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Chapter 1

Introduction

The main objective of this thesis is to study the distality of certain actions on real

and p-adic unit spheres. We also study the distality of actions of automorphisms

on SubG, where G is a locally compact group and SubG is the compact space of all

closed subgroups of G endowed with the Chabauty topology.

Distality was first introduced by David Hilbert (cf. Moore [23]) and further

studied by many in di↵erent settings (see Abels [1, 2], Ellis [14], Furstenberg [16],

Jaworksi-Raja [20], Raja-Shah [27, 28] and Shah [29]).

Let X be a (Hausdor↵) topological space. Recall that, a semigroup S

of homeomorphisms of X is said to act distally on X if for every pair of distinct

elements x, y 2 X, the closure of {(T (x), T (y)) | T 2 S} does not intersect the

diagonal {(d, d) | d 2 X}; equivalently we say that the S-action on X is distal. Let

T : X ! X be a homeomorphism. The map T is said to be distal if the group {T n}n2Z
acts distally on X. If X is compact, then T is distal if and only if the semigroup
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{T n}n2N acts distally (cf. Berglund et al. [6]). Note that a homeomorphism T of a

topological space is distal if and only if T n is distal, for any n 2 Z. We now give

some examples of distal maps.

Example 1.0.1. Let X = S1 and let T : S1 ! S1 be any rotation map. Then T is

distal.

Example 1.0.2. Let X = S1 ⇥ S1. Consider T : S1 ⇥ S1 ! S1 ⇥ S1 such that

T (x, y) = (x, xy). One can easily check that T is distal.

Example 1.0.3. Let X = R with the usual topology and consider an a�ne map

T : R ! R defined by T (x) = ax+b, a, b 2 R. Then T is distal if and only if |a| = 1.

In Chapter 2, we first state some known results which are useful. The action of

GL(n + 1,R) on Sn is defined as follows: for T 2 GL(n + 1,R) and x 2 Sn, T (x) =

T (x)/kT (x)k. This is a continuous group action. We prove following main result.

Theorem. (Theorem 2.2.1) Let S ⇢ GL(n + 1,R) be a semigroup. Then the

following are equivalent:

(a) S acts distally on Sn.

(b) The closure of SD/D in GL(n+1,R) is a compact group, where D is the centre

of GL(n+ 1,R).

(c) For the semigroup S0 = {↵TT | T 2 GL(n + 1,R) and ↵T = | detT |�1/(n+1)},
the closure of S0 is a compact group.

Corollary. (Corollary 2.2.5) Let S be a closed semigroup in GL(n+1,R) such that

for every T 2 S, detT = ±1. Then S acts distally on Sn if and only if every cyclic

semigroup of S acts distally on Sn.
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In Chapter 3, we study the dynamics of ‘a�ne’ maps T a on Sn. For T 2
GL(n + 1,R) and a 2 R \ {0} such that kT�1(a)k 6= 1. We define T a on Sn as

T a(x) = a+T (x)
ka+T (x)k . In the first section, we prove that T a is homeomorphism if and

only if kT�1(a)k < 1, and discuss the existence of fixed points and periodic points

of T a on S1, for di↵erent choices of T 2 GL(2,R). The existence of fixed points

and periodic points implies that the action of the a�ne map T a on S1 is not distal

as T
2

a 6= Id. We also discuss conditions on T under which T a on Sn is not distal,

n 2 N. In section two of this Chapter we discuss the behaviour of fixed and periodic

points of T a, for di↵erent rotations T , whether they are attracting or repelling. More

precisely, we prove the following results:

Theorem. (Theorem 3.1.3) Let T 2 GL(2,R) and let a 2 R2 \ {0} be such that

kT�1(a)k < 1. Then the following hold:

(1) If an eigenvalue of T is real and positive, then T a has a fixed point.

(2) If the eigenvalues of T are complex of the form r = t(cos ✓ ± i sin ✓), (t > 0),

then T = tABA�1 for some A in GL(2,R) and B is a rotation by the angle ✓.

Suppose cos ✓ > 0 and | sin ✓|  kT�1(a)k/(kAkkA�1k). Then T a has a fixed

point.

Proposition. (Proposition 3.1.7) Let T 2 GL(2,R). Suppose T has either real

eigen values or complex eigenvalues of the form t(cos ✓ ± i sin ✓), (t > 0), where

either 0 < cos ✓ < 1 or kTk > 5
p
detT . Then there exists an a 2 R2, such that

0 < kT�1(a)k < 1 and T a has a fixed point or a periodic point of order 2 and it is

not distal.

Theorem. (Theorem 3.1.10) Let T 2 GL(n+ 1,R), n 2 N. Suppose any one of the
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following holds:

(i) T has two real eigenvalues or T has a complex eigen value of the form t(cos ✓+

i sin ✓), t > 0 such that 0 < cos ✓ < 1.

(ii) T is an isometry with at least one real eigen value.

(iii) T is proximal with detT > 0.

Then there exists an a 2 Rn+1 with 0 < kT�1(a)k < 1 such that T a has a fixed point

or a periodic point of order 2 and T a is not distal.

Theorem. (Theorem 3.2.1) Let T be a rotation map and let a 2 R2 \ {0} be such

that ↵ = kak < 1. Then, for cos ✓ > 0, | sin ✓| < ↵, T a has two fixed points; one of

them is attracting and the other is repelling.

In Chapter 4, we study the distality of the action of a semigroup (in

GL(n,Qp)) and ‘a�ne’ actions on the p-adic unit sphere Sn = {x 2 Qn
p | kxkp = 1}.

Here, the action of GL(n,Qp) on Sn is defined as follows: for T 2 GL(n,Qp)

and x 2 Sn, T (x) = kT (x)kpT (x). For semigroups of SL(n,Qp), we prove a re-

sult analogous to Theorem 2.2.1 (see Theorem 4.1.4). We shall then define for

T 2 GL(n,Qp) and some nonzero a an ‘a�ne’ action T a : Sn ! Sn as follows

T a(x) = ka + T (x)kp (a+ T (x)), x 2 Sn. We discuss the dynamics of T a, which is

di↵erent from the real case. This Chapter contains the following main results:

Proposition. (Proposition 4.1.3) Let T 2 GL(n,Qp). If bT is distal for some b 2 Qp,

then T is distal. Conversely, if T is distal, then for some m 2 N and l 2 Z, plTm is

distal. If | detT |p = 1 and T is distal, then T is distal.
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Theorem. (Theorem 4.1.4) Let S ⇢ SL(n,Qp) be a semigroup. Then the following

are equivalent:

1. S acts distally on Sn.

2. The group generated by S acts distally on Sn.

3. The closure of S is a compact group.

Theorem. (Theorem 4.2.2) Suppose T 2 GL(n,Qp). Let T a : Sn ! Sn be defined

as T a(x) = ka + T (x)kp(a + T (x)), x 2 Sn. There exists an open compact group V

such that for all a 2 V \ {0} we have kT�1(a)kp < 1 and the following hold:

(I) If T is distal, then T a is distal for all nonzero a 2 V .

(II) If T is not distal, then for every neighbourhood U of 0 contained in V , there

exists a nonzero a 2 U such that T a is not distal.

In Chapter 5, we study the space SubG of all closed subgroups of a topological group

G endowed with the Chabauty topology. We first study the behaviour of sequences

in SubG and prove some elementary results. There is a natural action of Aut(G) on

SubG which is defined as Aut(G) ⇥ SubG ! SubG, (T,H) 7! T (H); T 2 Aut(G),

H 2 SubG. For T 2 Aut(G), we study the distality of T on SubG. Let G0 denote the

connected component of the identity in G. In this this section we prove the following

main result:

Theorem. (Theorem 5.2.5) Let G be a locally compact metrizable group, T 2
Aut(G) and let K be the maximal compact normal subgroup of G0. If T is distal

on SubG, then T is distal on G/K0. Moreover, if T acts distally on K0, then T acts

distally on G.
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Chapter 2 and a part of Chapter 3 contain results from the work done in

[30]. Chapter 4 contains results from the work done in [31]. Chapter 5 contains

results from an ongoing collaboration.
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Chapter 2

Dynamics of semigroup actions on

compact Hausdor↵ spaces

In this chapter, the first section covers definitions and known results which are useful

in the proof of main results in the later part of the chapter. In the second section

we prove the result which characterises the distality of the action of a semigroup of

GL(n+ 1,R) on Sn.

2.1 Definitions and Known results

Definition 2.1.1. Let T be an invertible linear map on the real vector space Rn.

Define C(T ) := {x 2 Rn | T n(x) ! 0 as n ! 1}. Observe that C(T ) is a

T -invariant subspace called the contraction space of T . Observe that, for T 2
GL(n,R), T |C(T ) has all the eigenvalues of absolute value less than one and T |C(T�1)
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has all the eigenvalues of absolute value greater than one.

We list here some known results which are useful in the proof of main results.

Lemma 2.1.2. ([13] Lemma 2.1) Let V be a finite-dimensional vector space over

R. Let {↵n} be a sequence in GL(V ). Then there exists a subspace W of V with the

property that there exists a subsequenec {↵nk
} of {↵n} such that {↵n(v)} converges

for all v 2 W and ↵nk
(v) ! 1 for v /2 W .

Lemma 2.1.3. ([2], Theorem 1
0
) Let T be a linear transformation in GL(n,C).

Then T is distal if and only if every eigen value of T has absolute value one.

Theorem 2.1.4. ([14], Theorem 1) If X is a compact space and T is a surjective

continuous map on X, then T is distal if and only if E(T ) = {T n | n 2 Z} is a group.

Theorem 2.1.5. ([15], Theorem 1.1) Suppose that the subgroup G ⇢ GL(n,C)

satisfies the following:

(i) Every element of G is semisimple and all its eigenvalues have absolute value 1.

(ii) G is closed with respect to the ordinary topology of GL(n,C). Then G is con-

jugate in GL(n,C) to a subgroup of Un(C) and therefore compact.

Note that, for x 2 Rn we shall consider kxk as an euclidean distance from

0 in Rn throughout the dissertation. For x 2 Rn \ {0}, let x = x/kxk.

2.2 Distal action of semigroups on Sn

In this section, we consider a semigroup S of GL(n + 1,R) and study the distality

of its canonical actions on Sn. For T 2 GL(n + 1,R), let T : Sn ! Sn be defined
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as T (x) = T (x)/kT (x)k. Note that if T 2 GL(n + 1,R) is distal, it does not imply

that T is distal. For example, if we consider T =

2

41 1

0 1

3

5. T is a distal map on R2

but T is not distal on S1, as T
n
(x) ! (1, 0), for all x 2 S1 \ {(�1, 0)}. Recall that

S ⇢ GL(n+ 1,R) acts on Sn as follows: for T 2 GL(n+ 1,R).

GL(n+ 1,R)⇥ Sn ! Sn, (T, x) 7! T (x), where x 2 Sn.

It is a continuous group action. The following theorem characterises distal actions

of semigroups of GL(n+ 1,R) on Sn.

Theorem 2.2.1. Let S ⇢ GL(n + 1,R) be a semigroup. Then the following are

equivalent:

(a) S acts distally on Sn.

(b) The closure of SD/D in GL(n + 1,R)/D is a compact group, where D is the

centre of GL(n+ 1,R).

