
Design and Implementation of
A Relational Information Management System

in Turbo-Pascal (PRIMS)

Dissertation submitted in partial fulfilment of the

requirements for the award of the Degree of

M~STER OF PHILOSOPHY

(COMPUTER SCIENCE)

PARAMJIT SINGH

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI • 110067

1987

JAWAHARLAL NEHRU UNIVERSITY,

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES,

110067.

CERTIFICATE

This is to certify that the dissertation entitl'ed "Design

and Implementation of a Relational Information Management

System in t.urbo--F'a~;cal" submit ted by Par·amj it Singh is in

partial fulfilment of the requirement for the award of

degree of Master of Philosophy.

The work is origional and has not been submitted, in ~art

or full, elsewhere for the award of a d~gree.

<Dr. R. C~ PHOHA)
Super· vi s;.or·

<Prof. K. K. NAMBlAR)
Dean

DEDICATED TO PAPA

ACKNOWLEDGEMENT

I remain indebted to many people during the preparation

of this dissertation.

Fi r~;t <:Hid foremost, I wish to express my deep -gratitude

to my supervisor, Dr·. c. for his scholarly

guidance and encouragement at every stage of this work.

I wish to express my heartfelt thanks to

Prof. K. K. Nambiar, Dean, School of Comp0ter and Systems

~)c: i en c: es; , Nehru University, Nr-2~.., De 1 hi , few

providing the necessary facilities to complete this

I shall be failing in my duty if I do not thank my senior

Ashwani who provided me with lots of insights throughtout

the course of this work.

but not the least, my sincere thanks to all

faculty members and collegues for their helpful

and co-operation.

other·

< PARAMJIT SINGH)

,·
I

CONTENTS

CHAPTER DESCRIPTION PAGE NO.

1 DATABASE SYSTEMS - AN OVERVIEW

* INTRODUCTION 1

* WHY DATABASE ? 1

* AN ARCHITECTURE FOR A DATABASE
SYSTEM 5

* DATABASE MODELS WITH RELATIVE
ADVANTAGES •. 14

* RELATIONAL DATABASE TERMINOLOGY •• 21

2 PRIMS DESIGN AND IMPLEMENTATION

* WHY PRIMS ?
* INTRODUCTION TO PRIMS
* PRIMS ARCHITECTURE
* REPRESENTATIONAL STRUCTURE

OF THE DATA
* IMPLEMENTATIONAL DETAILS

3 FURTHER ENHANCEMENTS

* AT DESIGN LEVEL
* AT IMPLEMENTATION LEVEL

REFERENCES

APPENDIX

1 SOURCE CODE LISTING

2 SAMPLE OUTPUTS

•• 24
--24
--26

• -28
-. 29

• - 4(2)
--41

--43

--44

--74

CHAPTER

* INTRODUCTION

* WHY DATABASE ?

DATABASE SYSTEMS

-AN OVERVIEW

* AN ARCHITECTURE FOR A DATABASE SYSTEM

* DATABASE MODELS WITH RELATIVE ADVANTAGES

* RELATIONAL DATABASE TERMINOLOGY

1

INTRODUCTION

What exactly is a database? Basically, it is nothing more

than a computer-based recordkeeping system that is, a

system whose overall

information.

purpose is to record and maintain

A database, then, is a repository for stored data. In

general, it is both integrated and shared.

By 11 i ntegr·atE:~d 11 we mean that the database may be thought

of as a unification of several otherwise distinct data

files, with any redundancy among those files partially or

wholly eliminated.

By 11 Shar·E?d 11
vJP mE~an that inchvidual p1eces of dat.<~ in the

database may be shared among several different users, in

the sense that each of those users may have access to the

same piece of data,and may use it for different purposes.

Sharing, in fact, is a consequence of the fact tha~ the

i nte(~rated. The tE",'r'·m II sh<:·wed 11 is fr·equent 1 y

extended to cover, not only sharing as just described,

but also concurrent sharing that is, the ability for

different users to be actually accessing the

database (possibly even the same piece of data at the

same time. A database system supporting this form of

sharing is sometimes referred to as a multiuser system.

WHY DATABASE ?

ThE? br·oacl c.~nswt:>r to this quest i em is that a database

system provides the enterprise with centralized control

of its operational data,which is one of its most valuable

assets. This is in sharp contrast to the situation that

prevails in many enterprises today, where typically each

application has its own private files (quite often its

own private tapes and disk packs, too) so that the

operational data is widely dispersed, and i~ therefore

probably difficult to control. This implies that in an

enterprise with a database system there will be some one

identifiable person who has this central responsibility

for the operational data. This person is the database

administrator (DBA).

Let us consider some of the advantages that accrue from

having centralized control of the data.

Redundancy can be reduced.

In nondatabase systems e~ch application has its own

private files.This can often lead to considerable

redundancy in stored data, with resultant waste in

storage space. In database environment, the files' can

be integrated, and the redundancy eliminated,if the DBA

is aware of the data requirements for all applications.

We do not mean to suggest that all redundancy should

necessarily be eliminated. Sometimes there are sound

business or technical reasons for maintaining multiple

copies of the same data. In a database system,

2

however, redundancy should be controlled - that is,the

should system should be aware of the redund~ncy and

assume responsibility for propagating updates.

, Inconsistency can be avoided.

This, actually, follows from the previous point. Suppose

a particular fact is represented by two distinct entries

in the database, and the system is not aware of this

duplication

controlled

in other words,the redundancy is not

) . Then there will be some occasions on

which the two entries will not agree (that is one and

only one has been updated). At such times the database

is said to be inconsistent. Obviously, a database that is

in an inconsistent state is capable of supplying

incorrect or conflicting information.

It 1s clear that if the g1ven fact 1s represented by a

single entry (i.e. ,if the redundancy is removed) such an

inconsistency cannot occur. Alternatively, if the

redundancy 1s not removed but is controlled, then the

system could guarantee that the database is never

inconsistent as seen by the user, by ensuring that any

change made to either of the two entries is automatically

made to the other. This process is known as propagating

updates.

The data can be shared.

We have already mentioned about this. But this point is

so i rnpor-tant that we stress it again here. It means not

only that. e:·: i st. i ng appl i cat i ems can ~:;har-e the data in the

database, but also that new applications can be developed

to operate against. that same stored data. In other words,

the data requirements of new applications may be

satisfied without having to create any new stored files.

Security restrictions can be applied.

Having complete jurisdiction over the operational data,

the DBA (a) can ensure that the only means of aCCf.?SS to

the database 1s through the proper channels,and hence (b)

C<::\n dt:?+.i.nE' authorization checks to car-r-ied uut

dCCf.~~-S to ,~ttem-ptecJ.

chec: k!:o ca.n b(:? for'- each type o·F

retrieve, modify, delete, etc. to each pleC:E'

of information 1n the da.tabase.

Integrity can be maintained.

The problem of integrity is the problem of ensuring that

thE' in tht:> c:l<:it.clba~;e i c: accurate. Inconsistency

samE' "fc.<ct." is c.<n

example of lack of integrity (which of course can occur

only if redundancy exists in the storf::.>d ddt<~) . Evt2n if

cont.c-1i n incorrect ddta. Centralized control of database

hE•lp~:; in c.~voidirHJ these situc-~ticms,insofar· t:-:\S they cc:u1 bE'!

avoided, by permitting the DBA to define validation

4

p r· oc: t:~d ur· es to be carried CILl t whenever· any update

operation is attempted.

l"lost:. of the advantages listed above are fairly obvious.

however one other point? which is not sa obvious must be

to the list, narnt:~ly, the p1r·ovi si on of data

i ndepc•ndf'~nc:e. Str·ic:tly is an objective

rather than an advantage.

AN ARCHITECTURE FOR A DATABASE SYSTEM

We vJi 1 1 an outlinE~ of an architecture for a

~::;ystern. do not claim that

can be nE~.:~t l y m.::..tc::hed to this

do vJe to suggest that: this

architecture provides the cml y possible

the architecture does s;t:'~E~m to ·fit

i 1"1 br·oad vii th proposed by the

ANSI/SPARC Study Group on Data Base Management Systems.

The architecture is divided into three general levels :

internal, conceptual Fig. 1.1). Bro<HJly

is the one closest to the

physical storage, that is, the one concerned with the way

in which the data is actually stored; the external 1 E'Vel

1s the one closest to ~he users~that is,the one concerned

with thE~

USf.;!r·s;

way in which the data is viewed by individual

and the concE::opt.ual 1 evel

r.:.·
.J

is a "1 evel of

E:-:ternal level
(individual user views) . .

• n • • • " : ... · .. :
\

\
I

I I

Conceptual level
(community user view)

Internal 1 evel
(storage view)

. \ : ... / .. ,/.

.

I
. . na•n•••••na•••••

Fig. 1.1 The three levels of the architecture.

. " .

indirection" between the other b"Jo. If the e>:ternal level

is concerned with individual user views, the conceptual

1 evt~l may be thought of as defining a community user

each consisting of a more or less abstract representation

of some portion of the database, and there will be a

single "conceptual vi E.~w", con~:;ist.i.ng of a similar·ly

abstr·act. r·E.~pr·eser .. ,t.at.ioll o+ thP dettabas~e in its entirety.

t1ost of the u5.;ers wi 11 not be interested in total

database, but in some restricted portion of it.

Likewise? will vi F!W II '

representing the total database as actually stored.

We will, now, examine the components of the architecture

in somewhat: more detai 1 (Fig. l. 2).

The users are either application programmers or on-line

terminal user-s of any degreE· of sophistication. <The DBA

is an important special case.) Each user has a language

6

Schemas and
mappings built 1

and maintained ~
by the

database
administrator

(DBA)

User A 1 User A2 User B 1 User B2 User 83

Host languag~ dost language Host langua9<' Host language
+ DSL

Host language
+ DSL + DSL L__:_::-D_S_L_-' I + DSL

~!
·External i

External view A
schema A •

• E.' :ernall External view B
sc' em a B

Ex tern a I iconceptual E 'ternal:conceptual
mapping A m;.,pping B

~ /
Conceptual I

I

!
Conceptu~+--------•1

Conoep.l, "''"''"~
schema

I

l Storage structure I u L H R p R u u definition

.
St~red ?~taba~e

1
(lntern

1
JI vie(")

(lnternalschema)jL_ ___________ ~----~-----~-----~--------------~

·User interface

Fig. 1.2 Database system architecture.

at his or her disposal. For the application programmer it

will be a conventional programming language, such as

COBOL or PL/1; for the terminal user it will be either a

query language or a special-purpose language tailored to

that usef's requirements and supported by an on-line

application program. For our purposes the important thing

about the user's language is that it will include a data

sublanguage<DSL), that is, a subset of the total language

that is concerned with database objects and operations.

We talk about the data sublanguage as being embedded in a

host language. A given system may support multiple host

languages and multiple ·data sublanguages.

In practice, any given data sublanguage 1s really a

combination of two languages: a data definition language

(DDU , which provides for the definition or description

of database objects (as they are perceived by the user),

and a data manipulation language <DML), which supports

the manipulation or processing of such objects.

