
A MODEL FOR RESOURCE ALLOCATION FOR

COMPUTATIONAL GRID USING GENETIC ALGORITHM

Dissertation submitted to Jawaharlal Nehru University

in partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

IN

COMPUT~RSClliNCEANDTECHNOLOGY

KRISHAN VEER SINGH

ENROLLMENT N0.11/10/MT/19

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI-110067
INDIA

2013

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JAW AHARLAL NEHRU UNIVERSITY

NEW DELHI, 110067 (INDIA)

CERTIFICATE

This is to certify that the dissertation entitled "A Model for Resource Allocation for

Computational Grid using Genetic Algorithm" is being submitted by Mr. Krishan

Veer Singh to School of Computer and Systems Sciences, Jawaharlal Nehru

University New Delhi-110067, India in the partial fulfillment of the requirements for

the award of the degree of Master of Technology in Computer Science and

Technology. This work has been carried out by him in the School of Computer and

Systems Sciences under the supervision of Dr. Zahid Raza. The matter personified in the

dissertation has not been submitted for the award of any other degree or diploma.

DR. ZAHID RAZA

(SUPERVISOR)

DEAN, SC&SS

J~ \iEW DELHI
$II o!a, . lft. ~IProtv'"r C.~· ~tar
IIi'¥< atr. qey~ !asn'! ~
School ot Compuhu ond Sy&lllmt 6aun~t
Vfillmm'l ~ ~~~Rll
Jawaharlal Nehru un,verslly
'lo.,f<;~/Nuw 0tJih•·110067

DECLARATION

I hereby declare that the dissertation work entitled "A Model for Resource

Allocation for Computational Grid using Genetic Algorithm" in partial fulfillment for

the requirements for the degree of "Master of Technology in Computer Science and

Technology" and submitted to School of Computer & Systems Sciences, Jawaharlal Nehru

University, New Delhi-11 0067, India, is the authentic record of my own work carried out

during the time of Master of Technology under the supervision of Dr. Zahid Raza. This

dissertation comprises only my original work. This dissertation is less than l 00,000 words

in length, exclusive tables, figures and bibliographies.

The matter personified in the dissertation has not been submitted for the award of

any other degree or diploma.

A• ~ y

~
Krishan Veer Singh

Enrollment No. 1111 0/MT/19

M. Tech (2011-13)

SC&SS, JNU

New Delhi India -110067

ACKNOWLEDGEMENT

I am very glad to express my sincere gratitude and thanks to my supervisor Dr.

Zahid Raza for his guidance. I would like to express special thanks to Dr. Zahid Raza for

many helpful discussions and his intellectual input to make dissertation work worthy. His

extensive and invaluable research experiences were very helpful in my dissertation and

the most important thing was the helping nature of him that contributes an important

share in fulfillment of this work. The mythology, philosophy and problem solving

methods learned by him have been very beneficial in this work and would be afterward.

I would like to express my thanks to Dean SC&SS JNU, Prof. Karmeshu in

support to pursue my work in the School. Also my thanks go to School administration

and librarian of software library and main library for supporting me, in whatever way

they can, to make dissertation a success. Their support has been a real emphasize in

completing this dissertation.

I would like to accord my sincere thanks to Mr. Mohammad Sajid, Mr. Taj Alam,

Mr. Mohammad Shahid, Mr. Sumit Kumar, Mr. Yogendra Meena, Mr. Gagandeep Singh,

Mr. Deepak Gupta, Mr. D. P. Sahu and Mr. Shiv Prakash Tiwari for their valuable

suggestions for my dissertation work.

My parents and family members have been my strength through the long hours of

study and research. I especially thank my father and mother for their patience,

unconditional love and economical as well as moral support for completing this

dissertation. Finally I would like to express thanks to each person & thing which is

directly or indirectly related to my dissertation work.

~·
Krishan Veer Singh

Dedicated to my Parents

"1
!
i
I

Abstract

. List of Acronyms

List of Figures

List of Tables

Table of Contents

Chapter 1: Grid Computing

1. Introduction

1.1 Grid Computing

1.1.1 Grid Components
1.1.1.1 Remote Computing Resources

1.1.1.2

1.1.1.3

1.1.1.4

Heterogeneous Resources

Untrusting Resources

Dynamic Computing

1.1.2 Layered Architecture for Grid Computing

1.1.2.1 Fabric Layer

1.1.2.2 Connectivity Layer

1.1.2.3 Resource Layer

1.1.2.4 Collective Layer

1.1.2.5 Application Layer

1.2 Types of Grid

1.2.1 Clubby Analytics

1.2.1.1

1.2.1.2

1.2.1.3

1.2.1.4

Compute Grid

Service Grid

Information Grid

Intelligent Grid

1.2.2 Sun Microsystems

1.2.2.1 Cluster Grid

(i)

(iv)

(v)

(vi)

1

1
2

3

3

3

3

3

4

4

4

4

5

5

5

5

5

5

5

6

6

6

1.2.2.2

1.2.2.3

1.2.3 IBM

1.2.3.1

1.2.3.2

1.2.3.3

Campus Grid

Global Grid

Computational Grid

Scavenging Grid

Data Grid

1.3 Application of Grid Computing

1.4 Challenges in Grid Computing

1.5 Grid Computing Versus Other Technology

1.5.1 Grid Computing Versus Distributed Computing

1.5.2 Grid Computing Versus Cluster Computing

1.5.3 Grid Computing Versus Cloud Computing

1.6 Grid Scheduling

1.6.1 Components of Grid Scheduling

1.6.1.1 Resource Discovery

1.6.1.2

1.6.1.3

Resource Selection

Job Execution

1.6.2 Types of Grid Scheduling

1.6.2.1 Local Vs Global

1.6.2.2 Static V s Dynamic

1.6.2.3 Cost constrained techniques

1.6.2.4 Hybrid of static and Dynamic techniques

1.6.2.5 Optimal Vs Suboptimal

1.6.2.5.1 Approximate Vs Heuristics

1.6.2.5.2 Distributed Vs Centralized

1.6.2.6 Adaptive scheduling

1. 7 Scheduling -NP hard problem

1. 7.1 Class of problems

1. 7 .1.1 P class of problems

6

6

6

6

7

7

7

8

8

8

9

10

IO

II

1I

1I

12

12

12

12

13

13

14

14

15

16

16

16

16

1.7.1.2 NP class of problems

1.7.2 Approaches to scheduling Problem

1.7.2.1

1.7.2.2

Approximate Algorithm

Heuristic Algorithm

Chapter 2: Genetic Algorithm

2. Soft Computing

2.1 Genetic Algorithm

2.1.1 History

2.1.2 Biological Background

2.1.3 Fitness Function

2.1.4 Search Space

2.1.5 Termination Condition

2.2 Structure of Genetic Algorithm

2.2.1 Steps of Genetic Algorithm

2.2.2 Operators of Genetic Algorithm

2.3 GA Parameters

2.3.1 Encoding

2.3.2 Selection

2.3.3 Crossover and Mutation

2.3.3.1

2.3.3.2

2.3.3.3

2.3.3.4

Binary Encoding

Permutation Encoding

Value Encoding

Tree Encoding

2.4 Travelling Salesman Problem

2.4.1 Solution of TSP using Genetic Algorithm

2.4.2 Algorithm

2.4.3 Conclusion

Chapter 3: The Proposed Model

3.1 Proposed Scheduling Strategy using GA

16

16

17

17

18

18

20

21

21

22

22

23

23

24

25

27

28

29
31

31

33

33

34

34

35

35

38

39

39

3.1.1 Data Structure used in the Model

3.1.2 Notation used

3.1.3 Fitness Function

3.2 The Proposed Algorithm

3.3 Illustrative Example

3.4 Simulation Experiment

3.5 Observation

Chapter 4: Conclusion and Future Scope

References

42

43

44

44

47
51

56

58

60

,

Abstract

As the science and technology advances the need for high computation power is also