(c) For the semigroup S0 = {↵TT | T 2 GL(n + 1,R) and ↵T = | detT |�1/(n+1)},
the closure of S0 is a compact group.

We first prove another result which will be required in the proof of the

above theorem.

In the following proposition, for T 2 GL(n,C), where C is the field of com-

plex numbers, the condition that {Tm}m2N is compact, is equivalent to the condition

that {Tm}m2N is a compact group (cf. [19]). It is also equivalent to the condition
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that T is semi-simple and its eigenvalues are of absolute value one; (this fact is well-

known). Therefore the following proposition shows that Theorem 1.1 of [15] holds

for semigroups.

Proposition 2.2.2. Let S be a closed semigroup in GL(n,C) such that for every

element T 2 S, the closure of {Tm}n2N in GL(n,C) is compact. Then S is a compact

group.

Proof. Let HT = {Tm}m2N. Since HT is compact, it is a group (see Sec. 1 in Ch.

A of [19]). Therefore every element of S is invertible and hence S itself is a group.

Moreover, as HT is a compact group, T is semi-simple and eigenvalues of T are of

absolute value one. Hence by Theorem 1.1 of [15], S is contained in a conjugate of

the unitary group Un(C). In particular, S is a compact group.

Remark 2.2.3. In Proposition 2.2.2, we have considered a closed semigroup because

there exists a subgroup of GL(n,C) with non-compact closure such that every element

of the subgroup generates a relatively compact group (see Counterexample 1.10 [5]).

Proof of Theorem 2.2.1: (a) ) (c) : Suppose the S-action on Sn is distal. Since

the action of S0 on Sn is same as that of S, we have that the action of S0 on Sn

is distal. Moreover, as the closure of S0 is also a semigroup whose elements have

determinant ±1, and it acts distally on Sn, we may assume that S0 is closed. We

first show that for every T 2 S0, {T n}n2N is relatively compact. Let T 2 S0 be fixed.

As detT = ±1, at least one of the following holds: (i) all the eigenvalues of T are of

absolute value one, (ii) at least one eigenvalue of T has absolute value less than one

and at least one eigenvalue of T has absolute value greater than one.

If possible, suppose {Tm}m2N is not relatively compact in S0. Then there
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exists {mk} ⇢ N such that {Tmk} is divergent, i.e. it has no convergent subsequence.

Moreover, we show that there exist a subsequence of {mk}, which we denote by {mk}
again, and a nonzero vector v0 such that {Tmk(v0)} converges.

Suppose (i) holds. If 1 or �1 is an eigenvalue of T , then there exists a

nonzero eigenvector v such that T (v) = v or T (v) = �v. If all the eigenvalues of T

are complex and of absolute value one, then there exists a two dimensional subspace

W 0 such that T |W 0 , being conjugate to a rotation map, generates a relatively compact

group in GL(W 0). Hence, for every v0 2 W 0 \ {0}, {Tmk(v0)} is relatively compact

and has a subsequence which converges.

Now suppose (ii) holds. Then T has at least one eigenvalue of absolute

value less than one. Therefore, the contraction group C(T ) is nontrivial, and we can

choose v0 as any nonzero vector in C(T ).

By Lemma 2.1 of [13] (see Lemm 2.1.2 above), there exist a subspace W of

Rn+1 and a subsequence {lk} of {mk} such that {T lk(v)} converges for every v 2 W

and kT lk(v)k ! 1, whenever v 62 W . Here W 6= {0} as v0 2 W .

Now we show that W = Rn+1. If possible, suppose W 6= Rn+1. Then there

exists u 2 Rn+1 \ W such that kT lk(u)k ! 1. Since Sn is compact, passing to a

subsequence if necessary, we have T
lk(u) = T lk(u)/kT lk(u)k ! a, for some a 2 Sn.

Let v0 2 W be as above. As u /2 W,u + v0 /2 W and therefore T lk(u + v0) !
1. As {T lk(v0)} is bounded, we get that T

lk(u + v0) ! a. Here, u 6= u+ v0 as

v0 2 W and u /2 W . This is a contradiction as S acts distally on Sn. Hence

W = Rn+1, and therefore {T lk} is bounded. As {lk} is a subsequence of {mk}, we
arrive at a contradiction to our earlier assumption that {Tmk} is divergent. Hence

{Tm}m2N is relatively compact and all its limit points belong to S0. Therefore, by
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Proposition 2.2.2, S0 is a compact group.

(c) ) (b) as SD/D = S0D/D which is a compact group. It is easy to

see that (b) ) (a) as on Sn, the action of S is same as the action of SD/D whose

closure is a compact group which acts distally.

Remark 2.2.4. From Theorem 2.2.1, it follows that for a semigroup S ⇢ GL(n +

1,R) whose all elements have determinant 1 or �1, the distality of the S-action on

Sn implies the distality of the S-action on Rn+1. In the latter part of the proof of

the theorem, instead of [15], one can also use the results about the structure of distal

linear groups from [1] and give a di↵erent argument.

There are examples of actions of semigroups on compact spaces which are

not distal but every cyclic subsemigroup acts distally, (see Example 2.5 [20]). How-

ever, the latter does not happen in the case of closed semigroups of SL(n+1,R) for

the action on Sn.

Corollary 2.2.5. For a closed semigroup S of SL(n+1,R), the following holds: S

acts distally on Sn if and only if every cyclic semigroup of S acts distally on Sn.

Proof. The“only if” statement is obvious. Now suppose every cyclic semigroup of S

acts distally on Sn. Let T 2 S. By Theorem 2.2.1, {Tm}m2N is a compact group.

Now the assertion follows from Proposition 2.2.2.
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Chapter 3

Dynamics of ‘a�ne’ maps on Sn

This Chapter has two sections. In the first section, we define an ‘a�ne’ action on

unit sphere Sn, n 2 N, and study its dynamics. In the second section we study the

behaviour of fixed points.

3.1 Dynamics of ‘a�ne’ actions

Consider the a�ne action on Rn+1, Ta(x) = a + T (x), where T 2 GL(n + 1,R),

and a 2 Rn+1. In this section, we first consider the corresponding ‘a�ne’ map

T a on Sn which is defined for any nonzero a satisfying kT�1(a)k 6= 1 as follows:

T a(x) = Ta(x)/kTa(x)k, x 2 Sn. (For a = 0, T a = T , which is studied in Chapter 2).

Observe that Ta(x) = 0 for some x 2 Sn if and only if T�1(a) has norm 1. Therefore,

T a is well defined if kT�1(a)k 6= 1. The map T a is a homeomorphism for any nonzero

a satisfying kT�1(a)k < 1 (see Lemma 4.2.1). In this section, we study the dynamics
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of such homeomorphsims T a.

Note that any nontrivial homeomorphism S of S1 with a fixed or a periodic

point is not distal unless some power of S is an identity map. In fact if S has

a fixed point or a periodic point of order 2, then either S2 = Id, or there exist

x, y 2 S1, x 6= y, such that S2n(x) ! z and S2n(y) ! z for some fixed point z of S2.

This can be seen through an identification of S1 to [0, 1] and getting an increasing

homeomorphism of [0, 1] equivariant to S2, as the latter is orientation preserving.

These facts are well-known, we refer to [25] and [9] for more details. We will discuss

the existence of fixed points or periodic points of order 2 for T a on S1, T 2 GL(2,R),

under certain conditions on the eigenvalues of T and the norm of T . In Lemma 3.1.2,

we prove that for the homeomorphic map T a on S1, T
2

a is nontrivial. Therefore, if

T a has a fixed point or a periodic point of oder 2, then T a is not distal.

Lemma 3.1.1. Let T 2 GL(n+1,R) and let a 2 Rn+1\{0} be such that kT�1(a)k 6=
1. The map T a on Sn is a homeomorphism if and only if kT�1(a)k < 1.

Proof. Suppose kT�1(a)k < 1. From the definition, it is clear that T a is continuous.

It is enough to show that T a is a bijection since any continuous bijection on a compact

Hausdor↵ space is a homeomorphism. Suppose x, y 2 Sn such that T a(x) = T a(y).

Then we have (a+ T (x)) /ka+ T (x)k = (a+ T (y)) /ka+ T (y)k or (1� �)T�1(a) =

�y� x, where � = ka+T (x)k/ka+T (y)k. If � 6= 1, then we get that kT�1(a)k � 1,

a contradiction. Hence � = 1, and x = y. Therefore, T a is injective.

Let y 2 Sn be fixed. Let  : R+ ! R+ be defined as follows:  (t) =

ktT�1(y)�T�1(a)k, t 2 R+. Clearly,  is a continuous map, and hence the image of

 is connected. We have  (0) = kT�1(a)k < 1 and  (t) ! 1 as t ! 1. Therefore

there exists a t0 2 R+, t0 6= 0 such that  (t0) = 1. Let x = t0T
�1(y)�T�1(a). Then
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x 2 Sn and T a(x) = y. Hence T a is surjective.

Conversely, if kT�1(a)k > 1, then T a(x) = T a(�x) = a/kak, for x =

T�1(a)/kT�1(a)k 2 Sn, i.e. T a is not injective.

Lemma 3.1.2. For the homeomorphism T a on S1, T
2

a 6= Id.

Proof. If possible, suppose T
2

a = Id. Therefore T
2

a(x) = x and T
2

a(�x) = �x, for an

arbitrary x 2 S1. From the definition of T a, for T 2 GL(2,R), we have

b1a+ T (a) + T 2(x) = b2x (3.1)

b01a+ T (a)� T 2(x) = �b02x (3.2)

Where b1 = ka + T (x)k, b01 = ka � T (x)k, b2 = kb1a + T (a) + T 2(x)k and b02 =

kb01a+ T (a)� T 2(x)k. Adding above equations, we get that

(b1 + b01)a+ 2T (a) = (b2 � b02)x.

This implies that either x or �x belongs to the positive cone generated by a and

T (a) in R2. Since x is an arbitrary element of S1, it shows that every element of

S1 belongs to the positive cone generated by a and T (a), which is a contradiction.

Therefore T
2

a 6= Id.

Observe that, R2 is isomorphic to the field C of complex numbers and S1 is

a group under multiplication. For x 2 R2 \ {0}, we take x�1 as the inverse of x in C.

Theorem 3.1.3. Let T 2 GL(2,R) and let a 2 R2 \ {0} be such that kT�1(a)k < 1.

Then the following hold:

(1) If an eigenvalue of T is real and positive, then T a has a fixed point.
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(2) If the eigenvalues of T are complex of the form r = t(cos ✓ ± i sin ✓), (t > 0),

then T = tABA�1 for some A in GL(2,R) and B is a rotation by the angle ✓.

Suppose cos ✓ > 0 and | sin ✓|  kT�1(a)k/(kAkkA�1k). Then T a has a fixed

point.

Remark 3.1.4. If T has complex eigenvalues, then we may assume in (2) above that

detA = ±1 and A is unique up to isometry. For if ABA�1 = CBC�1 where B is

a rotation and B 6= ±Id, then C�1A commutes with B and hence it is a rotation.

Therefore, kAkkA�1k is uniquely defined for any such T . We will deal separately in

Proposition 3.1.5 the case when t�1T is a rotation by an angle ✓ (as we may take

A = Id in this particular case).

