Design and Implementation of
A Relational Information Management System
in Turbo-Pascal (PRIMS)

Dissertation submitted in partial fulfilment of the
requirements for the award of the Degree of
MASTER OF PHILOSOPHY
(COMPUTER SCIENCE)

PARAMJIT SINGH

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI - 110067
1987

JAWAHARLAL NEHRU UNIVERSITY,

SCHOOL OF COMPUTER AND SYSTEMS SCIENCES,

NEW DELHI — 110067.

CERTIFICATE

This is to certify that the dissertation entitled "Design
and Implementation of a Relational Information Management
System in turbo-Fascal" submitted by Faramijit Singh ie in
partial fulfilment of the requirement for the award of

degree of Master of Fh]lo sophy .

The work is arigional and has not been submitted, in part

ar full, elsewhere for the award of a degree.

ROl M Ut

(Dr. R. C. FHOHA) (Frof. K. K. NAMBIAR)
Supervisor _ Dean

DEDICATED TO PAPA

ACKNOWLEDGEMENT
I remain indebted to many people during the preparation

of this dissertation.

First and foremost, I wish to express my deep -gratitude
to my supervisor, Dr. R. C. Fhoha, Ffor his scholarly

guidance and encouragement at every stage of this work.

I also wish to express my heartfelt thanks tao
Frof. K. K. Mambiar, Dearn, School of Computer and Systems
CSoeiences, Jawaharlal Nehro University, New Delhi, {for

providing the necessary facilities to complete this

rresearch.

I oehall be failing in my duty i€ I do not thank my senior
Ashwanil who provided me with lots of insights throughtout

the cours at this work.

Last but rnot the least, oy sincere thanks to all ot e
faculty members and collegues for Ltheir helpful comments

and co-operation.

Aorsonh” >

(PARAMJIIT SINGH)

CONTENTS

2 SAMPLE OUTPUTS ' ..74

i CHAPTER DESCRIPTION PAGE NO.
: 1 DATABASE SYSTEMS — AN OVERVIEW

: #* INTRODUCTION -- 1
: * WHY DATABASE 72 .o 1
; * AN ARCHITECTURE FOR A DATABASE

; SYSTEM » e B
H # DATABASE MODELS WITH RELATIVE

H ADVANTAGES -.-14
i # RELATIONAL DATABASE TERMINOLOGY ..21
: 2 PRIMS DESIGN AND IMPLEMENTATION

: * WHY PRIMS 7 --24
i * INTRODUCTIGON TO PRIMS «-24
; * PRIMS ARCHITECTURE -.26
: * REPRESENTATIONAL STRUCTURE

H OF THE DATA --28
: #* IMPLEMENTATIONAL DETAILS .29
: 3 FURTHER ENHANCEMENTS

: * AT DESIGN LEVEL -.40
i * AT IMPLEMENTATION LEVEL -.41
i REFERENCES -.43
i APPENDIX

: 1 SOURCE CODE LISTING --44

| wm wa me mm me tm me ok e ma mu s ma em wa em am mm me me Gm Ee mm e ma me ma em me e wm m= mm me wa mm we me e mm oe mm me e e mm me me am e me

CHAPTER

mE W mE @R eE SE ko ER SR e wE RS me =R ws mE e MR R e AR M R BMA Mo e me mW me RE e e mm me M R em e me e G e me wm {

—AN OVERVIEW

DATABASE SYSTEMS

* AN ARCHITECTURE FOR A DATABASE SYSTEM
* DATABASE MODELS WITH RELATIVE ADVANTAGES
RELATIONAL DATABASE TERMINOLOGY

* INTRODUCTION
#* WHY DATABASE 72

|E MR mm R e e e SR e TE ME R WA ee Rl mR me SR me M Me B NN EE M M M MW Ea M Me ME Ge mm el w3 eG mE me e as ew am we

INTRODUCTION

What exactly is a database? Basically, it is nothing more
than a computer—based recordkeeping system @ that is, a
system whose overall purpose is to record and maintain

information.

A database, then, is a repository for stored data. In

general, it is both integrated and shared.

By "integrated" we mean that the database may be thought
of as a unification of several otherwise distinct data
files, with any redundancy among those files partially oar

whally eliminated.

By "shared" we mean that individual pleces of data in the
database may he shared among several different users, in
the sense that each of those users may have access to the
same plece of data,and may use it for di?fefemt purpuses.
Sharing, in fact, is a consequence of the fact that the
database i1s integrated. The term "shared" is frequently
extended to cover, not only sharing as Jjust described,
but alsc concurrent sharing @ that is, the ability for
several ditferent users to be actually accessing the
database (possibly even the same piece of data) at the
same time. A database system supporting this form of

sharing is sometimes referred to as a multiuser system.
WHY DATABASE 7

The broad answer to this question 1s that a database

system provides the enterprise withv centralized control
of its operational data,which is one of its most valuable
assets. This is in sharp contrast to the situation that
prevails in many enterprises today, where typically each
application has its own private files (quite often its
own pfivate tapes and disk packs, too) so that the
operational data is widely dispersed, and is therefore
probably difficult to contrel. This implies that in an
enterprise with a database system there will be some one
identifiable petrson who has this central responsibility
Fof the operational data. This person is the database

administrataor (DBA).

et us consider some of the advantages that accorue from

having centralized control of the data.

Redundancy can be reduced.

In nondatabase .systemg each application has its own
private files.This can often lead to considerable
redundancy in stored data, with resultant waste in
storage space. In database envirbnment, the fileé‘ can
be integrated, and the redundancy eliminated,if the DEA

is aware of the data requirements for all applications.

We do not mean to suggest that all redundancy should
necessar-ily be eliminated. Sometimes there are sound
business or technical reasons for maintaining oultiple

copies of the same data. In a database system,

+J

however , tedundancy shodld be controlled - that is,the
system should be aware of the redundancy and should

assume responsibility for propagating updates.

Inconsistency can be avoided.

Thié, actually, follows from the previous point. Suppose
a particular fact is represented by two distinct entries
in the database, and the system is not aware of this
duplication (¢ in other words,the redundancy is not
éantrolled }. Then there will be some occasions on
which the two entries will not agree (that is ane and
anly one has been updated Y. At such times the database
ie said to be inconsistent. UObviously, a database that is
in an inconsistent state 1s capahle of supplying

irncorrect or conflicting information.

that 1+ the given fact is represented by a
single entry (1.e.,14f the redundancy is removed) such an
inconsistency cannot occur. Altermnatively, 1f the
redundancy ie not removed but is contrelled, then the
system could guarantee that the database 1s never
inconsistent AL Geen by the user, by enswing that any
change made to eilther of the two entries 1e¢ avtomatically
made to the other. This process 1s kEnown as propagating

updates.
The data can be shared.

We have already mentioned about this. But this point is

so important that we stress 1t again here. It meang not
only that existing applications can share the data in the
database, but also that new applications can be developed
to operate against that same stored data. In other words,
the data requirements of new applications may be

satisfied without having to create any new stored files.

Security'restrictions can be applied.

Havinrng complete jurisdiction over the operational data,

the DEA (&) can ensuwre thalt the only means of access to

the database 1s through the proper channels,and hence (b)
can define avthorization checks to be carried out
whiesre v el acocess Lo sensitive data 16 attempted.
Different checﬁg can he established for each type of
&G { retrieve, modify, delete, etoc. 7 to each piece

o f information 1n the databhasse,

Integrity can be maintained.

The problem of integrity is the problem of ensuring that
the data 1in the database ie¢ acouwate. Inconsistency
between two entries representing the same "fact" is an
example of lack of integrity (which of cowse can occou
only i+ redundancy exists 1n the stored datg Y. Even if
redundancy is eliminated, however, the database may still
contain incorrect data. Centralized control of database
Felps in aveiding these situwations,insofar as they can be

avaided, by permitting the DBA to define validation

procedures to be carried out whenever any update

operation is attempted.

Most of the advantages listed above are fairly obvious.
however one other point, which 1s not so obvious must be
added to the list, namely, the provision of data
independence. Strictly speaking, this is an objective

rather than an advantage.

AN ARCHITECTURE FOR A DATABASE SYSTEM

We will now give an cutline of an architecture for &

database system. We do not claim that every database

sy atem &I be neatly matched to this particul s
framewort, nor do we mean to suggest that this
partiocul ar architecture provides the only possible
framewark. However, the architecture deoes seem to fit

sonably wellg moreover, 1t

a large number of systems re

e

s in broad agreement with that proposed by the

ANST /GFAREC Study Group on Data Rase Management Systems.

The architectuwe 1s divided inte three general levels :
internal , conceptual and external (Fig. 1.1 2. BRroadly
speaking, the internal level ig the one closest to the
physical storage, that isg, the one concerned with the way
in which the data is actually stored; the external level
is the one closest to the users,that is,the one concerned
with the way in which the data is viewed by individual

users; | and the conceptual level is a "level of

External level H
(individual user views) H

¥ gy 8
[T I |
a
®s g w

rd
~
~

Conceptual level
{community user view)

Internal level
(storage view)

aa *2 »
g 8% g

Fig. 1.1 The three levels of the architecture.

indirection" between the other two. If the external ievel
is concerned with individual user views, the conceptual
level may be thought of as defining a community user
view. In other words, there will be many "external views"
each consisting of a more or less abstract representation
of some portion of the database, and there will be &
single "conceptual view", consisting of a similarly
abstract representation of the database in its entirety.
Most of Lthe uwsers will not be interested 1n total
databace, but only in some restricted portion of it.
Likewlise, there will be single "internal view',

representing the total database as actually stored.

We will, now, examine the components of the architecture

in somewhat more detail (Fig. 1.2).

The users are either application programmers or an—-line
terminal users of any degree of sophistication. (The DBA

is an impartant special case.) Each user has a language

User A User A2 User B1 User B2 User B3

i{ost language | | Host language | | Host language | | Host language

Host tanguage
+ DSL + DSL + DSL + DSL © +DSL
: External I External view A | Exzernal External view B |—— — —
' schema A ° : screma B -
i . J
i
! \ /
! External/conceptual £ xternal:conceptual
mapping A mapping B
Schemas and \ / \ Database
mappings built Conceptual l [management
and maintained schema 1 Conceptual vy |« T\ system
by the ﬁ ’ : (OBMS) /
database | ’
administrator
(DBA) Conceptusl miz-nal
mapping

Storage structure) F ! C :]
definition : ! ' p b
Stored database {internal view)

{internal schema) bl

*User interface—]

Fig. 1.2 Database system architecture.

at his or her disposal. For the application programmer it
will be a conventional programming language, such as
COEOL or PL/1; for the terminal user i£ will be either a
query language or a special-purpose language tailored to
that user’'s requirements and supported by an on-line
application program. For our purposes the important thing
about the user ‘s language is that it will include a data
sublanguage (DSL) , that is, a subset of the total language’
that is concerned with database Dbjecfs and operations.
We talk about the data sublanguage as being embedded in a
host language. A given system may support multiple host

languages and multiple data sublanguages.

