
DERIVED PRECONDITIONS IN PROGRAM SYNTHESIS

Dissertation submitted to Jawaharlal Nehru University

in partial fulfilment of the requirements for

the award of the Degree of

MASTER OF TECHNOLOGY

Srinivasa Bharadwaj Yadavalli
'

SCHOOL OF COMPUTER & SYSTEM SCIENCESJ

JAWAHARLAL NEHRU UNIVERSITY

NEW DELRI-110067

May 1988

ACKNOWLEDGEMENTS

I wish to express my sincere and heartfelt gratitude to

Dr.K.K.Bharadwaj, Associate Professor, School of Computer a

System Sciences, Jawaharlal Nehru University, for the unfailing

support he has provided through out, in all respects. I am very

grateful for the patience he has exhibited and for the time he

has spent with me discussing the problem. It would have been well

neigh impossible for me to come out successfully without his

constant_ guidance.

My special thanks to Dr.Douglas R. Smith, Kestral Institute, Palo

Alto, California, for the material he has sent and the

suggestions made. Prof. Zohar Manna was equally kind enough to

send me all the material I have asked for and more, very

promptly. My sincere thanks to him.

I also want to thank Prof. Karmeshu, Dean, School of Computer a

System Sciences, Jawaharlal Nehru University for all the help he

has extended in making this work a complete one.

Though only a few names are mentioned, many have helped directly

or indirectly during the period I was working for my dissertation

including my class mates and Rama Seshu T., Ph.D. Scholar,

S.E.S., J.N.U I acknowledge and thank each and every one of

those who helped me.

ABSTRACT

The ubiquitous Divide-and-Conquer algorithm program scheme is

made use of in synthesizing a program for a pattern matching

problem. A method which elegantly fits into the design strategies

is suggested and illustrated to reuse the preconditions derived

during the synthesis of a program for pattern matcher for the

synthesis of a program for unification algorithm. Thus general

method to reuse the knowledge acquired through previous

experience of a program synthesizing system is suggested. This

could also be used as a way for program modification.

CONTENTS

CHAPTER 1.

INTRODUCTION

1.1 Automatic Programming

1.2 Program Synthesis

CHAPTER 2.

DIVIDE AND CONQUER ALGORITHMS AND

PROGRAM MODIFICATION.

2.1 Divide and Conquer algorithms

and their synthesis

2.2 Synthesis through Program

modification

CHAPTER 3.

REUSING PRECONDITION

3.1 Pattern Matching Problem

3.2 Unification Problem

CHAPTER 4.

CONCLUSION

APPENDIX

BIBLIOGRAPHY

1

3

5

19

19

41

46

50

64

76

77

79

CHAPTER 1

INTRODUCTION

Artificial Intelligence is that wing of Computer Science, which

deals with

that

the design of "intelligent" computer

make an effort to emulate a human

systems i.e.,

act which is systems

normally associated with the intelligence of human, such as

language understanding, learning, reasoning, solving problems

etc. A variety of applications of AI range from systems playing

championship level chess to systems guiding sophisticated

missiles, have evolved. Progress, however, has been slower· than

some people predicted. As observed by Thomas Jones [18],

progress is slow because we are attacking a very basic and a very

difficult problem, that is understanding intelligence.

It is not untrue to say that no two people will exactly concur on

the definition of intelligence, simply due to the fuzzy notion in

its every day usage comprising of various more precise notions.

It would be more rewarding to talk in an informal and an intutive

way, about intelligence. A person without any knowledge is never

said to intelligent. Hence the capability to dispose certain

amount of knowledge is one fundamental aspect of

We expect the capability of problem solving

environments, from an intelligent being. This

reasoning is another fundamental aspect of

intelligence.

in changing

capability of

intelligence.

Intelligence deals with more aspects such as speed with which the

1

capabilities are utilized, the capability of learning and that of

communication. The two fundamental aspects of intelligence are,

Knowledge and Reasoning.

The most challenging of all the tasks an "intelligent" computer

can claim to do is solving problems correctly. Problems which are

called "solvable problems", only gain attention from a problem

solver. This class of "solvable problems" can be divided into

two classes. The problems a computer can learn to solve at a

monetary cost of learning code and those which in principle

require a person to solve them. Fully automatic, high quality

translation of natural languages, equalling the ability of a

human is such a "person requiring problem". If Turing's thesis

were to be right, it is possible to turn a machine into a person

in order to solve such a problem. Turning machine into a person

is still not forseen to happen in the near future. AI

researchers have come to realize that one way to good problem

solving is to have a good knowledge about the methods of solving

lt. Part of the reason why humans are smarter than computers is

simply that we know more

It is by now a cliche to claim that knowledge representation is a

fundamental research issue in AI underlying much of the research

and the progress of the last fifteen years. Along the path to

success, one encounters notions of 'belief' and 'conjuncture',

their formulations and methodologies of knowledge representation.

2

Knowledge representation forms a vital

proving and automatic programming tasks.

part of the

There is a vast

theorem

scope

for formalism of knowledge repres~ntation at this stage when the

fundamental properties of knowledge are just being understood.

1.1 Automatic Programming:

A 'program' is a description of a method of computation that is

expressible in

representation

a formal language. A 'program

of a class of related programs ;

scheme' is the

it originates

from a program by parameterization. Programs, conversely, can be

obtained from program schemes by instantiating the schema

parameters.

The automation of some part of the programming is referred to as

'Automatic Programming' (AP). As an application of Artificial

Intelligence, AP research has achieved some success with

experimental systems that help programmers manage large programs

or that which produce small programs from some specification of

what they do. The importance of automatic programming is well

beyond eventually relieving the plight of human programmers. In

a sense all AI is a search for appropriate methods of automatic

programming.

Thus an automatic programming system will assist, though not

fully construct the program for the problem at hand. An ability

to understand and reason about programs is the central research

goal of AP. The first AP system ever developed is the FORTRAN

compiler. Subsequent attempts yielded in AP systems such as PSI,

3

CHI, DEDALUS, PECOS only to name a few, each having its own

special features.·

An automatic programming

characteristics.

system

1. a specification method

2. a target language

3. a problem area

has four identifying

4. an approach or method of operation

Programming involves some means or method of conveying to the

computer the purpose of the desired program. A variety of

specification methods have been used in experimental AP systems.

Formal specification methods are those that can be considered to

be very high level programming languages. In general the syntax

and the semantics of such methods are precisely and unambiguously

defined. Many formal specification methods are not usually

interactive.

by examples'.

The other type of specification is 'specification

The language in which the AP system writes the finished program,

is known as 'target language'. The target languages of AP

systems are usually LISP, PL/1, GPSS.

The 'problem

system. For

area' i.e., the problem domain

example, in PSI and CYPRESS it

varies with the

is all symbolic

computation such as sorting, searching, list processing etc.

Various methods of operation such as theorem proving approach,

program transformation approach knowledge engineering approach,

4

induction etc. are employed, in a typical AP system.

1.2 Program Synthesis :

A program synthesis system is an AP system. Program synthesis is

the systematic derivation of a computer program from given

'specifications' of a probelm. A specification expresses the

purpose of the desired program without giving any hint of the

algorithm to be employed. The primary requirement of a

specification language is that it should allow us to express the

purpose of the desired program directly and without any

paraphrase. It should also be easy for the programmer to read

and understand the specifications and to see that they are

correct. For this reason, it is necessary that the specification

language contain high-level constructs, which corrospond to the

concepts we use in thinking about the problem and which are

endemic to the subject domain of the target problem. The

specification language should be

a) Unambiguous : It should not allow two different programmers

to 'specify' or describe the same problem in two different ways

thereby creating confusion.

b) Larger

vocabulary in

flexibility

whatsoever.

reportire It should have

order to provide the problem

to specify his problem with

5

reasonably large

specifier enough

no constraints

Formal methods lend the completeness, that is, give

specification the required unambiguity and preciseness,

yeilding programs that are guaranteed to be correct.

the

thus

Such

programs, hence, do not require debugging and verification.

Essentially three major approaches have been identified in [14].

They are,

1. Constructive approach

2. Theorem Proving approach

3. Eva 1 uti onary approach

Different approaches, some of which directly fall under these

categories and some others which are a ••mix" of these approaches,

have been adopted by researchers. In [10,11] Manna and Waldinger

adopt basically a theorem proving approach. The approach

combines techniques of unification, mathematical induction and

transformation rules within a single deductive system.

Other techniques such as

1. Modifying an existing program to perform a somewhat

different task.

2. Constructing "almost Correct" programs that must be

debugged.

3. Use of "visual" representations to reduce the need

for deduction.

Program synthesis is a part of Artificial Intilligence. Many of

the abilities required of a program synthesis system such as the

ability to represent knowledge or to draw common sense

6

conclusions from facts, would also be expected from a natural

language understanding system or a robot problem solver.

However, we still prefer to address these problems rather than

restrict ourselves to a more limited program synthesis system

without these abilities.

A knowledge base is the most essential part of the program

synthesis system. According to proper wisdom a Knowledge based

system includes a knowledge base which can be thought of as a

data structure assumed to represent propositions about domain

disclosure. A knowledge base is constructed in terms of knowledge

representation scheme which ideally provides a means of

interpreting the data structure with respect to intended subject

matter and of manipulating it in ways which are consistent with

the intended meaning. By 'knowledge' we mean 'justified true

belief', following the traditional philosophical literature. By

representation we will understand an encoding into data

structure.

The knowledge base contains axioms and transformation rules

pertaining to the domain of discourse. Every deduction or

inference as is shown in the synthesis of 'pattern matcher', is

based on the knowledge base contents. An thorough study of the

state of art of knowledge engineering is provided in [12].

Methods of operation of a Program Synthesis system:

As the problem area of the synthesis system varies, the approach

to handle the problem also varies. Of the various approaches

7

theorem proving approach and transformation approach are oft used

ones.

i) Theorem Proving approach : Program synthesis is considered to

be a theorem proving task in this approach; given a high-level

specification of input conditions and the output conditions of

the desired program, a theorem that establishes the existance of

of an output which satisfies the output conditions, for every

input satisfying the input conditions is set up and proved. The

desired program is a side effect of this theorem proving task and

it is extracted directly.

There are several inherent constraints in the theorem proving

approach. Every thing is to be complete so that this approach

yeilds results. For complicated problems, it is very difficult to

codify the specification correctly. It is often easier to write

the program itself ! The problem's domain and range are to be

axiomatized completely i.e., all the required axioms and rules

that are necessary to prove the theorem are to be made 'known' to

the system, failing which, the theorem prover may not be able to

prove the theorem and hence fail to produce the desired

Finally, as observed in [14], present theorem provers

program.

lack the

power to produce proofs for the specification of very complicated

programs. Thus this approach works in a very restricted and a

'knowledgeable'

knowledge of

environment. It gives

the problem and hence to

no scope for partial

partial specification.

Great amount of work was done in this area - Robinson showing the

8

way in his landmark paper [13] wherein the formulation of first

order logic was ''specifically designed for the use as the basic

theoratical instrument for a computer theorem-proving program".

(ii) Program transformation approach:

This approach relies on transforming the specifications

repeatedly according to certain transformation rules. Here an

attempt is made to constructively transform the problem

specification into equivalent description of the program. One of

the successful systems working on this principle is DEADALUS

[7,9]. Generally, the transformation rules represent knowledge

about program's subject domain some describe the constructs of

the specification and target languages; and a few rules represent

the basic programming principles. Further, they may represent

arbitrary procedures. For example, the skolemization procedure

for removing quantifiers can be represented as a transformation

rule. The procedure COMBINE (Appendix 1) is also a

transformation rule.

