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INTRODUCTION

Global warming and its associated climatic changes have cmerged as a worldwide
concern as it affects many aspects of crop productivity. The effects of the expected
climate change mainly include an increase in average atmospheric temperature and an
alteration of rainfall regimes that result in drought and/or floods. The climate change
along with the abiotic stress factors like drought, salinity etc. is known to influence
physiology, growth, development, yield, and quality of crops. Both short-and long-
term stresses can drastically affect growth and yield processes especially during the
reproductive stage of plant development. The examples of effcct of the changing
environmental conditions on crop yield include a 17% reduction in corn and soybean
grain yields in the US, 15% reduction in rice grain yicld in Philippines (Peng et al.,
2004), and a projected reduction in grapevine production by 81% in the US by the end
of 21 century (White ef al., 2006).

Crops are generally known to be more sensitive to abiotic stresses like drought and/or
heat stress during reproductive stages of development. These stresses can lead to
inhibition of pollen development, failure of fertilization and shortening of grain filling
duration. In some plants, drought stress inhibits the transition from vegetative to
reproductive phase and plants remain vegetative until the stress is relieved (Craufurd
et al., 1993). The stage of male reproductive devclopment has been found to be
particularly vulnerable to the abiotic stress conditions. High-temperature and drought
stress 1s known to cause male sterility in plant species, such as tomato, Arabidopsis,
cowpea, wheat, barley soybean and rice (Sani et af., 1984; Ahmed ¢t al., 1992; Peet
etal, 1998; Sakata et al., 2000; Kim ef al, 2001; Matsui and Omasa, 2002; Abiko et
al, 2005; Koti et al.,, 2005; Jagadish et al., 2007). The pollen germination and germ
tube elongation of maize (Hopf ef ¢/, 1992) and the formation of pegs and pods in
groundnut (Ketring, 1984; Wheelar et ¢/, 1997; Vara Prasad et al., 2000} have also

been found to be negatively affected by exposure to moderately high temperature.

The effect of environmental stress, at molecular level, on the reproductive phase is yet
to be investigated in detail. In order to address this issue, it is necessary to identify the
key components that plants use to deal with complex environmental stresses during

the reproductive phase. Though a large number of gene products are known to play

1



|ntroduction

putative roles in plant adaptation to environmental stresses, the ones that are involved
in key oxidative stress detoxification are known to be the most crucial in preventing
ccllular-damage. Plants possess well-defined "anti-oxidative’ machincry, consisting of
different enzymatic and non-enzymatic anti-oxidants for the detoxification of the
excess reactive oxygen species (ROS) produccd under various abiotic stress
condittons. The major ROS-scavenging enzymes present in plants include superoxide
dismutase {SOD) ascorbate peroxidase (APX), monodehydroascorbate reductase
(MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glutathione
reductase (GR), glutathionc-S transferase (GST), and glutathione peroxidase (GPX).
Among these enzymes APX, MDHAR, DHAR and GR together constitutc the
ascorbate- glutathione (AsA-GSH) cycle. The AsA-GSH cycle is known to play a
critical role in combating oxidative stress by deactivation of ROS in multiple redox

reactions.

The enhanced production of reactive oxygen species (ROS) during abiotic stresses
can pose a threat to plants because plants cannot detoxify them etfectively using the
existing ROS scavenging machinery. Dcpending upon the efficiency of the ROS
scavenging and/or avoidance mechanisms plants may differ in tolerance to different
cnvironmental stresses. Efficient ROS detoxification is thought to be one of the
strategies used by stress tolerant plants to combat various abiotic stresses. Pennisetum
glaucum, commonly known as ‘pearl miilet’, is one such stress tolerant crop that
grows well even under conditions of drought, high temperature and marginal soil
fertility. Being a stress-tolerant crop, £. glaucum is considered to be equipped with
better ROS-detoxification machinery. Therefore, we hypothesized that the SOD-AsA-
GSH pathway encoding genes isolated from stress tolerant crop plant like P. glaucum
could be over-expressed in stress-sensitive crop plants in order to enhance their stress

tolerance.

Although substantial research has been conducted on the effect of abiotic stress during
vegetative growth of plant, its impact on the reproductive development has not
received its due attention. The effect of environmental fluctuations on the
reproductive phase seems to be morc pronounced in crop plants like rice that are at
the limit of their climatic range of growth and, consequently, are highly sensitive to

cven short episodes of climatic fluctuations.
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In an attempt to improve the stress tolerance, many plants have been genetically
engineered to express genes that confer abiotic stress tolerance. The manipulation of
multiple genes has emerged as a promising strategy to increase the stress tolerance of
plants becanse many important traits and complex metabolic pathways depend on
interactions among a number of genes. Various approaches have been used to
introduce multiple genes into plant genomes and then to coordinate transgene
expression (Halpin ez al., 2005). The application of stacking multiple gencs into one
T-DNA has an advantage over the other methods as it minimizes complex integration
patterns, and reduces the transformation steps needed to engineer the desired
genotype.

In the present study, the T7 RNA polymerase coupled SOD-AsA-GSH pathway was
over-expressed in anthers of rice plants to protect the development of anther and
quality of the pollen from the oxidative damage. The whole pathway was assemblcd
in a single T-DNA hy in vitro gene pyramiding of SOD, APX, DHAR, MDHAR and
GR genes isolated from P. glaucum. The regulated over-expression of all these gencs
can be an effective strategy to scavenge the ROS and minimize the oxidative damage
caused to anthers under adverse environmental conditions which would in turn

increase the reproductive fitness of plants.
The present study was undertaken with the following objectives:

1. Cloning and characterization of SOD-AsA-GSH pathway genes (SOD, APX,
MDHAR, DHAR and GR) from a stress adapted plant, P. glaucum.

2. Construction of T7-promoter regulated SOD-AsA-GSH pathway encoding

gene cassettes.

3. Isolation, cloning and in sifico characterization of rice anther specific

RABpromoter.
4. Tsolation and cloning of T7 RNA polymerase gene from phage DNA.
5. Isolation and cloning of bar gene.
6. Construction of RA8 promoter-T7 RNA polymerase cassette.

7. Invitro gene pyramiding and construction of plant transformation vector with

the P. glaucum gene cassettes, i.e. superoxide dismutase (PgSOD), ascorbate
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peroxidase (PgAPX), monodehydroascorbate reductase (PgMDHAR),
dehydroascorbate reductase (Pg{DHAR) and glutathione reductase (PgGR)

cassettes along with the RAB promoter-77 RNA4 polymerase cassette,

8. Transformation of rice (0. sativa cv Swarna and O. sativa cv IR64) with the
T7 RNA polymerase coupled SOD-AsA-GSH pathway construct through

Agrobacterium mediated transformation.

9. Molecular analysis of transgenic rice plants to study the stable integration of

all the transgenes.

10. Analysis of the morphological characteristics of the transgenic rice plants

expressing the SOD-AsA-GSH pathway in the anthers,

Bt e R e e ey L e
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REVIEW OF LITERATURE

Food production from crop plants faces serious threats due to the global climate changc
(Rosegrant and Cline, 2003; Stocking, 2003; Schmidhuber and Tubiello, 2007; Brown
and Funk, 2008). The main cause of climate change is the increase in the concentration of
green house gasses which has led to the rise in global temperature. The increase in the
global temperature in turn leads to drought stress causing a huge damage to food
production. In addition to its deleterious effects on crop growth, the climate change is
also expected to threaten the conservation of cultivated land (Christensen et al., 2007;
Meeh! ez al., 2007). Furthermore, the rising human population has resulted in increased
demand for food. Thus, the global agriculture must produce more food while adapting (o

climate change.

2.1 Challenges in Modern Agriculture: Climatic Changes and Abiotic Stress

Different abiotic stresses like drought, salinity, temperature extremes, nutrient
deficiencies and mineral toxicitics lead to reduction in plant growth and therefore have a
major impact on crop yield (Langridge et al., 2006; Munns and Tester, 2008; Witcombe
et al., 2008; Salekdeh et af., 2009; White and Brown, 2010; Morison et af., 2008). The
increasing damage imposed by these stresses due to climate change and land degradation
is of great concern (Tester and Langridge, 2010; Witcombe er af., 2008). As is clcarly
evident from the Fourth Assessment Report (AR4) by the Inter-governmental Panel on
Climate Change (IPCC), global climate change would cast an adverse effect on all the

biological processes over the next decade (Christensen et al., 2007).

Abiotic stress being an integral part of the complex phenomenon of climate change has a
series of unpredictable impacts on the environment. Abiotic factors play a major role in
limiting crop production worldwide (Fig. 2.1). It has been estimated that 51-82% of the
potential yield of annual crops is lost due to abiotic stress (Bray et al., 2000). The

prolonged exposure of the plants to the abiotic stresses leads to altered metabolism and
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damage to biomolecules thereby casting a negative effect on plant growth and

development.

2.2 Abiotic Stress and Reproductive Development of Plants

Plants differ in their sensitivity to various abiotic stresses during different developmental
stage of theur life cycle. Sexual reproduction has been long recognized as being highly
stress-sensitive, with reproductive stress tolerance often a limiting trait in crop
productivity (Barnabas et al., 2008; Hedhly et a/., 2008; Thakur et al., 2010). Most crops
are found to be highly sensitive to the abiotic stresses during flowering (Table 2.1). Even
mild abiotic stress during the reproductive stage of plant can irreversibly affect grain
yield, without considerably affecting the vegetative growth. In self-fertilizing cereals,
such as rice (Oryza sativa), wheat (Triticum aestivim), barley (Hordeum vulgare), and
sorghum (Sorghum bicolor), successful pollen dcvclopment is important for grain
production, and abiotic stresses interfering with the early stages of pollen formation lead
to dramatic losses in the number of grains formed (Satake and Hayase, 1970; Saini et al.,
1984; Briggs et al., 1999; Matsui and Omasa, 2002; Abiko et al., 2005; Jagadish et af.,
2007; Jain et al., 2007, Endo et al., 2009). Stress-induced pollen sterility is reported to
occur in both the monocots and dicots (Aloni ef af., 2001 ; Karni and Aloni, 2002; Kim ef
al., 2001; Pressman et ai., 2002; Ghanem et al., 2009). The process of grain filling 1.e. the
accumulation of reserves in the developing and maturing grain has also been found to be
sensitive to environmental conditions strongly affecting final yield quantitatively as well

as qualitatively (Yang and Zhang, 2006).
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Figure 2.1 Graph representing loss in agricuitural productivity due to abiotic stress (Adapted from Bayer

Crop Sciences).
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Table 2.1 Eifect of abiotic stress on reproductive development of plants (Modifted after Sakata and
Higashitani, 2008).

o8/ Abiotic:Stress : . Abnormaltissue . - - . Referen

Arabidopsis High temperature  Male organ Kim et al., 2001

Maize Water deficit Female organ Westgate and Boyer, 1985

Maize High temperature  Male organ Mitchell and Petolino 1988

Maize Water deficit Male and female organ  Duvick, 2005

Rice High temperature  Female organ Takeoka et al., 1991

Rice High temperature  Anther Matsui and Omasa 2002

Rice High temperature ~ Male organ Endo et af., 2009

Rice High temperature  Spikelet Jagadish et ., 2007

Rice High temperature  Male and female organ  Satake and Yoshida 1978

Rice Water deficit Male organ O'Toole et af., 1981,
Shegran and Saini 1996

Rice Low temperature  Male organ Nishiyama 1970; Satake and Hayase,
1970; 1974, Nishiyama, 1976; lic et al,,
1970, Mamun ef al., 2006,

Rice Low temperature  Male and female organ ~ Hayase ef al., 1969

Rice Low temperature  Pollen Oliver et al., 2005

Rice Flooding Male and female organ ~ Reddy and Mittra 1985

Wheat Heat, water Male organ Saini et af., 1984

deficit, Abcissic
acid

Wheat Water deficit Male organ Lalonde et al., 1997 Ji ef al., 2010

Wheat Water deficit Male organ Bingham, 1966

Wheat Water deficit Flower Briggs et al., 1999

Wheat Salinity Flower Maas and Poss, 1989%a

Tomato Salinity Flower Ghanem et af,, 2009

Tomalo High temperature  Flower Sawhney et al., 1982

Tomalo High temperature  Male organ Peet et al., 1998; Pressman et al., 2002

Rape Low temperature  Male and female organ Lardon and Triboi-Blondel, 1994

Barley High temperature  Male organ Sakata el al., 2000; Abiko et al., 2005;
Oshino et al., 2007

Snap bean High temperature  Flower Konsens ef al., 1991

Bell pepper High temperature  Pollen Aloni et al., 2001; Karni €t al., 2002

Rapeseed High temperature  Male and female organ  Young et 4., 2004

Ground nut High temperature  Flower Vara Prassad et al., 2000
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2.2.1 Effect of Drought Stress

Drought stress is an important environmental factor limiting global crop productivity. In
many crops, particularly cereals, reproductive development is the most stress-sensitive
period after seed germination (Salter and Goode, 1967). Drought stress interferes with
reproductive success of plants by arresting the development of the male gametophyte and
sometimes the female gametophyte, preventing fertilization and/or inducing premature
abortion of the fertilized ovule (Moss and Downey, 1971; O'Toole and Moya, 1981;
Saini and Aspinall, 198!; O’Toole and Namuco, 1983; Westgate and Boyer, 1986;
Sheoran and Saini, 1996). Drought during the period from stamen initiation to anthesis
causes serious yield reduction in many cercal and dicot crops (Lewis et al., 1974;
O’Toole and Moya, 198!; Craufurd ef al., 1993; Turner, 1993; Westgate and Peterson,
1993). In the female tissue, the period most sensitive 1o drought corresponds to meiosis in
the megaspore mother cell and the subsequent degeneration of three redundant
megaspores in the tetrad (Bennett er al., 1973). In maize, the anthesis-silking interval,
(differences in the relative timing of male and temale flowering) which is negatively

correlated with yield. is found to be typically increased by water deficit {(Duvick, 2005).
2.2.2 Effect of Salt Stress

It has Jong bcen recognized that a crop’s sensitivity to salinity varies from one
developmental growth stage to the other (L.duchli and Grattan, 2007; Maas and Grattan,
1999). In experiments with wheat (Maas and Poss, 1989a), sorghum (Maas et al., 1986)
and cowpea (Maas and Poss, 1989b), it was found that thesc crops were most sensitive
during vegetative and early reproductive stages, less sensitive during flowering and least
sensitive during the seed filling stage. Salinity often reduces shoot growth more than root
growth (Lauchli and Epstein, 1990) and can reduce the number of florets per ear, increase
sterility and affect the time of flowering and maturity in both wheat (Maas and Poss,
1989a) and rice (Khatun et al. 1995). Salinity stress is known to cause spikelet sterility 1n
nce (Asch and Woperets, 2001) and seed abortion in field-grown cotton {Davidonis et al.,
2000). The development of microspores is found to bc very sensitive to salt stress
(Namuco and O Toole, 1986). As a result of salt stress, the microsporocytes become

vacuolated and dic instead of maturing into viable pollen grains (Sun ef al., 2004).
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2.2.3 Effect of Temperature Stress

Temperature stresses have diverse effects on reproductive tissucs leading to poor seed set

and yield of plants (Fig. 2.2). High or low temperature stress can lead to-

(1) Early or delayed flowering (Balasubramanian et al., 2006; Tonsor ef al., 2008
Craufurd and Wheeler, 2009),

(i) Asynchrony between male and female reproductive development (Herrero, 2003:
Hedhly et al., 2008),

(i1} Defects in structure and function of rcproductive tissues (stamens and carpels)
(Takeoka et al., 1991; Mormson and Stewart, 2002; Croser et af., 2003; Whittle
et al., 2009) and

(iv) Defcets in development ol male and female gametes (Aloni et al., 2001; Young

et al., 2004).

Short episodes of high-temperature stress, affccting many reproductive processes,
including pollen viability, lemale gametogenesis, pollen-pistil interaction, fertilization.
and grain formation, can lcad to severe reduction in yicld even when the seasonal average
temperature is within a favorable range. Even a small increase in temperature above the
optimum can very negatively affect pollen viability (Hedhly ez af., 2008). For example, a
short exposure to high temperature during anthesis is known to greatly reduce the
production of grains in cereals (Vara Prassad er al. 2000, Witcombe er al., 2008). In
addition to heat stress, cold stress is also known to negatively affect the reproductive
development of plants. It is esttmated that, worldwide, 7 million hectares of rice are
prone to chilling damage (Oliver er al., 2005). Cold-induced pollen sterility 1s the major
factor decreasing the crop yields by an average of about 5 to 0% (Oliver et al., 2005;
Mamun et al.., 2006). Chilling leads to poor seedling establishment and arrest of
microspore development at booting stage. resulting in reduced fertility (Mamun et al.,

2006).

2.3 Abiotic Stress Disrupts Male Reproductive Development
Male gametophyte development is the stage of reproduction that appears to be most

suseeplible to disruption by drought, heat, and cold stresses (Saini, 1997; Mamun et al.,
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2006). Abiotic stresses, particularly, high or low temperature results in a lower seed set
due to male sterility in most crops, including tomatoes (Peet et al., 1998; Sato et al,,
2002), cowpeas {Ahmed et al., 1992), wheat {Saini et al., 1984), barley (Sakata et al.,
2000; Koike er af., 2003; Oshino et al., 2007) and rice {(Satake and Yoshida, 1978;
Nishiyama, 1984; Prasad et al., 2006). Cold treated rice plants show greater abnormalities
in the anthers than in their pistils or any other floral organs {Satake and Hayase, 1974;

Gothandam ef al., 2007).
2.3.1 Stages of Male Reproductive Development Sensitive to Abiotic Stress

The male reproductive development in higher plants is a complex biological process that
involves the correlated differentiation of anther tissues leading to generation of haploid
microspores or pollen (Fig. 2.3) (Liu and Qu, 2008). The devcloped anther consists of the
meiotic cells (also called microsporocytes) at the center, surrounded by the anther wall
with four somatic laycrs namely the cpidermis, the endothecium, the middle layer, and
the tapetum (Goldberg et al., 1993). Tapetum, which forms the innermost layer of the
anther wall, plays an important role in regulating programmed anther development,
pollen formation, and pollen wall formation (Li et al., 2006; Parish and Li, 2010). Tapetal
cell devclopment and differentiation are critical for the early events in male reproduction,
including meiosis. During late pollen development, tapetal degeneration, triggered by an
apoptosis-like process, is also vital for viable pollen formation (Papini er al., 1999;

Varnier et al., 2005; Li et al., 2006; Aya et al., 2009).

Two peaks of sensitivity (o abiotic stress, particularly drought stress, are encountcred
during male reproductive development. The first peak is centered on the period from
meiosis to tetrad break-up in anthers (Fig. 2.4). This window of sensitivity has been
extensively studied 1n plants like wheat, rice, barley, oat and maize (Moss and Downey,
1971; Saini and Asptnall, 1981; Namuco and O!Toole, 1986; Dembinska er al., 1992;
Sheoran and Saini, 1996). The stage of meiosis is perhaps the most stress-sensitive period
of reproduction in most plants. In rice and wheat, cold and drought stress are also known
to induce irreversible abortion of pollen development at the young microspore stage
(Satake and Hayasc, 1970; Saini er al., 1984; Sheoran and Saini, 1996; Oliver et al.,
2005; Ji et al., 2010; Zinn et al., 2010). Morphological and histological examinations

10
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Temperature stress and relative Life cycle Observed effect
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Figure 2,2 Temperature stress experienced during gamete development {green arrow), progamie or post-
pollination—pre-zygotic stage (blue arrow) and embrvo development stage (purple arrow). Gametophytic
and sporophytic stages are shown with yellow and green background colours, respectively (Modified after
Hedhly et al., 2008).
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Figure 2.3 Scheme of microsporogenesis in ricc showing the various stages of development of pollen
grains (Adapted from McCormick er al., 2004).
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Figure 2.4 Sequence of events during failure of pollen development in response to transitory episode of
water deficit during meiosis (First stage of sensitivity). Abbreviations denote AW, anther wall; Ca, callose;
En, endothecium; Ep, epidermis; Ex, exine; Gn, generative nucleus; In, intine; Inf, inflorescence, Mi,
microspores; M1, middle layer, MMC, Microspore mother cell; Mn, microspore nucleus; Op, operelum; Po,
pore; Sp, Sperm; St, starch; Tp, tapetum; Va, vacuole; Vn, vegetative nucleus (Modified after Koonjul ez
al., 2005).
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have shown that the transition of the tetrad to a uni-nucleate stage of male reproductive
development is particularly sensitive to chilling (lto er alf., 197(); Satake and Hayase,

1974; Wada et al., 1990).

The second peak of sensitivity occurs during anthesis and initial stages of grain
development, and is conspicuous in rice, maize, wheat, barley and oats (Satni et al., 1997;
Westgate and Boyer 1986; Ekanayake et al., 1989; Ekanayakc ef al., 1990; Turner, 1993;
Westgate and Peterson, 1993). In fact, the main cause of floret sterility induced by high
temperatures at flowering is anther indehiscence (Satake and Yoshida, 1978; Mackill ez
al., 1982; Matsui et al., 1997a; b; 2001). High temperature during flowering inhibits
swelling of the pollen grains (Matsui e al., 2000) which 1s the driving force behind
anther dehiscence in rice (Matsui ez al., 1999a; b). Anthers of high temperature- tolerant
cultivars dehisce more easily than those of susceptible cultivars and contribute to
pollination under high temperature conditions (Satake and Yoshida, 1978; Mackill ¢t al.,

1982; Matsui et af., 2000; 2001).

2.3.2 Factors Responsible for Male Sterility in Plants

The loss of reproductive fertility due to drought, heat, and cold stresses imposed during
flowering and early stages of seed growth has bcen attributed to a range of metabolic
causes (e.g. inadequate supply of photosynthates, excessive accumulation of abcissic acid
(ABA), changes in the cell cycle) acting during gametogenesis and/or during the early
stages of grain development (Zinselmeier ez al., 1999; 2002; Saini and Westgate, 2000,
McLaughlin and Boyer, 2004a; 2004b; 2007; Fresneau et al., 2007; Collins et al., 2008).
The alterations in the availability and metabolism of carbohydrates appear to be involved

in the effects of stress during meiosis and anthesis.
2.3.2.1 Disturbance of Sugar Metabholism in Anthers

The disturbance in carbohydrate availability and metabolism plays a key role in abiotic
stress; particularly drought stress induced male sterility (Dorion et al., 1996). The sterile
pollen grains are always devoid of starch, a feature commonly observed in pollen affected
by various types of oxidative stress (Smni ef af., 1984). Sheoran and Saini revealed that

drought inhibits the starch accumulation in anthers (Sheoran and Saini, 1996). Recently.,

11
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Fu er al. reported that oxidative stress and soluble sugar content is responsible for

drought stress induced pollen abortion in rice (Fu et al., 2010).
2.3.2.2 Premature Degeneration of Tapetum

Tapetum, the innermost cell layer of the anther wall plays a crucial role in microspore
maturatton by providing nutrients to them and regulating their release (Balk and Leaver,
2001) thereby controlling pollen development and, ultimately, plant fertility. Abiotic
stress during tapetal development leads to aborted microgametogenesis and male sterility
(Kapoor et al., 2002; Higginson et al., 2003; Jung et al., 2005; Oliver et ai., 2005). It has
been observed that under different low temperature conditions, the tapetum swelled
severely and the cellular divisions between tapetal cells were greatly altered (Gothandam
et al., 2007). Cold treatment at this stage was found to result in reduced activity of cell
wall-bound invertase, leading to accumulation of sucrose that causes tapetal swclling in
rice anthers (Nishivama, 1995; Kawaguchi et al., 1996; Sheoran and Saini, 1996; Oliver
et al., 2005). Similarly, drought stresses was also shown to trigger a premature cell death

response in the tapetum (Oliver ez al., 2005; Nguyen et al., 2009; h et al., 2010).

2.3.2.3 Oxidative Stress

It is a well established fact that abiotic stress triggers the formation of superoxide radicals
and hydrogen peroxide which can directly attack membrane lipids and inactivate
sulthydrl containing enzymes (Navarri-Izzo er al., 1994). Higher activities of anti-
oxidative enzymes like superoxide dismutase, ascorbate peroxidase, glutathione reductase
as well as increased content of anti-oxidants like ascorbic acid and glutathione were
observed in panicles of drought tolerant genotype of rice as compared to drought
susceptible ones {Sairam and Saxena, 2000; Devarshi and Chopra, 2004; Fu ef al., 2010).
Nguyen et al. reported that there occurs increased concentration of hydrogen peroxide
and down-regulation of anti-oxidant transcripts in anthers due to drought stress (Nguyen
et al., 2009). These results clearly indicate that along with the other factors, oxidative
stress in anthers might be the cause of pollen sterility due to drought stress. However, the

relationship between pollen sterility and oxidative stress has not been studied in detail.
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2.4 Oxidative Stress and Male Sterility

Almost all sorts of abiotic stress conditions are known to negatively atfect the malc
reproductive development of crop plants. As all the abiotic stress conditions lead to the
over-production of reactive oxygen species (ROS) in plants (Jaspers and Kangasjirvi,
2010), 1t can hence be assumed that the disruption of male reproductive development
occurs due to oxidative stress. Moreover, evidences indicating production of ROS and
altered anti-oxidant enzymes activity in anthers during drought stress (Nguyen ef al.,
2009) also support the fact that oxidative stress may be responsible for malc sterility. The
section ahead provides a brief description about the source of oxidative stress and the

anti-oxidant mechanism present in plants.
2.4.1 Source of Oxidative Stress: ROS

ROS are partially reduced forms of atmospheric oxygen (O;). ROS typically result from
either the excitation of O, to form singlet oxygen (O,') or from the transfer of onc, two or
three electrons to O, to form. respectively, a superoxide radical (0,"7), hydrogen
peroxide (H,0,) or a hydroxyl radical (HO ") (Asada and Takahashi, 1987; 1999: Mitler,
2002; Apel and Hirt, 2004} (Fig. 2.5). The reactions involved in normal metabolism, such
as photosynthesis and respiration are one of the potential sources ot ROS in plants, thus
making the ROS inevitable byproducts of aerobic metabolism (Asada and Takahashi,
1987). Other sources of ROS include pathways triggered during abiotic stresses, such as
glycolate oxidase in peroxisomes during photorespiration (Dat et al., 2000), NADPH
oxidases, amine oxidases and cell-wall-bound peroxidases (Hammond-Kosack and Jones,
1996; Grant and Loake, 2000). ROS have also been acknowledged as central players in
complex signaling pathways (Mittler et af., 2011} and research has proved that they act as
signals for the activation of stress-response and defense pathways (Knight and Knight,
2001).

Though, the production of ROS in cells is low under physiological steady state conditions
(240 pM 57! 0O, and a steady-state level of 0.5 uM H,0; in chloroplasts), abiotic stresses
like drought, salt stress, chilling, heat shock, heavy metals, ultraviolet radiation, air

pollutants, mechanical stress, nutrient deprivation, pathogen attack and high light stress
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that disrupt the cellular homeostasis enhance the production of ROS (240-720 pM s~

O, and 5-15 pM H,0,) (Polle, 2001; Mittler, 2002). These ROS are capable of causing
uncontrolled oxidation of various cellular components and can lead to the oxidative
destruction of the cell (Asada et al., 1999; Dat et al., 2000) (Fig.2.6). Thus, enhanced
production of ROS during stress can be hazardous to cells. Therefore, in order to protect
themselves against the toxic ROS, plant cells and its organclles like chloroplast,
mitochondria and peroxisomes utilize anti-oxidant defense systems which form the major

defensive strategy of plants against oxidative stress.

2.4.2 Anti-oxidant Mechanism

A great deal of research has established that the induction of the cellular anti-oxidant
machinery is important for protection against various stresses (Apel and Hirt, 2004; Gill
and Tuteja, 2009). The term anti-oxidant can be considered to describe any compound
capable of quenching ROS without itself undergoing conversion to a destructive radical
(Nishikimi and Yagi, 1996; Rose and Bode, 1993). The anti-oxidant defcnse systcm
which is responsible for maintaining a balanced state of ROS in plants basically
comprises of the non-enzymatic and enzymatic components (Noctor and Foyer, 1998)

(Fig. 2.7).
2.4.2.1 Non-enzymatic Components

The non-enzymatic components of the anti-oxidative defense system include thc major
cellular redox buffers: ascorbate (AsA) and glutathione (y-glutamyl-cysteinyl-glycine,
GSH) as well as tocopherol, flavonoids, alkaloids and carotenoids. AsA and GSH are low
molecular wetght anti-oxidant abundantly found in plants (Barnes et al., 2002). AsA
provides membrane protection, preserve enzyme activities (Noctor and Foyer, 1998) and
has a key role in removal of H,O; via Ascorbate- Glutathione (AsA-GSH) cycle (Pinto et
al., 2003). Being present virtually in all the compartments of cell (Foyer and Noctor,
2003), GSH functions as an anti-oxidant in many ways. It functions as a free radical
scavenger and participates in regeneration of another potential anti-oxidant AsA, via the

AsA-GSH cycle (Asada, 1994).
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Figure 2.5 Generation of different ROS by sequential univalent reduction of ground state triplet oxygen
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Tocopherols (a, 3, y, and 6) and carotenoids represent a group of lipophilic anti-oxidants
involved in scavenging of oxygen free radicals, lipid peroxy radicals, and 'O,
Tocopherols are known to protect lipids and other membrane components against
oxidative stress (Diplock, 1989; Young, 1991). Carotenoids scavenge '0, to inhibit
oxtdative damage and quench triplct sensitizer (3Chl*) and excited chlorophyll (Chl¥)
molecule to prevent the formation of 'O, for protecting the photosynthetic apparatus
(Gomathi and Rakkiyapan, 20L1). Phenolics are diverse sccondary metabolites
(flavonoids, tannins, hydroxyl-cinnamate esters, and lignin) which possess anti-oxidant
properties {(Grace and Logan, 2000). Polyphenols can chelate transition metal ions,
directly scavenge molecular species of active oxygen, inhibit lipid peroxidation and

modify lipid packing order to decrcase fluidity of the membranes (Arora et al., 2000).

