. Initially we start with the null vector

{ |} as owr partial solution, snd the constraints
tell us vhich of the‘meﬁbers of Ay are candidates for
8 3 call this subsat‘si.r'%é choose thelleasq_élemant
of 54 as aig, and naw~w§ﬂ§gtg the partiel soluticen (aQ).
In generesl, the variods coastraints that describe the
( s@iﬁﬁiﬁns tell us which subset Sk of gkneonstitubes
candidates for the extenslon ‘{)f’ t;hé partial solﬁt.ion
(oy, Byeeeccecs ak,,) to (a4, 8ppesece,y ). If the
partial solution (a,, 32,......,ak_1) admits no
possibilities for 8 then Sk = J, and so we &aektraek
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ond make a new choice for By g 1f there are no new
choices for a, _,, we backtrack still farther and
make a new choice for a,_,, and so on,

¥e picture this process interms of dept.ir; first
tree troversal { pre~order). The subset of by X "2 Keoo
seek Ay for I = 0,1,2,¢+0., that is searched;is repre-
sented 8s a search tree as follows: The root of the
tree (the Oth level) is the null vector. Its sons are
the choices for sy and in gemeral, the nodes at the
kth level are the choices for 30 given the choices
made for a,, Boseseeydy 4 88 indicated by the ances-
tors of these nodes. Backgrack traverses the fodes
of the tree 8s indicated by dashed lines. In asking
whether a problem has a solution (34,845,404}, ve are
asking whether any nodes in the tree are solutions.

In asking for all solutiocns, we went all such nodes,

1.7. Algorithms ond Their Complexity - Algorithms can

| be evaluated by a variety of criteria. Most often we
shall be interested in the rate of growth of the time
or space required to solve larger snd larger instances
of a problem. With 2 problem is associated an integer,
called the size of the 'pmb‘lem, which is a measure of
the quantity of input data. For example, the size of
a graph problen might be the number of edges or the

numbe rr of vertices.
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The time needed by an algorithm expressed as
a function of the size of a problem is called the time
complexity of the algorithm. The limiting behaviour
of the complexity as sige increases is called the
asymptotic time complexity.

It is the asymptotic complexity of an algerithm
which ultimstely determines the size of problem that
can be solved by the algorithm. If an algorithm
processes inputs of size n in time cn?, for some con-
 stant ¢, then we say that the time complexity of that
Valgorﬁ.ehm is 0(n?) s vead "order nén,

A polynomizl time algorithm is defined as one
whose rumning time, thet is the number oi‘ elementary
bit. operatsiﬂém it performs, on an input string of
length n is bounded abo?e by some polynomial Pn' P
is the class of all problems that can be solved by
such an algorithm. All problems with algorithms whose
running time or number of outputs are necessarily

exponential in the number of inputs are mot in P,

The state of 2n algorithm is defined to be the
combinzti on of the location of the instruection current-
ly being executed end the values of all variables.

An algm"i‘bhm is said to be deterministic if for any

glven state there is 3t most one valid noxt stote. Thus
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a deterministic algorithm can do only ome thing st a
time. A nondeterministic algorithm is one in which,
for amy given state, there may be more than one valid
rext state. Thus, a nondeterministic slgorithm can
do more than one thing at a time. The class NP is
defined to be the class of all problems that can be
solved by non-deterministic algorithms thst run in

: mlymmial time. Clearly F __i YKP‘.

A problem ¥ is ddfined to be ﬁ?-hgrﬁ if a
deteministic polynomial time algorithm for its
solution can be used W _gbtaia a deterministic poly~
 nomial time algorithm for every problem in NP. Thus,
a8 problem ig NP-hard 4if it is at least as hard as
any problem in NP, An NP-hard problem in NP is called
NPe«complete, such ﬁroble;as are at least as hard as
eny problem in NP, but no harder [157.
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1.8, Subgresph Isomorphism Algorithms - A Survey:-

Subgraph Isomorphism problem is much more com-
plic ated than groph Iscmérphism problem. Howevei,
in what follows we shall consider only graph isomor-
phism problem, evemthough, digrsph isomorphism problem

is more general than theé is@mrpbism problen.