witnessing an increase day by day. Since science is based on analysis, visualization and

collaboration of available data so that useful infonnation can be extracted, high

computation power is needed. Also, since scientific and engineering problems are getting

more and more complex, user needs them to be solved precisely and accurately within the

limited time. Due to this feel need of high computational power, the tenn parallel

computing comes in to the picture. In parallel computing, multiple computer or

processors work together to solve a single problem or to achieve a goal. This meets the

requirement of improved perfonnance and also the need of memory is satisfied. Parallel

computing is of two types, parallel processing and distributed computing. In parallel

processing, several no. of processors work together to solve a problem with each

processor handling a section of code and is allowed to exchange the infonnation between

them. In distributed computing system there are multiple computers with multiple

software components that are working together to achieve a single goal. In distributed

system the computers can be at same physical location or globally distributed and

connected via high speed network. These distributed systems include cluster computer,

super computer and storage systems etc.

Grid computing is a huge collection of computers that are globally distributed and

connected via high speed internet connections working together to achieve a single goal.

Grid is a distributed system in which workloads are non-interactive involving a large no.

of files. Grid computing is different from cluster computing and conventional high

perfonnance computing system as the grid systems are loosely coupled, heterogeneous

and dispersed across the globe. Grid computing is used in various scientific problems like

protein folding, earthquake and financial modeling simulation etc. In grid the individuals

can also share thei-r processing cycles voluntarily in projects like SETI@home and

folding@home etc.

In Grid, the resources are dynamic in nature, heterogeneous and globally distributed

across the globe having different ownership. Therefore any resource can leave or join the

system at any time. This makes the scheduling of job in the grid to belong in the category

of NP-hard problems having very large search space with changing environment

accordingly as the resources leaves or join the system. In this category, exact solution

cannot be determined but approximate solution can be obtained which is acceptable and

considered as good as the exact solution. Such type of problem cannot be solved by

traditional method because mathematical modeling is not easy. To handle NP-hard

problems soft computing techniques are used which includes Neural Network, Fuzzy

Systems, Probabilistic Reasoning and Evolutionary Computing.

Among all soft computing techniques, evolutionary computing is considered as the

good one as closely related to the nature. Evolutionary computing, a global search

paradigm, includes Evolutionary Strategies, Evolutionary Programs, Genetic Algorithms

and Genetic programming. Genetic Algorithm was inspired by the Darwin theory of

evolution i.e. "fittest of the survival". Genetic Algorithms (GA) are most common in all

evolutionary paradigms. GA mimics the process of natural evolution and finds its use in

solving computing and optimization problems. In GA, a population of chromosomes,

generally a sequence of bits is randomly selected. This population is then transformed

into some new population by the use of some methods which are similar to the natural

selection by the use of operators which are inspired by the natural genetic operators like

crossover, mutation and inversion operator.

Fitness function is the deciding criteria for the natural selection of a population.

According to that, the chromosomes having optimum fitness value can survive and are

allowed to reproduce offspring. Among all chromosomes that survive the fittest

chromosomes can reproduce to produce new offspring than the less fit chromosomes.

Then the crossover operator performs crossover operation on the selected chromosomes

based on certain features like bit location in the parent chromosomes to produce new

offspring having same size. The mutation operator flips/replaces the bits at selected

locations by a certain value. The inversion operator reverses the order of a subsequence

in a chromosome.

ii

When the new generation of a population is completed, then it is checked for the

stopping criteria. If stopping criteria is met then the algorithm is stopped otherwise the

fitness value is again evaluated for the chromosomes of this generation and the whole

process is repeated till the stopping criteria is not met.

For any job execution the minimization of the TAT is of utmost importance and is

expected from any scheduling scheme to meet this objective. In this work we have

extended the work done in (28] to minimize the TAT of a job for a computational grid.

The same is done using GA which is an established soft computing tool for such kind of

combinatorial problems. The model analyses the performance of the scheduling schemes

viz. rank selection and roulette wheel selection for various mutation instances. The

simulation study reveals the effectiveness of the model.

iii

List of Acronyms

API Application Programming Interface

CPU Central Processing Unit

DAG Directed Acyclic Graph

DNA Deoxyribonucleic Acid

GA Genetic Algorithm

GHz Gigahertz

GIS Grid Information Service

GP Genetic Programming

GS Grid Scheduler

HPC High Performance Computing

I a aS Infrastructure as a Service

IBM International Business Machines Corporation

IMC Inter Module Communication

LAN Local Area Network

LHC Large Hadron Collider

MATLAB Matrix Laboratory

MCT Minimum Completion Time

MET Minimum Execution Time

NEC Node Execution Cost

NP Non-deterministic Polynomial time

OLB Opportunistic Load Balancing

PaaS Platform as a Service

RS Rank Selection

RW Roulette wheel Selection

SaaS Software as a Service

SDK Software Development Kit

SETI Search for Extraterrestrial Intelligence

TAT Turnaround Time

TSP Travelling Salesman Problem

vo Virtual Organization
iv

List of Figures

Figure 1.1: A Generic view of Grid Computing 3

Figure 1.2: Hour Glass Model (Layered Architecture Model) for Grid Computing 4

Figure 1.3: A logical Grid Scheduling Architecture 12

Figure 1.4: Euler diagram for P, NP, NP-complete, and NP-hard set of problems 17

Figure 2.1: Steps for Genetic Algorithm 24

Figure 2.2: Crossover in Tree encoding 34

Figure 3.1: Computational Grid 40

Figure 3.2: Directed Acyclic Graph for a Job 47

Figure 3.3: Mutation after 51h Generation 53

Figure 3.4: Mutation after lOth Generation 54

Figure 3.5: Mutation after 151h Generation 54

Figure 3.6: Mutation after 5th Generation 55

Figure 3.7: Mutation after lOth Generation 55

Figure 3.8: Mutation after 15th Generation 56

v

List of Tables

Table2.1: Showing Cost Matrix ofTSP 36

Table 3.1: Job j 0 48

Table 3.2: Node Attributes in a Cluster 48

Table 3.3: Hamming Distance (D) between different Nodes 49

Table 3.4: IMC Matrix 49

Table 3.5: Processing Time of Various Modules on Various Processors 50

Table 3.6: A Typical Chromosome 50

Table 3.7: Calculated Valuesl 50

Table 3.8: Calculated Values2 51

Table 3.9: Parameters Used 52

vi

Chapter 1

Grid Computing

1 Introduction
Around 80's when there was huge demand for computational power, the birth of

parallel computing was witnessed. Parallel computing is of two types, Parallel Processing

and Distributed Computing. In Parallel Processing several CPU's or computers for which

the frequent communication between the processors is needed are used to solve scientific

problems. In Distributed Computing several computers are used to solve these problems.

