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Nature not only iowves symmetry, it also loves periodicity.

Though biological ryiius 8re known to exist since antiquity,
yot the existence of bio].mm oscilliators MAS been acoeptod
| only recently. A xurdnent view was that tp rythns were

Qe to external pericio effects like the daily o)inms of
14ght and dark or sirdilay ohAnges in temperveturs, eto, THiS
view wAS mAinly expressed for oscillaticns heving lang period,
because high frequency oeillations, 1ike these involved 4in
heartbheat, were obvicusly endogerecus in nature, Objeoticns
Mve been reised to ¢l existance of endégans cus blologionl
escillators by cannecting it to external fagtors like day

and night and it 'AS lLoen oritioized and discussed very

much, But todsy the ovidence in favour of "Mdologloal
elooks® 18 beyond doubt and there are numerous sxasples

of pariodic or repetiiive plenocmens in 1living systems

{11, Cap, 2, references Quoted tms@ ih- opening and
closing of flower petals at osrtain intervals and oscills-
tims in the population of interscting biclogioal spscies
these two events indicate how bhiological rythm 4is present



in all parts of the tomporel organizaticen in the systems,

In this erticls, emphasis will be on bicchemicsal o
‘mtabolic cscillators, IHere e finds cscillatery variatic
in the ooncentratian of the biochemical species involved
in the reaction. Reccntly there has been Sudden rise in
intsrest in bicolemical oscillators Among experimental and
theeoretical scientistc e to tiw realisAtion that enzyme
systems, under certais ciroumstanocess, oin generate fundm-
mental rythme from which, 1t 18 spsoulatad that, msany
properties of tis cell and orghnism could be rYegulated and
ctrolled, Clance &nJ3 Pye have atudied oscillations in
the concentration of DMNE (Diphosphopyridine nucleoctide)
in yeast oslls, Prol:ction of ATP and protein syntinsis
are also examples &f IMoshemical oscillatims, For -
experimental work refmrence [1] should be Gankulted,

The omtrol studies in cells have led to & fundamental
result that the omoc.tvatics of macromelscular Spooies
and their activities are regulated by specific aontrol
mechanisms involving foedbiok devices, Uwublly the small
molesules nr the metoholioc system act as the feedback
- signals .,

Toedbeck:s In oyberrotic terms, the interxtction between
tio parts of ths Mologieal system is anslysed as a flow
of information and sclf-yegulation 48 explained in terms



of feedback, Pesdbaclh fmplies tiat a later state in a serico
of ocupled Processes DAY S0t bAOkwArds Sud modify an eariicr
Unk, thus changing the subsequent cutsoms. 7The process gin

be repressnted in & diagram Pig, 1.

v

v

INPUT TRANSDUCER OUTPUT [—>—

FERDBACK ERANCH

Peedback can bo positive or negative, In the case of
positive feedback the system tries to maintain or inocreass
its own supply. In ¢he case of negative feedback it tends
to cut down 1ts own supply and Always tries to stop at &
resting level, If dicturbed it tries to ywturn to that
resting state, A camin feature of the feedback cantrol
systems is the appedycnos of osoilliations, This is also
sbhasrved in some bioolemioal resctions, COne of the most -
faportant dochemiodl resction 18 the hicsynthests of |
protein, This remctin 4s oontrolled by feedback mechanisnm
and olsarly shous ascillatory behaviowr {n ths oooentration
of the mAcromolecular Spscies involved in the reaction.



The oausal ohain of tho resotien is from DEA to RNA to protoin
to metabolite and it 1As been demenstreted tiAt the metabolites
aot back upon gene Sciivities in & precise mAnner And henco
regulate further syntlonis of protein, Now we disouss tiw
protein synthesis renctims in details to Imve &n insight in
the feedback centrol rehenism involved in it,

Protein Synthesis: The mein task of INA (Deoxyribemuslefczold)
otlwy than replioatic:, is thes synthesis of protein, DNA is |
not directly involved in the synthesis of porotein, but instedd
the gapetic informaticn is trensferred to anether class of
molegules, known &8 mosssnger RNA (mMNA) whioh then serve

as the protein templates, MNA (ribonucleic so0id) is similer
to DNA except tIAat RIA cantains the sughy ribdbose instead of
deoxyriboss &nd the bose Ureotl (U) insted of Thymine (%),
DHA ssrves as the Senpiate for RNA synthesis, It is & procoss
during which the specific nmucleotide segquonce of the DNA
dictates a complementary seQquence in the REA, U &ppedring o
the REA ohain wharevey A Appedrs at ths eamplementary site

on the DNA,

In & nuclesated coll, sRNA lekves the nusleus and gotso
attacled to spherical, RNA containing partiocles, called
Ribscmes, in the eytoplasm, All riboscws ecutain both
protein And ribosaetl RNA (rWNA). The sequence of bases
in the mRNA sapeoifies the smino acid sequencs of ths protein



to De ayntiesised., 20T 18 another type of RNA ohlled
trensfer RNA (tANA) uiseh attaches to emeh Smino Soid (thero
are 20 kinds of them)} &nd brings them to the_Sppromyiste sitos
an the mANA obain (atidehed to the riboscms), This is dmo
by means of & recaopiition process between & seQuenoce of bAsScs
o the mRNA (the oodon) And & sequence of basss on the tRYA
(the anticodm)., The funotion of tis ribosomes is to artent
properly the incaming oomplex of Auilno 8sid and tRNA and %o
tomplate »RNA so tIAL tlm genetic code okn be redd properly.
Wien the amino acids Zrrive &t the proper sites in the ohAin,
they are linked together with the help of ensymes, by the
farmation of peptids bonds and syntesizes proteins,

The protein then serves its purpese (e,.g. sots an
ensyms ) at some cellular loous where 1t generetes adn/ mota..
bhlde species, There 48 & regulatory o cmtrol msehnisnm
to ensure that proteins are synthesized in tie Sppropriate
saoumts for the proper functioming and multiplicatim of tic
eslls, If the amemnt Of metabolic apscies is greater than
the required amaunt, tIm excess may be fedbaock to the genetic
lo0us where it may Aol A3 & repressor Or &8 & co.repressor
(ooupled with apcreprcusor). This in turm sots to being
dom the synthesis of protein and so the syntiesis of
metabelic species, TiB whole proocess gnoratss 8n oscillation
in the concentration of the clemical species talking part |
in the reaction,



The three stages At which metaboiites osn affect the
Agtivities of maorcauolcoules by speoific interection mtw
DNA stage, mRNA stage and the protein stage, This alters
efther DNA o RNA mynthesis &t the first stege, protein
synthesis at the seox:d stage and ensyms @otivity or it
alters scme other sotivity, such as omtrastibility st the
188t stage, mmm.muucmartb £irst stage
of centrel, 1.0, of gene activities, mly, |

e process of synthesis czt protein is represented
diagremmatically beloss

GENETIC LOCUS

DNA Co:DlG STRAND

Though this 18 an $dealized wmodel of & metabolic feedbask
smntrol aoyocls, yet 4T includes tlhe essential features of tip
real system., 7This maccl and the set of eQuations to be
derived 18 am to Gooddn [2)4



In the dlagreamx:, n‘ represents aw of the genetic locus
which synthesizes il in qQuantities repesented by X,. 7Tido
aRNA then directs the gynthesis of prmm"ft tin*ough the
cellular structure R{ribosces). The pretein then trevels ¢o
soame osllular locus C, wihere it exerts &n influence upan ¢io
setabolio state eithyy by enzyme action e by acme otier
mesns, The result of ¢his activity is the gensreation of 2
matabolic apecies in Cuantity . A part of H1 returns to
the @anstic loous And closes the control loop, Here (1.e,
at the genstic locus) 4t is assumed to yermess the activity
of the gone, probadly in associstion with & mmoromoleculs
the aporepressar. Sctimes & separats opsratar locus exist
for the omtrol of gerotie activity., In tlw present atscumsion
that &3 also included As & part of Ly itselr,

The rate equatics for the cmocentratic of the {th
spegien of protein 1o of the fan

ay

winre t‘1 is the funcliion descoribing the rate of synthesis of
protein and 8 relates o the rate of its degradation, T
sinplest funotions ¢ Y0 Goodiin are

(e+'¢
RL oy Iy - 8y (2)

@ &nd p Are pareametors containing rate constants. Here the



of agraddtion As boom taken as oonstant, i.e., no self
daping present in tix system. The firet term in (2) repe-
sents mMVA cantrolled protein synthesis,

The cencentration of metabolite n‘ was assused to be
santrolled by the agncentration of protein Y’.' and so the
equAticn is

= - WY -4 )
Aghin we Mave ccosidered the TAte of degrdAtion of M, to bo
sanstant .

The control equatio for mRNA syntlwais is more caapli-
oated dus to the prescnce of the (repression by the) nuhbnta
fesdback, Under the assumption that the yepreasor camplex
aots an the DNA template by & surface absorption prooess
similar to the actian of inhibitores #n enzymitic activity,
Goodsin MAs written thp yete equation for mANA in the
following nanlinear form

o
- 1
® Ay + kg4 - 8]

The paramster ki involves an equilibrium constant feor the
refctien betwesn DNA 4nd the remressar, For datalls of tho
derivation of (4), oo mey refer reference [2]. Here a A,,
Ky 4nd b, are all cnctants. 8, in equatian (3) is the

~ by (%)



stcrage oaphoity of tlo mestabolic pool of ith species, &nd fip
aXonss (n‘-Btl 18 fed bek to 8ot A8 & remressar,

" Goodrin bAs 8150 proved by taking inte omsideretion of
the 1dea of tiw relAxzition times of the epigenetic and metd-
bolic system in the squatiens (2),(3) snd (8), that &t oan 1o
sizplified to two equations, (refer [2]) for & particular
species, - |

£ - -v
& - -

It 48 possidle to cauiine tiese two equatians in (5) inte &
single equation and integrete te get tin yesmult

5)

af- X ¢ - £ 1ogh + 1) = constant,

TIds equation defines & closed trejectory in the X-Y space 2nd
herge we odn infer tini the system deseribed by the set of
equations in (5) 18 csctliatory,

The system &scribed adove is generalised by introducing
8elf Gaping terms in ilw rets eQuations for sfch variadbls,
This msans that afiA 4nd protein are turning over at rates
proportional to their cmoentrations in the oell, This
assumption is more rcalistic than the samdition of emmt:
epantion rates, 7The fesdback signal ofn also be generelised
by tl» quantity
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iy -5

wisye p 18 8 positive a.rw_tgpr,( reocently 4% Ias been oanjectured
thst p oan be a nen futeger alsc)and gredter thAn e, %o
power p oxn be Assogitted with what is oallsd Hill numbep in
enzyme kinetics which gives & Quantity relAtsd to the mmber
of Winding sites for the feedback SignAl o the number of
molscules of tis metabolite taking part in the repressim,

S0 the general foru of tlw tires stap control equations oAn
b written as '

o s BX,
Aa-arxg

- & - )
= - -8
EQuatim (6) can be gonorelised to a n-step proceas

%f;"f‘;;*bm

= = By.q By.1 - Dy | A7)

wWiere J = 2.,35,...,0 824 bﬁ. - .:. &y A; &, 83 and bJ are a1l
positive yeaction soustants.
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This was the sirplest kind of model considered, There
ean be mare camplex sntrol oircuits, Theye Are many
strustural proteins widoh are metabolieally insotive (inert)
and cAnnot generate & fwsdback repressien signhal, yst therc
18 & santrol in its gynthmsis. The modsl for that oan be
as lclun belows