Systems have been constructed based on this approach, which

remove recursion, eliminate redundent computation, expand

procedure calls and take discared list cells into use: Recursion

removal forms a strategic way in this approach thus removing the

overhead of stacking mechanism.

(iii) Knowledge Engineering :

This relatively new appraoch is applicable to many areas of AI

besides program synthesis. It refers to identifying and

9

codifying expert knowledge and it often means encoding the

knowledge as specific, rule-type data structures that can be

added to or removed from the knowledge base.

Generally speaking we can divide knowledge into two catagories.

(a) Programming Knowledge : The programming language knowledge

about the semantics of target language in which the system is

supposed to write the required program and general programming

knowledge regarding normal computation principles such as

searching, sorting, hashing, initializations etc., can be grouped

under this category.

language constructs

All esoteric knnwledge such as high - level

viz loops, recursion and branching, the

strategy, the optimization techniques also constitute the

programming language knowledge.

(b) Domain Knowledge In addition to the knowledge classified

above, the knowledge the system has, regarding the domain of the

problem so as to be able to make sensible inferences and to be

able to know that is to be done.

Knowledge

formalisms

based

of

systems are not restricted to

logic, they often supply their

the

own

techniques

for guiding

such as illustration, decision trees, and

the synthesis. The other important

traditional

reasoning

inference

wing of a

knowledge based system is the reasoning power. Thus, the

underlying characteristic of all the systems, irrespective of the

approach they adopt, is the ability to arive at decision based on

10

a set of facts that are presented. Hence, deduction has a

central role to play in an Automatic Programming system.

The only other way of arri~ing at conclusions is 'evaluation'.

Mechanical theorem proving techniques such as resolution based

theorem proving were adapted in the earlier work done for program

synthesis. As observed in [11] difficulty of representing the

principle

hampered

of mathematical induction in a resolution framework

these systems in the formation of programs with

iterative or recursive loops. Theorem Proving and Program

Synthesis have headed for separate paths, as it appears on

following the recent work done in these areas.

systems developed recently are able to prove

Theorem proving

by mathematical

induction but prove to be of no use for program synthesis because

they have sacrificed the ability to prove theorems involving

existential quantifiers. The direct application of

transformation or rewriting rules to program specification,

disregarding the theorem proving approach is one another way the

recent program synthesis processes have based themselves on.

This approach doesnot make use of any theorem proving techniques

such as unification and substitution.

Transformational programming is a methodology of program

construction by successive applications of transformation rules.

Usually this process starts with a (formal) specification, that

is, a formal statement of a problems or its solution and ends

with an executable program. The individual transitions between

11

the various versions of a program are made by applying

correctness-preserving transformation rules. It is garanteed

that the final version of the program will still satisfy the

initial specification. This approach is predominently adapted in

the formulization and implementation of divide and conquer

algorithms based on which the dissertation is presented.

Here we present a brief sketch of various approaches and the

specification methods adapted by a program synthesis system.

Deductive techniques are presented in [9]. The general scenario

of the verification system is that a programmer will present his

completed computer program, along with its specification and

associated documentation, to a system which will then prove or

disprove its correctness. It has been pointed out, most notably

by advocates of structured programming, that, once we have

techniques for proving program correctness, why should we wait to

apply them until after the program is complete ? Instead, why

not ensure the correctness of the program while it is being

constructed,

proof "hand

thereby developing the program and its correctness

in hand" ? Keeping this in view, the deductive

approach to program synthesis is explained. The methods of

program synthesis can be applied to various aspects of

programming methodology program transformation, data

abstraction, program modification and structured programming. It

is based on this approach that the program synthesis system

12

DEDALUS was implemented - a system which can be applied on

various program domains such as list processing, numerical

calculation, and array computation. The system transforms the

specifications into a recursive LISP - like target language.

Methods of Program Specification

As is mentioned in the previous section, the means or method

employed to convey to the program synthesis system, the kind of

pro~ram the user wants, is called program specification. The

specification of the desired program might follow describing the

program fully in some formal programming language or possible

just specifying certain properties of the program from which the

system can deduce the rest. Alternately, it might involve

providing examples of the input and the output of the desired

program given formal constraints on the program in the

calculus or interactively describing the program in

increasing levels of detail.

predicate

English at

a) Specifications by examples : Programs are described

(specified) by giving examples of input/output pairs, by giving

generic examples of input/output pairs and by giving program

traces. Of these the generic examples are less ambiguous than

the non-generic examples. Traces are less ambiguous than

input/output pairs and allow some imperitive specification of the

flow of control. To specify a trace one must have some idea of

how the desired program is to function. Specification by

examples can be natural and easy for the user to formulate [9].

(b)Formal Specifications :Formal methods of specifying programs

are often used along with theorem proving appraoch to program

synthesis.

and output

completely

This would mean specification using input

predicate based on formal logic. This

predicate

would be

general; anything can be specified. Here also, the

user must have sufficient understanding of the desired behaviour

of the program to give a complete formal description of input and

output, whcih is sometimes very difficult, to get.

The other type of formal specification, used with program

transformation appraoch, stresses on the use of entities that are

not immediately implementable on a computer or atleast not

implementable with desired degree of efficiency. This method

does not have arbitrary generality. Further the terminology in

the specification often is closer to human way of thinking and

hence should be easier to create such specifications.

While formal methods are arbitrarily general and others are not,

they are all complete.

(c) Natural Language Specifications : English descriptions of the

desired programs are the most natural way to specify them. The

flexibility this method offers in dealing with basic concepts

than very high level languages is the most important feature of

this specification method. The flexibility requires a fairly

sophisticated representational structure of the model, with

14

capabilities for representing the partial (incomplete) and often

ambiguous descriptions that users provide.

(d) Specification by mixed-initiative Dialogue: This is perhaps

the most natural way a specification is given in. It is a

mixture of all the previous ones - a difficult one for the system

to draw knowledge from, but very easy for the user.

Now that we have examined the relavent and current approaches to

a synthesis of a ~rogram and the different ways of 'specifying'

the programs connected with the approaches discussed, a few

examples of specifications are in order.

Formal methods of

conjunction with

specifying programs

theorem proving based

are often

approach

used in

to Program

Synthesis. Some of the formal Specifications worked upon are

l) MIN x = z such that

X "f. nil =='> z Bag : X [\i '- z £ Bag X

where MIN : LIST (N) --> N

The above is a specification for finding the minimum of a given

list of numbers.

2) The Sorting problem is specified as follows

SORT : x = z such that Bag : x = Bag : z A Ordered z

where SORT : LIST (N) -->LIST (N).

3) lessall (x,l) ==>Compute x all (l) where xis a number and

l is a list of numbers. Here we are again specifying the minimum

of a list but in a different way Notice the difference in

:15

specifications (1) and (3) even though they mean the same, they

resemble no way The reasons for this are plenty approaches

for the program synthesis systems taking in the specifications,

differ, being the pri~ary one.

4) gcd (x y) ==>Compute max z z/x fl.

0 and y

z/y

0.

where x and y

are non negative integers and x

The G.C.D problem of two numbers is specified by the above

specification.

The above examples give a flavour of different modes of

specificatins. CYPRESS/RAINBOW is the implementation of the

scheme 'dived and conquer' and its design stratigies. This is a

semi atuomatic systems implemented in LISP. The derivation of

algorithms. in other words, synthesis of the programs, from

formal specification of a pobolems is based on

decomposition of the initial specification into a

specification of subproblems. The resulting program

the top-down

hierarchy of

(algorithm)

is the result of composition of the solutions (programs) for each

of the sub problems.

This implemented system for derived antecedents, measures each

criterion by a separate heuristic function, then combines the

results to form a net measure of simplicity and weakness fo an

antecedent.

antecedents.

CYPRESS/RAINBOW

It seeks to maximize this measure over all

uses a problem-reduction approach to derive

16

antecedents in a two phase process. A significant feature of this

system is that it tries to minimize the reductions in an attempt

to keep the derivation tree small and hence keep the search

small. Heuristics are provided to see that the system does not

involve in fruitless search. CYPRESS/RAINBOW also takes in

paitial specifications and completes them.

The goal and necessity of this work:

Primarily, this dissertation can be clearly divided into two

sections. The first one is a through study of the recent work

done in the area of Program Synthesis; particularly with respects

to the divide and conquer strategy and its applicability in

program modification. A study of the relevant meterial is

presented highlighting the important results. The divide-and-

conquer algorithm program schence formulized in [1] forms the

basis of this dissertation, [8] explains, the modification of a

previously constructed program to solve a similar problem. A

method is suggested to modify a program which is synthesized by a

Program Synthesizing system to satisfy the specification of a

similar problem. The synthesis of a program for 'pattern matcher'

is presented and latter this is modified to form 'unification

algorithm'. The whole emphasis is to examine the utility of

derived preconditions of one problem during the synthesis of a

program for similar problem. The result of these efforts

constitutes the scond section of this dissentation. Thus a

simple way to re-use the preconditions proposed and is

17

illustrated in detail. This can be one of the many ways to

program

from the

modification. It is much easier a task to seek guidance

previous solution of the program. Implementing these

techniques in an algorithmic structure very commonly used i.e.,

divide-and-conquer, enhances its utility in the 'reuse of

knowledge acquired'. This can be considered to be a step in the

direction of re-use of previously acquired knowledge during the

synthesis of a program for a subsequent problem.

18

CHAPTER 2

DIVIDE AND CONQUER ALGORITHMS AND PROGRAM MODIFICATION

This section of dissertation deals in a greatest possible detail

of the relavent work by Douglas R. Smith and that of Zohar Manna

and Richard Waldinger, which forms the foundation and nucleus of

the work done in this report regarding the reusing of derived

pre-conditions. The fundamental concepts are also presented

wherever felt necessary. The concept of similarity though not

established is taken for granted based upon the work done by

Manna and Waldinger [8].

2.1) .Divide and Conquer algorithms and their synthesis :

Approaches vary in the attempts to solve a problem. One of these

is the well known and most used "divide-and-conquer" approach.

Formally, this is well represented by the name "problem

reduction". This approach, as can be easily sensed from the

name, deals with two phases of problem solving. Firstly, the

top-down decomposition of problem specifications and secondly the

bottom up composition of programs. Given a specification, one

has to select and adopt a program scheme, thus deciding on an

overall structure of target program. A procedure associated

with each scheme, called design strategy is used to derive

subproblem specifications for the scheme operators. The

subproblems are further reduced and this process of reduction

1.9

terminates in primitive problem specifications, that can be

solved directly. The result is a tree of specifications with the

initial specification at the root and the primitive problem

specifications at the leaves. The children of a node signify the

subproblem specifications derived as we create the program

structure. Further to this phase, is the phase of bottom-up

composition of programs. Each primitive problem specification is

processed by a design strategy which yeilds a target expression.

On obtaining the programs for all primitive problems, these are

assembled (composed) into a program for the problem specified by

the initial specification.

:: Formal Concepts

a) Specifications

As elucidated in the previous chapter, "a specification is a

precise notation

suggesting the

follows.

for describing a problem without necessarily

algorithm". A typical specification is as

II : X = z such that I : X ==> 0 : < X Z> where II : D ---> R

D is the input domain and R is the output domain. I is the input

condition which expresses any property an input is expected to

satisfy. 0 is the output condition which expresses any property

the output of the problem is expected to satisfy. A 'legal

input• is that which satisfies the input condition and it is only

for such input that the program behaviour is acceptable. A

20

feasible output is that which satisfies the output condition 0.

Formally, a specification is a 4-tuple < D,R,I,O > where,

D is a set known as input domain,

set known as output domain,

a relation on D, known as input condition,

relation on (D X R), known as output condition.

A said to 'satisfy' a specification< D,R,I,O>,

if for any legal input x, F terminates with a feasible output.