In order to solve a problem using Distributed Computing, the problem is divided in to

several independent tasks that can be executed in parallel. Because of the availability of

high speed internet and low cost commodity components makes the scientist and

engineers to do their computation over these distributed systems, which includes cluster

computer, super computer, storage systems, data sources and some other devices being

used as unified resources. The high speed internet connection has made possible the

seamless access to distributed resources and interaction among them, giving birth to a

new computing era known as "GRID COMPUTING".

Since independent codes of same application can be executed in parallel on different

machines it can achieve end to end system capabilities of distributed networked system.

This is known as "METACOMPUTING". Later on as the technology advanced and the

new programming language tools were designed several new projects were carried out by

many universities, laboratories and other organization. In 1996, the researcher in NSF

supercomputing centers agreed on a new name "POWER GRID" or simply "GRID".

Since then the term "METACOMPUTING" has got replaced by GRID. Because of the

growing interest in Grid some standard was needed so that products can be produced in

industry. This leads to the formation of Global Grid Forum [I]. -

1

1.1 Grid Computing
The term "Grid Computing" was first given by Ian Foster and Carl Kesselman in his

book "The Grid: Blueprint for a New Computing" in 1998. Accordingly it is defined as

"Grid is a hardware and software infrastructure that provides dependable, consistent,

pervasive, and inexpensive access to high-end computational capabilities." Later on in

2000 Steve Tuecke and Foster published an article named "The Anatomy of the Grid" in

which Grid Computing is redefined as "coordinated resources sharing and problem

solving in dynamic, multi-institutional organization". In this definition the key concept is

the ability of negotiation of sharing the resources among the participating parties [2]. In

this way in literature Grid Computing is defined in so many ways, some of the other

definitions are as below:

The Globus Alliance defined the GRID as, "The infrastructure that enables the

integrated, collaborative use of high-end computers, networks, databases, and scientific

instruments owned and managed by multiple organizations."

In general Grid Computing uses the shared resources of huge computer network to

solve a single problem either of scientific, research or technical domain where large

numbers of processing cycles are needed.

Initially it was known as "GRID" as it shows resemblance with the "Electrical Grid".

Electrical Grid shows analogy with the Computational Grid in terms of structural design.

Electrical Grid provides power to thousands of devices via complex physical connection.

In terms of physical characteristics Electrical Grid is highly heterogeneous, managed by

different organization also they differ in terms of power consumption by a consumer,

duration and quality of services they needed and the amount they can pay.

2

Figure 1.1: A Generic View of Grid Computing 161.

1.1.1 Grid Components

In Grid Computing possibly the remote, heterogeneous. untrusting and dynamic

computing resources are seamlessly accessed. These terms can be defined as [3]:

1.1.1.1 Remote Computing Resources: Resources which are connected through

a LAN are said to be local resources and resources which are widely

distributed across the globe are said to be remote resources.

1.1.1.2 Heterogeneous Resources: The resources are said to be heterogeneous

since they may or may not be using same operating system, it may have

same or different kind of hardware configuration, it may be a single

resource or a group of resources of same or different kind forming a

cluster or it may be a supercomputer etc.

1.1.1.3 Untrusting Resources: The Grid user may not trust the user on the other

side whose system is a part of the Computational Grid, since he/she may

alter the executing programme, so security issue is also there.

1.1.1.4 Dynamic Computing: Since Grid Computing uses the unused processing

cycles of the systems that are part of the Grid System. It might be possible

that some systems are free at a particular time but remain busy for some

other time. This dynamism is owner dependent (owner of the individual

systems) [3].

3

1.1.2 Layered Architecture for Grid Computing

The most popular representation of Grid Computing has been proposed by Ian Foster

because of its shape it is often referred as ''The Hour Glass Model, which is wider at the

top and bottom and thinner at the middle part which plays the role of middleware in the

Grid System. Grid System architecture provides services and includes several protocols

which are shown below in the Figure1.2 [4].

·rools anJ appltca.uon,..