In practice, any given data sublanguage i really a
combination of two languages: a data definition language
(DDL) , which provides for the definition or description
of database objects (as they are perceived by the user),
and a data manipulation language (DMLY, which supports

the manipulation or processing of such objects.

We must note that the data sublanguage and the host
language (such as COBOL or FL/1) are fairly “tightly'
coupled" - that is, £o the user the two are not really
separable. In current practice this is usually not the
case, at least so far as programming languages are
concerned. Instead (a) the definitions'are completely
outside the application program,. and written in a DDLU
that does not even faintly resemble the user’'s host

language, and (b) the manipulation is done by CALLing

standard subtroutines (prévided as part of the DBMS), and
is therefore again outside the host language framework.
In other words, in most systems today the data
sublanguage and the host are very loosely coupled. A
tigﬁtly coupled system provides a more uniform set of
facilities {for the user, but obviously involves more
effort on the part of the designers and developers of the

system.

To return to the architecture: We have already indicated
that an individual user will generally be interested only
in some portion of the total database; moreover, the
user's view of that portion will generally be somewhat
abstract whern compared with the way the data it
physically stored. In ANSI/SFARC terms an individual
user ‘s view ls called an external view. An external view
1w thus thé content of the database as 11 is seen by some
particular'uger {that 1s, to that user the external view
1 fhe database) . In general, then, an external view
consists of multiple occurrences of multiple types of
external record. An external record is not necessarily
the ﬁame~a5 a stored record. The user’'s data sublanguage
1s defined in terms of external records; tor example, a
DML "get". operation will retrieve an external record
ococurrence, rather than a stored record oCcurrence. The
term "logical record” is also, sometimes, used to refer

to an external recaord.

Each external view is defined by means of an external

schema, which consists basically of definitions of each
of the various types of external fecora in that external
view. (The external schema 1s written using the DDL
partion of the data sublanguage. That DDL is therefore
sometimes called an exlternal DDL.) In addition there must
be a definition of the mapping between thev external

schema and the underlying conceptual schema.

We turn now to the conceptual level. The conceptual view
1 a representation of the entire information content of
the database, ag?in in & form that is somewhat abstract
in conparison with the way in which the data is
phyﬁically stored. (1L may also be quite different from
the way in which the data 1s viewed by any particular
user. Hroadly speaking, it is intended to be a view of
the data "as it really is" rather than as users are
forced to see 1t by the constraints of [for examplel the
particular language o hardware they are wsing.) The
conceptual view consiste of multiple occurrences of
multipie types of conceptual recard. A conceptual record
ie not necessarily the same as either an external record,
on the one hand, or a stored record, on the other. The
conceptual view is defined by means of the conceptual
schema, which includes definitions of each of the various
types of conceptual record. (The conceptual schema is
wiritlten wusing anothe; data definition language -~ the
conceptual DDL.) If data independence is to be achieved,

these definitions must not involve any considerations of

1@

storage structure or access strategy -~ they must be
definitions of information content only. Thus,there must
, .
be no reference to stored field representations, physical
sequence, indexing, hash—addressing, or any other
storage/access details. If the conceptual schema is made
truly data—-independent in this way, the external schemas,
which are defined in terms of the conceptual schema will
be data—-independent too. In most existing systems the
conceptual view is really little more than a simple union
of all individual ‘uéers' views, possibly with the
addition of some simple authorization and validation

PR Oc E";‘CI\LU’" (5=

The third level of architecture is the internal level.
The internal view is a very low-level representation of
the entire database; it consists of multiple occurrences
of multiple types of internel record. "Internal record"
1w the ANSI/SFARC term for the construct that we have
heen calling a stored record. It does not deal in terms
of physical records or blocks, e with any
device-specific constraints such as cylinder or track
sizes. The internal view 1% described by means of the
internal schema, which not only defines the various tyvpes
of stored record but also specifies what indexes wist,
how stored fields are represented, whalt physical sequence
the stored records are in, and so on. The internal schema
ig wriitten using yet another data de{inifiom language —

the interrnal DDL.

11

.

Referring again to Fig. 1.2, we observe two levels of
mapping, one between the external and Eonceptual levels
of the system and the one beltween the conceptual and
internal levels. The conceptuél/internal mapping defines
the correspondence between the ccnceptgal view and the
stored database; 1t specifies how conceptual records and
tfields map into their stored counterparts. If the
structure of the stored database is changed - i.e., if a
change is made to the storage structure definition —~ the
conceptual /internal mapping must be changed accordingly,
so that the conceptual schema may remain invariant (it is
the responsibility of the DBA to control such changes.)
In other wordse, the effect of such changes must be
contained below the conceptual level, so that data

independence can be achieved.

"y

A external /conceptual mapping defines the correspondence
between & particular external view and the conceptual
View. Ir general, the same sort of differences may exist
between these two levels as may exist between the
conceptual view and the stored database. For example,
fields may have different data types , records may be
ditferently sequenced, and so on. Any number of external
views may exist at the same time; any nu&ber of users may
share a given external view; different external views may
overlap. We «can express the definition of one external
view in terms of othere, rather than always requiring an

explicit definition of the mapping to the conceptual

level. This featuwre can be permitted, particularly,
if several rternal views are closely related to one

anaother.

We <hall now discuss other components of the database
system architecture (Fig. 1.2) - the database management

system, the database administrator, and the usetr

interface.

The database management system (DBMS) is the software
that handles all ACCASS to the database.
Conceptually what happens is the following : (1) A user

issues an access request, using some particular data

-
manipulation language; (Zy 0 the DBEMS intercepts the
request and interprets 1ty {Z) the DBEMS inspects, in
turn, the external schema, the external/conceptual

mapping, the conceptual schema, the conceptual/internal
mapping, and the starage structuwe definitiony and (4)
the DEMS performe the necessary operations in the stored

database.

The database administrator (DRMA) 1s the person

(ar a group of persons) responsible for overall contraol

of the database asyaetem. The DRA's responsibilities
include = deciding the information content of the

database, deciding the storage structure and access
strategy, defining the authorization checks and
\

validation procedures, defining a strategy for backup and

ecovery.

One of the most important DBA tools is the data
dictionary (not shown in Fig. 1.2) . The data dictionary
ias effectively a database 1in 1ts own right - a databése
that contains “déta about data" (that is, descriptions

of other objects in the system, rather than simply "“traw
data"). In particular, all the various schemas (external,

conceptual, internal) are physically stored, 1in both

source and object form, in the dictionary.

The last component of the architectwe 1is the user
interface. This may be defined as & boundary in the

system below which everything i1s invisible to the user.

DATABASE MODELS WITH RELATIVE ADVANTAGES

A database model 1is a way of describing database
structures and database processing that is general enougH
to encompass &ll or at least a large majority of data
bhase applications. In general a database model consists
of bwo elemente -~ (1) A mathematical notation for

expressing data and relationships; and (27 Uperations on

the data that serve to express queries and athear

manipulations of the data.

Efforts to develop database models have been underway
since the late 1%6@'s. At present, there are three
database model s of importance. These models are
hierarchical, network, and relational. We will discuss

these models in brief.

14

Database models are broken into two parts. QOne part,
referred to as the data de&inition'vlanguage (DDL.Y ,
describes the structuwe of the database. The other part,
referred to as the data manipulation language (DML),

describes the way database is manipulated (processed).

The data definition language (DDL) describes the name and
type (numeric, string etc.) of each field, as well as the
way the fields are grouped into records. Also the DDL
mugt_ indicate the primary and secondary keys (if anyl.
The DD preserves the independence of - logfcal and
physical representations of data. Given the DDL, programs
need not be dependent on or loéked into particul ar
physical representations of the data. The physical
structure of data can be changed without modifying any
part of the DDL description. Since users, in general,
process only'ﬁomﬁ portions of the database depending upon
their fequiremenfﬁ, this implies that the DDL must be
able to describe portions of the database. In addition to
representing the structure of the entire database and any
particul ar portion of that structure viewed by Aa
particul ar user, DDL must speci%y security regtrictionﬁ
o the datébase, It must indicate the fields or records
that are restricted and the type of each restriction

(read, write, read/write).

The data manipulation 1anguage (DML) describes the
techniques used to process the database. It tells how the

records can be retrieved, replaced, inserted and deleted.

15

This includes processing records directly using keys or
indirectly via relationships between database records.
The DML should enable the user to deal with the database
in logical or symbolic terms. Keys, for example, should
be symbolic identifiers rather than physical addresses;
This preserves the iﬁdependence of tﬁe programs from the
physical representation of the database. Further, the DML
should free the user from database structure
maintenance . For erxample, take the case of secondary key
maintenance — a big overhead. When a record is added to
a set (a group of database records having a common value
inoa %@condary'key field), the database system should
automaticall? cause the appropriate tables or links to be
madified., The uwser cshould not be reguired to do this; in
fact, it should be transpafent tao the user. This also
helpe to preserve the independence of programs from
physical structwe. Further, to permit a wide range of
programs to use the database; the DML should support as
many languages as pessible. This means that the DML must
not be structwed around any particular programming
langquage. It should be possible to imﬁlement the DML, in
any language that is potentially useful {for database

processing.
Typrcally, & DML consists of verbs and operands that

pravide way to retrieve, replace, insert and delete

records. Some generalized DML verbs are shown below.

1A

verb operands

READ Record name, key name, kiy value,
field names, passwards.

REFLACE Record name, key name, key value,
field names, field values, passwards.

INSERT Record name, field names, field values,
passwards.

DELETE Record name, key name, key value,
passwards.
The READ verb requires the name of the record type plus
the identifying data such as key name and key value. The
DML, probably has a provision for Seduentially reading
records in a file ar in a set as well. Thé field names
operand is a list of fields to be read, and passward is a
list of pasewards for EECUfity. These operands have the
same meaning for other DML verbs. In addition, the field
values aoperand 1s needed to provide data to the database

system for the REFLACE and INSERT verbs.