If, for all legal outputs, there exists atleast one feasible

output, we call the specification 'total'; else 'partial'. On

~ the other hand, an unsatisfiable specification is one that does
fT
f)o not yeild a feasible output for each legal input.
uY
l
~b) Substitutions The concept of 'substitution' plays a vital

[- role in the area of program synthesis in particular and

resolution involving tasks in general. Though a well known

topic it is briefly dealt with, below to provide completeness.

Atom : An atom is either a variable or a constant.

Term :Any variable or a constant is a term. If t 1 ,

are all terms, so is f(t 1 , t 2 ,, .. , tn) where f is a function.

Further, if A is a well-formed formula and t 1 and t 2 are terms,

then so is IF A THEN t 1 ELSE t 2 .

A substitution is any finite set (possibly empty) of any

expressions of form (v t), where vis any variable and t is any
~~,,.Vo&J~(N\

6QI·3·06·
21 Yt

rb_

term different from v and none of the variables of these are the

same. v is called the 'variable' of the component of (v t) and t

is called the term component of (v t). If P is any set of terms

and the terms of the components of the substitution 8 are all

in P, we say that 8 is a substitution over P. The

substitution whose components are (v1 , t 1) (v2 , t 2), ... , (vk' tk)

is written as,

(vl,tl)' (v2,t2), ... , (vk,tk) ,

with the understanding that the ordering of the components is

immaterial. Further, no two v's are same.

If E is any finite string of symbols and

0 = is any

substitution, then the instantiation of an expression~ by 8

is the operation of replacing each occurance of the variable vi'

1 ~ i ~ k, in E by an occurance of the term t.
l

The resulting string, denoted by E8

instance of E by 8 .

simultaneously.

is called the

An example depicting the above said is as follows.

Let £ = {x,y} ; and 0 = Fcx>YCyl) (y a)} .

Then E 8 { f (y) a} . It is not { f (a) a } .

c) Derived antecedents and weak preconditions :

The word 'precondition' was coined by Dijkstra and is a well

understood concept [16]. Finding a proof that a goal formula

logically follows from a given set of hypothesis in some theory,

22

is a traditional problem. Much work was done generalizing this.

Stating it in terms of propositional calculus : Given a goal G,

and hypothesis H, we wish to find a formula P, called a

precondition, such that G logically entails P A H. Simply

speaking, a precondition provides any additional conditions under

which G can be shown to follow from H. This involves deriving the

precondition which is alternately called a 'derived antecedent',

which satisfies certain constraint and logically follows a given

goal G. This constraint checks whether the free variables of a

formula are a subset of some fixed set that depends on G. If G

happens to be a valid formula in the current theory~ then the

antecedent 'true' will be derived. This, in otherwords, tells us

that no more input conditions are needed to show that the given

goals follow the hypothesis. It may be pointed out here that the

routine theorem proving is but a special case of deriving

antecedents.

For a given hypothesis and a goal, it can be that various

antecedents exist.

Def State A state is a function defined from a set of

identifiers (proposition) to the set of values T and F. It is a

known fact that the proposition b is said to be 'weaker' than c

if c ==> b. Corrospondingly, c is said to be stronger than b. A

stronger proposition makes more restrictions on the combinations

of values its identifiers can be associated with, a weaker

proposition makes fewer. In terms of sets of states, b's set of

23

states includes atleast c's states and possibly more. Thus the

weakest proposition is T (or any tautology), because it

represents the sets of all states;

represents the set of no states.

the strongest is F, because it

Thus all the preconditions,

fall within the range of the spectrum marked by T and F at each

end. If the execution of a program (or statement) S is begun in

a state Q, and if it is guaranteed to terminate in a finite

amount of time in a state satisfying R we denote this by

{Q} S {R}

Here Q is called the input assertion or precondition of S; R is

the postcondition or output assertion. From the previous

explanation it is easily seen that any precondition is just

nothing but an input condition. It is more often than not that a

programmer is not aware of all the input assertions, a program's

input should satisfy. Thus, the specification is not complete.

It is 'partial', regarding the input conditions. Those missing

are to be found out - 'derived', to be more precise. It is in

this light that any input conditions thus derived, are called

'derived preconditions'. Further to this, the predicate wp(S R),

called 'weakest precondition', is defined as that predicate which

represents the set of all states such that execution of S begun

in any one of them is guaranteed to terminate in a finite amount

of time, in a state satisfying R [16].

Illustrating the above, an example from [1] is provided.

24

Consider the following formula

FORALLL i £ N FORALL j E N [i 2 ~ j 2] ---- (1)

a) 'False' is a-{} antecedent of (1) since

False ==> FORALL i E~. N FORALL j E N [i 2 i_ j 2]

b) i = 0 is an { i} antecedent of (1) since

FORALL i E N [i 0 ==> FORALL j E N [i 2 ~ j 2]

c) i ~ j is an { i. j } antecedent of (1) since

FORALL i £ N [. <" ==> FORALL j E N [i 2 (j 2] 1-J -
Thus we see three antecedents carr be derived. In general a

formula might have any number of antecedents. The useful one

amongst them depends on the application domain. In the context

of program synthesis, the antecedent which proves most useful is

that which (a) is as weak as possible (b) is in as simple a form

as possible.

d) Deriving antecedents:

Here we present the formal basis to derive the antecedents. All

the formulae are assumed to be universally quantified. Hence,

the quantifiers are dropped throughout this work. A goal

statement G/H denotes that the well formed formula G logically

follows from the set of hypotheses H

i.e., h 1 '11\ h 2 ·A ••••• A hk ==> G is valid in the current

theory of discourse, where H = The

hypothesis H and goal G are skolemized in the usual manner. The

following considerations help in reductions I compositions of

goals [2].

25

R1 Reduction by a transformation rule : If the goal has the

form G(r)/H and there is a transformation rule 'r --~ s if C

can be verified, without much effort, then generate subgoal

G(s)/H. If A is the derived antecedent of the subgoal, then

return A as a derived antecedent of.G(r)/H.

R2 : Reduction of Conjugate goals: If the goal formula has the

form (B AND C)/H then generate subgoals B/H and C/H. If P and Q

are derived antecedents of B/H and C/H respectively, then return

(P AND Q) as a derived antecedent of :(BAND C)/H.

P1 Primitive Rule If the goal is A/H and we seek an

- antecedent and A and H' depend only on the

variables x 1 ,x2 , xn' where H' has the form-~· 1 and J = ,m

{ hi j } j = 1 , m ::. H , then genera t e the an t e cede n t H ' = => A.

These rules have been presented in terms of ground instanances of

relavent transformation rules and implications.

The notation of the form fP> A/H 0 asserts that P is a

precondition of HO ==> PO, if the associated condition holds.

Using this notation we state the rulels which reduce a goal

statement to two subgoal statements as follows.

< P > A /H 0 . 0 0 0 0

where, A
0

, A1 and A2 are goal formulas, H
0

, H1 and H2 are sets of

26

hypotheses, 0
0

, 0
1

and 02 are substitutions, P
0

,P
1

and P2 are

formulas (the derived antecedents) and@ is either A or V. A

rule of this form asserts that ir'P. is a (weakest) precondition
1

of H.O ==> A.O where i = 1,2 then P is a (weakest) precondition
1 1 0

Substitution 0
0

is

formed from substitutions 01 and 02 in ways that depend on @.

Unifying Substitutions Suppose we have a set of substitutions,

{ u1, u2 , , un}

pairs,u1 = {(vil'

Each u. is in turn a set of
1

where the t's are terms and the v's are variables.

(u 1 ,u 2 , ,un) we define two expressions

U1 (v. 1 , .•. v. (1) , ••.. v . , , v ()) and 1 . 1m n1 · nm n

U2 = (t. 1 , ... t. (1), t . , , t ()) 1 1m n1 nm n

From the

The substitutions (u 1 ,u 2 , ... un) are called consistant if and

only if U1 and U2 are unifiable. The unifying composition, U of

is the most general unifier of U1 and U2.

Further, the primitive goal statements wh¢ich form an essential

part of the system, are elaborated by the following three

primitivie rules [2].

Pl. < T>A/H 0 if 0 unifies {A B} where B is a known theorem in

the domain of disclosure or B H.

P2. < F> A/H nil if 0 unifies {A,·'- B} or 'l.:t~ A, B} where B is

a known theorem in the domain of discourse.

27

P3. Any goal with null hypotheses may be taken as primitve.

<A'> A/ {} {}if A has the form Vi=l,k Ai and A' has the form

vj=1,m Aij where { Aij} j= 1,mS {At} i=i,k

for each j, 1 l j ~ m Aij depends on the variables x 1 , ... xn only

when we seek an {i x 1 , x 2 , ... xn }- precondition.

Primitive goals of type P1 and P2 yield weakest preconditions but

in general primitive galas of type P3 do not.

TWO THEOREMS

Continuing with the presentation of the background for program

synthesis, two very important theorems, proposed in [1] are

presented below.

The problem reduction approach to synthesis of a pro~ram involves

treating specifications that can be satisfied by simple

expressions. Two cases arise regarding such specifications.

First, a specification may have the same domain and range as a

known operator. In such a case, the conditions under which the

known operator satisfies the given specificiations, are derived.

The other ca$e is that it may have a more complex domain and/or

range than any known operators. In this case, a structure of

known operators is formed such that the structure has the correct

domain and range and conditions under which the structure

satisfies the given specifications are derived.

The following theorem provides the basis for deriving the

conditions under which a single known operator satisfies a

28

specification. In the following theorem, Ilk is the specification

for the known operator and IT is the unknown specification. A s

specification for a known operator is a complete specification on

its own.

Theorem 1

Let II· · 1-'k_,-,--

the two specifications. If

(a) Ds Dk

(b) Rs = Rk

and II
s

<D,R,I,D 5
s s s s be

(c) J is an {x}-antecedent of FORALL x E: D [I : x ==> Ik: x] s s

(d) K is an {x}-antecedent of

FORALL xs Ds FORALL x E: Rs [Is: x 1\ Ok: <~x,z>==> 0 : < x, z> s

then any operator satisfying ii k also satisfies

derived input condition J ~-}K.

II with s

Proof: Let F be any operator that satisfies II k' thus

holds.

FORALL x E:: Dk [Ik: x =='> Ok: < x F:z>

It must be shown that

FORLL x E: D [I : x 1\ J: x 1\ K: x = => '• 0 :<X F: x >] s s s

where J and K are antecedents satisfying conditions (c) and (d)

respectively. Let x E: Ds and assume Is:x 1\ J:x 1\ K:x. By

conditions (a) and (c) we can infer Ik:x. Since F satisfies II
k

we obtain Ok: <X F:x>. We have F:x E: Rk and by condition (b) we

get F:x E: R . For an instance of condition (d) s

K : x A I s : x A ok : < x F : x > = => o s : < x F : x > we infer

29

Os: < x F:x ~ Since x was taken as an arbitrary element of Ds it

follows that

FO RAL L x E: D [J : x A K : x A I : x = = > 0 : < x F : x > s s s

i.e., F satisfies II with derived input condition J A K. s

Intutively, it just means this. If an arbitrary input x

satisfies the input condition of the unknown operator then the

input satisfies the input condition of the known operator with an

additional condition J. Further, if x satisfies the input

condition of unknown operator and output condition of the known

operator, then output condition for known operator is satisfied

with an additional condition K. Then it follows that J k K is

the additional condition for 0 to follow I . s s

The divide and conquer algorithms have the form

F :x if

Primitive : x --> Directly-Solve : x

,;;;.. Primitive : x __ ,~ Compose . (G X F) . Decompose : x

fi.

where G may be an arbitrary function but typically is either For

the identity function Id. Decompose, G, Compose, and Directly-

Solve are refered to as decomposition, auxiliary, composition and

primitive operators respectively. Primitive is refered to as the

control predicate. The different design strategies presented are

based upon the following theorem.