If we have two grophs G and H of orders m 2nd n.
respecti vely, men and if the two grephs are labeled
arbitrarily, then the sm.hgz"aph isomorphism problem
can be -solved by brute fo rce enumeration method.
However, such a methal can be efficient for very small

graphs,

Thus, in order to find a good algorithm (i.e.
an algorithm which is not exponentisl, but polynomial
in the lengcth of input) some indi rect methods have
bean used based on various properties of the graphs,
First, 91‘96@@3‘@3 bhave been developed that parbitian
the set of vegrtices of the two graphs on the basis of
a common property shared by all vartices in the block
of the partition, One such common property is the degnr
sequence of the vestices and vertices with the same

degree are placed in cne block. By submitting the
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two graphs to a battery of procedures, bssed on 2

variety of .properti-es fone ‘htj:pe'a” e‘veaf;ﬁaily to establish
sub&&s%gx:‘mhism or iack of it. & number of heuristic
algorithms have been devised which fall in this class.

A second ap#t:"dach i& the brute force enumeration method
followed by some refineraént garoceﬁum. This consists .

of the class c_f backtrack algorithms. Some suthors

have devised backprack algorithms alongwith a refine-
ment procedure wich does the early pruning of infeasi-

ble subtrees fmm' the backtrack tree,

A third approach is algebraic and is basically
canegery' theoretie_ end aims to find all monomorphisasms
of one graph into snother. However, this appr'oach is

logically the same as the second approach above.

In vhat follows, we give a brief account of all
the heuristic =né backtrack procedures known for the

subgreph isomorphism mnd related results.

7’



Salton snd Sussengurth developed a topological
structurs matching 'prceadm*e i‘ér subgraph isomorphism.
Based on ﬂila degree 'éet;uence of the two graphs, they
partitioned the vertices of the graphs into disjoint
classes and developed hsuristiec:. algorithm to match
vertices of the two graphs on the basis of their connecti-

vity pattems.,

Result of Saksi, Nagso and Matsughima [17]:~ In an

attempt to snalyse photographs taken hy aeroplanes,
earth satellites,etc., Sakasi, Negao and Metsushima

gave an algorithm to detect topologicelly equivalent
substructures in two pictures. They treated the problem
of finding parts in two pictures which are in 2 linear

transformation relation.

d Burstall:[1]
‘Barrow, Ambler and Burstalll1]in 1972 developed techni-

Generslized Result of Barrow, Ambler

gques for scene analysis, thot is, of deducing from a
single two dimensional image the orgenization; of the
scene which it depicts, in temms of objects and their
interrel atl onships. To this end they considered the
idea of a finite relstional structure and descridbed
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hierarchical matching process to find whether one
structure is a substructure of anﬂther.A They separated
the process into two parts, one of which is dependent,
on the motion of relaticnal structures and their mono-
morphisms, and the other is 2 more general slgebraic
notion df aﬁhierar@hicalvﬁaseriptive;syétem eouched

in category theoretic terminolegy, and hence allowing
other interpretaﬁlﬁna'ef the notion of mnrphism'andf
structures, otier than relational structures,‘which can
be used o cope with the easé whera the relations are
replaced by real valued fnnctions and approximate matches

are desired.

»

- Thus they developed formalisms to compare 3
hisrarchy of structures with 2 given picture structure
and find all monomorphisms from the structures in the
hierarchy to the picturé'atrueture. Such monomorphisms
describe the picture by saying‘that some known object

oceurs in it.

A Procedure by Waltz:~ Waltz[21]considered the problem
of ascertaining shapes of unfamiliar objects and that
of factoring out shadows when looking at scenes. 7To
this end he gave procedure which construct three dimen-

sional deseriptions from giae drawing which are obtained
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from scenes composed of plane faced ébjects under .
various lighting conditions and asslgmd labels to

line segments and junctions in the scene. He sub-
divided one or more edge labels into éeveral new ]mbeis,
embodying finer distinctions and then recomputed the
junction lsbel lists to inciude these new distinetims,
Cresting 2 large list of junction labelé, Waltz deécribe’s
method of using selectian rules to eliminate as many
labels as possible on the hasis of relat;ively local in-
formation ad developed filter programme %o remve
labels vhich cannot be part of sany total scene labelling

bosed on the context of the junction.