We must

1 anguc:'lge

coupled"

separ· ab 1 e.

case, at

concerned.

note that the data sublanguage and the host

(such as COBOL or PL/1) are fairly "tightly

that is, to the user the two are not really

In curre~t practic~ this is usually not the""

least so far as programming languages are

Instead (a) the definitions are completely

outside the application program, and written in a DDL

that does not even faintly resemble the user's host

language, and (b) the manipulation is done by CALLing

8

standard subroutines (provided as part of the DBMS>, and

is therefore again outside the host language framework.

In otht.~r wc:wds, in most system~:; today the data

sublanguage and the host are very loosely coupled. (.~

of tightly coupled system provides a more uniform set

facilities the user·, but obviously involves more

effort on the part of the designers and developers of the

system.

To return to the architecture: We have already indicated

that an individual user will generally be interested only

J.n some p or-· t. i on of thE.• total database; moreover, the

of that portion will generally be somev-Jhat

compared vJ i t. h the way the data

phy~:;.i Ci::\ll y In terms an individual

user's view is called an external view. An external view

is thus the content of the database as it 1s seen by some

particular user (that is, to that user the external view

is tht:~ d<:lt<.-~bds;e) then, <':HI e:-: tern a l view

con~si st~::; of multiple occurrences of multiple types of

An external record is not necc·:~ssar- i 1 y

the same as a stored record. The user's data subJ. c-.-1nguage

is defined in terms of external records;

Dr·1L. "gE?t". opE?ration wi 11 r·etr i E·ve cUi e:-: tE'rnal

rather than a stored record occurrence. The

to an external record.

Ec:.'IC:h e:-: t. er· n i.:\ l view is defined by means of an e:-:ternal

9

which consists basisally of definitions of each

of the various types of external record in that external

view. (The e:·: ternal schema is written u~;i ng the DDL

por·tion of the data sublanguage. That DDL is therefore

sometimes called an external DDL.) In addition there must

be a definition of the mapping betwE~en the e>: ter·nal

and the underlying conceptual schema.

We turn now to the conceptual level. The conceptual view

is a representation of the entire information content of

thE:! clatc:1basf.~, aga1n in a form that is somewhat abstract

in compar--ison wl.th thE~ in which the data is

Cit may also be quite different from

th£~ in which the data is viewed by any

Broadly it is intended to be a view of

the d,:\ta than as usE.~r-s

forced to see J.t by the constraints of [for example] the

pc:wt i cul ar--· The

C:UIICE'O'pt.ual vi E?I'J of multiple occurrences of

multiple types of conceptual record. A conceptual record

1s not necessarily the same as either an external record,

or a stored record, on the:? other. The

conceptual vi e11-J is defined by means of t.h€'0' conceptual

schema, which includes definitions of each of the various

c:oncE~pt.u.::~l r··F!c:or·d. (Thl~ concept.udl schema
I

us i f"lCJ ,-:\nothl~r· data dF.~finition l <::~nguagE~

1
. C" _,

the

conceptual DDL.) If data independence is to be achi E'ved,

the<sc: definitions must not involve any considerations of

1(2)

access strategy - they must be

definitions of information content onl~. Thus, ther·e must

be no reference to stored field representations, physical

sequence, inde>:ing, hash-addressing, any other

storage/access details. If the conceptual schema is made

truly data-independent in this way, the external schemas,

which are defined in terms of the conceptual schema 1-'Ji 1 1

be data-independent too. In most existing systems the

conceptual view is really little more than a simple union

of all individual user·s vi evJs, pos;sibly with the

,:\ddi ti on of SOfTH2 simple::? author· i z ,:~ t ion and val i d<::lt. ion

pr· oc: E'cl.ur es.

Tht:-.~ third level of architecture is the internal level.

Th<;;> internal view is a very low-level representation of

the entire database; it consists of multiple occurrences

of multiple types of internal record.

:i. :::; t·.hE' ANSI/SPARC term for the construct that 1-'Jf.? h,:;,ve

calling a stored record. It does not deal in terms

physi c.:d

devi ce···-spec: if i c

Sl:·:E:~~; .. The i nt.E:~r··nal

or· blocks, 1-'Ji th

such as cylinder

view is described by means of

any

tr··.:J.ck

the

internal schema, which not only defines the various types

of stored record but also specifies what indexes e:-:1st,

how stored fields are represented, what physical sequence

the stored records are in, and so on. The internal schema

is written using yet another data definition language

the internal DDL.

1l

Referring again to Fig. 1.2, we observe two levels of

mapping, one between the external and conceptual levels

of the system and the one between the conceptual and

internal levels. The conceptual/internal mapping defines

the correspdndence between the conceptual view and the

stored database; it specifies how conceptual records and

fields map into their stored counterparts. If

structure of the stored database is changed- i.e.,

the

if a

change is made to the storage structure definition - the

conceptual/internal mapping must be changed accordingly,

so that the conceptual schema may remain invariant <it is

the responsibility of the DBA to control such changes.)

In other words, the effect of such changes must be

contained below the conceptual level, so that data

independence can be achieved.

An external/conceptual mapping defines the correspondence

between particular external view and the conceptual

view. In gen~ral, the same sort of differences may exist

between these two levels as may. exist between the

conceptual view and the stored database. For example,

fields may have different data types records may be

differently sequenced, and so on. Any numb~r of external

views may exist at the same time; any number of users may

share a given external view; differer1t external views may

overlap. We can express the definition of one external

view in terms of others, rather than always requiring an

explicit definition of the mapping to the conceptual

12

1 E.~vel . This feature can be permitted~ particularly,

if sever· a I e:-: ternal views are c: 1 osel y· related to one

another-.

We shall now discuss other components of the database

system architecture <Fig. 1.2) - the database management

system, the database administrator, and the user·

i nterf <:\ce.

The database management system <DBMS> is the software

that handles all access to the database.

Concf::~ptu<::dly wh.:~t happens is thE.• following: (1) r~ user·

.i. ssues ~'In <:ic:cess r··eques:;t, usi~g some particular data

mani pul <:iti on language; the DBMS intercepts the

r-equ!est and interprets it; (3) the DBMS inspects, in

tur·n, the ~::.>:·: ter nal schema, the external/conceptual

the conceptual schema, the conceptual/internal

ilh::lp pi f"HJ , C~nd the storage structure definition; and < 4)

the DBMS performs the necessary operations in the stored

administrator <DBA) iS thE?

a group of persons) responsible for over··<::~ll c::ontr·ol

of the datc.'lbase system. The DBA's responsibilities

include decidin<;J the information content of the

dat.abase, deciding the storage structure and access

str·ategy, dt:~fining the author· i z <":l.t ion checks and

vi::~lidation r:wocedL.WE?s, defininc.:J c\ str·ateqy for backup and

~·-ec:over- y.

1 ~· ·-·'

OrH:? of the most important DBA tools is the data

dictionary <not shown in Fig. 1.2) . The data dictionary

1s effectively a database in its own right a d<:\t<."\base

that contains "data p.bout data" (that is, descr· i pt ions

o·f other objects in the system, r-ather than simply "raw

data"). In p.articular·, all the var·ious schema~~ (E?:-:tet-nal,

conceptual, internal) are physically stored, in both

source and object form, in the dictionary.

The last component of the architecture is the user

inter·face. This may be defined as a boundary in the

system below which everything is invisible to the user.

DATABASE MODELS WITH RELATIVE ADVANTAGES

A database model 1 s ,;:~ ~«Jay of describing

structures and database processing that is general enough

to encompass all or at least a large majority of d-:;..t.a

base applications. In general a database model consists

of not,::1ti on ·fen-

expressing data and relationships; and (2) Operations on

serve to express queries and

manipulations of the data.

Efforts to develop database models have been underway

since the late 1960's. At pn-:>sEmt, there are three

databasE.' models of import anc:e. These models are

hier·ar·ch:i.c.::\1, Wf? will di scu~::;\:.:;

these models in brief.

14

Database models are broken into two parts. One part,

ref er-red to as the data definition· 1 anguage <DDL) ,

describes the structure of the database. The other part,

referred to ~c::
~··J the data manipulation language <DML),

describes the way database is manipulated (processed).

The data definition language <DDL) describes the name and

type (numeric, string etc.) of each field, as well as the

way the fields are grouped into records. Also the DDL

must indicate the primary and secondary keys (if any) .

The DDL preservE·s the independence of . logical and

physical representations of data. Given the DDL, programs

n(~ed not be dependent on or 1 OC kE·d into particular-

phys:.i cal representations of the data. The phy~;;i cal

data can be changed without modifying any

part of the DDL description. in qeneral
- '

process only some portions of the database depending upon

this implies that the DDL must be

able to describe portions of the database. In addition to

representing the structure of the entire database and any

pat ti cul ar.· por··tion of that structure viewed by

particulat user··, DDL must specify security restrictions

on the database. It must indicate the fields or records

th.:lt are restricted and the type of each restriction

(read, write, read/write).

The data manipulation language (D1'1L) dE.>scr· i bes the

techniques used to process the database. It tells how the

r•?cords can be ret.r· i eved, replaced, i n~ser·bed and del et.E•d.

1.5

This includes processing records directly using keys or

indirectly via relationships between ~atabase records.

The DML should enable the user to deal with the database

in logical or symbolic terms. Keys, for example, should

be symbolic identifiers rather than physical addresses.

This preserves the independence of the programs from the

physical representation of the database. Further, the DML

should free the user from database structure

maintenance . Far example, take the case of secondary key

maintenance a big overhead. When a record is added to

a set (a group of database records having a common value

in a secondary key field), the database system should

automatically cause the appropriate tables or links to be

modified. The user should not be required to do this; in

fact, it should be transparent to the user. This also

helps to preserve the independence of programs from

physical structure. Further, to permit a wide range of

programs to use the database~ the DML should support as

many languages as possible. This means that the DML must

not be structured around any particular programming

languag~. It should be possible to implement the DML

any language that 1s potentially useful for database

processing.

Typically, a DML consists of verbs and operands that

provide way to retrieve, replace, insert and delete

records. Some generalized DML verbs are shown below.

1A

verb

READ

REPLACE

INSERT

DELETE

operands

Record name, key name, kmy value,
field names, pqoswards.

Record name, key name, key value,
field names, field values, passwards.

Record name, field names, field values,
passwards.

Record name, key name, key value,
passwards.

The READ verb requires the name of the record type plus

the identifying data such as key name and key value. The

DML probably has a provision for sequentially reading

records in a file or in a set as well. The field names

operand is a list of fields to be read, and passward is a

list of passwards for security. These operands have the

same meaning for other DML verbs. In addition, the field

values operand is needed to provide data to the database

system for the REPLACE and INSERT verbs.

We will now give a br1ef discription of the three

database models and compare them.

Hierarchical model requires the data to be reresented by

hierarchical (tree) constructs. ~imple and complex

network structures can not be directly represented by

hierarchical constructs but can be decomposed into tree

structures , say, using logical pointers. This means that

the user's view of the data, whether he/she sees a tree

or a simple or complex network, must somehow be forced

17

into the tree representation.