2.4.2.2 Enzymatic Components

The enzymatic components of the anti-oxidative defense system consist of a number of
anti-oxidant enzymcs such as superoxide dismutase (SOD), catalase (CAT), guaiacol
peroxidase (GPX), and the cnzymcs of ascorbate-glutathione {(AsA-GSH) cycle namely
ascorbate  peroxidasc  (APX), monodehydroascorbate  reductase (MDHAR),
dehydroascorbate reductase {DHAR), and glutathione reductase (GR) (Noctor and Foyer,
1998) (Table 2.2). These enzymes operate in differcnt sub-ccllular compartments and

respond in concert when cells are cxposed to oxidative stress.

Among all the antt-oxidant enzymes, SOD together with the cnzymes of AsA-GSH
pathway plays a crucial role in disposal of ROS. Before describing in detail about the role
of SOD-AsA-GSH cycle in protecting cell against oxidative stress, the role of other

important anti-oxidant enzymes is briefly discussed below.
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Table 2.2 List of different anti-oxidant enzymes, their localization and the primary ROS detoxified by
them.

Stperoxide Chloroplast, Cytoplasm, owler ef at., 1992
dismutase Mitochondria, Peroxisomes,
Apoplast
Ascorbate peroxidase Chloropiast, Cytoplasm, H20; Asada and Takahashi,
Mitochondria, Peroxisomes, 1987; Asada, 1999
Apoplast
Catalase Peroxisomes H.0; Wiliekens et al., 1995
Glutathione Cyloplasm H:0; Dixon et al,, 1998
peroxidase ROOH
Peroxidases Cell wall, Cytoplasm, Vacuole H>0; Asada and Takahashi,
1987
Thioredoxin Cell wall, Cytoplasm, H:0, Baier and Dietz, 1996
peroxidase Mitochondria

2.4.2.2.1 Catalase

Catalase (CAT, EC 1.11.1.6) is a tetrameric heme-containing enzyme ubiqguitously
present 1n all organisms and catalyzes the dismutation of two molecules of H,0, into
water and oxygen. It has high specificity for H,O,, but weak activity against organic
peroxides. CAT scavenges H»O; generated in the peroxtsomes which are major sites of
H>O: production during photorespiratory oxidation and P-oxidation of fatty acids (Del
Rio et al., 2006; Scandalios et al., 1997; Corpas et al., 2008). To date, all angiosperm
species studied contain three CAT genes: Class I CATs are expressed in photosynthetic
tissues; Class I CATs are expressed at high levels in vascular tissues, and Class 111 CATs
are highly abundant in seeds and young seedlings (Willekens et al., 1995). Environmental
stresses cause enhancement of CAT activity, depending on the intensity, duration, and

types of the stress (Sharma and Dubey, 2005; Han ef al., 2009; Moussa et al., 2008).
2.4.2.2.2 Guaiacol Peroxidase

Guaiacol peroxidase (GPX, EC 1.11.1.7), a heme containing protein, performs the
oxidation of aromatic electron donors such as guaiacol and pyragallol at the expense of
H>O,. GPX can function as effective scavenger of reactive oxygen species and peroxy-

radicals under stressed condifions (Vangronsveld and Clijsters, 1994). Various
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isoenzymes of GPX have been found in vacuoles, cell wall and cytosol (Asada, 1992).
GPX also performs a crucial role in many important biosynthetic processes like
lignification of cell wall, degradation of Indole Acetic Acid (IAA), biosynthesis of
ethylene, wound healing, and defense against abiotic and biotic stresses (Kobayasht et al..
1996). Various stressful conditions of the environment have been shown to inducc the
activity of GPX (Shah et al; 2001; Sharma and Dubey, 2005; Han et «l., 2009, Verma
and. Dubey, 2003; Moussa and Abdel-Aziz, 2008; Radotic ef al., 2000).

2.4.2.3 Superoxide Dismutase-Ascorbate-Glutathione Pathway

Superoxide dismutase and the enzymes of AsA- GSH pathway are among the most
important components of the ROS detoxification machinery of plants. Since the
discovery of the AsA-GSH cycle in the mid-1970s, the enzyme-catalyzed rcactions of
this pathway have attracted considerable interest and still are a matter of intensive
research (Noctor and Foyer, 1998; Noctor et al., 1998; Asada, 1999; Polle, 2001).
Besides chloroplasts, the constituents of the AsA-GSH cycle have also been localized in
other sub-cellular compartments (Jiminez ef «f., 1997). Studies with mutants or
transgenic plants over- or under-expressing enzymes or metabolites of the AsA-GSH
pathway have proved the co-rclation between the pathway and stress tolerance
(Scandalios, 1993; Allen, 1995). The AsA-GSH cycle does not only combat oxidative
stress, but also plays important roles in regulating photosynthesis in response to light

conditions (Foyer and Harbinson, 1994; Asada, 1999).
2.4.2.3.1 Superoxide Dismutase

Superoxide dismutase (SOD; EC 1.15.1.1) 1s a ubiquitous metallo-enzyme that catalyzes
the first step in scavenging of ROS i.c. the dismutation of superoxide anton radical to
hydrogen peroxide and molecular oxygen (Fridovich, 1978). Superoxide dismutases
function as dimers with a catalytic metal ion in each monomer (Abreu et al., 2010). On
the hasis of the metal co-factor present at the catalytic center, SOD isoforms are classified
into four types: copper/zinc (CuZnSOD), nickel (NiSOD), manganese (MnSOD) and iron
(FeSOD). Ni-dependent enzymes have been reported in Streptomyces species and are not

found in eukaryotes (Youn et al., 1996). The different isoforms of SOD are distributed in
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different sub-cellular locations. CuZnSODs are widely found in the cytosol, plastids and
periplasm of prokaryotes (Steinman et al., 1990) as well as in eukaryotes (Bordo ef al.,
1994; Kliebenstein et al., 1998; Bueno et al., 1995). MnSOD is confined predominantly
to the mitochondrial matrix and the peroxisome (Wolfe-Simon ez al., 2005; Perry et al.,
2010) while FeSOD is found mainly tn prokaryotes and chloroplasts of plants (Bridges
and Salin, 1981; Van Camp et al., 1990; Bowler et al., 1994; Klicbenstein er al., 1998;
Myouga ef al., 2008).

Muttiple forms of SODs have been characterized in plants which include seven
Arabidopsis SOD genes comprising of three CuZnSODs, one MnSOD and three FeSODs
(Kliebenstein et af., 1998): five wheat SOD genes including two CuZnSODs (Zhang et
al., 2008) and three MnSODs (Wu er af., 1999); seven rice SODs consisting of four
CuZnSOD, two MnSODs (Kanematsu and Asada, 1989) and one FeSOD and nine maize
SODs including four CuZn cytosolic isocnzymes, four mitochondrial associated

MnSODs and one chloroplastic CuZnSOD (Guan and Scandalios, 1998).

The function of SOD is frequentiy associated with (olerance to various abiotic stress
conditions (Bowler er al., 1994). This view is supported by the observation that
microorganisms such as yeast and cyanobacteria become more sensitive to ROS when
they lack SOD (Wallace et af., 2004; Thomas et al., 1998). SODs have been reported to
be regulated on the transcriptional as well as translational level in multiple ways (Perl-
Treves et al., 1991; Tsang et al., 1991, Kampfenke!l ef al., 1995; Kurepa et al., 1997;
Kaminaka et al., 1999; Sreenivasulu er al., 2000; Wang et al., 2004; Sunkar et al., 2006;
Abercrombie et al., 2008).80Ds have also been found to be activated by various

environmental stress conditions (Table 2.3).
2.4.2.3.2 Ascorbate Peroxidase

Ascorbate peroxidase (APX; EC 1.11.1.11), a class 1 peroxidase, catalyzes the conversion
of H,O; to H,O and O, using ascorbate as specific electron donor (Asada, 1999). APX, an
important component of AsA-GSH cycle, prevents the accumulation of toxic levels of
H>O:; in photosynthetic organisms. APX has been identified in a number of higher plants

and comprises of different isoenzymes with different characteristics. So far, five APX
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isoforms have been identified in plants: cytosolic isoforms, mitochondria isoforms,
peroxisomal/glyoxysomal isoforms and chloroplastic isoforms (Dabrowska er al., 2007).
All the forms of APX are thought to function as scavengers of H»O, which 1s generatcd
continuously in cells (Miyake and Asada, 1996). In Arabidopsis thaliana, the presence of
eight ispoenzymes has been confirmed: soluble cytosolic (APX1, APX2 and APX6),
bound to the microsome membrane (APX3, APX4 and APXS5) and chloroplastic (SAPX
and tAPX) (Jespersen et al., 1997; Panchuk et al., 2002). Similarly, the identification of
APX gene family in tomato revealed the presence of seven APX genes: three cytosolic,
two peroxisomal and two chloroplastic (Najami et al., 2008). In rice, etight members of
the APX gene family have been reported; encoding two cytosolic, two peroxisomal, three

chloroplastic and one mitochondrial isoforms (Texeira et af., 2004; 2006).

Like SODs the expresston of APX genes can also be activated by specific factors such as
pathogen attack, mechanical pressure, injury, UV-B radiation, salt stress, too low or too

high temperature, atmospheric pollution excess metal ions and herbicides (Table 2.3).
2.4.2.3.3 Monodehydroascorbate Reductase

Monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) recycles
monodehydroascorbate molecules into ascorbate. Under environmental stress conditions
like high light exposure, the pool of AsA in the chloroplast is oxidised to
monoedehydroascorbate within a few minutes (Polle, 2001). 1t is therefore necessary for
the survival of plants that monodehydroascorbate is reduced, thereby regenerating AsA.
In the chloroplast monodehydroascorbate is reduced to AsA by photoreduced ferredoxin
at a high rate and this is likely to constitute the main pathway in the vicinity of the
thylakoid membrane (Miyake and Asada, 1994). Away from the thylakoid membrane,
reduction of monodehydroascorbate can occur via two enzymes in the AsA-GSH
pathway; dehydroascorbate reductase (DHAR) and MDHAR (Asada, 1999). MDHAR
reduces monodehydroascorbate directly by using NAD(P)H as an electron donor.
Alternatively, two molecules of monodehydroascorbate can react non-enzymatically and
spontancously  generate ascorbate and dehydroascorbate. The majority of
monodehydroascorbate is however found to be reduced by MDHAR (Polle, 2001). The

MDHAR enzyme activity is found across the entire plant and animal kingdom (Arrigoni
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et al., 1981). Plant MDHAR exhibits the highest level of sequence similarity with
prokaryotic flavoenzymes such as iron-sulphur protein reductases. Expression studies in a
number of plant species have shown the modulation of MDHAR gene expression during

abiotic stresses like salt, drought, oxidative stress and cold (Table 2.3).
2.4.2.3.4 Dehydroascorbate Reductase

Ascorbic acid, which is a major anti-oxidant in plants, is oxidized to dehydroascorbate
(DHA) via successive reversible electron transfers with monodehydroascorbate as a free
radical intermediate (Foyer and Mullineaux, 1998). DHA, so produced, is reduced to AsA
with glutathionc as electron donor by dehydroascorbate reductase (DHAR;, EC 1.8.5.1).
DHAR proteins have been isolated and characterized from higher plants like Arabidopsis,
tobacco and agricultural crops such as spinach and rice (Urano ef al., 2000; Shimaoka et

al., 2000; Eltayeb et al., 2006; Ushimaru et al., 2006).

DHAR is a key enzyme to regenerate AsA. Additionally, DHAR is known to be
important for plant growth (Chen and Gallic, 2000). It is reported that lack of DHAR
caused the quick loss of AsA from plants and as a consequence affected plant growth and
development (Ye et al., 2000). The suppression of DHAR gene expression resulted in a
slower rate of leal expansion. DHAR is a physiologically important enzyme in the

ascorbate-glutathione recycling reaction for most of the higher plants.

DHAR also plays important roles in plant adaptation to environmental stresses and their
expression is found to be activated by a number of abiotic stress factors (Table 2.3).
Moreover, enhanced tolerance to various abiotic stresses was observed in plants over-
expressing the DHAR protein (Eltayeb et al., 2006; Kwon et al., 2003; Ushimaru et al.,
2006).

2.4.2.3.5 Glutathione Reductase

Glutathione reductase (GR, NADPH: oxidized glutathione oxidoreductase; EC 1.6.4.2), is
an anti-oxidant enzyme which maintains the cellular redox state by regenerating the
reduced form of glutathione thereby maintaining the balance between reduced glutathione
and ascorbate pools (Mullineaux and Creissen, 1997; Noctor and Foyer, 1998; Reddy and

Raghvendra, 2006). GR is a flavo-protein oxidoreductase ubiquitously present in both
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prokaryotes and eukaryotes (Mullineaux and Creissen, 1997; Romeo-Puertas er al.,
2006). GR has been purified and characterized from a variety of organisms {Rao and
Reddy, 2008). Although localized mainly in the chloroplasts (Connell and Muliet, 1986),
GRs are also found mn cytosol (Mrumm-Herrel e af., 1989; Edwards er al., 1990),
mitochondria and peroxisomes (Jimenez et af., 1997, Romeo-Puertas et al., 2006). In
general, all GRs have high specificity for their substrates although some glutathione
conjugates and mixed glutathione disulphides can also be reduced by them (Gaullier et

al., 1994).

Multiple isoforms of GR have been reported in tobacco (Creissen and Mullineaux, 19953),
spinach (Guy and Carter, 1984), red spruce (Hausalden and Alscher, 1994) eastern white
pine (Anderson et al., 1990), scot pine (Wingsle and Karpinspi, 1996), mustard (Drumm-
Harrel er af., 1989), pea (Edward ef al., 1994), cow pea (Contour-Ansel ef ., 2006) and

wheat (Lascano et al., 2001).

GR and GSH play a crucial role in determining the tolerance of plants during the
different abiotic stresses and the increase in GR activity under varying environmental

stresses has been shown by several studics (Table 2.3).
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Table 2.3 Activation of anti-oxidant enzymes in response to oxidative stress induced by various
environmental stresses (Modified after Sharma er al., 2012).

| Stresses’ ant Species: " References-.... i o
| Drought Oryza saliva SOD GPX APX MDHAR Sharma and Dubey 2005
DHAR,GR
Beta vulgaris SOD, CAT, GPX Sayfzadeh and Rashidi, 2011
Triticum aestivum SOD, APX, GR Sairam et al,,1998
Oryza safiva SOD, CAT, GPX, APX, GR  Mishraetal, 2013
Salinity Olea europaea CAT, SOD, GR Valderrama et al., 2006
Oryza sativa GPX Mittal and Dubey, 1991
Chilling Zea mays APX, MDHAR, DHAR, GR Fryer et al,, 1998
SOD
Fragaria X APX, MDHAR, DHAR, GR Zhang et al., 2008
ananassa S0D
Aluminum Oryza sativa SOD, GPX, APX Sharma and Dubey, 2007
Glyeine max SOD, GPX, APX Cakmak and Horst, 1991
Nickel Oryza sativa SOD, GPX, APX Maheshwari and Dubey, 2009
Arsenic Oryza saliva S0D, GPX, APX Mishra et af, 2011
Manganese Oryza sativa SOD, GPX, APX, GR Srivastava and Dubey, 2011
uv-B Picea asperata S0OD, APX, CAT, GPX Han et af., 2009
Arabidopsis thatiana  GPX, APX Rac et al,, 1996
Pathogen
Odium lini Linum usitatissimum  GPX, CAT Ashry and Mohamed, 2012
Bean yellow  Vicia faba POD, CAT, APX, SOD Radwan et af., 2010
mosaic virus

2.5 Biotechnological Approaches for Developing Oxidative Stress Tolerant

Crops: Transgenics Over-expressing AsA-GSH Pathway Genes

The defensive action of the various enzymes of AsA-GSH pathway has been explored by
transgenic approaches primarily by over-expressing them and relating their expression to
the degree of stress tolerance conferred to the plant. SOD gene was used to transform
plants for the improvement of abiotic stress tolerance 1n a number of cases. Van Camp et
al. transferred MnSOD genc from tobacco into clover (Van Camp et ai., 1994). The
transgenic plants showed a significant increase in growth, vigor and yield under drought
conditions. Meanwhile, oxidative stress resistance under drought stress was reported 1o
significantly increase in transgenic tobacco over-expressing a CuZnSOD gene from rice
{Badawi et al., 2004a). Over-expression of tobacco MnSOD gene in maize chloroplast
was found to decrease the oxidative stress in leaves (Frank et al., 1999). Du et al.

reported that over-expression of MnSOD could alleviate oxtdative stress in maize (Du et
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al., 2006). Similarly, cxpression of cytosolic APX gene (cAPX) in tomato improved
tolerance of the transgenic plants to direct sunlight exposure under field conditions
(Wang et al., 2006) and expression of katE genc in rice resulied in improved growth and
yield under salt stress conditions (Nagamiya ef af., 2007). The numerous studics
reporting the production of stress tolerant transgenic plants over-expressing different anti-

oxidant enzymes havc been summarized in Table 2.4,

The outcome of the over-expression of gencs depends on number of factors including the
the source of the gene and the type of promoter used. In many cases, simultaneous over-
expression of morc than onc transgenes has been reported to give better results. All thesc

factors are hereby discussed in brief.

2.5.1 Role of Source Organisms: Importance of Introduction of Genes from Stress

Adapted Species

One important strategy for strengthening the ability of plants to resist the abiotic stresses
is the introduction of genes from stress-adapted species such as desert and halo-tolerant
plants. The over-expression of proteins isolated from stress tolerant plants in the crop
plants may possibly give the later the nccessary additive advantages and enable them to
resist stress conditions better than the non-modified parcntal plant. The large number of
plant genome sequencing projects, as well as the sequencing projects of other organisms
from extreme environments, could generate a rich database of genes that can be used for
the manipulation of crops for increasing their tolerance to abiotic stresses (Mitler and

Blumwald, 2010).
2.5.1.1 Pennisetum — A Stress Adapted Food Crop

Pearl millet (Pennisetum glaucum L.) is the fourth most important cereal crop in India,
after rice, wheat and sorghum. Although, pearl millet grows best on well-drained light
sandy soils, it can withstand water limited conditions relatively well compared to other
crops like sorghum and maize (Kholova, 2010; Burton, 1983). Therefore, it is considered
as a drought tolerant crop. It can also tolerate high ambient temperature, low sotl fertility,
low soil pH and high concentration of aluminium (National Rescarch Council, 1996). It is

considered more eftficient in utilization of soil moisture and has a higher level of heat
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tolerance than sorghum and matze (FAO, 2010). Theretore, the stress-adapted pcarl

millet plant can be used for isolation of vartous stress responsive genes.
2.5.2 Role of Promoters

Most of the genes engineered into crops in order to improve abiotic stress tolerance are
driven by constitutive promoters, the most common promoter used for manipulation of
gene expression being Cauliflower mosaic virus 35S (CAMV35S; Odell er al., 1985),
Ubiquitin (UBI1; Holtorf er al., 1995) or actin (McElroy ef al., 1990). Although these
promoters have bcen effcctive in production of transgentc plants with increased stress
tolerance, the constitutive expression of the transgenes is not often destrable because of
negative pletotropic effects on growth and development of plants under control
conditions (Ori et al., 1999; Hsieh et al., 2002). Moreover, the use of strong constitutive
promoters could accelerate the process of trangene silencing (Dietz-Pfeilstetter, 2010). A
solution to this problem is the use of stress inducible promoters that results in expression
of the transgenes only under the stress conditions (Peleg ef al., 2011; Rivero ef al., 2007,
2010; Moller er al., 2009). In case of multi- gene manipulation the co-ordination of
expression of the transgenes needs to be considered. The T7 based cxpression system has
recently emerged as a probable strategy facilitating co-ordinated and high expression of

the transgenes in various plants (Nguyen et al., 2004).
2.5.3 Number of Transgenes: Advantages of Multigene Transformations

Most metabolic processes which serve as targets for genetic manipulation depend on the
interaction between a number of genes, and flux through biochemical pathways is often
co-ordinated with that of competing pathways; therefore, the most effective strategy for
enhancing tolerance of plants to any stress can be by controlling multiple genes on the
same, or intereonnected, pathways. Multi-gene transformations have been successfully
used in order to increase the oxidative stress tolerance of plants. Pyramiding of anti-
oxidant enzymes has been done and the transgenic plants so obtained exhibit enhanced
tolerance as compared to the over-expression of single enzymes (Table 2.4). Transgenic
tobacco plants over-expressing CuZnSOD (Gupta er af., 1993), after retransformation

with the chloroplastic APX, showed enhanced tolerance to paraquat (Kwon et al., 2002).
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This double transgenic plant when transformed with chloroplastic DHAR gene showed
further enhanced tolerance to oxidative stress {(Lee et al., 2007). Likewise, transgenic
tobacco plants developed through in vitro pyramiding of cytosolic CuZnSOD and APX
showed enhanced tolerance to drought stress (Faize et al., 2011). The pyramiding of
CuZnSOD and chloroplastic APX in potato (Tang ef al., 2006) and in sweet potato (Lim
et al., 20007) enhanced the tolerance of the transgenic plants to chilling, high temperature
and paraquat. Transgenic tobacco over-expressing GST (from cotton) and GPX (from
Chlamydomonas) showed enhanced resistance to paraquat as well as chilling (Yu et al.,
2003; Yoshimura er al., 2004). Furthermore, gene pyramiding with double transgenic
plants over-expressing both GST and GPX enhanced the scedlings growth during chilling

and salt stress (Roxas ef al., 1997).
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Table 2.4 List of iransgenic plants over-expressing different anti-oxidunt enzymes (Moditicd after Gill and
Tuteja, 2010).

CuZnSOD
CuZnSOD
MnSOD
MnSOD

MnSOD
CAT
CAT3
katE
cAPX
APX3

APX1
GR
GR

X
MnSOD +CAT
GST+GPX
CuZnSOD+ APX
and DHAR
MnSOD+FeSOD

‘Nicotiana tabacum

Oryza sativa
Avicennia marina
Nicotiana plumbaginifolia
Tamarix androssowi

Arabidopsis thaliana
Triticumn aestivum
Brassica juncea
Escherichia coli
Pisum sativum
Arabidopsis thaliana

Hordeum vulgare
Escherichia coli
Arabidopsis thaliana

Arabidopsis thaliana
Arabidopsis thaliana
Arabidopsis thaliana
Oryza sativa

Homo sapiens
Suaeda salsa
Chlamydomonas
Synechocysti

Escherichia coli
Nicofiana tabacum
Arabidopsis thaliana

Nicotiana tabacum

Nicotiana tabacum
Oryza sativa
Triticum aestivum profoplast
Populus davidiana x P.
bollean

Arabidopsis thafiana

Oryza sativa

Nicotiana tabacum

Nicotiana tabacum
Lycopersicon esculentum
Nicotiana tabacum

Arabidopsis thaliana
Triticum aestivum protoplast
Gossypium hirsutum

Nicotiana tabacum
Nicotiana tabacum
Nicotiana tabacum
Arabidopsis thaliana
Nicotiana tabacum
Oryza sativa
Nicotiana labacum
Arabidopsis thaliana

cea

THn

Brassica campestris
Nicotiana tabacum
Nicotiana tabacum

Medicago sativa

Gaber et al., 2006

Badawi et al., 2004
Prasanth et af., 2008
Melchiorre et al., 2009
Wang ef al., 2010

Wang ef al., 2004
Matsumura et al., 2002
Guan et al., 2009
Al-Taweel of al., 2007
Wang ef al., 2005, 2006
Yan ef al., 2003,
Badawi et al., 2004b
Xu et al., 2008
Melchiorre et al., 2009
Kornyeyev ef af., 2003,
Mahan ef al., 2009,
Logan ef al., 2003
Eltayeb ef af,, 2007
Ettayeb ef al., 2006
Ushimaru ef al., 2006
Chen et al., 2005
Kwon ef al., 2003
Zhao and Zhang, 2006
Yoshimura ef al., 2004

Lee etal., 2007
Tseng ef al., 2007
Roxas et al., 2000
Lee ef al., 2007

Rubio et al., 2002 ]
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MATERIALS AND METHODS

3.1 Materials and Chemicals

The plant materials, bacterial strains, vectors, enzymes, chemicals, ctc. used for the
gene isolation, cloning, protein expression and purification, plant transformation.

transgenic screcning and cvaluation, and their sources are listed in Table 3.1.

3.2 DNA Vectors

The vectors used in the cloning and transformation studies are listed below.

3.2.1 pCR 4.0 TOPO
This vector was used for cloning of the PCR amplified genes. [t has bacterial

sclectable marker genes for kanamycin and ampieillin.

3.2.2 pET-28a
This bacterial expression vector was used for the expression of Ascorbate-Glutathione

{AsA-GSH) pathway genes. [t has kanamycin gene for bacterial sclection.

3.2.3 pET-14b

This vector was used for construction of the T7 gene cassettes.

3.2.4 Gateway cloning vectors

Gateway cloning vector system comprises of a destination vector and two types of
entry vectors.

3.2.4.1 Entry Vectors

Entry vectors allow restriction based cloning of the gene of interest into a vector tor
entry into the Gateway® System (Invitrogen). Two types of entry vectors were used:
Entry vector 1 (pLI2R34H-Ap) having ampicillin and gentamycin selection marker
and Entry vector 2 (pL34R12H-CmR-ecdB) having chioramphenicol and gentamyecin
as selection marker

3.2.4.2 Destination vector

The destination vector used in this study was pMDC99 having kanamycin as a

bacterial selection marker and hygromycin as the plant selection marker.
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Table 3.1 List of materials used and their sources.

MArEmALs N

Penmsetnm glaucum
i Oryza safiva L IR64

i Escherichia coli (DH5x)

i Escherichia coli {Top10)

it Escherichia coli {BL21{DE3})
v Rossetta 2 {(DE3) Plyses _
v Agrobacterium tumefaciens (EHA105)

pCR-TOPO
i pET28a(+), pET14b(+}
i | pMDCY8 (Plant Transformation Vector)
' Entry vector 1 and 2

i 1kb DNA Ladder,
ii Protern markers

Kanamyoln 4 Ampicillin, N

Restriction enzymes
LR Clonase
Klenow, T4 DNA ligase
it RNase A
iv_ | PfuDNA Polymerase
b5hi ey
y on membrane nrtrocellulose
Whatma sheet

i medium
2.4-D, 6-BAP, NAA, Zeatin _TDZ

Primer
ii X-ray films
il Radioaclive material

v DNA Sequenoing ‘
Chemicals .-
ers and Soiutions

Oryza saliva L Swarna (MTU-5072)

Streptomycln,
i Rifampicin, Hygromycin, Cefatoxime,
Chloramphe/mcol carbenicillin

MS ﬂr/nedrum,‘ HOEgiand‘s medium, YEM

v ( Agarose and PAGE Gel electrophoresis

'SOURCES

ICRISAT, Hyderabad
IARI, New Delhi
DRR, H derabad o

Invitrogen Life Technologies, USA

New England Biolabs

Novagen
Novagen
Stratagene

invitrogen Life Technologies, USA
Invitrogen Life Technologies, USA
Novagen, Germany, ABRC
Xue—chen Wang lab Chrna

lnvrtrogen erelTechnologres USA
Fermantas GmbH Germany Blorad USA &

Slgma Chemroal Company St Louis, USA

New England Biolabs inc. MA, USA
Invitrogen Life Technologies, USA
Roche applied science, Germany
Promega

Fermentas

merenam Bioscienoes UK
Whatman Co USA

‘Srgma Chemlcal Compan: St Lours‘ U\

Duchefa Biochemie, Nelherland
Himedia, Bombay;
Si ma St Lours USA

IDT, Belgrum

Kodak, Amersham Biosciences, UK
Perkin-Eimer, USA

BIO-RAD

Macrogen (South Korea)

":Srgma Chemrcal Company St Lours USA

USB  (Amersham International  plc.),
Buckinghamshire, UK; Amersham
Biosciences, UK; BIO-RAD, USA;

Boehringer Manheim, GmbH, Germany;
Promega Life Science, Madison, W, USA
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The maps of the vectors used for cloning are shown in Fig. 3.1 and 3.2.