Proof of Theorem 3.1.3: Note that T a = (�T )(�a) for all � > 0. Without loss of

any generality, we can assume that T 2 GL(2,R) such that detT = ±1. Observe

that T a has a fixed point if there exists � > 0 such that �Id � T is invertible and

x� = (�Id� T)�1(a) has norm 1. However, such a � may not exist. Hence, we deal

with some of the special cases below separately.

(1) Suppose T has a positive real eigenvalue. There exists A 2 GL(2,R) such that

T = ABA�1 where B =

2

4t 0

0 s

3

5 or

2

41 1

0 1

3

5 for t > 0 and ts = ±1. Let a 2 R2 \ {0}

be fixed such that kT�1(a)k < 1. Let A�1(a) = (a1, a2).

Now consider B =

2

4t 0

0 s

3

5. Note that if a2 = 0 then a = a/kak is a

fixed point of T a. If s = 1 then T = Id, and a is a fixed point of T a for a 2 R2

as above. Now let s 6= 1. Suppose a1 = 0. If s > 0 then a is a fixed point

of T a. Now suppose s < 0. Then ts = �1 and t � s > 0. Here, kT�1(a)k =
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kAB�1A�1(a)k = kA(s�1A�1(a))k = kA(0, s�1a2)k = ktak < 1 (which is given).

Therefore, kA(0, a2/(t � s))k = k(t � s)�1ak = (t2 + 1)�1ktak < 1. Moreover, as A

is an invertible linear map, kA(x, a2/(t � s))k ! 1 as |x| ! 1. Therefore there

exists a real number x0 6= 0 such that kA(x0, a2/(t� s))k = 1. It is easy to see that

x = A(x0, a2/(t� s)) is a fixed point of T a.

Let a1 and a2 be nonzero. Consider f : R \ {t, s} ! R+ defined by f(�) =

kA(a1/(� � t), a2/(� � s))k. As � ! 0, f(�) ! kT�1(a)k < 1, and as � ! t0,

f(�) ! 1, where t0 = min{t, s} if s > 0, and t0 = t if s < 0. Therefore there exists

a �0 2 ]0, t0[ such that kA(a1/(�0 � t), a2/(�0 � s))k = 1. It is easy to check that

A(a1/(�0 � t), a2/(�0 � s)) is a fixed point of T a.

Let B =

2

41 1

0 1

3

5. If a2 = 0, then a is a fixed point for T a. As kT�1(a)k < 1,

arguing as above we can find a �1 2]0, 1[ and show that A(a1/(�1 � 1) + a2/(�1 �
1)2, a2/(�1 � 1)) has norm one and it is a fixed point of T a.

(2) As T has complex eigenvalues t(cos ✓ ± i sin ✓), (t > 0), we have that detT > 0.

Hence we may assume that detT = 1 and T = ABA�1, where B is a rotation

by the angle ✓. Let r1 = cos ✓ > 0, r2 = sin ✓ and A�1(a) = (a1, a2). Let g :

R+ ! R+ be defined as g(�) = kA(�Id � B)�1A�1(a)k. Then g(0) = kT�1(a)k <

1. As B is an isometry, we have that kA�1(a)k = kA�1T�1(a)k. Here, g(r1) �
|r2|�1kA�1(a)k/kA�1k � |r2|�1kT�1(a)k/[kAkkA�1k] � 1. Then there exists a �2 2
]0, r1] such that g(�2) = 1. It is easy to check that A(�2Id � B)�1A�1(a) = (�2Id �
T)�1(a) is a fixed point of T a.

Proposition 3.1.5. Suppose T = B i.e. T (x) = rx, and a 2 R2 \ {0}, where a

and B are as in Theorem 3.1.3 (2). Then T a(x) admits a fixed point if and only if
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cos ✓ �
p
1� ↵2 and | sin ✓|  ↵, where r = cos ✓ + i sin ✓ and ↵ = kak. Moreover,

if fixed points of T a, for r = (cos ✓, sin ✓) and a = (a1, a2), exist then they are of the

form

a(t� r)�1, where t = cos ✓ ±
p
↵2 � sin2 ✓.

Proof. Suppose T a has a fixed point, say, x0. Then (a + rx0)/ka+ rx0k = x0 or

a + rx0 = bx0, where b = ka+ rx0k. Let r1 = cos ✓ and r2 = sin ✓. Since kx0k = 1,

we have a = [(b� r1)� ir2] x0, therefore b satisfies a quadratic equation b2 � 2br1 +

1 � ↵2 = 0. As ↵ < 1 and b > 0, we have that r1 > 0. From the above equation

we obtain b = r1 ±
p

r21 � (1� ↵2). As r1, b 2 R+, we see that r1 �
p
1� ↵2 and

|r2|  ↵.

Conversely, suppose r1 �
p
1� ↵2 and |r2|  ↵. As r1 �

p
1� ↵2 > 0, t =

r1 ±
p
r21 � (1� ↵2) are positive real numbers, for which kt � rk = ↵. If we choose

xt = a(t � r)�1, then kxtk = 1 and T a(xt) = xt. Note that, T a has only one fixed

point if r =
�p

1� ↵2,±↵
�
.

Note that for T = �Id, a rotation by r = (�1, 0) on R2, T a on S1 has

only four periodic points of order 2; namely a,�a, x0, a � x0, where x0 is such that

kx0k = ka � x0k = 1, which we would prove in Chapter-4 in Corollary 3.2.2 and

also discuss their behaviour. The following Lemma 3.1.10 discusses the existence of

periodic points of order two for T a, where T is a rotation belonging to the specific

region of S1.

Lemma 3.1.6. Let T (x) = rx, for r = cos ✓ + i sin ✓, on S1, and a, ↵, T a be as in

Proposition 3.1.5.

(i) If cos ✓ > 0 and | sin ✓| > ↵, then T a has no periodic point of order two.
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(ii) There exists a neighbourhood U of (�1, 0) such that for (cos ✓, sin ✓) 2 U , T a

has four periodic points of order two.

Proof. Here T a(x) = (a+rx)/b1 and T
2

a(x) = (b1a+ra+r2x)/b2, where b1 = ka+rxk
and b2 = kb1a+ra+r2xk. Observe that, T

n

sa(sx) = sT
n

a(x), for s 2 S1, n 2 N. Hence

T
n

a(x) ! x0 if and only if T
n

sa(x) ! sx0. Therefore without loss of any generality, we

can replace a by sa, where s = (a)�1(0, 1), for (0, 1) 2 S1 and assume that a = (0,↵).

Step I. Consider r1 > 0 and r2 > ↵. Let  : [0, 1] ! S1 be such that  (t) = e2⇡i(1/4�t)

and  (0) =  (1) = (0, 1). Let � =  �1(T
�1

a (r�1a)). Then for x 2  ([0, �[),  �1(x) <

 �1(T
2

a(x)). For x = (x1, x2) 2  ([�, 1]) such that x2  0, and T
2

a(x) = (y1, y2) such

that y2 > 0. This implies that T a has no periodic point of order two.

Let ' : S1 �! S1 be defined by '((x1, x2)) = (�x1, x2), and T
0
a(x) =

(a+r0x)/ka+r0xk, where r0 = r1�ir2 and x 2 S1. It is easy to see that '�T a = T
0
a�',

as ' is a linear map. Therefore, the dynamics of T a and T
0
a will be same. Now for

the case of r1 > 0 and r2 < �↵, we can take r0 = r1� ir2 and T
0
a, and argue as above

for r0 and T
0
a, and get that T

0
a, and hence, T a has no periodic point of order two.

Step II. T
2

a(1, 0) = (x1, x2), where x1 = (r21�r22�r2↵)/b2, x2 = (b1↵+r1↵+2r1r2)/b2.

T
2

a(0, 1) = (y1, y2), where y1 = (�2r1r2 � r2↵)/b2, y2 = (r21 � r22 + r1↵ + b1↵)/b2.

T
2

a(0,�1) = (z1, z2), where z1 = (2r1r2 � r2↵)/b2, z2 = (r22 � r21 + r1↵ + b1↵)/b2.

As ↵ < 1 there exists a neighbourhood U of (�1, 0) such that if (r1, r2) 2 U

with r2 > 0, xi > 0, yi > 0 and zi < 0 for i = 1, 2. Let U = {(x, y) | x 
�
p
1� ✏2, |y| < ✏} be a neighbourhood of (�1, 0) such that ✏ = min{�1,�2, µ1, µ2, ⌫},
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where

�1 = 1/(↵ + 2)

�2 = (↵
p
1 + ↵2 � ↵)/2

µ1 =
p

1� ↵2/4

µ2 =
p

(1� ↵2)/2

⌫ =
p

(1� ↵2)/(↵ + 2).

It is easy to check that ✏ = �2. Let E = {(x1, x2) 2 S1 | x1 � 0, x2 � 0} and

F = {(x1, x2) 2 S1 | x1 � 0, x2  0}. Let E0 denote the interior of the set E.

T
2

a((1, 0)) 2 E0 as r2 < min{�1,�2}.

T
2

a((0, 1)) 2 E0 as r2 < min{µ1, µ2}.

T
2

a((0,�1)) 2 (F [ E)c as r2 < ⌫.

Therefore, as E,F ⇢ S1 are compact and connected, and T
2

a is injective, we

see that T
2

a(E) ( E and F ( T
2

a(F ). As both E and F are homeomorphic to a closed

interval in R, considering the continuous map on the closed interval corresponding

to T
2

a, we see that T
2

a has fixed points in E, i.e. there exists an x = (x1, x2) 2 E such

that T
2

a(x) = x and T
2

a(T a(x)) = T a(x). Similarly, there exists y 2 F such that y

and T a(y) are periodic points of T a of order two.

For the rotation r = (r1, r2) 2 U with r2 < 0, we can take r0 = r1 � ir2 and

T
0
a as in previous Step I, and use the above argument for r0 and T

0
a to deduce that

T
0
a, and hence T a has four periodic points of order two.

Proposition 3.1.7. Let T 2 GL(2,R). Suppose T has either real eigen values or a

complex eigenvalue of the form t(cos ✓ ± i sin ✓), (t > 0), where either 0 < cos ✓ < 1
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or kTk > 5
p
detT . Then there exists an a 2 R2, such that 0 < kT�1(a)k < 1 and

T a has a fixed point or a periodic point of order 2 and it is not distal.

Remark 3.1.8. Given any T with complex eigenvalues, we can take T 0 = CTC�1,

which has the same eigenvalues as T but the norm of T 0 is very large. Consider T =

tABA�1, t2 = detT as above with B a rotation by an angle ✓. Take C = C(�)A�1,

where C(�) =

2

4� 0

0 ��1

3

5. Then for � > 1, T 0 has norm greater than �2|t sin ✓| >

5
p
detT if � >

p
5/| sin ✓|; (here, sin ✓ 6= 0). That is, given any T 2 GL(2,R), there

exist a conjugate S of T in GL(2,R) and a nonzero a 2 R2 such that kS�1(a)k < 1

and Sa is not distal.