Network model requires use of

representing the data. A set

the

is a

set concept

collection

for

of

occurences of records of a particular type or types.A set

has an owner, which is an occurence of a record of

different type. Every record occurence is elligible for

to be a member of a set or an owner of a set but no

record can be both a member and an owner of the same set.

Set is the key concept for holding relationships in the

network model. Tree and simple network structuers can be

represented by sets in straight forward manner.

However, complex networks cannot be directly represented,

but can be t~ansformed or reduced into simple networks by

defining a new record type and letting records this

type hold data about intersection of two records.

The relat1nal database model differs in several aspects

from the t1ierarchical and network models. For one, the

relational model is based on a foundation of theory from

relational mathematics. Hierarchical and network models

(say DL/1 and DBTG) are directed at programming systems;

the step from either of these to a programming language

is a short one. The relational model consists of a group

of cocepts that are not particularly related to any

programming language. Finally, the relational model tends

to represent data as it exists, that is in tabular form.

The relational model does not force the use of an

artificial construct (like tree or set); rather, it

18

reduces data relationships to simpler components and

represnt the components directly. The relational model

can be used to represent trees and both simple and

complex networks. Both the hierarchical and network

models

networks.

require artificial constructs to represent

The relational model does not; it represents

data as it exists.The hierarchical and network models

tend to add complexity as they force the user to

formalise his/her view of the data;

tends to simplify.

the relational model

To evaluate the three models, further, as discussed

above, we must state the criteria by which they shold be

judged. We see two primary concerns.

1. Ease of Use;

Especially in small databases, the principal cost may be

the time spent by the programmer writing application

programs and by the user posing queries. We want a model

that makes accurate programming and the phrasing of

queries easy.

2. Efficiency of Implementation.

When databases are large~ the cost of storage space and

computer time dominate the total cost of implementing a

database. We need a database model in which it is easy

for the DBMS to translate a specification of the

conceptual scheme and the conceptual-to-physical mapping

into an implementation that is space efficient and in

which queries can be answered efficiently.

By the criterion of easy use, there is no doubt that the

relational model is supf?rior. It provides only one

concept, the relation, that the programmer or user must

understand. Moreover, the relational algebra and calculus

clearly provide a notation that is quite succinct and

powerful, an"d this power carries over naturally to real

relational query languages. These languages make systems

based on the relational model available to persons whose

programming skill 1s not great. Compare, for example, the

e·f for-t needed to specify the join of relations with

work required to write a program in

manipulation language or the DL/1.

the DBTG date:~

the network model ~equires our understanding of

both record types and links,and their interrelationships.

ThP i rnp l £:?men t. C:\ t. i on of many-many relationships and

relationships on more entity sets is not

straightforward. Although this problem can be overcome by

introducing dummy record types, which is quite typical.

Similarly, the hierarchical model requires understanding

the use of pointers <virtual record types) and has the

SC:HllE' problem as the network model the

representation of relationships that are more complex

than many-one relationships between two entity sets.

2(2)

When we conside~ the potential fo~ efficient

implementation, the network and hie~a~chical models sco~e

high ma~ks. Ce~tainly,the implementations of va~iable

length ~eco~ds facilitate the task of following links.

Also, data structu~es such as the multilist and the

implementation of variable length ~eco~ds

not generalize ~eadily to many-many mappings. Since

can, and often do, ~epresent many-many

mappings, we see that efficient implementation can be

more difficult fo~ relations than fo~ netwo~ks or

hiera~chies.

Certainly,
~

there is no fundament~! reason why all these

implementation ideas for netwo~ks and hierarchies cannot

be carried over to the implementation of relations, and

indeed, many of them have been.

RELATIONAL DATABASE TERMINOLOGY.

The relational model of databases was first introduced by

Codd (1970). Informally, in the relational model, data 1s

regarded as stored in tables <called ~elations). We will

give the formal definitions.

A relational scheme consists of a (finite) set of

attributes.

With each attribute, we associate a domain of values.

Let R be a ~elation scheme. A tuple on R is a function

21

(say, f) mapping each attribute in R to a value in its

domain.

A relation on the relational scheme R is a set of tuples

on R.

Note that a relation does not have duplicate tuples,

since we defined it as a set of tuples.

A relation can be visualized as a table with one column

for each attribute and one row for each tuple.

Further, we can note, first, that all the entries in a

table are single-valued, that is atomic; neither

repeating groups nor arrays are Second, the

entries in any column are of the same type. Each column

has a unique name, and their order 15 immaterial.

Also,the order of rows (tuples) is insignificant. I ·f

relation has_n columns, then each row lS referred

as an n-tuple. Also, a relation that has n

attributes (columns) said to degree n.

Similarly, the number of tuples (rows) in a relation

referred to as its cardinality. Each attribute has a

domain, which is the set uf values that the attribute can

have. Each attibute is given a unique identifier called

an attribute name.

An attribute or combination of attribute~ that uniquely

identifies a tuple is referred to as a candidate key. One

of the candidate keys is selected to be used as the

22

unique identifier and is referred to as the primary key.

To sum up, we can say that, in traditional t~rms a

relation resembles a file, a tuple a record

not type>, and an attribute a field

occurance). These correspondences are

approximate, however.

(occurance,

<type,

at

not

best

* WHY PRIMS ?

* INTRODUCTION TO PRIMS

* PRIMS ARCHITECTURE

CHAPTER

PRIMS DESIGN

AND

IMPLEMENTATION

* REPRESENTATIONAL STRUCTURE OF THE DATA

* IMPLEMENTATION DETAILS

WHY PRIMS ?

There are two important reasons for having chosen this

probl~m of developing PRIMS : 11 design and implementation

of a Relational Information Management System in

turbo-Pascal II The first one is as an exercise an

exercise that helps in understanding the subject, that is

database, in more depth so far as its design and
/

implementation are concerned. It shows how the data in a

database is represented and manipulated at lower levels

which usually is not visible to the ordinary users.

Secondly, besides being a fruitful exercise, PRIMS has

been designed from commercial point of view as well.

PRIMS, in its complete form, is supposed to be compact

and portable product essentially meant fo~ m1cro

computers.

INTRODUCTION TO PRIMS

PRIMS is relational because it meets all those conditions

and requirements which are essential for a relational

system. The requirements for a system to be called

relational (as per Schmidt and Broide) are

1. All information in the database is represented as

values in tables.

2. There are no user visible navigation links between

these tables.

24

3. The system supports at least the select,

equijoin operators of the relational algebra.

project and

PRIMS can be used by on-line user in one of the two

interactive modes, namely - the menu driven mode and the

query language.

There are two abstract query languages called relational

algebra and relational calculus. The real query languages

are based on these two abstractions. Currently, due to

limitations of time and resources, only menu mode for

PRIMS has been developed. In order to complete this

exercise within the prescribed time limit, only those DDL

and DML commands have been chosen which fulfil the needs

for a system to be at least minimally relational. Menu

mode has been chosen to make the system user friendly.

While interacting through menu mode, the user need not

bother to remember the syntax of any DDL and DML

commands. What the user simply has to do is to give one

of the choice numbers, which he/she picks up from the

menu that will be displayed on the video screen. On doing

so, the syntax or format in which the data is needed for

that database operation will be displayed on the screen.

So the user can giye the data in the format and obtain

the corresponding results. In case there is some error in

the input

displayed

data, the corresponding error message will be

which can help the user in rectifying his/her

errors. Once that operation is over the system returns

control back to the menu mode, displaying the menu and

25

asking for the fresh choice number. Some choice numbers

in the menu may result in subsequent new menus. The

procedure to be followed in those new. menus is also

similar. Once all the required operations on the database

are over, the user can exit from the database mode into

the operating system mode, again by giving a proper

choice number meant for exit.

PRIMS ARCHITECTURE

The architecture for PRIMS ,as shown in figure 2.1, has

been represented in five levels. The first lev~l known as

USER
---- -----.

DBMS ~----------------: DICTIONARY

ACCESS METHODS ;----------------
---- -------------. .

INTERNAL STORAGE
---- ---------------.

PHYSICAL STORAGE

Fig. 2.1 - PRIMS Architecture.

user is either an application programmer or an on-line

t.:?rmi nal The user has a 1 anguagE~ at

disposal. For the conventional application programmer it

26

will be a conventional programming language such as

turbo-pascal or COBOL. For th~ terminal user the

language is simply a query language (in menu mode only at

present). User's language will include a DSL, i.e. , a

subset of the total language that is concerned with

database objects and operations.

being embedded in a host language.

We talk about DSL as

The DSL is really a

combination of DDL which consists of declarative

constructs and DML which consists of those executable

statements that

database.

transfer information to and from the

The second level of the architecture known as DBMS is the

software that haridles all access to the database. When a

user· issues an access request, using DSL, the DBMS

intercepts the request and interprets it. Incase the

F"E?CJUE~~~t the DBMS performs the necessary

operations on the internal storage via access methods

which constitute the third level of the architecture.

The access modules are the modules which are used for

accessing the data at the internal storage level. {~ccess

methods have information about the relation scheme (that

l s., about the structure of a relation, its name,

what are various attributes that constitute the relation,

tht:::>i r· names, types etc.). All this information is not

known to DBMS but is made available to it through access

methods only.

The fourth level of architecture, the internal storage,

27

is the level where data in the database is represented

and is not yet the lowest level of database which is

known as the physical storage level. The physical

storage level deals with all device dependent details.

The lowest level is handled by the operating system

modules which are responsible for conversion of data from

internal storage to physical storage. So, it is the

operating system only which finally is aware of access

and storage of the data as stored on the physical medium

like a disk.

REPRESENTATIONAL STRUCTURE OF THE DATA

As seen in fig. 2. 1 ' both DBMS and access methods are

interfaced vJi th dictionar·y which pr·ovi des their

corresponding modules with the infor·mation about the

corresponding relation under database operation.

In the program the dictionary is given a fixed file name,

namely RELATION.DIR. Whenever the user wants to create a

new .n?lation, the corresponding relation name is put in

the dictionary and the information about the structure of

the relation (how many attributes this relation has, what

are the names of these attributes) is put into the

REL file which is a file created, named after the name

of the relation (for example, if th~ user wants to create

the relation named STUDENT, STUDENT will be inserted into

RELATION. DIF.;: file and immediately a f i 1 e named

STUDENT.REL will be created which will contain the

28

information about this relation.).

As soon as the user tal's about a relation, first of all,

the relation name is checked for its validi·ty <i.e.,

whether or not the relation name is a valid one). It is

done so since after this relation name we have to create

REL file as already described and DAT file which will

contain data for this relation.

Since all the relations in a relational database are

supposed to be distinct, so before adding a new relation

name in DIR file ,this file is scanned for whether or

not this relation name is already present in it. If so, a

suitable message is displayed and the user is asked to

give the relation name again.

The DAT file will conta~n the data corresponding to the

relation the user wants t6 create. To facilitate the

user, in additio~ to the data corresponding to the actual

list of attributes supposed to be present in DAT file,

we add two more attributes - 1. serial number <s no> of

the tuple (record) and 2. record status (rec sts) of

the record <p for present and a for absent).