3.3 Sterilization Procedure

All glass wares, bacterial culture media, tissue culture tools and tissue culture media
were sterilized by autoclaving at 120 °C under 15 1b psi pressure for 15 min. The
antibiotics and other heat labile components were filter sterihized with an autoclaved

cellulose nitrate filter of 0.22 uM porc size (Millipore).

3.4 In silico Analysis of DNA and Protein Sequences

3.4.1 BLAST Search

Similarity search of the ESTs, DNA and protein scquences was performed against
different DNA and protein related databases (NCBI, PDB, Swissport, TAIR, Rice
Genome Annotation at MSU) using BLASTN and BLASTX programmes respectively
(Altschul et al, 1990). The similarity and identity percentage among DNA and
protein sequences were obtained with the help of Mac Vector software (Acceleris,

GmbH, Germany).

3.4.2 Multiple Alignments

Though most of the DNA and protein alignments were performed using MAC Vector
and CL.C Free Workbench software package, some DNA and protein scquences werc
aligned using ClustalW version 2.0 program (Larkin ¢t afl., 2007) at EMBL. The
phylogenetic trees were constructed by using the UPGMA algorithm available in Mac

Vector.

3.4.3 Restriction Analysis of DNA
Restriction map of a given DNA fragment was prepared by using Mac Vector to
identify the restriction sites in the gene for further cloning into different vectors or for

the creation of restriction sites in primers.

3.4.4 Domain Search

The conserved domain searches among different protein sequences were performed at
many protein related databases like Pfam and CD- search (NCBI). The fingerprints in
the protein sequences were identified by scanning PRINTS database (Attwood et al.,

2003) with the protein sequence.
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3.4.5 Primer designing

Most of the primers were designed by using Mac Vector (Acceleris, GmbH). For
quantitative real-time PCR analyses, the primers were designed with the help of web-

based primer design software, Primer 3 at http:/frodo.wi.mit.edu/primer3/ using

customized parameters. Most of the primers were synthesized by IDT and Sigma-

Aldrich, India.

3.4.6 In silico Promoter Analysis
In order to identify putative conserved plant cis-acting regulatory elements the
promoter sequences were analyzed using PLACE (Higo et al., 1999}, plantCARE

(Lescot et al., 2002) databases and motifs reported in the literature.

3.5 Plant Growth Conditions

P. glaucum seedlings were grown on wet germination paper under a 14/10 h
light/dark cycle at room temperature (30£2 °C) for two weeks. After two weeks the

leaves were quickly frozen in liquid nitrogen before protein isolation.

Rice seeds (Oryza sativa. 1., cv Swarna) were sterilized and germinated on soil in
green house at 28 °C under 14 h light/10 h dark cycle until flowering .Developing
panicles were harvested just before emergence and were dissected away from the
tightly rolled leaf sheath and were quickly frozen in liquid nitrogen before total RNA
isolation. Spikelets were separated into anthers, carpels, and paleas/lemmas under a
dissecting microscope. Leaves and roots were collected from two-week-old seedlings.

All the parts were individually frozen in liquid nitrogen before RNA isolation.

3.6 Bacterial Growth Conditions

Different strains of E. coli were incubated and cultured either in LB broth with
continuous shaking at 220 rpm or on the LB agar at 37 °C (Table 3.2). Agrobacterium
cells were incubated in YEM medium (Table 3.3) with continuous shaking at 220 rpm
or in the YEM agar at 28 °C. These bacterial strains were incubated and selected with

appropriate antibiotics (Table 3.4),
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pCR-TOPO 4
3956 bp
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HndMI Ndel
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RCP

ROP

Figure 3.1 Different vectors used for cloning. (A) Vector diagram of TA cloning vector pCR4-TOPO. (B)
Vector diagram of expression vector pET-14b, (C) Vector diagram of expression vector pET-28a.
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pBR322 ori

Figure 3.2 Vectors used for gateway cloning. (A) Vector diagram of Entry vector 1 (EV1). (B) Vector
diagram of Entry vector 2 (EV2). (C) Vector diagram of destination vector pMDC99,
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Table 3.2 Composition of LB media.

Componeit cofioemE -
Tryptone 1
Yeast extract 0.5
NaCl 1

The above components were mixed and dissolved in 80ml distilled water, pH was adjusted
to 7.0, and volume was made upto 100 ml For preparation of solid medium 1.5% agar was
added.

Table 3.3 Composition of YEM media.

Yeast Extract
Mannitol,
NaC|
MgS0O4.7H:0
K:HPO4
The above compenents were mixed and dissolved in 80m! distilled water, pH was adjusted
to 7.0, and volume was made upto 100 ml. For preparation of solid medium 1.5% agar was
added.

Table 3.4 Concentrations of the antibiotics used in this study.

.~ Antibiotic ~ Concentration
‘Kanamycin 50 pglrﬁl
Streptomycin 50 pg/ml

Chloramphenicol 50 pg/ml
Rifampicin 15 pig/mi
Ampicillin 100 pg/ml

Hygromycin 30 pgimi
Cefotaxime 250 prg/ml
Carbenicillin 250 ugiml

3.7 Preparation of Bacterial Competent Cells and Transformation

The Escherichia coli and Agrobacterium competent cells were prepared according to
a procedure of Hanahan (Hanahan and Meselson, 1991) and Hofgen (Hofgen and
Willmitzer, 1988) respectively. The competent cells can be used for many standard

molecular biology applications.

3.7.1 Preparation of E. coli Competent Cells
A single colony of freshly streaked DHSa cells was inoculated in 5 ml of LB broth
and grown overnight at 37 °C. Overnight grown culture was inoculated and grown till

Aegoo ~0.5. The culture was incubated on ice for 10-15 min. All furthcr steps were
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carried out under sterile conditions. The culture was divided into two pre-chilled 50
ml centrifuge tubes and centrifuged at 5000 rpm for 10 min at 4 °C. To the pellet, 1.5
mi of chilied 100 mM CaCl, was added and centrifuged at 5000 rpm for 5 min at 4°C.
The pellet was resuspended in 2.5 ml of CaCl; and incubated on ice for 1 h. Cells
were pelleted by centrifugation at 4000 rpm for 5 min at 4°C. To the pellet, 6 ml of
100 mM CaCly was added and incubated on ice for 30 min. The cells were centrifuged
at 4000 rpm for 5 min at 4°C and rthe pellet re-suspended in 3 ml of 13 % glycerol (1.3
ml glycerol + 5 ml 100 mM CaCl; + volume made to 10 ml with sterile water). The
cells were pooled in one tube, mixed gently and divided into small aliquots of 100 -

200 pi each. Aligquots were frozen in liquid nitrogen immediately and stored in -70°C.

3.7.2 Transformation of E. coli Cells

Competent cells (DHS5a or BL21) were thawed on ice. Ligation mix or plasmid DNA
(0.2-1 pg) to be transformed was added to the cells, mixed well with pipette and
incubated on ice for 30 min. The cells were subjected to heat pulse at 42 °C for 90 sec
and immediateiy chilled on ice. Cells were diluted 10 fold with liquid LB and grown
at 37°C, 200 rpm for 60 min for cell revival. Cells were then pelieted by
centrifugation at 5000 rpm for 5 min, resuspended in 100-200 ul volume of LB and
plated on LB plates with appropriate antibiotic selection. The plates were incubated in

a 37°C incubator for 12-14 h.

3.7.3 Preparation of Agrobacterium FElectro-competent Cells

A starter culture of A. rumefaciens strain was raised in 5 ml liquid YEM medium
containing rifampicin (15 mg/L). Agrobacterium cells were cultured for 48 hat 28 °C
on an orbital shaker maintained at 220 rpm. | ml of starter culture was inoculated into
100 m! of fresh YEM medium containing rifampicin (15 mg/L) and the culture was
allowed to grow to log phase (O.Dggp 0.4 - 0.6). The log phase culture was chilled on
ice for 30 min and centrifuged at 5000 rpm for 15 min at 4 °C. The pellet was
suspended in equal volumes of ice-cold sterile double distilled water and centrifuged
at 5000 rpm for 5 min at 4 °C. The pellet was resuspended in equal volume of 0.1 mM
HEPES (pH 7.0) and incubated on ice for [ h before centrifuging at 5000 rpm for 5
min at 4 °C. The obtained bacterial pellet was suspended in equal volume of 0. 1mM
HEPES (pH 7.0) and 10% ice-cold glycerol and centrifuged at 7000 rpm for 10 min at
4 °C. Finally the pellet was suspended in 300 pl of 10% glycerol and aliquots of 40 pl

were made and stored at -70 °C till further use.
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3.7.4 Electro-transformation of Agrobacterium

Transformation was initiated by adding 10 ng of plasmid DNA to the frozen
Agrobacterium competent cells. The suspension was carefully mixed with a pipette tip
and transferred to a pre-chilled 2 mm cuvette. Electroporation was carried out at 2.5
KV, 25 uF capacitance and 20t €2 resistance for ncarly 5 ms. For all the successive
electroporations, a pulse time of 525 ms was recorded. Immediately after
electroporation, 1 mi of fresh LB medium was added and the bacterial suspension was
incubated at 28 °C with shaking tor 2-3 h. After 2-3 h of incubation, 50 ! of the
transformed cells were then plated on LB semi-solid plates with respective antibiotics
for selection of transformed clones, and the plates were incubated at 28 °C for 48 h.
Single colonies were picked up from the plate and incubated for plasmid mini

preparation.

3.8 Nucleic Acid Isolation

3.8.1 Small-Scale Isolation and Purification of Plasmid DNA

Bacterial cell culture (5Sml) grown overnight was harvested by centrifugation at
maximum speed (13,000 rpm) for 30s. Pellet was re-suspended in 100 pl of ice-cold
solution 1 (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 100 ng/ml RNase A) and
vortexed vigorously. The cells were lysed by adding 200 ul freshly prepared solution
II (200 mM NaOH, 1% SDS) and gently mixed by inversion. To this. 130 pl of
chilled solution II1 (3.0 M potassium acetate, pH 5.5) was added, mixed and incubated
on ice for 3-3 min. Supernatant was collected by centrifugation at maximum speed for
5 min at 4 'C and extracted once with equal volume of phenol: chloroform: isoamy!
alcohol (25:24:1). DNA was precipitated by adding 0.7 volumes of isopropanol and
pellet recovered by centrifugation at 12, 000 rpm for 3 min. Plasmid pellet was

washed with 70% ethanol, atr-dried and dissolved in TE buffer.

3.8.2 Isolation of Plasmid DNA by Midi Preparation

Plasmid DNA was isolated by alkaline tysis method as described by Sambrook er ai..
(19893 with modifications. Bactenal cells |00 ml were grown overnight in LB
medium with either 100 pg/ml ampicillin or 50 pg/ml kanamycein depending upon the
selection marker of the vector. Cells were then harvested by centrifugation at 5000

rpm for 10 min at 4°C. The pellet was re-suspended in 10 ml of solution I (50 mM
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gluicose, 25 mM Tris-HCI, pH 8.0 and 10 mM EDTA). Subsequently, 20 m!l of freshly
prepared solution 1T (0.2 N NaOH, 1% SDS) was added, mixed by inversion and
incubated at room temperature for 10 min. 15 ml of ice cold solution III (prepared by
adding 60 ml of 5 M potassium acetate, 11.5 ml of glacial acetic acid and 28.5 mi of
H,0} was added, mixed thoroughly and incubated on ice for 10 min. The mixture was
centrifuged at 10,000 rpm for 15 min at 4 "C. The supernatant was filtered through
two layers of mira cloth into a fresh tube. Plasmid DNA was precipitated by adding
0.6 volumes of 1so-propanol and incubated at room temperature for 30 min. DNA was
recovered by centrifugation at 10,000 rpm for 15 min. The DNA pellet was air-dried
and dissolved in 5 ml of TE. To this 0.96 g ammonium acetate was added (final
concentration of 2.5 M), mixed and incubated at -20 °C for 30 mun. Supernatant was
collected after centrifugation at 10,000 rpm at 4 °C for 10 min and DNA was
precipitated by adding 1/10" volume of 3 M NaOAc, 2.5 volumes of chilled ethanol
and incubated at -70 °C for [ h. After centrifugation at 12,000 rpm for 15 min at 4 °C,
DNA pellet was dissolved in 4 ml of H2O and treated with RNase A (20 pg/ml) at 37
°C for 30 min. After the RNase A treatment. phenoi-chloroform extraction was
performed and DNA was re precipitated with ethanol and sodium acetate as described
above and eventually at -70 °C for th. After centrifugation at 12,000 rpm for 15 min
at 4 °C, DNA pellet was dissolved in 2 mi of water and OD was taken to measure the

concentration.

3.8.3 Isolation of Plant Genomic DNA

Rice genomic DNA was isolated from young leaves following the cetyl-trimethyl-
ammonium bromide (CTAB) protocol deseribed by Doyle and Dickson (1987).
Bricfly, lg of tissue was frozen in liguid nitrogen, ground into a powder and
resuspended in preheated CTAB extraction buffer (4% CTAB, 1.4 M NaCl, 100 mM
Tris—HC! (pH 8.0), and 20 mM EDTA) plus 2% f-mercaptoethanol. Approximately,
10 ml of preheated extraction buffer was added to 1g of finely powdered plant tissue
and the suspension was incubated at 65 °C for 30 min. The lysate was centrifuged at
12000 rpm for 20 min at room temperature. An cqual volume of a tris-phenol and
Chloroform: Isoamyl alcohol (24:1) was added and mixed properly. The aqueous
phase was scparated by centrifugation at 12000 rpm for 5 min at room temperature.

The extraction step was repeated till a clear inter phase was obtained following which
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DNA was precipitated by addition of 2 volumes of 100% ethano! to the aqueous
phase. The pellet obtained by centrifugation was air-dried and resuspended in Tris

EDTA (pH 8.0) or milli Q water.

3.8.4 Isolation of Total RNA

Total RNA was isolated according to the protocol described by Chomezynski and
Sacchi (Chomczynski and Sacchi, 1987). Liquid nitrogen frozen plant tissue (5 g) was
ground to a fine powder in liquid nitrogen using a mortar and pestie. The powdered
tissue was mixed with 5 m} of denaturation buffer (4 M guamdinm thiocyanate in 42
mM sodium citrate, 0.83% N-laury! sarcosine and 0.2 mM {3-mercaptoethanol), mixed
thoroughly with intermittent vortex till a ciear suspension was obtained. The lysate
was then centrifuged at 10,000 rpm for 10 min at 4 °C and the aqueous phase was
collected in a fresh tube. Then Phenol: chloroform: isoamyl alcohol extraction step
was repeated three to four times till a clear interface was obtained. After that, a single
step of chloroform: isoamyl alcohol (24:1) extraction was done. To the aqueous
phase, an equal volume of isopropano! was added, mixed and kept for 30 min at -20
“C. RNA was then pelleted down by centrifugation at 10,000 rpm for 15 min at 4 °C
followed by 70% ethanol wash, air-dried, dissolved in 4 ml DEPC treated water. After
dissolving the pellet, I mi of 10 N LiCl was added to a final concentration of 2 N and
kept overnight at 4 °C. RNA was pelleted down at 10,000 rpm for 10 min (supernatant
containing genomic DNA and carbohydraie was discarded). Pellet was air-dried and
dissolved in 3 ml of DEPC treated water. RNA was re-precipitated by adding 1/10
volume of 3 M sodium acetate and 2.5 volume of ethano! and incubated overnight at -
20 °C. RNA was collected by centrifugation, washed with 70% ethanol and stored in
80% ethanol at -80 °C till further use.

3.8.4.1 Integrity Test of Total RNA

The integrity of the prepared RNA to be used for subsequent cDNA synthesis was
confirmed by checking for the presence of 285 rRNA and 185 rRNA on agarose gel
electrophoresis. Total RNA (2 pug) was mixed with appropriate amount of RNA
loading buffer and incubated at 65 °C in water bath for 15 min followed by cooling in
ice for 5 min. This was mixed with 2 ul of RNA loading dye and loaded onto 1%
formaldehyde agarose gel made i 1X MOPS buffer. The gel was run at 5 volt/cm for
45 min mn electrophorests unit (Bio-Rad, USA). After completion of electrophoresis

the gel was taken in an RNAse free container and washed thoroughly with DEPC
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water and statned with ethidium bromide (10pg/ml) The gel was photographed using

gel documentation system (Alphaimager EP, Innotech).

3.8.5 Isolation of mRNA from Total RNA

The mRNA was isolated by magnetic separation after annealing with botinylated
oligo-dT primer and immobilizing it onto streptavidin-linked paramagnetic beads.
Approximately 250 pg of total RNA was dissolved in DEPC treated water in micro
centrifuge tube in a final 600 pl reaction volume to that add 6 pl of I M Tris, pH 7.5
(final conc. 10 mM), 100 pl of 3 M KCI (final conc. 0.5 M) and I pg of 20mer
biotinylated oligo-dT was added to it. RNA was heated to 65 °C for 5 min to remove
all secondary structures followed by 10 min incubation at 37 °C for primer annealing.
Meanwhile 100 pl of Streptavidin magnetic beads suspension (from Roche) was
washed twice with 10 mM Tris pH 7.5 containing 0.5 M KCIl (made with DEPC
water). Washed streptavidin magnetic beads suspension was added to RNA oligo-dT
containing solution and kept at room temperature for 10 min with gentle intermediate
mixingin order to prevent the beads from scttling. mRNA along with streptavidin
beads was pulled out with the help of magnetic separator (Promega). RNA solution
(without mRNA) was removed and streptavidin beads (attached to mRNA) were
washed two to three times with 500 ul of 10 mM Tnis containing 0.5 M KCl to wash
out any contaminating unbound RNA adhered to the bead surface. Washed beads
were suspended in 100 pl of DEPC treated water and incubated for 5 min at 65 °C in
water bath to denature the hybridization between oligo-dT and mRNA. Streptavidin
beads were quickly separated out with magnetic separator and solution containing
mRNA was collected. This process was repeated twice. Solution containing mRNA
was given a short spin to remove any residual trace of beads and precipitated by
adding 1/10 volume of 3 M sodium acetate and 2.5 volume of ethanol and incubated
overnight at -20°C. The mRNA was collected after centrifugation, washed with 70%

ethanol and dissolved in appropriate amount of DEPC water for cDNA synthesis.

3.8.6 First Strand ¢cDNA Synthesis

mRNA (5 pg ) was taken and first strand ¢cDNA synthesis was carried out using
Invitrogen Superscript III First Strand ¢DNA Synthesis Kit according to the
manufacturer’s instructions. After the first strand synthesis the reaction was

terminated by heat inactivation at 70 °C for 15 min followed by addition of 4 units of
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RNase H (Invitrogen) to remove mRNA. cDNA was purified from excess primer

using Qiagen PCR purification kit according to manufacturer’s protocol.

3.9 Spectrophotometric Estimation of Nucleic Acids

Quantity and quality of nucleic acids in solution was determined by measuring the
absorbance at 260 and 280 nm. The absorbance at 260 nm in a !-cm quartz cuvette of
a 50pg/ml solution of double stranded DNA, 40pg/ml solution of single stranded
RNA and 33 pg/ml of single stranded oligonucleotides or primers is equal to 1. Purity

of nucleic acid solution was checked by taking the Aage/Azgo ratio.

3.10 DNA restriction analysis

Restriction digestion of the plasmid DNA was carried out using 1.0 pg of plasmid
DNA, 5 ul of appropriate 10 X restriction enzyme buffer, 10 Units of restriction
enzyme in a 50 pl reaction. The reaction was incubated at 37 °C (or at an appropriate
temperature according to the restriction enzyme used) for 1 h and the digestion pattern
was analyzed on 1% agarose gel. The band of interest was cut and the fragment is

eluted with Qiagen gel purification kit.

3.11 Ligation

The following principle was used to calculate the concentration of fragment and
plasmid DNA needed (3:1 ratio of fragment to vector) for ligation reaction. The
ligation reaction was carried out in a total reaction volume of 10 ul containing 50 ng
of restriction digested vector DNA, known amount of fragment DNA, 1 pl 10 X
ligase buffer, 1 put (400U} of T4 DNA ligase and sterile double distilled water to make
up the volume. The reaction was incubated overnight at 16 °C. After completion of

the reaction, an aliquot of 5 [l was used for transformation.

3.12 DNA Purification

3.12.1 Gel Extraction
To the cut pieces of agarose gel containing the desired DNA fragment, 3 volumes of

QG buffer, as supplied with Qiaquick gel extraction kit, (Qiagen GmbH, Hilden,
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Germany) was added and dissolved by heating at 50 °C for 10 min. The mixture was
loaded onto Qiaquick spin column and spun briefly. The tlow through was discarded
and 0.5 mi of buffer QG was added to QIAquick column and centrifuged for I min
(This step removes all traces of agarose). Then the column was washed twice with
wash buffer PE. The purified DNA fragment was eluted with 50 pl of 10 mM Tris-Cl,
I mM EDTA pH 8.0.

3.12.2 PCR Purification

For PCR purification, PCR product was mixed with 5 volumes of PB bufter, supplied
with Qiagen PCR purification columns and the mixture was loaded onto Qiaquick
spin column and spun briefly. The flow through was discarded and the column was
washed twice with wash buffer PE. The purified DNA fragment was eluted with 50 pl
of 10 mM Tris-Cl, 1 mM EDTA pH 8.0.

3.13 Polymerase Chain Reaction (PCR)

Rapid amplification of the DNA fragments was done using Tagq DNA polymerase and
a set of convergent primers. 150 ng of forward and reverse primers along with 200
uM of each dNTP and 2.5U of Taq DNA polymerase was used for PCR. The reaction
condition for PCR included denaturation (94 °C) for 1 min, prirner annealing (55 °C)
for 1 min and extension (72 °C) for 1 min per kb of expected product for 30 cycles in
50 w! reaction volume. An aliquot from the mix was run on 1% agarose gel 10 check

the amplification.

3.14 Colony PCR

Putative recombinant clones were identified by colony PCR. Cells from a single
colony were suspended in 50 ul of water (after being streaked on a master plate) and
boiled for 10 min. The mixture was centrifuged at 15000g for one min and I35 pl of
the supernatant was used as template for PCR using a combination of specitic forward

and reverse primers.
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3.15 Cloning and Sequencing of PCR Fragments

The sclected DNA fragment(s) that were generated by (he nested PCR-amplified
products were gel-purified using Qiagen gel extraction columns (Cat. No. 28104) and
cloned into a TA cloming vector as per the manufacturer’s instructions (Invitrogen,
USA). Either the recombinant plasmid and/or the purified PCR products were

sequenced using a cycle-sequencing protocol.

3.16 Isolation of Full Length Genes Encoding Enzymes of SOD-AsA-GSH
Pathway

The nucleotide sequences of EST clones of the genes PgSOD, PgAPX, PgGR,
PgDHAR and PgMDHAR were retrieved by sequence homology search from the
Pennisetum glawcim EST database (www.nebinlm.nih.gov, gene bank accession

numbers CD724312 - CD726805, Mishra e al. 2007). The full length ¢DNA

sequences of the genes were isolated using RACE PCR (unpublished data). The full

length genes were ampiificd using the following set of primers (Table 3.5):

‘Fable 3.5 List of primers used for full length amplification of genes of interest.

1 SOD Forward SATGGTGAAGGCTGTTGCTGTG-Y
SOD Reverse STCAGCCCTGAAGTCCAATG -3

9 APX Forward SATGGCGAAGTGCTACCCGAC -3
APX Reverse 5 TTATGCATCAGCGAACCCCAG -3

3 GR Forward 5-ATGGCGAGGAAGATGCTCGTC-3
GR Reverse S-TTACAAGCTTGTCTTTGGCT-3

4 DHAR Forward 5-ATGGCCGTGGAGGTGTGCGTGAA-3
DHAR Reverse S-TTACGCGTTCACCTTGGGTGLC-3

5 MDHAR Forward 5-TGGCGAGTGAGAAGCACTTCA-3
MDHAR Reverse S-TCAGATCTTIGCTGGCGAACTG-3

3.17 Cloning of PgSOD, PgAPX, PgGR, PgDHAR and PgMDHAR Full
Length Genes into pET-28a Expression Vector

For the over-expression of His-tagged proteins, PeSOD, PgAPX, PeGR, PeMDHAR
and PgDHAR were cloned into pET 28a vector (Novagen, USA)} at Nde | and BamH /

restriction sites (Table 3.6). The complete coding sequence of the genes were

amplified by PCR (150 ng of each primer, 200uM dNTPs, 2.5 U Tagq DNA
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W
polymerase and [x Taq buffer in a 50 pl reaction; 94 °C-1 min; 55 °C-1 min and 72
°C-1 min 30 s; 30 cycles) using total cDNA as template. The amplified products of
PeSOD, PgAPX, PgDHAR, PgMDHAR and PgGR was gel purified, digested with
the respective restriction enzymes and ligated on to appropriate restriction sites of
pET-28a vector. The ligated products were transformed into £. coli BL2 1 (DE3) cells
and sclected on kanamycin LB agar plate. The clones were examined or screened for

the expression of protein of interest with a His-tag at its N-terminal end.

Table 3.6 List of primers used for cloning of SOD, APX, GR, DHAR and MDHAR gcenes in pET-28a
expression vector.

5-CGAGTCCATATGGTGAAGGCTGTTGCTGTG-3

1 ’ 30D Forward

SO0 Reverse 5-CTAGGATCCTCAGCCCTGAAGTCCAATG -3

9 APX Forward 5-CGAGTCCATATGGCGAAGTGCTACCCGAC -3
APX Reverse 5-CTAGGATCCTTATGCATCAGCGAACCCCAG -3

3 T GR Forward 5-CGAGTCCATATGGCGAGGAAGATGCTCGTC-3'
GR Reverse 5-CTGCTAGGATCCTTACAAGCTTGTCTTTGGCT-3'

4 DHAR forward 5-ATTACCATATGGCCGTGGAGGTGTGCGTGAA-3
DHAR reverse 5-ATAAGGATCCTTACGCGTTCACCTTGGG TGCC-3'

5 MDHAR forward 5-AACGGATCCATGGCGAGTGAGAAGCACTTCA-3
J MDHAR Reverse 5-ACA AAGCTTTCAGATCTTGCTGGCGAACTG-3

3.18 Purification of His-tagged Recombinant Proteins in Native Condition

The E. coli BL.21 (DE3) harboring the recombinant pET-28a (+) plasmid, was grown
in LB medium 10 OD, 0.4 and induced with | mM IPTG for 3 h at 37 °C. Cells were
harvested by centrifugation. Bacterial cell pellet was re suspended in sonication buffer
(50 mM Na;PO, [pH. 8.0], 300 mM NaCl, 0.5% Triton X 100, ! mM each of PMSF
and benzamidine). Further processing of the protein was done at 4 °C. Cells were
lysed by sonication for 15 min in 30 s pulse with one min gap in between. Cell pellet
and clear supernatant were separated by high speed (13,000 rpm, in SS-34 rotor)
centrifugation in oakridge tubes at 4°C. An aliquot of pellet and supernatant was taken
and analyzed by SDS-PAGE to determine the amount of recombinant protein in
soluble (supernatant) or insoluble {pellet) fractions. The recombinant proteins (except
PeMDHAR) were present mainly in the soluble fraction and therefore purified from
soluble fraction by Ni-NTA affinity chromatography. Supernatant containing the

soluble fraction of the recombinant protein was incubated with Ni-NTA agarose (pre-
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equilibrated with sonication buffer) for 30 min in presence of 10 mM of imidazole
and loaded onto a column. The column was washed with 15-20 volumcs of wash
buffer containing 50 mM Na.PO4 pH. 8.0, 300 mM NaCl, 0.5% Triton X 100, 1 mM
each of PMSF and benzamidine, 30 mM of imidazole and 10 mM [B-mercaptoethanol
and 10% glycerol. The wash fractions were collected in aliquots of 5 ml each.
Recombinant proteins were eluted with one step elution from 200 mM to 350 mM
imidazole in a buffer containing 50mM Na,PO, pH 8.0, 300 mM NaCl, 5 mM DTT,
protease inhibitors mix and 10% glycerol. Purified protein was dialyzed against
storage buffer (100mM Na,PO, pH. 8.0, 100 mM NaCl and 30% glycerol) and stored

in —80 "C unti! further use.