Method of Rosenfeld, Hummel and Zucker

3 Ra-sgnfeld,
Hummel and Zucker[16]describved several models for enaly-
sing a piémré or scene with the aim ¢f describing it
unambiguously, by using the relationship that exist among
the objects in the picture. To this end they gave &
parallel algeritha for constructing the greatest consis-
tent 13@3.11@ af‘the-;;a‘i‘cmre‘ under consideration, Their
algorithm is basically a parallel version of the fllter-
ing process used by Waltz[21].
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n:- Ullmann[20]in 1976,

improved upon the brute farce enumeration procedurs for

detecting subgrsph imorphism by using the tepalo@r of
the graph., His method is si,gailer to that of Salton 2nd
Sussenguth[18]except that his process does not work on

the two graphs separstely and in the organization of the

refinement procedure.

Ullmen designed the enumerstion slgorithm te find
21l of the isomorphisms between 3 given graph Geof order m,
ant a furthe r given graph H of order n, m<n, given by
their adjacency matrices B = [ags]and B = [bij] res-
pectively. UDefining M0 to be en m X n element matrix
M® = [mg 5]in accordanc e with

w7 wp 1 Af the degree of the j,p vertéx of H is
greater than or equal %o the degree of the

_”N i‘t;h vertex of G.

¢ othervise,

The slgorithm defines an m (rows) X n(columns)
matrix 1 whose elements are 1's and O's swh that each
row containg exactly <ne 1 and no column contains more

than one 1. The matrix M'= [m%ﬁ] is used te permute.

TH=1177
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the rows and columns of B to produce a further matrix
C. Specifically, C = [Gij]' ! i-ﬁ’E)T, where T denotes
transposition. If it is true ‘that

' ‘aij = 1) - (cij = 1) sennn (1)

for all 14i<cm, 1£3J<n, then Mi specifies an
isomorphism between G and a subgraph of H. 1In this
case, if "%_j =1, then the jth point ?f H corresponds
to the i) point of G in this isomorphism.

To reduce the amount of computation required
for finding subgrazph isomorphisms, Ullmann employed a
refinenent procedure that eliminates some of the 1's
from the matrices M, thus eliminating successor nodes
in the tree search. The refinement procedure‘refine”

vorks in the following menners:

Let V«i and vgj be vertices in G and H respect~-
ively and let {VM,...,VO‘!,...VO” } be the set of direct
descendants of V, 4 Let M be the metrix associated
with any given isomorphism under #({= M°). By definition
of subgreph isomorphism it is necessary that if Vg4
corresponds to ?Bj in the isomorphism, then for aach
Imy 2,00 § there must exist a point V. 4in H that is

| By
adjacent vo Vp, , such that Uy corresponds to Uy, in
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the isomorphism. If VB corresponds te Y, in the

y T,
isomorphism, then the element of M1 that correspondis

to §Vxx, prgis 1. Therefare if ¥y, corresponds to

VB:} in any isomorphism under M, then for each

X= 1,2,.40, 3 there nust be & 1 in M corresponding to
some { Vix? vBy‘S such thst ‘?w is adjacent to Vpy .

Thus, if Vo\g corresponds to VBj in any isomorphism under
M, then '

lag, = 1) = G?)i L bog = Hheeeail2)

for all 1$x<m, and 1€y<n.

The refinement procedure simply tests each 1 in
¥ to find vhethe r condition (2) is satisfied. For any
ﬁ‘u = {1 such that (2) 45 not satisfied, Mg " 1 is
chanzsed to 4 5 -.Q. Such changes may cause condition
{2) to be no longer satisfied for further 1's in M, so
thet further changes can be made, and so on. Infact,
the refinenent prﬁeem re applies condition (2) in turn
to each 1 in'm, and 4t then does this over and .aver
agein until there is en iterstion in which all the
1's in M sre processed and none of them is changed to O.
However, the refinemnt procedure may leave M unchanged.