This theorem states how the functionality of the whole scheme

follows from the functionalities of its parts and how these parts

30

are constrained to work together.

Theorem 2

Let tr =<D,R,I,O>
g g g g g

denote

two specifications, let OC and OD denote relations ompose ecompose

on Rf X R
8

X Rf and Df X D
8

X Df respectively, and let I be a

well-founded ordering on Df" If,

1) Decompose satisfies the specification

DECOMPOSE

X == >·· I
0 g

X
0

Xl '/\ If : Xz 1\ XO # Xz

'" 0 · < X X , X2.> h Decompose· • o 1

with derived input condition~ Primitive: X '.
0 '

2) G satisfies the specificatio~ TI = < D ,R ,I ,0 >;
g g g g g

3) Compose satisfies the specification

COMPOSE :< 21 22 > = 2
0

such that OCompose :< 2
0

21 2 2>

where COMPOSE: Rg X Rf -~ Rf;

4) Directly-Solve satisfies the specification

DIRECTLY-SOLVE : x = 2 such that Primitive:x A If x

==>of: <x 2>

where DIRECTLY-SOLVE:Rf -->

5) The following Strong Problem Reduction Principle (SPRP) holds

FORALL<'X o'x1,x2 > E: Df X

FORALL<2 o' 21' 22
> E: R f

0 :< XO ,Xl ,Xz > 1\
Deompose

Df X Df

X R X g

0 g

Rf

< > x1,21

31

1\. of

2 >
0

] ;

then the divide-and-conquer program

F:x = if

Primitive: x -->Directly-solve: x

Primitive:x -->. Compose. (G X F) . Decompose:x

fi

satisfies the specification IT f

A rigorous proof is given for the above theorem in [1]. The

design strategies for the scheme are based on Theorem 2 just

stated. The theorem is used to reason backwards from the

intended functionality of the whole scheme to the functionalities

o f the par t s . Con d i t ions (1) , (2) , (3) , and (4) pro vi de gene r i c

specifications for the decomposition, auxiliary, composition and

primitive operators respectively.

Condition (1) states that the decomposition operator must not

only satisf¥ its main output condition 0 but also Decompose

preserve a well-founded ordering and satisfy the input conditions

to (G X F). The drived input condition obtained in the achieving

condition (1) will be used to form the control predicate-in the

target algorithm~ Since the primitive operator is only invoked

when the control predicate holds, its generic specification in

condition (4) is the same as the specification for the whole

algorithm with the additional input condition Primitive: x.

Condition (5), the Strong Problem Reduction Principle (SPRP),

provides the key constraint that relates the functionality of the

whole divide-and-conquer algnrithm to the functionalities of its

32

sub-algorithms. In other words it states that if input xo

decomposes into sub inputs x 1 and x 2 , and z 1 and z 2 are feasible

outputs with respect to these subinputs respectively, and z1 and

z 2 compose to form z
0

, then z
0

is a is a feasible solution to the

input x
0

. Loosely speaking feasible outputs compose to form

feasible outputs.

This theorem paves way for easy synthesis of program for a

problem, just by finding operators (and deriving preconditions)

which would fit into the problem specification and then plug them

into the program scheme forming the desired program for the

probelm at hand. Thus it boils down to a much £impler problem of

finding the appropriate operators satisfying the conditions of

Theorem 2 and assembling it, rather than starting the synthesis

by finding a suitable algorithm. Thus the functions of the

operators Decompose, Compose and F and not their form matters

with respect to the correctness of the whole divide and conquer

algorithm.

Design stretegies for divide and conquer algorithms :

Given a problem specification IT , a design strategy derives

specifications for subproblems in such a way that solutions for

the subproblems can be assembled into a solution for The

important feature is that, a strategy does not solve the derived

specification. It merely creates them. We can liken the finding

of the operators to finding an unknown variable in an algebraic

33

equation. The equation here is the condition given by SPRP. The

design strategies emerge naturally from the structure of the

divide and conquer algorithms. Each attempts to derive

specifications for subalgorithm that satisfy the conditions of

Theorem 2. If successful, then any operator which satisfies the

derived specifications can be assembled into a divide and conquer

algorithm satisfying the given specification. The design

strategies differ mainly in their approach in satisfying the key

constraint of SPRP. Three strategies emerge. Calling the first

one DS1, it can be briefly summarized as follows: A simple

decomposition operator on the input domain is constructed and an

auxiliary operator is constructed. Using the SPRP a specification

for the composition operator on the output domain is set up.

Finally a specification for the primitive operator is derived.

The assumptions used during the derivation are just those given

to us by the SPRP. The DS1 strategy is given in a more detailed

manner below.

Step 1: Construcrt a simple decomposition operator

and a well-founded ordering on the domain D.

Step 2 : Construct the auxiliary operator G.

Step 3 : Vedfy the decomposition operator.

Step 4: Construct the composition operator.

Step 5: Construct the primitive operator.

Step 6: Construct the new input condition (only if

Step 7: Assemble the divide and conquer algorithm.

34

'Decompose'

required)

The second strategy which arises as a consequence of the Theorem

2 is known as DS2.

It is as follows. A simple composition operator on the output

domain is constructred. An auxiliary operator is also

constructed and using SPRP a specification for decomposition

operator on input domain is derived. Finally a specification for

the primitive operator is set up.

A slightly different approach to satisfy the SPRP yields the

third strategy known as DS3. In this a simple decomposition

operator on the input domain and a simple composition operator on

the output domain are constructed. The specification for the

auxiliary operator is derived using SPRP. Finally a

specification for the primitive operator is set up.

For each of the design strategies mentioned above a suitable

well-founded ordering [11,20] on the input domain is to be found

in order to ensure program termination.

An Example

In this section we synthesize a program fully for the minimum of

a given list to illustrate one of the design strategies, DS1.

The specification of the problem is~

M i n : X = z such t h a t x t n i l = => z e:: Bag : x A z < B a g : x

where Min: List (N) --~ N

Thus we have,

Df = List (N)

35

Rf N

If = X 1- nil

of = z E: Bag :x ~ z ~ Bag:x

1: Construct a simple decomposition operator and a well

founded orderirng :.jfr:' on ... ~ the domain D. We assume that the

operators 'FirstRest' and 'Listsplit' are available on the data

type List (N) • We choose 'FirstRest'. An appropriate well-

founded ordering on the domain List(N) is

x # y iff length: x > length:y

~ ~ : Construct auxiliary operator G.

The input domain of G is N and not equal to that of F (it is List

(N) for F) So, we choose 'Id' as the auxiliary operator. So, the

'MIN' has the form

if

Primitive: x ---> Directly-solve: x

~Primitive:x --> Compose. (Id x Min) . First Rest:x

fi

Step~: Verify the decomposition operator.

It is necessary to verify that our choice of the decomposition

operator 'Decompose' satisifies the specification

DECOMPOSE: xo = (x1 x2) such that

If X ==> I x1 A I :x2 A X # x2 0 g g 0

where Decompose: Df --->' D X Df g

Hence we set up the specification

36

Decompose: x
0

= (x1 x 2) such that

X f.
0

i.e.'

nil ==> true A. x
2

n i 1 = => x 2 t-X
0

nil !\ length: X >
0

nil !\ length: x >
0

length:x2

length: x 2

where Decompose: List (N)-~ N X List (N).

Here 'Operator-match' is invoked and the given specification

Decompose, is matched with FirstRest.

List (N)

N X List (N)

true

X
0

= Cons:<x1 ,x
2

>

D
s

R =
s

I = s

0 = s

List (N)

N X List (N)

x f. nil
0

nil !\ length:x >
0

length: x 1

Condition (c) in Theorem 1 amounts to finding {x}
0

of x t- nil---> true which is 'true'
0

Rest: x
0

antecedent

satisfy the condition (d), we have to find the { x
0

} antecedent of

X f. nil [\ first X x1 [\ X
0 0 0

Cons: < x
1

, x
2

> 1\. "rest:>\ ~ ><-o

==> x2 f. nil [\ length : x
0

> length :x2

hi X
0 f. nil

h2 First: X = x1 0

h3 Rest: X = xz 0

h4 X = Cons: < Xl 'Xz> 0

Goal 1:

37

Goal 2:

Rest: x ~ nil (by Rl + h3)
0

length: X >
0

length:x2

length: X
0

> length: First: X
0

by Rl + h3)

true (by axiom

So the derived precondition is

Rest: x f. nil.
0

Hence 'Firstrest' satisfies the specification of decompose, under

the precondition Rest: x ~ nil
0

So the algorithm will be of the form

Min : x =
0

if

Rest: x ~ nil ---> Directly-solve: x
0 0

Rest: x ~ nil ---> Compose .
0

(Id X Min) . FirstRest:

Step i= Construct the composition operator.

X
0

In this step an expression for 0 is derived by finding a Compose

{z
0

,z 1 ,z 2 }- antecedent of

i.e.,

0 ·<x x x>fl. Decompose· o' 1' 2

First X fl.
0

0 <:
F :cx,z>

0 0

= Rest : x fl.
0

true

11. z 2 ~:: Bag: x 2 fl. z 2 $ Bag:x2 A x
0

=Cons:< x 1 ,x2l>

==> z E: Bag:x fl. z < Bag: z ----- (1)
0 0 0 - 0

hl: xl = First X
0

h2: xz = Rest: X
0

h3: z2 E: Bag: xz

h4: zz < Bag: xz

38

h5: x
0

= Cons:< x 1 , x 2 >

We reason backwards from (1) to get the output condition for

compose as follows.

z € Bag: X if z = first X v z E: Rest: X
0 0 0 0 0 0

(since X t nil)
0

if z x1 v z € x2 (since x1 first X and x2 Rest: X)
0 0 0 0

i.e., if the expression z
0

z 1 V z = z were to hold then we
0 2

could show that z e
0

Bag: X
0

Consider now the other conjunct of

(1)

z ~ Bag:x if z
0

$. first: x V z < Bag . Rest :x
0 0 0 0 0

(since x t
0

first: x and
0

rest:

nil)

X
0

=

i.e. ,if the expression z
0

.:::; z 1 v z < z 2 were to hold then we o-

could show that z < Bag:x . We take the two derived relations
0- 0

z
0

v z = z and z :S
0 2 0

z <: o- as the

conditions of Compose. Thus we create the specification

Compose < z 1 • z 2> = z such that
0

(z = z1 v z = z2) A (z < z 1 A z s z2)
0 0 0- 0

where COMPOSE: N X N ---> N.
~

~ ~ : Construct primitive operator

This is already constructed i.e., rest: x t nil.

39

output

The generic specification is

Directly solve: x = z such that

IF: x 1\ Primitive: X ==> OF:< x,z >

where Directly-solve D --~ R.

i.e. Directly-solve : x = z such that

==>

Rest: x = nil
0

z € Bag:x 1\
0

z < Bag: x
0- 0

where Directly-solve: List (N) ---> N.

The identity operator satisfies the above specificiation. Hence

the algorithm for the given problem is

Min: X = if

Rest: = nil

Rest: x t-o

fi.

,.
---> Id: X

0

n i l - - -> M i n 2 (Id X Min) Firstrest: x
0

The divide-and-conquer algorithm has numerous applications. One

of the interesting applications is shown in [4] where, the

naturality of divide and conquer algorithm can be transformed

into a parallel format is shown. [4] explores a problem of

finding the maximum sum over all rectangular subregions of a

given matrix of integers. The algorithm of the order O(n 3)

which can be executed in 0 (log 2n) time in parallel and,

furthermore, with pipelining of inputs, is derived. Briefly, an

algorithm (of divide and conquer scheme) is synthesized and it is

shown to be much efficient than the straight forward one of the

order O(n 6).