3.19 Polyacrylamide Gel Electrophoresis of Proteins

Polyacrylamide gel electrophoresis (PAGE) was performed according to the protocol
of Laemmli (1970). Gels were prepared and run either in the absence (native) or
presence of SDS {denaturing). The compesition of the solutions {or preparation of gel
is given in table Table 3.7. Protein samples were prepared by mixing with equal
volume of 2X samnple buffer (50 mM Tris-HCl pH 6.8, 4% SDS (for denaturing gel),
20% glycerol, 4% B-mercaptoethanol (for denaturing gel), 0.05% bromophenol blue).
Samples were kept in boiling water tfor 5 min and loaded on the get for denaturing
condition and loaded without boiling for native condition. Gels were run at 50 V il
the proteins was stacked properly and thereafter gels were run at a constant voltage of
100 V. Gels were either electro blotted onto the nitrocellulose membrane (Hybond-C,
Amersham, England) or stained with 0.25% Coomassie blue R-250, 50% methanol
and 10% acetic acid. The amount of acrylamide solution and buffers required for
preparing various percentage of running and stacking polyacrylamide gel is given in

Table 3.8 and 3.9.
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Table 3.7 Composition of the solutions required for the preparation of PAGE gel.

| 1 | Acrylamide-bisacrylamide Solution (30%)
|| Acrylamide 2929 | Final volume was made to 100 mk. Filtered through
i Bis acrylamide 08g Whatman No.1 fiter paper and stored at 4°C in dark
i_| Distiled water 70ml | brown botle.
2 | 1.5% APS (Ammonium per sulfate)
. Totat volume was made to 10 ml with distitled water,
! APS 150 mg prepared freshly.
3 | TEMED (N, N, N°, N'-tetramethyl ethylene diamine) T
{ i TEMED was undiluted from the bottle. Stored at cool, dry place and protected from light.
| 4 | 4XResolving Gel Buffer (1.5 M Tris-HCI, pH 8.8)
i Tris base 18.2 g ) .
- — Final volume made to 100 mi, filtered and stored at 4 °C.
i | Distilled water 80 ml
5 | 4X Stacking Gel Buffer (1 M Tris - HCI, pH 6.8)
i Tris 6g , .
- — Final volume made to 100 ml, fitered and stored at 4 °C.
i | Distilled water 80 mlj
| 6 | 2XStock Sample Buffer (0.125 M Tris-HCl, 20% glycerol, 0.03% bromophenol blue, pH 6.8)
i 0.5 M Tris=HCl buffer {pH 6.8) 2.4 ml
- Final volume made to 10 ml and stored at room
i | Glycerol 2.0ml
temperature.
it | 0.5% bromophene! blue 1.0ml
T | 1X Electrode Buffer (0.025 M Tris, 0.192 M glycine, pH 8.3)
i | Tns 3g Total volume made to 1000 ml
i | Glycine 14g
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Table 3.8 Composttion of various resolving gels for Tris-Glyeine SDS-PAGE. All units are expressed
in ml.

| S-No:: Sl L 10m ml | 25ml |
1 | 8% ]
i H:0 2.3 46 6.9 9.3 1.5
[ 30% bis acrylamide 1.3 2.7 4.0 5.3 6.7
ili 4X Resolving Gel Buffer | 1.3 2.5 38 5.0 6.3
iv 10%SDS 0.05 0.1 0.15 0.2 0.25
v 10%APS 0.05 0.1 0.15 0.2 0.25
vi TEMED 0.003 0.006 0.009 | 0012 | 0.015
2 10% _‘
i | HO 1.9 40 59 |79 9.8
i 30% bis acrylamide 1.7 33 50 6.7 8.3
it | 4X Resolving Gel Buffer | 1.3 25 38 5.0 6.3
v 10%3DS 0.05 01 0.15 0.2 0.25
v 10%APS 0.05 0.1 0.15 0.2 0.25
Vi TEMED 0.002 0.004 0.006 | 0.008 | 0.04
3 12%
i H:0 1.6 33 49 6.6 8.2
i 30% bis acrylamide 2.0 4.0 6.0 8.0 10.0
fi 4X Resolving Gel Buffer 1 1.3 25 38 50 6.3
iv 10%SDS 0.05 0.1 0.15 0.2 0.25
v 10%APS 0.05 0.1 0.15 0.2 0.25
Vi TEMED @02 (.004 0.006 | 0.008 | 0.01

Table 3.9 Composition of stacking gel for Tris-Glycine SDS-PAGE. All units arc expressed i ml.

| 5% 1ml 2mi 3ml 4ml 5mi | 6ml
H.0 0.68 14 21 27 34 41
30% bis acrylamide 0.17 0.33 0.5 0.67 083 |10
4X Stacking Gel Buffer 0.13 0.25 0.38 0.5 0.63 0.75
10% SDS 0.01 0.02 0.03 0.04 005 | 0.06
10% APS 0.01 0.02 0.03 0.04 0.05 | 0.06
TEMED 0.001 0.002 0003 | 0.004 0.005 | 0.006

3.20 In-gel Assay for Antioxidant Enzymes

The activity of the ROS scavenging enzymes was studied using PAGE under non-
reduced, non-denatured conditions at 4 °C according to the method suggested by
Laemmli {Laemmli, 1970). Specific conditions were maintained for keeping native

protein intact.

3.20.1 SOD

For SOD isoenzymes separation (Rucinska et al., 1999) native PAGE was performed
using 5% stacking and 11% resolving at 4°C and constant voltage (70 V). 50 ng of
protein was loaded. After completing the run, gel was soaked in 2.45 mM NBT for 20

min followed by immerston for 15 min in a solutton containing 28 mM TEMED, 3
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uM riboflavin and 50 mM potassium phosphate at pH 7.8. The gel was then placed on
dry white tray and illuminated for 5 to 15 min. During illumination gel became
uniformly blue except at positions containing SOD. IHumination was discontinued
when maximum contrast between the achromatic zones and the general blue colour

had been achieved. The gel was then photographed.

3.20.2 APX

Native PAGE was performed according to the method of Mittler and Zilinskas
(Mittler and Zilinskas, 1993) using 4% stacking and 10% resolving gel. Electrode
buffer containing 2 mM ascorbate was prepared and the gel was pre run for 30 min
before the samples were loaded. 50 pg of protein was loaded in each well After
electrophoresis, the gel was immersed for 30 min in 50 mM sodium phosphate buffer
(pH 7.0) containing 2 mM ascorbic acid with a change of the solution every 10 min.
The gel was soaked in 50 mM sodium phosphate buffer containing 4 mM ascorbic
acid and 2 mM H,O, for an additional 20 min before a brief wash in 50 mM sodwum
phosphate buffer. Finally, the gel was incubated in 50 mM sodium phosphate buffer,
(pH 7.8), 100 mM TEMED and 1 mM NBT until the gel turned uniformly blue except
at positions exhibiting APX activity. Upon achieving the best contrast of colourless

APX bands the reaction was stopped by rinsing the gel in water.

3.20.3 GR

For measuring GR activity, native PAGE was perforimed according to the method
described by Smith er al. (Smith et al., 1988) using 5% stacking and 10% resolving
gel at 4 °C and at constant voltage (70 V). 50 pg of protein was loaded in each well.
After electrophoresis, the gel was incubated in phosphete buffer (pH 8) containing 2
mM DTNB for 30 min. GR activity staining was performed by incubating the gel in
sodium phosphate buffer (pH 8) containing 1.5 mM oxidized glutathione (GSSG) and
0.5 mM NADPH until the appearance of yellow coloured bands. The yellow coloured

bands showing the activity of GR were photographed immediately.

3.20.4 DHAR

In-gel enzyme activity staining was done following the method of De Gara et al. (De
Gara et al., 1994). Native PAGE was performed using 5% stacking and 7.5%
separating gels at 4 °C and constant voltage (70 V). After electrophoresis, the gels

were incubated under agitation for 50 min in 100 mM sodium phosphate buffer (pH
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6.4) containing 2 mM DHA and 4 mM GSH. Gels were then washed with distilled
water and stained for DHAR activity by incubating for 15 min in a solution of 0.1 N
HCIl containing 0.1%(w/v) ferrocyanide and 0.1% ferrichloride (w/v). Proteins
representing DHAR activity were observed as dark blue bands on a light blue
background the latter due to non-enzymatic AsA formation occurring in the reaction

betwcen DHA and GSH.

3.21 Isolation of RAS8 Promoter from Oryza safiva

Two specific primers with restriction sites were designed as per the available RAS
promoter genomic sequence (Jeon ef af., 1999). Kpn I and Nco I resiriction sites were
incorporated respectively, in the forward and the rcverse primers (Table 3.10). The
complete RAE promoter was amplified by PCR (150 ng of each primer, 200uM
dNTPs, 2.5 units Tag DNA polymerasc and 1X Tagq buffer in a 50 ul rcaction; 94 °C |
min; 55 °C | min and 72 °C 1 min; 30 cycles) using Oryza sativa genomic DNA as
template. The isolated promoter was digested with Kpn 1 and Nee | restriction enzyme

and cloned in to entry vector 1 (Fig. 3.2A).

Table 3.10 List of primers vsed for amplifying RA& promoter.

["S. No_ | Name of the Primer- |- 7 Primier Sequenge ... it
1 pRA8 Forward 5-TCGGTACCACATTCAGAATCATCTCCAGC-¥
P pRAS Reverse 5-GACCATGGGAGGAGCTGGAAGGAGAAGA-3

3.22 Isolation and Modification of T7RNA Polymerase Gene

The T7RNA polymerase gene sequence was retrieved from the www.ncbi.nlm.nih.gov

website. The full-length ¢cDNA amplification T7 RNA polymerase gene was
performed by using gene specific primers (Table 3.11). The complete T7 RNA
polymerase gene was amplified by PCR (150 ng of each primer. 200uM dNTPs, 2.5
U Taq DNA polymerase and | X Tag buffer in a 50 ul reaction; 94 °C-1 min; 55 °C-1
min and 72 °C-1 min 30 sec: 30 cycles) using the phage DNA as template. After PCR
amplification, the full-length inserts were PCR purified and cloned in TA cloning

vector.
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Table 3.11 List of primers used for amplifying T7 RNA polymerase gene

['S:No | NameofthePrimer- [ .~ - ~ . - PrimerSequen
1 | T7 RNA Pol Forward 5 ATGAACACGATTAACATCGCTAA-3
2 | T7RNAPolReverse 5-GATCTGGATTTTAGTACTGGATTTTG-3

The T7 RNA polymerase gene was modified by adding a 358 poly A sequence at the
3" end and SV40 large T antigen Nuclear localisation signal (NLS) sequence at the
5’end. The 358 poly A was amplified from the 358 hygromycin cassette of pGreen
Vector and cloned adjacent to 77 RNA polymerase gene at Fco Rl and Not 1
restriction site available downstream of the gene .The 45 bp oligo of SV40 large T
antigen NLS was commercially synthesized, and cloned at Neo 1 site available
upstrcam of the pene. The modified 77 RNA polymerase gene was sub-cloned at Nco |

and Net I restriction site of EV-1vector containing thc RA8 promoter.

3.23 Cloning, Expression and Purification of 77 RNA polymerase

Two oligonucleotides were synthesized corresponding to the amino-terminal (5°-
AACGGATCCATGGCTCCGCCCAAGAAAAAGCGA-3") and carboxyl-terminal
(5’-TATGCGGCCGCCGCGAACGCGAAGTCCGACTCTA-3') regions of the T7
RNA polymerase open reading frame with Bam HI and Not 1 restriction sites
incorporated respectively into the forward and the reverse primers. The complete
coding sequence of the genes was amplified by PCR (150 ng of each primer, 200 pM
dNTPs, 2.5 U Tag DNA polymerase and 1X Taq buffer in a 50 pi reaction; 94 °C -1
min; 55 °C -1 min and 72 °C -3 min; 30 cycles) using isolated full length 77 RNA
polymerase amplicon as a template. The amplified product was digested with Bam HI
and Not 1 restriction enzyme and cioned into pET-28a vector. The recombinant vector
was transformed into protein expression host . coli Rosetta 2 (DE3) pLysS. The T7
RNA polymerase protein was expressed and purified following the protocol as

described earlier.

3.24 Preparation of T7 Promoter Regulated Gene Cassettes

To express PgSOD, PgAPX, PgGR, PgDHAR and PgMDHAR genes under a T7
proimoter in rice plant system, the individual cassettes were prepared for each gene
having a T7 promoter and a 5’ ribulose bisphosphate carboxylase small chain (Rbc S)

UTR at the upstream of the gene and a 3° Rbc § UTR followed by T7 terminator at the
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downstream of the gene. All genes were cloned in a modified pET-14b expression
vector (Fig. 3.2B), in which 5’and 3* UTRs of rice Rbc § gene was already cloned
between T'7 promoter and T7 terminator. For ensuring the cytoplasmic localisation of
PeMDHAR, the potential peroxisomal targeting sequence (SKI) was deleted. This
was performed by designing the reverse primer from the region of the gene upstream
of the C-terminal peroxisomal targeting sequence and amplifying the gene using the
new set of primers. The PgSOD, P¢APX, PgGR, FgDHAR genes were cloned in Nde
I-Bam HI restriction sites of pET-14b vector. A schematic representation of the

prepared cassette has been shown in Fig. 3.3.

RbcS
S’UTR

Figure 3.3 Schematic representation of gene cassette.

3.25 Gateway Cloning

The in vitro pyramiding of the genes was done by multi-round gateway technology
using LR clonase enzyme. The Gateway technology is a flexible and universal cloning
approach based on A phage site-specific recombination which facilitates the
integration of lambda into the E. coli chromosome and the switch between the lytic
and lysogenic pathways (Ptashne, 1992). Lambda recombination occurs between site-
specific attachment (att) sites: attB on the E. coli chromosome and attP on the lainbda
chromosome. The att sites serve as the binding site for recombination proteins and
have been well-characterized (Weisberg and Landy, 1983). Lambda recombination is
catalyzed by a mixture of enzymes that bind to att sites, bring together the target sites,
cleave them, and covalently attach the DNA. Recombination occurs following two

pairs of strand exchanges and ligation of the DNAs in a novel form.

The Gateway® Technology uses the lambda recombination system to facilitate
transfer of heterologous DNA sequences (flanked by modified att sites) between
vectors (Hartley et al., 2000). The LR Reaction facilitates recombination of an attL
substrate (entry clone) with an attR substrate (destination vector) to create an attB-

containing expression clone. This reaction is catalyzed by LR Clonase™ enzyme mix.

The two basic steps of Gateway cloning technology are:
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i The initial insertion of a DNA fragment into a plasmid (Entry vectors,
Fig 3.2A and B) with two flanking recombination sequences called “att

L 1" and “art L 27, to develop “Entry clones™.

ii. The second step involves the transfer of the gene cassette in the
Gateway Entry clone into any Gateway Destination vector (a plasmid
that contains Gateway “att R” recombination sequences, Fig. 3.2B)

using proprielary enzyme mix, “LR Clonase”.
3.25.1 Sub-cloning of Gene Cassettes in Entry Vectors

Two primers were designed from the nucleotide sequence of pET-14b vector
backbone for all gene casseftes; the forward primer (5°-
CCGGATATAGTTCCTCCTTTCAGC-3’) was designed from the region upsiream of
the T7 promoter whereas the reverse primer (5’-ATATAGGCGCCAGCAACCGCA
C-3") was designed from the region downstream of T7 terminator. To clone gene
cassettes into entry vectors (Figure 3.2) different restriction sites were introduced in
primer for each cassette (Table 3.12). The cassette of each gene was amplified by
PCR {150 ng of each primer, 200uM dNTPs, 2.5 U Taq DNA polymerase and 1X Tag
buffer in a 50 ul reaction; 94 °C-1 min; 55 °C-1 min and 72 °C-2 min 30 sec; 30
cycles) by using recombinant pET-14b vector harbouring the gene cassettes as
template. The PgSOD cassette was cloned into entry vector 2 (EV-2-PL34R12-CmR-
cedb) at EcoR V and Hind 111 restriction site, PgA PX cassette was cloned at Hind 111
and Cla | restriction sites of EV-2-PgSOD vector, PgGR cassette was cloned to EV-2
in Apa I and Xba 1 site, PeMDHAR was cloned in Spe I and Xba 1 restriction site of
EV-1 and PgDHAR was cloned in Xba 1 and Not I of the EVI-PgMDHAR vector
(Table 3.12).

Table 3.12 Details of restriction sites flanking different cassettes cloned in EV1 and EV2.

LENO Cassette Genes Vectors Flanking Enzymes
1 | Cassefte 1 { PgMDHAR and PgDHAR | EV1 J Spe IiNot |
2 Cassette 2 PgGR Ev2 Apa liXbal 47‘
3 Cassette 3 L_R’fc'?—T? RNA polymerase EV1 Kpn \{Saci J
T
4 | Cassette 4 | PgSOD-PgAPX EV2 EcoR ViCia
5 | Cassette5 | bar | EV1(-Amp) | EcoR liind I
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3.25.2 Construction of EV1™"™
The ampicillin resistance gene in EV1 is flanked by Bsp HI restriction site. Therefore,
for deleting the ampicillin resistance gene, the vector was digested with Bsp HI and

then circularised using a ligase.

3.253 Pyramiding Of Gene Cassettes and Promoter Cassette in Plant
Transformation Vector by Multiple Rounds of LR Recombination Reactions

All the genes in the entry vector were stacked into plant fransformation vector-
pMDC99 through LR clonase recombination reactions following the instructions
given in the manufacturer’s manual (Invitrogen, Carlsbad, CA). Multiple rounds of
LR reactions were carried out between the pMDC99 vector and entry vectors. The LR
reactions between the destination vector (pMDC99) and the entry vectors (EV-1 and
EV2) were carried out at 25 °C for 19 h. This LR reaction was terminated by adding |
ul proteinase K. In case of recombination between pMDC99%and EV 1, an aliquot (2pl)
of the LR product was transformed into £ .coli DH5a cells using heat shock and
selected on LB agar plates supplemented with 50pg/ml kanamycin and 50pg/ml
ampicillin and in case of recombination between pMDC99%and EV2, 2pul aliquot was
transformed into £ .coli DB3.1 cells and selected on LB agar plate supplemented with
S0pg/ml kanamycin and 50ug/ml chloramphenicol. The colonies so obtained were

screened for the presence of inserts using screening primers listed in the Table 3.13.

Table 3.13 List of primers used for screening positive clones,

, | SOD Forvard 5-TGCTGTGCTTGCTAGCAGTGAGGG-3
SODReverse | 5-TCAGCCCTGAAGTCCAATGATCCC-3
, | APXForward 5.GCOAAGTGCTACCCGACCGTCAG -3
APX Reverse 5-AGTTCAGAGAGCCTGAGGTGGGCC -3
|, | GRFomard 5.CCCCATCAGCTCTGATTGGCAAGG-3
GR Reverse 5-CACCTGCAGCTTGCAAGTTCAGCC-3
4 | DHAR forwerd 5-CCGTGGAGGTGTGCGTGAAGRC-3
DHAR reverse 5-CTTGGGTGCCCATCCTGCAATCAG-3
5 | MOMAR forward 5_TCAGAATGCTGCAAGGCTCCCAGG-3'
MDHAR Reverse 5_CATCGCCAATGGCGTATACTCCAGG-3'
|
6 | T7-pol Forward 5-AGCGTTTAGCTCGCGAACAGTTGG3
77-pol Forward 5-ACGGCTTAGGAGGAACTACGCAAGG-3
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The first round of LR recombination consisted of the recombination reaction between
EVI-PgMDHAR-PgDHAR recombinant vector and pMDC99 vector. EV] containing
DHAR and MDHAR cassette and pMDC99 vector were mixed in 2:1 ratio in terms of
nanomoles in presence of LR clonase enzyme mix, incubated at 16 °C for 19 h. and
transformed in DH5a strain of E. coli. The colonies so obtained were screened for the
presence of PgDHAR and PgMDHAR genes by colony PCR using gene specific
primers (Table 3.13, Primer No. 4 and 5). The supercoiled recombinant plasmid
(pMDC99-PcMDHAR-PgDHAR) was isolated from the positive colonies. The
second round of LR reaction constituted the recombination between EV2-PgGR
recombinant vector and the pMDC99 vector harbouring PgMDHAR and PgDHAR
genes. Similarly T7RNA polymerase-RA8, PgSOD-PgAPX and bar cassettes were
assembled in the destination vector, pMDC99 during the third, fourth and fifth rounds
of LR cloning. The recombinant plant transformation vector was mobilised into
Agrobacterium (EHA105) via electroporation and the transformed cells were selected
on YEM agar plate supplemented with 50 pg/ml kanamycin, 50 pg/ml
chioramphenicol and 15 pg/ml rifampicin. The positive colonies were screened for the

presence of all the genes by PCR using primers listed in Table 3.13.

3.26 Development of Rice Transgenic through Agrobacterium Mediated

Transformation of Rice Embryogenic Calli

For the development of rice transgenic we followed the riee transformation protocol
described by Nishimura (Nishimura et al, 2006) and Hiei and Komari (Hiei and

Komari, 2008). The composition of the different media used is given in Table 3.14.
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Table 3.14 Composition of different media used in nce transformation.

1| MS Medium, 5. ¢
i JAS salt {Duchefa) 444
i | Caesin hydrolysate 039 Final pH was adjusted to 5.8; total volume was made up
i | Proline 059 to 1000 mi with distilled water and 0.03% phytagel was
v | Maltose added.
Distilled water

i | MS salt {Duchefa)

; Sucrose 30a | Final pH was adjusted to 5.8 and total volume was
9 _ | made to 500 ml with distilled water.

jii Distilled water 400 mi

3.} Cocultivat
i | MS salt (Duchefa) 44g |
i | Maltose 09 After adjusting final pH to 5.2, total volume was made
i | Caesin hydrolysate 0.3g up to 1000 ml with distiled water and 0.03% phytagel
v | Glucose 10g was added.
v | Distilled water 800 mi
i MS salt {Duchefa) 444
P | Suerose 09_| 101000 mi vt weter and 0.05% phygel s
it | Caesin hydrolysate 03g added.
v | Distilled water 800ml |

3.26.1 Sterilization of Seeds

Mature seeds of rice were dehusked and surface sterilized in 70% alcohol for Imin
and rinsed thrice with double distilled water, sterilized in 0.1% mercuric chloride for
7 min with vigorous shaking, foliowed by five rinses in sterile water. The seeds were
dried on Whatman sheet No. 1, and then plated on callus induction medium with half
of the embryo in contact with the medium. Approximately, 15 sterilized seeds per
plate were placed on the surface of MS medium (Table 3.14) supplemented with 2.5
mg/l 2, 4-D (2, 4-di-chloro phenoxy acetic acid) and the plates were sealed with

parafilm.

3.26.2 Callus Induction

Seeds were allowed to induce callus under continuous dark condition at 25+2 °C for
three weeks. Embryonic calli from three weak old seeds were dissected with scalpel,
and then transferred into fresh plates containing MS media supplemented with 2.5

mg/l 2, 4-D. The plates were incubated in dark for another 6 d prior to co-cultivation.
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3.26.3 Agrobacterium Mediated Rice Transformation

Single colony of Agrobacterium (EHA10S5) was inoculated in 5 ml of YEM broth
with appropriate antibiotics such as 50 mg/l chloramphenicol, 15 mg/l rifampicin, and
50 mg/l kanamycin. About 1% of this primary culture was inoculated in a 250 ml
flask containing 100 m! YEM broth. The culture was then grown at 28 °C till 0.Dgpg
reached up to 0.5-0.6. The cells were pelleted down by centrifugation at 5000 rpm for
10 min at 4 °C. The pellet was suspended in 100 ml of MS basal liquid media with
100 pM acetosyringone, which was added to the media 15 min prior to the co-
cultivation. The embryonic calli (~100) were immersed tn the bacterial suspcnsion
for 10 min. The embryonic calli were then dried between folds of sterile filter paper
and cultured on plates containing co-cultivation media (Table 3.14). The plates were

incubated 1n dark for 3 d.

3.26.4 Selection and Regeneration

The co-cultivated calli werc then transterred to plates containing MS medium with 50
mg/l hygromycin and 250 mg/l ccfotaxime. The plates were incubated under
continuous dark conditions at 2542 °C for 14 d; the resistant calli was sub cultured for
an additional 14 d in the samc medium. The hygromycin resistant calli, which
survived after two rounds of selection were transferrcd to regeneration medium (Table
3.14) containing 3 mg/l 6-Benzyl amino purine (BAP), 1 mg/l zeatin, 0.5 mg/l a-
naphthalene acetic acid (NAA), 50 mg/l hygromycin and 250 mg/l cefotaxime. The
regenerated rice shoots were separated and transferred to fresh tubes containing MS
basal media. For rooting the explants were transferred to solid MS medium
supplemented with 250 mg/l cefotaxime. Afier rooting the plants are transferred to the
autoclaved soil for hardening in green house. These plants were used for further

transgenic analysis.

3.27 Screening of Transgenics on the Basis of Herbicide Resistance

Transgenic plants were screened for the expression of the bar gene by using Basta
(Bayer Crop Science Ltd.}, a commercial formulation of glufosinate ammonium salt.
The herbicide Basta (10 mg/l) was painted on leaf tissues. The plants were observed

over a one week period to determine resistance or susceptibility to the herbicide.
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3.28 Detection of Genomic Integration of Transgenes by PCR

Five sets of trunsgene-specific primers were designed to detect the genomic
integration of transgene cassette by PCR. Nucleic acid sequence of full length genes
was aligned with genomic sequence of the endogenous gene and primers were
designed from the non-conserved regions. The reaction mixture was set to 50 pl and
placed in a thermo cycler (Bio-Rad) using an initial denaturing time of 5 min at 94 °C,
followed by 35 cycles of denaturation for 1 min at 94 °C, annealing at 55 °C for 1 min,
extension for | min at 72 °C and final extension for 6 min at 72 °C. The amplified
products were separated and visualized on 1.0 % agarose gels stained with ethidium

bromide (Ipg/ml). The primers used for transgene detection are listed in Table 3.15.

Table 3.15 List of the primers used for screening of transgene cassettes in transgenic plants.

£.S.No [ Name of the) . Primersequences - -
1 hpt Forward - ATGAAAAAGCCTGAAC CC-3
2 hpt Reverse 5- CTATTICTTITGCCCTCGGAC ¥
3 RA8 Forward 5- CATCGTAATTCACTTACCGACC-3
4 T7 RNA pol Reverse 5-GCTACGGCTTCCGGCTTGATT-3
5 SOD Forward 5-AGAGGGGGATGGCCCCACTACT-F
8 APX Forward 5-CCGTCTCGCGTGGCACTCGGCG-Y
7 GR Forward 5-AGAATTTGAGGATTCAAAGAAT-F
8 DHAR Forward 5-TCGGCGACTGCCCGTTICTCCCA-3
9 MDHAR Forward 5-AGAGAAAGGTATTGAGCTGATC-2'
10 T7 promoter 5- TAATACGACTCACTATAGGG -3

3.29 Southern Hybridization

In order to confirm the presence of the number of copies in transgenic plants, the
genomic DNA was extracted from 5 g of fresh leaves of transgenic and non-
transgenic plants by CTAB method. 10 pg of genomic DNA was digested with 60 U
of Sac 1 for overnight by incubating at 37 °C to digest DNA completely. The digested
samples were run on 0.8% agarose gel in X TBE, overnight at 30 V. In order to
improve the transfer efficiency, DNA in agarose gel was treated with .2 N HCl for
depurination by gentle agitation, until the biue colour of bromophenol blue dye in gel
loading buffer turned yellow. The acid solution was decanted and the depurinated
DNA in the gel was treated with denaturation buffer (to cleave the DNA at
depurinated site) (Table 3.16) by gentle agitation for | h until the dye revived the

original blue colour. This was followed by soaking the gel in neutralisation buffer
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(Table 3.16) for 1 h on gentle shaking the denatured DNA was transferred from
agarose gel to nylon membrane (Hybond N*, Amersham Pharmacia) by conventional
capillary transfer using 3 mm Whatman paper wick in presence ot 20X SSC (Table
3.16) overnight. After the transfer was complete, the membrane was washed in 2X
S8C for 5 min twice. The DNA was then cross-linked to membrane by exposure to
short wave length ultraviolet light (Amersham UV-cross linker), Thereafter, the
membrane w%s either stored dry at 4 °C or used immediately to proceed for pre-

hybridisation.

The Nylon membrane with cross linked DNA was incubated with 40 ml of pre-
warmed (65 °C) pre-hybridisation buffer (Table 3.16) for 2 h at 65 °C in a rotating
cylinder. The 1000 bp Apt gene fragment was labelled with aP dCTP using random
labelling kit (Fermentas) following manufacturer’s tnstruction. The probe mixture was
denatured and mixed with a mintmal volume of pre-warmed pre-hybridisation
solution (I15ml}, added to the membrane and incubated overnight at 65 °C. The
membrane was washed once with pre-warmed 3X SSC + 0.1% SDS (low stringency
wash) at 65 °C for 30 min followed by a second wash with 1X SSC + 0.19% SDS at 65
°C for 30 min and a high stringency final wash with twice with 0.2X SSC + 0.1%
SDS for 15 min at 65 °C and twice for 15 min at 65 °C. Membrane was removed and
successfully washed briefly in low stringency buffer (3X SSC, 0.1% SDS) at room
temperature. After low stringency wash, the membrane was treated with pre-warmed
high stringency buffer (0.5X SSC, 0.1% SDS) twice for 15 min, each at 65 °C. The
high stringency buffer was pre-warmed to 65 °C before use. After low and high
stringency wash to reduce the back ground, the membrane was washed once in 2X
SSC for 5 min. The membrane was sealed inside a transparent plastic bag and
exposed to X-ray film (Kodak) for 24-48 h at -70 °C with an intensifying screen to

obtain an autoradiograph image.
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Table 3.16 Composition of the buffers and solutions used for Southern Hybridisation.