Proof of Proposition 3.1.7: We may assume that detT = ±1. If T has at least one

real positive eigenvalue then by Theorem 3.1.3(1), T a is not distal for all a satisfying

0 < kT�1(a)k < 1. If the eigenvalues of T are real and negative, then for the

eigenvector a, ā = a/kak is a periodic point of order 2 for T a, and hence it is not

distal.

Now suppose T has complex eigenvalues cos ✓ ± i sin ✓ with 0 < cos ✓ < 1.

Then detT = 1. Suppose T is an isometry. Since sin ✓ 6= 1, we can choose a 2 R2

such that | sin ✓| < kak < 1 and we have kT�1(a)k = kak < 1. Now by Theorem

3.1.3, T a has a fixed point. If T is not an isometry, T = ABA�1 and kTk > 1. As

0 < r1 = cos ✓ < 1, it is easy to check that T 2 is not an isometry and kT 2k > 1.

There exists a 6= 0 such that kT�1(a)k < 1 and kT (a)k = kT 2(T�1(a))k > 1. Now

let g : R+ ! R+ be defined as in the proof of Theorem 3.1.3. Then 0 < g(0) < 1 and

g(2r1) = kT (a)k > 1. Therefore, there exists �3 2 ]0, 2r1[, such that g(�3) = 1 and

hence A(�3Id�B)�1A�1(a) is a fixed point for T a. In either case, T a is not distal as T
2

a

is non-trivial. Now suppose r1  0. For g as above, g(1) = (1/[2(1�r1)])ka�T�1(a)k,
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Since kTk > 5, there exist a such that kT�1(a)k < 1 and kak > 5. Then g(1) >

(1/4)(5 � 1) = 1. Then, there exists �4 such that 0 < �4 < 1 and g(�4) = 1.

Therefore, A(�4Id� B)�1A�1(a) is a fixed point for T a.

Remark 3.1.9. If T a on S1 has a fixed point or a periodic point of order 2, as

mentioned earlier, T
2

a is orientation preserving and if T
2

a 6= Id, then there exist

x, y, z 2 S1, x 6= y such that T
2m

a (x) ! z and T
2m

a (y) ! z as m ! 1 where z is a

fixed point of T
2

a.

A map T 2 GL(n,R) is said to be proximal if it has a unique (real) eigen-

value of maximal absolute value and which has algebraic (and hence geometric)

multiplicity one.

Theorem 3.1.10. Suppose T 2 GL(n + 1,R), n 2 N. Suppose any one of the

following holds:

(i) T has two real eigenvalues or T has a complex eigen value of the form t(cos ✓+

i sin ✓), t > 0 such that 0 < cos ✓ < 1.

(ii) T is an isometry with at least one real eigen value.

(iii) T is proximal with detT > 0.

Then there exists an a 2 Rn+1 with 0 < kT�1(a)k < 1 such that T a has a fixed point

or a periodic point of order 2 and T a is not distal.

Proof. Suppose (i) holds. Then T keeps a 2-dimensional subspace V invariant and

the restriction of T to V satisfies the condition in Proposition 3.1.7 and hence there

exists a 2 V for which the assertion holds.
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Now suppose (ii) holds. Since T has at least one real eigenvalue, it has a

fixed point. If it has two real eigenvalues, the assertion will hold as above. Now sup-

pose all except one eigenvalues of T are complex. Then T keeps a 3-dimensional space

W invariant such that T |W is an isometry and has the form

2

6664

±1 0 0

0 cos ✓ � sin ✓

0 sin ✓ cos ✓

3

7775
.

Without loss of any generality we may assume that n = 2. Let a be such that

0 < kak < 1, T (a) = ±a and T a(a = ±a). Let U =

2

6664

1 0 0

0 cos ✓ � sin ✓

0 sin ✓ cos ✓

3

7775
. and

D =

2

6664

±1 0 0

0 1 0

0 0 1

3

7775
. Observe that U and D are also isometries, U(a) = a, D(a) = ±a

and T = UD = DU . Then T a = UDa = DaU , and hence T
m

a = UmD
m

a for all

m 2 N. Let b be an eigenvector for D other than a such that ha, bi = 0. Let W 0

be a two dimensional space generated by a and b. Then D(W 0) = W 0, D and Da

keep W 0 \ S2 invariant, the latter is isomorphic to S1 as we take the same norm on

W 0. As D|W has an eigenvalue 1, by Theorem 3.1.3 Da has a fixed point in W 0 \S2.

For S = D|W , Sa = Da|W 0\S2 and S
2

a, and hence D
2

a is nontrivial on W 0 \ S2. From

Remark 11, there exist x, y 2 W 0 such that kxk = kyk = 1 and D
2m

a (x) ! z and

D
2m

(x) ! z as m ! 1 for some fixed point z of D
2

a. Since U is an isometry, there

exists a sequence {mk} such that Umk ! Id. Hence, T
2mk

a (x) ! z and T
2mk

a (x) ! z

as k ! 1. This implies that T a is not diatal.

Suppose (iii) holds, i.e. T is proximal and detT > 0. Then either T has two

distinct real eigen values or the only real eigen value � is positive. In the first case the

assertion follows from (i). In the second case we have a 3-dimensional spaceW 00 which
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is T -invariant. It is enough to show the assertion for T |W 00 as that is also proximal

with a positive determinant. Without loss of any generality, we may assume that

n = 2. Since � is dominant and also positive, replacing T by T/�, we may assume

that � = 1 and the restriction of T to a 2-dimensional subspace V2 has eigenvalues of

absolute value less than 1, i.e. V2 = C(T ). Let us take a 6= 0 such that T (a) = a with

kak < 1. Then T a(a) = a. Let a0 be such that ka0k = 1 and ha0, xi = 0 for all x 2 V2.

Then a0 and V2 generate the whole space. Let y 2 V2 be such that a = ↵0(a0) + y,

where ↵0 > 0 as a 62 V2 and ↵0  kak < 1. For any x in V2 = C(T ) with kxk = 1, we

have T a(x) = (a+T (x))/ka+T (x)k. Let ↵1 = ka+T (x)k = k↵0a0+y+T (x)k � ↵0.

Similarly, for m � 2, we have T
m

a (x) = (sma+Tm(x))/ksma+Tm(x)k, where s1 = 1

and sm = 1 +
Pm�1

i=1 ↵i > 1, for ↵i = ksia + T i(x)k = ksi(↵0a0 + y) + T i(x)k � ↵0,

for all i. Therefore, sm = 1 +
Pm�1

i=1 ↵i � 1 + (m � 1)↵0 ! 1 as m ! 1.

Moreover, Tm(x) ! 0 as m ! 1 as x 2 C(T ). Therefore, we get that T
m

a (x) =

(sma+ Tm(x))/ksma+ Tm(x)k ! a/kak = a as m ! 1. Since this holds for every

x 2 V2 with kxk = 1, we have that T a is not distal. In fact, if we take any point

z 2 S2 which is a positive linear combination of a and some y 2 V2 with kyk = 1, it

is easy to show that T
m

a (z) ! a/kak.

Any isometry in GL(n+1,R) always has a real eigenvalue if n 2 N is even.

For any odd number n 2 N, any proximal map in GL(n+1, R) will have two distinct

real eigenvalues.

The following corollary shows that for a large class of T in GL(n,R), there

exists a nonzero a 2 Rn+1 such that T a is a homeomorphism and it is not distal.

Corollary 3.1.11. For T 2 GL(n+ 1,R), the following statements hold:

1. There exist a conjugate S of T in GL(n + 1,R) and a 2 Rn+1 \ {0} such that
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kS�1(a)k < 1 and Sa on Sn is not distal.

2. There exists a 2 Rn+1 \ {0} such that for some S 2 {T, T 2, T 3} such that

kS�1(a)k < 1 and Sa on Sn is not distal.

Proof. For T as above, either T has two real eigenvalues or a complex eigenvalue of

the form t(cos ✓ + i sin ✓), t > 0. In the first case, both the assertions follows from

Theorem 3.1.10 (i) for S = T . In the second case suppose 0 < cos ✓ < 1, then both

the assertions follows from Theorem 3.1.10 (i) for S = T . Now suppose cos ✓  0. As

T keeps a two dimensional space V invariant, we can replace T by T |V and assume

that n = 1. Now (1) follows from Proposition 3.1.7 and the Remark 10. For the

second assertion, if cos ✓ = 0, then T 2 has two identical real eigenvalues equal to �1,

and if cos ✓ < 0, then either cos(2✓) > 0 or cos(3✓) > 0. In either of these cases, (2)

follows for S 2 {T, T 2, T 3} from Theorem 3.1.10 (i).

3.2 Behaviour of fixed points

In the previous section, we have discussed the existence of fixed points and periodic

points of T a on S1 for di↵erent rotations (see Proposition 3.1.5 and Lemma 3.1.6). In

this section we study the behaviour of fixed points and periodic points for di↵erent

rotation map T , whether they are attracting or repelling.

Let X be a locally compact metric space and f : X ! X a continuous

map. A fixed point p of f is attracting if it has a neighbourhood U such that U

is compact, f(U) ⇢ U , and
T
n�0

fn(U) = {p}. A fixed point p is repelling if it has

a neighbourhood U such that U ⇢ f(U), and
T
n�0

f�n(U) = {p}. Note that if f is
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invertible, then p is attracting fixed point for f if and only if it is repelling fixed

point for f�1, and vice versa.

Theorem 3.2.1. Let T be a rotation map and let a 2 R2 \ {0} be such that ↵ =

kak < 1. Then, for cos ✓ > 0, | sin ✓| < ↵, T a has two fixed points; one of them is

attracting and other is repelling.

Proof. Note that the fixed points of T a, for the rotation r, are xt = a(t� r)�1, where

t = cos ✓ ±
p
↵2 � sin2 ✓. Let r1 = cos ✓ > 0 and r2 = sin ✓, |r2| < ↵.

As in Lemma 3.1.6, without loss of any generality we can choose a = (0,↵).

Let xt1 = (�r2/↵,
p
↵2 � r22/↵) and let xt2 = (�r2/↵,�

p
↵2 � r22/↵). Now these

are the fixed points of T a.

Step I. Let  : [0, 1] ! S1 be defined by  (t) = e2⇡i(✓+t), where e2⇡i✓ = xt1 .

Here, the restriction of  to ]0, 1[ is a homeomorphism and  (0) =  (1) = xt1 . Since

xt1 6= xt2 , there exists s0 2 ]0, 1[ such that  (s0) = xt2 . Let � : [0, 1] ! [0, 1] be a

map defined by �(t) = ( �1 � T a � )(t), for 0 < t < 1, �(0) = 0 and �(1) = 1. Since

T a is an orientation preserving homeomorphism we have that � is a homeomorphism

and it is increasing. Observe that  � � = T a �  and the set of fixed points of � is

{0, s0, 1}. Note that �(]0, s0[) = ]0, s0[ and �(]s0, 1[) = ]s0, 1[.

Step II. Let 0  r2 < ↵. Let s1 2 ]0, s0[ such that  (s1) = (�1, 0),

where (�1, 0) 2 S1. Here, T a((�1, 0)) = (�r1,↵ � r2)/
p
1 + ↵2 � 2r2↵. As r2 < ↵,

�(s1) < s1. Since � has no fixed point in ]0, s0[, �(t) < t for all t 2 ]0, s0[. As � is an

increasing function, for every t 2 ]0, s0[. {�n(t)} is a decreasing sequence and hence

�n(t) ! 0.