Hore metabolitc ¥y, which is controllsd by enzyme Yy,
acts to repress not culy the activity of lcows - L, but also
tat of the locus Lne the struotural gene far the metabolically
inaotive protein Y. Its set 8f equatims desoribing the
sontrel schems is (for p = 1) | |

ghy -

%L&

TR
f



12

The seoand sysicn osn be onsidered as & "driven"
omcillator, The soluiions become MArder &8 me goes over Lo
more complex models. |

At this point lot us ocnsider oertaln paints on the
lUmitation of the tipory, |

All the vartablos hAs been treated &8 omtinuous yariobles
without estimating tix sixe of X, &nd ¥,, It is possible tmat
the amount of MRNA of & particular fnfarmitional species miy
med stookastio remoesontation, Nothing also as een sald
about systems with seif-yepliosting nRNA speeies, tlw poasible
influencs of metabalilos at the riboscmsl level, ete, Howevoyr,
the model Ims the essontial features of the system and is 8130
simple enocugh to stuly a class of bdiochemical reActions con-
trolled by feedbmok roohanism,

Segeral attempts [3,4,5] MAve been made to see under wipt
conditims the system (6) yields stable aud periodic soluticns,
Most of the attempts Snvolve computer simulation. The descriding
funetion teohnique LEC Deen used by P.E, Rapp {6,7] in fivet and
second order only, Wioye ths author Ims foamd that for g w1,
no 1imit oyole exists for general n, For p = 2, he MAs fownd
an ineQuality conalticn for the existsnce of stable ldmit
cyole, Uss of Lyepanov Anklysis has also besn dme by Riswas,
Fnde and Reo {8) for arbitrary p and 1t Ims deen foumnd $ING
forn =3, 0 must be greater than 8 for & limit oyols to exiot,
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In ancther paper [9], the stme authors Mave fomd & relation
between n, 1.0, the mumber of reactio steps, &nd p 1,e, tic
number of moleculss of the inhibitor. They have also found an
AdditionAl oonBtreint equAtion inter-relating tie resctien
sonstants,

Computer simulation has been extensively used in the
study of biologieal and bicchenical csoiliators. Here aw
ASSUMNS SO0 Specific VAlues for the pareueters present in
the differentisl equStians representing tie system and studics
the behaviour of the variables. Goodrin Ias studied [3] tlo
set of squations (6) _z’w p =1 4in an anAlqgus ocomputer and
found thAt there werc periodic osoillatiens in the conoentro~
- tion variablss, But it 48 shown by beth RAapp and BPR tiat
no oseillation 1: posuible for p «» 1 (for sny n). Iater
Goodrin has also Aduitted tYAt his results were artifactual.
Thus ccmputer simulation results are not yery dspendable unlcss
thsy are supported twmnnuy.

In this paper, both almuns finotion method and the
method of ILyApunov AvAlysis will be studied in relation to
.Moshemical osoillatons, comparing &nd sontyesting the mu!.tl
obtained by the respective warkers,



This method MG heen extensively used for stabiiity
analysis snd investigation of sustained non-linear oscilliations

in engineering probloms of cantrol system analysis, It is
discussed elsewlere fn detasl [10,11], P2, Rapp [6] tas used
41t to study tis nme.linear Mochemical omtrol egQuations
introduced by Goodwin where one observes sustained osoillmtims,

This technique 4z ippumh to systens winre the nt.
iinearity is isclatsd fyom the rest of the dynamics, The
whole system is represcnted by & blook dlsgvem (Pig. 1), Wiore
G(p) 18 the lineAr saupanent of the system (p 18 the atffercntial
omretor 3- ) and £(z) 42 the nanlinear element, = being tio
independent variable, Tiw linear part G{p) 1s imom as tip

input o £{s)

Y

W
Y

o{p) _ > output

W,
el .
<

Pig. 1

trensfer function, Tic Dasic interest is to dstermine whethop
the system can exiibii yeriodic oscillations, 7The problem my
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be reformulated so tiAt 4% 18 required to dstermine the aondi-
tions that sheuld be catisfied by 0(p) and £(z) far the periodic
esoiliations to exist. To solve the problem by desoribing
funoticn approsch, it 19 necessary to make the basio assumption
thAt the variable 8 = 5(t) appssring in the nonlinear functicn
£(s) is sufficiently close to & sinuscidil oscillation} tint ie

Sxy +X 008 ut ’ (t.1)

wiere X is the smplitude of the cscillation and y 48 the mpan
value of the output, both deing paultlvo nd reAl with the
smaltian ¥ > x| > 0. w 18 the freQuency of the osolllation.
Desoribing funotion Wa. theyefore belong to those ultm
of solving nonlineayr differential eQquations which are dased
upin an assumd solution, Then it 15 yefuired to dstewmine

the emaitions undey videh the desired cocilSations coour,

Nowe 12 the varioble 2 has the stnuscidsl form, then Lip
nolinear funoticn £{:) 48 in general scuplex, but also &
pertodlo function of time, Tmrefore £{g) cAn be appraxtztitod
by & fourier series o first order:

&,
£(s) -!3441 ocs Wt + &, min b {1.2)
wheye -
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ao-%-rr(yuomm
s o1 f“ '(, + % con)oos0 40 | _("1,.3)
" -1 ?ﬂﬂy + X 0080)81n0 40

wasem.

To proceed Mkm- with this method we need the nenlinoar
Aifferential equaticns demoribing the system, Here the resotion
systenm to be studied 45 given by equations (7) with a lttlo
ohAnge in the paremstors,

b = e
& Tty

% - &5 - b8y
' {1.8)

& |
35& * 8nat ’anmf - b8,

were X = , 0 -} and 8, = omoentratiem of the jth erertoal
apecies,

The above syston of n equations hax $o be reduoed to 4
single nth order equation in 8 , for the application of the
‘Gesoribing funotion mothod,
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The rirst equation of (1.4) oan be written as .

(p + by)8, ‘T;K;? where pn&-
! + 08§ e

or
g PR g — K w——— .
Vo eas? )peny) 4

using (1.5) in the .mgma squation of {1,4), we got

(p*ha)sa*“* S
[+ + 2] (p + )
. o . —8E
(1 +af] (p+ny)(p+ty)

- performing similapr substitutions for n equations, the 1ast
equation of (1.4) becoues,

: Ty » K
(p+B)(p+by)ess(p+p )8, = M (1.6)
_ 1 + o8f )
The characteristic equation of (5) is

(P + D) (p+By)eese(ply) =0

whose sigenvalues Aye ﬂb‘; *%ionq.‘bn. which are all negative
since b,'s are all positive.
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Equation (1 .6)_:3& be written in the fom

gy = - £(3) = 0 (.7
where |
' - i u-u-! : — - 2 —J—-——. 1,8
o(e) (P + 5P+ B)eueslp+b,) 1=t (o b, ) .8
£(s) = — (1.9)
4 + & P

Bnd % = 8,3 4 = (8 Lpesiely ¢)Ks & » 4y The squation (h’(’)
18 the aifferential ¢quation yepresenting the system,.

Now assuming periodic solutim exists and using (1 )
equation (1.7) becomes

; & -
gty (7 + % 08 &) = (240, ocn b + 8, st @) =0

The LAlANGe squation carresponding to'mmeh haymenic
is chtained by settins v » 0, L .0,,

flor 758 =0 |
o 1-00) g =0 . (1.10)

Por Pirst harminio, the balanoe squation is (putting
» ’ ‘ﬁ)o
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a—&-ﬂxouabuc‘caw-tesmwn-ﬁ

Using the ocmplex repzasentation of ¢os i and sin wt, one ote
the fellowing equaticn and its coaplex ojugates equation LSOt

g P ,3_!__2).1@ ©0

1o (ay -ay) Uial

op 1 ~0(tw) P (x,7iz)) =0 (1a1)

where P, (x,y(x)) " t

Pn(x.y(x)) u afined as the desoribing function of the nae
Mnearity, :

Bquation (1.11) can be solved grephically by findaing the
intersection of the two eurves defined by G(iw) anda ﬂi’?&‘ﬂ‘
in the complex plane, If squation (1.11) Ims no nolutim,
then no oscillationg oye possible, unlsss tle syatem deviAtos
significantly from tlx assumptions undey whdsh this method io
appliocable,

Now 1f £(s) 18 & single valusd funotion, then &, = 0, aad

Pn(z,:r(x)) is resl, Tho proof of this is8 the follaring:

Changing the va:"abls to n =y + X ¢c08®, the integreal
dfining &, beccews



8 - %;f: £{n)dn

This 48 zero 1f £(z) io & singls valusd funotion,
Por symmetric £{z), &, = 0,
Gn the comples plane both G(iw) and g yTE)T 8r® Plobted
n

a8 @ and x inoreases Irom zero to infintty, If the desoribing
funetion oontour ( FT‘KJ—ET) ocntour) interseots the frequoncy
vesponse locus of tm iinsar ccmpanent (0 {4w) cantour), then the
balanse squatians (1.10) and (1,11) are satisfied and & it
oycle results, i.e. the system sxidbits periocdic csoillakion,
The stability of tim limit qycls can &ls0 be prediocted fyo the
figure, Ist us considor 8n exAmple whose plot is given Ry

Figue 2, A point 42 BaLd to be inside the G(iw) cmtonr Af
IMAGINARY

G (iw)

REAL

1
R, &, y&)
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1t 18 to the right side of tis ourve, Each paint of the

!;‘E?}’EJT ontour (Eeriles & state of the system, T synten
noves Along the ocurve until it approsoles & stable singulhyr
point or & stable 1irit oyole, If the paint 48 inside the
0(2w) ontour then tio coarresponding state is unstable and ¢io
mtua X inoreases, 1.0, the systen noves along the m
34ne in tlw alrveotic: of inoreasing x, A stable state apiscs
wisn $h® point 18 not contained in the G({im) sontour and tho
systen noves alag tic § curve in the direstion of georeasing x.
In the Pigure A and D are intersecticn paints giving rise to
Imit cysles. A syston initially at points 1 and 3 will aowe
to e left, the dircotion of decreasing =, sinoe it is atcide
G{iuw) smtour, A systom at 2 will alwhys move to the right,

the direction of Lnorofsing x, Sinoe 1t 48 ins1de O (iw) OuEvo,
12 the intersectian A corresponds to An unstable limit

sycls, since if the system 18 perturbed £0 either left or rignt
it will move sway fran A, Interssction B sorrespmds to &
stable limit cycls hochuss the perturbation will always tend
the systen to nove tamiyds B, Tiw value of x at the interscotion
indieates the Smplitude of the oscillatian ind it is such tiat
y(x) 48 always greatey than x, otherwise & iimit oyols will

nok sAtisfy the emdition of pesitivity of the omoentrationd,

Thds teohnique LS got very good @escriptive power to
tmaupm ohAnges in belavionr of the system resulting

577-49 |
Sib4 G- 3870l




fram & variation in ¢iv value of & parametsr (reaction sonstont,
say), A change in & piremeter causes hoth thes cwrves to move
relative to each othny &nd to the co«.&rdainates, sometimes

causing An intersection to appedr o yanish, BSometimes mly

e of the curve move, making the interpretatim of the effcot

of the ohange even easier, Without having point by point
numerical solution ¢ the differential squations, one oan colimate
the bshaviour for parameter valuss more readily by plotting o

feu greaphs, The intoraal strusture of the equations undey study
ean be interpreted readily by grephical metns,

Accuracy of tids method may be ohalilanged becsuse oo i
approximating the function by Pourier terms of gero and firnd
arder omly, But the linear component aosts in such & way tini 4t
suppresses the highs: canpments and let the sphller frequoncy
companents to pass, 1Iu other woras, it acts as a low pass ilter,
It has been observed that, given well Yshived linedr compéioints
the low pass f£1lter cffect becomes greater with inoreasing oSize
of the system. Thus for the cass of arbitrarily large lincsr
compment system, though the results cannot be stated with
matheoatical certainty, yet 1t ohn be argued that as an approxi.
mAtion it 1s probably dcocurete.