We will now give & brief discription of the three

database models and compare them.

Hierarchical model requires the data to be reresented by’
hierarchical (tree) constructs. Simple and compl ex
network structures can not be directly represented by
hierarchical constructs but can be decomposed into tree
structures , say, using logical pointers. This means that
the wser’'s view of the data, whether he/she sees a tree

or a simple or complex network, must somehow be forced

17

into the tree representation.

Network model requires use of the set concept for
representing the data. A set 1is a collection af
occurences of records of a particular type or types.A set
has an owner, which 1is an occurence of a record of
different type. Every record occurence is elligible for
to be a member of a set or an owner of a set , but no
record can be both a member and an owner of the same set.
Set is the key concept {for holding relationships in the
network model. Tree and simple network structuers can be
represented by sets in a ﬁtraightv forward manner .
However , complex networks cannot be dirvectly represented,
but can be transformed or reduced into simple networks by
defining & new record type and letting records of this

type hold data about intersection of two records.

The relatinal database model differs in several aspects
fram the hierarchical and network models. For one, the
relational model ie based on a foundation of theory from
relational mathematics.Hierarchical and network models
(say DL/1 and DRTG) are directed at programming systems;
the step from eilther of these to a programming language
iw a short one. The relational model consists of a group
of cocepts that are not particualarly related to any
programming language. Finally, the relational model tends
to represent data as 1t exists, that is in tabular form.
The relational model does not force the use of an

artificial construct (like tree or set); rrather, it

18

reduces data relationships to simpler components and
represnt the components directly. The relational model
can be used to represent trees and both :simple and
complex networks. Both the hierarchical and network
models require artiticial cunstruéts to represent
networks. The relational model does noty; it represents
data as it exists.The hierarchical and network models
tend to add complexity as they force the user to
formalise His/her view of the data; the relational model

tends to simplify.

To evaluate the three models, further, as discussed
above, we must state the criteria by which they shold be

Judged. We see two primary CONcerns.

1. Ease of Use.

Especially in small databases, the principal cost may be
the time spent by the programmer writing appiication
programs and by the user posing queries. We want a model
that makes accuwrate programming and the phrasing of

QUEr 1 es @asy.

2. Efficiency aof Implementation.

When databases are larqge, the cost of storage space and
computer time dominate the total cost of implementing a
database. We need a database model in which 1t is easy

for the DBEMS to translate a specification of the

19

conceptual scheme and the conceptual —to-physical mapping
into an implementation that is space efficient and in

which gqueries can be answered efficiently.

By the criterion of easy use, tHere is no doubt that the
relational model is superior. It provides only one
concept, the relation, that the programmer or user must
understand. Moreover, the relational algebra and calculus
clearly provide & notation that is guite succinct 'and
powerful, and this power carrieﬁ.over natuwally to real
relational query languages. These languages make systems
based on the relational model available to persons whose
programming skill is not great. Compare, for example, the
effort needed to specity the Jjeoin of relations with the
work required to write & program in the DRTG data

manipulation language or the DL/1.

Further, the network modél Feguires ouwr und@?standing of
both recérd types and links,and their interrelationships.
Thie implementation of many-many relationships and
relationships on three or more entity sets 1is not
straightforward. Although this problem can be overcome by
introducing dummy record types, which is aquite typical.
Similarly, the hierarchical model requires understanding
the use of pointers (virtual record types) and has the
Samev problem as the network model regardlng the
representation of relationships that are more complex

than many-one relationships between two entity sets.

When we consider the potential for efficient
inplementation, the network and hierarchical models score
high = marks. Certainly,the implementations of variable

length records facilitate the task of following links.

£ "~ A E Also, data structures such as the multilist and the
fﬁsf ,gé 'Fjéointer~based implementation of variable length records

g VA 3o not generalize readily to many—many mappings. S8Since
relations can, and often do, represent . many—many
mappings, we see that efficient implementation can be

mor e difficult f or relations tharn for networks or

,,q hierarchies.
T

Certainly, there is no fundamental reason why all these

implementation ideas for networks and hierarchies cannot
be carried over to the implementation of relations, and

E;i indeed, many of them have been.

RELATIONAL DATABASE TERMINOLOGY.

The relational model of databases was first introduced by
Codd (197@). Informally, in the relational model, data is
regarded as stored in tables (called relations). We will

give the formal definitions.

A relational scheme consists of a (finite) set of

attributes.
With each attribute, we associate a domain of values.

lLet R be a relation scheme. A tuple on R is a function

21

{(say, +) mapping each attribute in R to a value in 1ts

domain.

A relation on the relational scheme R 1s & set of tuples

on K.

Note that a relation does not have duplicate tuples,

since we defined it as a set of tuples.

A relation can be visualized as a table with one column

for each attribute and one row for each tuple.

Further, we can note, first, that all the entries in a
table are single-valued, that i1s atomic; nelther
repeating groups nor arrays @ are allowed. Second, the
entries 1n any column are of the same type. Each column
hae a unigue name, and their order is immaterial.

Also,the order of rows (tuples) ise insignificant. It a

relation has n colamns, then each row ds referred
e as an n—tuple. Also, & relation that has n
attributes {(calumns) is said - to be "of degree n.

‘Similarly, the number of tuples (rows) in a relation is
retferred to as its cardinality. Fach attribute has a
domain, which is the set of values that the attribute Ean
have., Each attibute is given a unique identifier called

an atbtribute name.

A attribute or combination of attributes that wniguely
identifies a tuple is referred to as a candidate key. One
of the candidate keys is selected to be used as the

kil

g

unique identifier and is referred to as the primary key.

To sum up, we can say that, in traditional terms a
relation resembles a file, a tuple a record (occcurance,
not type) , and an attribute a +Field {(type, not
occurance) . These correspondences are at best

approximate, however.

CHAPTER

e WE WE e Be B e Re We mS mE RS EE MR EE e Ee EE O RW WS MM RN Ee mE RG W M NN BM BR me B NS WME ME e Be MW me B e W mm Bw

PRIMS DESIGN
AND
IMPLEMENTATION

* REPRESENTATIONAL STRUCTURE OF THE DATA

INTRODUCTION TO PRIMS
PRIMS ARCHITECTURE
* IMPLEMENTATION DETAILS

#* WHY PRIMS ?

BB N e R LE PE BN e A AR Ee N NEe RS Re MR NS MR Ma W AN N NN RS e R M MW NI R RN MR BN RN ua RN NS MR NN WS oM WE a3 em

WHY PRIMS 7

There are two important reasons for having chosen this
problem of developing FRIMS : " design and implementation
of a Relational Information Management System in
turbo-Fascal ". The first one is as an exercise — an
rercise that helps in understanding the subject, that is
database, in mofe depth so far as its design and
/ .

implementation are concerned. It shows how the data in &
database 1s represented and ménipulated at lower levels
whiich usually is not visible to the ordinary users.
Secondly, besides being a fruitful exercise, FRIMS haé
been designed {from commercial point of view as well.
FRIMS, in 1ts complete form, is supposed to be compa&t
and portable product essentially meant for micro

computers.

INTRODUCTION TO PRIMS

FRIMS ie relatiomnal becauvse 1t meets all those conditions
and requirements which are essential for a relational
system. The requirements +or & system to be called

relational (as per Schmidt and Broide) are :

1. All information in the database is represented as

values 1in tables.

2. There are no user visible navigation links between

these tables.

3. The system supports at least the select, project and

equi join operators of the relational algebra.

FRIMS can be used by on—line user 1n one pf the two
interactive modes, namely — the menu driven mode and the

query language.

There are two abstract query languages called rélational
algebra and relational_calculug. The real query languages
are based on these two abstractions. Currently, due to
limitations of time and resources, only menu mode for
FRIMS has been developed. In order to complete this
exercise within the prescribed time limit, only those DDL
ard DML commands have been chosen which fulfil the needs
tor a system to be at least minimally relational. Menu
mode has been chosen to make the system user friendly.
While interacting through menu mode, the user need not
hother to remember the syrntax of any DDL and DML
commands. Whalt the user simply has to do is to give one
af the choice numbers, which he/she picks up from the
menu that will be displayed on the video screen. On doing
30, the syntax or format in which the data is needed for
that database aperation will be displaved on the screen.
Sc¢ the user can give the data in the format and obtain
the corresponding results. In case there is some error in
the input data, the corresponding error message will be
displayed which can help the user in rectifying his/her
errors. Once that operation is over the system retuwns

control back to the menu mode, displaying the menu and

e

o

asking for the fresh choice number. Some choice numbers
in the menu may result in subseqdent new menus. The
procedure to be followed ih those new menus is also
similar. Once all the reguired operations on the database
areae over, the user can exit fraom the database mode inta
the operating system mode, again by giving a proper

cholce number meant for exit.

PRIMS ARCHITECTURE

The architecture for FRIMS ,as shown in figure 2.1, has

been represented in five levels., The first level known as

i DBMS : i DICTIONARY i

i ACCESS METHODS i

i INTERNAL STORAGE |

i PHYSICAL STORAGE !

Fig. 2.1 - FRIMS Architecture.

user 1s elther an application programmer or an on—line
terminal user. The uwuser has a language at his/her

disposal. For the conventional application programmer it

26

will be a conventicenal programming language such as
turbo—-pascal or - COROL. For the términal user the
language is simply a query language (in menu mode only at
present). User ‘s language will include a DBL, i.e., a
subset of the total language that 1is concerned with
database objects and operations. We talk about DSL as
being embedded in a host language. The DSL is really a
combination of DDL which consists of declarative
constructs and DML which consists of those executable
statements that transfer information to and Ffrom the

database.

The second level of the architecture known as DEMS 1s the
software that handles all access to the databacse. When a
user lssues an access request, using DSL, the DEMS
intercepts the requeslt and interprete 1t. Incase the
regquest 1s error free, the DLEMS performs the necessary
operations on the internal storage via access methods

which constitute the third level of the architecture.

The access modules are the modules which are wsed for
accessing the data at the internal storage level. AQococess
methods have information about the relation scheme (that
15, about the structure of a relation, wviz., its name,
what are various attributes that constitute the relation,
their names, types etc.). All this information is not
known to DEMS but is made available to it through acéess
methods only.