As r2 � 0 there exist s2, s3 2 ]s0, 1[ such that  (s2) = (1, 0),  (s3) =
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T a(1, 0) = (r1, r2 + ↵)/
p
1 + ↵2 + 2↵r2. As r1 > 0 and r2 � 0, we have that �(s2) =

s3 > s2. Since there are no other fixed points between s0 and 1, �(t) > t, for all

t 2 ]0, s0[. As � is an increasing function, for every t 2 ]s0, 1[. {�n(t)}n2N is an

increasing sequence, and hence �n(t) ! 1.

Note that for every t, if 0 < t < s0 (resp. s0 < t < 1), �(t) < t (resp.

�(t) > t). This implies that for any neighbourhood Ut = [0, t[[ ]1 � t, 1] of 0 and

1 (resp. Vt = ]s0 � t, s0 + t[ of s0), where t < min{s0, 1 � s0}, �(Ut) ⇢ Ut and

\n2N�
n(Ut) = {0, 1} and Vt ⇢ �(Vt) and \n2N�

�n(Vt) = {s0}. Therefore, xt1 is an

attracting fixed point and xt2 is a repelling fixed point for T a.

Step III. Let ' : S1 ! S1 be defined by '((x1, x2)) = (�x1, x2), and

T
0
a(x) = (a + r0x)/ka + r0xk, where r0 = r1 � ir2 and x 2 S1. It is easy to see that

' � T a = T
0
a � ', as ' is a linear map such that '(a) = '(0,↵) = a. Therefore, the

dynamics of T a and T
0
a will be same, i.e. T

n

a(x) ! y if and only if T
0
a

n
('(x)) ! '(y).

Hence for �↵ < r2 < 0, xt1 is an attracting and xt2 is a repelling fixed point for

T a.

Corollary 3.2.2. Let T = ±Id and a 2 R2 \ {0} as in above Theorem 3.2.1, then

(i) For T (x) = x, a and �a are the only fixed points of T a and T
m

a (x) ! a, for

all x 2 S1 \{�a}, i.e., a is an attracting fixed point and �a is a repelling fixed

point.

(ii) For T (x) = �x, a,�a, x0 and a�x0 are the only periodic points of T a of period

two where x0 is such that ka�x0k = 1 and {T 2m

a (x)} converges to either x0 or

a� x0, for all x 2 Sn \ {a,�a}. In other words, x0, a� x0 are attracting fixed

points and a,�a are repelling fixed points for T
2

a.
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Proof. Step 1. Let T (x) = x. By Theorem 3.2.1, it is easy to see that a is an

attracting fixed point and �a is a repelling fixed point for T a. That is, T
m

a (x) ! a,

for all x 2 S1 \ {�a}.

Step 2. Let T (x) = �x. Then T a(x) = (a� x) /ka� xk. The set of peri-

odic points of T a of order two is {a,�a, x0, a�x0}, where x0 is as in the hypothesis.

Consider, n = 1. Let x 2 S1 \ {a,�a} be fixed. Let # (resp. #0) be the

angle between a and x (resp. �a and x), and #m (resp. #0
m) be the angle between a

and T
m

a (x)
�
resp. �a and T

m

a (x)
�
, m 2 N. Then cos# = ha, xi/kakkxk = ha, xi/↵,

cos#1 = ha, (a� x)/ka� xki/↵ = (↵� cos#) /c1, where c1 = ka� xk, and

cos#2 = ha, T a ((a� x)/c1)i/↵ = ((c1 � 1)↵ + cos#) /c2, where c2 = k(c1�
1)a+ xk.

As c2 � 1� |c1 � 1|↵, cos#2 � |c1 � 1|↵ cos#2  (c1 � 1)↵ + cos#.

If c1 < 1, then we get that cos#2 < cos#. That is,

if ka� xk < 1 then ka� T
2

a(x)k > ka� xk. (1)

Similarly, we can show that, if c1 > 1, cos#2
0 < cos#0, where cos#0 = h�a, xi/↵ and

cos#2
0 = h�a, T

2

a(x)i/↵. That is,

if ka� xk > 1 then ka+ T
2

a(x)k > ka+ xk. (2)

Let  : [0, 1] ! S1 defined by  (t) = e2⇡i(r+t), where e2⇡ir = a. Here, the restriction

of  to ]0, 1[ is a homeomorphism and  (0) =  (1) = a. Then there exist t0, t1 2 ]0, 1[
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such that  (t0) = x0 and  (t1) = a� x0. Interchanging x0 and a� x0, if necessary,

we may assume that t0 < t1. Note that as ka � x0k = 1 and  (1/2) = �a, we

get that t0 < 1/2 < t1. Let � : [0, 1] ! [0, 1] be the homeomorphism defined by

�(t) = ( �1 � T
2

a �  )(t), for 0 < t < 1 and �(0) = 0,�(1) = 1. Observe that

 �� = T
2

a � and the set of fixed points of � is {0, t0, t1, 1}. From (1), it follows that

if t 2 ]0, t0[ (resp. t 2 ]t1, 1[), then �(t) > t (resp. �(t) < t). Since � is monotone, and

in particular, increasing, it follows that {�m(t)}m2N is an increasing sequence (resp. a

decreasing sequence) which is bounded above (resp. below) by t0 (resp. t1), if t 2 ]0, t0[

(resp. t 2 ]t1, 1[), and hence it converges to a fixed point in ]0, t0] (resp. [t1, 1[). That

is, �m(t) ! t0 for t 2 ]0, t0[ and �m(t) ! t1 for t 2 ]t1, 1[. Similarly using (2) we

get that, if t 2 ]t0, 1/2[ (resp. t 2 ]1/2, t1[), �(t) < t (resp. �(t) > t). Therefore,

�m(t) ! t0 for t 2 ]t0, 1/2[ and �m(t) ! t1 for t 2 ]1/2, t1[. As  is continuous and

 � � = T
2

a �  , the following holds: If x 2  (]0, 1/2[) (resp. x 2  (]1/2, 1[)), then

T
2m

a (x) ! x0, T
2m+1

a (x) ! a � x0 (resp. T
2m

a (x) ! a � x0, T
2m+1

a (x) ! x0). This

shows that x0, a� x0 are attracting fixed points for T
2

a and a,�a are repelling fixed

points for T
2

a. Hence (ii) holds.
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Chapter 4

Dynamics of linear and ‘a�ne’

actions on p-adic unit spheres

In this chapter we consider the n-dimensional p-adic vector space Qn
p and study

the dynamics of linear and ‘a�ne’ actions on p-adic unit sphere Sn. This Chapter

includes p-adic analogues of results about linear and ‘a�ne’ actions of semigroups

(of GL(n + 1,R)) on unit sphere Sn discussed in Chapter 2 and Chapter 3. In the

first section we consider a semigroup S of GL(n,Qp) and study the distality of the

S-action on Sn. In the second section, for T 2 GL(n,Qp) and a certain set of nonzero

a, we define ‘a�ne’ maps T a on p-adic unit sphere Sn and study the dynamics of

‘a�ne’ homeomorphisms T a on Sn.
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4.1 Distality of the semigroup actions on Sn

Let Qp be the p-adic field, and | · |p denote the p-adic absolute value on Qp. For

x = (x1, . . . , xn) 2 Qn
p , n 2 N, let kxkp = max1in |x|p, which defines a p-adic norm

on the vector space Qn
p . Let Sn = {x 2 Qn

p | kxkp = 1} be the p-adic unit sphere.

For disquisition on p-adic analysis we refer Koblitz [22].

For T 2 GL(n,Qp), let kTkp = sup{kT (x)kp | x 2 Qp, kxkp = 1}. Observe

that the norm of an element or a matrix, defined this way, is of the from pm for some

m 2 Z. We call T 2 GL(n,Qp) an isometry if it preserves the norm, i.e. if T keeps

Sn invariant. Note that T is an isometry if and only if kTkp = 1 = kT�1kp. For

x, y 2 Qn
p , kx + ykp  max{kxkp, kykp}; the equality holds if kxkp 6= kykp. We will

use this fact extensively. Recall that for a T 2 GL(n,Qp), T : Sn ! Sn is defined as

T (x) = kT (x)kp(T (x)), for all x 2 Sn. In this section we consider the group action

of GL(n,Qp) on Sn. For semigroups of GL(n,Qp), we prove a result analogous to

Theorem 2.2.1 (see Theorem 4.1.4). Recall that T 2 GL(n,Qp) is said to be distal

if {Tm}m2Z acts distally on Qn
p .

For an invertible linear map T on a p-adic vector space V = Qn
p , let C(T ) =

{v 2 V | Tm(v) ! 0 as m ! 1}. Here, V = C(T ) � M(T ) � C(T�1), where

M(T ) = {v 2 V | {Tm(v)}m2Z is relatively compact}. Note that T acts distally on

V if and only if C(T ) and C(T�1) are trivial (see Proposition 2.1 in Jaworski-Raja

[20], which is based on results of Baumgartener-Willis [11]). We refer the reader to

Wang [33] for more details on the structure of p-adic contraction spaces. We will use

the notion of contraction spaces below.

Lemma 4.1.1. Let T 2 GL(n,Qp). The following are equivalent:
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(1) T is distal.

(2) The closure of the group generated by T in GL(n,Qp) is compact.

(3) Tm is an isometry for some m 2 N.

Proof. (3) ) (2) is obvious and (2) ) (1) follows as compact groups act distally.

Now suppose T is distal, i.e. {Tm}m2Z acts distally on Qn
p . Then the contraction

spaces C(T ) and C(T�1) are trivial. By Lemma 3.4 of [33], we get that Qn
p =

M(T ) = {x 2 Qn
p | {Tm(x)}m2Z is relatively compact}, (cf. [33]). By Proposition

1.3 of [33], [m2ZT
m(Sn) is relatively compact, i.e. {kTmkp}m2Z is bounded and hence

{Tm | m 2 Z} is relatively compact in GL(n,Qp). This proves (1) ) (2). Now

suppose T is contained in a compact group. Then T±mk ! Id, for some {mk} ⇢ N.

Therefore, kT±mkkp ! 1 and as {kTmkp | m 2 Z} ⇢ {pl | l 2 Z}, we get that for all

large k, kT±mkkp = 1 and Tmk is an isometry. Therefore, (2) ) (3).

We state a useful result which is well-known and can be proven easily.

Lemma 4.1.2. Let X be a locally compact (Hausdor↵) topological space and let

Homeo(X) be the topological group homeomorphisms of X endowed with the compact

open topology. Let A,B 2 Homeo(X) be such that AB = BA and B generates a

relatively compact group in Homeo(X). Then A is distal if and only if AB is distal.

We now consider a canonical group action of GL(n,Qp) on Sn: For T 2
GL(n,Qp) and x 2 Sn, T (x) = kT (x)kpT (x). Observe that S1 = Z⇤

p = {x 2 Qp |
|x|p = 1} and GL(1,Qp) = Qp \ {0} acts distally on S1 as T = kTkpT 2 S1 for

every T 2 GL(1,Qp). The following will be useful in proving the main result of this

section.
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Proposition 4.1.3. Let T 2 GL(n,Qp). If bT is distal for some b 2 Qp, then T is

distal. Conversely, if T is distal, then for some m 2 N and l 2 Z, plTm is distal. If

| detT |p = 1 and T is distal, then T is distal.