IMPLEMENTATION DETAILS

In this section, we will describe various access methods,

a set of modules which are used for accessing the data

from the internal storage level. We will describe the

program structure and details of each procedure <module>,

29

their purpose, the input to and output from each

procedure and the way they are called together to

accomplish a fixed task.

At present, PRIMS can accomadate twenty-five relations

each containing a maximum of twenty-five attributes.

THE Main Program

The main program starts by invoking the procedure

initialize. Further it issues a call to the procedure

list_options and the proc~dure interpret_option. These

procedures are invoked time and again until the user

wants to come out of the present session with system, by

giving the option '3' in menu B.

We will now describe each procedure in detail.

check_if_valid_string

This· procedure is called to check whether the response

given by the user at a particular time of execution is a

valid string or not. This is needed since in Turbo Pascal

any valid file-name can start only with a letter (a - z)

or <A ·- Z) and followed by one or more digits (0 --· 9).

And since when the system asks to give the relation name,

and after this name a corresponding file is to be

created, it becomes necessary to check that the user's

response should be such that we can create a file after

30

this name. Similar-ly, when specifying the names of

var-ious attr-ibutes in a r-elation we wa~t that it should

be meaningful attr-ibute. This pr-ocedur-e accepts a str-ing

and r-etur-ns whether- it is valid or- not.

check_if_integer

This pr-ocedur-e accepts a str-~ng as input and r-etur-ns

whether or- not the given str-ing is a positive integer-.

The pr-ocedur-e is called when a user- is supposed to give a

r-esponse and we expect it to be a positive integer-.

initialize

Here the dictionary is assigned a fixed name RELATION.DIR

and some other r-unning variables ar-e given initial

values. REL.ATION.DIR stor-es the names of var-ious

relations which we will be dealing with.

list_options

This procedure lists out the var-ious options available

for the user. It displays Menu A with three options :-

1. To create a relation scheme; 2. To access data~

and 3. Stop.

interpret_option

This procedure asks for- the option and then inter-pr-ets.

If the option is one of those displayed in the menu

31

A <consisting of th~ee options - 1. To c~eate a ~elation

scheme ; 2. To access data ;and 3. Stop), the control is

sent to the app~op~iate p~ocedu~e othe~wise the p~ocedu~e

e~~or handler· is invoked displaying the suitable e~ror

message and use~ is asked to ~etype the option.

rei info

This p~ocedu~e asks about the ~elation name and checks

fa~ the validity of the ~elation name by calling

check_if_valid_string. If the ~elation name is valid

(i.e., it does not contain any special characte~s

including blank and sta~ts with any of tht::• char·acte~s

a -- z or A - Z) the cont~ol is ~etu~ned back to the

calling procedure.

rel_fmt

This p~ocedu~e asks the information about that how many

att~ibutes the ~elation under consideration has. The

~esponse to this question is supposed to be a positive

i nteqer-. So the use~ ~esponse is checked fo~ validity by

calling the procedure check_if_integer. If the ~esponse

is not a positive intege~ the use~ is di~ected to retype

the ~esponse. After this the att~ibute names constituting

the relation a~e asked as many times as the~e are number

of attr·ibutes. These att~ibute names a~e checked fo~

validity to give some meaning. Lastly this info~mation i£

added to the REL file c~eated afte~ the name of the

relation currently under consideration •

. show_relation_directory

This procedure simply lists out all the relations

currently present in the DIR file, if any.

check_if_already_exists_in_the_relation_directory

This procedure accepts a relation name, scans through the

DIR file and gives the message 'already exists' if the

relation is there in the DlR file. This procedure is

written to avoid duplicate relation names as all the

relations in a relational database are supposed to be

distinct.

append_rel_dir

Once a relation name is valid and not a duplicate one

that relation name is added to the DIR file by this

procedure.

relation_and_existence

This procedure is invoked when we want to access data

about a particular relation.

is checked for its validity.

Firstly,

Once it

the relation name

is so, then DIR

file is searched for this relation since once we want to

access (insert, delete, update, retreive) data about a

particular relation it must be present in DIR file. If

33

the relation is not there in DIR file, the message 'does

not exist' is displayed and control is-returned back to

the calling procedure. If the relation is there in the

DIR file a DAT file is assigned after the name of the

r·elation name.

The DAT file cont~ins the actual data about a

particular relation. To facilitate the user, two e:-:tra

attributes are added to the list of attributes actually

supposed to constitute the relation. The first is serial

number (s no) of the record and the second is the record

status Cree sts) of a particular tuple (record) which at

any time helps to determine whether the record is present

in the relation or not.

create_a_relation_scheme

When the user is interested in creating a new relation

this procedure is invoked. The system asks for the

r~lation name checks fo~ its validity (if it is not a

valid relation name the"user is directed to retype it).

Once it is a valid relation name the system checks if the

RELATION.DIR contains some relations <it is achieved by

using the built-in Turbo Pascal functiclll 'filesize',

in terms of records). If the DIR file is empty (i.e.,

the · f i 1 esi ze · returns a zero value),

rel info is called which supplies the valid relation name

and then it is added to the list of relations in DIR

file. If the DIR file is not. empty (i.e.~ the 'filesize'

returns a value greater than zero, certainly it cannot be

negative), then all the relation names in DIR file are

displayed by invoking the procedure

show_relation_directory. This helps the user to know

about all the existing relations created so far in the

DIR file. After this, the procedure rel_info is called

to know about the relation name. If this relation exists

already in DIR file (checked by procedure

check_if_already_exists_in_rel_dir), the message that

this relation already exists in DIR file is displayed

and the user is supposed to·give the relation name again.

If not, then this relation name is added to the DIR file

by calling the procedure append~rel_dir .. Further a REL

file is created after the name of the relation currently

under consideration. The information about the number of

attributes and the names of the attributes consttituting

that relation is put into the REL file (by calling the

procedure rel fmt).

insert_a_tuple

This procedure begins by calling the procedure

relation and existence which asks the relation name,

checks for its validity, scans the DIR file to

see that the relation is very much there in this file,

then assigns the corresponding DAT file after the name

of the relation to the file variable, and returns the

control to the procedure insert_a_tuple again. If the

35

DAT file is empty it is written afresh, otherwise tuples

will be appended at the end of the DAT file. Consulting

the REL file all the attribute names supposed to be in

that relation, which the user has already specified, are

displayed one at a time,

data for that attribute.

and the user gives the actual

This tuple is appended into the

DAT file. The user is given the option that if he wants

to insert some more tuples in the same relation, and if

he/she intends to do so, he/she can specify it and the

process is repeated again until he/she gives the response

in negative. Further, the user is given the option to

insert any more tuples in any other relation. If the

answer is in affirmative the tuples can be inserted into

the desired relation. Lastly the control is given back to

the calling procedure.

Note that· whenever we insert a tuple in a relation, the

record status(rec sts) in that tuple is set to p to

indicate that the tuple is present in that relation.

delete_a_tuple

This procedure is called when·a user wants to delete one

or more tuples in any relation by giving the option meant

for this operation in menu B. The procedure works

exactly similar to the procedure insert_a_tuple except

that the record status(rec sts> is set to 'a' to indicate

that the· record is absent in that relation and in further

processing this tuple is taken care of. The procedure

also r takes care of the situation if ' the record was

already deleted. In this case, the message is displayed

and he/she is to type a fresh record number.

The record_number is treated as the key far any tuple in

a relation. On the basis of this key we process

(delete, update or· r·et.rei ve:~) a tuple of a desi r·ed

r·elation. note we cannot delete a tuple from a

relation if no data is inserted into a relation. This

procedure also takes care of this. The key is checked for

its validity that is the record number should be a

positive integer and it should not exceed the maximum

number of tuples present in the DAT file corresponding

to a particular relation.

update_a_tuple

The procedure calls the procedure relation_and_existence

checking the validity and existence of the relation in

DIR file. Once it is so it checks if the corresponding

DAT file contains some records. If the OAT file is not

empty only then we can update a tuple of that r£~lc:~tion

otherwise, if the file is empty appropriate message

given and we cannot update any tuple. Then the key i.e.,

and is checked far its validity

as in case of delete_a_tuple procedure.

REL. ·f i 1 e and DAT file for this relation

The old value of the attribute alongwith

1. c:
.::>

its name is

displayed and the system asks for the new value of that

attribute. If the user gives the return key, the previous

old value for that attribute stands as such. If the user

intends to change the data for an attribute he will have

to give the new value for that attribute. The tuple is

overwritten into the DAT file under consideration at its

previous place.

records(tuples)

Further, the user can update as many

as he/she wants into the same or any

other relation by giving appropriate answer. The.

procedure also takes ~are of the situation if the record

was already deleted. In this case, the message is

displayed and he/she is to type a fresh record number.

retreive_a_tuple

This procedure displays all tuples in a particular

relation. If the corresponding DAT file is empty, the

mes~age 'the relation contains no records' is displayed.

Further, the user can retreive tuples of any other

relation if he/she intends so.

error_handler

If the user response is not error free, this procedure is

called which gives an appropriate message and the user is

supposed to retype the response.

access_data

This procedure ic invoked when the user gives the option

'2' meant for this operation. Note that, if the DIR file

is empty,i.e. ,we have not created any relation so far, we

cannot access data. Otherwise, this p,.-·ocedur-e lists out

four options under the heading menu B. The user is as~ed

about his/he,.-· option and the control is sent to the

corresponding procedure meant for that operation.

Two menus are displayed during the course of execution of

the program. First is menu A comprising of three

options? vi ·z. - 1. create a relation scheme; 2. access

data; stop. If the user gives option this

i nt.ur-n displays menu B giving focw opt_ions;, v1z.

1. i nset'"t C.-\ tupl t-•; 2. delete a tuple; -=-!·
·-·' "' updatE? a tup 1 e

and 4. retreive a tuple.

The menus A and B are interleaving ee:"\c:h othcc::t-·.

doinq the operation in menu [i '! thE'

,~(Jc:\i n, is returned back to menu A and asking for

cho1ce. The program runs until the user gives t h Co~ opt .i. on

'3' in menu A to stop execution.

39

CHAPTER

3

FURTHER ENHANCEMENTS

* AT DESIGN LEVEL

* AT IMPLEMENTATION LEVEL

In the previous chapter, we have given one possible

solution to achieve the results. In thi~ chapter, we will

mention some of the possible improvements in PRIMS and

further scope in the work.

There could be two possible improvements in this work

onE•, those at the design level; and second, those at the

implementation level. We will descibe them separately.

At Design Level

We hc:\VE· decided to put r·r.,.l ati on narnE.>s in the filE•

RELATION.DIR; and the information about th<-.:d~.

are there constituting a particular t-· e J. c:l t i ell···,

and their names is put into the REL file corresponding to

the relation name. These two pieces of information could

have been located in one file only namely the dictionary,

the.> DIP f :i.J. F·. (In -fdc::t. ~ v·J F' !···, ,:;1 v c t r· i (-::-' c:! i· ,.., i-:, c:: h i F-' · . .,.- (:-:·

results in a simplest poss1ble way.) This way consulting

and certainly it would have

overhead of opening up and

F--ur-thF~t~, it would have lead to

e·f f j c. i E~r:c y in of storage space and time

al ':;u ..