The fouwrth level of architecture, the internal storage,

is the level where data in the database is represented
and is not yet the lowest level of database which 1is
known as the physical storége level. The physical
storage level deals with all device dependent details.
The lowesth level is handled by the operating system
modules which are responsible for conversion of data from
internal storage to physical storage. Sa, it is the
operating system only which finally is aware of access
and storage of the data as stored on the physical medium

like a disk.

REPRESENTATIONAL STRUCTURE OF THE DATA

As seen in fig. 2.1, both DBMS and access methods are
interfaced with dictionary which provides their
corresponding modules with the information about the

corresponding relation under database operation.

In the program the dictionary is given a fixed file name,
namely RELATION.DIR. Whenever the user wants to create a
Hew,relation, the corresponding relation name is put in
the dictionary and the information about the structure of
the relation (how many attributes this relation has, what
are the names of these attributes) is put into the
RELL File which is a file created, named after the name
of the relation (for example, if the user wants to create
the relation named STUDENT, STUDENT will be inserted into
RELATION.DIR file and immediately a file named

STUDENT.REL will be created which will contain the

information about this relation.).

‘As soon as the user talks about a relation, first of all,
the relation name is checked for its validity J(i.e.,
whether or not the relation name is a valid oné). It is
done so since after this relation name we have to create
REL file as already described and DAT file which will

contain data for this relation.

Since all the relations in a relational database are
supposed to be distinct, so before adding a new relation
name 1n DIR file ,this file is scanned for whether or
not this relation name is already present in it. If so, a
suitable message is displayed and the user is asked to

give the relation name again.

The DAT file will‘éontain the data corresponding to the
relation the user wants to create. To facilitate the
user, 1in addition to the data corresponding to the actual
list of attributes supposed to be present in DAT file,
we add two more attributes — 1. 'serial number (s_no) of

the tuple Grecord) ;3 and 2. record status (rec_sts) of

the record (p for present and a for absent).

IMPLEMENTATION DETAILS

In this section, we will describe various access methods,
a set of modules which are used for accessing the data
from the internal storage level. We will describe the

program structure and details of each procedure (module),

29

their purpose, the input tao and output from each
procedure and the way they are called together to

accomplish a fixed task.

At present, FRIMS can accomadate twenty—-five relations

each containing a maximum of twenty—-five attributes.

THE Main Program

The main program starts by invokihg the procedure
initialize. Further it issues a call to the procedure
list_options and the procédure interpret_option. These
procedures are invoked time and again until the user
wants to come out of the present session with system, by

giving the option 37 in menu B.
We will riow describe each procedure i1n detail.

check_if_valid_string

This 'progedure isg called to check whether the response
given by the user at a particular.time af execution is a
valid string or not. This is needed since in Turbo Fascal
any valid file-name can start only with a letter (a — z)
or (A - Z) and followed by one or more digits @ -).
And since when the systeq asks to give the relation name,
and after this name a corresponding file is to be
created, it becomes necessary to check that the user’s

response should be such that we can create a file after

this name. Similarly, when specifying the names of
various attributes in a relation we want that it should
be meaningful attribute. This procedure accepts a string

and returns whether it is valid or not. v

check_if_integer

This procedure accepts a string as input and returns
whether or not the given string is & positive integer.
The procedure is called when a user is supposed to give a

response and we expect it to be a positive integer.

initialize

Here the dictionary is assigned a fixed name RELATION.DIR
and some other running variables are given initial
values. RELATION.DIR stores the names of various

relations which we will be dealing with.

list_options

This procedure lists out the various options available
for the user. It displays Menu A with three options 21—
i. To create & relation schemeg 2. To access data,

and %. Stop.

interpret_option

This procedure asks for the option and then interprets.

If the option is one of those displayed in the menu

7
—

A (consisting of three options - 1. To create a relation
scheme 3 2. To access data jand 3. Stob), the control is
sent to the appropriate procedure otherwise the procedure

error_handler is invoked displaying the suitable error

message and user is asked to retype the option.

rel_info

This proceduré asks about the relation name and checks
for the validity of the relation name by calling
check 1+ _valid _string. I+ the relation mame 1is valid
(i.e., it does not contain. any special characters
including blank and starts with any of the characters
a —z o A - Z) the control is retuwned back to the

calling procedure.

rel_+mt

Thisg proéedure asks the information about that how many
attributes the relation under consideration has. The
response to this guestion is supposed to be a ppsitive
integer. So the user response is checked far validity by
calling the procedure check 14 integer. If the response
is not a positive integer the user i1s directed to +retype
the response. After this the attribute names constituting
the relation are asked as many times as there are number
of attributes. These attribute names are thecked for
validity tﬁ give some meaning; Lastly this information is

added to the RELL file created after the name of the

e

relation currently under consideration.

show_relation_directory

This procedure simply lists out all the relations

cdrrently present in the DIR file, if any.

check_if_already_exists_in_the_relation_directory

This procedure accepts a relation name, scans th?ough the
DIR file and gives the message ‘already exists’ i+ ghe
relation is there in the DIR file. This proceduwe is
written to avoid duplicate relation names as all the

relations in & relational database are supposed to be

distinct.

append_rel _dir

Orce & relation nmame i1s valid and not & duplicate one
that relation name is added to the DIR file by this

pl"DCE‘dLU’"@ N

relation_and_existence

This procedure is invoked when we want to access data
about a particular relation. Firstly, the relation name
is checked for its validity. Once it is so, then~ DIR
file is searched for this relation since once we want to
access (insert, delete, update, retreive) data about a

particular relation it must be present in DIR file. I+

~
R

the relation is not there in DIR file, the message 'does
not exist’ is displayed and control is returned back to
the calling procedure. If fhe'relation is there in the

DIR file a DAT file is assigned after the name of the

relation name.

The DAT fi1le contains the actual data about a
particular relation. To facilitate the user,‘ twa extra
attributes are added to the list of attributes actually
supposed to constitute the relation. The first is serial
number (s no) of the record and the second is the record
status (rec_sts) ot é particular tuple (record) which at
any time helps to determine whether the record i1s present

in the relation or not.

create_a_relation_scheme

When the user is interested in creating a new relation
this prdcedure ;5 invoked. The system asks for the
relation name checks for its validity (if it 1s not a
valid relation name the user is directed to retype it).
Once it is a valid relation name the system checks if the -
RELATION.DIR contains some relations (it is achieved by
using the built—-in Turbo Fascal function ‘filesize’,
in terms of records). If the DIR File is empty (i.e.,
the ‘'filesize’ returns a zero value), the procedure
rel_info is called which supplies the valid relation name
and then it is added to the list of relations in DIR

file. If the DIR file is not empty (1.e., the "filesize’

returns a value greater than zero, certainly it cannot be
negative) , fhen all the relation names in DIR file are
diéplayed | by invoking the procedure
show_relation_directory. This helps the user to know
about all the existing relations created so far in the
DIR +ile. After this, the procedure rel_info is called

to know about the relation name. If this relation exists

already in DIR file (checked by procedure
check_if_already_exists_in_rel_dir), the message that
this relation already exists in DIR file is displayed

and the user is supposed to'give the relation name again.
If not, then thig relation name is added to the DIR Ffile
by calling the procédure append_rel dir. Further a REL
file is created aftter the name of the relation currently
wnder consideration. The infdrmation about the number of
attributes and the names of the attributes consttituting
that relation i1s put into the REL +file (by calling the

procedure rel +mt).

insert_a_tuple

This procedure begins by caliing the procedure
relation_and_existence which asks the relation name,
checks for its validity, scans the DIR File +to
see that the relation is very much there in this file,
then assigns the corresponding pDAT file a%ter the name
of {the Eelation to the file variable, and r@turnsl the

control to the procedure insert_a_tuple again. If the

DAT file is empty it is written afresh, otherwise tuples
will be appended.at the end of the DAT .¥ile; Consulting
the REL Ffile all the attribute names supposed to be in
that relation, which the user has already specified, are
displayed oné at a time, and the user gives the actual
data for that attribute. This tuple is appended inta the
DAT +File. The Qser is given the option that if he wants
to inse?t'some motre tupleé in the same relation, and if
he/she intends to do so, he/she can specify it and the
process is repeated again until he/shé gives tﬁe response
in negative. Futher, the user i1s given the Dptibn to
insert ‘any more tuples in any other relation. I+ the
answer 1s in affirmative the tuples can be inserted into
the desired relation. Lastly the control is given back to

the calling procedure.

NMote that whenever we insert & tuple in & relation, the
record statusl{rec ste) in that tuple is set to 'p° to

indicate that the tuple is present in that relation.

delete_a_tuple

This procedure is called when-a user wante to delete one
or more tuples in any relation by giving the option meant
for this operation in menuw B. The procedure works
exactly similar to the procedure insert_a_tuple except
that the record status(rec_sts) is set to 'a’ to indicate
that the record is absent in that relation and in further

processing this tuple is taken care of. The procedure

also? takes care of the situation if * the record was
already deleted. In this case, the message is displayed

~and he/she is to type a fresh record_number.

The record_number is treated as the key for any tuple in
a relation. On the basis of this key we process
(délete, update or rétreive) a tuple of a desired
relation. Further, note we cannot delete a tuple from a
relation 1if no data is inserted into a relation. This
procedure also takes care of this. The key is checked for
its wvalidity that is the record number should be a
positive integer and it should not exceed the maximum
number of tuples present in the DAT file corresponding

to a particular relation.

update_a_tuple

The procedure calle the procedure relation_and existence
checking the validity and existence of the relation in
DIR file. Unce it is so 1t checks if the corresponding
DAT Ffile contains some records. I+ the DAT file is not
empty only then we can update a tuple of that relation
otherwise, it the file is empty appropriate message 1s
given and we cannot updafe any tuple. Then the key i.e.,
record number is asked and is checked for its wvalidity
as 1n case of delete_a_tuple proceduwe. fAfter this, the

REL. file and DAT Ffile for this relation is referred.