- [ toxTBE" -

Tris 110784
8419 | Total volume was made up to 1000 ml with distilled

Boric acid
Distilled water

559 g water, and pH was adjusted to 8.2,
600 ml

2+ |: Denaturation Solution .-
i NaCl(1 M) 29229
i NaCOH (0.5 N} 10g Total volume was made to 500 ml with distilled water.

] Distilled water

Neutralisation Solution ./

i | NaCl 43839

: Tris 3028 The final pH was adjusted to 7 with concentrated HCI
: —. 59| and the final volume was made up to 500mi.

it | Distilled water 350 mi

20X85C*

i | NaCl ' 1753 g

" Na ciral ) The final pH was adjusted to 7 with concentrated HC
! a clra’e <9 and the final velume was made up to 1000ml,

i | Distilled water 800 ml
5| Pre-hybridisation Buffer. . .

2MNaHPOEHT.2) | 5mi
i [ 10% SpS om | _
Final vol de to 100 ml,
i | 05MEDTA Dgm | o voume was made fo TEM
Liv | Distilled water 4.8ml

3.30 Detection of Transgenic Integration Loci in the Transgenic Genome

by Locus Finding PCR (LLF-PCR)

Locus finding PCR (LF-PCR) is an affinity-based genome walking method developed
to determine the transgene flanking sequences of plants transformed by A.
tumefaciens. LF PCR inciudes a primary PCR by a degenerated primer and transfer
DNA (T-DNA)-specific primer, a nested PCR, and a method of enriching the desired
amplicons by using a biotin-tagged primer that is complementary to the T-DNA. This
enrichment technique separates the single strands of desired amplicons from the off-
target amplicons, reducing the template complexity by several orders of magnitude
(Thirulogachandar et al, 2011). Various steps of LF PCR are schematically

represented in Fig. 3.4,
Two forward primers, named genome walkers (GW 1 and 2), were designed to be

used in parallel with a cassette specific priner (CSP) to improve the chance of

amplifying the desired location in the primary PCR. Both the GWs have four bases in
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random combinations of A, T, G, and C at their 3’ end, and upstream to these bases
are four degenerate bases. The remaining 18 or 19 bases on the 5 end are common to
both primers, which is the sequence of GW-5. Three CSPs with an average length of
20-22 bp are designed downstream to the left border (LB} of pMDC99 T-DNA. Apart
from these primers, one more reverse primer, the capture primer (CP), was also
designe(l downstream to the LB but upstream to the three reverse CSPs with 29 bp in
length. This primer is biotinylated at the 5 end and is used in the purification of
desired amplicons from the primary PCR product. All primer sequences and their

locations in the T-DNA are given in table 3.17 and figure 3.5, respectively.

Table 3.17 List of primers used for LF PCR.

1 | GWI1 AAGCTGCTCCGTAGGGTANNN
2 | GW2 CTGAAGCTGCTCCGTAGGGTA
3 | CSPY GTATTGTGGTGTAACAAATT
4 | CSP22 ATTTCGATGATGCAGCTTGGG
5 | CSP33 TCTGGACCGATGGCTGTGTAG
5 | CSPa4 CGTCCGAGGGCAAAGAAATAG
7 |cp GCTTAGACAACTTAATAACACATTGCGGA

The different steps of LF PCR are explained as follows:

3.30.1 Primary PCR

Primary (random-priming} PCR was performed using CSP-1 and GW (1/2} in the
following 50 pl reaction: 1X Taq buffer, 200 uM of dNTPs, 5 U of Tag DNA
polymerase, 150 ng of CSP-1, 150 ng of GW (1/2), and 300 ng of genomic DNA. The
reaction mixture was heated to 94 °C for 4 min and cycled 30 times with the
following program: 94 °C for 1 min, 40 °C for 1 min, and 72 °C for 1 or 2 min. Then
the final extension was given at 72 °C for 10 mun. The reaction was chilled on ice, and

10 ul of PCR product was analysed in 1.2% agarose gel.

3.30.2 Purification of Desired Amplicons from Primary PCR Product

The remaining 40 pl of p'rimary PCR product was purified with the help of
biotinylated CP, which binds specifically to its complementary strand of the positive
amplicons. The purification was done by the following program: 5 pmol of CP was
added to the 40 pl of primary PCR products and mixed by gentle pipetting. Then the

reaction mixture was heated to 94 °C for 4 min and 55 °C for 2 min in a PCR machine
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. Gwi “ <
Capture Primer

Binding Region EY 5
5 - 3
. L. CSP1 . .
Possible types of priming and amplification by GW-1and C5P1
P 5 5 3 I '} S — I—— ' EE— '
5 35 kY 5 Ll 1 5 . 3’ S S
Vector {non- specific) amplicon Desired vector-genome specific amplicon Gename {non- specific) amplicon

Three different types of amplicons from primary PCR

5
GWS5 cannot prime and amplify

Specific priming and amplification by C5P2
GW5

3H A

GWS5 can amplify cnly complementary
strand made by C5P2

Desired amplicons

Figure 3.4 Diagrammatic representation of LF PCR. Step 1 random PCR showing the possible types of
priming and amplification by involving the GW pnmers and CSP-1. Step 2 shows the different types of
vector-specific, genome-specific, and desired vector/genome-specific amplicons. In step 3 template

enrichment, CP (arrows having a circle in their ends) binds to the single strand of desired amplicons having

its binding region. The bound primer-DNA complex is separated from the pool of PCR products by a

magnet. Step 4 nested PCR shows the CSP-2 priming and making of a double strand from the captured -
single strands, GW-5 cannot prime the single strands. It can only amplify the complementary strand made

by CSP-2, which suppresses the robust non-specific amplicons. The final step 5 shows the desired

amplicons amplified in the nested PCR.
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5 N . 3
pMDC99 T-DNA
LB 4510bp RB
3’ I - I -
l —— «—— «—
CP CSP3 (CSP-2 (SP-1

Figure 3.5 Location of primers in T-DNA. Schemalic representation showing the 4510 bp T-DNA region
of pMDC99 plasmid. The CSP reverse primers (1, 2, and 3) are designed near the LB. The CP is located
between CSP-3 and LB, whereas the CSP-4 forward primer is positioned before CP.
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{MyCycler). Immediately after, 60 pl of prewashed streptavidin beads (Roche,
Germany) was added to the reaction mixture, mixed by gentle pipetting, and then kept
in a magnetic stand {MagneSphere, Promega) to separate the unbound PCR products.
Bound beads were washed with 60 ul of TEN-100 butfer (10 mM Tris—HCI, 1 mM
EDTA, and 100 mM NaCl, pH 7.5) twice, and finally 40 pl of Milli Q water was
added and mixed by pipetting. Then the tube was heated to 72 °C for 1 min and
immediately transferred to the magnetic stand, from which a clear 40 pl selution was

taken and transferred to a new PCR tube for further analysis.
3.30.3 Amplification of Transgene Integration Locus Using Nested PCR

Nested PCR was performed with an enriched PCR product as template and CSP-2 and
GW-5 as primers. The reactton was set up in the following 50-ul reaction: 1X Taq
buffer, 200 pM of dNTPs, 5 U ol Tag DNA polvinerase, 150 ng ot CSP-2, 150 ng of
GW-5, and 10 pl of purified primary PCR product. The reaction mixture was heated
to 94 °C for 4 min and cycled 30 times with the following program: 94 °C tor 1 min,
536 °C for | min, and 72 °C for | min. Then the final extension was given at 72 °C for
10 min (MyCycler. Bio-Rad). After the PCR, the tubes were chilled on ice. Half of
the PCR products were used for cloning, and the other half were subjected to

purification and then sequencing.

PCR products (taken for cloning) werc separated on a 1.2% agarose gel, and the
respective DNA  fragments were excised and purified using a QlAquick Gel
Extraction Kit (Qiagen, USA). The purified DNA fragments were cloned into a T/A
pCR4-TOPO vector (Invitrogen, USA) and transformed into chemically competent
DH53a £. coli cells. Transformants were sclected on LB plates having 50 pg/mi
kanamycin and incubated at 37 °C for 15 h to get individual colonies. Positive
colonies were identified by colony PCR using vector-specific M13 primers and then
were inoculated and multipiied in the LB broth for 15 h with 50 pg/ml kanamyein.
Plasmids were isolated by a QIAprep Spin Miniprep Kit (Qiagen)} and sequenced by
M13 primers.

3.31 Selection of Seeds for Hygromycin Resistance

The seeds wild type and T, transgenic lings were gerininated in sterile condition.

Around 10 germinating seeds were inoculated in half MS medium with and without
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hygromycin (30mg/l) in a glass jar. The glass jars were kept at 28 °C under in a cycle

of 12 h dark and 12 h light to select seedlings for hygromycin resistance.

3.32 Chlorophenol Red Assay

The accumulation of ammonium in non-transformed plants in the presence of
herbicide, basta, was determined by the chloropheno! red (CR) method as described
by Kramer et al. (Kramer ef al., 1993). Putatively transgenic seeds and wild type
seeds were grown on MS medium, in sterile test tubes containing 10 ml MS medium
with 3 mg/l Basta and 50 mg/l chlorophenol! red (CR) solidified with 0.03% phytagel.
The pH of the medium was adjusted to 6.0, a pH at which the medium is a deep red

colour. The change of colour to yellow was evaluated after 10-15 d.

3.33 Semi-quantitative RT-PCR Analysis of Transgene Expression

The mRNA was isolated from the DN Ase treated total RNA. mRNA (2 pg ) was used
to synthesize first-strand cDNA with an oligo (dT) primer in a 20 ul reaction volume
using SuperScript 11 (Invitrogen). Semi quantitative RT-PCR was performed using
this cDNA as template. In order to analyze the transcription of transgene, forward
primer and the reverse primer were designed to give an amplicon of arcund 500 bp.
The gene specific forward and/or reverse primers for, PgSOD, PgAFX, PeMDHAR,
PgDHAR, PgGR, 3’Rbc S UTR and tubulin were used (Table 3.18). Equal amount of
cDNA as template in each PCR reaction was ensured by using house-keeping gene
tubulin as the standard in PCR. The first-strand cDNA was diluted 5 times and 5 pt of
it was used for PCR amplification in a reaction volume of 50 pl. The following PCR
conditions were used: initial denaturation was performed at 94 °C for 2 min, followed
by 30 cycles each of denaturation at 94 °C for 1 min, annealing at 55 °C for | min and
extension at 72 °C for I min. The final extension was performed at 72 °C for 5 min.

The PCR amplicons products were resolved by electrophoresis using 1% agarose gels.
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Table 3.18 List of the primers used for semi-quantitative RT-PCR for transcriptional analysis of
LrANSECNCS.

Gene Forward Primer {5-3') Reverse Primer (5'-3")

PgSOD | TGCTGTGCTTGCTAGCAGTGAGGG

PgAPX | GAGGAGTTCCCCATCCTCTCG

PgGR TGTATGGGCCGTGGGTGATGT RECS-

PgMDHR | CATTGACTACTCTCTTCAAA JUTR

AACAAGGCTATATATGACGAT

PgDHAR | ACCTACGAGATGAAGCTCGTC

Tubulin GGCTTGTGTCTCAGGTTATCTCATC Tubulin | CATGGAGGATGGCTCGAAGG

RAB CATGGCTCTCATGGTGGTTC GTTCTCGTCGGCGTTCTGTA

3.34 Detection of Pollen Viability by Staining with KI/I, Solution

The pollen viability was detected according to the method described by Gunawardena
et al. (Gunawardena et al., 2003). Mature pollens were collected just before anthesis
and stained with KI/I; (2% KI and 0.5% 15) solution. Pollens in the anthers were
released on Lo a slide in a drop of K1/l and were observed and photographed under a

light microscope.
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RESULTS AND DISCUSSION

Global warming and its associated adverse environmental conditions, such as drought,
salinity, extreme temnperature and oxidative stress are the primary cause of crop loss
worldwide. The adverse environmental fluctuations are known to affect various stages of
plant development, the sexual reproductive phase being the most vulnerable. The
susceptibility of the reproductive phase of plants to environmental stresses results in
geographical displacement of plants to different habitats for successful completion of
their life cycle. However, in domesticated agricultural cropping systems the existing
genetic variability for adaptive reproductive fitness is narrow due to continuous selection
for the quantity and quality of grains. Moreover, different crops differ in their
adaptability to various stress conditions. Crop plants like rice, wheat and barley are
known to be very susceptible to the abiotic stress conditions. However, Pennisetum
glaucwm (L.), one of the widely cultivated crop plants in the semi-arid regions of Africa
and India, can grow under very harsh environments such as droonght, salinity and high

temperature conditions where other crops are ditficult to grow (Basavara;j et ¢l., 2010).

All the abiotic stresses are known to culminate into the production of oxidative stress in
plants at the cellular level. In an attempt to improve the tolerance of plants against the
various abiotic stresses, a large number of gene products that play putative roles in plant
adaptation to oxidative stresses have been identified so far. Physiological and genetic
evidence clearly indicates that the ROS scavenging systems of plants are tmportant
components of the stress protective mechanisms. Superoxide dismutase (SOD) and the
ascorbate-glutathione (AsA-GSH) pathway are an integral part of the network of

reactions involved in the detoxification of ROS.

In this study, the genes involved in ascorbate-glutathione pathway were isolated from
Pennisetum and the entire pathway was rcconstituted by in vitro gene pyramiding. As the
male reproductive development of crop plants is the most sensitive stage to abiotic stress,
the cntire pathway was placed under the control of an anther specific promoter and

transformed into rice plant to widen its adaptability to harsh environmental conditions in
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the reproductive stage. The regulated over-expression of the entire ascorbate-glutathione
pathway in rice anther tissue can be an effective strategy to minimize the oxidative

damage in the anthers under adverse environmental conditions.

The results of the present study have been discussed in two parts. Part-I deals with the
cloning and characterization of the genes encoding SOD and the AsA-GSH pathway from
P. glaucum while part-1I deals with the transgenic over-expression of the whole pathway
in the anthers for combating environmental stress induced oxidative damage in the male

reproductive part of rice plant.

D e s aut SRR EE LS T R

61



PART |

Cloning and Characterization of SOD-
Ascorbate-Glutathione (AsA-GSH)
Pathway Encoding Genes from
Pennisetum glaucum



Results and Discussion ~ |

PART I - Cloning and Characterization of SOD-Ascorbate-
Glutathione (AsA-GSH) Pathway Encoding Genes from Pennisetum

glaucum

SOD and the AsA-GSH pathway exist as important components of the anti-oxidant
machinery present in plants to mitigate the deleterious effects of oxidative stress.
SOD forms the first line of defense against the toxic ROS and catalyzes the
dismutation of superoxide into oxygen and hydrogen peroxide (H;0;). The H,O; thus
formed, is detoxified by the AsA-GSH pathway. The AsA-GSH pathway is
constituted by ascorbate, glutathione and four anti-oxidant enzymes namely, ascorbate
peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate
reductase (DHAR) and glutathione reductase (GR).

Although all plants are equippcd with the defense machinery to deal with the abiotic
stress, few species are able to thrive better under unfavorable circumstances. This
differential sensitivity of tolerant and susceptible plants may be attributed to the
varying pattern of expression of various anti-oxidant genes resulting in differential
anti-oxidant response. Being a stress-tolerant crop, P. glaucum is considered to be
equipped with better ROS-detoxification machinery. Therefore, genes encoding the
SOD-AsA-GSH pathway were isolated and characterized from P. glauwcum for

subsequent over-expression in crop plants.

4.1 Isolation and Sequence Analysis of SOD-AsA-GSH Pathway

Encoding Genes from P. glaucum

The genes encoding the cnzymes of SOD-AsA-GSH pathway i.e. superoxide
dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase
(MDHAR), dehydroascorbate reductase (DHAR) and ghutathione reductase (GR)
were amplified from the stress adapted crop plant, P. glaucum by PCR as mentioned
in materials and methods (Section 3.16). The PCR amplified DNA fragments were

cloned and sequenced; the sequence analysis of each of the genes is described below.
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4.1.1 Pennisetum CuZn Superoxide Dismutase (PgCuZnSOD)

The nucleotide sequence of the open reading frame (ORF) encoding for PgCuZnSOD
is 459 bp long (Fig. 4.1A), encoding a protein of 152 amino acids with an apparent
molecular weight of 15 kDa and an estimated isoelectric point (pl) of 5.76.
PgCuZnSOD has a high degree of homology with CuZnSODs isolated from other
plant species and exhibits overall 96-83% amino acid sequence identity with
CuZnSOD isolated from rice (Oryza sativa, OsCuZnSOD; P28756), maize (Zea
mays, ZmCuZnSOD; P23345), wheat (Triticum aestivum, TaCuZnSOD;
ACO90194), wbacco (Nicotiana tabaccum, NICuZnSOD; P27082) and Arabid-opsis
(Arabidopsis thaliana, AtCuZnSOD; P24704).

A 4-element fingerprint, CUZNDISMTSE that provides a signature for the
CuZnS0Ds, is present in the PgCuZnSOD protein sequence. The fingerprint consists
of four characteristic motifs: motif I and 3 contain the conserved residues (H-45, H-
47, H-62 and H-113) involved in binding copper ligand. Motif 2 harbors the histidine
(H-79) and aspartate (D-82) that binds the Zn* ion (Fig. 4.1B). The analysis of
PgCuZnSOD sequence and its comparison with other characterized CuZnSODs
proteins revealed that the two cysteine residues, at position 56 and 145 form a unique
disuiphidc bridge and are evolutionarily conserved. These two residues are presumed
to contribute substantially to the stability of the tertiary structure of CuZnSODs (Pilon
et al., 2010). The multiple alignments of different CuZnSOD proteins showed strict

conservation of all the Cu-Zn ligand co-ordinating amino acids (Fig. 4.2).

PgCuZnSOD was predicted to be localized in cytoplasm as it lacks any signal peptide.
The phylogenetic analysis of PgCuZnSOD with various sub-cellular isoforms of
Arabidopsis, rice and maize CuZnSODs revealed that PgCuZnSOD clusters along
with the cytoplasmic isoforms of CuZnSOD which further validates its cytoplasmic
nature (Fig. 4.3).

4.1.2 Pennisetum Ascorbate Peroxidase (PgAPX)

The full length ¢cDNA coding for PgAPX is 753 bp long (Fig. 44A) and encodes a
protein of 250 amino acids with an apparent molecular weight of 27.5 kDa and
estimated pl of 5.62. The deduced amino acid sequence of PgAPX was found to share

highest similarity with APX isolated from barley (Hordeum vulgare, HvAPX;
CAA06996) followed by rice (Orvza sativa, OsAPX; Q10N21), maize (Zea mays,
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Figure 4.1 Isolation and sequence analysis of PgCuZnSOD. (A) Agarose gel depicting amplification of
PgCuZnSOD. Lane 1 denotes the 459 bp amplicon of PgCuZnSOD. M denotes 1 kb DNA ladder. (B)
Schematic representation of characteristic motifs and ligand binding sites of PgCuZnSOD protein. Arrows
indicate the four CuZnSOD fingerprints (1-TV) as analyzed by PRINTS whereas coloured spheres represcnt
Cu and Zn binding sites. The residues invoived in binding Cu and Zn are shaded.

mCuEnsoD 1 MVKAVAVIGSSEGVKGTIFFTQEGDGPTIVIGSVSGLKPGLH &0
TaCugnsoD 1 MVKAVAVLIGSEGVRGTIFFTQEGEGPTTVIGSVIGLKEGL 60
PgCuZns8oD 1 MVEKAVVVLASSEGVEGTIHFTQEGDGPTTVTGSVSGLEKPGL 60
MCuZnSoD 1 MVKAVAVLSSSEGVSGTIIFFIQDGLDAPTTVTGHNVSGLEPG &0
AtCuZnsSoD 1 MAKGVAVLNSSEGVTGTIFFTQEGDGVTTIVSGTVSGLRPGLRE 60
OsCuZns8oD 1 MVKAVVVLGSSEIVRGTIHFVQEGDGPTTVTGSVSGLKPGLE 60
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Figure 4.2 Multiple alignments of deduced amino acid sequences of CuZnSODs from Arabidopsis thaliana
(AtCuZnSOD), Nicotiana tabacum (NtCuZnSOD), Oryza sativa (OsCuZnSOD), Triticum aestivum
(TaCuZnS0OD), Zea mays (ZmCuZnSOD) and Pennisetum glauctm (PgCuZnSOD) depicting conservation
of the ligand (Cu and Zn) binding sites. Different motifs of CUZNDISMTASE fingerprint are shaded.
Arrows indicate the conserved cysteine residues involved in imparting stability to the tertiary structure of
the protein.
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ZmAPX; CAAB4406), tobacco (Nicotiana tabacum, NtAPX;, AAAB6689).
Arabidopsis (Arabidopsis thaliena, AtAPX, NP_001077481) and tomato {(Solanum
Iycopersicum, SIAPX; AAXB4654).

An ASPEROXIDASE fingerprint is present in PgAPX sequence. ASPEROXIDASE
is a 10-element fingerprint that provides a signature for all APXs (Fig. 4.4B).
Peroxidases, and among them APXs, are proteins containing the heme prosthetic
group in which iron plays an important role in the catalytic site. So, all the APXs have
a characteristic heme-binding site. Like other APX proteins, PgAPX was found to
contain a core catalytic region with two typical functional domains; the active site
domain, with a conserved histidine (H-42) that acts as an acid-base catalyst in the
reaction between HzO; and the enzyme, and the other heme-binding domain. The
amino acid residues like R-38, N-71, Q-66 and D-208, which are responsible for
binding the ligand-heme in most APXs, were found to be conserved in PgAPX.
Additionally, W-179 together with H-163 and ID-208 which are the participants in
hydrogen bonding network were also present in PeAPX. Ascorbate binds to the active
site of APX proteins by four hydrogen bonds with lysine and arginine residues (Sharp
and Raven, 2004). These residues are highly conserved in all the APX sequences

including PgAPX (Fig. 4.5).

The analysis of PgAPX protein sequence using sub-cellular localization prediction
tools (Target P and pSORT) showed that the protein was cytosolic. PeAPX lacks any
N-terminus organelle-specific targeting region or C-terminus trans-membrane region
which is found in organelle specific or membrane bound 1soforms of APX. Moreover,
the phylogenetic analysis of PgAPX with various sub-cellular isoforms of Arabidopsis
and rice revealed that PgAPX clusters along with the cytoplasmic isoforms, which

further supports its cytoplasmic nature (Fig. 4.6).
4.1.3 Pennisetum Monodehydroascorbate Reductase (PgMDHAR)

The full length PgMDHAR cDNA consists of an ORF of 1308 bp (Fig. 4.7A)
encoding a protein of 435 amino acids with an apparent molecular weight and pl of 47
kba and 5.39, respectively. The ClustalW alignment of PgMDHAR with the
characterized MDHAR sequences revealed that PgMDHAR exhibits maximum
sequence similarity of 97% with MDHAR isolated from rice (Oryza sativa,

OsMDHAR,; BAA77214) followed by turnip (Brassica rapa, BIMDHAR;
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AAK72107), 85-87% similarity to MDHAR from grape (Vitis vinifera, VVMDHAR;
ABQ41114), sweet potato (Ipomea batate, IbBMDHAR; ABQ33631), alfalfa
(Medicago sativa, MSMDHAR; AEX20344), apple (Malus domesticus, MAMDHAR;
ACNB88682) and cucumber (Cucumis sativus, CsMDHAR; Q42711). PgMDHAR
shares 84% sequence similarity with MDHAR isolated from Arabidopsis
(Arabidopsis thaliana, AIMDHAR; NP_568125) and 63% sequence similarity with
maize cytosolic MDHAR (Zea mays, ZInMDHAR; AFW73040).

The domain analysis of the protein revealed the presence of two overlapping domains:
Pyr_redox (Pfam 1D: Pfam00070) and Pyr_redox 2 (Pfam ID: Pfam(07992).
PgMDHAR was found to possess a FAD-dependent pyridine nucleotide reductase
(FADPNR) signature. FADPNR is a 5-element fingerprint that provides a signature
tor the FAD-dependent pyridine nucleotide reductase family. Motifs 1 and 5 contain
conscrved  residues  (motif  1;  KYVILGGGVAAGYAAREF, motif 5;
TSVPGVYAIGD) involved in the binding of FAD flavin moiety. Additionally,
residues I-37 to A-42 (1ISKEA) participate in FAD binding. The residues K-166 to L-
183 (KAVVVGGGYIGLELSAAL) and M-192 to E-196 (MVFPE) are known to be
involved in the binding of NAD(P)H (Murthy and Zilinskas, 1994; Sano and Asada,
1994) (Fig. 4.7B). The multiple alignment of different MDHAR proteins revealed that

these motifs were highly conserved (Fig. 4.8).

The sequence of PeMDHAR contains a peroxisomal targeting sequence, serine-
lysine-isoleucine (SKI), at the C terminus. The phylogenetic analysis of the protein
with various isoforms of MDHAR from rice and Arabidopsis revealed that
PeMDHAR clusiered with the peroxisemal 1soforms, suggesting its peroxisomal

localization (Fig. 4.9).
4.1.4 Pennisetum Dehydroascorbate Reductase (PgDHAR)

The nucleotide sequence of the ORF encoding for PgDHAR is 648 bp (Fig. 4.10A).
Further in silico sequence analysis showed that the ORF encodes for a protein of 215
amino acids. Based on the cDNA sequence data, the predicted molecular mass and pl
of PeDHAR protein was found to be 23.5 kDa and 4.98, respectively. The deduced
PgDHAR amino acid sequence showed 80% similarity with rice DHAR (Oryza
sativa, OsDHAR; AAV44199) amino acid sequence. PgDHAR showed second
highest similarity (79%) with wheat DHAR (Triticum aestivum, TaDHAR;
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Figure 4.3 Phylogenetic tree and putative sub-cellular localization of CuZnSODs. The deduced amino acid
sequence of PgCuZnSOD was compared with different sub-cellular isoforms of CuZnSODs of Arabidopsis
thaliana (AtCuZnSOD1, NP_172360.1; AtCuZnSOD2, NP 3565666.1; AtCuZnSOD3, NP 197311.1).
Oryza sativa (OsCuZnSOD1, LOC 0s03g11960; OsCUZNSOD2, LOC 0s03g22810; OsCuZnSOD3,
LOC 0s07g46990; OsCuZnSOD4, LOC_0s08g44770) and Zea mays (ZmCuZnSOD2, NP_001105335.1;
ZmCuZnSOD9, NP_001105423.1; ZmCuZnSOD4, NP (001105704.1; ZmCuZnSOD1, NP _001105742.1;
ZmCuZnSOD2, NP _001104871.1).
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Figure 4.4 Isolation and sequence analysis of PgAPX. (A) Agarose gel showing amplification of PgAPX.
Lane 1 depicts 750 bp amplicon of PgAPX. M represents 1 kb DNA ladder. (B) Schematic representation of
characteristic motifs and ligand binding sites of PgAPX protein. Arrows indicatc the ten ASPEROXIDASE
fingerprint motifs (I-X) as analyzed by PRINTS whereas the colored spheres indicate the ascorbate and
heme binding sites. Functionally important residues involved in binding ascorbate (K-30, C-32 and R-172)
are shaded by green colour whereas the amino acid residues involved in binding heme (R-38, H-42, Q-66,
N-71 and H-163) are highlighted by yellow colour. Blue spheres indicate residues taking part in hydrogen
bonding,
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Figure 4.5 Multiple alignments of deduced amino acid sequences of APX proteins from Arabidopsis
thaliana (AtAPX), Hordeum wvulgare (HVAPX), Nicotiana tabaccum (NtAPX), Oryza sativa (OsAPX).
Pennisetum glaucum (PgAPX) Solanum lycopersicum (SIAPX), Triticum aestivum (TaAPX} and Zea mays
{(ZmAPX). The conserved residues (K-30, C-32 and R-172) involved in ascorbate binding are shaded in red
whereas the residues involved in binding heme (R-38, H-42, Q-66, N-71 and H-163) are shaded in blue.
The residues invotved in hydrogen bonding (H-163, W-179 and D-178) are indicated by arrow.
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Figure 4.6 Phylogenctic tree and putative sub-cellular localization of APX proteins. Deduced amino acid
sequence of PgAPX was compared with different sub-cellular APX isoforms of Arabidopsis thaliana
(AtAPXI1, NP_001077481.1; AtAPX2, NP 187575.2; AtAPX3, NP_195226.1; AtAPX4, NP 192640.1.
AtAPXS5, NP_195321.1; AtAPX6, NP_194958.2; AtAPX7, NP 177873.1; AtAPX8, NP 192579.1) and
Oryza sativa (OsAPX1, LOC_0s03g17690; OsAPX2, LOC _Os07g49400; OsAPX3, LOC_0Os04g14680:
OsAPX4, LOC Os08g43560; OsAPXS; LOC 0s12g07830; OsAPX6, LOC 0s12g07820; QsAPX7,

LOC_0Os04g35520; OsAPX8, LOC_0s02g34810).
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Figure 4.7 Isolation and sequence analysis of PgMDHAR. (A} Agarose gcl depicting amplification of
PgMDHAR gene. Lane 1 denotes 1300 bp amplicon of PgMDHAR. M indicates 1 kb DNA marker. (B)
Schematic representation of characteristic motifs and ligand binding sites of PEMDHAR protein. Amows
indicate the five FADPNR fingerprint motifs (I-V) as analyzed by PRINTS whereas colored hexagons
denote ligand binding sites.
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Figure 4.8 Multiple alignments of deduced amino acid sequences of MDHAR proteins from Arabidopsis
thaliana (AAMDHAR), Glycine max (GmMDHAR), Hordeum vulgare (HVYMDHAR), Oryza sativa
(OsMDHAR), Pennisetum glaucum (PgMDHAR), Pisum sativum (PsMDHAR) and Zea mays
(ZmMDHAR). Conserved motifs involved in FAD binding are shaded in yellow whereas the motifs
involved in binding NADPH are shaded in green.
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AAL71854) protein followed by 76% similarity with potato (Solanum tuberosum,
StIDHAR; ABX26128) and tomato (Solanum lycopersicum, SIDHAR; AAY47048)
DHARs, 75% similarity with Arabidopsis (Arabidopsis thaliana, AIDHARI,
AAMO65005) and tobacco (Nicetiana tabacum, NtDHAR; AAL71857) DHAR
proteins and 56% similarity with DHAR isolated from maize (Zea mays,

ZmMDHAR; AFW76801).