A necessary snd suf ficlent condition for subgraph
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isomorphism is that the refinerent procedure leaves
M‘ unchanged.‘ Thig follows because if Mt 1s unchang ed
by the refinement procedure then (2} holds for each 1

in B'. Therefare #'

specifies a one to one mapping
of G into H such that if two vertices are adjacent in

i then the two corresponding vertices in H are adjacent.

The slgorithm uses an n-bit binary vector
éi@“1 geesey Fi,...,?n‘g tc recard which columns have been
used at an intermediaste state of the computation; Fi'*‘t
4if the iy column has been used. The algorithm also
uses a vector%ﬁ.’.”., Hysesees Hy'| o record which
‘column has been selected at which depth: Hg = K if the
K, columm has been selected at depth d. In the
algorithm, t.h.e'matrim My is = st‘omdccpy of patrix
M at depth d. |

The Algorithm(20]

Step 1. H=M®, d= 1, Hy =0
' for all $=t,.4m set F§ = §
refine M, if exit FAIL » then terminate slgorithm

Step 2. If there is mo value of § such that mg 4=t
and FJ = O then got to step 7.
ifd =1 then K¢ﬂ1 else K = 0



Step 3!

atep I{-q}

Step 5.

Step 6,

Step 7.

K=K+

20

if mgy = 0 or Fi, = 1 then got to step 3.

for gll § ¥ K set = 0

mﬂj

refine M, if exit FAIL then go to step 5.

If dem tlen go to step 6 else give output

to indicate thst an isomerphism has been

found .

I1f there is no J 7K such that m-dj
Fj# 0 then goto step 7. |

go to step 3.

Hd = K, Fg;f}a = +1
go to step 2. |

if d = ¢ tﬁen terminste slgorithm.

Fg=0,d=d-1,H=H

g0 to step 5.

= {1 and
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Algebraic Method of Ghahreman, Wong and Aus- Ghahraman,
Wong and fu [9] used the backtrack procedure of Ullmann [20]

and applied necessary conditions for the existence of a
fmnomerphim during the search of the decision tree to
prune infessible subtrees and to: reduce the extent of
search. They proposed two necessary conditions (strong
and weak) for the existence of 2 subgraph isomorphism

in terms of a ecluster. The weszk necessary conditions

is equivalent to the refinement process in [20] and

the strong necessary condition imposed adéitional require~
ments which can lead to an early pruning of &nfeasible

subtrees.

‘Procedure of Cheng and Husng:- Chbeng and Huang [6]

use a combination of refinement aﬂ& tree search by

using the Ullmenn's 0,1 matrix representation snd |
Berztiss [3] elemantaf& K formula concept. They express
the constraints as 2 set of constraint nodes. Ia their
result, node is an expression which specifies the restri-
'et jons asbout possible mappings between vertices. They

gave a parallel implementation of their techniqe.
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CHAPTER 2

2.1. Introductions~ Given two graphs G amd B, the
problem of determining whether G is a subgraph of H
haé importent spplications in Pattern Recognition,
Image Analysis, M@matim Processing, ete. The
problem can be solved by brute force enumeration method
which is principally s decision tree search algorithm.
However, such a method can Be practical for graphsg

of small size.

Fost of the previous works related to subgraph
isomorphism problem involve (1) a refinement procadure,

ard {2} an exhaustive tree search.

In view of the works of Salton and Sussengurth[18],
Sakai, Nagao snd Matsushima[17], Barrow, Ambler and
Burstall[1], Waltz[21], =nd Rosenfeld, Hummel and
Zucker[16], Ullmann [20]in 1976 gave a backtrack algori-
thm for subgraph isomorphism problem.



28

Ullmarfs algorithm conaiéts of a &eeiéi@n tree
search method which make$-ass‘9£ the degrees of the
vertices of the two graphs. The matching of verticas
iz made by a refinement pfacedﬁr& based on the connecti-

vity property of the two graphs.