W<:? have not included the information .:~bout

relation, like what is the type of each attribute (viz.

1r· (·?c.' a l , 1 nt.Pger··, string or boolean>; the range of values

each attribute can take; and the key for a relation (at

present, we have treated sequence or tuple number to be

as a key). This information could have been included (in

fact, PRIMS suggests a simplest possible solution

avoiding many complexities involved).

At the Implementation Level

One such possible improvement is when we delete a tuple

in any relation. Infact, the tuple is not deleted

physically. Rather, it is just a logical deletion meaning

by that we add up a tag field 1n each tuple and setting

it to a indicating that the tuple 1s no more there in

the relation (of course, we take care of this fact in

futher processing). This is desirable if we are dealing

with a small database with not too many deleted entries.

On the contrary, if we have a large database in which the

relations contain too many such deleted tuples, there is

a wastaqe of storage space which in turn leads to slower

accessing of the database. T .o overcome this, one way is

to reorgan1ze the data file named after the relation

name reading this file and rewriting it skipping those

tuples (records) in which tag field (rec sts) has value

a·. One ott1er possible solution would have been to use

pointer to the next tuple (record) present in the file.

In case th~ user wants to delete a record, we will have

to change just one pointer pointing to the next present

record thus skipping the desired tuple, and releasing the

41~

sp.:1ce accupi ed by that tup 1 f.?, ther·eby i ncr·easi ng the

efficiency.

At present, DDL (description of the data) portion far the

system has been developed successfully. Due to the time

limit, DI'1L. p.::H'. t (i . , e. how to process or manipulate the

data) involving operatios like selection? join, dividt-?,

etc., is not touched at all. For that, a suitable real

query language <like SDU based on abstract query

languages (like rel at i cmal algebra or r·el ati onal

calculus) is to be developed.

42

REFERENCES

1. An Introduction to Database Systems, Vol. 1, Third

Edition C. J. Date.

Data Base St r uc t t.w· E.'d Techniques for De~ign,

Performance, and Management S. Atre.

3. Principles of Database Systems

Jeffrey D. Ullman.

4. Database Processing Fundamentals, Design,

Implementation, Second Edition David M. Kroenke.

5. Introduction to Pascal, Second Edition

Jim Welsh, John Elder.

6. Data Structures Using Pascal, Second Edition

Aaron M. Tenenbaum, Moshe J. Augenstein.

4 -:~ ·-·

.. .

* SOURCE CODE LISTING

APPENDIX

1

program prims(input,output>;

<* This is PRIMS source code listing,
!.•Witten in tl.wbo-.Pascal langu.::\ge;
and implemented on DCM TANDY-1000. *)

<* Author - PARAMJIT SINGH *>

type

response = string[25J;

rel name str·ing[25J;

end;

rel file rec - record

no_of_attribute :integer;

at.t.r· namE? array[1 .. 25J of response;

end;

rel data rec - record

s no : i nt.eger-

array[1 .. 25] of response;

v ''> .. _no; i. nt<=.'gt.~r .. ;

v att name : st.ringf25J;

var_rel_name,o_var_rel_name s t r i 11 q [2~5 J ;

filE.~ of t··-Ed n-:==c;

var rel file rec

rel file name : array[1 .. 25J of response;

reJ.a file: file of r·f?l file rE~c;

var rel data rec : rel data rec;

rel data file name array[1 .• 25J of response;

file of rei data rec;

alldone,if_int,if_str boolean;

i,j,k,z,t,u,v_num_of_att integer;

r-1 t f i 1 e ; t P>~ t ;

procedure initialize;

bt"!CJ in

alldone := false;

assign(rel_dir, 'RELATION.DIR'l;

rewrite(rltfilel;

J : ····· ~?J ,

k ~ (.i) ,

~:-~ (;j .

procedure list_options;

•·,witE.~ln\ ·t'IENLJ f":i •

..... --·--·) ,
l T CJ c r· E' c':\ t E' c.~ !'"" E-? l ;:~ t i u 1"\ ~; c hE~ me . .) ;

wr-i.tc~.'ln('

wr·iteln(

4~_::_;

writeln(rltfile);

vw·iteln(rJ.tfile, 'ME:f\~l.J {i. ');

wr-ite 1 n (r·l t. f i 1 e, '-------.. --·- ') ;

writeln(rltfile,: 1 To create a relation scheme.');

writeln(rlt.file,' 2 : To Ac:c:e!:;s Dc.1 t.:.1. •) ;

writeln(rltfile,' 3 ~3t op. ') ;

writeln(rltfile);

t-?nd;

procedure check if valid strinq= - - - -

\/<:IF"

respons := rsponse;

if ((ler:<Jth (r"E~spons.;)

y := length<responsl;

for x := 1 to length(respons) do

tlv::'n y .. -· y -- 1

z .. ·-·· ~< ;

<:-:.'nd;

·end;

if y = 0 then goto 5;

3 :sub_response := copy(respons,z,length<respons) - z + 1);

if not (((sub_response[lJ >= 'a') and (sub_response[1] <= 'z')) or

((sub _ __r·esponse[lJ ... ·-··· 'i"i ..) c:ind (~.;ub __ n.:.>sponsf?[1] <= 'Z')))

thE?n qot.o :s;

for ~ := 2 to length<sub_response) do

beq:in

if not (((sub_response[xJ >= a') and (sub_response[xJ , __ ')) or

((~:,ub ____ r-t.:.>~;pon~>t-?C>:J >:::= '{i') ,:\nd (~;ub __ rE•<:=;ponse[;.;] <= ·z')) or··

((sub_response[xJ

t~hen

rsponse := sub_response;

5

f.~ncl;

procedure rel info~

labE•l 1,

I::H?.t] i n

1: I<'Witc-:.:>ln;

t.-Jt,.. i tE~ ('F:EL.AT I ON NAI'1E ') ;

read(var_rel name>;

writeln<rltfile>;

write(rltfile, 'RELATION NAME ');

write<rltfile,var_rel_name>;

rsponse := var rel name;

47

check_if_valid_string;

if not if str then

begin

wr-· i tr£~1 n;

wr··itf:...,ln(#7, 'not valid r-·elc:1t:ion name.');

writeln<rltfile>;

~o-witeln(rltfilE·, 'not valid r-·F!lation name.');

got.o l;

enc:l;

var rel rec.rel name := var rel_Mame;

o var rel name := var rel name;

E.md;

procedure check_if_int:eger

inteqer·;

i f i r .. 1 t. : "'' f <:-1 l ~:>e;

, (0! s p () 1"1 ~;:.

if ((lengthCresponsl - 0)) then got.o 5;

y := length(respuns);

fur·>~:=-" 1 to J.ength(r-·E·?~;por~~,;) do

bE~g i. r·1

i ·f (r-·espons;L~] ::c: ')

then y y -- 1.

4El

bt:-g in

~1oto
.. .,.
·-''

f.'~nd;

if y = 0 then goto 5;

~ :sub_response := copy(respons,z,length(respons) .:. + 1);

for x := 1 to length(sub_response) do

bE!c.Jin

if (:;ub __ I-E:-:~;pun~;e[:.;J ·D·

then

t : "" D

else

t : ::: :1. ;

Z : ::::: X;

got.o :1.;

end;

end;

if t = 0 then goto 5;

1 :sub_response := copy(sub_response,z,length(sub_response) z. + 1);

for x := 1 to length(sub_response) do

begin

if ((sub_respcmse[:-:J '0') or (sub_response[xJ > '9')) then goto 5;

i ·f in t : = t. rue;

rsponse := sub_response;

5

49

procedure rel_fmt;

ldbf:>.l l ,2;

bt::?qi n

u -···1;

; vn· i t e l n ;

write('how many attr1butes does .)

writeln(rltfile);

w f. i t f:! (r· l t f i l e , · h o vJ rn d rl ·/ ;:1 t t r· i h u t. e ~:; d u E~ ~;

write(rltfile,rsponsel;

writeln(rltfile);

check_if_integer;

i·f not:. if int.

tht>.n

wr··iteln;

writeln(#7, give positive inte<:"~er·. ');

writeln(rltfile);

vJriteln (rlt.file, give positive intE·<.::Jer. ');

goto 2;

end;

val (rsponse,v_num_of_dtt,u>;

var rel file rec.no of attribute := v num of att;

for j := 1 t.ci v num of att do

begin

51ZJ

1 writeln;

wr~itf?ln ('ATTF<IBLJTE (',J, ') ');

wr .. i t.e (' N?~t1E : ') ;

read(v att name);

writeln(rltfile);

vw it e 1 n (r 1 t f i 1 e, '?) TTR I BlJTE (' , J , ') ') ;

Wt'" i b-:i? (l''l t f i 1 ~~ , '

write<rltfile,v_att_name);

rsponse ;= v_att_name;

check if_valid_string=

beqin

me::' en i r-,qf uJ. E1'l:. t !'"' :i. bute r·iE1fl'IC.'.

WI'- :i t f::>J f'1 (t··:t i: f i 1 F:~)

qoto 1.;

rc~ r-, c:l ,

vn· i t C·) n ;

writeln(rltfilel=

er1 cl;

write(rela file,va!'" rel file rec);

writeln(rltfilel;

procedure add_up_a_rel;

b t:~q in

r··el in·fo~

write<rel dir,var_rel_rec)

1 :""-' i + 1;

r<·::·l ·f i 1 e rlE\mE.>[i J : '"' var r·el namE? + ·. r·E·l

assiqn(rela file,rel file name[iJ);

rewrlte(rela file);

close(rela file>;

procedure·show_relation_directory;

E?nd;

~-·n-·it.eln ('l.--JE~ hc:iVe folloi'Jifl<;J rel<:1.t.ic)fls;. in rt.::~lation dir·F~c:tor .. y : ');

wr i t. P J. n (r·J. t f i 1 <:~ , • ~·JE~ h "'' ve f o 1 l ow i n rJ n-::!1 ,:d: i on~=· in n::• L.:~ t. i or'1 d i n::.•c t: or y ') ;

rest-:t(rr:~l dir);

while not Pof(rel dirl do

beqin

read(rel dir,var rel rPc>;

writeln(var rel rec.rel name>;

writeln<rltfile,var_rel_rec.rel_name>;

clnse(r-el __ dir);

pr··ocedur€c~ c-:1ppend __ _r·el __ d i r;

begin

rE•set.(rel dir>;

52

end;

t := filesize(rel dir);

sf.:~E.~k(rel_dir·,t);

write(rel_dir,var_rel_rec);

close(rel dir·);

procedure check_if_already_exists_in_rel_dir;

beqin

f-.~11 d;

reset.(rel dir·);

while not eof(rel dir) do

begin

read(rel_dir,var_rel_rec>;

if var rel rec.rel name var rel name then

~rw·i tel n;

writeln(#7,var_rel_name,

[.•J/r· i t. E? J. n ;

writelr-:(rltfilel;

vJ r- i t. e l n (r· 1 t f i 1 £> , v a r -·· t · e l ··- r·1 i::\ m c::: , c;, l r- e ad y <:·:> ;.: :i. t ~::. .. •

writeln(rltfilel;

rel info;

check if already exists 1n rel dir~

end;

c: 1 use (r Fe 1 d i r·) ;

53

k : i nte::.•gt-'r-;

bE•gi n

if (f i 1 esi z e (n?l c.1 i r) (2')) then

begin

rewrite(rel dir>;

,:~dd_up_Et ___ rE~l;

c 1 ose (r E·l d i r·) ~

E~nd

beg:i.n

~':.how r·elc::1tion dii'-E·c:t.or·y;

r-E.~l in·fo~

check if already exists in rel dir=

var rel rec.rel name := o var rel name;

ar::.pt::•nd_r··E?.l ____ di r-·,

1 '·'" i. + 1.;

assign(rela file,rel file name[iJ);

rewrit.e(rela_file);

rc:,.::l fmt=

end;

procedure relation_and_existence;

l <:\bel

begi r-1

~.) wr- i tc:!l n;

S/.J.