Now let us procosd with out problem. Fivet we study G(p)
for general n



23

The transfer functicn 0(p) is given dy

1 .
°(p) (P + By )(p + By)eeaslp + by)
- . 1.12
o @ (te) (by+ 1) (by+ 20).eua(Byt tu) (12)
At w = 0,
6(0) = gt - 1 | (1.13)

a{o) > 0 8, > 0 singe by's are positive,
G (iw) can be written in the fornm

0 (10) = B(wje ¥ ()

where M{w) 48 ths mag itude given by

Me) = j0(1s)] = E(TR)o® (2e)
n
1

-« N
1e1 (0] + Ww)?

(1.14)

and ¢ is the sum of i phase angles of the individuml n srooies
(supsrposition principle is validd since we &re cosidering viw
1inear compment ouly).

e ) T () v

cessd tAR"T( g; ) (1.15)
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From equation (1,12) 4t 18 easy to see that M(w) dscreases
monotonically to gerc 08 w inoreases fyroam 0 to .,

8ince b, 's and U &re positive, therefare ( ) is aXiays &
positive quantity. IBnce w AlwAys increasss aAs w i’.noroms from
rero &nd the curve §{ix) moves in a olockwise direotion ( S
the phase faotar 18 ©"2%), The first intersection with the veal
axis s at w = O whero G(0) = g—-— is positive, Secand intercootion

]
18 at ¢ =« 1 where

G(iw)](b -ag "M(“'”‘;.-g { o= 1)

Now both b, and w are positive, therefare M(w) 1s always & non-
negative quantity. Itncs -M(w) is negative and the second inter-
section of G(lw) 48 with the negative yeal axis. As w goss
increasing, magnitude o G{iw), 1.e. M{w), dscreases and ¢oitinuous
inoreasing of ¢ will give the orossing of G(iw) with the renl

axis alternatively in positive ( ¢ = 0, 2%, 4x, eto.) and nomative
real axis, The cantowr for G(iw) or the frequency respose locus

of s linear compancnt im given in Pig. P,
INAGINARY

REAL

D ) s
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To find the limit oycls for this problem, we nsed to caloulnbe
the describing funoticn.Keeping all the parameters ccnstant, e
would get different combom for m for atfferent p,

We first omsidqi the case where p » 1,

Therefore £(z) = T';a';i (1.16)

In this case £(z) 18 & 8ingle valued function, Therefore a, « 0,
The other fourier coeffisients Are,

B ..
A = - - : - ao
° :‘f 1432(:(*100-3

-?-f"nq;r‘?m;ram

2"12 zzs“m ware & =1 + &7
- and b.deg

AR ((eay)ie(ae))
using the standerd integral for f' s AT 1]

1'&‘{ %}. fui‘zg'g‘?"ﬂ
- grme a7 e

(1.17)



261 241& 3
b ° b ST b
24, 24, (1 + 4,y)

TTE T ((1eay)- ()Y

(1.18)

Using (1.13) and (1.17), the balance of squation (1.10) gives y as
a function of x,

- i 2(?1 i = 0
%0 [(144,7)°~(ax))* =¥
', '
ol 3
(e gy)* [(144,7)%=(d,x)*]
CI', -
(e ¥)" (144,7)° = (o v)®(ax)* - 4] = © (1.19)

The definition of Pn(::,y(x)) gives
.
P, (x,y(x)) = b

Therefore

1 . —
F Ly xT) "% 24, ; (f-vgi;y_f
7 Q% [(144,7)% ~(a,x)" it

_ & (149)*-(x) 1t
C2qyl (1+4y)"-(4,x) 12 2a, (144,Y)

(1.20)



Our ainm is to arew F‘ELT_T) curve and find the intersectims
with 0 (1w) eontwr.

To draw § curve, we do the following things:
a) Find out the 14mt of Fas x + 0,
b) Show %u a @a&m&cauy incn&ins function of positive x,
e) E\;almto the Uit of %; a8 x » w0,

a) Iety-+y,ss 0, 1.0, 7,18 the value of y &8 x tonds
to mro,

mtm Hm m.un ﬁ;y

y* Y,
Now from (1 .19) me gots, with x = 0,

(nayg)(‘% + "aya) «d =0 (1.21a)
o °o325'?; 26 F, =4 =0

<, +,/0% 4+ 40 ' |
. o .

Equation (1.19) also pives

' 2
LT 4 legr
Tierefore equation (1,20) becomes (using {1.19) ana (¥ ‘2?}}

m.‘vg%ﬂ"w

2y %7 - 24,(1 4+ ay)
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G gl eyl - &

5"'"2[ '(ogy
..‘.’1.

21+ a,7))

e,

-o|-

(e ¥)T(Y +ay)* -
(«:‘:,37)a 24,8, - 2(oy)® 4, (v+ &y

flogr)(12a-7) +4y)((o¥)(1+ a9) - 4;)
24, (0 y) (o y(1 + 4.7) ~ 4;)

ogr)1r g7) + 4y) | (1.23)
(e v)® 2a,
Teking the limit as y = y, &nd using (1 .21&);\‘91:5

] RS A (1.28)
(‘Hday )
(b) If ve can shaw thAt for x, < x,, ¥(x,) 18 less tihen y(z,),

tien m can X shown to be mmotanically increasing fumotion
of x. One can do it Dy calculating g and showing 1t to bo positive,

but here another method is used.
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Solving squaticn (1.19) for x a8 & Punotion of y,

x == [(1+ a7)® LAl k (1.25)

4 (coy)'
This 48 &n inoreasing fumction of y &8 4, 18 positive, Pron (1.23),

L been) &
PO el 2ty

1) . (1.26)

1 \ 1 .
.5%:(1 +g§§)<~§3:(1 +a§§.‘;)

and

8, ‘- 4, (1.27)
2"2‘?&’.’" 24, (o 7y,)"

therefare when Ya < Ty then -ﬂ-;,—a-’- < 3'(};7

Therescre W}m or §lzy 18 & monotanioally inoressing
funetion of x, |

(0} From (1.19) 1t i5 olwiocus that A8 X @ », y(x) + =, Thus

1
e EEyE)Y T AL Y~ * B (1.28)

e 1
Thus we have foind out the bebhaviour of the m surve
a8 X inoreases fyrom O tO =, Now F-GEJTT) starts of a nepgotive
n \Xe¥\X
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number (equation (1.2%)) and inoreasss centinuously almng tie
mgative real axis, Tiw u(iw) locus has bheen shown to spiral into
the origin in a closkirise direction, Thus 4if any intersscticn
bhetween the two ourves cccurs it 1s of the form shown in Pigure &,
But intersection of tids typs gives rise to unstable limit cycle,

G(Cw)

>

Eig. %

Thus for p = 1 and genaral n, no stable limit oycle result far any
values of the paramsters b,, 8» @ and & for the reaction system
dscribed by equatian {(1.4). Rapp in his paper has 8lso chocksd
that for n = 3 and 4 cven unstable limit oycles do not appeds,
Since protein aynthesis is also & thres atep process (ssoording to
Goodwin), then there 1111 be no limt cycls for p = 1,

Farn =3,

1 . 1
(n+b1)tp+b2)(p+b3) P+ +ops+c

G(p) =

o
whare

S, * b,bzby ey b,ba + b;_,b3 + b)bg
and oy = by + By + by (1.29)
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1 i

G{ly) = — . =n o
( (1e)® + oa(w)‘ +0,(1u) + 0, it - °2“" ¢ cqle + 0

. Y
L aauﬂ Jof (u® ~a4t)

522- :i?uﬂ‘) + 1 (o ~0 )

(Q ‘QQLF) + ((f- Q1u). (1 ‘30)

The paints where G(iu) curve intersects tim resl axis, there

Iup(iw) =0

or -0, w0 awra=0 or Jo, (uis positive)

o u-O,G(im)nal— and far W = O, ,G(im)-a-:;!-a—-
© o 172

from (1.29), o0, = (2’1“2 + byby + b?.'bS) (By+ b+ b3)

.ﬁ"?wo

where & = by (b,b:,}é b‘ba) + By (b b+ habj) + b,,(b,b}lr baba)
and 4 > 0, therefore 1:J 's are positive,
Tharefore «A < O, |

1 i
Now ?.J“__ooua *cm, %8 ” ~i,

]

1 1
- < 1.%1
§c° & uo.'oa ( 3 )

8ince both 1~ and
O

S es. Ore greatsr than the highest value
Q 172

14 |
of W’ {(t.0, « ga: Jo therefare thore 18 no interseciion
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between G(iw) and = ; hence there 1s no limit cycls of any ldnd
n

stabls or unstable,

Porn = 4, the ciamu thing happens., Therefore the results of

ths first paper of Rapp Are &8 followat

1) with p = 1, garv8l n « no stable
osoillation is rxmsible,

and

$4) with p « 2, n = 3,4 - even unstable
oscillation 18 icpossible,

mnce, since bioshemical oscillators exscute stadls osciliziions

mly, therefore cme st consider p greater than one cases,

RADD in his second paper [7] bas 4ealit with thw case of p = 2,

Iat us daiscuss his reauita.

The frequency rGsponse locus will be the same &s for p = 4,

but the describing function contour will be different.
In this oase,

o d,
£ (=) 14 a2

and

1
0P) = BT By e (P S 5
The expressias for ao and a, are

"
‘0‘%-’2 d1 ado
o 1 +4,(y +x cosd)
1 % 4, cosd 4@
and &4 "2

o 1+a,(y+xocome)?

(1.32)

(1.33)
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To derive the Slxwe integreals we malw use of the folloring
standard integralss

f v__GS_.M“ g 1” veR&ndv > 1 (1.34)

1,6,/V2-1 18 chosen fyom that branch of the two value function
which 18 always positive when v is real and greater than anc, and

¥ gos0 40 2
[l v tion o

Now, 4f 1 + (a+s cos®)® = 0, then

1 1
i~} . o
1 + (a+p comd)® (ats cosd + 1) {a+s coBO - ¢)

éh[m‘aﬂo;ﬂﬂ-i]

. 4 . 1
@ w— o
- {2+ 21a)+ 21s0c089 (21a-2) + 24poc0®

1 1 -
® W7 2ha) + 2ipoos® T B-2ia)-21sc065 (1.26)

The equatim for a, bocomes, using a «---\,/32»;;r and » -@x,



aLe

E)‘213

(1 + (c+ﬂ cond)?