The PgDHAR sequence was further analysed for the presence of conserved motifs by
CD-search (NCBI) (Marchler-Bauer et al, 2013). DHARs have been identified as
plant specific members of glutathione-s-transferase (GST) superfamily (Jakobsson et
al, 1999). PeDHAR was found to contain the two characteristic domains of GST
proteins: GST-family N-terminal domain (cd00570) spanning amino acid residues |
to 80 and GST-family C terminal a helical domain (cl02776)spanning amino acid
residucs 90 to 215 (Fig. 4.10B). The above two domains are connected by a short
stretch of linker region. The C-terminal domain of PeDHAR forms approximartely
two-thirds of the protein and is less conserved than the N-terminal domain. The
differcnces in the C-terminal domains of GST family of proteins are thought to be
responsible for differences in substrate specificity between the different GST classes
(Wilce and Parker, 1994). The PeDHAR sequence consists of conserved catalytically
active cysteine residues at position 6 and 20 (Fig. 4.11). Unlike most other GSTs,
DHARs have an active site cysteine instead of serine/tyrosine which forms a mixed

disulfide with GSH as part of the catalytic mechanism (Dixon et al., 2002).

The sub-cellular localization of PgDHAR protcin as predicted from tools like Target P
and pSORT revealed the protein to be cytoplasmic. The protein sequence lacked any
targeting peptide and the phylogenetic analysis of PeDHAR showed that the protein
clusters with the cytoplasmic isoforms of DHAR. These evidences suggest that the

PgDHAR protetn is apparently localized in the cytoplasm (Fig. 4.12).
4.1.5 Pennisetum Glutathione Reductase (PgGR)

The nucleotide sequence of the ORF encoding for PeGR was found to be 1494 bp
long (Fig. 4.13A). The ORF encodes a protein ol 497 ammno acids having an
apparent molecular weight of 53.5 kDa and pl of 6.25. The sequence homology search
of PgGR protein showed that it shares maximum homology with GR isolated from

rice (Oryza sativa, OsGR; BAA11214), barley (Hordeum vulgare, HvGR;
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BAF80309) and wheat (Triticum aestivum, TaGR; AAQ64632), exhibiting 94%
similarity. PeGR showed 85% similarity with Arabidopsis GR (Arabidopsis thaliana,
AtGR; AEE76867), 83% similarity with pea GR (Pisum sativum, PsGR; Q43621)
and 60% similarity with GR protein isolated from tobacco (Nicotiana tabacum,

NIGR; CAA53925).

The protein sequence of PgGR was further analyzed for the presence of conserved
motifs, PeGR was found to contain a PNDRDTASEI fingerprint. PNDRDTASEI is a
9-element fingerprint that provides a signature for the pyridine nucleotide-disulphide
reductase (PNDR) class I family. Among the nine functional motifs of PNDRDTASEI
fingerprint identified in the PgGR protein sequence, motif 2 contains two Cys
residues (C-70 and C-75) involved in the redox-active disulphide bond, motifs 1 and 4
contain the conserved glycine residues (G-29, G-34, G-33, G-221 and G-207-209) and
correspond to the ADP binding site for FAD and NAD(P), respectively. Motif 6
encodcs the binding site for the FAD flavin moiety; and motif 9 contains a conserved
histidine-glutamate diad (Fig. 4.13B). PgGR contains a highly conserved GGGYIA
fingerprint motif in the NADPH binding domain. The two cysteines of the GR redox
center(C-70 and C-75) are also highly conserved {Fig. 4.14).

PgGR was predicted to be localized in the cytoplasm by the sub-cellular targeting
prediction tools (Target P and pSORT). The phylogenetic tree of PgGR protein with
various sub-cellular isoforms of GR from Arabidopsis and pea that depicts PgGR
being placed in a single cluster along with the cytoplasmic isoforms of GR, further

confirms its cytoplasmic localization (Fig, 4.15).

4.2 Expression of Pennisetum AsA-GSH Pathway Encoding Genes in E.
coli and Verification of Recombinant Proteins for Their Enzymatic
Activity

Before proceeding for the construction of the gene cassettes for plant transformation,
we needed to confirm that PeSOD, PeAPX, PeMDHAR, PeDHAR and PpGR coded
for functional proteins. For this we chose to express the proteins in bacterial system

and check the functional activity of the purified proteins.

Each gene encoding for SOD-AsA-GSH pathway enzymes was cloned separately into

Nde [ and BamH 1 sites of pET-28a expression vector. E. coli was utilized as
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Figure 4.9 Phylogenetic tree and putativc sub-cellular localization of MDHAR proteins. The deduccd
amino acid sequence of PgMDHAR was compared with the different sub-cellular isoforms of MDHAR
from Arabidopsis thaliana (AIMDHARI1, NP 190856.1; AtMDHAR2, NP 568125.1; AtMDHARS3,
NP _001118607.1; AtMDHAR4, NP 189420.1; AtMDHAR6, NP 849839.1) and Orza safiva
(OsMDHAR1, LOC_Os02g47790; OsSMDHAR2, LOC_Os02g47800; OsMDHAR3, LOC Os08205570;
OsMDHAR4, LOC_0s08g4434; OsMDHARS5, LOC_0s09g39380).
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Figure 4.10 Isolation and sequence analysis of PgDHAR (A) Agarose gel depicting amplification of
PgDHAR. Lane 1 denotes 648 bp amplicon of PgDHAR. M indicates 1 kb DNA ladder. (B) Schematic
representation of the characteristic domains of PeDHAR. PgDHAR protein comprises of two domains-
GST-N (green) and GST-C terminal (red) domain. Arrows represent the conserved cysteine residues
characteristic of DHAR proteins.
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Figure 4,11 Multiple alignments of deduced amino acid sequences of DHAR proteins from Arabidopsis
thaliana (AtDHARYI), Gossypium hirsutum (GhDHAR), MNcotiana tabacum (NtDHAR), Oryza sativa
(OsMDHAR), Pennisetum glaucum (PgMDHAR), Solanum lycopersicum (SIDHAR), Solanum tuberosum
(StDHAR), Triticum aestivum (TaDHAR) and Zea mays (ZmDHAR). The alignment shows higher degree
of conservation in the N-terminal domain as compared to the C-terminal domain {conserved residues are
shown by asterisks). The highly conserved cysteine residues present in the active site are highlighted in red.
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Figure 4.12 Phylogenetic tree and putative sub-cellular localization of DHAR proteins. The deduced amino
acid sequence of PEMDHAR was compared with the different sub-cellular DHAR isoforms of drabidopsis
thaliana (AtDHAR]1, NP_173387.1; AtDHAR2, NP 177662.1; AtDHAR3, NP 568336.1), and Oryza
sativa (OsDHAR, LOC_0s02g47790; and Populus trichocarpa (PtDHARI1, ADBI11343.1; PtDHAR2,
ADBI11344.1; PtDHAR3 ADBI11345.1).
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Figure 4.13 Isolation and sequence analysis of PgGR. (A) Agarose gel depicting amplification of PgGR.
Lane 1 denotes ~1.5 kb amplicon of PgGR. M indicates 1 kb DNA ladder. (B) Schematic representation of
the characteristic domains of PgGR. The horizontal arrows indicate the nine PNRDTASEI fingerprint
motifs (I-X). Region highlighted in yellow represents the GR redox center with the two cysteine residues
(indicated by blue vertical arrows), Region highlighted in green represents the conscrved glycine residues
involved in NADPH binding. Red vertical arrows indicate the His-Glu diad. The amino acid residues of
FAD-binding domain, NADPH binding domain and interface region are indicated in red, bluc and purple
colours, respectively.
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Figure 4.14 Multiple alignments of deduced amino acid sequences of GR proteins from Arabidopsis
thaliana (AtGR), Nicotiana tabacum (NtGR), Hordeum vulgare (HvGR), Orpza sativa (OsGR),
Pennisetum glaucum (PgMDHAR), Pisum sativum (PsGR), Triticum aestivum (TaGR) and Zea mays
(ZmDHAR). The conserved cysteine residues in GR redox center (shaded in red) and the His-Glu diad are
marked by blue and red arrows, respectively. The highly conserved G rich motif is highlighted by green
colour,
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Figure 4.15 Phylogenetic trec and putative sub-cellular localization of GR proteins. The deduced amino
acid sequence of PgGR was compared with the different sub-cellular GR isoforms from Arabidopsis
thaliana (AtGR1, NP_001030756.2; AtGR2, NP 191026.1), Oryza sativa (OsGR1, 1L.OC_0s02g56850;
0sGR2, LOC_0s03g06740; OsGR3, LOC Os10g28000) and Pisum sativum (PsGR1, P27456.1; PsGR2,
Q43621.1).
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heterologous expression system to express the recombinant polypeptides of SOD-
AsA-GSH pathway with additional hexa histidine tag at the N-terminus. The
recombinant poiypeptides were purified to near homogeneity on a Ni—-NTA column

chromatography and assayed for their activity as described below.

4.2.1 Recombinant PgSOD

The E. coli BL21 (DE3) cells transtormed with recombinant pET28a-SOD construct
expressed an approximately 18 kDa recombinant PgSOD (Fig. 4.16). Majority of the
recombinant protein was partitioned in the soluble fraction of the E. coli lysate. The
recombinant protein was purified to near homogeneity from clarified £. colfi lysate by
Ni-NTA chromatography (Fig. 4.16B; lane 3). The recombinant PgSOD activity was
assayed by an in-gel activity assay based on its ability to compete with nitroblue-
tetrazolium (NBT) for superoxide anions generated by the xanthine-xanthine oxidase
system, which in turn results in the inhibition of reduction of NBT (Beauchamp and
Fridovich, 1971) (Fig. 4.16C; lane 1). The recombinant PgSOD was found to be

relatively thermostable and showed optimum activity at pH 7.6.

4.2.2 Recombinant PgAPX

The E. coli BL.21 (DE3) cells transformed with recombinant pET28a-APX construct
expressed an approximately 29 kDa recombinant PgAPX protein (Fig. 4.17) with
majority of the recombinant protein being partitioned in the soluble fraction of the E.
coli lysate. The recombinant protein was purified to near homogeneity from clarified
E. coli lysate by Ni-NTA chromatography (Fig. 4.17B; lane 3). The APX activity was
detected by in-gel activity assay (Fig. 4.17C; lane 1). The recombinant PgAPX
protein preferred ascorbate as reducing substrate and showed maximum activity at pH

6.6.
4.2.3 Recombinant PeMDHAR

The E. coli BL21 (DE3} cells transformed with recombinant pET28a-MDHAR
construct expressed an approximately 48 kDa recombinant PeMDHAR protein (Fig.
4.18). The recombinant protein was purified to near homogeneity from clarified £.
coli lysate by Ni-NTA chromatography (Fig. 4.18B; lane 3). The purificd protein was
found to exhibit MDHAR activity.
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4.2.4 Recombinant PgDHAR

The E. coli BL21 (DE3) cells transformed with recombinant pET28a-DHAR
construct expressed an approximately 26 kDa recombinant protein (Fig. 4.19).
Majority of the recombinant protein was partitioned in the soluble fraction of the E.
coli lysate. The recombinant protein was purified to ncar homogeneity from clarified
E. coli lysate by Ni-NTA chromatography (Fig. 4.19B; lanc 3). The puritied His-
tagged recombinant protein showed DHAR activity as indicated by the in-gel activity
assay (Fig. 4.19C; lane 2).

4.2.5 Recombinant PgGR

The E. coli BL21 (DE3) cells transformed with recombinant pET28a-GR construct
expressed an approximately 55 kDa recombinant protein (Fig. 4.20). Majority ot the
recombinant protein was partitioned in the soluble fraction of the E. coli lysate. The
recombinant protein was purified to near homogencity from clarified £. coli lysate by
Ni-NTA chromatography (Fig. 4.20B; lane 3).The activity of the recombinant protein
was assayed by in-gel activity assay and the protein was found to be enzymatically

active (Fig. 4.20C; lane 1).

Thus, all the genes isolated in this study encoded for enzymatically active
polypeptides and hence could be used for transformation and subscquent over-

expression in crop plants for inereasing their resistance against oxidative stress.

——— e e

69



Results and Discussion —

A B

kDaM 1 2 3

Figure 4.16 Expression of recombinant PgSOD protein. (A) Agarose gel denoting the cloning of PgSOD in
pET-28a vector. Lane M: 1 kb DNA ladder, Lane 1: un-digested pET-28a-PgSOD vector, Lane 2: double
digestion of pET-28A veetor harboring PgSOD gene using Nde I and Bam HI. (B) SDS-PAGE profile of
the expressed PgSOD protein from bacterial cells. Lane M: Pre-stained protein marker, Lanes ! and 2
indicate the un-induced and induced culture pellets of reeombinant clone, Lane 3 shows the Ni-NTA
column purified recombinant PgSOD protein. (C) Representative in-gel SOD activity assay. SOD activity
is indicated by the appearance of achromatic bands (indicated by arrow). Lane 1: purified PgSOD protein,
Lane 2: crude protein isolated from P. glaucum leaves.
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Figure 4.17 Expression of recombinant PgAPX protein. (A) Agarosc gel denoting the cloning of PgdP.X in
pET-28a vector. Lane M: 1 kb DNA ladder, Lane 1: un-digested pET-28a-PgAPX vector, Lane 2: double
digestion of pET-28A vector harboring PgAPX gene using Nde I and Bam HI. (B) SDS-PAGE profile of
the expressed PgAPX protein from bacterial cells. Lane M: Pre-stained protein marker, Lanes [ and 2
indicate the un-induced and induced culture pellets of recombinant clone. Lane 3 shows the Ni-NTA
column purified recombinant PgAPX protein. {C) Representative in-gel APX activity assay. The APX
activity was observed as an achromatic band (indicated by arrow) on a purple-blue background. Lane 1:
purified PgAPX protein, Lane 2: crude protein isolated from P. glaucum leaves.
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Figure 4.18 Expression of recombinant PEMDHAR protein. (A) Agarose gel denoting the cloning of
PgMDHAR in pET-28a vector. Lane M: 1 kb DNA ladder, Lane 1: un-digested pET-28a-PgMDHAR
vector, Lane 2: double digestion of pET-28A vector harboring PeMDHAR gene using Bam HI and Hind
ITI. (B) SDS-PAGE profile of the expressed PeMDHAR protein from bacterial cells. Lane M: Pre-
stained protein marker, Lanes 1 and 2 indicate the un-induced and induced culture pellets of recombinant
clone, Lane 3 shows the Ni-NTA column purified recombinant PEMIDXHAR protein.

Figure 4.19 Expression of recombinant PeEDHAR protein. (A) Agarose gel denoting the cloning of
PeDHAR in pET-28a vector, Lane M: 1 kb DNA ladder, Lane 1: un-digested pET-28a-PgDHAR vector,
Lane 2: double digestion of pET-28A vector harboring PgDHAR using Nde 1 and Bam HI. (B) SDS-
PAGE profile of the expressed PgDHAR protein from bacterial cells. Lane M: Pre-stained protein
marker, Lanes I and 2 indicate the un-induced and induced culture pellets of recombinant clone, Lane 3
shows the Ni-NTA column purified recombinant PgDHAR protein. {C) Native PAGE showing in-gel
aetivity of DHAR protein. Native PAGE gel depicting in-gel DHAR activity of crude protcin isolated
from P. glaucum leaves is indicated by I whereas 2 represents native PAGE gel showing the activity of
recombinant PeEDHAR protein.
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Figure 4.20 Expression of recombinant PgGR protein. {A) Agarose gel denoting the cloning of PgGR in
pET-28a vector. Lane M: 1 kb DNA ladder; Lane 1: un-digested pET-28a-PgGR vector, Lane 2: double
digestion of pET-28A vector harboring PgGR gene using Nde I and Bam HI. (B} SDS-PAGE profile of the
expressed PgGR protein from bacterial cells. Lane M: Pre-stained protein marker, Lanes 1 and 2 indicate
the un-induced and induced culture pellets of recombinant clone, Lane 3 shows the Ni-NTA column
purified recombinant PgGR protein. (C) Representative in-gel GR aclivity assay. GR activity is indicated
by the appearance of yellow colour bands {indicated by arrow). Lane 1: purified PgGR protein. Lane 2:
crude protein isolated from P. glaucum leaves.
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PART-11 Transgenic Over-expression of SOD-Ascorbate-Glutathione
Pathway Encoding Genes for Combating Environmental Stress

Induced Oxidative Damage in Rice Anthers

The ability to manipulate the levels of SOD and the enzymes of the AsA-GSH
pathway using gene transfer technology has provided insights into their roles in
conferring tolerance to plants under abiotic stress conditions (Table 2.4). However,
in some cases, it was found that the over-expression of a single anti-oxidant enzyme
did not provide protection against oxidative or abiotic stresses (Tepperman and
Dunsmuir, 1990; Pitcher er al., 199):; Torsethaugen ef «af., 1997). The over-
expression of two or more enzymes has yielded better results when compared with
over-expression of single enzymes in a number of reports (Kwon er al., 2002; Lee et
al., 2007). The possible explanation of this observation lies in the tact that the
ditfferent enzymes of a pathway always work in a co-ordinated manner and
limitation of any one enzymne ultimately slows down the entire pathway. Transgenic
tobacco plants over-expressing both CuZnSOD and APX showed enhanced
tolerance to oxidative stress (Kwon et al., 2002). This double transgenic plant when
transformed with DHAR gene exhibited further enhanced oxidative stress tolerance
(Lee er al., 2007) suggesting that the over-expression of the entire AsA-GSH
pathway encoding genes might be far better strategy rather than over-expressing any

single gene of this pathway.

Several approaches, such as co-transformation (Chen et al., 1998; Zhu et al., 2008),
re-transformation (Li et af., 2003), multi-gene linking and sexual crossing between
plants carrying separate transgenes (Zhao et al, 2003), have been used for the
delivery of multiple genes into plants. Each approach has its specific limitations.
For example, genetic crossing between transgenic plants and sequential re-
transformation are very time-consuming and require the use of different selectable
marker genes whereas the efficiency of co-transformation with multiple plasmids
decreases progressively with increasing plasmid number. In case of co-
transformation with multiple plasmids. the inserted copy numbers and the relative
arrangement among transgenes cannot be controlled. In addition, multiple plasmids

co-transferred by biolistics are found to be integrated at high copy number into a
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few chromosome loci, which is not desired for expression of transgenes (Chen et al.,
1998; Gelvin, 1998; Magbool and Christou, 1999). Transformation with linked
transgenes 1n single vectors is a conventional and reliable approach. However, the
lack of unique restriction cloning sites as well as the relatively low efficiency for
ligation of inserts into larger vectors become the technical problems when three or
more genes are sub-cloned into a transformation vector by using existing cloning
methods. The stacking of multiple expression cassettes onto a single binary plasmid
sometimes has a great advantage over the use of the other approaches mentioned
above (Dafny-Yelin and Tzfira, 2007). The homing endonuclease-based
pRCS/pAUX and pSAT vector systems (Goderis et al.. 2002; Tzfira er al., 2003),
Cre/loxP recombination (Lin et af., 2003), MultiSite Gateway (Karimi et al.,, 2007),
and Multi-Round Gateway technology (Chen er al., 2006b) have been specially

developed in order to assemble multiple genes.

The Gateway technology is a flexible and universal cloning approach based on A
phage site-specific recombination (Papagiannis ez al., 2007). This method is more
convenient than other methods because it does not involve DNA digestion or ligation.
Once captured in a gateway-compatible plasmid ‘entry vector’ (EV), any transgene
expression cassette flanked by recombination sites can be recombined into a variety of
plant transformation vectors (destination vectors) that possess compatible
recombination sites (Earley et al., 2006). Thus, in vitro pyramiding of desired gene
combinations on to a single T-DNA region by gateway technology appears to be one
of the most attractive methods of multi-gene maniputation in plants. This method
has several advantages including the linking of the desired gene combinations

together dunng subsequent generations.

In this study, all the genes of the SOD-AsA-GSH pathway namely, superoxide
dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase
(MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR)
were stacked on a single T-DNA regio-n by multi-round gateway cloning systein. The
multi-round gateway cloning strategy (as described in Materials and Methods-
Section 3.25) involves the assembly of many genes through a series of
recombination steps while alternating between two ditferent entry vectors, EV! and
EV2. These two entry vectors differ in the attachment (att) sites; EV] (pL12R34H-
Ap) carries the attachment sites attL1-attL2 and attR3-attR4 while EV2 (pL34R12H-
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CmR-ccdB) carries attL.3-attL4 and attRl-attR2. Recombination occurs between
specific att sites on the interacting DNA molecules. Thesc sites serve as the binding
site for recombination proteins (Weisherg and Landy, 1983). Upon lambda
integration, recombination occurs between atth and attR sites to give rise to attB
and attP sites (Landy, 1989). Thus EV] and EV2 (containing attL sites) can be used
in conjunction with the gateway compatible destination vectors (pMDC99, in the
present case) carrying the attR sites. As a prerequisite for the multi-round gateway
system, all the components of the SOD-AsA-GSH cassette were cloned in the entry
vectors, EV] and EV2 and subsequently assembled in the T-DNA region of
destination vector pMDC99. In order to reconstitute active SOD-AsA-GSH pathway
in rice anther tissue with co-ordinated cxpresston of all the five genes, the T7 RNA

polymerase based transgene expression system was introduced in the rice plant.

4.3 Design of T7 RNA Polymerase Based Transgene Expression System for
Co-ordinated Expression of SOD-AsA-GSH Pathway Encoding Genes in
Developing Rice Anthers

The expression levels of the transgene(s) depend upon the promoter sequences and
transcription machinery and its associated signal transduction networks. A promoter
1s the most crucial element in the regulation of transgene expression in an optimal
fashion. Constitutive promoters, those that are expressed all the time in all tissues,
are presently the primary means used to express transgenes in plants. Metabolic
energy waste, ncgative pleiotropic effccts and potential gene ¢seape are some of the
disadvantages associated with the use of constitutive promoters. Expression of
stacked genes under different plant promoters might lead to the non co-ordinated
expression of transgenes, as each promoter will lead to a different degree of
expression of transgenes. The co-ordinated expression of the different genes stacked
together in a single plasmid is quite ditficult to obtain, However, the co-ordinated and
high expression of the stacked genes can be achieved by using the T7 RNA
polymerase coupled expression system consisting of T7 promoter and T7 RNA
polymerase protein. The T7 RNA polymerase system has been used to obtain high
and controlled expression of transgenes in a couple of studies (McBride et af., 1994;
Chen et al., 2002; Nguyen ef al., 2004). Stable plastid transformation of tobacco

expressing the T7 RNA polymerase protein with a T7 promoter-} glucuronidase
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(GUS) reporter gene construct resulted in expression of GUS mRNA and showed
enzyme activity in all tissues (McBride et al., 1994). Nguyen et af. have also reported
T7 RNA polymerase directed inducible and tissue specific expression of GUS gene in

tobacco and rice (Nguyen et al., 2004).

In view of the above mentioned facts, the T7 system was chosen to drive the
expression of the SOD-AsA-GSH pathway. The cassettes of each gene involved in
SOD-AsA-GSH pathway were destgned in such a way that each gene was placed
separately under the control of T7 promoter. In this way, the transgene expression
would be dependent on the introduced T7 RNA polymerase gene. The expression of
17 RNA polymerase would be regulated by the anther specific RA8 promoter. The
overall design of the T7 RNA polymerase based SOD-AsA-GSH pathway expression
strategy is represented in Fig. 4.21. This strategy would over-express the active SOD-
AsA-GSH pathway enzymes in developing anther tissue to minimize the oxidative
damage incurred on the male reproductive organs of rice under the adverse
environmental conditions and thereby enhance the reproductive fitness of rice plants.
The detailed construction and assembly of different components invoived in T7 RNA
polymerase coupled SOD-AsA-GSH-glutathione pathway expression strategy is

discussed below.

4.4 Construction of T7 Promoter Regulated SOD-AsA-GSH Pathway
Encoding Genes Cassettes

For ensuring the co-ordinated expression of all the stacked genes encoding for SOD-
AsA-GSH pathway, the genes were placed individually under the control of T7
promoter. T7 promoter is known to be specifically recognized by T7 RNA
polymerase protein and has been used for over production of recombinant proteins
conventionally in E. coli and occasionally in plants (Nguyen ez al., 2004; McBride ez

al., 1994).

The SOD-AsA-GSH pathway genes isolated from P. glaucum (PgMDHAR,
PgDHAR, PgGR, PgSOD and PgAPX) were individually cloned between the T7
promoter and T7 terminator of pET-14b vector as described in materials and methods
(Section 3.24). The putative peroxisomal targeting signal of PEMDHAR was deleted

for ensuring the cytoplasmic location of PeMDHAR. The 5' and 3” un-translated
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Figure 4.21 Schematic representation of different steps involved in the construction of T7 RNA
pelymerase coupled SOD-AsA-GSH pathway multi-gene construct. Step 1: Isolation of the component
genes and promoter from different sources. Step 2: Construction of the gene cassettes with their
promoters and UTRs. Step 3: Preparation of entry clones. Step 4: /n vitro gene pyramiding of the
different components of the SOD-AsA-GSH pathway construct on the T-DNA region of pMDC9%
vector by 5 rounds of LR recombination reaction. Step 5: Transformation of rice with the T7 RNA
polymerase coupled SOD-AsA-GSH pathway multi-gene construct. The expression of the cassette
occurs in anthers where RA8 promoter is active. The expression of T7 RNA polymerase gene is
activated by RA8 promoter (1). The T7 RNA polymerase protein thus formed (2) activates T7
promoter and leads to expression of expression of PeMDHAR, PgDHAR . PgGR, PgSOD and PgAPX
genes (3) in anthers of rice.
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regions (UTRs) of rice ribulose bisphosphate carboxylase small chain (Rbc S) gene
were cloned respectively, upstream and downstream of the coding scquence of
individual gene. The 5" and 3° UTRs of Rbc § gene have been shown to confer strong
translational enhancement (Patel et al., 2004). Thus, each gene cassette consisted of
T7 promoter, T7 terminator and the full-length coding sequence of the SOD-AsA-
GSH pathway genes flanked by 5° and 3° UTRs of rice Rbc S gene (Fig. 4.22). In this
way, all transgenes with their own promoter and terminator would express
individually, however, their expression was co-ordinated by introduced T7 RNA

polymerase protein.

The size of the gene casseties of PgSOD, PgAPX , PgGR, PgDHAR and PeMDHAR
were found to be 1130, 1424, 2160, 1380 and 1979 bp, respectively (Fig. 4.22).