40

A derived precondition is useful in theorem proving, formula

specification, simple code generation the completion of

specification for a subalgorithm and other tasks of a deductive

nature.

2.2 Synthesis through Program Modification

As is mentioned in the previous chapter, knowledge and reasoning

ability are essential for a computer system in order to construct

computer programs automatically. Such a system needs to embody a

relatively small class of reasoning and programming tactics

combined with a great deal of knowledge about the world. These

tactics and this knowledge are expressed both procedurally i.e.,

explicitly in the description of a problem-solving process and

structurally i.e., implicity in the choice of representation. We

consider the ability to reason as central to the program

synthesis process.

Further to Smith's work, [8] has given further impetues to the

work done in the later chapter. The common sense reasonisng

which was adapted in synthesizing the program for pattern matcher

and later for uinification, for which no existing program

synthesizing system is supposed to synthesize a program [11].

The approach is to transform the specification of the problem

into an equivalent algorithm in the programming language. The

basic assumption as stated previously is that the system has

knowledge in abundance. It is also assusmed that the system

41

knows a considerable aamount of propositional logic. The

conditional expressions form an essential part of the synthesis.

This, as is obvious, is a technique for dealing with uncertanity

and simulates exactly the situation faced by a human programmer

who resorts to 11 hypothetical reasoning 11 to solve such a

situation.

When

that

proving a theorem by induction, it is a frequent

one .has to strengthen the theorem so that the

necessity

induction

method can be applied with no hitch whatsoever. If we have a

strong induction hypothesis, the proof is feasible even if we

have an apperently difficult problem. The same aspect evidenced

in [5] in the sense that it is necessary to strengthen the

specifications of a program in order for that program to be

useful in recursive calls. Step 6 of DS1 is but a process of

doing so. The ability to strengthen specifications is a vital

phase of program synthesis process. Here an example from [8]

will explain the situation~ Suppose we want to construct a

program to reverse a list. A good recursive 'reverse' program is

reverse (1) = rev (1 ()) ,

where, rev (1m) =if empty (1)

then m

else rev (tail (1) head (1) . m)

Here () is the empty list, x . 1 is the list formed by inserting

x before the first element of the list 1. rev(l m) reverses the

42

list l and appends it to the list m. This way to compute

'reverse' uses very primitive functions and its recursion is such

that it can be compiled without stack. The function 'rev' is

more general and more difficult to compute than, 'reverse'. The

synthesis involves generalizing the original specifications of

'reverse'

additional

also be

into the specifications of 'rev'. Specifying

requirements for the program being synthesized can

considered as another way of strengthening

specifications, resulting in modifying portions of the program if

the strengthening is done during the process of synthesis. This

precisely is what is implemented in the synthesis of divide-and

conquer algorithms (refer DS1 [1]1~

As an illustration of deductive specification transformation

approach, the following is presented.

The knowledge base has the rule~ such as

1) inst (s x) = x for any substitution s if Constexp (x)

2) inst ((v t) v) = t if var (v) If the goal specification is

as

Find z such that inst (z pat) arg,

we proceed as follows. Assuming that the rules are retrived by

pattern-directed function invocation on the goal above, Rule 1

is applied only in the case of Constexp (pat) and pat arg.

Here is a case of hypothetical split. Thus we have the program

with if ... then ... else. Thus the portion of the program would

43

be

match (pat arg) =

if Constexp (pat)

then if pat = arg

then "any substitution"

else

It is in this way that one proceeds on to synthesize a program.

This approach is very close to the way a human programmer thinks

and is easier to comprehend. Thus involving the rules in the

knowledge base and providing the reasoning at the appropriate

pleace, the program for the problem is synthesized. [8].

Program modification:

It cannot be expected from a program synthesizing system to

synthesize an entire complex program from the beginning. We

would like the system to remember a large body of programs that

have been synthesized before and the method by which they are

constructed. When presented with a new problem, the system

should check to see if it has solved a ''similar" problem before.

If so, it may be able to 'adapt' the technique of the old program

to make it solve a new problem. There are three major hurdles

in this approach. Firstly, the system cannot be expected to

remember each and every detail of every syntehisis of its past

experience due to various reasons like the memory problems. If

not, the seiving through the details would be time consuming and

44

often unrewarding. Hence it is to be decided what to remember

and what to be left out. Secondly, the 'similarity' is to be

defined. What is the criterion on which the decides upon the

similarity of two problems? The concept until now is undefined.

Thirdly, having found a similar program, the system must somehow

modify the old synthesis to solve the new problem.

Using the divide and conquer strategy, a way to solve the first

of the above problems is suggested in the next chapter and is

illustrated in detail, by an example. The concept of

'similarity' is not defined Hence, it is taken for granted that

the two problems for which programs are synthesized in [8] are

similar, as has been proposed by Manna and Waldinger.

45

CHAPTER 3

REUSING THE PRECONDITIONS

In this chapter we pose two problems which are considered similar

in [8] and one of them is solved by modification of the program

synthesized for the other. An attempt is made to examine the way

the preconditions, derived during the synthesis of a program for

the problem, prove to be useful in showing the way to synthesize

a program of a similar nature.

The 'derived precondition', introduced and talked of at length in

the previous chapter, forms a very important concept in program

synthesis. It proves to be very useful in thorem-proving,

formula simplification, simple code generation, the completion of

partial specifications for a subalgorithm and other tasks of

deductive nature. A derived precondition is nothing but an

additional input condition. Recalling the definition of a

precondition: Given a goal A and hypothesis H a fomula P, called

a precondition, in found such that A logically follows from P

H. Thus,

P A H ==> c,· A.

I n o the r words , i f 1I ·"~! < D , R , I , 0 > i s the s p e c i f i c a t i on o f a

problem and P is the derived input condition (precondition) then,

we can safely construct a new specification as,

46

II = <D, R, P n I, 0>, new - ll

where, P A I represent the new input condition of the complete

specification and with a derived input condition as 'true'. new

In the design of a divide-and-conquer algorithm for a problem,

the aim of any of the three stategies is to find suitable known

operators, which would satisfy the conditions set up by SPRP and

Theorem 2, using the specification of the problem which is

given, either as it is or under some more constraints (these are

none but the derived input conditions) which are found using the

Theorem 1 of the previous chapter. If successful in this

attempt, it is just to plug in these operators, whose

specifications are known, into the standard frame work of the

divide-and-conquer algorithm. Else, subproblem specifications are

set up using the SPRP and Theorem 2 of the previous chapter.

Further to these attempts, it is found if the subproblem

specifications can be satisfied by any of the known operators and

the process goes on till they can be found. Once found the

algorithm is assembled. Before proceeding any further, it is made

very clear at this point that the whole of the formulation made

in this chapter is centred around the formalism given to divide-

and-conquer algorithm in [1,2,3,5]. It is those preconditions

which are derived during the application of the design strategies

related to this formalism that are talked of through out and it

is these whose reuse is suggested.

Stating the problem attempted, clearly, we have:

47

"Is there any way that the program of a problem synthesized, can

help the synthesis of a subsequent (similar) through its

preconditions? If so how?"

This problem can be classified as a problem of 'Program

modi fica t ion' . Thus, we have the following considerations. The

reason why this is considered a "program modification" problem is

that, once a program for a problem is constructed, the best

guidance it

itself to

can give to a subsequent problem

the new constraints. On one hand

is

is

by adapting

the "same"

problem, wherein no modifications need be done to the previous

program to solve the ne~ problem, which is the same problem. On

the other hand is an entirely different problem - whose synthesis

cannot gain anything from the previous experience the program

synthesis system acquired from the synthesis of the previous

program. However, our concern is only of those problems which

are similar to the problem previously solved. Considering it a

"program modification" problem one has to cope with the problems

that are enumerated in the previous chapter. Solving these

satisfactorily will lead us to success.

Problem 1. To recognize and store relavent portion of a program

and its synthesis method (the algorithm).

The design of divide-and-conquer makes the whole issue so simple

that the solution is apparent. It is as follows. Here we have

two subproblems. Recognize (i) the relavent portions of a

program (ii) the algorithm. These are to be some how represented

48

and stored for further use. There is no necessity of storing the

algorithm. The program scheme adapted is of divide-and-conquer

algorithms. True that one may argue that the method one finds

the operators that satisfy the conditions of Theorem 1 and

Theorem 2 is to be remembered. It is also not necessary. It is

either DS1 or DS2 or DS3 that is be followed. Now the first

subproblem.

the operators

Primitive and

specifications

The essense of the program synthesized is given by

which satisfy Decompose, Compose, Auxiliary,

directly-solve operators. It is enough if the

of these along with the associated derived

preconditions are stored. Thus we will be saving nothing but the

essence of the program synthesized.

out thus. The inherent nature

The first problem is eased

of the divide-and-conquer

algorithm design thus plays a vital role.

Problem 2 : To recognize which problems are similar to one being

considered.

This problem is surmounted by assuming two problems, which we

know are similar, to be similar. No formal definition of

'similarity' is yet formulized.

Problem 3: To find a way to modify the old program to yeild a

new one which solves the problem at hand.

Having found a "similar" problem, this is the natural consequence

of the previous two steps. Here the utilization of the stored

essence of the previous program and the modification of the

49

program is done. The procedure, is thus: check if each of the

operators that were found to satisfy the previous problem

specification would also satisfy the new problem specifications

directly or with additional conditions. Finding any additional

conditions would mean deriving preconditions. It is to be noted

that the input condition of the operators would be a conjunction

of the original input condition and the precondition derived

during the synthesis of the previous problem. For this also we

take advantage of Theorem 1 and Theorem 2. Theorem 2 gives the

basis for the reason why the previous operators, along with the

new preconditions, (if any), should satisfy the new problem

specification. We take advantage of the fact that in Theorem 2

the forms of the subalgorithms Decompose, Compose and F are not

relavent. All that matters is that they satisfy their respective

specifications. Their function and not their form matters with

respect to the correctness of the whole divide and conquer

algorithm.

The two problems considered for illustration are the pattern

matching problem and the unification problem, which are assumed

to be similar problems.

3.1) The Pattern Matching problem : Before we start the synthesis

of the program for this problem or even to the specify the

problem, we make the following issues clear.

Domains and Notations

50

We define two types of domains for the current set of problems.

They are (a) Expressions (E) and (b) Substitution (S).

'Expressions' are atoms or nested lists of atoms;

[A B (X C) D] is an expression. An 'atom' may be either a

variable or constant. A 'substitution' replaces certain variables

of an expression by other expressions. We represent a

substitution as a list of pairs. Thus,

[~X (A B) > <<Y (C X) >] i s a

substitution. It is noted that substitution set is a subset of

expression set. Once domains are defined, it is natural that

certain rules do apply to them. All the relavent rules

pertaining to these domains are represented as transformation

rules or just as facts in the knowledge base (Appendix 1). The

knowledge base is one vital part for the operation of the system

based on the divide-and-conquer algorithms. The relevence of a

knowledge base is explained in a fair amount of detail in the

previous chapter.

The notations which are used through out are LISP-like.

first (1) is the first element of 1,

rest (1) is the list of all elements of 1 but for the first

element of 1. 1 is any expression other fhan a constant or a

variable.

inst(z 1) represents the application of the substitution in the

expression 1.

For e.g., if z = [<.X (A B) > < Y (B X) >] and

51

l

inst(z l)

[X (A Y) X then,

(A B) (A (B X)) (A B)

The other notation is that of the membership. It is the

'occursin' notation which is adapted to return the truth value of

the membership.

For eg. occursin (A (B (A) D)) is 'true' but

occursin (XY) is 'false'.