The old value of the attribute alongwith its name is

displayed and the system asks for the new value of that
attribute. If the user gives the return.key,zthe previous
old value for that atﬁrithe stands as such.. If the user
intends to change the data for an attribute he will have
to give the new value for that attribute. The tuple is
overwritten into the DAT file under consideration at its
previoﬁs place. Further, the user can update as many
records(tuples) o as he/she wants into the same or any
other relation by giving appropriate answer . The .
‘procedure also takes care of the situation if the record
was already deleted. In thié case, the message 1s

disaplayed and he/she ie to type a fresh record_number.

retreive_a_tuple

This procedure displays all tuples in & particular
relation. I+ the corresponding DAT +ile 1s emplty, the
message ‘the relation containg no records’ is displaved.
Further, the uwser can retreive tuples of’ aﬁy other

relation i1f he/she intends «o.

error_handler

I the user response is not error free, this proceduwre is
called which gives an appropriate message and the user is

supposed to retype the response.
access_data
Thie procedure is invoked when the user gives the option

=R

"2 meant fdr this operation. Note that, if the DIR file
is empty,i.e.,we have not created any rélation s0 far, we
cannot access data. Otherwise, this procedure lists out
four options under the heading menu B. The user is asked
about his/her option and the control is sent to the

corresponding procedure meant for that operation.

Two menus are displayed dwing the couwrse of execution of
the program. Firet 1s wmenu A comprising of three
options,viz. ~ 1. create a relation scheme; 2. access

datay and I stop. I+ the user gives option '2°, this

intuwn displays menu B giving four options, viz. -

1. insert & tuple: 2. deles a tuple; 2. update a tuple

and 4. retreive a tuple.

The menus A and B are interleaving each other. At ter
doing the desired operation in menu B, the control,
again, is retwned back to menu & and asking for fresh

choice. The program runs until the user gives the option

o

20 an menuw A to stop execution.

CHAPTER

WE Eme EE SR eSS S0 RE OGS ER RS NS RE BE BB eR mR WS R EE EE MR RE wW BE e WS mE RE me WA RS R Wm MW M@ EmE mem EE e we m% me mE e

FURTHER ENHANCEMENTS

* AT IMPLEMENTATION LEVEL

AT DESIGN LEVEL

B SR NN A S8 AR Ge BR me B e EE WE EW Em RS R M mE W WS W NN mm e NE me mEm e RN RS BN aE M RS e e &0 B me me e me e

In the previous chapter, we have given one possible
solution to achieve the results. In this chapter, we will
mention some of the possible improvements in FRIMS and

further scope in the worlk.

There could be two possible -improvements in this work
one, those at the design level:; and second, those at the

implementation level. We will descibe them separately.

At Design Level

We have decided to put relation names in the file

RELATIOM.DIR; and the information about that how many

attributes are there constituting & particular relation

and their mames 1s put into the REL file corresponding tao
the relation name. These two pieces of information could
have been located in one file only mnamely the dictionary,

ey

Ly wWe have tried to

the DIR 11, (In 4
resultes 1n s simplest possible way.: This way consullting
the dictionary and getting information aboult a relation

could have been much easier; and certainly 1t would have

ary overhead of opening up and

decreased the uanne
closing down the files. Further, it would have lead to
efficiency 1in terms of storage space and access time

also.

Further, we have not included the information about a
relation, like what ie the type of each attribute (viz. -

real , integer, string or boolean) i the range of values

40

each attribute can take; and the key for a relation (at
present, we have treated sequence or tﬁple number to be
as a keyd. This inforﬁation could have been included (in
fact, FRIMS suggests a simplest possible solution

avaiding many complexities involved).

At the Implementatibn Level

One such possible improvement is when we delete a tuplg
i any _relation. Infact, the tuple is not deleted
physically. Rather, it is just a logical deletion meaning
by that we add up a tag field in each tuple and setting
it to “a’ indicating that the tuple is no more there 1n
the relétion (of couwrse, we take care of this fact 1
futher processing). This is desirable 1f we are dealing
with & small database with not too many deleted entries.

Fabase 1n which the

On the contrary, if we have a large dz
relations contain too many such deleted tuples, there is
a wastage of storage space which in turn leads to slower
accessing of the database. To overcome this, one way is
to reorganize the data +ile named after the relation
Ma&me o reading.thia file and rewriting it ﬁkipping those
tuples (records) in which tag field (rec_sts) has wvalue
al. One other possible solution would have been to use
pointer to the next tuple (record! present in the file.
In case the user wants to delete a record, we will have

to change just one pointer pointing to the next present

record thus skipping the desired tuple, and releasing the

41~

space occupied by that tuple, thereby increasing the

efficiency.

At present, DDl (description of the data) portion for the
system bhas been developed Successfullyf Due to the time
limit, DML paft (i.,e. how to process or manipulate the
data) involving operatios like selection, join, divide,
etc., is not touched at all. For that, a suitable real
query language (like S@L) based on abstract query
languages {(like relational algebra ot relational

calculus) is to be developed.

42

REFERENCES

FE PO S5 NN SR S0 A8 S8 Fe RS BE RS ES SR N8 S0 SN RS N TR WN BR R S W e mE e WE R AR Re e e me e me RE ke s me me em ow

e

&

An Introduction to Database Systems, Vol.

Edition - C. J. Date.
Data Base @ Structured Technigques far
Ferformance, and Management -~ 8. Atre.

Frinciples of Database Systems

- Jeffrey D. Ullman.

Database Frocessing H Fundamentals,

Implementation, Second Edition -~ David M.

Introduction to FPascal, Second Edition

~ Jim Welsh, John Elder.

Data Structures Using Fascal , Second Edition

~ Aaron M. Tenenbaum, Moshe J. Augenstein.

4%

1, Third

Design,

Design,

Froenke.

APPENDI X

WA WE mm em GE RE AR WY L EE e R MR R ME R Re T RU WME e B DA WME Be M Md MK WA EW mA ME M mm Re NG ma W R We max mm me me

% SOURCE CODE LISTING

Sm WM M WE M EW mm WW M BE mEm W Bl W O mN W mm mE Ga MY MK FE WK ew A mw W W AN BT De NN XL M g mN ND EME ME NN ma We w3l mw

pro

(*

(%

typ

WAt

gram prims{input,output);

Thie is
wrritlten

Author - FARAMIIT SINGH *)

€

response = stringllE53;

rel rec = record

rel name @ stringlZS

FRIMS source code listing,
in tuwbo-Fascal language;
and implemented on DCM TANDY-1000.

*)

-
-t 8

ends
rel +ile rec = record
no_of_attribute integer;
attr_name : arrayll..251 of
end;
rel data rec = record
g no @ integer;
rec_sts o charg
. attr_ name & arrayll o
end;
sub _response,respons,rsponse @ ostringl2573;

nosinteger s

o
i)

stringli5

1

amer .

var el name,0_var_rel _name :

var_rel rec @ rel rec;

rel dir 2 file of rel rec;

var _rel file rec
rel file_name : arrayll.. 2351

rela file @

oF

stringld3];

rel file_recs

FrEsponseasy

file of rel _file_rec;

FeRSDOMNS:

(=3
vl

var_rel_data_rec @ rel_data_recg

rel data_file_name : arrayll..25] of response:;
rela data_file : file of re1~data;rec;
alldorne,if_int,1f_str @ boolean:

Tydsk,z,tyu,v_num_of _att @ integer;

rltfile ¢ tewt;

procedure initializes

becin
alldone = {false;
assignirel _dir, RELATION.DIR 33
asslgnirltfile, rims.rlt gy
rewrlitelrlttilel

iore O

.
:
i

=

el 3

procedure list _optionss
begin

writelns

wrel teln O TMENU AL 7

wrriteln(——— e)

23

wrorteln 1 To create a relation scheme. 7y

writeln(” 2 1 To Access Data. 73

wrriteln (" 3 ¢ Stop. 0

writelng

writeln(rltfile)
writeln(rltfile,
writeln(rltfile,
writelni(rltfile,’
writeln(rltfile,
writgln(rltfile,

writeln(rltfile)

end;

procedure check i+ valid string

label 5,35;

Var

1 f

endsy

el ae

begin

I

-
b

.

.

rr

MENU AL)

m““w_w_’)

~

£im

s

‘zw

To create a relation scheme.
To Access Data. ") ;

Stop. ")

Y

1 to lengthlrespons) do

v s
goto

4é

Y

if vy = @ then goto 5

3 rsub _response = copy (respons,z,length{respons) — z + 1);

if not (Clsub _responeell] = ‘a’) and (sub_responselll <= "z7)) or
{{sub_responselll >= "47) and (sub_responsell]l <= "2Z27)))

then goto &;

for o= 2 oto length(sub response) do

brecyim

1f not ({leub_responselxl b= "a’). and (sub_responselx] <= "2"3) or

.

(lsubh res

sponselx] b= TAT) and (sub_responselxl <= “Z27)) or

Cigub responselx] = @) and (sub_responselx]

then

gato
e s
iF sty oes true;

raponse = osub responses

endcs;

procedure rel _infog

label 13

Deeyin

1y writeln;
write ("RELATION MAME :");
readivar_rel name) ;
writeln(rlt{ile)s
write rltfile, RELATION NAME =@ 7);
writed(rlttile,var_rel_name);

reponse = var_rel _name;

47

check _if_valid_string;

if not 1f_str then

bhegin

writelng

wrriteln (#7, not valid relation name. ") j
wrriteln(rltfile);

writelnirltfile, 'not valid relation name.
goto 13 ,

encl

var"rglwname IS CEDONSE]

var rel rec.rel name = var el name;

a_var rel _name = ovar el names

end;

procedure check 1+ integer
label 1,3,75;
A

Hayl.T.t 1 inteqger;
begin

1f_int 1= falses

P rsponse;

e

it (Qengthirespone) = @) then goto I
y = length (responsy g
for 2 = 1 to length (respons) do
begin
it (responsix] =)
then v = y - 1

el ese

48

4]

hegin
goto
end;
ends;
i¥ vy = @ then goto I

I orsub response = copy{respons,z,length respons) -~ o2 4+ 1)

for x == 1 to lengthisub response! do

beciin

1f (sub responsel:d = @7

then

else

begin

tors= 1
zorm o

erd

i+t o= @ then goto 5

rsub _response = copy(sub _response,z,lengthisub_response) - = + 1)3
for x = 1 to length(guﬁwresponﬁe) do

hegin

if ({(sub_responselx] < ‘0') or (sub_responselxl > "27)) then goto 5;

eands

1t _int 1= true;

rsponse = subl_responses

oy
‘ag

49

ety

procedure rel fmt;
label 1,323
begin

o -1

swr i belng

Wi bel Thow many attributes does "o _var rel name, have?

readirsponse) s

H

wir berl

e
i3

writeln{(rltfile);