- ,;fl [f? e . 49 ] wing(1.36)
o (24240 )+ 21pc089Q o (2RQ1a)-21pse0nd
e gf‘—" * ‘ggr“——
n 2s [f “4 0080 O‘f = )+ 008 ]
- ‘i‘l 22 { 1 ?ﬁ - . ] using (t.34)
moele Tl pBl Pa \/(—rﬁ)'
i L - 1 ]
ip ‘/g-!‘l-{-!gt "1€ ‘/\-‘.1: ‘gxﬂ .1\?
i Be ) 8 aa ]

. Y
( ~1 = («1)® for the first term and %
2 -1 = (1)2 for the seoond term

1 1
Ve ey i
(0 68 s J(ctota)t o o

\/((eﬁ.g? + 1)3 + QQBA%

‘% [‘/Y X i+ ‘/I K ]

whoTe K = (af-p" 4+ 1)° 4 BT w (X - dyts 1)7 4200
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Tharef ore a, u ;;— [cn/é + c”"‘é ]

.,‘;fg cos B (1.38)
e m,éuﬁi..:.(fz"*;a"”,

(1 &9)
2
and stny=38 - ___}éﬁz_?,

o

f" ceo9 4o
0 1+ (Jéey +/dx cosd)®

2 o
N [0 (2+ 24c)}+ 240080 (a-axa)- 21;90“

where a =,/4,y &nd p = /d,x,
Substituting & = 2 + 21, &' = -2+ 24ag and b = 21p, cne geto

ffa%%'-&%‘" " omede .

a'+ b oosd

-85, . 2xal
L bvano ) | ine (19D

[El b v(a’..

241 a' - a ]

» b [v@m'b.) ‘V@""

u “1 [ 24g. 2, 2.+ 21
V(21aP-(21s)%  few1al - (215 » !

“1 1g =3 FTE R
,421»? - (<+1a) fg«zu)‘ - (a«eza)‘}




(=4 ) talsn out from the first term and (1)* from the seomnd tern.

where K 18 given by (1'_37) |
4oy 2 o
e praqyAeE 2 T V6T ¢ (4 4 1)

- (1) W» (1) W])

.-31- (~a [e3V2 +¢“7§1 4rel?? L t72 )

-‘1-(2:;1‘: v2 « 2o comy2 )  where stn y2 and cos v2 ame
given by (V.39)

"y
Therefore a, .:f;;%. #in yﬁ *v’%?‘ oo v/é}' (1.80)

Since the integrend of &, 18 Slways positive then ocs y2 > O,
By equation (1.39), Bign of sin y is positive., Thus y2 4o
sonfined in the rirst quageant (0, g ) mly.

Tos serosth balanoe equation (1.10) can be written for
this ease as

0.1._%.. !._t.g.g_x) (1.51)



where cos y2 = + ( L898.Y), ang the form of } 1s

}- /o o

24 (stn y2 - /a5 cos y/2)
Changing the variables to w = ax*, z « 47",

A "‘H\/dg/ﬁ Gy and H -m
equations (1.41) and (1.%2) becomes

s T I T‘%{-—- {1z 4+ waz+l )& = g(w,oz)
Z
v (Lgemr) .« (Rappant)

%
1 S
i Ltgz-1 )4 wegsl &

uBing the {dentities

otn y% =/(1EBY)ang oo y2 = (I8

and (1.43)

] )8
Therefl -
TR F {(Kowsz=i }* - z’(x + \u«-»:-l»‘!)f

where K= [(wez+1)® + &::]é

Ths initial assumptic: of y > x > O now kecomes z > w > 0,
to be noted that equitions (1.43) and {1.45) cantsin anly tuo

(1.42)

- (1.43)

(1.44)

{1.45)

(1.%6)

It 18

artitrary positive coatants A and H, whereas equaticns (1,31) and

{1 432) contatns tmrec d4sd, 8nd o,
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First one must Rtermine if 1t 1s possible to use equation
(1.,43) to fing z(v), Nen this is impossidble, & limit oyslo
beraviowr 18 also izpossible, For w positive and fixed, g{i1,2)
in equation (1.43) ok be treated &s & function of . To Ghow
that gw,s) is mmtmioAlly inoreasing with increasing positive s,
whare 2 > w, cne omaiders the following cxpression and provos it

to be monoctanioally dctressing,

8inoe, g-m)-o “z>w> 0

then X 12 &n inoreasing function of z. y &nd d, both are pocitive.

) t .
Theretare ;;JF— 15 monotonically decreasing function
Iat Mow 1o+ BEL
K- (w-z+1 ) ( B )
%- - (: g8-zpel)

olelqe 2 v “q?gaaaz
K® .o

..(?—‘t-g‘i-:t-‘a’ﬂ-){o.

Therefare N is & monotanically deoreasing function of =,
Therercae giw,z) = 1-{nmotanically decreasing function of o)e
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Hence g(¥,z) 18 & monctngoally inoreasing funotion of z}-. when
g >w > 03 and it incresses to 1,

J(w) =g(wssy =u) = 1. 3;( “-f-%”ié—u it (1.47)

At w » 0, J(w) » =m,

Por w > 0 and inoreasing, J(w) inoreases menotonically to 41,

Thus J(w) or g(w,z » 1) 18 negative for w &t the intexwval u = o to
w e w,, Were w, umm«ws(u ) =0,

Iat

o

0.1.7[6—(1—‘!_5!.&?-4- ]Q ' (1.48)

8ince, the functicn J(u) inoreases moanotoniodlly therefcre Llw root
L i unique, w, - %’ hence v, 15 8 Qquantity of physical interest
as 41t is related to tUin oAximunm possible amplitude of tiw spdillation,

At w = 0, the value of = ia salndx-:m.

Terefore
_ . |
s(o,zo) 1 e T—‘@————-— = 0 (1.89)
ap (t° + 1)
o, ;;-»23;4-:0«3&'-0 (1.50)

™is 48 & cubioc oqutﬂ.?m and the solutiom is
5, - 3-((1 +27TAR) 4 [(1 + 2TAR . 11%3‘/5

+HOreme)e (0 vamep - VEVE U2 (1.51)
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Using equation (1,41}, the belance equatiaon gives for x = O a8
follows:

,;f%yo-.ég: .0 (1.52)

The solutiom is

| . 4 . 12,14
r,.,-[;&,—; (ua;c; - "2
4

. B b VA (1.53)
BRI TR I ,

The physiocal significance of y, cAn be obtained from the relation

zﬂﬂnayi-xcmut

T i3 the value of t}o bias term when x = O, 1.0,, there 18 no
osgillation, Thus 7o is same as the equilibrium value of ﬁn‘

Now we need to study the lmit of & &nd 1ts menctenieity. Por
this we must find the derivative &£ . Prom equetion (1.37), L(v,z)
oAn be defined as

1 1 _
L{w,s) = m—y (wa »241) - i constant (1.5%)

e O-gf;idz +§m
o'a %"(%M%) (1055)
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Ja g Llwezst)® s am)t 4 (weget)
il % §[ s{(w=z+1)® + 3%} )

Differentiating by quotient ruls and rearranging ame gets,

% - B = (=241 (K + 2(weps1))
zK*

giz o = 4 Balwepet) X (wel)olininezsl ) 4 2% (wexs1)?
| g .

Therefore equation (1.55) gives

1% - - [ !{g . ‘!‘G"" "5 : 2"‘&"‘1)]’ ]
<K® « K®(w+1) 4 Ke(wezel) - dp(wepel) + 22(w-xe1)®

(K%« R(rwztl) = 2 (wep+1)?)
* ES + K®(wel) + BEx{senwsl) + 28 (weztt J[24ze1]

Z{K® + K(wezé¢! « 2w + 2% « 2) ~ 2{wez+ }*)
E o+ KB (w41) 4 [B(gews)) + 2z(wegst ) (zewsl)

3{(K(Kw = 241) = 2(wez+1) (K+n = 341))
K2 - WK (WD) K2 (Z-WH ) $R 2 (W2 (@~ )

(K ~ 241 ){K2 (wez41 )] (1.56)
K 4+ K (w41) + Ra{zewsl) + 2z(wez+l ) (Bowsl ) '

To ewpive an expression for -;,— » the limit of the describing function
4 0

A w + 0, cansider tio equation (1.45), DBoth thw numeretar ond
danominator are zeroc, vhsn w = 0, 80 we Apply L'Hespital's rule,



sing squation (1.86) and (1.56), e gets,

aK . w2yl
A ((wezel)® l}z}*

\ N
-:1—-9 2 1z the value of 2 8t w = 0
ﬁlw-o o ' e

2 41 )[14'394- 2z 2]

s & | . zxo(‘l'ms9
™ w0 (twa}” + (u-:o)’ + zo(two)(1m°) +2zo(z°¢1)(t~z°)

glitg = 1) 2g(e)
(x41)(2+ 62,)  (2,01)(14 32,)

These expressions are used to find the valus of the derivatives of
the numerator and the dsnominetor of equation (1.35) at w « O,

Numerator = N « MK

&N |, -HE+w g 0, = HEG 1]

Denominator =D = (1’(«;.*-&«-‘1)é - z§(x+ weg+l )*

@1 @%b a1 1)
o "7 (Keswtgnd )2 2 (K% = 241)

1 -

- 1 Yoz
7 (ﬁ,ﬂ_ +1)
B )2 g - LTIl
o (’& Zot 30-1) (1%5«0 + 1)

- - 1w - 1 51
1 3y 1 zg*ﬁo“ zgwxa

N R e
7 Tz /EE, V)

]
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= m 1 ) t .Qze - 2 ﬁg ]
o’ = JAE, vz
1 -259_- 2:2 . Az
SEURET T, 2 /5 (1)
- . /2%,
. % ‘o’; "1‘—""”0!:!
Therefore from equatiocn (1.45), using the above relations, e gets,
1 14 ‘H(! + 1 )’
13 - - ' (1 057)
ﬂg P ?z; Ve z§r ,

ming equation (1.%9),(1.57) can be written as,

-H 2 - /2
;.-; \72’1:5% - -—;275- (1.58)

It will now be Showm thAt  decreases menotenically with
increasing positive w. In equatiom (1,45), since z > w > O, therefore
the numrator is always positive, The sign of § is Astermicod by
the dencuinatcor, If we ¢an show that

K = (wep+1) < 3Kex(w=z+1) (1.59)

then § 1s always megative,
Tts result is firet chtained for the oane 2 < 1, 1.6 OC<w <<,

How “8(14)’ < i}z(1.zw)‘ O‘t o D 0

o G2(1=2)% € (142)" (weze? 2 u(laz)® (wezst )®
Putting 8z = (142)° « (1-3)®
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oy (1o2)2[ (we41)® + 82] < (142)2 (wez+1)®
o (1=2)X < (145)(wez+1) using {1.46)
or K = (u»z-b‘!)}( Kz + g(wez+l),

ence (1 ,59) is satislied. This result also holds for the cise z = 1,
The third case is the situation when 1 € 2 < w41, It folla:ia that

1«2 0<ut = g
8ince K and (w+1-z) are positive,
PN K(lez) € 0 € (241 ) (wetaz)
e K<Xg < (w+lez)s ~ (welez) and {1.59) follows.

The proof for the case = = wel follows trivially, since most of the
terms in (1.59) drop ocut, The last case is where w#l < z,

Newt , bz(wez+1 * ¢ S2(z-1)"

o, [(241)2 « (2«1)2J(wess1)® < 4g(2-1)® .

ar, 0< (142 ) (1-g+41)% < KB (z-1)® %‘: Ke m}
' andw > 0

o, 0 < (142){i=z41) < K(x=1),

Thus (1.59) follows,
The fime caAses cited Ohove covers all passibdble situations, [ance
1¢ 18 proved that the denominator of & 18 always negative &ad 8o

%-u always positive, if =z > w > 0, i’o £ind the monotmiocity of
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%n comsi®r the function |P|%.