~w i t (-2 (' r~e 1 at i on Name ') ;

read(var rel name);

writeln(rltfile);

write(rltfile, 'Relation NamE' I) ;

write(rltfile,var_rel_name>;

writeln(rltfile>;

rsponse := var rel name;

check_if_valid_string;

if not if str then

begin

Wf''J.tc:.·ln;

Wl· .. ·it.eln(4:f:7, 'r·1ot Vdlicl I'E'J. E1ti Or\ r'IC.:ifnP.

writeln(rltfile>;

vJI·-·itt:!ln(r·lt.filE~, 'not \/alid r·elc:1tion n.:-'lmF:. ');

qoto . __ , ~

var rel_name := rsponse;

{ chE:~c k if this relation already exits.

{c:;c•EII'C::h I'"C·'} c!i I'' fur" thi <:::. Y"C'J." }

:i. + 1 i o t·. c; of (t" r.=::· l d i r· then

bec.J.i.ll

'\
....

read(rel_clir,var_rel .. rec>;

if var rel rec.rel name

begin

clu~;r::·(r .. el clir)~

c c::·
~J .. J

var rel name then

1

end

begin

j

goto 1;

end

t?l se

go to

writeln(#7,var_rel_name, does not. e>: i st.. ') ;

writ.eln(rltfile,var_rel_na~e, doE~s not e;.: i st.. ') ;

go to -~.

·-''

rel data file name[jJ := var rel name+ '.dat';

assign(rela_data_file,rel data_file_name[jJ);

pr·· uc:c•dur·· c·: :i. r-·~~;c·t .. ·t. d _tt.l.p] t::~;

VE:\~···

more_relations,more_tuples

l:::oeqi n

more relations := " T

s;tr i r-lq [~:_:; J;

if (-file~sizp(r-el<::i dat,:~ filE') CJ) thE'n

ht::·~c_.Jin

v ~:., no • "' 0;

rewrite<rela data file>;

end

else

begin

reset<rela data file);

k ~=filesize(rela data file>;

seek(rela_data_file,k);

end;

assign(rela_file,var_rel_name + ·.rel ');

reset<rela_file>;

read(rela file.var rel file rec>;

more_tuples := y';

repeat

begin

v s no := filesize(rela data file) + 1;

var rel data rec.s no := v s _no;

var rel data rec.rec sts 'p

with var rel file rec do

begin

for 7 1 to no of attribute do

begin

writeln;

write(attr_name[zJ, · ');

read(var rel data rec.attr name[zJ);

writeln;

writeln(rltfile>;

write(rltfile,attr_name[zJ, ·

write(rltfile,var_rel_data_rec.attr_name[zJ);

writeln(rltfile);

end;

write!rela_data_file,var_rel data rec>=

wr-· i tE: (.. '/DU ltJi~nt. to i n~;E·t-·t colf"lY lfiOt-·e tuple~~ of thiS t-·c,l at i onr~, ••• (y /n): ');

read(more_tuplesl;

writeln(rltfilel;

write(rltfile, you want to insert any
'more tuples of this relation?.

write!rltfile,more_tuples)

wrlteln(rltfile);

:i. f ((rn or·· e __ t up l e ~;, "'·· .. =· ' y ') ''=~ n cl (m or-· f.?··- t up 1 e ~.:; < ·,. ' n ')

t h 17?f1

~·Jr·it.e!rlt·fil€~ ... ttJr·onc:J r-·p:;pon~.e, typE' i:"lgain. ');

quto ::.'i;

e::nd;

(:?lid

until morP_tuples = n

close(rela data file)

close(rela file>;

wr-·it.e('you want. to inser-t. tuples in anyother· relc:{tion? •••• (y/n): ');

read(more relations>;

wr- i tel n;

writeln(rlt.file);

58

write<rltfile, you want to insert tuples
'in anyothE~r- r-·elation? ••. Cy/n): ');

write(rltfile,more relations>;

writeln(rltfile>;

:if ((more r-·E.,lat.ions> <> 'y') and (more r··elations <> 'n'))

bE~CJin

r··esponst::~, type

got.o 6;

i·'::nc:l ::

p r· c•c r:::clur· f.·:' c:!t~ 1 et e ;::1 ____ t: u.p 1 F·~:.

1 abc=~ I 'I ~-:~ '.1 C; '.1 ··•7 ~;

more relations,more_tuples

h E:·q i·n

\/ ..
7

hE'Cl i r··,

if (filesize<rela data file)

•'~r--itt::-:ln (:1:1=7, 'Thr2 t-·eJ.i::lt.ior' contains; no rr:>cor-·ds. ·);

5'-?

writ.Pln<rltfile, 'ThE~ r·e·lation contains no rt.."cords. ');

<;Joto 7;

El~:.si gn (r·e~l a ___ f i 1 e, var· _ _r-e·l_name + '. r·el ') ;

reset(rela file);

read(rela_file,var_rel_file_rec);

more_tuples := y';

writeln(rltfile>;

write(rltfile, 'which record number?

u : :::: ·····1;

wrjte(rltfile,rsponse);

writeln(rltfile);

c::hE·'Ck if intl'?<.JC~I'""

i f IH:J t i f i 11 t

bt?CJ :i. n

t.-Jr i tel n;

vJriteln(#7~ qive pos;itive int£;~<;JE'r·.')

writeln(rltfile);

w t'"· i t E-:·1 n (r·· l t f i 1 E~ , q i v E' p u ~-:; i t i v e i n t e <.~ <-::~ ,,.. • •) ;

~Joto 1;

val (rsponse,rec_no,u>;

if rec no > filesize(rela data file) then

bE~CJin

wr··itt:.>ln(H7, 'r<·?cord numbr,;r c;-:er:::!c:ls ·filf.? ~:;ize. ')

~·J r-· i t. c l. n (' t. y· p e ~::1 c;~ ,:;1 i n • ') ;

wr·itc-:!lr1(r-ltfilr? .. ,'type aqain. ')

qut.o 1;

reset(rela data file);

seek(rela dat~ file,rec nu ., ·., . .. , ,

read(rela data file,var_rel data rec

if var rel data rec.rec sts - tht."-21"1

beqin

w r-· i t e 1 n (t~ 7 , .. a 1 r-· E·:· C":\ d y cl f:? 1 E' t e c:l . ..) ;

gotc) l;

end;

var rei data rec.rec sts := a';

seek(rela data file.rec no- 1);

write<rela_data_file,var_rel_c:lata_rec);

wr-·it.e('you t.--Jant. to deletE·) dny mor·e tuples of this relation? ••• (y/n): ')

~ead(more_tuples);

wr· i t. e l n;

writeln(rltfile>·;

61

write<rltfile, 'you want to delete ,
'e.my mor··e tuples of this r·elation'? ••. (y/n): ');

writeCrltfile,more_tuples);

writeln(rltfile>;

if ((rnor·e_t.uples <> 'y') and (mor·(~ ___ tuples <> 'n'))

then

begi. n

got. o ~~;

E!nd;

end;

until rnore_tuples 'n

close(rel·a data file>;

close(rela file>;

read(more relations);

ttJ ,- i t E:! 1 n ;

write(rltfile, you want to delete tuples
1n anyother relation?.

?

(y/n); ·.,.
' ~

y') and (more relations .>

IJC:•<J :i. II

wl:i.t.e(ii7, ttJr·ong r··e~,o;pon~:;c:·, type" a<Jdi.n. ');

wr·· i. te (,.-l t file, · ~-Jr··onq J·-f?~::;pon~:,e, typE~ again. ·)

6:?

n, >

goto 6;

end;

end;

until more relations = n

c: l o~>€·? (n:? 1 d i r-) :;

7 :

end;

procedure update_a_tuple;

buffer,more_relations,more_tuples s t r- i n <;1 [2:''5 J ;

hE~g:i.n

more relation~ := 'y

b F~C:! :i. I i

relation and existence;

bc:·(::.::i. ,..,

<·Ji···it:eln(r-Jtfilc·?,J 'T.hc r·<o:·~lc:~t:i.on cunt:.ain's nu r·ec:ur·d· .. ~: .. ')

goto 7;

reset(rela file);

read(relc:~_file,var_rel_file_recl;

mCJI'-<·c? ____ t. up 1 f?:.'S : = Y '. '

begin

u :::: ··-1;

,~ec.~c.i (r·sponse) ;

1--'Jriteln;

write(rltfile, 'which record number? ');

write(rltfile,rsponse>;

writelnCrltfile);

check_if_integer;

if not if int

t.hE~n

bccJin

\.-'Jir· i t. e 1 n;

writelnCrltfilel;

wr·itc~ln (r .. lt·fi lt:!, 'qi'.re positive integer.

qotu 1;

C'rld :;

VE1:! (t-·<:;ponse,r·ec __ nu,u);

if r·E'C no filesize(rela data file) then

beqin

~·,w·it:eln ('typ<·:·? aqain. ');

'" . ,

writ.e:~ln(r·lt.filt::~, 'rec::or··d nurnbet'" e:<E~E'c.is filE-' ~;i~~•:;~. ');

wr-iteln (t-ltfi 1.:-?, 'type·? aqair1u ·);

qut.o 1;

r.~nd;

resetCrela data file>;

seek(rela_data_file,rec_no- 1);

read(rela_data_file,var_rel_data_rec);

if var rel data rec.rec sts - a then

beqin

~ .. w- i t.E·l n (:1:1=7, 'r·ecord doe~snot e:< i ~:;t. ') ;

v-w· i t E.~ l n (' t:. yp ~'? ;:1.g a i n • ') ;

v-witeln(rlt.filE', 'rec:or·d dm-?snot e:<ist.. ');

w··iteln(r-J.tfilP, 'typE.~ <:H_;lain. ');

got.o 1;

with var rel file rec do

bE?g in

for z := 1 to no of attribute do

buffer := var rel data rec.attr name[zJ;

wr·i tcln (<:~ttr·· n-:·:l.mPL-:..~], ·. ');

lrW i t.E~l rl (old valuP · ~ b u +fer··) ;