»
»

wrdterltfile, how many attributes does Lo var rel name,

writel{rltfile,rsponse);

writeln{rltfile);

check it _integer;

it mot 1f_int

then

begin
wriitelng
writeln(#7, 'give positive integer. J;
writeln(rltfiled;
writeln(rltfile, ‘give positive integer. ');
goto 23
endsy
val (rsponse,v_num_of _att,ul;
var_rel_file_rec.no_of_éttribute = v _num_of_att;g
for 3 = 1 to v_num_of_att do

begin

’

i

Frease

writeln;g

writeln ("ATTRIBUTE(,J,) ") ;
wrrite (7 NAME @ ")
Fead(v“att_name);

wrriteln(rltfile)

‘an

writeln(rltfile, "ATTRIBUTEC ,J, 7)) ")
write (rltfile, ” NAME 0 "1
writelrltfile,v_att_name)d;

rreponee 1= v_att _nameg

chieck 1+ wvalid string;

if ot 1f _str then

brexgin

wititeln;

witl teln 7, ‘not meeningful attribute name. "2

wirtteln{ritfilerd

arvivgful atberibute name.

var el +file v = oy oAttt nmamesg

wiod el g
wititelnirlitfiled:
ey
wiritedrela file,var rel {file rechy

wrrltelng

wrditelndrltfile):

procedure add up_a_rel;
begin
rel info;

-

write (rel div,var rel _rec);

rel file namelild = var rel name + V.FE1';
assignrela_file,rel_file _namelil);
rewritelrela file);

el fmbg

closelrela fi1leds

ends;

orocedure show relation _directorys;

Degin

P

wrrlbteln (O we have following relations in relation directory =713

writeln(rltfile, "we have following relations 1n relation directory :"0;

reset (rel _dirig
while not eof (rel dir) do
begin
read(rel _dir,var_rel rec)s
writeln{var_rel _rec.rel_name);
writeln(rltfile,var_rel rec.rel name);
ends;

close(rel _dir);

endj;

procedure append_rel dirg
begin

reset (rel _dir);

t 1= filesize(rel _dir);
seek{rel _dir,t);

wrrite (rel _dir,var_rel rec);
close(rel _dir)g |

end;

procedure check 1f_already _exists in_rel dirg
bégim
regset (rel dir):
while not eof(reludir) dao
begin
read (rel _div,var _rel rech:
if var_rel rec.rel _name = var_rel name then
hegin
writelns:
wrifeln(#?,varmrelmmame,' already exits. ")y
Wi tel g

wreiteln(rltfile)s

writelnirltfile,var_rel name,’ already
writeln(rltfile)ds
rel intos
check 14 _already_exists in rel dirg
@rid;
end;

close (rel dir);g

endsg

procedure create_a_relation _scheme:

Vat:

ko
hegin

if

integer;

i

(Filesize(rel _dir)

begin
rewritel{rel dir)
add _up_a_rels;
close(rel dir);:

end

el e

e g

begin

@ then

show_relation_directory::

el _info;

check i+ _already_ex

var _rel _rec.rel _name @

append_rel dirsg

o
"

end s

iegts _in_rel _dirg

o_wvar _rel names

var rel nmame + 0L el

proceduwre relation_and_existences

Tabel

bhegin

-

1,2,3:

T2 owritelns

:
"

A

writel{ Relation Name : ')
read{var_rel_name)
wrritelns;

writeln{rltfile):

.

writel(rltfile, 'Relation Name : 3

a3

writel(rltfile,var_rel name);
wrriteln(rltfiled;

reponse = ovar_rel _name;

check 14 valid_string;

1f ot if_str then

begin

wirl teln (#7, not valid relation name. ")

ae

writeln(rltfiledy

writeln(rlt%ilﬂ,'mat valid relation name. ")
goto I

ercly

var el name @ reponses

check 1+ this relation already exits. &

')

{oearch rel div for this rel. 3

raset (rel dicr)g
2 or ot not ecof {(rel _dird then
Degin
read(rel dir,var rel rec:
1t var_rel rec.rel _name = var_rel_name then
bhegin

clo

s{rel dir)

goto 1;

N
o

end
@l ee
begin

writeln (#7 ,var _rel name, ’

wrriteln(rltfile,var _rel name,’

gota Ai

data_ file mnamel il = var rel name

erd;

crocedurs insert s tupl ey

1abel

4,3, by

N EE

s stringl

ce relations,more tupl es

more relations o= Ty g

relation _and erdstences

{(tilesire(rela_data_+file) = @) then
begin

ooz m:

does

not

does

a data_+ile,rel data file namel jl);

exist. ");

not exist.)

rewrite(rela_data_+filed;
erd
el ase
hegin
reset (rela_data_filel;

koo

ize(rela_data_filel;
Seek(rela_data_{ilegk);
ends
assignirela file,var_rel _name + ".rel " J;

teset (rela _+1led;

readirela file,var rel file rec)s
more tuples = "y

repeat

hregin

no o= flleslize(rel @

for ¢z o= 1 to no_of _attribute do
begin
wirritelmg

. P

write (attr _rmamelzl, :)

am

wreitelns
writelnrltfile);
wirtte (rltfile,attr _mnamelz3, " ¢ ")y

wrrite(rlitfile,var rel data vrec.attr namelzl);

[~y 4

writeln{rltfile);

el

end;

writelirela data_file,var _rel _data_rec);

o wi-itelng

write ("vou want to insert any more tuples of this relation™... (y/n):

readimore tuple
wrd el
wrriteln Orltfilels

wrrrte (rltfile, "vou want to inssrt any 7,
‘mare tuples of this relation?... {v/n): 1

wrrite (rltfile,more_tuplesi;

wiritelrnirltfilers

ifF Cimore tuples <F "y oand (more _tuples
then

becin

wrlite (87, Twrong response, type again. g

write (rltfile, "wrong response, type again. 23
goto 3
erd g
end
until more tuples = ‘n’j;
close(rela_data_file);
close(rela file);
b s writelns
write ("yvou want to insert tuples in anyother relation?....(y/nj): ");
read(more_relations);
wrritelns

writeln(rltfile)

2

write(rltfile, you want to insert tuples 7,
‘in anyother relation?....f{y/ni: "D

write(rltfile,maore relations);

writeln(rltfile)

it ({more relations ‘v oand (more_relations <& ‘n’)
then
begin
write (#7, "wrong response, type again. "y e
wite(rltfile, 'wong response, Lype again., ");
goto b
endsz

erd

Lrtil omore relations = ‘nly

el dirdy

enady

e @ tup il

elationg,more tuples @ stringl2%l:

rec no s integerg

€ (] LAY

rercrim

relation _and_existences
it Filesizelrela_data _file! = @) then

Frexcyd

writeln{(#7, The relation contains no records. ")

N
<

writ@ln(rltfile,’Thé'relatimn cmntaiqs no records. ")
gato 73

e ;

assignirela file,var_rel _name + ".rel’);

reset (rela_file);

read(rela_file,var rel +ile_rec);

more tuples 1= "y ’; .

repeat

Brercpir

ey

i writelns

~y

oo mambrer

az
~
1]

wirite (which re

wrltelnirltfiled

wrd te{rlitdile, which record number™ @ ")y

O) g

wred te drltdile,reponsel s

wrriteln(rlitdiled

Y]

check 1+ _integers;

i¥ mot if_1int
e
begin
writelns
wreiteln(#7, "gilve positive integer.’)
writeln(rltfilel;

wiritelnirltfile, 'give positive integer. ");

goto 1

&H@

end;

val (repons TEC MO,

if rec_no
beqgin
writeln(d7, 'record number exeeds

writeln(bype

aord number

wiritelndrltfile, v
wrrlteln irltfile, "type again. ")
goto 1

s

reset (rela data +11

read (rela_data file,var_rel _data_rec);

1t ovar _rel = ‘a’ then

begin
writ@lﬁ(#7,’alraady deleted. ")
wrriteln{rltfile, already deleted.);
goto 1;
ernd;
var_rel _data rec.rec stes 1= "a’;
seek (rela_data _file,rec_no — 13);
wrritte rela_data_file,var_rel _data_rec);

wrritelns

reirela data +ile) then

wrrite (' you want to delete any more tuples of this relation?...

read(more_tuples) ;
writeln;

writelni{rltfilel;

61

.

write(rltfile, you want to delete 7,
“any more tuples of this relation?...{y/m}: ");

writ@(rltfi1e,more_tup19§){
writeln(rltfile)s
if ((more_tuples <> 'y’') and {(more_tuples <> 'n’))
then
begin
write(ﬂ?,'wrong response, type again.)i
writel(rltfile, wrong response, type again. 1;

[~
e

goto
ends;
ernd;
wntil more tuples = nnlg

close(rela _data filely

close(rela $1la)s

™,

,
L

wrltelng

=l ationT. ... (y/nie

wied el T yvow want to

read imore relations)s
wirltelos
wiritteln{ritfile)

wrdte (rltdile, you wanl to
Tin anyother

wridte(rltfile, more relations)g
wedbeln Grltdiled;

.

if {{more_relations <> "y’ and (more relations <> n

~

then
[yecyiorm

. type again.)

wirite ({7, "wrong respons

write (rltfile, ‘wrong response, type again. ')j

&2

PN

goto 6b;
ends:
end;
urtil more_relations = ‘n'j

close(rel _dird;

7oz

ey
.

ends

procedure update a_tuple;

label 1,59,6,7;

oy

oot F e, mor s oetringl253y

rec noor integer:

more relations z= vy’

relation_and_exilstences

(rela data filer = @) then

writelo ! The relati containeg no records.

wiriteln(rlifile, The relation contains no

gata 73

a1y

dgnirela file,var _rel n

reset (rela file);
read(rela fileyvar_rel file recls

mare tuples = "y’ ;

repeat
begin
1 rwrite('which record number™ @ ")
(WIS O
read(rsponse) s
wrriteln;
write(rltfile, ‘'which record number? @)3
wrrite(rltfile,rsponse);
writeln (rltfile) s
check“if_integer;
it not if_int
then
begin
wrritelns
writeln#7, 'give positive integer. J;
weritelnirltfiler;
writeln(rltfile, give positive integer. b
gaoto 1;
endsy
val (reponse rec_no,ul g
1f rec_ no » filesirel{rela data_+ile) then
begin
writeln (#7, ‘record number exeeds file size. ")
writeln(type again. ")
writeln(rltfile, record number exeesds file size.
wrriteln{rltfile, type again. " ¥;

goto 1:

endsy
reset (rela_data_+file);
seek (rela_data _file,rec_no - 11};
rmad(réla_datam¥ileﬁvar“relmdata;rec);
if var_rel _data_rec.rec_sts = “a’ then
begin
Qriteln(ﬂ?,'recmrd doesnot exist.)3
wiriteln{ ' type again. ")
writelrn{rltfile, record doesnot exist.)i
wrriteln(rltfile, type again. ")
gota 1
ends
with var_rel file_ rec do
begin
for = = 1 to no_m%éattribut& do

begin

buffer == var_rel data e mame e dy
wiritelny

writtelnlattr mamelzl, . ")

wrriteln o eld value @ " buffer);