(P|* = (Kot 42=1) 4 o(Kiw - g¢1) o 2m
v

JK(E#) o1 w P +28 o 48 o wigel)
il ol

1 - il U-‘
H* o B

We can prove tiat [P|” is & monotonioally decreasing functicn, then

@0 can say thAt } 12 & monotonically increasing funstien, Dut

since %1- always nerptive, therefore it turns out to be & nnotonically
acressing function, YWe need to show that ﬂg‘: is always oozative,

9&'51:‘-;;((&1 *TaK)-!-(T’#TQK)%]
were D = H w2

Ty = =5 ;&?-m-zz‘-az‘-aza"-&-a
<THZ + Tuz® + Twz® - ®2% + w2z

T, = " +5\n-§-22°+65’ 4+ 62 +2 » 5uz® + sz

T)a- W (aw? + 2 »2® +22 + 3 & 2uz)

Ty = W (-w + 2w3).



Now £irst we show that the denominator of %" is pomitive,
Lot D = the denominator of §2

= K> + K® (we1) 4 Kx(Bew+l) ¢ 25 (zurel) (wez4l)

when 3 > w > 0, the expression

K 4 [F(wel) + Ku(zewsl) {1.60)

i positive, If 3 < u+4l, thw remining term of D is also poaitive,
If 2 m w41, then this term vanishea, leaving only the positive
expreasion (1.60), I{ will now be shoawn that D is positive if

wal < 8, Equation {1.43) defines the funotion z(w). Using Chat
equation we get

gg_ w I = wez4l
A‘

Ist ¥ be defined by

L ]

Mwi® ¢ KB (net) ¢ Ku(3wst) + 28 (2wt ) (=)
or Mo RE+X +w® +2u + 5wz + 1),

Por the case w+l < g, the quantity 2z(z-w+1) is positive and EF is
pomitive, e concludes that M is strictly less than D,

I w® + B e uaiz > 0, : (1.61)
than the proof is complete.
Since Ax is positive U'myefare it follows from the definitiom of X
that,

|s-w=1] < K (1.62)
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The absolute value brackets can be droppsd, since we Are cxpidering
the came £ > w+l, Thorefore {1t follows that,

Wt o+ I 4wz >0 “ w>0

™us the insquality {(1.61) 1s satisfied and the denominator of ﬁ
is positive,
Consider &8 quintity E given by

E w (Q,‘ + T,K)D + (w} + r,,x)ﬂ
where N i3 tie nmﬁtwof%. '

or B =ly+ LK (1.63)
wbare,
Ly = 827 + 40z° + 8502® + 80z¢ + A0z® + &°
4+ Buz - 2huzd . 120mz* « 136we> « B8w2®
- 28F2° + 18872 + 1206%2% + Bz - Bs%2"
- 16W%0 « 1606%2¢ + 24n%s » S56wez? + 120w%°
+ 28u%z « 45482 4+ Bu®2

and L, » «82° - 35" « 482¢ - 325° o &* + L0wr® + Bzt
+ 80uzC - 45®2® - S8ow¥z* + Swdz - 16wSs®
+ B0wP22 4 16wz « BOw'z" o+ Bu®s

T® odnimun of the fuwtion E an the interval w » O tow = =,
whirye it 1s non-neghtive, is investigated via & numerical tochnique
and found to be tiw VvOlIue E = 0O &t w = 0, At 2 w w,
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Ly = Oliz* + 482 + G*
Ly = ~322° - 827

K= (14&:)§ <(1+hs + &z* )t wi +2s

using the inequality bounding K, ane sees that E must be siriotly
positive .

The numerical rmthod employed by RAPP in his paper to find
the minimum of X, hat been developsd by M.J.D., Powell.

Thus from all tha results calsulated above, ae oocludes that

%u manotonically dscreasing with inoreasing positive w..

In this case {p = 2) the frequency response locus rerains the
same to the ocase with p = 1, The modulus &nd argument of G {iw)
dcresses manctonically &s positive w increasss &nd the ccntour
spirals into the origin in a closkwise diyection, The smmlicst
real valus of G({iw) i5 Schieved at its rirst crossing with tie
negative real axis &t Irequency w,.

The condition noessary for a lmit cyole to exist v Cf{twy) < i-
o

or [Polla(aw, )| > 9

sing (1.58) rar %—- s the limit oycle condition beoomes
°

2
e |G (2w, )| > 1

| V2 mt

Wo know that G(0) = —}» » the requirement for limit oycle ocndition
S .

hacooms
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R (.q.—-é)f. ) (” ) (1.64)
- ,jﬁ'm‘ '—“‘m‘ o

G (1w )
Now we will have to find tha waximunm value or]—-—(m-l

n n 1
= 11 , = 0
gw; 3= !Ej + Iu! g (Y + 1 tan 4’.1)

where ¢y = tan~! (+ %: ) a8 in equation (1.15)
g

1. - a nn ‘

The last atep followr {rom the fact that by definition of %,cu 4,3
is always positive, .

The object 18 to maximize the sxpression subject to tino
constraint that w =%, 1,0, the ergumnt of 0 18 x , ;: 0y = 7

Por simplicity's aalke, take the logarithu,

108 | HEH | -32 2og cos ¢, -in(%)

where h“’d) = log{cos e%), %ﬁﬂ = ~g00%y, & negative quintity which
implies $hat h is ccicave. Thus far 0 9 < 1,
éh(y) + (1-0)h{x) s (@ y + (1-9)x)

with equality holding only when ¥y = x, Applying this relatiom nest
times and the castraint on the argumnt gives



50

¢ ""000+¢
f h(@a)th( ] - n ).nlogcoc;‘-;

J=T
, G(imc)
Taking antilog gives the bound on ‘W |
10,
lg-égu;‘-’lis(ou%)" ~ (1.65)

when ¢J -0, for all j and § (equivalently b‘1 - b‘), the maximum
value of the object funotion is obtained [cos % ), The following
table gives the mAximum values

ble

£

(cag)n

1250
2500
3466
4219
4819
.5380
5713
.6054

“ 0 o=~ ovWu &l

Lo

Rapp has started from n = 3 because Griffith [13] had already
8hom that n = 1 and 2, there are no periodic solutions to the equations
for positive reaction canstants.

At the extremun S, = bn, which 48 unspecified. Iet



5

Y2 ﬁfz_{é

o> 2 - 1.66
u(r) 7 e, (1.66)
using the values of mco which gives :}
(HMQ o d’ Jdazo*o oé— )
vZ 4/ Ve e,
using 3, = aay;, squations (1.52) and (1,53), we get
U(A) .\f_ﬁﬁ.g-[{‘—.p ( 5.....; .._§_. )"/é;‘/s
A AR At a7ne ’
2 4 14,5
-{;;w;;w;%-;)ﬁ)/s (1.67)

As A tends to infinity, the limit of U(A) is two, PFrom ths fact
that 2.U'(A) 48 positive, 1t is clearthat 2 is the maximun value
of U{A). Consulting 7able 1, it is seen that for n € 7, the mAximum
valus of R is less than cne. This gives the result that givon that
all the resction constants (Rapp forzs & set 8 of all thw reaction
canstants, 1.¢. S » {Iz,qa, 31“"":1-1'”1“"“’:;” are positive
(0. the set S 1s pormissible) and £ > w > O (which gives conaition
for positive comcentrations), there are no limit cyoles,

Using the tabls, ons can see that stable 1imit cyclas (8ince
%10 & creasing function of positive x, thw limit oyecle will be
atable) exist for n = 8,9 and 10, because there R > 1, If 4t can be
shom that (cos X ) 18 menotonioally increasing with increasing
positive n, then the zesult can be generelised to all large n.
Again we consider the function n log(cos g ) and show that it is



monotonically inoreafiing with inoreasing n, It is also the same.
thing to show that % log cos x (wheye x ﬁ} } 48 monotonivally
aoreasing with incrensing x, where

0<z<}, since n>2
™is function can b ro«stated as

i— log com x -'i-or- tann 4n | {1.68)

the right nand side ie thw mean value of ~tann taken over tin
interval 0 to x. The Aunction Wit tnoreading %, Kiven thab
0<x <%, I other vards, the functien n log cos X 15 amotomically
increasing with inoressing x, Thus stabls limit oycles result
forpu2wennz8, ' -~ (1.69)
The pext result, which Rapp has desrived is & genarel rocedure
ta"amﬂmtmg & Jarge class of permissible B giving it oycle
behaviour from one such set,
Set Ay, such toab (A, ) = 1, Now ar |H{0) | 1a 1024
f£ixed snd U(A) 1s shoun to be a monotonically incressing funcsion
with inoreasing A, Sica R > 1 far all A > A, U(A) 18 monotanioally
increasing 1f 2-U(A) 48 mmotanically decressing |
IR B 7O %

| o2 . S ve13 .2,
2-00) (24 (oo B VR 3 Rl (& -l
(1.70)

A®  27Ae

he funotion K(A) defined by

x(&}«@k‘ (M+27”)
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i8 a positive manctonically desoreasing funotion,
yrou (1.70),

R 2-0(a) =f &=+ x(a))Y5 - (x> (1.71)
™he funotion 4{(A), defined by

x) + & W3 xa))V3 4 500)

18 & decreasing funoticn of A, Hence, stnoe £(A) = 2-U(A), therefore
U(A) 1s & mnotonioally sncreasing funotiom giving the desived
 result,

The condition for limt cycle can be expressed in hms cﬁ‘
& physically realisAblo quantity y, in the expression (1.6?}/\1:

nothing but the squilibrd 'n).}m of 8 s
Ve ¢ (3 2/ ¢ & :
* : - . & | 3
& u(A} . ~/°a 2 & (og)(8,3

Terefare the condition Lor sxistence of stable limit oyele is

o6 b 1> (1.72)

Vhen by = b for all 3, (t1.72) vecoms,

f%_‘afg (%)3 foes X 1 >1 (1.73)

After deriving the constreint otmtt:cn, RAapp bas disousssd o
nurerical tests of the asulu obtained by him,




The feollowing valuss of the ccnstants were takent

X =30,000, =1, g =1, x(0) =1 and by =1

for all 3,
This means, d, = 30,000, d, = 1,0,=1,
The exampls shown was at the bomdary between limit oyols and non
1imit cycle situiticos (n = 7 and n = 8 systems), Por the above
values A = 21213,205 cnd U(A) is striotly greater than 1,9G07,
Using table 1, one finds that for n = 7, the value of R 48 0.9584,
thus there should be no stable limit cyole forn =7, Parn =8,
R = 1,0556, indicating that there should be a stable limit cycle,
The value of xn(t) a8 & funotion of time for each system was given.
Por n =7 thers was no stable csoillatim {figure 8) and forn = 8
there was Asymptotically stabls cosoillations (figure 9).