\·w:i.te(·

read(var rel data rec.attr name[zJ)

w , •. i t c-:~ l n (t-· l t:. f i 1 E:.> , t:l. t. t r -·· n iC\ rn t:-c- [z] , · • ')

vw i t c-~ J. n (r- J. t: + i l e ,

w , ... :i. t p (t• 1 t. + i l E.' ,· '

cJld value ',bu-ffE.or-;•;

rl€·:1 \-'J Vi::\J UE' : .) ;

write(rltfile,var_rel_data_rec.attr_name[z]l;

then var rel data rec.attr name[zJ := buffer;

writeln(rltfile);

end;

seek(rela_data_file,rec_no- 1>;

write(rela_data_file,var_rel_data_rec);

write(you want to update any mor~ ,
'tuplf?S of this n:;;>lation? .•. (y/n): ');

read(more_tuples>;

writeln(rltfile>;

write(rltfile, you want to update any more ~

'tuplE?~:; o+ t:hi~; n:~lation·~.> (y/n): · >

writeCrltfile,more_tuples)

writelnCrltfile>;

'y') and (more tuples ~ n j)

begi r1

(·::!nd :;

t.tnt i. l murr:::·· ____ tup) P':'; n';

close(rela_data_file>;

close(rela_file);

bb

t-JI~ i tE.;:- ('you want to updat_~_!:_up l~s ___ in c:myothF:r· n:.·! ~t i_c::on? .••• (yIn) : ') ;

read(more_relations);

writeln;

writeln(rltfile)

write(rltfile, you want to update tuples ,
'in anyot:her·· r·eL:,It.i.on-::· (y/n): ');

write(rltfile,more relations);

writeln(rltfile);

y'l and (more relations

th<:_;~n

bE•gi n

write(#7, wrong response, type aga1n. ·,.
' .

~'Wi te::.• (r·J. t+ i l E' '! t ypc• o:lCJdi. r1.

qoto 6;

until more relations = n

c: 1 o~:;E-~ (r·el d i r·) :;

procedure error_handler;

vJrit.E•lnOP, wr-ong option, type again.');

wr·it.eln (rlt·fi le, ·~,Jron<;J option, type aqain .. ');

procedure retr-ieve_a_tuple;

L~bel 6,7;

67

• !"i '))

more_relations,more_tuples s;tr· i ng [25];

begin

more relations := y';

r-epec\t.

relation and existence;

if (filf?.:::;ize(rela date\ file)-- ((j) then

qc:)t.o 7;

F:nd;

assign(rela file.var rel name+ ·.rel

reset(rela file);

read(rela_file,var rel file rec)

\o'J , .. :i. t·. E· (r· 1 t f :i. 1 e • ' s • no . ' : ~'.) ~ ' , .. c.:? c: ~; t ~; · : H) ;

with var rel t1le rec do

I • ' ,

for , := 1 to no of attrib0te do

bt?t]in

write(attr name[zJ:12l~

write(rltfile,attr_name[zJ:12l;

1-wit.eln;

writeln(rltfilel;

cluse(rela f1le1

reset(rela_data file);

while nut eof(rela data file) do

begin

read(rela_data_file,v~r_rel_data_rec);

write(rltiile,var_rel data rec.s nu:5,var rel data_rec.rec_sts:B>;

with var rel data rec do

beqin

for z := 1 to var rel file rec.no of attribute do

bec:Ji.n

write(attr name[zJ:12);

end;

writeln(rltfile>;

close(rela data file);

read(more relations)~

wr·iteln;

writeln<rltfile);

writ~(rltfile, you want to retrieve tuples of ,
'anyother r·el at ion'::> (y /n) : ') ;

write(rltfile,more_relations>;

69

writeln(rltfile);

if ((morf.? r-elations<> 'y') and (mor-·e r-elations<> 'n'))

then

write (#7, 'wr-·ong r-·esponse, t ypf:? e:1gai n. ');

goto 6;

E?nd;

end

until more relations n

7 :

encl;

procedure access clata~

1 C."l.l::.\f:?l l :;

optiun

i::Jeq i. II

if (filc,~·;i:·::E~(J-·el c:lit-) '""D) ti·:erl

got.o l;

~'-'r- :i. t. c 11·1 :;

wr· :i. 1.: (:_~ 1 r: (' i·1FNU B. ')

(.-Jr·:i. t.el11 ('-···--·--·---·--·');

wr·· i t. e:~ 1 n (' l. c:~ Tuplf?. , I ..
' '

wt··iteln('
,,

DE•l ete a Tuplt~. ') ..::. .. ~

wr·iteln(~-._,1. Update a Tuple. ')
'

vw i b.~ l n (4. RetrievE? a Tuple. ') .
'

writeln;

wr i t.e < 'C0l ~JE YOUR OPT I ON ') ;

n::.~adln (option);

writeln<rltfile);

vw i tel n (r·J. t ·f i 1 e, 't1ENU B. ') ;

wr i t e 1 n (r 1 t. f i 1 e ~ ' -------·--·- ') ;

writeln(rltfile,' 1 . Inser·t a Tupl E.7.) ,
r-, Del et. c~ c~ Tupl E:O) ..;.:_. . . writ.eln(rltfile,'

c UpcJ,·,:~te a Tupl e.) ·-·" , writeln(rltfile,'

·•·] 'J•r·J ' t-J r· 1 .:. c· .. n •, r·· . c. -r 1 . e ,

write<rltfile, 'GIVE YOUR OPTION ');

wr1teln(rltfile.opt1onl;

then insert._a_tuple

c~ 1 St?

i-f opt:. i ur·, ···- then delete_a_tuple

i-f option ~ then update_a_tuple

if opt i. on '4' then retrieve_a_tuple

br~~J i r1

E?n cJ;

71

1

end;

procedure interpret_option;

label 1 ,2,3;

option ~:;tring[25J;

bf.:.>gi.n

writeC'GIVE YOUR OPTION ');

rt.ei:\dln (option);

write(rltfile, 'GIVE YOUR OPTION ');

writeln(rltfil.e,option);

i ·f option '1' then create a relation scheme

if option - '2' then access data

{

i.niti.;~Jize;

l :i ~-:;t. ____ opt ions;

interpret_option;

end.

end;

until alldone;

close(rel dirl~

close(rltfilel;

73

APPENDIX

2

* SAMPLE OUTPUTS

This is the sample output from PRIMS.

MENU (L

1 To create a relation scheme.
2 To Access Data.
3 ~3tcjp ..

GIVE YOUR OPTION : 2
we have not created any relation so far.

MENU A.

1 To create a relation scheme.
2 To Access Data.

GIVE YOUR OPTION 1

RELATION NAME : fycycA%&(
not valid relation name.

m:::L..P: T I DN Nt:ii·1E :
not valid relation name.

RELATIDN NAME : student
how many attributes does student have? -8

give positive integer.

how many attributes does student have? 0

give nositive integer.

how many attributes does student have? 3

{HTFH BL.fTE (l !
N f.:l r1 E : n <::Hn E.'

(i TTF~: I PU.TE (:::)

Nt1r•IF : '"; t. <:<n d <:?.r-· d

(1TT!~lE:LJTE <~:":.)

j·-..j(l!.·1E: : dd tin'? SO:,

t·1EMJ r:,.

1 Tu c::r·c':!at<::! a ~-·elation ~:;c::l·lernP.

2 To Access Data .
. :.:. E>tup.

GIVE YOUR OPTION 1
we have following relations in relation directory
~::;tudf.:nt.

RELATION NAME ~ class
how many attributes does class have? 3

ATTF:IBUTE (1)
NAME : standar-d

ATTF:IBUTE <:~)
NAI''IE : t.E~ac:her

ATTfUBUTE (3)

NA!''IE : r·oomno

t1ENU A.

1 To create a relation scheme.
2 To Access Data.
3 Stop ..

GIVE YOUR OPTION 2

1'1[NU B.

1 . I nsE-~rt. d Tupl f.£• •

:2 . Dc::.'l f:? t. t?:.' i-.'1 • Tupl E~ •
-~
._1 n L.Jpddte c·:t Tupl t~.'.
4 .. F:t:?tl"' i f:~\/f7::• <':-\ Tupl

GIVE YOUR OPTION · ?

Relation Name : err
err does not exist.

f:.~ ..

F:elation Name : student
The relation contains no records.

1·1ENU f::'.j.

1 To create a relation scheme.
2 To Access Data •
.. ::. ~3top.

GIVE YOUR OPTION 2

1 . In ~:;er .. t <':\ Tupl e .
~~. Dr:::'l etE? ;3. Tupl e.
. .,..
-~) ... Updr..-1t.e c·:\ Tupl e.
Lj .• F~:<-"'tr- i. Pvf=~ ~J. Tupl e.

GIVE YOUR OPTION : 1

Relation Name : student

name : sita ram

standard : m.phil.

address : sutlej

you want to insert any more tuples of this relation? •.. (y/n): y

standard : m.phil.

address : mahanadi.

you want to inst.7t-t any mor·e tuples of this relation? •.. (y/n): y

name : suman

standard : m.tech.

address : godavri

you want to inset·-t. any mo1~e tuplt:"S of thi=; r··t:,J.at.ion~· ... (y/n): n

1'1ENU (..).

1 To create a relation scheme.
2 To Access Data.

GIVE YOUR OPTION 2

1 . I n ~:-,er· t c~ Tupl e .
~.

..::. "
I)(:;~ l C':~t E~ C:\ Tupl fo?

·~·" Up cl at c::· C-t Tupl e.
Lj .• G:('? t:_, .. - l E:i\/F:.' ,,, T 1 .up~ e ..

GIVE YOUR OPTION : 7
wr-onq option, t.ypt? agc:1in.

MENU B.

l " I n~";er· t. <::t Tuple.
~, Del E.'tE.~ ,,, Tuple. ...::. ..
·-·'"' t.Jpde:ltE? a Tupl e.
4. Rf:::>tr- i eve <3 Tuple.

GIVE YOUR OPTION : ~

76

R~lation Name : student
which record number? : 2
n am<-?.

old value
flf=.'W value

clas~;.

old value
new value

addr-ec-5S.
old valUE'
new val Uf2

par am
p,:..rarnj it

m.phil.

mahanadi

you want to update any more tuples of this relation? ..• (y/n): n

you want to update tuples in <.:myothet- relation? •... (y/n) ~ n

1'1E:NU {1.

1 To create a relation scheme.
2 To Access Data.
~3 Stop.

(.3 I \)E YllLJF~ OF'T I 01·~
,..,

l . I n~";r.~r· t C:\ Tupl e .
,.,

Dc::d E~tf? ,;~. Tupl e. .. ::.. ..
.. ::. .. UpdatE< C:.1. Tupl e.
4 .. f~:E'tr- i l~Vt? E:i Tupl f::.'.

GIVE YOUR OPTION 2

Relation Name : student

which record number? : 3

yuu \•Jant. to delete -::.ny more tuple~; of t.hi<:=_, t-c:·lz,,t:ic::.n'::· (y/n): n

you \•Jant to delr::?tc:: tupl•=-·~:,-, ir·: ''~'l'fOther r·r.?l.::~tion') (''//n): n

:1. To c r·· e a t. e .::. r·· e 1 .;d:. i o r-1 ~;; c: h E:' nH~ ..
2 To Access Data.
··. f:3tcJp ..