Ghohraman, Wong and du{9]lpropesed an algorithm
totally similar to that of Ullmann which uses a strong
necessary condition for early pruning of infeasible

subtrees.

Cheng and Hueng|6]made use of Ullmann's algori-
thm [20] ond K-formula of Bueztiss [3] to give an
algorithm for subgraph isomorphism. They used the
K-formula to implemnt the refinement prbcedure of
Ulimann [20].

In what follows we propose to improve upon the

brute force enumeration method, for subgraph lsomorphism,

by introducing a procedure to eliminate meaningless
search performed in all the earlier algoriﬁhms. To
this ehd, based on the topology of graph G, we make @
preprocessirg of Graph H and then use Ullmann's algori-

thm on the reduced graph. Thus we introduce a refinement

procedure befoare searching for a‘subgraph isomérphism.



29

 In 2.2 we illustrate the propesed procedure
by means of an ex"ample. In §2.3 we describe ‘the
algorithm. We conclude the chapter in 8 2.4, where

we discuss correctness and efficiency of the algorithm.

2.2. Some Basic Results and Definitions:- We sssume

thot we are given two graphs & and K of orders m and n
respectively, m<n., In crder to test whether ¢ is
isomorphic to & subgraph of H, we shall subject H to

2 refinement procedure wnieh is based on the topology
of G. In order to fix ideas, we show, by means of an
example, that if G is isomorphic to a subgraph $ of H,
then G will remain isomorphic to the same subgraph S
of H‘, whe re Fii is = subgrzph of # md is obtained by
deleting all the vertices of H which cennot be assocliate
ed with any vertex of G under any isomorphism.

Examples Let the grephs G and H be of orders 5§ and 10
respecti vely. Ve assume that the two graphs are glven

in the form of their adjscency matrix.

Ve assume that the vertices in the two graphs
have been labeled according to some order {this does not

imply that the vertices are ordered in any way).
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Far testing whether G iz 2 subgrsph of H,
we make usé of the neighbourhood structure of the
vertices of G and H. To this end, we first calculate

the degree sequences for G amd H,

Depree sequasnce for G =i{h4, &, &, L, &)
Labels of vertices of H:1t 2 3 &4 5 6 7 8 9 10

Degree sequence of H {3 & 6 5 6 6 4 3 9 8)

We see from the degree sequence for H, that the
vertices lebeled 1 and 8 have degree less than the degree
of every vertex in G. Hence ne vertex of G can be
matched with vertices labeled 1 and 8 in H. Thus, if
G is a subgraph of H, G will remein to be a subgraph of
H even if the vertices 1 and 8 md all edges incident
with them are removed from H. HRemoving vertices labeled

1 and 8 from H, we get a new graph 31.

Again frow the adjacency metrix faxj H g ? we
calculste the degree sequence for H,‘.
Label of vertices of H, ¢ 2 3 &4 5 6 7 9 10

Degree Sequence for Hy : (3, 6,5, 5,6, 3,7, 7)
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Lgeain, the vertices labeled 2 and 7 in H, have

1
degi-ee less than the degree of -every vertex inG. In
gase G i{s 2 subgrasph of Hyy G must remain subgrsph of
Hy even if all the vertices labelled 2 and ?Lalongwi&h
edges incident with them are removed from Hy . Ueleting
vertices labeled 2 and_? from K1, we get 2 new graph ﬁz.
Again, from the sdjacency matrix of H,, we cal-
culate the degfee'sequgnse £6ruﬂ2 .

Labal

-

_of vertices of H,. -

3 4 5 6 9 10

(13

Degree Sequence Gor f, : {5, 5, 5, 5, 5, 5)

Infact, in the above example 211 the subgraphs
of H isomorphic to G can be essily found by inspection

of H The refinement procedure reduced the complexity

2.
of the problem considerably.