1001 : ”OF
\\ )

801 %0+ n

60+ ent |
% Xq

Tho} 4ot L
7 I i

200 | 2 V"

° 100 200 300 koo 500 0" 0 200 300 400 500

t —> ’ t —
Seven dimensional system Eight dimensional oystem
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The only difference 48 in tie 'pnum- of o more reactio: otep,
the resction constants Are the same. Thus clearly, stadble limit
eycles exist forresction systems where the inhibition of tin first
step requires two molcoules of inhibitor {p =2). Comparing this
Msult with tis previcus case of p = 1, whoare there existed no
periodic solution for all n, Rapp concluded that "the distimntion
batwesn & aystem that ocan cscillats and one that cannot is
"nar¥ired” into the genetic structure”, It dossn't depend @ the
numerical values of tie resction omstants which are extrensly
sensitive to changes in $he chemioal envircument, |

For larger syston, the degree of accuracy increasss singe the
1tneay oomponent acts more effectively as & low pRas rilter, Rapp
has predioted the value of the frequency for & system of n = 12,
K =9, a=5 by =1, 8 =1andx(0) =1 for all J, as 0.268
whareas the actual value is 0,263. Errar is less than 2%, In this
oase, (Pig. 10), the trajeotary builds up slowly to the stabls
1imit cycle, But the anvelope of tiw trajectary is oritically

SL
T %y, . 00 NANANNNA
T ! J YUY YUY UU UL
© 100 209_"__333’ 400 500

Twelve dinensional system Xy {0) =1
Eig, 10
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dspendent on the initial conditions, Keeping all the values same,
exoept changing X, {0} » 0.1, £ig. 11 results |

6
5 ﬂﬁ
I
g 3
at
AL
| |
o) 300 200 =00 400 500 Bl
welve dimensional system xd (0) = 0,1
' Fig, 11

The trajectary in this case olimbs up to 5.5 concentraticn unsits
and then dearease ﬁq the systems stabls 1imit oyole, Using the
above vesult RApp has discussed how the bloohemical ceciliatoye
can be used as dsvelcmmental triggers. Supposs thn twelve dimene
simal chemical oscillntor 18 ccupled to another syatem and cerved
&8 An amplitude depandent trigger with a trigpering level of %,5.
In the first system (zzj(e) = 1) 1t will veach the lsvel mly at
t = 300, but in the soocomd systenm (xJ (0) » 1) 1t ccocurs at & < 20,
80 on the dasis of the above results ome oan omcliude that the
descridbing function téchnique is carrectly applied in this problen
The results of the ssoond paper by RApp mAy be summtyized
as (for p = 2),



b)
o)

q4)

Por n S 7, the aystem of dirferential squationa do not
posseas & limit oycle, '
For n » 8, stabla limit oyeles exist, ‘

The condition {o & 1limit oycle to exiat is

“‘g‘((gg')‘ m”’tg'”“*zn RS
.{g—- (.-.-4.-&-.-)% 1/5
AS 27AG

where the expressian in curly bracket is mmotmiculy

inoreasing with increasing positive A, This inequality is

satisfried by a1l A greater than A miniounm for which equality

ocours ,

Trhe cendition for 1imit oyole is obtained in terms of physically

realizable (5, )., the equilibrium value of tie nth ¢cupanent.,
< B2 071 S

Por & special clse of bd w b foar &1l J, this yesult Linplifies

o
1<-§3-2(s [aon r

The expressicn for the equilibrium valus of the nth npecies
is also obtained in terms of reastion constants
| 4y a3 1 WA VA
Vo = (8) = [ 53—+ ( + )
° ~me %% sl e, 218 . ’

7. 4 - 4? 1 12445
v
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r) It has been found cut with representative nmphn; tiat the
quslitative behaviour of the envelope of & solution can be
extremely sensitive to the initisl valuss even if the {inal
periodic soluticn specified by the set 8 of reactian pare.-
meters remtin ths sanme,

Now, after revieuing Rapp's papers on tlw use of describing
function method to the blochemical oscilliator prodlem, we uill
g0 tweyr to the ILyapunov technique of solving the equatios and
dizscuss thw papers by Diswhs fPAndl and R8.0 in this ocmmestiog,

Ay A -
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LYAPUNOV : ITS USE B AL
OSCILLATOR PROBLEM

Consider a Jqynamical system whoss motion 18 governed by
a aystem of differential equations

*1 -xi(x1oxaa--osxn)3 1 =1,2,,4esn (2.1)

where xi are comtinuous functiong of the variabdbles x, which |
my be regarded &s tlv peneralized co-ordinates., Suppose that
& golution of this system is nown to e

X0 " x‘io(t)

which may be cansidered 88 & nanperturbed solution. Iet x, (t)
be the solution correcpanding to an initial value x,(t ) £ 03

1t will be called a perturbed solutien. Iotwesn the new and
the old solutions, there exists a relatim

%, (8) = x,,(8) + &, (t) (2.2)

where £, (t) are called the perturbatians,

(ne assumes that |g, | are sufficiently smpll to be able to
neglect their higher povers. If one inserts (2.2) in (2.1)
and develops the functios xl around the nmperturbed values
xio(t) to the first arder in §,, e obtains a system of the
variational equations

. X
51-5_3_;_(&:)051



in which the oo-nrtiaienti of §, are partial derdivatives of
the functions X, with respect to the varisbles Xy into which
the nonperturbed values Xy o bave Loen replaced after the diffe.
rentiation. B8ince x, 18 the inown solution and x, 1s tm
perturbed solutio, @n important case arises when all pertur-
batian functions zi(t) + 0 for t + e, in which case x, (t)
%, ,(t) as follows from (2.2). In this case the stability is
called Ssymptotic stebility, More detailed treatment oan ke
fmnd slsevhere [12]. '

Biswas, Pande &nd Rao (BFPR) bive mAde use of the above
mntioned Lyapunov ansalysis to find the 1tmit cycls behaviour
of the set of differential equations given by equation (7).

In their firat paper (8], BPR bave analysed the n = 3
oase (which can represent the protein syntheais reaction) with
arbitrary power of the variable 8, ccouring in the nonlinear term.
They bave proved that p should be greater than 8 for the exis.
tence of the asymptotic pericdic solutions, In addition to this
they tave also derived & canstraint equation relating to the
variocus rate castants, B;pl:lcit anklytical solutions are also
obtained, | | ‘

‘In their second paper [8], BPR hive generalized the ratter
in the first paper for the n.step feed-back cantrol system, A
general cpndttlm has been derived between p and n for asympto-
tically periodic solutims to exist, The constraint equation



61

i8 also dsduced for (i n.step process,
Ist us disouss ¢'® rirst papsr now, 7The set of equations

is
d
**“3
Fox e | @43)

v -os
P linearization by Lyapunov's teohnique, first the criticnl

poinu of the oqulticz:g fre obtained by setting

El-o. This gives

Rym - 3 (2.4a)

et fy m b &y | (2.5)
and il (g'%)i}

A4kXx3

ay
@ (BT E)-pFeL (2 Je)

il 18 the oritical o ogquilibrium concentration. Iinceristiom
is done by setting

11 ”ii + g0 ﬁ = 1,2,% (205)
where oy << %y | » {3%6)



The £irst two equaticnd in equatian (2.%) vefer to epigemetis
jrooesses whereas the third equation represents a metabolic
mrocess, It 4s therofore passible that the relaxation time
fopr x3 is much lsas than thAt for x, ynd By Consequently

Xy And X, need not Aszume valuss closs to the equilibriun
value %, (1 = 1,2), but X, way be cloee Lo 3:"3 and 80 equati,m
(2.6) 1s satisfied,

Putting (205) in ‘3;3) and ulins (29&)y e pgets,

81'

& - ry
A'ﬂ{(i"b&;,ﬁ - b(x1+s1) (‘* Q?’
> e i, ~-beg

Avic ZE(1+ ;?)p
.?

Par &y << i’, binanicl expansion leads to,

- 2 Tt bX =-be,
(A-o»k z‘;) ('H- gsl 5 )
83
Since pxg" segeke << (A+k RB), then sncther binomisl expassion
gives {2.8)
8 = -bey - Qe (249)
g scnes SN % (2.10)
(Mkig) e

-

€, = agy - 8, (2.11)
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*

E,} " Yoy = &e) , (E.’Q)
Thus the set of equatime (2.3) has been linsarized into tin set
éi - M’-Jad 3 i:c’ - 1020) : (2‘13)

whsre M is a matrix piven by,

-« 0 4

The mAtrix equation C » Me oAn be solved by alagmalising
li. Imt T = diagmalioing matrix for M, $3en '

Te = (TMT™)7e (2.35)
(Te)’_ will be lineay combination of s, . ¥ g mave osoillintory
behavicur, it 18 necessary far (Te), -](,. to have oscillmtoyy
batkviour, Hence tip Quthors MAve % dermnded that M have tuo

purely imaginary eigen.-values (omjughte) and the third oo
is real, The three gimen.values of M are

By = I, u, ==~1X and uJ-R.

whore 1 and R are bot: yeal,
Tiw ohardcteristic sguatien is

|uB=M| = 0 wix:O E is & 3 x 3 unit matrix,

Tho eigen.values satisdy this equation which when expanded
gives,

134" (bap 48 )41 (496408 )4 (bp84Ray ) = 0 (2416)



Ist D be the disgonadl matrix obtained from diagonalising
Nby T, 1.0.,

T HT" =D (2.47)

the form of D is

/¢ 0 0
D = \ 0 «ir © (2.18)
\0 ©0 n ‘

Since tracs of tihe nﬁi,rix 18 an invariant quantity, therefoo
T DuTr M |
R = «(bep+d) (2.419)
This is & negative Quontity.

Nor, substituting e af the imginAry roots in equatian (2,158)
and eollecting the rell &nd imeginary parts, me gets

I = (bp + D6 #+ pb)

(2.20)
wa . bpm
assuming I 4 0,
From (2.20), e gets
{bep ) (b+5) (p43)

Q= oF B - N (2.2%)
EQuating (2.12) and (2.21), aw gets

y - P8 5P

(mig?
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or mc‘g"+ax~xmu§~pmi§’+m‘uo (2&2)
Equation (2.4c) ocan bo axpinded as

Bt v A%, e RS Y (2.23)
Squarring,

ARTS 4 RO ol . (PO )
o A‘ﬁ-k’%’-faﬁ%?-(m)’.é;

Multiplying by N,

NAR PRSP 4 2ru & n( PR )0 L {&.28)

5

(2.23) can also be Aivided throughout by % and written as,

%+ 3‘.:— (2.25)

uM“

uBing (2.24) sna (2.25) tn (2.22), e gets,

M r LBl mg a0
5 5 >

w - o B3 ) ~-N(EH P

P oAl

- %}&5{9:% ﬁ*l



| (b+s) (bed) (p45) |
Ry =ity Lo- 7Y ] (2.26)

Since all the parametcres are positive, therefare thw positivity
of the equilibrium cqucentration i, gives the constraint:

P > F (bap,d) | (2.27)

where F (boﬂoa) amuﬁlm (2‘28)

The minioum velus of [ 18 obtained by minimising P(b,s,5),

g-.o-gi;--o-gzam to the conditicn b = 5 = &, [Since
ths reaction pareamstars are all positive, ths second derivitives
are also positive, lunce it carespunds to minima},

»

»e P(blﬂta)m - 0 2 from : (2‘28)

Hence p>8 {2429)

30 far & three step foed baock sontrol process the power of tin
cocentration of the inhidbiter molecule mwt be greater than 8,

In other words, more thian 8 molsculss of the inhibitor is roguired
to suppress the Xy © iy meaction, Tiw authors have also found &
relation for ik with all the other reactim paremeters. (2.ic) can
be written as,

1§+§.§gx.f_g (2..30)

Using (2.26), me geto

20 = (3P [ 1o (el (eng) g (2,31)




veing (2.31) and (2.2G) tin (2.30), e geots
{ iﬁx ¥ I 1a L%lm )9
‘ : wl
-4 { 0re Leedlpgdead) 171y )