GIVE YOUR OPTION 2

1'1FNU E.<.

:t • TuplE·. ,..,
. .::~ " a Tupl<'2 . Dc-:d eb?

Updi;\t.:E: (:;\ 1' l.l p 1 f.::~ •

4. Retrieve a Tuple.

T!

GIVE YOUR OPTION : 4

Relation Name student
s.no. rec sts name standar-d address

1 p sita ram m.phil. sutlej
2 p par-amjit m.phil. mahanadi
7

·-' a sum an m.tech. godavri

you want to retrieve tuples of anyother relation? (y/n): y

Relation Name : class
The relation contains no records.

MENU ~~.

1 To create a relation scheme.
2 To Access Data.
3 Stop.

GIVE YOUR OPTION 3

This ~~ the sample output from PRIMS.

1 To create a relation scheme.
2 To Access Data.
3 ~)top.

GIVE YOUR OPTION 2

l. ln=;ert a Tuple.
:~'. DPl.E?tE: a-TuplE::>.
:3. Updcd.e <.::.. Tuple.
4. Retrieve a Tuple.

GIVE YOUR OPTION : 4

Relation Name : class
The relation contains no records.

t1ENU A.

1 To create a relation scheme.
2 To Access Data.
~5 Stc)p.

GIVE YOUR OPTION 1

'*·)

we have following relations in relation directory
s; t. ud <·=~n t
c 1 as~::,

78

RELATION NAME : class
class already exits.

RELATION NAME : A*%ESbv
not valid relation name.

RELATION NAME : teacher
how many attributes does teacher have?

ATTRIBUTE(!)
N(.)!'1E : name

ATTF:IBUTE (2)
NAME : st..:mdc:\1-d

ATTFUBUTE (3)

NAI'1E : r-·oomno

11ENU A.

··'-·

To create a relation scheme.
To Plc:c::t.>~;~s Date.<. ..

GIVE YOUR OPTION 2

1. Ir•~;er-·t. "''Tuple.
2. Delete a lup1e.
3. Update a Tuple.
4. Retrieve a Tuple.

GIVE YOUR OPTION 1

Relation Name error
error does not exist.

Relation Name : class

~;:;tdt·iddr·c:l : m .. phil.

teacher k.k.bhat

r· oomn o : 12:::::

~· ..)

yuu \I'JC:~nt to inser··t:. any mor·f::: tuplE-'S of this.; l'"t:•lat.ionr} .•. (y/n): t
wrong response, type again.
you ~·Jant·. to inc,;ert. c-~ny mor··e tuples of thi<.::; r··elationr~· ••• (y/n): y

standard : m .. tech.

79

teacher : g.v.singh

roomno : 131

you want to insert any more tuples of this relation? ... (y/n): y

standard m.c.a.

teacher r.c.phoha

roomno 145

you want to insert any more tuples of this relation? ... (y/n): n

you want to insert tuples in anyother relation? (y/n): y

Relation Name student

name : mohan

standard : m.tech.

address : sutlej

you want to insert any. more tuples of this relation? ... Cy/n)~ y

name : phani nath

standard : m.phil.

address : ganga

you want to insert any more tuples of this relation? ... (y/n): n

you want to insert tuples in anyother relation? (y/n)~ n

MENU A.

1 To create a relation scheme.
2 To Access Data.
3 Stop.

GIVE YOUR OPTION

MENU B.

1 Insert a Tuple.
~ Delete a Tuple. L.
~ Update a Tuple. 0.

4. Retrieve a Tupl e.

GIVE YOUR OPTION 3

Relation Name : class
which record number? : 6

80

record number exeeds file size.
type ag.:\i n.
which record number? : fdx

gi Vf:-) positive i nt.eger·.
which r··ecord number·? :

. .,.. . ..)

standard.
old value m.c.a.
new val LIE?

teacher-.
old value r·. c. phoha
new

roomno.
old
new

value

value
value

145
154

you want to update any more tuples of this relation? ..• (y/n): n

you want to update tuples in anyother relation? (y/n): y

Relation Name : student
which record number? 3
record doesnot exist.
type i:HJain.
which record number? :

old value
n<·:C'\'11 value

phani nath

standr.:wd.
old val U€:'!

nE.'W value

old v<:ilue
new value

m.phil.
m.tec:h ..

you ttJant. to update any more tur,l E's of t.hi !0; n:?J. ati on-;:· ... (y/n): n

you want to update tuples in anyother relation? (y/n): n

1"1ENU f"2l.

1 To create a relation scheme.
2 To Access Data.
3 !:)top.

GIVE YOUR OPTION 2

MENU B.

l.
,..,
. .:: ...
' ·~·· ,,

In~::,er·t.

DE•l f::!t.e
Up d c{ t. e

a TuplE?.
~~ "lL.tplE.~ ..
a Tuple.

a Tuple-=:>.

GIVE YOUR OPTION : 4

Bl

Relation Name class
s. no. rec sts standard teacher· roomno

1 p m.phil. k.k.bhat 123
2 p m.tech. g.v.singh 131
·:r p m.c.a. r·. c. phoha 154 ·-=·

you want to retrieve tuples of anyother relation? (y/n): y

Relation N<ame student
s.no. rec sts name standar·d address

1 p ~>ita ram m.phil. sutlej
2 p paramjit m.phil. mahanadi
' ·-· a sum an m.tech. godavri
4 p mahan m.tech. sutlej
<= p ph ani nath m.tech. ganga ~j

you want to retrieve tuples of anyother relation? (y/n): n

MENU A.

1 To create a relation scheme.
2 To Access Data.
~) f.1tc)p.

GIVE YCJUP DF'T I DN

This is the sample output from PRIMS.

1 To create a relation scheme.
2 To Access Data.
3 Stop.

GIVE YOUR OPTION 2

MENU B.

:1. . I n~";cr .. ·t C:"\ Tupl E·.
:·;

DE~l E?t c;~ ~~\ Tupl E.' n ~- "

..) . Upd.:~.t.E· d Tupl e.
4 " Petr·· i f?\/~? i::\ Tupl f?.

GIVE YOUR OPTION 1

Relation Name : teacher

name : g.v.singh

standard : m.phil.

r·oc:Hnno : 1 ::::;

8'?

you want to insert any more tuples of this relation? ••• (y/n): y

name : r.c.phoha

standard : m.tech.

roomno : 154

you want to insert any more tuples of this relation? ..• (y/n): yy
wrong response, type again.
you want to insert any more tuples of this relation? •.. (y/n): y

name : paramjit s.

standard : m.sc.

roomno : 136

you want to insert any mor·e tup 1 es of this relation? ... (y /n): n

you want to insert tuples in anyother relation? (y/n): n

1"1Eh!LJ A.

1 To create a relation scheme.
2 To Access Data.

GIVE YOUR OPTION 2

r·1Ehll.J B.

1. Ins;er·t d Tuple.
2. Delete a Tuple.
3. l.Jpddte a Tuple.
4. Retrieve a Tuple.

GIVE YOUR OPTION : 4

R<?.l ;:~t ion N;:~me teachf:?r-
s.no. rec sts name

1 p q.v.singh
~. p r··. c. phoha L

~; p par·amj it s.

~~ t c:md ar·· cl
m.phil.
m.tt.ech.

m.sc.

t-oomno
1.2:3

154
1.36

you want to retrieve tuples of anyother relation? (y/n): n

f1Eh!U 1-i.

1 To create a relation scheme.
2 To Access Data.
3 fltop.

GIVE YOUR OPTION 3

83

This is the sample output from PRIMS.

MENU A.

1 To create a relation scheme.
·2 To Access Data.
3 Stop.

GIVE YOUR OPTION 2

MENU B.

1. Insert a Tuple.
2. Delete a Tuple.
3. Update a Tuple.
4. Retrieve a Tuple.

GIVE YOUR OPTION : 2

Relation Name : class

which record number? : 1

you want to delete any more tuples of this relation? ... (y/n): n

you want to delete tuples in anyother relation? (y/n): y

Relation Name : student

which record number? : 1

yuu WE1nt: to deletE~ c:~ny mur-·E· tuplE'S of thi=; r··eJ.atic;n? ... (y/n): n

you want to delete tuples in anyother relation? (y/n): n

MENU A.

1 To create a relation scheme.
2 To Access Data .
. ::. Stop.

GIVE YOUR OPTION 2

1'1FNU B.

L I nser·t a Tuple.
2,. DE?l ete a Tuple.
' ·-· .. Update .;:~ Tuple.
4. F:f:?tr- i evf:? a Tuple.

GIVE YOUR OPTION : 4

Rt:-:>1 at ion Name
s.no. rec sts

class
standard teacher·

84

roomno

1
2
3

a
p
p

m.phil.
m.tech.

m.c.a..

k.k.bhat
g.v.singh
r.c.phoha

123
131
154

you want to retrieve tuples of anyother relation? •••• (y/n): y

Relation N<ame student
s.no. rec sts name standard address

1 a sita ram m.phil. sutlej
2 p paramjit m.phil. mahanadi
3 a suman m.tech. godavri
4 p mohan m.tech. sutlej
5 p ph ani nath m.tech. ganga

you want to r·etrieve tuples of anyother relation? .••. (y/n): n

MENU A.

1 To create a relation scheme.
2 To Access Data.
3 Stop.

GIVE YOUR OPT I ON· ::;.

85

	TH23630001
	TH23630002
	TH23630003
	TH23630004
	TH23630005
	TH23630006
	TH23630007
	TH23630008
	TH23630009
	TH23630010
	TH23630011
	TH23630012
	TH23630013
	TH23630014
	TH23630015
	TH23630016
	TH23630017
	TH23630018
	TH23630019
	TH23630020
	TH23630021
	TH23630022
	TH23630023
	TH23630024
	TH23630025
	TH23630026
	TH23630027
	TH23630028
	TH23630029
	TH23630030
	TH23630031
	TH23630032
	TH23630033
	TH23630034
	TH23630035
	TH23630036
	TH23630037
	TH23630038
	TH23630039
	TH23630040
	TH23630041
	TH23630042
	TH23630043
	TH23630044
	TH23630045
	TH23630046
	TH23630047
	TH23630048
	TH23630049
	TH23630050
	TH23630051
	TH23630052
	TH23630053
	TH23630054
	TH23630055
	TH23630056
	TH23630057
	TH23630058
	TH23630059
	TH23630060
	TH23630061
	TH23630062
	TH23630063
	TH23630064
	TH23630065
	TH23630066
	TH23630067
	TH23630068
	TH23630069
	TH23630070
	TH23630071
	TH23630072
	TH23630073
	TH23630074
	TH23630075
	TH23630076
	TH23630077
	TH23630078
	TH23630079
	TH23630080
	TH23630081
	TH23630082
	TH23630083
	TH23630084
	TH23630085
	TH23630086
	TH23630087
	TH23630088
	TH23630089
	TH23630090
	TH23630091
	TH23630092
	TH23630093
	TH23630094
	TH23630095
	TH23630096