Our algorithm for subgreph isomorphism is to
~apply the backtrack enumeration y#ocedure- after refining
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2.3. The Algorithm:~ The graphs G and H are sssumed

to be given in the form of the ir adjacency matrix. Let
the graphs G and H be of orders m and mrespectively,
m<m . We label the vertices of G and H arbitrarily
and using adjacency motrix, we calculaste the degrece ee-
- guence of vertices of 4, and find the smallest degree
from the degree sequence. HNext we calculate the degrees
of vertices of H one by one. If the degree of any
vertex of H is found © be less than the smallest entry
in the degree sequence of G, then we delete that from H
elongwith all the aﬂgés ingident with that vartex,;;;x?n
labelins the graph, once again we calculate the degree
of vertices of the resulting grzph,anavif the degree

of any vertex is less than the degree of every vertex of
G, then thet wertex ic deleted. We keep repeating this
procedure until every vertex is of degree at least ss
grea# ag the smallést entry in the degree sequence of
G. If at my stage the order of the reduced groph of H
 becomes less than that of G, then the algorithm terminates.

Let the vertices of H be labeled Vy, 1£1<n,
Our subgraph igsomorphism algorithm consists of two sub-
algorithms, namely Algorithm 1 and &lgorithm 2. Algorie-

thm 1 is a rafinement procedure which is performed on
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the vertices of graph H., Alsa, we ossume thaot, for
1€i<n » 1, v4 Lo adjecent to vieq. Aldorithm 2 consists
of the brute Porce enumeration method given by [20] which
operates on the nxm motrix M®, defined by -

1 4if tho dogros of Jg, vortex of H e greator
™= then of equal to the dogroo of tha igp

voertox of G

0 otherwiso,

where 148cny 1sj<me  In defining the matrix A%, we assume
that the canséuukiue-rawa labeled u“éﬂﬂ‘vtia,Aar Mo, aro such
that vy is edjaocont to viey in graph 6, 128in-1,

Algorithm 2 4o ths enumoration algorithm designed to find
all of tho fsomogphizms between & givon graph G end subgrephs
of a further given graph Hy, Lot tho adgugéncy'matricea of
G end H be given by A=[ag]end B@[bxgl, respoctively '

wo define on M3 metrix to bs a n{rous)um (columns)
matrix whose elements arte 1%¢ and 0%, such that eaech row
conteins exactly one 1 and no column containes more then aﬁe‘i,
The metrix ﬂ“[mij] ie uoed to permute the rows end columns
of matrix 8 to produce a furthor mstrin Cs Spocificelly, we
define ca[ﬁtj]“-ﬁ’(ﬁ‘s)’, where T denotes transposition, If &t
is truo thet

‘-%3””9 (£15=1)s essesvesscecan()
then MY apocifPios an ismogrphism butucen G and o sahgraph of H,
In this caoce, if-*ij 1y then the Jgn vertex of W corresponds

to the gy vortex of G in hb&s isomorphiom,

hlgoritha 2 uworks by geﬂegéting all posoaible matrices mt



such that for cach and every cloment Hig “P'Haf"mijﬂiiﬁ#(mfha%).

For sach euch matrix MY ¢hg plgorithm tests for Lsomorphisn

by applying condition(1), Mateicos Ml opo generated by systomee
tically ueing the adjecency a%:uetu#e‘o? G and chenging to 8 all
but ens af the iia;iﬁ sech of the rows of M) aubjoct to tﬁa
condition that ne column of & matrix MY may contain more then
ohe 1y In tho search trae, ths torminal nodes are at depth den
and they correspond to diet;&e? matrices MY, Each nonterminel
mode ot depth dep, correepends to a distinct metrix M .

which differs from M® in that in d of the zouws, all but ons of

the 1%s hos beon changed to 0.
The algorithm uses a mwbit binary vector {f1, ssavy Flonesy fi:&

to record which columns have beeh used at en intermediste otage
of the cnmp@tat&ang‘fiai if tho i¢n column has beon used. The
slgorithm aleo uses a vector gﬂiﬁsnab Hey esnes nﬁngo recofd

which tolumn hae beon sclected et which depthy Hdok £if the Ken

colunn has heen eolected at depth do.