Wl te ! mew value o i

read{ivar_ rel data reoc.attr_name

’

wirtteln{rltfile,attr _namelz), . ") g
writeln(rltfile, old value ¢ " ,buffer):

wreite(rltfiley few values = °3

at

writel(rltfile,var_ rel data_rec.attr _namelz il
if var_rel_data rec.alttr namelz] =

then var_rel data_rec.attr_namelzl 1= buffer;

&S

wrriteln;
writeln(rltfilel;
erd
end;
aseek (rela_data_file,rec_no - 103
write(rela_data file,var_rel _data_rec);
5 ¢ writelng -

write {'you want to update any more 7,
“tuples of this relation?...(y/n):

read (more _tuplesl;
witd telng

writeln(rltfiler;

virite (rltfile, you want to update any more
tuple

write (rltfile,more_tuples);
wrltelndrltfiled:

it lmore tupnles <F "y and (more tuples < 'n'1]
then

bheqgin

wrrite #7, "wrong response, type again. ")

wiritte (ritfile, wong response, bype again. "1

goto ©

el g
erd ;

untail more tuple

clo

{rela data _filed;
close(rela _+file);

& o writelns

af this relation™. .. (y/

write ('you want to update tuples in anyother relation?....(y/n): ");

readimore relations) g
writelnsg
wrritelnrlitfile) ;.

write(rltfile, "vou want to update tuples 7,
“in anyother relation@....0s/n): ")
writel{rltfile,more_relations);

wrriteln(rltfile);

v ' roand {more relations

if imore relatic
then
begin
write (#7, wrong response, type again. ")
write(rltfile, wrong response, Lyps again. g
goto b
exricly
erd s
until more relations = n’y
close (rel _dir);

VA H

procedure error_handl er;

begin
writeln(#7, ‘'wrong option, type again. ');

writeln(rltfile, "wrong option, type again.)

end;

procedure retrieve_a_tuple;

label 6,7;

&7

var
more relations,more_tuples @ stringl25];
rec na @ integer;
begin
more relations = "y’
repeat
bhegin
relétionmand~exiﬁtence;
if (filesize(rela_data_file) = @) then
begin

FES

writeln(#7, The relation contains no records. s
Wiritelnirlitfile, "The reiation contains no records.
goto 7:

e

+ Carel T

assignirela file,var_rel n:

‘an

b (rrela +tilel:

adrels file,var rel file reciy

z2

writed's.no. 1S, rec ste 180

e .

wrrd tefritfile, e.no. 2D, Trec

wWwilth var rel file rec do

bercpinm

for = 1= 1 to no_of attribute do

wrrite (attr _rnamelzd:12)

write(rltfile,atir _namel:
20l g
writelng

wrriteln(rltfile);

&HB

end ;
closelrela file);

reset (rela_data_filed;

whiile not eof (rela_data f1led do
Degin ' :

ad (rela data file,var rel data_rec);

wrrite (var rel data rec.s no:S,var_rel data rec.rec_sts:8);

2
m

2.6 o dvar rel dal

wrrtbeirltdile,var_rel dat
with var rel data rec do

begin

for o= 1 to var rel file rec.no of _atitribute do

bhegin
write (attyr mamelzd: 1803
wrriteirlitfile,,attr mnamelz 32127

ends

wrritelng

writelni{rltfile)s

end;
end;

closeirela_data_+ile);

i~

5k writelng
wite (you want to retrieve tuples of anvother reiation?....(
read{imore_relations);
writelns

wrriteln(rltfile)y

.

writel{rltfile, you want to retrieve tuples of v
‘anyother relation?....(y/n): ")

write(rltfile,more_relations);

=

53

writeln(rltfile)y
if (kmoremrelationﬁ <F 'y "y and (mor@_raiations LEoTn)
then
begin
wrlte(#7, ‘'wrong response, type again.)i
writedrltfile, ‘wong response, type again.)i
goto &g
ends;
end

: .

uwrtil more relations = n

an

7 o5 s

endsz

procedure accese datas
lahel 13

v ar

option @ stringliBl;

begin

it (failesa {rel dir) o=)

bregrin

writeln (#7, "we have mobt oreated any relation so far. g

PR

writein(rltfile, we have nobt created any relatico so far,)
gorbe 1z
el
wrd el ng
wed teln O MENU BL)

.o

wriiteln (- T g

=z

wroi teln O 1o Imsert a Tuple.

7MA

writeln ('’
writeln ('
writeln

wrritelng

write(GIVE

~
Py

-
il w

4.

YOLR

Delete a Tuple. ");

Update

a Tuple.)3

Retrieve a Tuple. ")

readln {option);

writeln(rltfile)ds

OFTION = "7

writelnf{rltfile, "MENU R, ")

writeln{rlttile,

writelnirltfile,’

wrritelnirltfile,’ z

writeln{rltfile, ™ 3

writeln{rlt+ile, 4.

wWwritelnirlttiled;

1.

i o e Ty

Insert a Tuple.)y

A

Delete a Tuple. i

Update a Tuple. "1

Fetrieve a Tuple.

write(rltdile, GIVE YOUR OFTION @ ")y

wrriteln{rltfile,optionty

iF option
elae
if mptidn
@l ae

it option

begin

endd;

ACoe

GOy

S5

1 hen

then

then

then

datas

ingert a tuple

delete & tuple

update & tuple

retrieve_a_tuple

handl ery

71

pJ

)y

ends

procedure interpret_optiong

label 1,2,3;

VEr
'mptian postringlisl;
begin
write('GIVE YOUR OFTION @ ")

readlin{option);

write(rltfile, GIVE YOUR OFTION @ ')

am

wrriteln{rltfile,optiond;
i+ option = 17 then create_a_relation_scheme

elee

it option =

then access data
el se

it ooption = 37 then

alldone :=" true

@]l s

error handler;

4 MALT Program ¥
hegin
inittralize;
repeat
bhegin
list optionsg

interpret _optiong

70

end.

ends;
until alldoneg
close(rel dir)

closel{rltftile’

oz

APPENDIX

* SAMPLE OUTPUTS

ME ME sG SR RS RS NA WE BRE TR mR ME BE EWR O WR ER M BR wE R s RE WS W MW MW mE me e mR e mE B WE me W

B B R B e S Sk B MR EE mE MR RS MR RS KNR me NS MmN We M Re We e em B e Me SE Ee me me @ MR e m

(% This is the sample output from FRIMS. %)

MENU .

1 To create a relation scheme.
2 @ To Access Data.
3 Stop.
GIVE YOUR OFTION @ 2
we have not created any relation so far.

MENU A.

1 = To create a relation scheme.
2 52 To fAccess Data.

-r

32 SBtop.
GIVE YOUR OFTION :@ 1

RELATION MAME @ fyoyo™7(
nat valid relation name.

BELATION NOAME -
not valid relation name.

FELATION MAME @ student
how many attributes does student have? : -3

give positive integer.
how many attributes does student have? @ @

give posiltive integer.,
how many attributes does student have? @ 3
ATTRIBUTE (1)

NAaME @ name

ATTRIBEUTE (29
MAME @ standard

ATTRIBUTE (2
NaME @« address

MENLE &,
1 ¢ To create a relation scheme.
2+ To fAocess 3
Z s Gtop.

GIVE YDOUR QFTION @ 1

we have following relations 1n relation directory

student

RELATION NAME 2 class _
how many attributes does classe have? @ 3

ATTRIBUTE (1)
NAME @ standard

ATTRIBUTE (2)
_NAME r teacher

CATTRIRUTE (2
MAME @ roomno

MENL A.

: To create a relation scheme.
: Ta Access Data.

: Stop.

L hg o

GIVE YOUR OFTION @ 2

MENL R.
1. Inserlt & Tuple.
2. Delete a Tuple.
be a Tuple.
feoa Tuple.

GIVE YOUR GOFTION o 2

el ation Name @ e

rot o exniet.

e

Felation Mame @ student
The relation containe no records.,

FENL AL
I ¢ To create a relation scheme,
o To Access Dabta.

-

2o Stop.
GIVE YOUR OFTION @ 2

MERL B

1. Imsert a Tuple.
2. Delete a Tuple.
. Update a Tuple.
4. Retrieve a Tuple.

GIVE YOUR OFTION @ 1

7

Relation Name : st

name : sita ram
standard : m.phil.
address : sutle)

you want to insert
name @ param
standard : m.phil.
address : mahanadi
you want to insert
name & suman
standard : m.tech.

address @ godawvri

udent

any more tuples of

any more tuples of

this relation?... (y/n)

this relation?... (y/n)

yoau want to insert any more tuples of this relation®... {(y/n)
you wanlt to insert tuples in anyolther relation?....{y/n): n

MENU A,

i s

>

To create a r
To fAoccess Dat
Stop.

T

GIVE YOUR OFTION :

MEML R.

Insert a Tuple

Update & Tuple
FRetrieve a Tup

B R e

GIVE YOUR OFTIONM :
wrong option, type

MEMNU E.

1. Insert a
2. Delete a
Update a Tuple

4. Retrieve a Tup

Tuple

GIVE YOUR OFTIQON

Tuple

elation scheme.

A .

3

L

Delete a Tuple.

le.

-~

7
again.

le.

—

T é

EE)

A

Name :@: student
-

number® @ 2

Relation
which record
name.

old value @ param
new value @ paramjit
class. '
old value @ m.phil.
new value :
address.
cld value : mahanadi
new value :

you want to update any more tuples of

you want to

MENU A,

a relation scheme.

1 ¢+ To create
2 To Access Data. ‘

3 Htop.

GIVE YOur OFTION @ 2

1o Insert & Tuple.
a Tuple.
Tuple.
a Tuple.

~y

2. Delete

.

3. Update a
4., FRetrieve

GIVE YyOUR OFTION @ =

el ation Name : student

—

whii ol record number™ &

v want to delete any more tuples of

vou want to delete tuples 1n anyoether

MEMU @

s To create a relation scheme.,
2 3 To Accesas Data.
o Htop.