Further, the prediciate constexp (1) is introduced.

'true' if 1 is entirely made up of constants. Hence,

constexp (A (B) C (D E)) is true and

constrexp (X) is false.

Here we assume A,B, C as constants and X,Y as

variables. exp (1) is true if '1' is any expression.

This is

Now, we specify the pattern-matching problem and subsequently

synthesize a program for it using the design strategy DS1 [1].

Assumptions, if any, are clearly stated at the point they are

made. Further, every step is reasoned out and explained.

The problem is stated thus: Given two expressions 'pat' and 'arg'

where 'pat' can be any expression and 'arg' has no variables

i.e., constexp (arg) is true find a substitution 'z' which when

applied to 'pat' yeilds 'arg'

The Specification thus is

MATCH: <pat arg > = z such that

Constexp (arg) ==> inst (z pat) arg

52

where MATCH: E X E --> S.

We recall the divide and conquer program scheme

F: X 1- if

Primitive : x --->Directly-Solve : x

~,(Primitive : x) ---> Compose . (G X F) . Decompose:x

fi.

Step1 : Construct a simple decomposition operator and a well

founded ordering # on the input domain D. Intutively a

decomposition operator decomposes an object x into smaller

objects out of which x can be composed. We choose the

decomposition operator 'EFRest' which is known to the system.

Its specification is as follows.

EFRest:<x y>= <(x1 y
1

1 (x2 y 2 1> suchthat

x 1 first: x A x 2 = rest: x A y 1 first: y A

y 2 =rest: y Ax= cons: <x1 x 2 > A y =cons:< y 1 Yz >

where EFRest: EX E --> (EX E) X (EX E).

Assuming that this is one of the standard decomposition operators

associated with the data type E and is available with the system.

An appropriate well-founded ordering on the domain E is

x # y iff length: X> length: y

where x and y are two expressions.

This is very much similar to the well founded ordering associated

with the data type LIST (N). It is appropriate for the data type

E which is also a list and a LISP data object.

Step 2 : Construct the auxiliary operator G.

53

The choice of decomposition operator determines the input domain

DG of G. It is sufficient to - let G be F if DG is DF and

let G be the identity funct-ion 'Id' otherwise.

Since DG = DF = (E X E), we choose the auxiliary operator to be

MATCH. At this stage MATCH has the partially instantiated form

MATCH:< pat arg> =

if

Primitive

Primitive

< p a t a r g > - -> D i r e c t l y- solve : < p a t a r g >

< pat arg>

--> Compose. (MATCH X MATCH). EFRest: <pat arg >

fi

where directly-solve and compose remain to be specified.

Step 3 : Verify the decomposition operator.

The decomposition operator assumes the burden of preserving the

well-founded ordering on the input domain and ensuring that its

outputs satisfy the input conditions of (G X F). Hence, it is

necessary to verify that the choice of the decomposition operator

Decompose satisfies the specification

DECOMPOSE such that

==>

where DECOMPOSE : DF --> DG X DF.

This follows from the condition (1) of Theorem 2.

.input condition is taken to be Primitive : X
0

The derived

Applying this

step to the current problem, the following specification is set up.

54

Decompose : <Pat arg >
.(

arg 2 l>such that

constrexp(arg) =~ constexp(arg 1) A constexp(arg 2)

A length: pat>. length: pat 2 A length: arg > length: arg 2

where Decompose: (EXE) -- -> (E X E) X (E X E)

Now we invoke Theorem 1 and find the derived input condition

under which EFRest satisfies the above specification.

Condition (a) and (b) are satisfied since Ds = Dk = EX E

and Rs = Rk = (E X E) X (E X E

Condition (c) leads to finding of the antecedent of

constexp ---> true, which is 'true'.

Condition (d) leads to finding of the antecedent of

Constexp(arg) A pat 1 = first: pat A pat 2 = rest: pat

~ arg 1 = first: arg

A a r g = c on s : < a r g 1 , a r g 2 > -- -> constexp(arg 1)

AConstexp(arg 2) A length: pat> length: pat 2

Alength: arg > length : arg 2

h1 constexp (arg)

h2 pat 1 = first: pat

h3 pat 2 rest: pat

h4 arg 1 = first: arg

h5 arg 2 rest: arg

h6 arg = cons < > arg 1 ,arg 2

h7 pat = cons <pat
1

, pat 2
>

55

Goal 1.

Goal 2

Goal 3

length

constexp(arg1)

exp (arg 1) (by R1. + E1.1.)

exp (first: arg (by R1. + h4

atom (arg) (by R1. + E8a)

constexp(arg 2)

exp(arg 2) by R1. + E1.1.)

exp (rest arg) (by R1. + h5

~ atom (arg) (by R1. + E8b

length : pat> length : pat 2

pat > length : first: pat 2 (by R1. + h3)

~ atom (pat) (by R1. + Eta)

Here E8 is that rule which says that any predicate involving a

function with some of its arguments as the results of the

opera t or s ' f i r s t ' and ' res t ' , i f succeeds imp l i e s t h a t ' f irs t '

and 'rest' have succeeded i.e., they are operated upon non-atom.

Goal 4 length : arg ':> length arg 2

length arg > length :rest arg (by R1. + h5)

atom (arg)

Hence the derived antecedent is,

by R1. + E8b)

~atom (pat) A ~atom (arg) A ~atom (arg) ,,[\

or simply ~atom (arg) A ~atom (pat).

~atom (arg)

Hence the primitive is,

~ [...:. atom (arg) A ~atom (pat)

i.e., atom (arg) V atom (pat).

56

Thus the program at this stage is,

MATCH: < pat arg :> = if

a t om (p a t) V a t om (a r g) -- -> D i r e c t l y- s o l v e : < p a t a r g >

- [atom(pat) V atom(arg)

--·· > Compose . (MATCH X MATCH) . EFRes t : < pat arg >'

fi

Step 4: Construct the composition operator.

The choice of auxiliary and decomposition operators places strong

restriction on the functionality of the composition operators.

Invoking the SPRP of Theeoorem 2, we have to find the output

condition of the composition operator by deriving an antecedent

of

=:::;>

and from this specification

Compose :<z 1 , z 2> = z such that 0 :<z
0

, z1 , z 2 > o compose

where COMPOSE: RG X RF --> RF is set up and an operator

satisfying this specification is found using Theorem 1 or

otherwise.

Now, invoking SPRP in the case of the pattern matching problem we

have to find the antecedent of,

pat 1 =first: pat fl. pat 2 =rest: pat fl. arg 1 =first: arg

fl. arg 2 =rest: arg fl. inst(z 1 pat 1 l = arg 1

fl. ins t (z 2 pa t 2) = arg 2 fl. arg = cons: < arg 1 arg 2>

57

A pat = Cons: < pat 1 , pat 2 > =~ inst (z pat) = arg

hl pat 1 first :pat

h2 pat 2 = rest pat

h3 arg 1 = first: arg

h4 arg 2 = rest arg.

h5 inst(z
1 pat 1 arg

1

h6 inst(z 2 pat 2 arg 2

h7 arg = cons: < arg 1 , arg 2 >

h8 pat = ·cons: < pat 1 , pat 2>

Goal inst (z pat = arg

inst (z Cons < pat 1 • pat 2 >) = ar g (by Rl + h8)

inst(z cons: < pat 1 , pat 2>

= cons:< arg 1 , arg 2 > (by R1 + h7)

cons:< inst(z pat 1), inst (z pat 2) >

=cons:< inst(z 1 pat 1), inst(z 2 pat 2) >(by Rl + E12)

inst(z pat 1) = inst (z
1

pat 1)

A inst(z pat 2) = inst(z 2 pat 2) (by Rl + E4)

This is the antecedent. The antecedent being a conjunctive one,

the operator satisfying the specification

COMPOSE : < z 1 , z 2 > = z such that

inst(z pat
1

) = inst (z 1 pat
1

)

Ainst(z pat 2) = inst (z 2 pat 2)

where COMPOSE : S X S --~ S is to be found. Intutively, it can be

seen that the operator 'append' satisfies the specification.

Further this is in accordance with the result stated in [5] for

58

conjunctive goals. Restating the result here, for convenience;

the 'Conjunctgive composition' of solution (A1, z1) and (A2, z2)

is

uc[~t z1/z} , { z2/z}

When (A1 A A2 is the goal z1 and z2 are the individual

solution of A1 and A2 respectively and z is the solution of

A1 A A2. Here 'cons' is the simplified unifying comp.osition,

for, 'arg' is a constexp and the terms in any substitution z2 is

a constant expression. Thus the composition operator is 'cons'

Step 5: Construct primitive operator.

The condition (4) of Theorem 2 enables us to form the following

generic specificiation.

DIRECTLY-SOLVE X z such that

IF: x A Primitive: x ==> <x z >

where DIRECTLY-SOLVE: DF --~ RF

Thus we have the directly-solve specification for the 'pattern

matcher' problem as

Directly-solve: <pat arg > z such that

constexpr(arg) A [atom (pat) V atom (arg)] ==.::> inst(z pat)= arg

where Directly-solve : E X E --~ S.

The above specification is a formulation of the statement:

Directly-solve is an operator which opertes when 'arg' is a

constant expressing and either 'pat' or 'arg' is an atom,

59

yeilding the substitution z directly.

Since no standard operator available with the system would

exactly satisfy the above specification we will have to structure

one, as follows.

The known composition operators available with the data structure

E(Expressoin) and S(Substitution) are Cons, Append, Pai~ and

Null. (Appendix 1). Of these 'Cons' and 'Append' which are

operators onE X E ---> E do not suit the occasion.

'Null' could be chosen.

The specification of 'Pair' is

'Pair' and

Pair: <v t> z such that z (v t) where Pair: EX E --~ S

Using Theorem 1 we try to see if 'Pair' satisfies the directly

solve's specification. Conditions (a) and (b) hold.

(c) results in finding the antecedent of

[atom(arg) V atom (pat)] A constexp(argl ===» True

The antecedent is 'true'

(d) results in finding the antecedent of

z = (pat arg) ==> inst(z pat) = arg

h1 : z = (pat arg)

Goal : inst(z pat) arg

inst((pat argl pat = arg (

var(pat) (by Rl + E6)

Hence the derived antecedent is var(pat).

by

This is the case when 'pat' is a variable.

adopt a different method to obtain •·z'.

60

Rl + hl)

If not

Hence we

we have to

invoke the

other operator also to take care of this case. The operator is

NULL. Its specification is'

NULL : <; z z >
~· 1' 2 = z such thaht z = () where

NULL E X E -~ s.

We get the antecedent pat arg on invoking Theorem 1. Hence the

structured primitive operator, is,

Directly-solve: <pat, arg> = z if

v a r (p a t) - -> p a i r ~pat, arg>

pat= arg -->NULL :~pat arg>

fi

Step 6 Assemble the program.

Now that all the operators have been found the next step is to

fit in all these to form the required program /algorithm for the

'pattern matcher'.

MATCH:< pat arg> =if

atom(arg) V atom(pat) --~ Directly-solve:< pat arg >

~ [atom(arg) V atom(pat)]

--..;;> Append (MATCH X MATCH). EFRes t: {pat, arg>

Directly-Solve <pat arg> = if

v a r (p a t) -- -> z =pair: <pat arg>

p a t = a r g - - -> z null: <pat arg >

fi.

Thus the synthesis of a program for the pattern matcher can be

done successfully. A few comments in this regard are in order.