IL

~~~/ USI'.R Al'l'l.ICATIONS 

COLI.ECTIVE SHRVICI!S 

RE.'iOlJRCE ANI> 
C()NNECTIVJTY I'ROT(>C(>L-> 

FABRIC 

Figure 1.2: Hour Glass Model (Layered Architecture Model) for Grid Computing 

1.1.2.1 Fabric Layer: This is the bottom most layer of this Layered Architecture. 

This layer acts as an interface and makes available the shared resources 

such as network bandwidth. memory and CPU time etc. Resources are 

managed by some standard protocols. This layer allows the sharing of 

resources among the virtual organization. 

1.1.2.2 Connectivity Layer: This layer provide the secure and easy access to the 

data exchange between the Resource Layer and the Fabric Layer. for this 

purpose this layer specifies some protocols regarding authentication and 

communication. Communication Protocol permits the exchange of data 

between different layers and Authentication Protocol are meant for secure 

cryptographic mechanisms for authenticate the users and resources. 

1.1.2.3 Resource Layer: This Layer is responsible for managing the resources 

by specifying the protocols that handles the shared resources. Since this 

layer is defined over the Connecting Layer, it also defines API 

(Application Programming Interface) and SDK(Software Development 

Kit) for secure navigation, controL billing and accounting etc. 

4 



1.1.2.4 Collective Layer: This Layer lies just above the Resource layer. This 

Layer handles access and manage the coordination among the multiple 

resources, allocation and scheduling of task on multiple resources, data 

replication etc. 

1.1.2.5 Application Layer: This is the top most layer which provide interface to 

the users and admin to control/operate the Grid Computing Environment. 

1.2 Types of Grid 

Grids have so many variations as The Grid Technology or Grid Architecture is in its 

evolving stage. Therefore on the basis of one's need, its functionality and architectural 

design it can be of several kinds [ 5, 29]. 

No boundary exists between various forms of Grids. A Grid can be a combination of one 

or more of these. According to different organization, the Grids can be classified as: 

1.2.1 Clubby Analytics: Clubby Analytics, a research organization categorizes the 

Grid in to four types and they are as described below: 

1.2.1.1 Compute Grid: These Grids are designed to exploit the unused 

processing cycle of the large pool of the shared CPU. These kinds of Grid 

are used in scientific, engineering, space research programs to meet their 

high throughput and computational needs. 

1.2.1.2 Service Grid: It provides the reliable, fault tolerance and high speed 

communication among the different Grids to facilitate the environment 

that allows the interoperability and different applications to run on varied 

operating environment. 

1.2.1.3 Information Grid: These Grids provides peer to peer services, acts as 

collaborative computing and also allows file sharing or handling the data 

that are distributed or stored over the heterogeneous databases. 

Sometimes these Grids are also known as "Data Grids". 

1.2.1.4 Intelligent Grid: These kinds of Grids automatically manage themselves. 

These are the basic network of different Grid interconnection that 

5 



manages the storage, network hardware management and software 

enhancement etc. 

1.2.2 Sun Microsystems: Sun Microsystems classified the Grids on the basis of 

geographical dispersion/location of server. They classified the Grids in three types 

and they are Cluster Grid, Campus Grids and Global Grids as described below: 

1.2.2.1 Cluster Grid: This kind of Grids consists of one or more systems 

working together and is used to satisfy the needs of a user. They are used 

whenever high throughput and high performance job are needed to be 

executed. These kinds of Grids are used and managed by small no. of 

users such as a department and in a project etc. 

1.2.2.2 Campus Grid: This kind of Grid are used as the demand of high 

computation is needed, then the different cluster from different 

organization are combined to form a Campus Grid: Multiple projects can 

be executed on Cluster Grid and share the resources in a cooperative 

fashion. 

1.2.2.3 Global Grid: As the requirement increases beyond the availability of 

resources, Campus Grids are combined to form a Distributed arrangement 

of Campus Grid known as Global Grid. In Global Grid the shared 

resources are used in a cooperative way to satisfy the needs of the 

application and the user as well. 

1.2.3 IBM: IBM a leading research organization categorized the grid in to three types 

as listed below: 

1.2.3.1 Computational Grid: In this kind of Grids the resources are clubbed 

together to satisfy the needs ofhigh computation. In Computational Grids 

most of the machines are high computation server. For high throughput 

and better response time Computational grids are used. 

1.2.3.2 Scavenging Grid: This kind of Grids consist of large number of desktop 

machines that are used or shared by the users. The desktop owner has full 

6 



control over their resources. Scavenging Grid uses the unused processing 

cycles and other resources of the shared machine/desktop. 

1.2.3.3 Data Grid: This Grid are used when huge amount of data are needed to be 

processed, analyzed which may be of same or different format, may or 

may not be located at different geographical locations [ 5]. 

1.3 Applications of Grid Computing 

Grid makes an optimized use of the shared resources. It uses the unused processing 

cycles of the CPU that are shared to the network which otherwise could be wasted and 

help achieving the high computation resources which can be used to solve a complex 

problem within the limited time. It can find its use in many organization, some of them 

are listed as below [ 6]: 

• Government Organization: These organizations use Grid Computing during 

disaster management like earthquake, Tsunami and situation like flooding so that 

they can minimize the loss. These organizations also use the Grid Computing for 

urban planning and economic modeling etc. 

• International organization: International Organization like World Bank also uses 

Grid Computing so that they can share their data archive more effectively and 

simply. 

• Military: Countries like United States of America already started usmg Grid 

Technology for simulating artificial military operations, for simulating different kind 

of environment needed for training, for military application like designing an 

automated tank and simulation and effect of nuclear bomb if it gets detonated etc. 

• Scientist and Researcher: These people use the Grid Computing for weather 

forecasting, for development of drugs, recently it is used in the fight against 

dangerous H5Nl avian flu virus, and Researcher uses the Grid technology for 

knowing the fact that how universe comes in to picture, they used it in LHC 

Experiment also they used in many projeets like SETI@home, also used in World 

Community Grid etc. 

7 



• Industry: This technology can also be used in industry to carry out large scale 

modeling or computation where resources are distributed at many sites etc. 

1.4 Challenges in Grid Computing 

As the need of computation increases in the industry, this lead to excessive use of 

resources which are very hard to manage in terms of cost as wells as environment 

perspective. Since large numbers of system are working in shared manner in Grid to 

satisfy the requirement, resources are located at different locations and under different 

administration which make the problem more chailenging. The process of managing and 

scheduling the resources over the Grid is very challenging as they are globally 

distributed, having different kind of hardware and software and also owned by different 

individuals or organizations with their own policies, having varying load/availability and 

different cost models. Since resources are distributed and may be owned by individuals or 

organization, they may leave or join the system at any time causing extra burden on the 

Grid System i.e. resources are dynamic in nature in Grid System. This introduces 

problem like policy extensibility, online control of the resources, resource allocation, 

scalability of resources and interoperability among the heterogeneous resources along 

with security issues since jobs are executed over different systems having multiple 

administrative control. These are some challenges that are needed to be resolved for 

smoother working of the Grid. 

1.5 Grid versus Other Technology 
Similar to Grid Computing there are some other contemporary technologies like 

Distributed Computing, Cloud Computing, Cluster Computing etc. which have some 

similarities and dissimilarities. Some of them are mentioned below: 

1.5.1 Grid Computing Vs Distributed Computing 

Around 80's Distributed Computing came in existence when increased network 

bandwidth and CPU computation power were two advances in technology helping 

in solving complex problem by putting together a large number of systems 

connected through high communication network. It is actually a subset of Grid 