N .
-3 [1““ Lﬂ%um ] (2.32)
1w %ﬂkﬁl _ ,_

A -y
“k pgag [1- ngsg ]

A Equatiam (2,%2) btecomes,

ke w oy (R )P [ 1. (2B (088) 4707 () (bes) (600)

(2.53)
Returning to (2.17), the matrix equatim becomss,
fep (2.35)
yhere D is given by (2.18),
™his gives,
951 - °1‘1n
J{ 2 - C2.~1R : (2'35)
S N oyt

winre c,, CB & 03 are arbitrary omstants, With the lelp ¢~
diagonalising matrix
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Lt o)
Te | g {ztile  Leatlllentil e | (2.36)
e SRS - S,

where Kys» K, &nd K3 axe again arbitrary, Using thefact thet
(Ta)1 '}1 almg with (2,35), me gets the equations for €yt

", , Rt (p8=bR)
t,' - () Cos (ﬁ'a(}-&.’) + Ge ats 2°)

wrmre A, = [(tRa12)° 4 (p2+nan)®)d,

tln“d; - M 3
1 1(vFe n®)
.2 cen (Tt Rt g(gm)

where Ay = [ ®(6m) + (R 107 JE

wae, - R

"
&y ) Con (Ii:&:)q%) + Oe (")

were A, = ay [ bt ]éj

m-‘d’j - B/I.
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From equations (2.37) e can ses that the solutims are nct
pwrely psriodic, it i & supsrposition of two terms, one
purely oscillatory snd the other an exponsntially damped guiie
tity (R 18 & negative quentity). Asymptotically, the expo-
nmential term disappsars and puwre oscillation remein,

To check the validity of the assumptions involved
{ 2.6) & (2.8) ) in tie anmlysis, BPR his chosen some numbers
(1sd by Goodwin's article in "Advances in Enzyme Regulationo”
B4, C.Webster, Vol, 5) for the various paremsters and shown
that for b mpwdwamwy =1, paeg (minimun allowed value),
a = 500 and A = 10, tlx maximum of 13 asynptoticslly is

(8) ax = ---h- ]

(mk) O
and ?t)-g‘-s%g
o G) << %

Equation (2.33) becoes
x .gu (%)% = 1.588 x 1075

0
this gives 531;‘;"‘- = 24
4

o Both the assurptions (2,6) and (2.8) were satisfied.
They have also chscked the validity for cases when tis expo-
nential term in (2.357) is nn-negligible end found out that
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it is stil]l satisrisd., The smmll value of k obtained by
them has also been dincussed, They have remiried that
since ij ~ 5, therefeore i; is & huge quantity. Hence, fox
the nonlinear term €0 be significant, k must be smll,

In their second paper B P & R have cansidered the
n-step process in which the nth constituent aots in such
WAy that the Xy * X, resction is suppressed, They have
generalised all the results obtained in the first paper.
We discuss thelr sscond pAper now.

The ne-step reaciim network are described by the
system of equations

S, = - by S
1 P T
A+k8n
8 =g Sy «b, 5
e 1 2 8 (2.38)
Sp = Bpoq Spaq "By 8y
Linsarization is dmne by setting,

31 - g; + Gi} 1 = 1,2,,40on (‘?'Bg)

A | &S,
The "oritical points” I are obtained by setting 3-5& -0
in equation (2,38), 11:1oh gives



Net
B1 8¢
Qg'” +%8n u% L I (2.50)

i=t 1

Substituting (2.39) in (2.38), e gets

*

g, = 8
Vo Ak (§n+en)5’

- b1 (31 + 31)

&2 .81% - b2°2 (2.1;1)

[ X X N J

& = 8y.1%. = Pt .

Equation for &, is tien linearised by doing appropriste Taylor
series expansion arcund Qn and keseping terms only upto first
order, This gives {85 befoare)

iz‘ - *b18‘ - Q&’n (2»%)

e Q ananl gg-ﬂ (2.43)
w e - »
(A+8P)® !

Deriving the above relations the following assumptims have
bsen taken as valid

8, << 8§, ~ (2.45%)
and@ »p nnkﬁg“' <« (auSF).

In matrix form, equation (2.41) and (2.32) can be written &o



éi - Myyey 3 4,0 = 1,2,0000m (2.55)
where M is now & n>n dimensiomnal matrixs

*b1 00.00’000..’4

M= 0 82 'b) s & 5 s 5 & & B 0 (2 3%)
L ] & [ ] E 2 *
S R :
0 s 4+ # & 5 B % ¥ » sn.n‘ "bn
The chArecterisitic equation for diagmalisation of M is
B ) e B 0 (2.07)
n ") - n - - {2,
1e1 1 1a1 O '
where ) are {I® roots of the equatiam,
et T = diagonalicing mateix for M
& ol ap, (@.48)
whixe D e The dri&ca%k&\ S S
Tren oquation (2.45) can be written as
Jo=Df (2.598)
where jg- *¢ ond K = Tas {2 .b9b)

In order that s, Mave periodic solutims (or consequently ]< 2
be omcillatory, the nntrix M must have pure imaginary oignz:...
values, Since it is oufficiet to have &asymptotically pericdic
solutions, then at lenst one pair of sigenvalues of M shoulid be



pure imaginary and the remining mes can be either negative
real or complex with negative real parts,
Ist the pure iriginary roots be
A o= +£4% (2.50)

wiere I 1s renl,
Therefoare equation (2.47) can be written as

1§- Q, ] I Q nﬁ‘ 0 (2,51}

@ + = .

xp [ r;r 1 1-1 ,_ 8" 5
10

where (b, +1I) = n.e 2 (2.,52)

with n, = (b2 + %)% ana o, = tan"'( &) (2.53)

and  0<6, <wyph (2.50)

From (2.51), separating the real and imeginary parts, ons gots

"1 Cmﬁ-o u -Q nl']" &8
1=}

8in Oy » 0
3.--1’11 j 3

Toase two equatims give (assuming 1, »0)

(2.55)

§_ 91 - (2‘4‘1)[!, 1 = ‘,1-,2,..« (2&55)
I=T

and
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n
B n,
P ) I : (2.57)
Net

n
iw=l 8”

Equation (2.43) and {2.57) give

nﬁ1
g
1y 1

n

1
i=t M

pla 8P o (A 4 i BD)° (2450)

Eguations (2 .40) and (2.58) give

net n

n Iq
gn-fa'n“%“’“-r*l - (2.59)

n P4 0 b,

n
P> —_— (2460)
since &1l other quantities are positive. 7To find the minitun
I
of p, the functien ﬁ-%n mintinmised,
& | 1
n

Putting 3%; { ﬁ-ii») “«0, m=1,2,00en (2.61)

one gets, (Appendix (4))

1 bp 5 1



75

Differentiating (2.5G) with respect to b, and using (2.53),
am gets

Bx>g‘?1¢,.x.
Bo g |,

5 qfng%;-x,. are Ky - I (Z_ 2%)‘1 - Constant,
Substitution of this equatim in equation (2,62), gives

o eb® Kb, {2.63)
where K, = IK 12; %{ l-ccnst-ant.
Prom (2.63) and (2.53),

b, = I/K, (2.6%)

This is true for tl.Jf i1y, hence the minimuz correspmding to tle
funstion (11 ni/ﬁ bz) is obtained when,

b1 - b2 » Lasas W bn' Th - fla - ."”. - nn (2065)
Consequently, equaticn (2.53) gives,
0, =6, = ci0ue w8 (2.66)

Equation (2.53) also gives that

% = S80 81.. (2*67)



n
Hnce o on a .
11 |
il .
» Sec® ( g ) (2.68)
Since 0< 6, < 32 and § o, =(2441)1 (2.69)
- it

s Equatian (2.60) finally gives

p>sec® (1) | (2.70)

As in the caso of n = 3, & constraint on K 18 also
obtained here, | |
BEquations (2.40) ana (2,58) can be sxploited to give the
following results

»n : n‘ﬂ )
kmh [t (e 20 1 (b (e ——'5* (2.71)
by n®  nov,
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Since p is canstrained by (2.70), therefars the expressian Lor
k in equation (2.71) loads to a new caistyaint an the rate 20-
efficient which antrols the fesd-back. The nmm of thin

mxtutmmaax‘wtuomornns.



CHAPTER Iy
pISCussIays

New, since we [&ve discusssed the works of Rapp &nd DI
in Mtails, we oan c¢cphre the merits and demerits of the
methods used and results obtained.

It is, of courty, undoubtedly true that Lyapunow antlye
sis as given ttﬂhmltt in & more elsgat and straight fornard
why than the descriding funotion method,

Rapp, in his {70 papers, haa derived the solutions of
ths set of differentiCl equatimms repressnting feed back ¢ontrol
systems for p =1 and p » 2 anly. He bas also indiocated that
the chmes of p = 3 and 4§ are in progress., Par each value of p,
a® has to go through tedious mathematical oklculations ¢o
arive the analytic fame for the deseribing funotion., 7The
intagrals and solutios of equations wooms moare Aifficult oo
ons goes to higher poioxs of p., Appesrently it seems that tlore
¢in be no straight faward generalisation for the case of any p.

On the othey hand, BFR have derived the general condition
fa oscillatory solutioms in a simple but fairly rigorous uay
by using Lyapunov anglysis. Their results agres totally with
Rapp's,

Farn =7, the inequality (2.70) gives

p > Sea” ( %’- } = 8ec” (25°%3') 2,072
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and farn = 8, 1t gives

p>ec® (F) =500° (22°50') = 1,850

Tress two results shoy that for p = 2, n oust be equeal to or
greater than 8 for A ctable limit cycle to appsar, Thus the
result agrees with Rapp's equation (1.69),

From BFR'Ss &nslysis, it is also obvious that p oan
nevey be less than awoj (sec O = 1 atnunmlytndo«(ei{g
and p is positive), ience there cAn be no asymptotically stable
periodic solution for p = 1, This result Alsc sgrees with the

results of the firat peper of Rapp, where he says tbAt no stable
1imit eyole can result far p = 1, general n,

Both Rapp and ZFR have derived a relation for the sQuie
1ibriun value of the nth chemical species which acts as the
inndbitor for the feed back cantrol process,

Rapp Ms shown in equatinn (1,53) that the equilitriun
value of 8 (1.6, 7, @ (8 ) for p =2 is dspendent m tho
reastion paramsters cnily. BPFR, in equations (2,26) and (2.59)
have given explicit Aolutions for the squilibrium value of 53
snd 5 along with the canstraints (2.29) and (2.70) an p.

That means, when p 15 given, ans can find the values of (83)
m'ﬁn) explicitly, I Rapp's paper y  ar (80) (far p = 2)
A8 heen derived from the geroeth balance squation (1.41) which
involves the integral 8, which in tum is & funoyion of
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p{ =2 ere). But in DPR's work coe can 5ee sasily how the cquli-
brdum value (Bn). ;pend m p.

ne of the priccipal results obtainsd by Rapp is that
wen | H{49) | 1a wept £1x0d 1n the inequelsty

u(a) (GHE | > ¢

stable limit cyols candition is also satinfisd for all A

(A =4, \/da/éf 0,) Croater than & A, ..., wpere U(A) s given
equatiom (1.67). That teans the condition for stable limit cyole
is dependent an thw valwe of Amin' Now, A is & funotion of Che
resction paremeters d,,d, &nd o, which in turn depend on a, I,
33’0 snd bJ 's. Thus $he values of the paramsters also dsteriine
the sandition for stable oscillations when the vekotion steps (n)
are ept fixed.