Proof. Observe that bT is distal if and only if |b|�1
p T is so. As T = pmT for any

m 2 Z, we may replace T by |b|�1
p T and assume that T is distal. By Lemma 4.1.1,

T generates a relatively compact group, and hence T is distal. Conversely, suppose

T is distal. By 3.3 of [33], there exists m 2 N such that Tm = AUC, where C is a

diagonal matrix, U is unipotent, A is semisimple, A, U and C commute with each

other and A as well as U generate a relatively compact group. Now by Lemma 4.1.2,

we have that C is distal. Here, C = DD0 = D0D for some diagonal matrices D

and D0 such that the diagonal entries of D (resp. D0) are of the form plk , lk 2 Z,

k = 1, . . . n (resp. in Z⇤
p). Since D0 also generates a relatively compact group and it

commutes with D, by Lemma 4.1.2, D is distal. It is enough to show that D = plId,

as in this case, D would be central in GL(n,Qp) and this would imply that AU and

D0 commute, and hence, p�lTm = AUD0 would generate a relatively compact group

which in turn would imply that it is distal. If possible, suppose pl and pl1 are two

entries in D such that l < l1. As D = p�lD, we have that D1 = p�lD is distal, 1 is

an eigenvalue of D1 and D1 has another eigenvalue pl1�l which has p-adic absolute

value less than 1. Then the contraction space of D1, C(D1) 6= {0} as we can take

a nonzero y 2 Qn
p satisfying D1(y) = pky for k = l1 � l 2 N; and it follows that

y 2 C(D1). Let x 2 Sn be such that D1(x) = x and let y be as above such that

0 < kykp < 1. Then D1(x) = x and x+y 2 Sn. For Di
1(x+y) = (x+pkiy) ! x 2 Sn

as i ! 1. Therefore, D1
i
(x+ y) ! x and it leads to a contradiction as D1 is distal.

Therefore, D = p�lId and p�lTm is distal.

Suppose | detT |p = 1. Then | det(Tm)|p = | detT |mp = 1. As T is distal,
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Tm = plS for some l 2 Z where S generates a relatively compact group. Then

| detS|p = 1, and hence l = 0 and Tm = S.

The following Theorem characterises distal actions of semigroups on Sn.

Theorem 4.1.4. Let S ⇢ SL(n,Qp) be a semigroup. Then the following are equiv-

alent:

1. S acts distally on Sn.

2. The group generated by S acts distally on Sn.

3. The closure of S is a compact group.

Proof. Suppose (1) holds. Let S ⇢ SL(n,Qp). As the closure S of S is a semigroup

in SL(n,Qp) and it also acts distally on Sn, we may assume that S is closed. By

Proposition 4.1.3 and Lemma 4.1.1, each element in S generates a relatively compact

group (in S). In particular, each element of S has an inverse in S and S is a group.

Now by Lemma 3.3 of [17], S is contained in a compact extension of a unipotent

subgroup U in GL(n,Qp) which is normalised by S, i.e. S ⇢ K n U , where K is a

compact group which normalises U .

By Kolchin’s Theorem, there exists a flag {0} = V0 ⇢ · · · ⇢ Vk = Qn
p of

maximal U -invariant subspaces such that U acts trivially on Vj/Vj�1, j = 1, . . . , k.

Note that each Vj is maximal in the sense that for any subspace W containing Vj

such that W 6= Vj, U does not act trivially on W/Vj�1. It is easy to see that each

Vj is S-invariant as S-normalises U . If possible, suppose S is not compact. Then

there exists a sequence {Ti} ⇢ S such that {Ti} is unbounded. Then Ti = KiUi,
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i 2 N, where Ki 2 K and Ui 2 U such that {Ki} is relatively compact and {Ui}
is unbounded. Note that for each j, as S and U keep Vj invariant, Ki(Vj) = Vj

for all i. Passing to a subsequence if necessary, we get that there exists w 2 Sn

such that kUi(w)kp ! 1, T i(w) ! w0 2 Sn and also that Ki ! K0. For every

v 2 V1, Ti(v) = Ki(v) 2 V1, and hence {kTi(v)kp} is bounded. Let v 2 V1 \ {0}
be such that kvkp < 1. Then v + w 2 Sn. As {kKiUi(v + w)kp} is unbounded

and KiUi(v) = Ki(v) ! K0v, we get that T i(v + w) = KiUi(v + w) ! w0. This

contradicts (1). Therefore, S is compact, i.e. (1) ) (3).

Suppose S is a compact group. Then it contains G, where G is the group

generated by S. Since G is relatively compact, G acts distally on Sn. Hence (3) )
(2). It is obvious that (2) ) (1).

Note that the above Theorem 4.1.4 is valid for a semigroup S ⇢ GL(n,Qp)

satisfying the condition that | det(T )|p = 1 for all T 2 S; as if T is distal then by

above Proposition 4.1.3 the above condition implies that each T generates a compact

group and hence the rest of proof follows as it is. Consider D = {b Id | b 2 Qp}, the
centre of GL(n,Qp). It acts trivially on Sn and the group action of GL(n,Qp) on Sn

factors through D. One can get an exact p-adic analogue of Theorem 4.1.4 (1-2) for

semigroups of GL(n,Qp) using the techniques of algebraic groups (cf. [31]).

In the real case, Corollary 2.2.5 showed that S ⇢ SL(n+1,R) acts distally

on the (real) unit sphere Sn if (and only if) every cyclic subsemigroup of S acts

distally. An analogous statement does not hold in the p-adic case, as there exists a

class of closed non-compact subgroups of SL(n,Qp) whose every cyclic subgroup is

relatively compact but it does not act distally on Sn as it is not compact; e.g. the

group of strictly upper triangular matrices in SL(n,Qp), n � 2.
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4.2 Distality of ‘a�ne’ maps on p-adic unit spheres

Sn

In this section, we discuss the ‘a�ne’ actions on the p-adic unit sphere Sn. Consider

the a�ne action on Qn
p , Ta(x) = a + T (x), where T 2 GL(n,Qp), and a 2 Qn

p .

We first consider the corresponding ‘a�ne’ map T a on Sn which is defined for any

nonzero a satisfying kT�1(a)k 6= 1 as follows: T a(x) = kTa(x)kp(Ta(x)), x 2 Sn. (For

a = 0, T a = T , which is studied in the previous section of this chapter). Observe

that Ta(x) = 0 for some x 2 Sn if and only if T�1(a) has norm 1. Therefore, T a

is well defined if kT�1(a)kp 6= 1. The map T a is a homeomorphism for any nonzero

a satisfying kT�1(a)k < 1 (see Lemma 4.2.1 below). In this section, we study the

distality of such homeomorphisms T a.

Lemma 4.2.1. Let T 2 GL(n,Qp) and let a 2 Qn
p \{0} be such that kT�1(a)kp 6= 1.

Then the map T a on Sn is continuous and injective. T a is a homeomorphism if and

only if kT�1(a)kp < 1.

Proof. Suppose kT�1(a)kp 6= 1. From the definition of T a, it is obvious that it is

continuous. Suppose x, y 2 Sn such that T a(x) = T a(y). Then

ka+ T (x)kp (a+ T (x)) = ka+ T (y)kp (a+ T (y))

or (��1)T�1(a) = y��x, where � = ka+T (x)kp/ka+T (y)kp = pm for some m 2 Z.

If possible suppose � 6= 1. Interchanging y and x if necessary, we may assume that

� > 1 or equivalently, that m 2 N. This implies that k�xkp = |�|p = p�m < 1, and

we get

kT�1(a)kp = |� � 1|pkT�1(a)kp = ky � �xkp = 1,
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a contradiction. Hence, � = 1 and x = y. Therefore, T a is injective.

Now suppose kT�1(a)kp < 1. It is enough to show that T a is surjective, as

any continuous bijection on a compact Hausdor↵ space is a homeomorphism.

Let y 2 Sn. Let z = T�1(y) and let x = kzkpz � T�1(a). Since the norm

of kzkpz is 1 and kT�1(a)kp < 1, we have that kxkp = 1. Moreover, as kykp = 1, we

have that kzk�1
p = ka+ T (x)kp. Therefore, T a(x) = y. Hence T a is surjective.

Conversely, Suppose T a is surjective. Then there exists x 2 Sn such that

T a(x) = kakpa. We get that x = (pm � 1)T�1(a), where pm = ka + T (x)k�1
p kakp

for some m 2 Z; here m 6= 0 since x 6= 0. Now 1 = kxkp = |pm � 1|pkT�1(a)kp �
kT�1(a)kp since |pm � 1|p � 1 for every m 2 Z \ {0}. As kT�1(a)kp 6= 1, we have

that kT�1(a)kp < 1.

In Chapter 3, we have studied ‘a�ne’ maps T a on the real unit sphere Sn.

The following result shows that in the p-adic case, T a is distal for every nonzero a

in a certain neighbourhood of 0 in Qn
p if and only if T is so. This illustrates that the

behaviour of such maps in the p-adic case is very di↵erent from that in the real case.

Theorem 4.2.2. Suppose T 2 GL(n,Qp). Let T a : Sn ! Sn be defined as T a(x) =

ka+ T (x)kp(a+ T (x)), x 2 Sn. There exists an open compact group V such that for

all a 2 V \ {0} we have kT�1(a)kp < 1 and the following hold:

(I) If T is distal, then T a is distal for all nonzero a 2 V .

(II) If T is not distal, then for every neighbourhood U of 0 contained in V , there

exists a nonzero a 2 U such that T a is not distal.
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Proof. By 3.3 of [33], we get that there exist D and S which commute with T and

m 2 N such that Tm = SD = DS, where D is a diagonal matrix with the diagonal

entries in {pi | i 2 Z} and S generates a relatively compact group. Therefore, Sk

is an isometry for some k 2 N. Replacing m by km, we may assume that S itself

is an isometry. Let c0 = min{(1/kT�jkp) | 1  j  m � 1} and c1 = max{kT jkp |
1  j  m � 1}. As Sn is compact, 0 < c0  c1 < 1. Also, c0  kT j(x)kp  c1

for all x 2 Sn and 1  j  m � 1. Since kT jkp 2 {pi | i 2 Z}, we get that

{kT j(x)kp | x 2 Sn, 1  j  m� 1} is finite.

Let V be an open compact S-invariant subgroup in Qn
p such that V [ c0V [

c20V [c20c�2
1 V ⇢ W = {w 2 Qn

p | kwkp < 1}. Therefore, kvkp < min{1, c0, c20, c20c�2
1 } 

1 for all v 2 V and c0c
�1
1 V ⇢ c20c

�2
1 V ⇢ W . Moreover, kT�1(v)kp < c�1

0 c0 = 1 for

every v 2 V .

Let pl be the smallest nonzero entry in the diagonal matrix D and let

H = {x 2 Qn
p | D(x) = plx}. This is a nontrivial closed subspace of Qn

p . As S and

T commute with D, they keep H invariant and, as S is an isometry, kTm(x)kp =

p�lkxkp for all x 2 H.