Computing. In distributed Computing the -systems have limited memory and 

8 



processing power, also manages thousands or some hundreds of computers. On the 

other hand Grid Computing is concerned with efficient utilization of resources 

with optimal workload management. Further there is no restriction on the number 

of resources i.e. Grid Systems are scalable without any restriction on number of 

user. 

Grid Computing includes computation over multiple administrative domains 

and also the systems or resources are distributed across the globe which makes the 

Grid Computing a step ahead of Distributed Computing. ·Grid Computing also 

includes issues like multiple administration policies, security issues for 

authentication and authorization. 

1.5.2 Grid Computing Vs Cluster Computing 
In terms of architecture and computational ability, Grid is far ahead of Cluster 

Computing. Grid Technology includes varied computing resources which are 

globally distributed. Cluster can be a part of a Grid System. In Grid, sharing, 

selection and aggregation of resources is there, which are distributed across the 

globe. Also they are different in terms of architecture and computational 

capabilities. This includes storage systems, data sources, supercomputers and 

specialized machines owned by particular organization for solving complex 

problems which needed huge resources. Cluster Technology is used for specific 

purpose and objective such as database services etc. Cluster can be scalable up to 

IOO's of computer whereas Grid can be scalable up to millions of computer. In 

Cluster the systems are of same kind and are located at same physical location 

connected with high speed connections. It appears as a single system image. In 

Grid, systems are loosely connected, distributed job management and scheduling 

is there since systems are distributed whereas in case of Cluster the systems are 

tightly coupled, centralized job management and scheduling is there [7]. 

Initially the term Cluster is used for group of servers. The server is the 

platform where the services associated with database and application resides. 

Therefore server plays a vital role in providing availability a?d high performance. 

9 



Since, Cluster includes multiple servers, provides uninterrupted services thereby 

increasing the performance. 

1.5.3 Grid Computing Vs Cloud Computing 
Cloud Computing allows the user to free from the burden of handling and 

managing the huge hardware and software in terms of cost and labor. Cloud 

provides the researcher or industrialist the three elements of IT being IaaS 

(Infrastructure as a Service), PaaS (Platform as a Service), SaaS (Software as a 

Service). In Cloud Computing, the business is executed on virtual resources and 

the users have to pay according to their requirement of hardware, software or 

platform [8, 32, 33, 34]. 

In Grid Computing the resources are shared and globally distributed having 

multiple administrative domains. It provides the suitable environment for running 

the application or executing the problems. Since, in Grid Computing the resources 

are shared therefore any complex problem first broken in to smaller module in 

such a way that they can be executed in parallel on distributed machine. The Grid 

Computing environment is more flexible and viable than Cloud. In Grid there is no 

problem of load server collapse. Even if it occurs then other distributed systems 

are there to handle it this feature is not there in Cloud until load balancer is not 

used, also upgrading of software and hardware is easier in Grid Computing, since 

resources are distributed and managed by independent owner. 

Cloud has many advantages over Grid Computing. In spite of these none can 

replace the Grid because all these technologies (Cloud Computing, Grid 

Computing and HPC) have their own place. 

1.6 Grid Scheduling 
Grid Computing is a form of distributed computing making computer power as easy 

to access as power grid and work like a super computer. In grid computing the computers 

are loosely coupled network computers which executes very large jobs s.a. DNA 

analysis, earthquake, flood and analysis of protein structure etc. These are very large 

applications requiring huge computer resources and a huge amount of time, sometime 

10 



taking a few days or even a few weeks to complete their execution. This execution time 

can be minimized by proper task scheduling since the delay in one task can affect the 

completion time of the entire application. Scheduling is the way processes are assigned to 

run on different resources. The main goal of job scheduling is to minimize the execution 

time and minimize/avoid the wastage of the CPU cycles. A good job scheduling strategy 

should be taken into account since the grid posses the characteristics like geographically 

distributed computer systems, heterogeneity of hardware and software resources, 

dynamicity of shared resources, multiple administrative control and resource coordination 

[29, 36]. 

1.6.1 Components of Grid Scheduling 
Since in Grid Computing the resources are heterogeneous and are globally 

distributed, it is necessary to know what kind of resources and how many of them are 

available beforehand. After collecting all information about the resources they are 

selected on the basis of the requirements [9, 1 0]. 

1.6.1.1 Resource Discovery: Since in a Grid, the resources are heterogeneous, 

globally distributed and dynamic in nature, it is of great importance to 

know the status of the available resources beforehand. Grid Information 

Service (GIS) collects all information about the available resources and 

make of list of them. This includes CPU capacity i.e. the computing 

power, memory size, network bandwidth etc. This information is needed 

to be updated at regular interval of time. On the basis of above 

information Grid Scheduler takes the decision. 

-1.6.1.2 Resource Selection: This phase of selecting the resources comes after the 

discovery of them which filters the unwanted resources. This phase of 

selecting the resources first collect the information about the application, 

its requirement and then on the basis of these choose the best resources 

from the large list of available resources. This method of selecting the 

resources is quiet easier for sequential job but gets more and more 

complex for complex job that needs to be executed in parallel. 

11 



Oorniln1 .DomairlN 

Figure 1.3: A logical Grid Scheduling Architecture (9). 

1.6.1.3 Job Execution: The last phase of job scheduling is the execution of the 

jobs. This phase is the most complex step during the whole process 

because it needs to be monitored as the resources are dynamic in nature. Also 

it might happen that job execution stops due to hardware or software failure or 

may be due to network problems. This demand for the job to be scheduled again. 

-1.6.2 Types of Grid Scheduling 

In Grid, the resources are heterogeneous, globally distributed around the globe, 

dynamic in nature, having different ownership etc. therefore depending on the criteria, 

different kind of scheduling methods are there. There could even be some overlap and 

may not have clear distinction among them. Some of them are discussed below [9,10,11, 

30]: 

1.6.2.1 L9cal Vs Global: Local Scheduler decides how the process which resides 

on a single CPU is scheduled on a single machine whereas in Global 

Scheduling the scheduler has all the information about the available 

resources in the system. On the basis of that information, it allocates the 

process to multiple resources. 

1.6.2.2 St~tic Vs Dynamic: These Scheduling policies indicate the time at which 

the scheduling decisions are made. In static scheduling prior to scheduling 

the application or job, the systems have all information about the available 

12 



resources and the job requirement. In case of dynamic scheduling, task 

allocation is on the fly as the job executes. 

In Static Scheduling every task is once assigned to a resource. Thus this 

arrangement of assigning a resource to a task is static. It makes possible 

the estimation of cost of computation prior to the actual execution of task. 

From the programmer point of view it is beneficial to know in advance the 

scheduling arrangement so that he/she can make the cost of computation 

simpler. This model allows a "global view" of task and costs. But this 

estimation of cost is not adaptive since based on static scheduling because 

it might happen that any number of the nodes or network may get fail 

during the task execution leading to higher response time than expected. 

To avoid such kind of scenarios rescheduling mechanisms are introduced 

at the cost of overhead for task migration. 

Dynamic Scheduling is used when estimation of computation cost is 

difficult since jobs are arriving dynamically in the system. This kind of 

scheduling is also known as "Online Scheduling". There are two major 

components in scheduling, one is system state estimation and another is 

decision making. Prior to taking any estimation decision about the 