GIVE YOUR OFTION =« 2
MENU R,

1. Insert a
2. Delete a

Tuple.
Tuple.
Tuple.
a Tuple.

-

M. Update a
4. Retrieve

— oy

this

this relation™. .. (y/n)z

relation™. ...

i
\

update tuples in anyother relation?....{y/n):

v/

)4

relation?. . {y/n):

M

]

N

mn

GIVE YOUR OFTION = 4

Relation Name : student
s.N0. rec sts name

1 P sita ram

2 p paramjit

2 a SLUMAn
vyou want to retrieve tuples

Relation Name 3 class
The relation contains no

MENL 4.

1 ¢ To create
2 s To Access Data.
Z s Stop.
GIVE YOUR OFTION ¢ =
(% This 1 the sample out
MENLE &,
1 = To create a relation
2 To Access Data.
I s Stop.

=

wZ

GIVE YOUR OFTION

MEMU B,

1. Insert a Tuple.

2. Delete a—Tuple.
Update & Tuple.
4. Retrieve a Tuple.

GIVE YOUR OFRTION : 4

Relation Name : «<lass

The relation contains no re

MENUD A,

-1 s To create a relation
2 ¢ To Access Data.
T o+ Stop.

GIVE YOUR OFTION = 1

we have following relations
student
class

standard address
m.phil. sutlej
m.phil. mahanadi
m.tech. godawvri
ot anyother relation?

records.

a relation scheme.

put from FRIMS.)

scheme.,

cordes.

scheme.
relation directory

in

78

RELATION NAME : class
class already exits.

RELATION NAME ¢ "#%ZEfbhv
not valid relation name.

RELATION NAME @ teacher
how many attributes does teacher have? : 3

ATTRIRUTE (1)
NAME @ mame

ATTRIBUTE (2)
MAME @ standard

ATTRIBUTE 3)
MAME @ roomno

1 = To create a relation scheme.
+ To Access Data.
o Stop.

GIVE YOUR OFTION @ 2

MERNU R.

Tuple.
2. Delete a Tuple.
Z.o o Update & Tuple.
4, Retrieve a Tuple.

GIVE YOUR OFPTION @ 1

el ation Name @ error
areor does not evist.

Relﬂtimn Mame @ class

standard & m.pbil.

teacher @ k.k.bhat

roomno 5 123

vou want to insert any more tuples of this
WEONG response, type agailn.

vauw want to insert any more tuples of this

standard : m.tech.

~

relation™.

relation™.

7

L ly/nds

e ly/nda

t

Y

teacher : g.v.singh

roomno ¢ 131

“~

you want to insert any more tuples of this relation?..;(y/n): ¥

standard : m.c.a.
teacher : r.c.phoha
roomno @ 145

you want to insert any more tuples of this relation?...({y/ni: n
vyou want to jns&rt tuples in anyother relation?....(y/n); Y
Helation Name : student

name : mohan

stahdard :om.tech.

address ¢ sutle]

you'want to insert any. more tuples of this relation?™. .. (y/M)s vy
name @ phéni nath

standard @ m.phil.

address @ ganga

vouw want te insert any more tuples of this relation. .. (y/nis n

vou want to insert tuples in anvolther relation®....{y/n): n

MEMU A,

1 ¢+ To create a relation scheme.

2 To Access Data.
30 Stop.

GIVE YOUR OFTION & 2

MERNU B,
1. Insert a Tuple.
2. Delete a Tuple.

2. Update a Tuple.
4. Retrieve a Tuple.

GIVE YOUR OFTION @ 3

Relation Name 1 class
which record number? : &

8

recard number exeeds file size.
type again.
which record number? @ fdu

give positive integer.

which record number? & 3
standard.
old value MeCu e

3z bE

new value
teacher.
old value r.c.phoha

new value

sz am

rOoOmNe.
old value : 145
new value @ 154

you want to update any more tuples of this relation™... (y/ni:

yvou want to update tuples in anyother relation?....{y/n):

Relation Name @ student
which record number™ : 3
record doesnot exist.
type again. '
which record number? @ 5
MAame .
old value @ phani nath
rew value @
standard.
m.phil.
m. tech.

old value
new value

address.
old value @ ganga
new value o

you want to update any more tuples of this relation?... (y/n):

p

vou want to update tuples in anvother relation®....

MENL AL

1 ¢ To create a relation scheme.
: To Access Data.

I Stop.

3
s

GIVE YOUR OFTION @ 2

MENU R,

1o Insert a Tuple.
2. Delete a Tuple.
3. Update & Tuple.
4. Retrieve a Tuple.

GIVE YOUR OFTION : 4

g1

n

M

Relation Name : class

s.No0. rec sts standard teacher ' roomno
1 p m.phil. k. k.bhat 123
2 o m.tech. g.v.singh 131
3 P Mm.C.a. r.c.phoha 154
you want to retrieve tuples of anyother relation?....({y/n): vy

Relation Name : student

s.No. rec sts name standard address

1 p sita ram m.phil. sutle]

2 p paramjit m.phil. mahanadi

= a suman m. tech. godavri

4 P mohan m. tech. sutle;

5 P phani nath m.tech. ganga
vou want to retrieve tuples of anyother relation?....{y/ni: n
MENU A.

1 @+ To create a relation scheme.
2 1 To Access Data.
3o Stop.

GIVE YOUR OFTION @ 3

(# This is the sample output from FRIMS. %)

MENU &,

T ¢+ To create a relation schems.
~

2 ¢ To Access Data.
r Stop.

GIVE YOUR OFTION = 2
MENL R,

1. Insert a Tuple.

2. Delete a Tuple.
J. Update a& Tuple.
4., Retrieve a Tuple.

GIVE YOUR OPTION @ 1
Relatian Name ;@ teacher
name : g.v.singh
standard : m.phil.

roomng 2 123

yau want to insert any more tuples of this relation?...(y/n): vy
name : r.c.phoha

standard : m.tech.

|

roomno @ 154

you want to insert any more tuples of this relation?...{y/nm): yy
wrong response, type again.

you want to insert any more tuples of this relation?...(y/m): vy
name : paramjit s.
standard : m.sc.
roomna 1 136 -
vyou want to insert any more tuples of this relation?...(y/n’: n
vou want to ingsert tuples in anyother relation?....(y/n): n
MENU AL
1 To create a relation scheme.
2 : Tao Access Data.
3 Stop.
GIVE YOUR OFTION @ 2
MENU E.
1o Irmsert a Tuple.
2. Delete a Tuple.
3. Update & Tuple.
4. Retrieve a Tuple.
GIVE YOUR OFTION = 4 -
Relation Name 1 teacher
S.N0. rec sts name standard FOomno
1 [g.v.singh m.phil. 123
=z p r.Cc.phoha m.tech. 154
) P paramjit s. m.sCa 126
vou want to retrieve tuples of anyother relation?....{y/n): n

MENY A,

i To create a relation scheme.
i To Access Data.
Stop.

4) =

GIVE YOUR OFTION @ =

€ This is the sample output from FRIMS. *)

: To create a relation scheme.
2 s To Access Data.
I« 8

GIVE YOUR OFTION = 2

MENU BH.
1. Insert a Tuple.
2. Delete a Tuple.
3. Update a Tuple.

4. Retrieve a Tuple.
GIVE YOUR OFTION : 2
Felation Name : class

which record number®™ @ 1

vyou want to delete‘any more tuples of
yvou want to delete tuples in

Kelation Name : student

which recaord number? @ 1

you want to delete any more tuples of

vou want to delete tuples in anyother

MENU AL
1 = To create a relation scheme.
2 To Access Data.
3o Stop.

GIVE YOUR OFTION @ 2

MENU R.

1. Insert a Tuple.
2. Delete a Tuple.
3. Update a Tuple.

4. Retrieve a Tuple.
GIVE YOUR OFTION = 4
Relation Name : class
S.0. rec sts standard teacher

84

anyather

this relation™...{y/n):

(y/nls vy

this relation?. .. (y/n)e

relation?....{(y/n): n

rOoomno

n

K]

1 a m.phil. k.k.bhat 23
2 p m. tech. g.v.singh 131
s o) m.c.a. r.c.phoha 154

you want to retrieve tuples of anyother relation?....(y/n): vy

Relation Name : student

s.no. rec sts name standard address
1 a sita ram m.phil. sutle)
2 [} paramjit m.phil. mahanadi
S a suman m. tech. godavri
4 P mohian m. tech. sutle]
5 p phani nath m.tech. ganga

you want to retrieve tuples of anyother relation?....{y/n): n

1 ¢ To create a relation scheme.
2 : To Access Data.
3 : Stop.

GIVE YOUR OFTION @ 3=

	TH23630001
	TH23630002
	TH23630003
	TH23630004
	TH23630005
	TH23630006
	TH23630007
	TH23630008
	TH23630009
	TH23630010
	TH23630011
	TH23630012
	TH23630013
	TH23630014
	TH23630015
	TH23630016
	TH23630017
	TH23630018
	TH23630019
	TH23630020
	TH23630021
	TH23630022
	TH23630023
	TH23630024
	TH23630025
	TH23630026
	TH23630027
	TH23630028
	TH23630029
	TH23630030
	TH23630031
	TH23630032
	TH23630033
	TH23630034
	TH23630035
	TH23630036
	TH23630037
	TH23630038
	TH23630039
	TH23630040
	TH23630041
	TH23630042
	TH23630043
	TH23630044
	TH23630045
	TH23630046
	TH23630047
	TH23630048
	TH23630049
	TH23630050
	TH23630051
	TH23630052
	TH23630053
	TH23630054
	TH23630055
	TH23630056
	TH23630057
	TH23630058
	TH23630059
	TH23630060
	TH23630061
	TH23630062
	TH23630063
	TH23630064
	TH23630065
	TH23630066
	TH23630067
	TH23630068
	TH23630069
	TH23630070
	TH23630071
	TH23630072
	TH23630073
	TH23630074
	TH23630075
	TH23630076
	TH23630077
	TH23630078
	TH23630079
	TH23630080
	TH23630081
	TH23630082
	TH23630083
	TH23630084
	TH23630085
	TH23630086
	TH23630087
	TH23630088
	TH23630089
	TH23630090
	TH23630091
	TH23630092
	TH23630093
	TH23630094
	TH23630095
	TH23630096