Let a 2 V \ {0}. Take any x 2 Sn. Since kakp < c0 and kT (x)kp � c0, we

have kTa(x)kp = ka+ T (x)kp = k(T (x)kp and

T a(x) = kTa(x)kpTa(x) = kT (x)kp(a+ T (x)).

Let ↵1(x) = kTa(x)kp = kT (x)kp = �1,x. Let ↵j(x) = kTa(T
j�1

a (x))kp = ka +

T (T
j�1

a (x))kp, j 2 N, and let �j,x = ↵1(x) · · ·↵j(x), for all j � 2. Take �0,x = 1 and

�0 = Id for any map �. From above, we have that ↵j(x) = kT (T j�1

a (x))kp for all
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j 2 N. It is easy to show by induction that for every j 2 N,

T
j

a(x) = �j,xT
j(x) + �j,x

jX

i=1

��1
j�i,xT

i�1(a). (4.1)

Observe that as a 2 V , kT k(a)kp  c1kakp < c1(c0c
�1
1 ) = c0 and for any x 2 Sn,

kT k(x)kp � c0, 1  k  m� 1. Therefore, for j 2 N and 1  k  m� 2,

kT k(T
j

a(x))kp = [↵j(x)]
�1kT k(a) + T k+1(T

j�1

a (x))kp

= [↵j(x)]
�1kT k+1(T

j�1

a (x))kp.

Applying the above equation successively, we get that for 1  j  m � 1, ↵j(x) =

kT (T j�1

a (x))kp = [↵j�1(x) · · ·↵1(x)]�1kT j(x)kp i.e. �j,x = kT j(x)kp. Hence, c0 
�j,x  c1 for all x 2 Sn and 1  j  m � 1. Moreover, applying the same equation

again successively, we get for j � m that

↵j(x) = [↵j�1(x) · · ·↵j�m+1(x)]
�1kTm�1(a) + Tm(T

j�m

a (x))kp. (4.2)

Now we take a 2 V \H \{0}. Let x 2 Sn\H. Then kT�1(a)kp < c�1
0 c0 = 1

and hence, kT�1(a) + T
j�m

(x)kp = 1. This implies that

kTm�1(a) + Tm(T
j�m

(x))kp = kTm(T�1(a) + T
j�m

(x))kp = p�l. (4.3)

Using Eqs. (2) and (3), we get ↵j(x) = [↵j�1(x) · · ·↵j�m+1(x)]�1p�l, and hence

�j,x = p�l�j�m,x for all j � m. In particular, �m,x = p�l = kTm(x)kp. This implies

that �km+j,x = p�kl�j,x = p�klkT j(x)kp, k, j 2 N. Therefore, �j,x = kT j(x)kp,
j 2 N. Moreover, for all j, k 2 Z and x 2 H, T km+j(x) = pklSkT j(x) = pklT jSk(x)

and, kT km+j(x)kp = p�klkT j(x)kp as S is an isometry. In particular, �km+j,x =

p�klkT j(x)kp for all k, j 2 Z such that km + j � 0. Using the above facts together
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with Eq. (1), we get for k 2 N,

T
km

a (x) = �km,xT
km(x) + �km,x

kmX

j=1

��1
km�j,xT

j�1(a)

= Sk(x) +
kmX

j=1

kT�j(x)k�1
p T j�1(a)

= Sk(x) +
kX

i=1

mX

j=1

kT�j(x)k�1
p T j�1(Si�1(a))

= Sk(x) +
mX

j=1

��1
j,x T

j�1(ak),

where ak =
Pk

i=1 S
i�1(a) 2 V \ H, k 2 N, �j,x = kT�j(x)kp = pl�m�j,x and c�1

1 
�j,x  c�1

0 , 1  j  m � 1, and �m,x = pl. From above, we get that for any k 2 N

and x, y 2 Sn \H,

T
km

a (x)� T
km

a (y) = Sk(x� y) +
m�1X

j=1

[��1
j,x � ��1

j,y ]T
j�1(ak). (4.4)

Let x, y 2 Sn\H such that kx�ykp < c0c
�1
1 . As T is linear, T j(x) = T j(y)+T j(x�y),

j 2 N. For 1  j  m � 1, as kT j(x � y)kp  c1kx � ykp < c0, and kT j(y)kp � c0,

we get that �j,x = kT j(x)kp = kT j(y)kp = �j,y, and hence �j,x = �j,y. Therefore,

kT km

a (x)� T
km

a (y)kp = kSk(x)� Sk(y)kp = kx� ykp, k 2 N.

Now suppose kx � ykp � c0c
�1
1 . Observe that |��1

j,x � ��1
j,y |p  c�1

0 , kT j(ak)kp 
c1kakkp, 1  j  m � 1 and ak 2 V , kakkp < c20c

�2
1 . Now Eq. (4) implies that

T
km

a (x) � T
km

a (y) 2 Sk(x � y) + c�1
0 c1W . Since kSk(x � y)kp = kx � ykp � c0c

�1
1 ,

we get that kT km

a (x) � T
km

a (y)kp = kx � ykp. This shows that T
m

a |H preserves the

distance and its action on H is distal, where a 2 V \H.

If T is distal, then so is T
m
, and hence its image in GL(n,Qp)/D generates
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a relatively compact group. This implies that D = plId, H = Qn
p and V \ H = V .

Therefore, (I) holds.

Now suppose T is not distal. Then T
m

is not distal and hence D 6= plId.

Let l1 > l and H1 = {x 2 Qn
p | D(x) = pl1x}. Then H1 is a vector subspace and it is

invariant under D, S and T . For a 2 V \H \ {0} as above, we show that the action

of T a on Sn \ (H �H1) is not distal. This would imply that (II) holds.

Take y = x + z 2 Sn, where x 2 Sn \H and z 2 H1 such that kT j(z)kp <
kT j(x)kp, j 2 N. It is possible to choose such a z; we can take z 2 H1 with

the property that kT j(z)kp < kT j(x)kp for all 0  j  m � 1, then as S is an

isometry, kT km+j(z)kp = p�kl1kT j(z)kp < p�klkT j(x)kp = kT km+j(x)kp, k 2 N. Now

kT j(y)kp = kT j(x)kp = �j,x for all j 2 N. Here,

T
km

(y)� T
km

(x) = p�kl[Sk(pklx+ pkl1z)]� Sk(x) = pk(l1�l)Sk(z) ! 0

as k ! 1, since S is an isometry and l1 > l. We now show for all k 2 N that T
km

a (y)�
T

km

a (x) = T
km

(y)� T
km

(x). (From above, the latter is equal to �km,xT
km(z).) This

in turn would imply that T a is not distal.

From Eq. (1), it is enough to show for all j 2 N [ {0} that �j,y = �j,x, or

equivalently, �j,y = kT j(y)kp as the latter is equal to kT j(x)kp which is the same

as �j,x. This is trivially true for j = 0. As shown earlier, for 1  j < m � 1,

�j,u = kT j(u)kp for all u 2 Sn, and hence �j,y = �j,x; i.e. the above statement holds

for 1  j < m, and we get that

T
j

a(y) = �j,yT
j(y) + �j,y

jX

i=1

��1
j�i,yT

i�1(a) = T
j

a(x) + �j,xT
j(z). (4.5)

We prove by induction on k that �j,y = �j,x = kT j(x)kp and Eq. (5) is satisfied for

all 1  j < km, k 2 N. We have already proven these for k = 1. Suppose for some
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k 2 N, these hold for all j such that (k � 1)m  j < km. Let km  j < (k + 1)m.

Recall that for all j 2 N, ↵j(u) = kT (T j�1

a (u))kp, u 2 Sn, and Eq. (2) holds for any

x 2 Sn and j � m. As �j,y�
�1
j�m,y = ↵j(y) . . .↵j�m+1(y), from Eq. (2) and, also Eq.

(5) which is assumed to hold for (k � 1)m  j < km by the induction hypothesis,

we get for x, y, z as above and km  j < (k + 1)m that

�j,y�
�1
j�m,y = kTm�1(a) + Tm(T

j�m

a (y))kp

= kTm[T�1(a) + T
j�m

a (x) + �j�m,xT
j�m(z)]kp

Now using this, we get that

�j,y�
�1
j�m,y = kS[p�l(T�1(a) + T

j�m

a (x)) + pl1�j�m,xT
j�m(z)]kp = p�l,

as S is an isometry, l1 > l and k�j�m,xT
j�m(z)kp < 1 (see also Eq. (3)). Since

(k � 1)m  j �m < km, �j,y = p�l�j�m,y = kplT j�m(x)kp = kT j(x)kp. Hence Eq.

(5) holds for km  j < (k+1)m. Now by induction for all j 2 N, �j,x = �j,y and Eq.

(5) holds. Therefore, T a is not distal. (Note that Eq. (5) also directly shows that

T
km

a (y)� T
km

a (x) = pk(l1�l)Sk(z) ! 0 as k ! 1). Now if U ⇢ V is a neighbourhood

of 0, then U \H 6= {0} and hence (II) holds.

Observe that if T is not distal, then from Theorem 4.2.2 (II), we get that

every neighbourhood of 0 in Qp contains a nonzero a such that kT�1(a)kp < 1 and

T a is not distal. Now the following corollary is an easy consequence of Theorem

4.2.2.

Corollary 4.2.3. For T 2 GL(n,Qp), T is distal if and only if there exists a neigh-

bourhood V of 0 in Qn
p such that for every a 2 V \ {0}, kT�1(a)kp < 1 and T a on Sn

is distal.
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If T is distal, then T is also distal and Theorem 4.2.2 (I) and Corollary

4.2.3 holds for T . If T is distal, then for some m 2 N and l 2 Z, plTm is distal.
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Chapter 5

Distal actions on SubG

In this chapter, we consider the space SubG, the set of all closed subgroups of a

topological group G endowed with the Chabauty topology. We first survey some

known results. Then we shall study the distality of actions of automorphisms of G

on SubG.

5.1 Chabauty Topology

This topology was introduced by Claude Chabauty [12] in 1950. Chabauty topology

is defined as follows.

Definition 5.1.1. Let G be a locally compact topological group. Let SubG be the

set of all closed subgroups of G. A sub-basis of the Chabauty topology on SubG is

given by the sets of the following form

O1(K) = {A 2 SubG | A \K = ;}, where K ⇢ G is compact, and
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O2(U) = {A 2 SubG | A \ U 6= ;}, where U ⇢ G is open.

Finite intersectionsO1(U1)\· · ·\O1(Un)\O2(K1)\· · ·\O2(Km),m, n � 1, constitute

a basis for the Chabauty topology on SubG. Observe that, O2(K1) \ · · · \O2(Km) =

O2(K1 [ · · · [Km), and finite union of compact sets is compact. Therefore one can

also consider O1(U1) \ · · · \ O1(Un) \ O2(K) as a basis for the Chabauty topology.

Details of Chabauty topology follows from [12, 7, 3, 10] and [18]. For more history

about this topology see [24].

We now list the following interesting properties of the space SubG. We refer [7] for

more explanation and proof of following properties.

Proposition 5.1.2. Let G be a locally compact group, then the following hold:

(1) SubG is compact.