assigning of task to a resource the scheduler has information about the 

system state throughout the Grid. To make the system work properly, 

dynamic load balancing is used. 

1.6.2.3 Cost constrained techniques: This approach is an improvement of 

balanced-constrained approach as this not only considers the balance 

among the resources but also considers the communication cost. This 

approach is more flexible and ·efficient but objective of this approach is to 

release the running jobs and assign the resources to the waiting jobs rather 

than load balancing and cost optimization. 

1.6.2.4 Hybrid of static and dynamic techniques: This technique is better since it 

takes the advantage of static scheduling and at the same time captures the 

13 



dynamicity of the task and resources and takes the appropriate decision of 

scheduling. 

1.6.2.5 Optimal Vs Suboptimal: Optimal assignment can be made if all 

information about the resources and the job is known, based on some 

criteria such as minimum make span and maximum resource utilization. 

Since scheduling is NP-complete, it is difficult to find the optimal solution 

leading to accepting the suboptimal ones. Accordingly the methods can be 

divided as: 

1.6.2.5.1 Approximate Vs Heuristics: Approximate algorithm uses 

formal method of computation which gets satisfied when a 

sufficiently good solution is obtained. In this they do not search 

the entire search space. Where any metric is available it 

reduces the time to find an optimal solution. Some of the 

approximate algorithms are described below. 

• OLB (Opportunistic Load Balancing): This is the simplest 

approach of assigning the task to a resource. It does not consider 

the expected execution time. 

• MET (Minimum Execution Time): This approach considers the 

expected execution time of each task on each machine and on the 

basis of that selects the one having minimum execution time. 

• MCT (Minimum Completion Time): This considers the task for 

scheduling having the minimum completion time. 

• Min-min: This approach executes the task fastest and for this first 

it selects the best machine for each task and then it selects the task 

with minimum completion task. 

• Max-min: In this approach first the best machine is selected for 

each task and then the task with maximum completion time is 

14 



selected for execution. This leads to better load balancing and 

better total execution time. 

• GA (Genetic Algorithm): GA is an evolutionary technique for 

larger search space. The general procedure includes, generation of 

a set of initial population by heuristic methods which is a set of 

chromosomes represents the mapping between the task and the 

machine. Fitness value of each chromosome is then evaluated 

which is the total completion time. Goal of GA is to find the 

chromosomes with optimal fitness value. Crossover and mutation 

are the other operators used on the selected chromosomes. 

Crossover is defined as the swapping of certain subsequences in 

the selected chromosomes. Mutation includes the replacing certain 

subsequences with new task machine mapping choices that are 

new to the chromosomes. After performing these operations the 

new generated population is evaluated for fitness value. This 

process is repeated over and over until the stopping criteria are 

met. Stopping criteria can be all chromosomes converge to the 

same mapping, cost bound is met or no improvement in recent 

evaluation. 

1.6.2.5.2 Distributed Vs Centralized: In the case of dynamic scheduling the 

decision for global scheduling can be handled either by centralized 

scheduler or decentralized scheduler. In the case of grid 

scheduling, where any number of resources or jobs can leave or 

join the system at any time, rescheduling is needed dynamically. In 

such cases centralized scheduling shows some advantages but at 

the same time suffer from scalability, fault tolerance etc. 

Decentralized or distributed scheduling IS preferred over 

centralized scheduling instead of weak efficiency. 

15 



1.6.2.6 Adaptive Scheduling: An adaptive scheduling is one in which the 

scheduling decision is changed dynamically depending on the previous, 

current or future status of the resources. 

1. 7 Scheduling - NP hard problem 
The Grid computing includes large no of resources that are globally distributed and 

are used for satisfying the need. Since the usage cost of these resources are very high 

sometimes it reaches to some millions and sometime higher so it is better to use the 

resources in optimized fashion so that we can reduce the cost. In case of Grid, scheduling 

problems are optimization problem i.e. need to generate a schedule that minimizes the 

certain objective function. 

1.7.1 Class of problems: P or NP 

A scheduling problem is said to be polynomial time algorithm if it is bounded by 

the input size n, the number of resources and the number of bits that are used to 

represents the largest integer i.e. its running time is bounded by a polynomial in input 

size. On the basis of computational complexity the problems can be classified as P class 

and NP class of problems [12,13,14]. 

1.7.1.1 P class of problems: P is the set of decision problem which can be 

solvable in polynomial time, P represents polynomial time. 

1.7.1.2 NP class of problems: The set of problem whose solution can be verified 

for its correctness. The solution ofNP class of problem can be verified in 

polynomial time if the correct answer can be guessed. Here NP means 

non-deterministic polynomial time. This NP class of problem can be 

further classified as: 

• NP complete class of problems: A NP complete problem can be 

said to be solvable in polynomial time if and only if all other NP 

complete problem can be solved in polynomial time. 

• NP hard class of problems: A problem is said to be NP hard, can 

be solvable in polynomial time if and only if all other NP 

16 



complete problem can be solved in polynomial time. For such 

kind of problem no such polynomial time algorithm is known. 

All NP complete problems are NP hard but vice-versa is not true. NP complete problem 

are said to be the hardest problems. 

NP-Hard 

~ 

NP-Hard 

P= NP= 
NP-Complete 

........... J· .. .. .. . '" .......... ;.....,._, . -
P¢NP P=NP 

Figure 1.4: Euler Diagram for P, NP, NP-Complete, and NP-hard Set of Problems [15]. 

1. 7.2 Approaches to scheduling problem 

Given a scheduling problem we need to determine its computational complexity 

either by designing its polynomial time algorithms to find its solution or by proving that 

the problem is NP hard problem. In the case of Grid Computing the scheduling problem 

is NP hard problem, which can't be solved by polynomial time algorithm but the sub 

optimal solution can be found by using the following two methods: 

1.7.2.1 Approximate Algorithm: These algorithms help to prove that obtained 

solution is close to the actual solution. They produce the solution in 

polynomial time. The calculated solution may or may not be the optimal 

one. 

1.7.2.1 Heuristic Algorithm: These methods are used to find the feasible solution 

in reasonable time by performing the experiment a number of times. They 

are not guaranteed to be the optimal solution. These methods are simple 

and effective. Some of the heuristic methods are Genetic Algorithm, Tabu 

Search and Simulated Annealing etc. 

17 



Chapter 2 

Genetic Algorithm 

2 Soft Computing 

Prof. Lofti Zadeh, who developed the concepts qf fuzzy logic, first introduced the 

tenn Soft Computing. Soft computing is used where approximate solution is considered 

as good as the exact solution, for example NP complete problems, for which accurate or 

precise solution cannot be obtained in polynomial time. 

Soft Computing is tolerant of uncertain, imprecise, approximate and partially true 

results whereas Hard Computing involves a precisely stated analytical model and 

computational time. Soft Computing takes the human mind as a role model [I 8]. 

Soft Computing includes: 

• Fuzzy Systems: The concept of Fuzzy Systems is given by Dr. Lofti Zadeh. The 

behavior of Fuzzy Systems is described by Fuzzy Set Theory and Fuzzy Logic. 

With the help of Fuzzy Systems it is quite possible to translate the subjective 

human knowledge which is impossible to quantify, using mathematical calculus 

with some level of uncertainty because of imprecise tools used for measurement 

or vagueness in the language. It is used for modeling real world problem which 

are inherently imprecise. It can manage the numerical data and linguistic 

knowledge both. Fuzzy System finds its various applications like Robot Vision, 

Infonnation Retrieval and Navigation System etc. 

• Neural Network: Architecture of Neural Network is inspired by the functioning 

of human brain. It is an attempt to adapt the way the brain function such as 

process the input infonnation and produces the output accordingly also it possess 

learning capability. They acquired the knowledge through learning. It is a 

powerful tool for modeling the complex non-linear real world problem. It can 