ALGORITHA
- Step 1, Coalculate the dogres of vertices of G

Find the loast deqrec X, sot i=0.

~~~~~

Step 2: 1‘51*‘[ .



Stop 3,

Step 4,

Stea‘ﬁy

Step 14

- Step 24

Step 3,

Step 4,

Stop 5.

Step 64
Step 7,

33
Calculate the degree d(vy) of the Sy,
vertox vg of M. .If d(vy) <x, go to step &

1t mne{the total number of vertices deloted),
stheg putput "No Isomorphism®, »
f?iﬁﬁm, gconstruct M%, qgo to Algorithe 2,
Delete the fgy vertex of H,

1f =0, construct, M°, go to Algorithm 2,

1f i<m, go to ntep 2,

MMty d=lp Hysl

For 4=1,2,vsss0s™, o8t Fied

if there 15 no valuo of § such that

Qﬁj = 1 ond Fg = § then go to etep 73

g =n

1P d=1 then Kﬁﬁi, eleo Ked

Koiel

If mq =0 or Fu=! thon go to etep 3

for oll jJek set mdjen

It d<n then go to Step & oclse use condition
(i) anﬁ give output Lif an isomophism is Pound
i1f there is no j>k’auch that ”Hg‘i and

FJ““ then go to step 7.

PPy |

go ¢to atep 3,

HagaK, Fpet, dodet, go to etep 2

1P d=1 than algorithm terminates;

Fi=0y dodq, M=Ryy KeHys go to etep 8
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Given any tun graphs G ond He of ordors n and'm
reopectively, nem, if G i iaam@ﬁhic to a aubgtaph 8 gv'ﬁ,
then G uill remain to be fisomorphic to the subgroph 5 of M
even 1f ell the verticos of H which cannot beo matfhed to
any varte&inf 6 are doloted from He In fockty we hays
a thenrem to be proveds " | |
Ihoozemgs If 3_55 iamﬁaephig to a subgreph 5 of Hy thon
G will gomain tﬁ-bé‘isumaxpﬁxt'tn the subgraph Se éf‘the
subgraph ﬂ',-@f Hy abtaiﬁaﬂ by delsting all vortices of
H which are of degres less then the smallest degres in the

dagres sequence of Gy

ggggzjﬁ ;f G 1o laomorphic ho‘a‘suhgrnph 8 ﬁf ﬂ,'tﬁeﬁ G

end § huét hava the same number of Vorti€es ond wdges end
same topologicel structure. (x.a.géne same degree foquonce
and connectivity)s Thun, 4f tﬁn:b is a vsrton x of H which
is of degree lees thaﬁ the Gagraé of ocvory vettii is G,

then undor en isomorphic meppéngs no vortex of G can be
associated with xs Thus thore cannot bs o mepping of C

- 6nto a subgraph of H uhich conteins x shd oomo vortices of
Ss Thus % end all the odges incident with x do Mot contribute
to tho structure of S and honce can be removed Prom H without
affocting S $lpcaEf%ggd;g_axa.atbitxazv, the result followsy

Givan\any.twe §§a§hé G and Hy 4f G &5 isomorphic
to & ahbgtaphénf Hy then clearly G will rempin to bo. foomorphic
to the same subgraph of H after deleting vertices which esnnst
be metched to aﬂyvew&;ﬁzﬂf Gs Such a refinenent dostroye
ths topology gf_;magh_% %gﬁvratniﬂa all attuétués which is



relevent to the subgrgph isomorphism. Again, since

the adjacent rows of the matrix M° have label of vertices
of G, vhich are adjscert in G, the use of Algorithm 2

on M° leads to a traversal of the graph G in a systematic
manners By using 2 sultsble graph invariant, in the
hacktrack procedure, the number oii‘ matrices M' generated
czsn be reduced. Such a traversal of the Graph C elemi~
nates the useleas search which is performed in the .
algorithm given by Ullmen /207 .

Thus, the use of refinement procedure in Algorithm 1.
and sysaematis sesrch performed by Algorithm 2, reducae
the complexity of the subgraph isomorphism problem con=-
siderably. Thus m.ir algorithm improves upori the’ "rAasult-s

given by earlier authors.
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