61

When the input for the program is decomposed and a solution to a

subproblem, which happens to be a primitive, is found i.e. a

substitution 'z 1 • is found, it is to be substituted immediately

in the remaining portion of 'pat' i.e., pat 2 before proceeding

any further. Illustrating this, suppose, we have

pat = (X (A Y) X) and ar g = (B (A D) B

In the first iteration we will get z1 = (X B). Before passing

down the arguments pat 2 = ((A Y) X) and arg 2 = ((A D) B

to 'match' the substitution z1 has to be applied to pat 2 . This

part of manipulation is done nowhere in the program. It can

however be assumed that before invoking the 'match' procedure,

whatever be the substitution obtained till that point of program

application, is applied to the arguments of the 'match'

procedure. This small problem which can be taken care of during

the actual implementation, arises due to the fact that in a

divide and conquer program scheme, the arguments of G or F remain

the same irrespective of the solution of primitive arrived at

during the execution of the program, with this one assumption, we

have totally synthesized the program.

The if fi construct is a functional version of Dijkstra's

non-deterministic conditional and is briefly explained here

[16]. This construct is what is called an 'alternative command'.

The general syntax of this is

if

Bl --> s1

62

-->

B --> S n n

fi

where n > 0 and each B . -- -> S . i s a
l l

guarded Command. This

executes as follows. If any guard Bi is not well-defined in the

state in which execution begin, abortion may occur. Secondly, at

least one guard must be true ; Otherwise execution aborts.

In this light, if the above synthesized program aborts it aborts

with a value z =NO MATCH, signifing that no match has been

found. The program synthesized algorithmically checks with that

developed in [8].

Next, we store the 'essence 'of the program synthesized by

'remembering' (storing) the operators along with their

preconditions arrived at.

Composition Operator Append; this is an operator whose

specification the system has in its knowledge base; no

precondition.

Decomposition Operator: EFRest; this is an operator whose

specification the system has in its knowledge base; Precondition

is, atom(pat) V atom(arg). When this is used during the

synthesis of a program for a "similar" problem the precondition

is also made a part of input condition of the operator as

explained earlier.

63

Directly Solve Operator(The primitive operator)

Directly-solve : <pat arg > if

var(pat) ---> z =pair:< pat arg >

pat = arg --> z null: <pat arg> fi

'Primitive' is atom(pat) V atom (arg)

auxiliary operator: MATCH.

3.2) Unification Problem :

With this knowledge, newly acquired from the synthesis of the

'pattern matcher' program, we proceed to state and specify a

similar problem i.e., the "unification problem".· The unification

problem can be stated as: find a substitutiton which unifies two

expressions 'pat' and 'arg'. This can be seen as a more general

problem than pattern matcher is. Here there is no restriction

either on 'arg' or on 'pat'. The specification of the problem,

thus is,

UNIFY <pat arg > = z such that inst (z pat) = inst (z arg)

where UNIFY : E X E --> S.

The following three steps are suggested to check what

modifications are necessary to the 'MATCH' program in order to

make it solve 'UNIFY'. Theorem 2 is the formal basis for these

three steps.

The Method

1. Verify decomposition operator using (1) of Theorem 2, thus

finding if any more constraints need to be applied to the

64

decomposition operator of ','MATCH'.

2. Using (5) i,e., SPRP, find if any more output conditions are

required for composition operator other than the existing ones.

3. Check if the directly-solve satisfies the specification

using (4), of Theorem 2.

We apply these to synthesize a program for 'unify' from 'match'

Step 1: Verify decomposition operator.

The known decomposition operator is,

PDecompose <pat arg > = < (pat 1 , arg 1) (pat 2 , arg 2 l>such that

~atom(pat) A ""atom (arg) =::;> pat 1 =first: pat

Ar~pat 2 = rest: pat A arg 1 = first: arg A arg 2 = rest: arg

A arg = cons: < pat 1 , pat 2 > = cons : < pat 1 pat 2>

where Decompose: E X E-~ S

It can be noticed that Decompose differs only by the input

condition, from EFRest.

We construct the specification for a decomposition operator for

the specification of UNIFY using (1) of Theorem 2 and derive

input condition under which the known decomposition operator

(Decompose) satisfies this specification, using Theorem 1.

The decomposition operator should satisfy

DECOMPOSE:

X ==>
0

x
0

<x1 x 2> such that

IG: x 1 A IF: x 2 A x
0

x 2

65

where DECOMPOSE

i.e.,

DECOMPOSE:< pat arg > = < pat 1 arg 1), (pat 2 arg 2 l> such that

true ==> true fl. true fl. length: arg > length: arg 2

fl. length: pat > length: pat 2 .

where DECOMPOSE : E X E ---> (E X E) X (E X E)

i.e., DECOMPOSE: <pat arg> = < (pat 1 arg 1), (pat 2 arg 2) >

such that length: arg > length : arg 2

fl. length: pat > length: pat 2

where DECOMPOSE: EX E --> (EX E) X (EX E).

Invoking Theorem 1, We have,

(a) and (b) hold

Condition (c) yeilds,

true -->:. atom(pat) fl.~atom (arg)

i.e., atom (pat) fl. ~atom (arg)

We take this as the antecedent.

Condition (d) yeilds ..
true fl. pat 1 = first: pat fl. pat 2 rest: pat

fl. arg 1 = first: arg fl. arg 2 = rest: arg

fl. pat = cons : < p a t 1 p a t 2>. fl. a r g = cons : < a r g 1 a r g 2 >

==> length: arg > length: arg 2 A· l_ength: pat > length

hi pat 1 = first: pat

h2 pat 2 = rest: pat

h3 arg 1 = first: arg

66

h4 arg 2 = rest: arg

h5

h6

Goal 1.

arg

pat

cons: <arg 1 arg
2

>

cons: <pat 1 pat 2 >

length: arg > length : arg 2

length: arg > length: rest:arg { by R1 + h4)

~atom{arg) by R2 + EBb)

Similarly we get .~atom{pat) as the antecedent for the goal

length: pat > length: pat 2 •

Hence the antecedent is ~atom{pat) A~ atom{arg). This is

the same we got as the derived input condition of Decomposition

operator of MATCH. This means no more conditions be put on the

input and the same Decomposition operator can be used as

decomposition operator of 'Unify' problem. So also the primitive

operator.

Step 2 Find if more restraints on output condition of

composition operators are necessary.

Recalling SPRP, from Theorem 2, we have,

0 .
Decompose·

OC • < Z Z 1 Z 2 > --- > 0 · < X Z > • ompose· o F" o' o

Invoking this to the present problem by taking the composition

operator as 'append' the composition operator of the pattern

matcher problem, we find the derived antecedent of the formula.

These express the additional output conditions of the

composition, if any.

67

pat 1 = first: pat A pat 2 = rest: pat fl. arg 1 = first: arg

fl. arg 2 = rest: arg A :pat = cons:< pat 1 pat 2>

fl. arg = cons: < arg 1 arg 2 > fl. inst(z 1 pat 1
) = inst(z 1 arg 1 l

A inst (z2 pat 2) = inst(z 2 arg 2) fl. z = cons: < z1 z2>

==> inst(z pat)= inst(z arg).

Now we find the {z
0

,z 1 ,z 2} -antecedent of the above.

hi pat 1 = first: pat

h2 pat 2 rest: pat

h3 arg 1 = first: arg

h4 arg 2 = rest: arg

h5 pat cons: < pat 1 pat 2
>

h6 arg = cons: < arg 1 arg 2>

h7 inst(z 1 pat 1) = inst (z 1 arg 1)

hB inst (z 2 pat 2) = inst Cz 2 arg 2 l

h9 z = cons: < z 1 z 2 >

Goal inst(z pat) = inst(z arg)

inst(z cons:< pat 1 pat 2 >) = inst(z cons:<arg1 arg 2>)

(by R1 + h5 + h6)

cons: < inst(z pat 1) inst (z pat 2)>

=cons:< inst (z arg 1) inst(z arg 2 J> (by R1 + E12)

inst(z pat 1) = inst(z arg 1) fl. inst(z pat 2) = inst(z arg 2 l

.Subgoal 1:

inst(cons:<z 1 z > . 2

inst(z arg 1)

ins t (cons :<2: z 1 z 2 >

68

(by Rl + E4)

arg 1)

(by R1 + hB)

inst{z 2 inst{z 1 pat 1 J = inst{z 2 inst(z 1 arg 1 1

(by Rl + E18)

Subgoal 2

instCz 2 inst(z 1 pat 2 J = inst(z 2 inst(z1 arg 2 1 (by Rl + E18)

So the antecedent is,

inst(z 2 inst(z 1 pat 1 11 = inst(z 2 inst(z 1 arg 1 11

A inst(z 2 inst(z 1 pat 2 JJ = instCz 2 inst(z 1 arg 2 11

This is the additional output condition of the composition

operator. Hence, a composition operator which satisfies the

specification,

Compose: < z 1 z 2 > = z such that

z =cons:< z 1 ,z 2>

A inst(z 2 inst(z 1 pat 1 11 = inst(z 2 inst(z 1 arg 1 11

A inst(z 2 inst(z 1 pat 2 1 = inst(z 2 inst(z 1 arg 2 11

where Compose: S X S ---> S.

The above is none other than the specification of the COMBINE

operator which is a very common operator used with substitution

and is assumed to be available with the system. The definition

of this operator commonly known as 'Composition of substitutions'

[19] is given as follows.

Let A1 = {(u1 s 1), (um sm) and A2 = (v1 t 1) ... (vn tn)} be

two substitutions~ The 'Composition' of A1 and A2 represented by

A1 . A2 is the substitution obtained from the set

{(u1 s 1A 2 J, •.•• ,(um A 2 J, ••.• ,(um sm),{v1 t 1 J, ,(un tnll}

69

by deleting any binding (ui siA2) for which ui = si and deleting

any binding (vj t.) for which v. Ee{u1 , ... ,u}.
J J m

This operator is considered to be a primitive Composition

operator available with the data type 'S' (substitution) to the

system knowledge base. Further the property of the composition

of two substitutions is,

l) = inst(A2 inst(A1 l)

Thus we have the composition operator for UNIFY as

COMBINE < z1 , z 2> = z such that

z = z1 . z2 where COMBINE: S X S ---> S

and not simply 'append' which was the Composition operator for

'MATCH'.

Step3 Check if the directly-solve satisfies the specification

using (4) of Theorem 2.

The directly- solve operator should hold the following

Directly-solve : <pat arg> = z such that

atom(pat) V atom (arg) ==> inst(z arg) = inst(z pat)

where Directly-solve : E X E --~ S.

Here we are to find an operator satisfying the condition which

has a disjunctive hypothesis i.e., atom (pat) V atom (arg).

Invoking the rule R4 of [5] which is stated as follows, we

structure the operator for Directly-solveJ

Since no operator directly is able to solve the problem.

RULE (RDH} :Reduction by disjunctive hypothesis: If there is an

axiom or hypothesis (P V Q) then reduce goal G/H to subgoals G/Hp

70

and G/H
0

. If solutions < A1, z1> and < A2, z2 > are obtained of

these subgoals, then return their Composition

< (A1 1\ P) V (A2 1\ Q) , i f A1 1\ P - -> z 1

A2 1\ Q -...;. z2

fi

as a solution to the goal G/H, where A1 and A2 are the

H respective derived antecedents of P and Q respectively.