.. identify and learn correlated patterns between input and output set. Also it 

possesses the capacity to predict after being trained. 
18 



Probabilistic Reasoning: It uses the concepts of probability theory and 

deduction logic to exploit the problem. It tries to find the natural extension of 

logical truth table the results they define are derived through probability 

expression. Problem with this is that to compute the complexity of probabilistic 

reasoning it tries to multiply the complexities of both the probability and logical 

components 

Evolutionary Computing: A technique inspired from natural evolution 

process. This method is widely used on a variety of problems having very large 

search space. It is not possible to obtain an exact solution but suboptimal solution 

is considered as the best solution obtained within the limited time or under certain 

constraints. Evolutionary Computing uses the evolution algorithm over a set of 

population to obtain the suboptimal solution. This algorithm includes the natural 

selection of the child population followed by crossover and/or mutation under the 

environmental condition/pressure, which increases the fitness of the obtained 

child, over the time these steps are repeated until the termination condition is not 

met, to give the best child and hence the suboptimal solution is obtained. 

Soft Computing is a totally new multi-dimensional field, which is used to design a new kind 

of Artificially Intelligent machines, known as computationally intelligent machine. 

Soft computing techniques can be used to serve the following goals [ 18]: 

• To design an intelligent machine capable of solving a real world problem which 

otherwise cannot be solved efficiently by mathematical modeling. 

• To make use of approximate, uncertain, imprecise and partially true result in order 

to attain human like decision power. 

In approximation, the model features are similar to the real one but not same. In 

uncertainty we are not sure that feature of model is similar or same as that of entity. 

Imprecision tells that the model features (quantities) are not same as the real one but 

close to that of the real one. 

19 



2.1 Genetic Algorithm 

Genetic Algorithm (GA) is a general purpose search algorithm based on the 

process of evolution observed in the nature. It is a heuristic search algorithm, a part of 

evolutionary computing and a booming area of Artificial Intelligence, inspired by the 

Darwinian theory of evolution "survival of the fittest", for getting optimum solution of a 

problem, which is not solved by traditional methods. In other words, GA is an adaptive 

heuristic search algorithm which uses the idea of natural selection and genetics. Genetic 

Algorithm directs the search to the region of the sample space where better results can be 

obtained. Genetic Algorithm can be applied to wide variety of application, for ex-

computer games, scheduling, transportation problem, TSP, medical, adaptive control and 

stock market trading etc [19]. In general, GA can be classified into two categories viz. 

Single optimization GA and Multi-objective GA. In the case of single objective 

optimization GA, one tries to obtain the best solution among all alternative solution by 

optimizing the single objective function whereas in the other case, there are multiple 

conflicting objectives that are to be optimized to produce a set of optimal solutions using 

the Pareto optimality theory, the optimal set of solutions must satisfy all the objectives as 

best as possible [24]. 

Some of the advantages ofGA are as follows [21], [26]: 

• Easy to understand and covers the large search space. 

• Support multi-objective optimization. 

• Good for noisy environment. 

• GA is as good as the objective function is. 

• GA gives the solution of a problem through evolution process. 

• It can solve any optimization problem, which can be encoded using chromosomes 

• Easy to exploit the result. 

• GA is good as good as the objective function is. 

• Runs in parallel. 

• The fitness function can be changed at each iteration if needed to increase the 

performance. 

20 



The important disadvantages of GA could be (26]: 

• GA is very slow. 

• We have to choose mutation rate, population size wisely; if the mutation rate is 

too high then they never converge to an optimal solution and if the population size 

is too small then search space is very small to find the solution. 

• Designing the fitness function for any problem is very crucial. 

• Convergence is always there, but time taken is uncertain depending on the 

objective function chosen. 

• It does not always give the exact solution. 

2.1.1 History 

The term evolutionary computing was first coined by I. Rechenberg in 1960's in 

his work "Evolutionsstrategie". His idea was further used and developed by other 

researcher. The term Genetic Algorithm (GA) was first introduced by John Holland while 

studying cellular automata, developed by him, his students and colleagues at the 

University of Michigan. Holland incorporated his work in a book named "Adaption in 

Natural and Artificial Systems" published in 1975. Actually, Holland's goal was not to 

design algorithm for any specific problem but to understand the phenomenon of 

adaptation that occurs in nature, and how to incorporate this way of adaptation in 

computer science. 

John Koza, in 1992 used the GA to evolve programs to perform certain task. This 

was named as Genetic Programming (GP) [16]. 

2.1.2 Biological Background 

Cell is the basic building block of living organisms. Each cell has same set of 

chromosomes, which consists of genes, the basic unit ofDNA. A string of DNA in a gene 

forms a particular trait. Each gene has its position in the chromosomes, called locus. The 

solution to a problem in Genetic Algorithm is called chromosomes, the parameter that is 

to be optimized. 

21 



Evolution is a method of searching the best among the huge number of 

possibilities. In biological terminology the huge possibility is the availability of set of 

possible genetic sequence and the desired solution is the fittest organism among all 

available possibilities. In other words, solving a problem using GA can be seen as 

looking for a solution which is the best among the others. 

2.1.3 Fitness Function 

To solve any problem using GA, we first require formulating its mathematical 

model in tem1s of a function. Then parameters that optimize the function of the model are 

determined. This is known as fitness function also known as the Objective function. 

Fitness function basically determines or analyzes the genes holding the data and returns 

the fitness value to quantify the fitness or suitability of the chromosomes. This results in 

selection of chromosomes having higher fitness value for producing the next generation. 

The better is the fitness, more chances are there of selecting those chromosomes to 

survive. The chromosomes having poor fitness value are discarded. The fitness function 

varies from problem to problem. The effectiveness of the fitness function determines how 

well a problem can be solved [25]. 

2.1.4 Search Space 

If we are looking for solution to a problem which will be best among the other, then 

search space comes into picture. Search space is the set of all possible solutions that can 

exist for a given problem. Search space is defined by the domain where all 

feasible/possible solution (or the object among those desired solutions) are present, also 

known as state space. Each solution or point in the search space is known as the feasible 

solution and is marked by its fitness value. Search space changes at each step of 

evolution. 

2.1.5 Termination Condition 

There could be various terminating conditions for the GA to stop. A programmer 

can use either one or multiple terminating conditions as per the domain requirements. 

Some of these are listed as follows [20]: 

22 



• Generation number: A solution is obtained when maximum numbers of iterations 

have been run. 

• Evolution time: when the specified time limit exceeds the process can be 

terminated. 

• Fitness threshold: when the best fitness in the current population is less than the 

user specified fitness threshold value, when the aim is to minimize the fitness value. 

This also stops when the best fitness value in the current population becomes more 

than the user specified threshold value with the objective being maximization of the 

fitness. 

• Fitness convergence: The evolution process stops when fitness converges. 

• Population convergence: The evolution process also stops when population 

converges in next generations. 

• Gene convergence: A termination method that stops the evolution process when a 

user-specified percentage of the gene of a chromosome is greater than the 

percentage of genes in a chromosome of current population. 

• Maximum iteration without termination: when further specified number of 

iteration does not improve the specified result the evolution process is tenninated. 