4.5 Anther Specific Expression of T7 RNA Pelymerase
4.5.1 Cloning and Sequence Analysis of Anther Specific RAS Promoter

Qut of all the anther specific promoters studicd so far (Koltunow et al.. 1990; Paul ¢¢
al., 1992; Twell et al, 1990; 1991: Kim er al, 1997; Okada er af., 2000), the
promoter for the gene RA8 was chosen to drive the expression of the SOD-AsA-GSH
cassette in anthers. RAS is an anther specific gene that is specifically expressed in
tapetum, endothecium and conncctive tissue of the anther. The expression of the gene
was found to be developmentally regulated, starting when the microspores are
released from the tetrads and reaching to the maximum level at the late vacuolated-
pollen stage (Jeon et al., 1999). As discussed earhier, this stage of pollen development
has been found to be most sensitive to various abiotic stress conditions. £A8 gene has
also been identified as stress responstve because of the presence a BURP-domain
{(OsBURP15) in the protein sequence. Many BURP domain-containing proteins have
been found to be responsive to stress treatments {(Ding er al., 2009; Shao ¢t al., 201 1).
In order to confirm the tissue specificity of RA8 promoter, the presence of RAS
transcript was analysed in different tissues by a semi-quantitative RT RCR using
cDNA prepared from RNA isolated from leaves. roots, flag leaf, panicle and differcnt
parts of the rice panicle. Expression of RAS gene was found to be confined to the
panicles (Fig. 4.23A). The expression of the gene was further, found to be occurring

exclusively in the anthers of rice plant (Fig. 4.23B)
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A 1.2 kb region upstream of the coding region of RA8 gene was amplified from
genomic DNA of rice using promoter specific primers (Fig. 4.24A) as listed in table

3.10 and used as RA8 promoter.

In silico analysis of the RA8 promoter region revealed the presence of putative TATA
box sequence (TATAAT) at -101/-94. A number of other cis-regulatory sequences
like CGTCA-motif, GARE motif, AT rich elements were also found in the promoter
sequence. The CGTCA-motif, GARE motif are involved in methyl jasmonate and
gibberlic acid responsiveness, respectively. It has been reported that gibberellins
modulates anther development in rice (Aya et al, 2009) whereas jasmonic acid
controls anther dehiscence, filament elongation, and pollen viability (Scott et al.,
2004). Several potential regulatory elements that are related to anther specific gene
expression were also present (Table 4.1). The position of the motif in the promoter
sequence is represented in Fig. 4.24B. The promoter was found to contain elements
like TAPNAC motift (TCTGA)), POLLENILELATS52 motif (AGAAA),
GTGANTGI0 motif (GTGA) and the PB core motif (GTGGTT). These motits have
been reported to be present in genes whose expression is confined to anthers. A
conserved TCGTGT motif was tdentified in the TAPNAC promoter and other tapetal
expressed promoters (Alvarado et al., 201 1). The POLLEN | LELATS52 motif is one of
two co-dependent regulatory elements responsible for pollen-specific activation of
tomato LATS52 gene (Bate and Twell, 1998). GTGANTGI10 element (GTGA) motif
was identified in the promoter of the tobacco late pollen gene g/0 (Rogers er al.,
2001) and was also found in the promoter region of anther specific RTS gene of rice
(Luo er al., 2006). Promoter regions of rice OSIPA, OSIPK, OsACE!, OsCERI,
OsMADSS58, OsPGTIH, OsERFLI, and OsRIPI genes also share the two cis-elements,
GTGANTGI10 and POLLENILELAT (Gupta ef al., 2007; Kato et al., 2010). The PB
core motif is involved in modulating the activity of the LAT gene promoters in pollen

of tomato (Twell er al., 1991),
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Figure 4.22 Construction of SOD-AsA-GSH gene cassettes (A) Construction of gene cassette of
PgMDHAR. Upper panel shows schematic representation of pET-14b vector with PgMDHAR gene and
UTRs. Agarose gel showing amplification of PgMDHAR cassette is shown below. Lane 2 indicates
1979 bp amplicon of PgMDHAR gene cassette (B) Construction of gene cassette of PEDHAR. Upper
panel shows schematic representation of pET-14b vector. Agarose gel showing amplification of
PgDHAR cassette is shown below. Lane 2 indicates 1380 bp amplicon of PeDHAR gene cassette (C)
Construction of gene cassette of PgGR. Upper panel shows schematic representation of pET-14b vector
with PgGR gene and UTRs. Agarose gel showing amplification of PgGR cassette is shown below.
Lane 2 indicates 2160 bp amplicon of PgGR gene cassette (D) Construction of gene cassette of
PgSOD. Upper panel shows schematic representation of pET-14b vector with PgSOD gene and UTRs.
Agarose gel showing amplification of PEMDHAR cassette is shown below. Lane 2 indicates 1130 bp
amplicon of PgSOD gene cassette (E) Construction gene cassette of PgAPX. Upper panel shows
schematic representation of pET-14b vector harboring APX gene, UTRs. Agarose gel showing
amplification of PgAPX cassette is shown below. Lane 2 indicates 1420 bp amplicon of PgdPX gene
cassette. Lane M: 1 kb DNA ladder.
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Figure 4.23 Semi-quantitative RT-PCR analysis of RA8 gene expression in various tissues.
Panel A represents analysis of the expression of RA8 gene in roots, mature leaves (Shoot) and
panicles of O. sativa cv Swarna plants. Panel B shows the expression analysis of RAS gene in

various parts of panicle.
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GCTGCAGETGCTAGAAGCTTCCCCAAACAGACCCCTAGT GTACTCCAGCTGATCGATTCACTCTAT TTATATGCACC ™ GETC
TCTAGCTTATCAAACGTAGCCAAGACTTGAAT T TTAAAGETTAAAT GAT T TGATGTTCTTTTCATCGTAATTCAC ACCGALCE
TTAGTCGGCATTTGAATTTTTAAAAATAATTTTTAGAGL TGAT T TTGAT TTT T TCAGCGGAAT TAT TTCACG TATG TAAAA
GTTTTACCTATAAATTATTAATTTTCAGCGGAGTAAGCATTAGT G TATGGGTTATAATCATCTGGTATGC T ABAATCTCTTTAL
TTGGACTTAGTIGGGACAATTGCTAATGCATTETCGTGOCCATCTCTATAAAT ACGGLCTGCTAGCTTTGCTC TTGTATC GCAC
ACAAGAACTAGCTGCAAAGTCCTCAAGGCGAACGGLCTCCATC CTCC ™ CCAGCTCCTCCCatggeRtecctegleges

TAPNAC motif PB core motif
POLLEN1LELATS52 motif CAATbox
GTGANTG10 motif GARE- motif’
CGTCA-motif

Figure 4.24 Isolation and cloning of anther specific RA8 promoter (A) Agarose gel showing
amplification of RA8 promoter from rice genome. Lane 1 shows a 1.2 kb amplicon of RA8 promoter.
(B) Nucleotide sequences and putative cis-acting elements found in RA8 promoter. The different cis
acting regulatory elements are shaded in different coloured boxes. The putative TATA box is
highlighted in red. The ORF of RAS gene is shown by small leiters.
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Table 4.1 Potential cis-acting regulatory elements identificd in the RA8 promotcr

TAPNAC

POLLEN1-
LELATS52

GTGANTG10

GARE

CGTCA

PB core

DOFCORE-ZM

TATA box

CAAT box

MBS

TCGTG

AGAAA

GTGA

AAACAGA

CGTCA

GTGGTY

AAAG

TATAAT

CAAT

TAACTG

-115-110,
-950/-945

-832/-927

-498/-493,-613/
610, -957/-954

-467/-461

-962/-958, -926/-
922

-920:-915

-48/-45, -237)-
234,-372-367, -
539/-535,-638/-
634,
-1059£-1055

-101/-94

-132/-128, -5671-
563, -819£816, -
1086/-~1083,
-11661-1163

-1065/-1060

A s regulatory element in the

TAPNAC promoter that directs
tapetal gene expression.
One of two co-dependent

reguiatory elements
responsible for pollen-specific
activation of tomato
LAT52gene,

GTGA motif in the promoter of
the tobacco late pollen gene

g10.
Cis regulatory element involved
in gibberlic acid

responsiveness

Cis regulatory element involved
in MeJA responsiveness.
Cis-acting element found in
L AT gene of tomato

Binds dof proteins and

enhances transcription in many
promoters

Core promoter sequence

Commeon cis-acting element in
promoter and enhancer regions

MYB binding site involved in
drought-inducibility

Alvarado ef af., 2011

Bate and Twell, 1998

Rogers et al., 2001

Gubler and Jacobsen,
1992; Ogawa ef al, 2003

Kim ef al., 1993; Rouster
ef al,, 1997

Twell ef al., 1991

Yanagisawa ef al., 1999

Lescot et al., 2002,
(PlantCARE)

Lescot et al., 2002,
{PlantCARE)

Lescot et af., 2002,
{PlantCARE)
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4.5.2 Cloning and Expression of T7 RNA polymerase Gene

A 27 kb DNA fragment corresponding to 77 RNA polymerase gene was PCR
amplified using T7 RNA polymerase specific primers (Table 3.11) from T7 phage
DNA and cloned in TA cloning vector and sequenced (Fig. 4.25A). The in silico
translation analysis of the DNA sequence revealed that the ORF codes for a protein
with an apparent weight of 97 kDa. The protein sequence was found to contain the
conserved domains characteristic of T7 RNA polymerase protein (Sousa ef al., 1993).
The enzyme consists of an N-terminal DNA recognition and a C-terminal RNA
polymerase domain. The N-terminal domain encompasses amine acid residues 1-324
and is involved in promoter recognition and DNA melting via the participation of the
AT rich recognition loop and intercalating PB-hairpin loop. The RNA polymerase
domain of T7 RNA polymerase protein is quite similar to other RNA polymerases in
comprising of palm, finger and thumb domains. The highly flexible thumb domain
(324-411aa) is known to increase the processivity of the enzyme. The palm domain
{412-465 and 785-883aa) contain the active site residues D-537 and D-812 which are
involved in catalysis via interaction with the two Mg2+ tons. The finger domain
comprises of amino acid residues 566-784. This domain consist of the specificity loop
which is involved in direct base specific interaction with the major groove of the T7

promoter (Fig. 4.25B).
4.5.2.1 Addition of SY40 Nuclear Localization Signal to T7 RNA polymerase

In eukaryotes, transcription and translation takes place in nucleus and cytoplasm,
respectively. For developing T7 RNA polymerase coupled transgene expression
system, introduction of necessary eukaryotic features to T7 RNA polymerase coding
region was needed. A 225 bp of 355 3’ UTR was added to T7 RNA polymerase
coding region (Fig. 4.26B-1) for post-transcriptional processing and subsequent export
of poly-adenylated mRNA into the cytoplasm. In order to transcribe the transgenes
cloned under T7 promoter, the translated T7 RNA polymerase polypeptide from
cytoplasm was required to be targeted to nucleus. Fusion of a nuclear localization
signal {(NLS) at the N-termini of the proteins has been shown to direct the proteins to
nucleus. NL.S derived from SV40 Large T-antigen (Dingwail and Laskey, 1991) has

been used to facilitate nuclear import of various proteins (Nehaus er al., 1984; van der
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Figure 4.25 Isolation and sequence analysis of T7 RNA polymerase protein. (A) Agarose gel denoting
amplification of 2.6 kb of T7 RNA polymerase gene by PCR using gene specific primers. (B)
Schematic representation indicating the structural domain of T7 RNA polymerase protein. Amino acid
sequence of T7 RNA polymerase protein showing various domains of the protein. The N-terminal
domain and. the thumb palm and finger sub-domains of the RNA polymerase domain are shaded in red.
blue, yellow and purple colours. The specificity loop and AT rich recognition loop are enclosed in a
blue and red boxes respectively. The active site residues are underlined in red.
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Krol et al., 1991). The SV40 large T antigen NLS contains a short stretch of basic
amino acids (PKKKRKYV) that imports the protein into nucleus (Raikhel, 1992).

For directing the nuclear import of T7 RNA polymerase protein, a 45 bp synthetic
oligonucleotide sequenee coding for N-terminus SV40 NLS polypeptide was added to
the 5° end of T7 RNA polymerase coding region. Previously, N-terminus fusion of
5V40 NLS signal to T7 RNA polymerase was successfully used for nuclear import
and subsequent expression of GUS reporter gene cloned under T7 promoter in

transgenic plants (Lassner er al., 1991; Nguyen er al., 2004).

The modified T7 RNA polymerase protein (Fig. 4.26A) was cloned at BamH [-Nor 1
restriction site of pET-28a vector (Fig. 4.26B-i1), the recombinant plasmid was
transferred into E. coli Rossetta (2DE3) pLysS cells to achieve protein expression and
purification. The protein profile of the un-induced and induced cells showed over
expression of the 97 kDa T7 RNA polymerase in IPTG induced cells (Fig. 4.26B-111).
Before the construction of the genc cassettes, the enzymatic activity of the modified

T7 RNA polymerase protein containing the SV 40 NLS signal peptide was verifted.

4.6 Isolation and Cloning of bar Gene

The bialaphos/Basta resistance (bar) gene, which encodes the enzyme
phosphinothricin acetyl transferase (PAT), is widely used as a selectable marker for
cereal transformation (Christou ez al., 1991; Castillo er al., 1994; Altpeter et al.,
1996; Brettschneider er al., 1997). The activity of PAT provides the plant with the
ability to detoxity phosphinothricin (PPT), the active compound in commercial
herbicide formulations of PPT or bialaphos such as Basta (Hoechst, Germany). PPT
is a glutamate analogue that irreversibly inhibits glutamine synthetase activity, the
key enzyme for ammonium assimilation and the regulation of nitrogen metabolism
in plants. The inhibition of glutamine synthetase results in the death of
untransformed tissues and plants due to the accumulation of ammonium (Rasco-

Gaunt er al., 1999: Tachibana et al., 1986; Wendler er al., 1990).

For cfficient screening of the transgenics, bar gene was introduced in the T-DNA
region. A 1636 bp bar cassette containing 358 promoter and bar gene was amplified
from a plant transformation vector- pMDC123 that carries bar gene as a selection

marker (Fig. 4.27B-i). The amplified 1.63 kh fragment was cloned in EV1™™ (EV1
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vector in which ampicillin resistance marker gene was removed) at EcoR I and Hind

III restriction sites (Fig. 4.27B-ii and 1i1).

4.7 In vitro Pyramiding of Genes Encoding SOD-AsA-GSH Pathway along

with RA8 Promoter-T7 RNA polymerase expression cassette.

4.7.1 Construction of Entry Clones: Cloning of the Genes and Promoter

Cassettes in Entry Vectors

The first step of gateway cloning consisted of the preparation of the entry clones i.e.,
cloning of target genes into gateway-compatible entry vector(s) (EV1 and EV2). The
entry vectors consist of a unique pair of attL. and attR recombination sites and several
restriction sites for the cloning of target genes. EVI carries the attR3-attR4
recombinatton sites flanked by a pair of attl.l-attl.2 sites, while the EV2 carries
attR1-attR2 recombination sites flanked by a pair of attL.3-attLA4 sites . Thus, the entry
clones were prepared by cloning PeMDHAR, PeDHAR, PgGR, PgSOD, PgAPX gene
cassettes (containing the respective genes, T7 promoter, 5’and 3° UTRs and T7
terminator) RAS promoter, T7 RNA polymerase gene and bar cassette in the entry

vectors by conventional restriction based cloning as described below.

4.7.1.1 Construction of RA8 promoter-T7 RNA polymerase expression cassette:

Cloning of of RAS promoter and T7 RNA polymerase in EV1

For the co-ordinated over-expression of SOD-AsA-GSH pathway genes in rice
anthers, the anther specific expression of 77 RNA polymerase gene was required.
Thus, the first step of the multi-round gateway cloning comprised of cloning of the

RAS promoter and 77 RNA polymerase gene in the entry vector EVI1.

The 1.2 kb region of RAS promoter was cloned into Kpn I and Neo [ restriction sites
of EVI (Fig. 4.28). In order to drive the expression of the T7 RNA polymerase
protein in the anthers of rice, the 3 kb long modified-T7 RNA polymerase gene
(containing the SV40 NLS signal and 35S poly A sequence) was cloned
downstream of RAB promoter into Nco 1 and Sac I restriction sites of EVI1 (Fig.
4.29). Thus, the promoter-polymerase cassette consisting of RA8 promoter and 77
RNA polymerase gene, 4.2 kb in size, was integrated between the attLl-attl.2
recombination sites of EV1 (4.29A).

79



Results and Discussion ||

4.7.1.2 Cloning of PeMDHAR and PgDHAR Cassettes in EV1

For reducing the number of rounds of stacking both PeMDHAR and PgDHAR were
eloned in EV1 in a sequential manner (Fig. 4.30). The 1479 bp long PgMDHAR
cassette was cloned mnto Spe ! and Xba 1 sites of EV1 (Fig. 4.30B-i and ii). The
PgDHAR cassette of size 1380 bp was cloned downstream of PgMDHAR into Xba |
and Not | sites of EV1 (Fig. 4.30B iti-iv). Thus, the 2.8 kb long, PeMDHAR-PgDHAR

gene cassette was integrated between the attL1-attL.2 recombination sites of EV1.
4.7.1.3 Cloning of PgGR Cassette in EV2

Since, the mulii-round gateway cloning _systcm involves recombination reactions
while aiternating between the two entry vectors, some of the gene eassettes of the T7
RNA polymerase coupled SOD-AsA-GSH pathway construct were cloned in EV2.
The PgGR gene cassette, 2160 bp in length, was cloned into Spe 1 and Xba I sites of
EV2 (Fig. 4.31B-1 and 01). Thus, Pg(GR casselte was inserted between the attL3-attL4
recombination site of EV2 (Fig. 431A).

4.7.1.4 Cloning of PgSOD and PgAPX Cassettes in EV2

Similar to the PgMDHAR-PyDHAR cassette, the cassette of PgSOD and PgAPX were
sequentially cloned into EV2. The 1424 bp long PgAPX cassette was cloned into Eco
RV and Hind 111 sites of EV2 (Fig. 4.32B-1} and the PgSOD cassette of size 1130 bp
was cloned downstream of PgAPX into Hind 1l and Cla [ restriction sites of EV2
(Fig. 4.32B-11 and iii). Thus, third gene cassette, 2.5 kb in length, was integrated
between the attl.3-attL4 recombination sites of EV2 (Fig 4.32).

As already discussed, the bar cassette, 1.6 kb in size, was cloned in EV1 ™™™ between

the attL1-attL.2 recombination sites (Fig. 4.27).

4.7.2 Pyramiding of the SOD-AsA-GSH Pathway and RA8 Promoter-T7 RNA

polymerase Cassettes on Plant Transformation Vector, pMDC99

After the preperation of the cntry clones carrying the SOD-AsA-GSH pathway gene
cassettes, RA8promoter-T7 RNA polymerase expression cassette and the bar
cassettes, these cassettes were stacked in the destination vector pMDC99 by multi
round gateway cloning using LR clonase (as described in Materials and Methods). LR

Clonase® (Invitrogen) enzyme contains a a proprietary mix of integrase. integration
g Y prop Y 2 g
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host factor and excisionase enzymes. These enzymes catalyze the in vitro
recombination between an entry clone (containing the genes of interest flanked by
attL. sites) and a destination vector (containing attR sites). Assembly of the multiple-
gene begins with LR recombination between one of the EV(EVI/EV2) and the
destination vector (pMDC99). The destination vector pMDC99 is derived from
pCAMBIA T-DNA cloning vector which is used for Agrobacterium-mediated
transformation ol a wide range of plant species and contains the hygromycin
phosphotransferase plant-selectable marker gene. In this vector, the gateway
recombination site attR|-attR2 (for introduction of the gene of interest) is placed

towards the right border of the T-DNA.

In the present study, five rounds of LR recombination reactions, as described below,
were performed while alternating between EV] and EV2 to construct the T7 RNA

polymerase coupled SOD-AsA-GSH pathway multi-gene conslruct.
4.7.2.1 First Round of LR Recombination Reaction

The first step of LR cloning involved recombination reaction between the entry clone
carrying PgMDHAR-PgDHAR cassette (EV]-PgMDHAR-PgDHAR} and destination
vector pMDC99 (Fig 4.33). This recombination step resulted in: (i} the transfer of the
first gene cassette into the pMDC99; (i1} replacement of the negative selection gene of
pMDC99 (cedB) with the selection marker of EV1; and (iii) the incorporation of a
new pair of attR recombination sites (Fig. 4.33A). This resulted in the possibility of a
second recombination LR step between the second entry vector (EV2, containing the
compatible attL.3-attl.4 recombination site} and the recombinant pMDC99 which now

carried the attR3-attR4 site.
4.7.2.2 Second Round of LR Recombination Reaction

The second step involved stacking of PgGR cassette cloned in EV2 to the
recombinant pMDC99 containing the PgMDHAR-PeDHAR cassette (Fig. 4.34). As
described ecarlier, this recombination step replaced the selection marker of the
recombinant pMDC99 (ampicillin resistance gene, AmpR) with that of EV2 (ccdB and
chloramphenicol resistanee gene, ChI®y and led to the insertion of a new pair of
recombination site, attR1-attR2 (Fig 4.34A). Thus the second recombination step

resulted in the assembly of PgGR, PeMDHAR and PgDHAR gene cassettes.
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A
NLS T7RNA POLYMERASE 355 POLY A
45bp 2652bp 225bp
TGCA GCC ATG GCT CCG CCC AAG AAA AAG CGA AGG TAG AAG ATC CTC ACATG
A A M A P P R K VvV E D P H
NLS sequence of 5V40 large T antigen
B

Figure 4.26 Modification and cxpression of 77 RNA polymerase. gene (A) Schematic diagram of the
modified T7 RNA polymerase gene indicating the positions of SV40 large T-antigen NLS at N-
terminal and a 355 poly A at C-terminal end. (B) (i) Agarose gel showing PCR amplification of 225 bp
35S poly A sequence. Lane 2: 225 bp amplicon of 355 poly A. (ii) Agarosc gel indicating confirmation
of cloning of T7 RNA polymerase protein in pET-28A vector by restriction digestion, Lane M: 1 kb
DNA ladder, Lane 1 double digestion of pET-28A vector harboring T7 RNA polymerase gene using
Bam HI and Not I; Lane 2 :un-digested vector. (iii) SDS-PAGE profile of the expressed T7 RNA
polymerase protein from bacterial cells. Lane 1: pre-stained protein marker; Lanes 2 and 3 indicate the
un-induced and induced culture pellets of recombinant clone; Lane 3 shows the Ni-NTA column
purified recombinant protein.
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Figure 4.27 Isolation and cloning of bar cassette. (A) Schematic representation of pMDC123 vector.
(B) Agarose gel denoting (i) Amplification of ~1.6 kb of bar cassette from pMDCI123 vector (ii)
Confirmation of cloning of bar cassette in EV1 by colony PCR (iii) Restriction digestion analysis of
bar cassette cloned in EV1 vector; Lanes 1 and 2 denote vector digested with Eco RI and Hind III
while 3 and 4 represent un-digested vector.
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Figure 4.28 Cloning of RA8 promoter in EV1. (A) Schematic representation of EV1. (B) Agarose gel
indicating confirmation of cloning of RA8 promoter (pRAS8) in EVI by (i) Colony PCR and (ji)
Restriction digestion analysis where lane 1 indicates vector digested with Kpr I and Nco I and lane 2
indicates the un-digested vector, M represents 1 kb DNA ladder.
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Figure 4.29 Cloning of T7 RNA polymerase gene in EV1 vector harboring RA8 promoter (EV1-RAS).
(A) Schematie representation of EV1 showing the sites for cloning. (B) (i) Agarose gel denoting
confirmation of cloning of T7 RNA polymerase gene in EV1 by colony PCR using gene specific
primers (if) Agarose gel indicating confirmation of cloning of T7 RNA polymerase gene in EV1 vector
by restriction digestion. Lane M: 1 kb DNA ladder, Lane 1. double digestion of EV1 vector harboring
RAB promoter and T7 RNA polymerase gene using Kprn [ and Sac 1 showing ~4 kb fallout
corresponding to RA8 promoter and T7 RNA polymerase gene, Lane 2: double digestion of the same
vector using Nco I and Sac I showing ~3 kb fallout corresponding to T7 polymerase gene, Lane 3: un-
digested EV1-vector containing RA8 promoter and T7 polymerase gene.
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Figure 4.30 Cloning of PeMDHAR and PgDHAR cassettes in EV1. (A) Schematic representation of
EV1 vector harboring PeMDHAR and PgDHAR cassette. Yellow arrows indicate the T7 promoter (B)
(i) Agarose gel denoting confirmation of cloning of PEMDHAR cassette in EV1 by colony PCR using
gene specific primers (if) Agarose gel indicating confimmation of cloning of PgMDHAR cassette in
EV1 vector by restriction digestion; Lane 2: un-digested vector; Lane 3: double digestion of EV]
vector harboring PpMDHAR cassette using Spe | and Xba I showing ~1.9 kb fallout corresponding to
PgMDHAR cassette. iii) Agarose gel indicating confirmation of cloning of PgDHAR cassette in EV1-
MDHAR vector by colony PCR using gene specific primers. (iv) Agarose gel indicating confirmation
of cloning of PgDHAR cassette by restriction digestion. Lane 2: un-digested vector, Lane 3: double
digestion of EV1 vector harboring PgDHAR and PgMDHAR cassette using Xba I and Not I showing
~1.38 kb fallout corresponding to PeDHAR cassette. M indicates 1 kb DNA ladder.
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Figure 4.31 Cloning of PgGR in EV2. (A) Schematic representation of EV2 vector harboring PgGR
cassette. T7 promoter is indicated by yellow coloured arrow (B) (i) Agarose gel denoting confirmation
of cloning of PgGR in EV2 by colony PCR. using gene specific primers (ii) Agarose gel indicating
confirmation of cloning of PgGR cassette by restriction digestion. L.ane M: 1 kb DNA ladder; Lane 2:
un-digested vector; Lane 3: double digestion of EV 2 vector harboring PgGR cassette using Spe I and
Xba I showing ~2.1 kb fallout corresponding to PgGR cassette.
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Figure 4.32 Cloning of PgSOD and PgAPX in EV2. (A) Schematic representation of EV2 vector
carrying PgSOD and PgAPX cassettes. Yellow coloured arrow in the cassette represent T7 promoter.
(B) (i) Agarose gel indicating confirmation of cloning of PgAPX cassette by restriction digestion. Lane
M: 1 kb DNA ladder; Lane 1: un-digested vector, Lane 2: double digestion of EV 2 vector harboring
PgAPX cassette using EcoR V and Hind III showing ~1.4 kb fallout corresponding to PgAPX cassette.
Agarose gel denoting confirmation of cloning of PgS0D cassette in EV2 by (ii) Colony PCR (Lanes 1-
17 denote the number of colonies screened) using SOD specific screening primers. N indicates
negative control iii) Restriction digestion. Lane M: 1 kb DNA ladder, Lane 2: un-digested vector, Lane
3: double digestion of EV2 vector harboring PgSOD and PgAPX cassette using Hind Il and Cla 1
showing ~1.1 kb fallout corresponding to PgSOD cassette.
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Figure 4.33 First round of gene stacking. (A) Schematic representation of the stacking of the first gene
cassette containing PeMDHAR and PgDHAR genes in the destination vector pMDC99. (B) Agarose
gel indicating confirmation of cloning of the first cassette in pMDC99 by (i) colony PCR (Lanes 1-6
denote the number of colonies screened) (i) Plasmid-PCR (Lanes 1-3 denote amplification of
respective genes from the plasmids isolated from three positive colonies). Lane M denotes 1 kb DNA
Tadder, Lane P and Lane N denotes positive and negative controls, respectively.
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4.7.2.3 Third Round of LR Recombination Reaction

The third round of LR recombination involved the addition of RA8 promoter-17
RNA polymerase cassette cloned in EV1 to the recombinant pMDC99 which
harboured the PeMDHAR, PeDHAR and PgGR genes (Fig. 4.35). This step led to the
insertion of a new set of recombination site, attR3-attR4 into the recombinant

pMDCS9 (Fig 4.35A) thus, making way for another round of recombination reaction.
4.7.2.4 Fourth Round of LR Recombination Reaction

The fourth round of LR recombination involved the recombination between EV2
carrying the PgSOD-PgAPX cassette and the recombinant pMDC99 harbouring
PgMDHAR, PgDHAR, PgGR, RAS8 promoter and 77 RNA polymerase gene (Fig.
4.36}. This step led to the assembly of PgSOD and PgAPX genes and insertion of
recombination site, attR1-attR2 carmrying the ccdB gene into the recombinant

pMDC99 (Fig 4.36A).
4.7.2.5 Fifth Round of LR Recombination Reaction

The fifth and final round of recombination reaction was performed to remove the
toxic ccdB gene introduced in the recombinant pMDC99 as a result of the previous
round of recombination. This was achicved by performing a recombination reaction
between empty EV | (carrying no target gene) in which the marker gene (Amp®) was
removed (EVIA™) (as described in materials and methods) and the recombinant

pMDC99. Thus the final construct did not carry any additional selection marker .