In our problem here, we take the derived antecedent as 'true'

since no more conditions are needed. Hence, the solution would

be,

if

P --> z1

Q --> z2

fi

Thus we break the hypothesis into

(a) atom (pat)

and compose them.

a) atom (pat)

(b) atom (arg). We find solution for each case

Subgoal 1 : atom (pat)

var(pat) V const(arg) (by R1 + E9

So we are at a stage where we have to find an operator if

var (pat) V canst (pat)

Using RDH again, we have the partial specification of Directly-

solve as,

var(pat) ==> inst (z pat)=inst (z arg)

71

h1 var(pat)

Goal inst(z pat) = inst(z arg)

Hence,

arg = inst (z arg) (by Rl + E6 + h1)

~ occursin(pat arg) (by R1 + E17)

occursin (pat arg) --> z = pair (pat arg)

(b) Canst (pat)

The partial specification is

canst (pat) --~ inst(z arg) = inst(z pat)

This is satisfied by z = () if pat = arg. Hence we have, the

partial solution of Directly-solve as

if

~-,··Occursin(pat arg) A var (pat)--> z =(pat arg)

p a t = a r g - -> z = (

Subgoal 2 : atom (arg)

We proceed in the same way as we did for subgoal 1 and hence

set the partial solution for Directly-solve as

if

o c cur s i n (a r g p a t) A v a r (a r g) - -> z = (a r g p a t)

a r g = p a t - -> z = ()

fi

Combining these we have the solution for Directly-solve as,

72

DIRECTLY-SOLVE:<pat, arg> =

if

atom (pat)

if

~ occurs in (p a t a r g) A v a r (p a t) - -> z = p a i r (p a t a r g)

p a t = a r g - -> z = ()

fi

atom(arg)

if

occursin(arg pat) A var (arg) -~ z = pair(arg pat)

a r g p a t - -'> z = ()

fi

fi

Now we are in a position to assemble a program for 'unify' based

the modifications made. The program for UNIFY is,

UN I FY : < p a t a r g > = i f

[a t om (p a t) V a t om (a r g)] - -> D i r e c t l y- s o l v e : < p a t , a r g >

~[atom (pat) V atom (arg)] -->COMBINE. (UNIFY X UNIFY).

DIRECTLY-SOLVE:<pat, arg> =

if

atom (pat)

if

EFRest :<pat arg>

"" o c cur s i n (p a t a r g) A v a r (p a t) - -> z = p a i r (p a t a r g)

73

fi

pat = arg --> z = ()

fi

atom(arg)

if

occursin(arg pat) A var (arg) --> z = pair(arg pat)

a r g pat - -> z = (

fi

Thus, it is successfully shown how to reuse the knowledge

acquired during the synthesis of a program for pattern matcher

during the synthesis of program for 'UNIFY'.

Here also we assume that as soon as a solution for a primitive

problem is found out i.e., a substitution for the subproblem is

found out, it is applied to the arguments of the remaining

subproblems before further decomposing them or solving them.

The implementation of the above three steps should not pose any

problem to CYPRESS. The resynthesis part is thus reduced to a

large extent.

Remarks: The top-down style of programming suggested in [1,3]

are summurized as follows. First a clear understanding of

the problem to be solved is required and it is to be expressed

formally by a specification. If a Divide and Conquer solution

seems possible and desirable, the input /output domains are

explored, looking for simple decomposition and composition

74

operators respectively. Depending on the choice, one of the

design strategies is followed. Using our intution and/or

proceeding formally using Strong Problem Reduction Principle

(SPRP) specification are derived for the unknown operators in our

program. These specifications are then satisfied either by

target language operators or by (recursively) designing

algorithms

algorithm

for them.

has been

Once correct, high level, well

constructed we may subject

structured

it to

transformations, which refine its abstract data and control

structure into concrete and efficient form.

This style is very much apparent in the two algorithms

synthesized above.

Further it is to be pointed out that during the synthesis of the

"unification algorithm" interaction with the users is cut down.

For example, the decomposition and the composition operators are

picked up automatically from the knowledge base with the

knowledge acquired from previous sunthesis. Only then is the

interaction necessiated if any new precondition is derived and a

change in the form of the operator is necessary or if the system

is unable to set up the additional precondition for a problem

which is "similar to the problem for which program is

synthesized.

Thus, the use of Divide and Conquer program scheme and the

associated strategies enables us during the program modification

and synthesis of a program for "similar" problem.

75

CHAPTER 4
CONCLUSION

A synthesis of a program for 'pattern matcher', using one of the

stratagies suggested by Dr. D.R. Smith is successfully done.

Preconditions are derived during the synthesis of a program for a

problem. A method for the reuse of these preconditions during

the synthesis of a program for a problem which is "similar" to

the previous one, is suggested. The method is demonstrated by

synthesizing a program (automatically) for "unification problem".

The incorporation of the method suggested can be done by slight

modification of CYPRESS system. The synthesis of the 'pattern

matcher' program can be done on the system by creating a new

knowledge base with all the rules and operators given in the

appendix. Thus a partial realization of the problem suggested

by Dr. D.R. Smith has been achieved.

The "similarity" concept is not yet formulized. Work has to be

done in giving a precise definition to similarity of two

problems. This concept will help in 'program modification' also.

The criteria based on which the decomposition composition

operators are to be chosen, have to be set up to make the semi-

automatic system, fully automatic.

76

APPENDIX

The transformation rules, axioms and other essential

constituents of knowledge base required, referred to during the

synthesis of the programs, are given below.

Rules, axioms and operators associated with the data structures,

Expression (E) and Substitution (S) are as follows.

E1 X = () ==> expr(x

E 2 C 0 n S t (X) = => eX p r (X

E3 var(x ==> expr(x

E 4 (x = u) A (y = v) <= => cons : < x , y > = c on s : < u , v >

E 5 C 0 n S t eX p (X) = => i n S t (S X) = X

E 6 v a r (v) <= => i n s t (p a i r (v t) v) = t

E7 inst(s x) = cons:<inst(s first: x), inst(s rest: x)>

E8 (a) p[f(first: x)]<==>~atom: x

(b) p[f(rest: x)] <==>~atom: x

where p is any predicate and f is a function involving first: x

or rest: x. For example, the above rule allows us to conclude

that ~.atom (x) iff first: x = x 1 and similarly if rest: x it

means that x is not an atom.

E9 : var(x V canst(x) <=~~ atom(x)

E10 expr(x) A expr(y) <==> expr(cons:< x, y>)

E11 constexp(x :==> expr(x

E12 inst(x cons:< y 1 , Yz>

= cons: < inst(x y1), inst(x y 2) >

E13 subst(z) ==> exp(z)

E 14 subs t (z 1) A subs t (z 2) < = => subs t (c on s : < z 1 , z 2 >

E15 z = () ==> subst(z

E16 z = pair(v t) A var(v) A v ¥/t l'· expr(t) =,:> subst(z)

E17 inst(s x) = x ==> . ..,.occursin(x s)

E 18 i n s t (cons : < z 1 z 2 > l) = i n s !.. (z 2 i n s t (z 1 l))
r-

The operators associated with these data types are as follows.

such that

xl = first: X A x2 = rest: X A yl = first: y 1\' y = rest: y

A X = cons: <xl xz> fl. y = cons: <yl Yz >

·where EFRes t: E X E --> (E X E) X (E X E)

Pair: < v t > = z such that z = (v t)

where Pair: E X E ---> S

Null: < v t > = z such that z = ()

where Null: EX E --> S

Combine: < z1 z 2 > = z such that

z = cons:<z 1 z 2 > A inst(z 2 inst(z 1 11 11 = inst(z 2 inst(z 1 m1 11

A inst(z 2 inst(z 1 12 11 = inst(z 2 inst(z 1 m2 11

Ainst(z 1) = inst(z m)

where Combine: S X S --~ S

Append:< X y > = z such that Z = append: (x y)

where Append: E X E ---> E

Cons: < x 1 x 2 > such that z = cons: <x1 x 2>

where cons: E X E ---> E

7P.

BIBLOGRAPHY

1. SMITH. D. R., Top down Synthesis of Divide-and-Conquer

algorithms, Artificial Intelligence V25, 1985 p 43-96.

2. SMITH. D.R., Derived Preconditions and their use in Program

Synthesis, Sixth Conference on Automated deduction, Lecture Notes

in Computer Science, (138) p 172-193.

3. SMITH. D.R., The design of Divide-and-Conquer algorithms,

Science of Computer Programming, Elsevier Science Publishers

(1985).

4. SMITH. D.R., Applications of a strategy for designing divide

and-conquer algorithms. Technical report KES. U. 88.2, Kestrel

Institute, Palo Alto, 1985.

5. SMITH.

Conditional

D.R., Reasoning by Cases and the formation of

programs, Technical Report KES.U. 85.4, Kestrel

Institute, Palo Alto, 1985.

6. ZOHAR MANNA, Mathematical Theory of Computation, McGrawHill,

New York (1974).

7. ZOHAR MANNA and WALDINGER. R., A deductive approach to

Program Synthesis, ACM Transactions on Programming languages and

Systems, V2, No.1 Jan '80, p 90 - 121.

79

8. ZOHAR MANNA and WALDINGER. R., Knowledge and Reasoning in

Program Synthesis, Artificial Intelligence V6, 1975, p 175-208.

9. ZOHAR MANNA and WALDINGER R.,

Synthesis : Dreams =~ Programs, IEEE Transactions on Software Engj

SE-5, 4, July 1979, p 294-328.

10. ZOHAR MANNA and WALDINGER R., Toward Automatic Program

Synthesis, Communications of ACM, V14 (3)., Mar, 1971, p 151-165.

11. ZOHAR MANNA and WALDINGER R., A Deductive Synthesis of

Unification Algorithm, Science of Computer Programming 1, p 5-48.

12. GOOS., G and HARTMANIS J., (Ed), Fundamentals of Artificial

Intelligence, Lecture Notes in Computer Science (232), Springer-

Verlag. (1986).

13. ROBINSON J.A., A Machine Oriented Logic Based on Resolution

Principle, Journal of ACM V12 (1), Jan. 1965 p 23-41.

14. FEIGENBAUM E.A., BARR. A., The Handbook of Artificial

Intelligence Vol. 1, Vol.2, and Vol.3. Pitman Books Ltd., 1981.

15. DIJKSTRA. E.W., Discipline of Programming, Prentice Hall

1976.

16. GRIES. D., The Science of Programming, Springer Verlag.

80

17. NILSSON. N.J., Principles of Artificial Intelligence,

Springer-Verlag.

18. JONES, THOMAS.L., Artificial Intelligence and its critics,

NRL memorandum Report 3927.

19. LLOYD.J.W., Foundation of Logic Programming Springer-Verlag,

1984.

20. ZOHAR MANNA and WALDINGER.R., Logical Basis for Computer

Programming, Addison-Wesley Pub. Camp. 1985 .

.
81

	TH28960001
	TH28960002
	TH28960003
	TH28960004
	TH28960005
	TH28960006
	TH28960007
	TH28960008
	TH28960009
	TH28960010
	TH28960011
	TH28960012
	TH28960013
	TH28960014
	TH28960015
	TH28960016
	TH28960017
	TH28960018
	TH28960019
	TH28960020
	TH28960021
	TH28960022
	TH28960023
	TH28960024
	TH28960025
	TH28960026
	TH28960027
	TH28960028
	TH28960029
	TH28960030
	TH28960031
	TH28960032
	TH28960033
	TH28960034
	TH28960035
	TH28960036
	TH28960037
	TH28960038
	TH28960039
	TH28960040
	TH28960041
	TH28960042
	TH28960043
	TH28960044
	TH28960045
	TH28960046
	TH28960047
	TH28960048
	TH28960049
	TH28960050
	TH28960051
	TH28960052
	TH28960053
	TH28960054
	TH28960055
	TH28960056
	TH28960057
	TH28960058
	TH28960059
	TH28960060
	TH28960061
	TH28960062
	TH28960063
	TH28960064
	TH28960065
	TH28960066
	TH28960067
	TH28960068
	TH28960069
	TH28960070
	TH28960071
	TH28960072
	TH28960073
	TH28960074
	TH28960075
	TH28960076
	TH28960077
	TH28960078
	TH28960079
	TH28960080
	TH28960081
	TH28960082
	TH28960083
	TH28960084
	TH28960085