The expression for k in terms of Aher resctim parerpters
" h&ve been obtained by 3FR in both of thwiy paperse., This i On
additional omstraint nhich eontrols the feedback. Equaticao
(2,33) and (2.71) shous elearly how k 18 dapsndent on the olisr
reaction paremsters &nd also an p.

Thus the value of k ohanges with p even when the otipr
paressters are kept canstant, To underetand it we must dlscuss
the physioal significance of k.,

While deriving the nanlinear term in X, equation of (G)
1.0, ;3 (for p = 1), Goodwin [2] ImS assumed that the rmta.
bolite remains in & aéew state relative tothe epigenstic 'apnom,



ascause the relaxatia: time of the metabolic system is mush larger
than that of the epiztnetic system. The paramter k = F%rofer [2].
Y and & are obtained from the controleaquatioms for XB. 1,6 sy =
vXg = 6x3. where X, ic the protein or snzyme,

vy involvez tirx yate of enzyme action, the subatrate oone
centration and othar constants, & is the rate constant for ¢iw de.
greaation of the metaibolite. The conatant m is & complioatod
function of miny elsruntary constants which relate to the ecuili.
brium constante of thi processes like:
i) reasticn between the repressars and the DNA templates

1) reaction of precuwrsors for RNA syntlssis, namely nucleotides,
with the fres DA templates,

114) 1f t}® represZor do not act directly to reprress oRIJA aynthesis
but do 30 by cotbining with an aporepressor, them m also
contains the equiltibrium constant for that conmpliokted
reactim,

We have alre2d; Seen that k is a fumetion of the obior pare.
metere, but its dependence on m might give & olus of its dopendence
an § . OGenerally tle physical interpretation of p 1s the Sollowing:
it repessnts the nuzmber of molecules of thw inhibitor required to
block the X, to X, reistiomn, or it 1is related to the number of
binding sites for X, 1 X;. From Goodwin's discusaion an , 1t 1s
fairly correct to infer that m s, in & way, related to the binding
azfinity of X to X,s or in other words, it 1s related to tio
various ways the inhibitor reacts with x‘ to reprens X, « L, redction,



80 1t seems t0 Lo natural for m to depend on the nuricr of
binding sites or on tiw number of molecules of ths inhidibor,; p,
Consegently, it 18 railer convincing thal k should also d&pond o
P+ Thus the relation o tained by BFR far k 18 not anly useful to
mis the nonlinear tern s ignificant, ket also AR 2 TRy
torn sigottioant, but also hAs physioal mekning. When all tiw
ather reaction peramciors are canstant, even then k will shange
with p. This 1s an important result obtained by BRR, -4

Rapp in his second papsr, bAs given another impartant and
biologically significant result. It is the dependence of tlv
envelope of the solutions an initial values. He has shom by
taking repressntative axamples that, keeping all the parametars
the shne, the qualitziive behaviour of the envelops of tie
solutions change drestically with the olange in initial cwmcontre.
tions (.n.1 values ), Asymptotioally both have the sams sort of curve
but 4n one case 1t 8liouly builds up and in the other it shoots wp
for & very shart time and then smoothwms o the atable forn, This
my bs very important in the case of developmental triggers.
Cramical oscillators coupled to different systems may triggoer the
dvelopmental mechaniams to start at gifferent level of cwncontyrs.
tims, Thus the finding by Repp is quite significant,

BPR in their firat paper (n = 3 case) have derived tio
escillatory solutions explicitly (equatian (2.37)). The sociutiocus
contain the eigenvalues I and R, Knowing t‘.hbu, ane oan havo tie



&

sxact numerical solutions of the eQquations, Prom equation {2.,68),
knowing n and b,. ans ¢an find % and consequently I from suntion
(2.53)., Parn =3, th values chosen by ths authors were

bespwamndwyswsd
Therefare from equation (2.20) I® = 3, or I = 4.5,
Pron (2.19), R = =3, latng the values of 1R, tie solutiams ey.e,
ang & can b writtan, For & n-step pwoouss, the rnqmmy’m
be famd, when all tln p's syre equal, by using equation (2,603},
For n « 12 snd allpp, = 1, equatian (2.68) gives (1 + I*)® o geot®( ?5
or I = 0,268, This value 1is the same As obtained by Rapp in his
sscnd paper, Howsver, 1t 1s interesting to note that wihen tiw
'8 axe a1l equel, tlo frequency of ossillation asymptotically is
independent of p and the other paremsters like s, A, k, a4 Ote,
and depends only on ¢ 8nd n,

. Since the freQuancy we have caloulAted depends en tho
assumption that there 48 anly ne pair of purely imaginery rocts
then this is similay ¢ o the approximation in thw describing
function method of keeping just the fivet harmmic of the FPomter
expansion of £(s). T existence of more than e pair of |
1ueginary roocts awould imply the existence of more than one
frequency of oseillatiom, and consequantly o ooculd expeot the
sppsarences of harmenios, |
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In assoribing function anAlysis it is not possible to get
the analytical oseillnbory solutioms of the concentretions of the
bioochemical apecies involved, but it gives the oriterial for
asymptotically stable asoillations.,

On the othwr bind, Lyspunov andlysis not only gives
explicit analytic solutions where ths Appedrénce of the tern om'
(R 1n y\e%qti'n) shows ¢he existence of damping (which ssymptoticslly
becomss insignificant) giving rise to stabls pure sinusoidel
ascillaticns, but it also gives a general condition on p &nd n
for the existence of ctable osoillations, Thus, after revicuing
and discussing both the methods, we commmt that Lyapunov's
mthod 1s algebretcally more tractahls and gives general results

camecemning all p and .

Ay G- A -
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MINIMIZATION OF SHR PUNCTION {;—;"
4 i
n = (] +
3
R AL AR }
3 ¢ —~l nbirg-;;n(b;-»x-)z
R

n 1 b .
u%‘t[g;+qgf13§;2q;1 (0)
For extremun, ‘
o
S5 (A ) = 0 (b)
or 1 a-?n X -‘L-u
ba " 83 a (e.62)
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1 n
- & Egl-orromtmcma-
m - | tin of cxztyemum,

o P
d Ly
+x5§;gs‘;(fq;’+b; Byp ) (e)
Simonm-(bfndbl')é
3
. 1
. %.m(ebmawwxg%;) @)

calculation of §§- t
p

Pron squations (2,53) and (2.56)

ao 1
p -z: tan” -
z g?' ‘r’ °



b b
o --&-,rgszzgmnf' 1 & ( 7+ )("tnatcotes an1

1+ ' v o
™ 1*;} :'f-mm luding
: - " '; 4-1-—- = Q
or n;(x bmgég)*f 'libi r.%
o Ao o AW .o
o oom 31 n’i m
b
4. L
" %fﬁ <
B | |
or - r =4 31 (o)
m ‘;_T{i

At mindmum, 1;.;”“3&‘ ‘hz B e .bn.b’ all ﬂi‘.l“m
and can be written 85 0.

..z(%é;)m-i-;(ﬁgr“-& | (r)

tBtng (r) tn (d), at -inirum,

)
(52 daan = 5= @3 85 + B =L 0 8y 0 B )

n o
—--l-—-—d. - - ‘
35; (2 ) ) = = ——J-—--(b; —s (88 8y 21 3@;11

n--———f-?n—- - g 21(§é—)1—u

(by+ ol o Lwt P nj
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,‘4 n qa. ‘l‘ bq‘

From equation (), oo gets by differentiating w.r.t. b,

» b b '
s¥5, éni{;:g;—(s - )) - 8% E«rxg—,;;(!%

pom p 1 n§ »
o
- L. .2 3 >
&m tg;q; g%;[n; 21?-1%%5;(“‘”

- e ( P EL"
e SB; n,)) (&1 n?_)

(n)

Using (f) and (g), aC gets ti® mintmum of the double dsrivative

of I, a8



_ 2 _2m 2 2r 8%y
tnq‘ " Gm]gg g el
218
S - -2 SR -] 4
(5%5';; )min P nyt @)

Theretore using (c), (f) and (1) the second derivative besors
(at the minimum):

- (2" (o, MxIl: » 3 (9

™he sscond derivative is & mtrix Dnmp. 7‘1'!! disganal eleaents of

’n@ aye obtained fraa (J) when m = p, and otier terss give Ul® nm
diagonal elsmenta., IU is obviocus that all the diagonal eslerxmts
Aye equal and also all tIw non-dlagmal slaments are equal t£o esach

othar, The off-diagonal elsments &re:



ol It ng )b‘(ﬁ) (2.68)
( = (se0 ) o~ using equatians (2,

‘ n

_ geo (2)  381n*( g-_?_
vR n

The diagonal elsment iss

(2 BRe TP -2 a1t
»® pE(Y* 4+ 1) nb®n*

(k)

bé{sec™( 2 ) - sec”( X)) 3etn‘(})

»uec”(3)( ' +
: b se™( X)) npt ]
e‘ﬁ gn“ . m‘ 3.
- moc™( B ) { A + JMn a8 )
n Paec®( B ) nb*

2 & .
,ucn(g)(f_n...n..,"""‘g')

¥ nb*
in*( &
-Esf.g(ﬂ). sma(g) {1 4-?..:...5.(..&.).] (1)

The omndition for minimum 18 thAt the deteruinant |Dp, | > O
for all n whare b‘ “bna » ® 4 .bno
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From equatims (k) and (1), oow cRn ensily see timt all
elarents are positive (n is always greater than 1 and 2) Snd tis
diagonal elements aye larger than the non-gisgonal ones. I6%

A be the dlagonal sleant and B the off-disgamal anes, Then

A B B LA A S RN B
B g “ OOOOOQB
B B AR B ....B
2% - « s s s . wisre A > B > 0
Py :
B E g .0.’00“

To show that [D7] 18 positive we do the following:
Consider n « 2,

A B
 + ol

B A = A%.p® > 0, sinoce A > B,

nw3,

B
B -An'-ama
A

o
> B werw

' ﬁAB.?

g D® « A(A® « IF) « 2AR® 4 288
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or D° = A% = A - 208 + 2P°
= A% 4 AB? . 2A%B 4 2A%B + 280 o MAP®
= A(A? 4+ B® « 2AB) + 2B(A® + B* « 2AB)
= (A + 2B){A=B)* > &

A B B B
B A o B

D¢ =
B B A B -AD‘-SEIB
B B D A

where

B B D

RBa B A b
B B A4

2. D* = A[(A + 2B)(A=B)®] = 3B(B(A®«3"® )«2B(AB-E"))
= A(A42B) (A~3)% « 3B* (A-B)[A+B « 2B}

w A{(A+2B}{(A=D)* < 3B®(A-B)®
= KA-B)R[AE 4 2AB - 38*)
« (A«B)*[AZ 4 AB + SAB = 35%)

= (R=B)® (A +3B) > 0,
It us assume that

D® « (A-B)™! [A + (n-1)B]



men D emd® o IR .

Now na-B(A-B)

Ry = B(A -~ B)?

. - - n~1
R B(A = B)

o P eap - B - B
= A(A-B)""1[A 4+ (n-1)B] = B, B(A)"""

= {A-B}"[A+ nB)
Thus we see tiat all
D® > 0 when by @by w cus =b =D

Tarefoae the conditic for minimum 18 satisfied,

A .
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