(2) If G is Hausdor↵, then SubG is also Hausdor↵.

(3) If G is metrizable, then SubG is metrizable.

Throughout this chapter, we will assume that G is a locally compact metriz-

able group.

Lemma 5.1.3. [see [7], page 161] Let G be as above. A sequence {Hn} ⇢ SubG

converges to H 2 SubG if and only if the following statements hold:

(1) If g 2 G, there exists a subsequence {Hnk
} of {Hn} and hk 2 Hnk

such that

hk �! g in G, then g 2 H.
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(2) For every h 2 H, there exists a sequence {hn}n2N such that hn 2 Hn and

hn �! h in G.

Following are some of known simple examples of Chabauty topology.

Example 5.1.4. Consider G = R. We know that all proper closed subgroups of R

are of the form rZ, for r 2 R. SubR is homeomorphic to a compact interval [0,1]

(for more details see [4] and [10]).

Example 5.1.5. Consider G = Z. The Chabauty space of Z, SubZ is homeomorphic

to the subspace { 1
n
} [ {0} of [0, 1] with the usual topology. (see [10]).

Example 5.1.6. For G = R2, SubR2 is homeomorphic to S4 (Pourezza and Hubbard

[26]).

5.2 Actions of automorphisms of G on SubG

Definition 5.2.1. Contraction Group: Let G be a locally compact (Hausdor↵)

group with identity e and T an automorphism of G. For a T -invariant compact

subgroup K, the K-contraction group of T is defined as

CK(T ) = {x 2 G | T n(x)K ! K}.

For K = {e}, the group C{e}(T ) is denoted by C(T ) and is called the contraction

group of T .

We use this definition frequently in the proof of the main result in this

section.
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Let G be a locally compact metrizable group and let Aut(G) denote the

group of automorphisms of G endowed with the compact open topology. There is a

natural action of Aut(G) on SubG defined as follows

Aut(G)⇥ SubG ! SubG, (T,H) 7! T (H); T 2 Aut(G), H 2 SubG.

This is a continuous group action. In this section, first we prove some elementary

results and then compare the distality of T on SubG and that on G, for T 2 Aut(G).

Lemma 5.2.2. For G as above, the following hold:

(1) Let Hn, Ln 2 SubG such that Hn ⇢ Ln and Hn ! H, Ln ! L in SubG. Then

H ⇢ L.

(2) Let H,Ln 2 SubG be such that H ⇢ Ln for all n 2 N, and Ln ! L in SubG.

Then H ⇢ L.

(3) Let H0, L0 2 SubG be such that H0 ⇢ L0 and Tn(H0) ! H, Tn(L0) ! L, for

Tn 2 Aut(G). Then H ⇢ L.

(4) Let T 2 Aut(G) and let H,L 2 SubG be such that T (H) = H and H ⇢ L. If

L0 be any limit point of {T n(L)}n2Z, then H ⇢ L0.

(5) If Tn ! T in Aut(G), and Hn ! H in SubG, then Tn(Hn) ! T (H).

Proof. (1). Let h 2 H. From the condition (2) of Lemma 5.1.3 there exists a sequence

{hn} such that hn 2 Hn for all n, and hn ! h. As Hn ⇢ Ln we have hn 2 Ln, for all

n. Then from the condition (1) of Lemma 5.1.3, h 2 L. Hence H ⇢ L.

(1) ) (2), as we can put Hn = H in (1), for all n.
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(1) ) (3), as we can take Hn = Tn(H0) and Ln = Tn(L0) in (1), for all n.

(2) ) (4) is obvious.

(5) follows from the continuity of the action of Aut(G) on SubG.

Lemma 5.2.3. For a closed normal subgroup H of G, let ⇡ : G ! G/H be the

canonical projection. Suppose Ln 2 SubG be such that H ⇢
T

n2N Ln. Then the

following hold:

(1) If Ln ! L in SubG, then ⇡(Ln) ! ⇡(L).

(2) If ⇡(Ln) ! L0, then Ln ! ⇡�1(L0).

Proof. (1). Observe that as SubG/H is compact, {⇡(Ln)} is relatively compact. Sup-

pose ⇡(Lnk
) ! L0 for some sequence {nk}. First we show that ⇡(L) ⇢ L0. From

(2) of Lemma 5.1.3, for any x 2 L, there exists a sequence {xn} such that xn 2 L

and xn ! x in G. This implies that ⇡(xn) ! ⇡(x) (as ⇡ is continuous). Therefore

⇡(x) 2 L0, and hence ⇡(L) ⇢ L0.

Conversely, suppose x0 2 L0. Again from (2) of Lemma 5.1.3, there exists a

sequence {x0
k} ⇢ ⇡(Lnk

) such that x0
nk

! x0 in G/H. Then there exists a sequence

{xnk
} ⇢ Lnk

such that ⇡(xnk
) = x0

nk
! x0. There also exists a sequence {hn} ⇢ H

such that xnk
hnk

! x, for some x 2 G. Now xnk
hnk

2 Lnk
as H ⇢ Lnk

, for all k,

and hence x 2 L. Moreover, ⇡(x) = x0 2 L0, and hence ⇡(L) = L0. Since this is true

for all limit points of {⇡(Ln)}, we have that ⇡(Ln) ! ⇡(L).

(2). As SubG is compact, for any sequence {Ln} ⇢ SubG there exists a

convergent subsequence {Lnk
} such that Lnk

! L. Hence ⇡(L) = L0, from (1)

above. As H ⇢ Lnk
, for all k, H ⇢ L (from (2) of Lemma 5.2.2), which implies that

L = ⇡�1(L0), and hence Ln ! ⇡�1(L0).
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Theorem 5.2.4. Let G be a locally compact metrizable group, T 2 Aut(G) and

let H be a closed normal T -invariant subgroup of G. Let T 2 Aut(G/H) be the

corresponding map defined as T (gH) = T (g)H, for g 2 G. If T acts distally on

SubG then T acts distally on both SubH and SubG/H.

Proof. Suppose T acts distally on SubG. Then the restriction of T on SubH is clearly

distal. Now we show that T is distal. For i = 1, 2, let Hi 2 SubG/H be such that

H ⇢ Hi and T
nk(Hi) ! L in SubG/H. This also implies that T nk(⇡�1(Hi)) ! ⇡�1(L),

for i = 1, 2. Therefore ⇡�1(H1) = ⇡�1(H2) (as T is distal on SubG) which implies

that H1 = H2. Therefore, T is distal.

For any group G, let G0 denotes the connected component of the identity e

in G. Note that G0 is a closed (normal) characteristics subgroup in G. There exists

a unique maximal compact normal subgroup K in G0, which is also characteristic in

G and G0/K is a Lie group. As observed in [28], every inner automorphism of G0

acts distally on K0. More generally, if C(T ) is closed, then T acts distally on K.

Theorem 5.2.5. Let G be a locally compact metrizable group, T 2 Aut(G) and let

K be the maximal compact normal subgroup of G0. If T is distal on SubG, then T is

distal on G/K0. Moreover, if T acts distally on K0 then T acts distally on G.

Proof. Let T be distal on SubG. Then by Theorem 5.2.4 it is distal on SubG/K0 .

Hence, without loss of any generality, we may assume that K as above is totally

disconnected and show that T is distal. By Theorem 4.1 in [28], it is enough to show

that both C(T ) and C(T�1) are trivial.
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Step-I. Suppose G is totally disconnected. Suppose that C(T ) is non trivial.

Since C(T ) is totally disconnected, there exists a neighbourhood basis of (proper)

open compact normal subgroups {Cm}m2N. Take H = Cm for a fixed m. Since H is

an open neighbourhood of the identity e in G, for x 2 C(T ), T n(x) 2 H for large n

and x = T�n(T n(x)) 2 T�n(H). Hence if T�nk(H) ! L for a sequence {nk} ⇢ N,

then C(T ) ⇢ L. As L is closed, C(T ) ⇢ L. Since C(T ) is T -invariant and H ⇢ C(T ),

C(T ) = L and we have that T�n(H) ! C(T ) and hence T is not distal on SubC(T).

Therefore, C(T ) is trivial.

For any locally compact group G, G/G0 is totally disconnected. Let T :

G/G0 ! G/G0 be the natural projection. Then from Theorem 5.2.4, T is distal on

SubG/G0 and hence, from above, C(T ) is trivial. Therefore, C(T ) ⇢ G0.

Step-II. As K is totally disconnected and T |K acts distally on SubK, from

Step-I we get that C(T ) \K = {e}. Then by Proposition 4.3 of [28], C(T ) is closed

and hence a simply connected nilpotent group. Now, let N = C(T ) and N1 = [N,N ].

Then N/N1 is homeomorphic to Rn. Let T1 be the projection of T |N on N/N1. Then

C(T1) = N/N1. Suppose T1 has a real eigenvalue �. Then 0 < |�| < 1 and there

exists a subspace M ⇡ R ⇢ N/N1 such that T1(x) = �x for all x 2 M . It is easy to

check that T n
1 (Z) ! R as n ! 1 in SubR (cf. [4]). As T1 is not distal on SubN/N1 ,

which is a contradiction.

Suppose Tm
1 has a real eigenvalue for somem 2 N. Then arguing as above we get that

Tm
1 does not act distally on SubN/N1 and hence on SubN, which is a contradiction.

Now suppose all the eigenvalues of T1 are complex. Then T1 keeps a two

dimensional space V ⇡ R2 invariant such that T1|V has a complex eigenvalue of

the form r(cos ✓ + i sin ✓) where 0 < r < 1 and ✓ is an irrational angle. Consider
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T2 2 GL(2,R) such that T1|V = T2 (under the isomorphism of R2 with V ). Then

T2 = rA✓, where A✓ = AR✓A
�1 for some A 2 GL(2,R) and R✓ is the rotation by

the angle ✓ on R2. As observed in Chapter 2 earlier, A✓ generates a compact group

i.e. Ank
✓ ! Id on R2, for some unbounded sequence {nk} as ✓ is irrational. Let

Z = {(m, 0) | m 2 Z}. Then Z 2 SubR2 , passing to a subsequence if necessary,

we have that T nk
2 (Z) ! M 0 for some M 0 in SubR2 . But T nk

2 (Z) = Ank
✓ (rnkZ).

Now as rnk(Z) ! R ⇥ {0} = {(t, 0) | t 2 R} (cf. [4]) and Ank
✓ ! Id. Therefore

T nk
2 (Z) ! R ⇥ {0} in SubR2 (by using (5) of Lemma 5.2.2). We also have that

T nk
2 (R ⇥ {0}) = Ank

✓ (R ⇥ {0}) ! R ⇥ {0} (again by using (5) of Lemma 5.2.2).

Hence T1 does not act distally on SubN/N1 , a contradiction. Therefore, C(T ) is

trivial in this case too.

Replacing T by T�1 and using the distality of T�1 on SubG, we conclude that C(T�1)

is trivial and hence T is distal on G/K0.

The second assertion in the Theorem is obvious.

The following corollary is the consequence of the above Theorem, which can

be proven by using results in [28].

Corollary 5.2.6. If G as above is connected and every inner automorphism of G

acts distally on SubG, then G is distal, i.e. the conjugation action of G on G is distal.
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