In order to facilitate the process of screening of the transgenics, one more construct
was made in addition to the above construct in which bar gene was also assembled
together with the SOD-AsA-GSH pathway genes (Fig. 4.37). This was achieved by
the recombination reaction between the the entry clone carrying bar cassette (EV 1™
-bar) and the recombinant pMDC99 vector carrying the SOD-AsA-GSH pathway
genes, RA8 promoter and 77 RNA polymerase gene. As the selection marker in the
entry clone carrying bar gene was removed, no additional selection marker was
present after this round of recombination. Thus, the T7 RNA polymerase -coupled
SOD-AsA-GSH pathway-bar construct was made with PeMDHAR, PeDHAR, PgGR,
PgSOD, PgAPX gene cassettes, RAS8 promoter-77 RNA polymerase expression
cassette and bar cassettes inserted in the T-DNA region of pMDC99 (Fig. 4.37A).
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4.8 Transformation of Agrobacterium with Recombinant pMDC99 Vector
Harboring T7 RNA polymerase coupled SOD-AsA-GSH Pathway

Construct

The T7 RNA polymerase coupled SOD-AsA-GSH pathway constructs were
mobilised inte Agrobacterium via electroporation. The positive colonies were
screened for the presence of all the genes namely. PeMDHAR, PeDHAR, PyGR,
PgSOD, PgAPX, RA8 promoter 77 RNA polymerase, hpt and bar using primers as
hsted in Table 3.13. The Agrobacterium cells harboring the multi-gene construct for
several generations and the stability of the construct was checked by checking the
amplification of the genes in different generations (Fig. 4.38 and Fig. 4.39). All the

genes of the multi-gene construct were found to be stable in Agrobacterium.

4.9 Agrobacterium Mediated Rice Transformation

The multi-gene cassette harboring the T7 RNA polymerase coupled SOD-AsA-GSH
pathway genes and the modified cassette carrying the additional bar gene was
transformed into IR64 and Swarna cuitivars of indica rice, respectively. Owing to the
high transformation and regeneration potential, scutellum derived embryogenic calli
were used in transformation experiments (Hiei ef al., 1994). Approximately 200
embryogenic calli were infected with A. tumefaciens strain EHA10S containing the
multi-gene constructs. The infected calli was co-cultivated in MS medium
supplemented with acetosyringone that was reported not only to induce vir genes but
also found essential for rice transformation as a signaling compound (Hiei et al. 1994;
2006). The culture medium containing hygromycin apparently allowed the
transformed calli to grow due to the expression of hpr gene (Hiei ef al., 1994; Rashid
et al., 1996). Hygromycin allowed clear distinction between transformed and non
transformed calli. The resistant calli were selected after two rounds of selection
pressures. Only few calli proliferated in the selection medium while others turned
dark and eventually dried off. Hygromycin resistant calli which survived two rounds
of selection was transferred to shoot regeneration medium. Total fourteen putative
transgenic plants in case of IR64 and forty putative transgenic plants in case of
Swarna were regenerated which were further hardened and transferred to soil pots

maintained in green house (Fig. 4.40 and 4.41). The putative transgenic plants were
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Figure 4.34 Second round of gene stacking. (A) Schematic representation of stacking of the second
gene cassette containing PgGR gene in the destination vector pMDC99. (B) Agarose gel indicating
confirmation of cloning of the second cassette in pMDC99 by (i) Colony PCR (Lanes 1-13 denote the
number of colonies screened) (ii) Plasmid-PCR (Lanes 1-3 denote amplification of respective genes
from the plasmids isolated from the positive colonies). Lane M denotes 1 kb DNA ladder, Lane P and
Lane N denotes positive and negative controls, respectively.
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Figure 4.35 Third round of gene stacking. (A) Schematic representation of the stacking of the third
cassette containing RAS8 promoter and T7 RNA polymerase gene in the modified destination vector
pMDC99. (B) Agarose gel indicating confirmation of cloning of the cassette in pMDC99 by (i} Colony
PCR (Lanes 1-10 denote the number of colonies screened) (ii) Plasmid-PCR (Lanes 1-6 denote
amplification of respective genes from the plasmids isolated from the positive colonies). Lane M
denotes 1 kb DNA ladder; Lane P and Lane N denotes positive and negative controls, respectively.
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Figure 4.36 Fourth round of gene stacking. (A) Schematic representation of the stacking of the fourth
cassette containing PgSOD and PgAPX genes in the modified destination vector pMDC99. (B)
Agarose gel indicating confirmation of cloning of the cassette in pMDC99 by (i) colony PCR (Lanes 1-
18 denote the number of colonies screened) (ii) Plasmid-PCR (Lanes 1 and 2 denote amplification of
respective genes from the plasmids isolated from the positive colonies). Lane M denotes 1 kb DNA
ladder; Lane P and Lane N denotes positive and negative controls, respectively.
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Figure 4.37 Fifth and final round of gene stacking. (A) Schematic representation of stacking of bar
cassette in the modified destination vector pMDC99. (B) Agarose gel indicating confirmation of
cloning of bar cassette in pMDC99 by (i) Colony PCR (Lanes 1-17 denote the number of colonies
screened). (if) Plasmid-PCR (Lanes 1-3 denote amplification of respective genes from the plasmids
isolated from the positive colonies). Lane M denotes 1 kb DNA ladder; Lane P and Lane N denotes
positive and negative controls, respectively.
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Figure 4.38 The T7 polymerase-coupled SOD-AsA-GSH pathway construct, (A) Schematic
representation of the T7 polymerase-coupled SOD-AsA-GSH pathway construct. (B) Agarose gel
indicating confirmation of stacking of all the genes in pMDC99 by Plasmid-PCR (I.ane 1 and 2 denotes
amplification of respective genes from the plasmids isolated from the positive colonies). Lane M
denotes 1kb DNA ladder; Lane P and Lane N denotes positive and negative controls, respectively.
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Figure 4.39 The modified T7 polymerase-coupled SOD-AsA-GSH pathway construct with additional
bar gene. (A) Schematic representation of the T7 polymerase-regulated SOD-AsA-GSH pathway
construct with bar gene (B) Agarose gel indicating confirmation of stacking of all the genes in
pMDC99by Plasmid-PCR (Lane 1-3 denotes amplification of respective genes from the plasmids
isolated from the positive colonies). Lane M denotes 1 kb DNA ladder; Lane P and Lane N denotes
positive and negative controls, respectively.
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Figure 4.40 Agrobacterium mediated transformation of rice (Oryza sativa L. cv. IR64) with the T7
RNA polymerase coupled SOD-AsA-GSH pathway construct The different steps involved in
transgenic rice regeneration are shown.
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Figure 4.41 Agrobacterium mediated transformation of rice (Oryza sativa L. cv. Swarna) with the
modified T7 RNA polymerase coupled SOD-AsA-GSH pathway-bar construct The different steps
involved in transgenic rice regeneration are shown.
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subjected to vartous molecular and physiological analysis.

4.10 Screening and Analysis of the Transgenic Plants

For the identification of independent transgenic lines with the stable integration of all
the transgenes, four putative IR64 transgenic plants (11, 1_2, 1_3 and 1_4) and thirty
putative Swarna transgenic plants were screened by a number of methods as described

below.
4.10.1 Screening of Putative Transgenic Plants with Basta

To measure the herbicide tolerance in the transgenic plants, the putative transgenic
Swarna lines were tested by spraying the herbicide Basta (Bayer Crop Science) at a
concentration of 10 mg/l. The leaves of the wild type (un-transformed) plants showed
prominent chlorosis and leaf tip necrosis whereas in the transgenic plants expressing

bar gene the extent of chlorosis and necrosis was much less (Fig. 4.42).
4.10.2 Confirmation of Putative Transgenic Lines by PCR

Putative transgenic lines were confirmed by PCR using Apt specific primers. Out of
thirty putative Swarna transgenic plants, twenty four plants (Sw_1, Sw 2, Sw_3,
Sw_4, Sw_5, Sw_6, Sw_7, Sw_8&, Sw_9, Sw_10, Sw_11, Sw_12, Sw_13, Sw_l14,
Sw_15, Sw_16, Sw_17, Sw_18, Sw_19, Sw_25 Sw_26, Sw_27, Sw_29 and Sw_30)
were tested positive showing the expected amplification of 100 bp, which was

missing in the rest plant including the wild type (Fig. 443A-B).

The aforesaid twenty four hygromycin resistant—positive Tp transgenic plants were
further analysed for the presence of transgenes: 77 RNA polymerase, PgSOD, PgAPX,
PeGR, PeMDHAR and PgDHAR. Due to extensive homology between the transgenes
and the corresponding endogenous genes of rice, gene specific primers were not used
for amplification of trangenes. The detection of the transgene was done by using
different combinations of forward and reverse primers designed from the promoter,
3'UTRs and non-conserved regions of the transgenes (Table 3.15). The results
revealed that some of the transgenies lines (I_1, I 2, Sw_I7, Sw_I8, Sw_19 and
Sw_30) showed loss of one or more transgenes whereas some lines {(Sw_10, Sw_I1,
Sw_l6, Sw_ 25, Sw_26, Sw_27, Sw_29) exhibited complete integration of the

cassette (Fig. 4.44). The loss of genes may be attributed to homologous recombination
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occurring in plant cells during the integration of T-DNA probably due to repeated
elements in the T-DNA. The foss of one or more transgene in Arabidopsis
transformed with linked multi genes by an in vivo DNA assembly method has earlier
been reported (Chen et al., 2010). However, the marker gene fipt was present in all the
transgenics. Both types of transgentcs having complete and partial integration were

proceeded for further analysis.
4.10.3 Molecular Detection of Genomic Integration of Transgenes

The transgenic nature of rice plants was further confirmed by Southern hybridization
analysis using undigested and digested total genomic DNA samples. Genomic DNA
digested with a restriction enzyme Sac 1I were loaded for each transgenic line as well
as the wild type (non-transformed) plants and hybridized with hpr probe. The
expected size of the digested fragments are shown in Fig. 4.45 A and B.
Representative Southern results are shown in Fig. 4.45C and D for eight transgenic
rice plants (.2, Sw_9, Sw_10, Swll, Sw_16, Sw_17, Sw_25, and Sw_26) (Fig.
4.45). Hybridization signals corresponding to the Sac Il fragments of different size
were observed in the Southern hybridization analysis. This indicates the integration of
transgene copies in the genome of the independently transformed plants. Some of the
transformants had single copy integration (1_2, Sw_25, Sw_26) and sometimes a
more complex multi-band pattern was observed (Sw_I1, Sw_16 and Sw_17) (Fig.
4.45), indicating the occurrence of multiple copy-integrations and possible

rearrangements of the transgenes in the genome of the transformants.
4.10.4 Analysis of Transgene Integration Site by Locus Finding PCR

The transgene flanking sequence of the two independent transgenic lines (I_2 and
Sw_10) was determined by a method named Locus Finding PCR (LF PCR). LF PCR
includes a primary PCR by a degenerated primer and transfer DNA (T-DNA)-specitfic
primer, a nested PCR, and a method of enriching the desired amplicons by using a
biotin-tagged primer that is complementary to the T-DNA. The technique has been
described in detaill in Materials and Methods (Section 3.30). The characteristic
amplification of the random-priming PCR (primary PCR) that looks like a DNA
fingerprint (Fig. 4.46A) was observed in the primary PCR, which are thc non-specific
amplicons created by the involved primers. Captured single strands of desired

amplicons were subjected to the nested PCR. The transgenic rice plant I_2 and Sw_10
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Figure 4.42 Evaluation of herbicide resistance in T, transgenic and un-transformed Swarna plants by
in vitro leaf spray test. The picture was taken at the seventh day after Basta application. Sw_10.
Sw_25, Sw_26 and Sw_27 indicate the transgenic plants; WT indicates the untransformed plant.
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Figure 4.43 Confirmation of integration of Apt gene in Ty transgenic plants. (A) Agarose gel showing
PCR amplification of the integrated Apt selection marker gene by using hpt F hpt R primers in TR64
transgenic plants. (B) Agarose gel showing PCR amplification of the hpt genes in Swarna transgenic
plants. Lane M denotes 1 kb DNA ladder; L.ane P and N denotes positive and negative control
respectively and wt denotes Non -transformant control.
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Figure 4.44 PCR analysis showing the presence of different transgenes in the transgenic IR64 and
Swarna plants using gene forward and 3’UTR reverse primers (A) and T7 forward and gene reverse
primers {B). Lane M: 1 kb DNA ladder, P: Positive control, N: Negative control, WT: un-transformed
plant . I_2, I 3, Sw_%a, Sw_10, Sw_11, Sw 16, Sw 17, Sw_18, Sw 19, Sw 25 Sw 26, Sw 27,
Sw_29 and Sw_30 denote the different transgenic lines.
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Figure 4.45 Analysis of transgene integration by Southern hybridization (A) Agarose gel representing
the restriction digestion of recombinant pMDC99 plasmid harboring the T7 RNA polymerase coupled
SOD-AsA-GSH pathway construct. Lane 1 represents digestion of the recombinant pMDC99 plasmid
harboring the T7 RNA polymerase coupled SOD-AsA-GSH pathway construct using Sac II showing
the expected fallouts of 15 kb, 2.6 kb and 2.1 kb. Lane 2 indicates the comresponding un-digested
vector. Lane M denotes 1 kb DNA ladder (B) Size of the expected fallouts after digestion with Sac I1.
(C) and (D) Southern hybridization of DNA blot containing digested genomic DNA isolated from
transgenic Swarna and IR64 lines and hybridized with hph probe. SW 9, SW 10, SW_11, 1 2,
SW_I16,8W_17,SW_25 and SW_26 indicate the different transgenic lines: WT: un-transformed plants
serving as control. P indicates plasmid as positive control. A Hind 1II denotes A Hind 111 DNA ladder.
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Figure 4.46 Detection of position of integration of the transgenes by Locus Finding PCR. A) Agarose
gel indicating the amplification pattern of random-priming PCR (Primary PCR). Lanes 1, 2, and 3 are
the representative primary (random-priming) PCR of plants I 1,1 2, and Sw_10, respectively, and lane
M denotes 500 bp DNA ladder. (B) Nested PCR amplification of I_1,1 2, and Sw_10. Lanes 1, 2, and
3 are the amplifications of plants I 1,1 2, and Sw_10, respectively, and lane M denotes 1 kb DNA

ladder.
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Figure 4.47 Transgene integration locus for transgenic plant, I 2 as determined by by Locus Finding
PCR. The upper panel depicts the representative chromatogram of the transgene integration locus
showing the junction region of vector and chromosome 5. The alignment of the amplified integration
loci and chromosome 5 is shown below wherein the vector sequence is shaded in red and chromosomal

sequence is shaded in green.
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Figure 4.48 Transgene integration locus for transgenic plant, Sw_10 as determined by Locus Finding
PCR. The upper panel depicts the representative chromatogram of the transgene intcgration locus
showing the junction region of vector and chromosome 5. The alignment of the amplified integration
loci and chromosome 5 is shown below wherein the vector sequence is shaded in red and chromosomal
sequence is shaded in green.
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Figure 4.49 Transgene integration positions for transgenic plant, I 2 and Sw_10.
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amplified ~400 bp and 500 bp bands, respectively, at the end of the nested PCR (Fig.
4.46B). These integration loci amplified in the nested PCR were sequenced. The
integration loci of the transgenic plants were identified by performing BLAST N
analysis against O. sativa (indica cultivar group) whole genome shotgun contigs (Fig.
4.47 and Fig. 4.48). Coincidently, in both the lines, transgene was found to be inserted
at Chromosome 5 but at a ditferent position. For line [_2 integration was found to
have occurred at 23576014 bp whereas for line Sw_l10, the integration occurred at

26634735 bp on chromosome 5 (Fig. 4.49).

4.10.5 Analysis of Transgene Expression

The detection of transgene expression in anthers of the Ty lines Sw_10 and Sw_11
was carried out by semi-quantitative RT-PCR using primers as listed in Table 3.18.
The transcripts corresponding to PeMDHAR, PgDHAR, PgGR, PgSOD and PgAPX
were observed in lines Sw_11 and Sw_10 (Fig. 4.50). The results indicated that all the
transgenes in Sw_10 and Sw_I1 were expressed at different levels under normal
conditions in the anthers. The mechanisms contributing to the expression variation
between the diffcrent transgenic plants that contain the same gene casscttes are not
fully understood. However, it is generally assumed that the position effect from the
neighbouring chromosome of insertion site can be the factor responsible for the

differential transgene expression (Matzke and Matzke, 1998).

Due to limitation of anther tissue the expression of the transgenes at protein level was
not analyzed in anthers of T, plants. However, the vegetative parts of the transgenic
plants did not show any accumulation of transgenic protein as revealed by the in-gel
SOD and APX activity assay performed from proteins extracted from the leaves of
transgenic lines Sw_10 and Sw_11 (Fig. 4.51). Thus, there was no leaky expression of

the T7 RNA polymerase coupled SOD-AsA-GSH pathway in shoots.
4.10.6 Analysis of Seed Set and Pollen Viability of Transgenic Plants

The Tp transgenic plants showed normal growth and development and there was no
substantial difference in the seed set of transgenic IR64 and Swarna plants and the
wild type plants under non-stress conditions (Fig. 4.52 and 4.53). Pollen from non-
transgenic plants and transgenic plants was collected and tested for viability. No
difference was observed between the transgenic and the uon-transgenic plants in

terms of the viability ot the pollen grains under non-stress conditions.
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4.10.7 Analysis of T, Generation Transgenic Plants

The growth of T; seedlings of Sw_10, Sw_11, Sw_25, Sw_26 and Sw_27 was also

found to be similar to the non-transgenic plants (Fig. 4.54).
4.10.7.1 Segregation Analysis of Transgenic Plants

The germination test was performed with seeds of Ty generation IR64 (12, I_3) and
Swarna transgenic plants (Sw_10, Sw_11, Sw_25 and Sw_26) in hygromycin
supplemented media (Fig. 4.55). Hygromycin at a concentration of 30 mg/l was found
to be toxic to the germination of non-transformed control rice seeds of both IR64 and
Swarna variety. Hygromycin-resistant and susceptible seedlings were clearly
identified within one week. Resistant seeds germinated while the non-transformed
(susceptible) seeds did not germinate or died after germination. For majority of cases
70% of the seeds of the transgenic plants were able to germinate on media

supplemented with 30 mg/l of hygromycin.
4.10.7.2 Analysis of Expression of bar Gene by Chlorophenol Red Assay

T, seeds from the transgenic lines Sw_10, Sw_16, Sw_25, Sw_26 and Sw_27 were
germinated on MS media with 3mg/l Basta and 50mg/l chloropheno! red. The use of
this selective medium allows more efficient screening of the putative transgenic plants
since the germination under Basta selection changed pH in the medium from 6.0 to
5.0. Yellow or orange colour indicated bar activity due to acidification of the medium.
The colour shift from red to orange—yellow occurred in case of the transgenic lines
Sw_9 Sw_ 10, Sw_I1, Sw 25, Sw 26 and Sw_27 within 14-20 d after the
germination. In paraliel experiment, the non-transformed control plants did not

change the colour of the selective medium (Fig. 4.56).

The T, transgenic lines exhibiting hygromycin and basta tolerance are being grown in
green house for obtaining homozygous lines as well as for the multipiication of seeds.
The expression analysis of the transgenes in anthers would be performed in T, and
subsequent generation plants. The response of the transgenic plants under various
stress treatments, particularly during drought and moderate to high temperature stress
would be studied as these two stress conditions are the most critical to male
reproductive development of rice plants. The panicie development and seed set of

transgenic lines will be compared with that of wild type plants under the stress
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Figure 4.50 Semi-quantitative RT-PCR detection of transcripts of PeMDHAR, PgDHAR, PgGR,
PgSOD and PgAPX in panicles of un-transformed (wt) and transgenic lines (Sw 10 and Sw 11).
Transcript levels of tubulin expression was used as an internal control in each case. Ethidium bromide-
stained rRN As were used as a loading control (bottom section). N denotes negative control.
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Figure 4.51 Representative in-gel SOD and APX activity of leaves of rice plants. {A) Native PAGE gel
showing SOD activity (indicated by the appearance of achromatic bands). (B) Native PAGE gel stained
for APX activity. PgSOD: purified PgSOD protein; PgAPX: purified PgAPX protein; Pg CP: crude
protein isolated from Pennisetum leaves; wt: crude protein isolated from leaves of non-transformed rice
plants; Sw_10: crude protein isolated from leaves of transgenic line Sw_10 plants and Sw_11: crude
protein isolated from leaves of transgenic line Sw_11.
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Figure 4,52 Phenotypes and seed set of transgenic plants. (A) Different mature phenotypes of IR64
transgenic plants (I 2 and I 3) and untransformed (WT) plants at grain-filling stage. (B) Mature
panicles of untransformed (i) and transgenic plants (ii and iit}. (C} I,-KI staining showing pollen
viability of transgenic lines and control untransformed plants. (i} Control-plant mature pollen grains (ii)
Mature pollen grains of transgenic line I 2 (fii} Mature pollen grains of transgenic line [ 3.
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Figure 4.53 Phenotypes and seed set of Swarna transgenic plants. {A) Different mature phenotypes of
Swarna transgenic plants (Sw_10, Sw 25 and Sw 26) and untransformed (SW_WT) plants at grain-
staining showing pollen viability of transgenic lines and control untransformed plants. (i) Control-plant
mature pollen grains. Mature pollen grains of transgenic line Sw_10 (if) Sw_25 (iii) and Sw_26 (iv).
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Figure 4.54 Comparison of growth of T, seedling sof transgenic lines (Sw_10, Sw_25 and Sw_26) and
untransformed control ptant (WT).
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Figure 4.55 Germination of T, seeds of IR64 (A} and Swama (B) transgenic lines along with
untransformed lines (WT) in presence of hygromycin B (30 mg/1).
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Figure 4.56 Chlorophenol Red Assay. Germination of non-transformed (WT) and T, transgenic
lines(Sw_9, Sw_10, Sw_11, Sw_25, Sw_26 and Sw_27) on MS media (left panel) and MS media
supplemented with Basta and chlorophenol red (right panel).
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conditions in order to evaluate the performance of the transgenic plants under

different environmental conditions.
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SUMMARY AND CONCLUSION

The global climate change 1s known to cast dramatic effects on world agriculture as crop
productivity is largely affected by the adverse environmental fluctuations. The global
climate change together with the abiotic stresses can be detrimental to any stage of
development of plants. However, the sexual reproductive phases are particularly more
sensitive to the stress conditions. Moreover, as majority of our food (fruits, vegetables,
grains and pulses) is a product of the sexual reproduction of flowering plants, it becomes
more important to understand the effect of these stresses on the reproductive development
of plants. The various stress conditions like high or low temperature, drought and salinity
culminate into the production of reactive oxygen species {ROS) thereby imposing

oxidative stress on plants.

Plants have evolved different strategies to minimize the accumulation of excess ROS.
These strategies include the avoidance mechanisms such as anatomical adaptation,
suppression of photosynthesis and scavenging mechanisms like production of anti-
oxidants and anti-oxidative enzymes. Among the various anti-oxidant enzymes produced
in the plants, superoxide dismutase (SOD} and the enzymes of ascorbate-glutathione
(AsA-GSH) pathway play an tmportant role in detoxifying excess ROS in plant cells.
Different plants differ in their capability to scavenge ROS and efficient ROS
detoxification is one of the strategies used by stress tolerant plants for combating the
various abiotic stresses. Therefore, with an objective of enhancing the tolerance of the
reproductive part of plants to the increasing environmental fluctuations, superoxide
dismutase along with the enzymes constituting the AsA-GSH pathway of a stress tolerant
plant Pennisetum glaucum was over-expressed in the anthers of rice plants. All the genes
i.e. PeMDHAR, P¢DHAR, PgGR, PgSOD and PgAPX were stacked in a single T-DNA
vector by /n vitro gene pyramiding and in order to achieve the co-ordinated expression of
all the component enzymes, T7 RNA polymerase expression system was introduced. The
cassette of each gene invoived in SOD-AsA-GSH pathway was designed in such a way

that each gene was placed separately under the control of T7 promoter. In this way, the
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transgene expression would be dependent on the introduced T7 RNA polymerase gene.

The expression of the SOD-AsA-GSH pathway was directed to the anthers of rice plant

by regulating the expression of T7RNA polymerase gene by the rice anther specific RAS

promoter. The co-ordinated expression of the SOD-AsA-GSH pathway in anthers would

help in enhancing the oxidative stress tolerance of anthers finally leading to the improved

reproductive fitness of the rice plants.

The results of the present study can be summarized as follows

1.

The full length genes coding for CuZn superoxide dismutase (CuZnSOD),
ascorbate peroxidase (4PX), monodehydroascorbate reductase (MDHAR),
dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were
amplified from the genome of a stress tolerant plant P. glaucum. The sequence
analysis of each of the gene was done and the conserved mofifs and residues
important for activity were identified. The phylogenetic analysis of the proteins
revealed them to be closely related to the corresponding cytosolic proteins of
maize and rice, indicating the probable cytosolic nature of these proteins. The full
length genes were expressed in heterologous £. coli expression system. The

recombinant proteins were purified and were tfound to be enzymatically active.

The T7-promoter-SOD-AsA-GSH pathway gene cassettes were constructed. Each
individual gene cassette consisted of the T7 promoter, coding sequence of
PgCuZnSOD, PeAPX, PgMDHAR, PgDHAR and PgGR genes, 5’ and 3’UTRs

derived from nce rbeS protein and T7 terminator.

The full length coding sequence corresponding to T7 RNA polymerase protein
was isolated from phage genome. The 77 RNA polymerase gene was modified by
addition of SV40 Jarge T-antigen NLS sequence and 358 poly A tail at the 5’ and
3’ end respectively, in order to tacilitate the efficient expression and nuclear
targeting of the T7 RNA polymerase protein. The T7 RNA polymerase protein

was heterologously expressed in E. coli.
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To drive the expression of 77 RNA polymerase gene in the anthers, the promoter
region of a highly tissue specific gene, RAS8, was isolated from rice genome. RA&
gene 1s reported to be specifically expressed in tapetum, endothecium and
connective tissues of anthers. The tissue-specificity of the R48 gene was further
confirmed and the expression of gene was found to be confined to anthers. The ir
silico analysis of the RAE promoter sequence revealed the presence of putative

cis-acting elements that drive the tapetal gene expression.

The RASB promoter regulated 77 RNA polymerase cassette was constructed by
cloning the 77 RNA polymerase gene downstream to the RAS promoter.

In order to facilitate the efficient screcning of the transgenic plants by non
invasive method, a 1.63 kb long 358 promoter regulated bar gene cassette was
cloned and used as an additional marker in the construct. The bar gene codes for
PAT protein which confers tolerance against the herbicide glufosinate

commercially known as Basta.

All the above mentioned cassettes i.e., the T7 promoter-SOD-AsA-GSH gene
cassettes, the RA8 promoter-77 RNA polymerase cassette and the bar cassette
were assembled on the T-DNA region of pMDC99 vector. For this, first the
individual cassettes were cloned in the gateway compatible entry vectors, EV1
and EV2 and then stacked into pMDC99 vector by in vitro gene pyramiding via
multi-round gateway technology. Thus, two gene cassettes were constructed that
harbored the T7 RNA polymerase coupled SOD-AsA-GSH pathway genes, with

one of the cassette carrying the additional bar gene.

Both the cassettes were mobilized into highly virulent EHA105 strain of
Agrobacterium via electroporation and the stability of the genes in Agrobacterium

was verified.

The T7 RNA polymerase coupled SOD-AsA-GSH pathway gene cassette with
bar gene was transformed into Swarna variety of rice while the T7 RNA

polymerase coupled SOD-AsA-GSH pathway gene cassette without bar gene was
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10.

1.

12.

CONCLUSION

We have been successful in obtaining transgenic rice lines exhibiting the integration of
five genes thereby proving that in vitro gene pyramiding can be an effective strategy for
manipulating the genomes of plants for enhancing their abiotic stress tolerance. The Ty
transgenic rice plants over-expressing T7 RNA polymerase coupled SOD-AsA-GSH
pathway in anthers were found to exhibit normal growth and development under non-
stress conditions. Pollens from transgenic lines were tested for viability and it was found
that the introduction and over- expression of the transgene cassette did not impose any

negative etfect on the pollen development. The transgenic lines are to be analyzed for the

transformed into 1R64 variety of rice via 4grobacterium-mediated transformati
The putative transgenic plants harboring the modified cassette carrying bar g
were screened for glufosinate tolerance by in vitro leaf spray test. The transgeny
plants were further confirmed by PCR, using gene specific and marker speci

primers.

The integration of the transgenic cassette into the genome of the transgenic plants
was confirmed by Southem hybridization and the position of integration of the T-
DNA was identified in two transgenic lines by a novel method called Locus

Finding (LF) PCR.

The expression of the transgenes was confirmed in the anthers of the transgenic
lines by a semi-quantitative RT-PCR analysis. The expression of fipt and bar gene
was confirmed in the T, transgenic lines. The expression of the transgenic
proteins was not found to be occurring in the leaves showing thereby that there
was no leaky expression of the T7 RNA polymerase coupled SOD-AsA-GSH

pathway cassette in vegetative parts of the transgenic lines.

The growth and development of the Ty transgenic plants was monitored and the
plants were found to show normal growth. The pollen viability tests revealed the

pollens to be equally viable as the pollen from non-transformed control plants.
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stability of transgene expression in subsequent generations. Further field trals of the

transgenic plants, nevertheless, are needed to assess and validate their overall

performance under different abiotic stress conditions, particularly high temperature and

drought conditions.

I
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