2.2 Structure of Genetic Algorithm 

GA is a method that produces or evolves to a better population or children at each 

step by choosing the best parent chromosomes from the available set of chromosomes. 

The newly generated chromosomes have better rate of survival than the previous 

generation as they have come from the fittest parents of the previous generation. This can 

be done by using methods of natural selection and other genetic inspired methods like 

cross-over, mutation and inversion etc. Genetic Algorithm evolves until a certain 

termination condition is met. 

Genetic algorithm has the following elements [16]: 

• A population of chromosomes 

• Selection according to fitness (Fitness function, which IS applied over the 

population) 

23 



• Cross-over to produce new children 

• Random mutation of newly generated children/solution. 

Figure 2.1: Steps for Genetic A1gorithm 127] 

2.2.1 Steps of Genetic Algorithm 

The step by step process of GA can be represented as shown in Figure. The 

method presented can be summarized into various steps as shown below [16]. 

1. Start with the randomly generated population of n, 1 bit chromosomes. 

2. Calculate the fitness f(x) of each chromosomes x in the population. 

3. Repeat the following steps until population of size n is created. 

a) Select a pair of parent chromosomes from the current population. 

Selection is made on the basis of fitness i.e. higher the fitness more is the 

24 



1, 

probability of selecting the chromosomes. Same chromosomes can be 

selected more than once. 

b) With a crossover probability (pc) crossover the parents to form new 

children. If no crossover was performed exact copies of the children is 

obtained. Crossover can be single point or it can be a multi-point. 

c) Mutate the two offspring at each locus with probability Pm, known as 

mutation probability or mutation rate and place the mutated children in 

new population. If n is odd, a randomly selected offspring is deleted or 

discarded. 

4. Replace the new population with the current one. 

5. If the termination condition is obtained then stop, otherwise repeat steps 2-4. 

2.2.2 Operators of Genetic Algorithm 

In order to solve a problem by GA sometimes it is not necessary to always encode 

the variable. But some problems can be only solved by encoding the variables. The most 

common method used for encoding is binary encoding. The length of string is decided by 

the accuracy needed. Encoding is done either by 0 and 1, real no or integer, depending on 

the problem. For e.g. after binary encoding chromosomes may look like [ 16]: 

Chromosomes 1 1100100101100001 

Chromosomes2 1000010110001011 

(a) Selection Operator 

Selection determines which chromosome is to be chosen and how many offspring 

are to be generated. Selection of chromosomes can be done, first by assigning fitness 

value to each chromosome. Then on the basis of their fitness value they are selected with 

both assigning fitness value to each chromosome and selection being done on the basis of 

certain algorithm [25]. 

(b) Crossover operator 

After encoding certain operation is performed on the chromosomes so that new 

offspring is generated/produced. One of them is crossover, in which two chromosomes 

25 



are selected for producing offspring. To accomplish this crossover point is selected 

randomly in each at same locus point. After this, in new offspring first part of 

chromosomes is selected from the first part of first parent and second part from second 

parent and so on. It can be shown below: 

Chromosome I 11010111000001110 

Chromosome2 I 0010100101010100 

Offspring I 11010100101010100 

Offspring2 10010111000001110 

Here crossover is performed at a single point. It can even be multi-point depending 

on the encoding of chromosomes in a problem. Specific crossover operator is used for 

specific type of problem. This increases the performance of the GA. Generally, single 

point crossover is used when size of the string is small and multipoint crossover is used 

when the size is large. 

(c) Mutation operator 

After crossover is performed, mutation can be done. It is used to avoid the process 

of getting trapped in a local optimum. Using mutation new offspring is randomly changed 

at any location. For binary encoding, in mutation, bits are randomly flipped i.e. at some 

position 1 flips to 0 and vice-versa. Mutation randomly changes the genetic information. 

When operated at bit level it is possible that mutation occurs at each bit but this has very 

lower probability as defined by mutation probability (P m). It can be shown as: 

Offspring I before mutation - 0101101001011011 

Offspring I after mutation with P m=25% 1001001001001011 

On the basis of the encoding as well as the crossover, mutation is performed. For 

example in permutation encoding bits are exchanged. Mutation maintains genetic 

diversity and at the same time inhibits premature convergence. During evolution the 

mutation occurs according to the mutation probability, usually set to fairly low value 

26 



(0.01 is a good choice). If it is set to very high then the search will become a primitive 

random search. 

Some of the types of mutation operator are as follows [20]: 

• Flip bit: Simply selected bits are inverted. This mutation operator is used in 

Binary encoding scheme. 

• Boundary: In this the randomly selected genes are replaced by the lower or upper 

bound for that gene. 

• Non uniform: This mutation operator increases the probability that the amount of 

mutation will be close to 0 (zero), which is a good choice. This also keeps the 

population from stagnating in early stage of evolution and therefore gives the fine 

solution at later stage. 

• Uniform: In this, the selected genes are replaced by the uniform random value 

chosen between user defined upper and lower bound for that genes. 

• Gaussian: In this a unit Gaussian distributed random value is added to the chosen 

genes. If the newly generated gene falls outside the upper and lower bound for 

those selected genes, it is clipped. 

All above mutation operators are used for integer or float genes except the Flip bit mutation 

operator. 

2.3 GA Parameters 

The basic parameters of GA are crossover and mutation probability [ 16]. 

• Crossover Probability: It shows how frequent the crossover occurs. If there is no 

crossover then children are the exact copy of their parents i.e. crossover 

probability is 0% whereas if crossover probability is I 00% then all offspring are 

formed after crossover. Crossover is done so that new generation has better fitness 

value to survive. Crossover rate should be high about 80%-95% but sometimes it 

appears that 60% of crossover rate can also serve well. 

• Mutation Probability.: This shows how often the part of chromosome is mutated . 

If no mutation is there, the chromosome remains exact copy of their parent. If 

mutation is there part of the chromosome is mutated. If mutation is 1 00% entire 

27 



chromosome is changed, 0% means nothing is changed. Mutation rate should be 

very low, 0.5%- 1% is considered as best. 

Other parameters of GA are as follows: 

• Population Size: It shows that how many chromosomes are there in the search 

space. If the population size is very small then after performing certain operation 

we have very small search space. If the population size is very large then GA 

slows down. Good size of population is 20-30 whereas sometimes 50-100 gives 

better result. Research shows that appropriate population size depend on the 

encoding and the size of encoding string. 

• Encoding: The type of encoding used is decided by the type of the problem and 

its instances. 

• Selection: Select chromosomes for further operation. Generally Roulette wheel 

selection method is used but sometimes Rank selection can be better. 

• Crossover and Mutation Type: This is decided by the type of encoding used. 

2.3.1 Encoding 

Encoding of chromosomes greatly depends on the problem. Some of the popular 

encoding schemes are presented below [16]: 

• Binary Encoding: Most commonly used encoding techniques uses strings of 0 

and 1. 

Chromosomes I 1100100101100001 

Chromosomes2 1000010110001011 

For small number for alleles it gives a large number of chromosomes. This coding is not 

good as it faces many problems and sometime correction is needed after crossover and/or 

mutation. For e.g. Knapsack Problem uses Binary Encoding, where each bit of a 

chromosomes represent whether the particular thing is present in the knapsack or not. 

• Permutation Encoding: When focus is on ordering in a problem then 

Permutation Encoding is used. For example in Travelling Salesman Problem 

ordering of cities is the key thing. In Permutation Encoding the fitness of 

28 



chromosomes is decided by the position of genes. In this encoding scheme some 

type of correction in crossover and/or mutation is needed to make the 

chromosomes consistent. 

Chromosomes111 153264798 

Chromosomes2 856723149 

• Value Encoding: This Encoding is used where some complicated values such as 

real no. character or letter or words, is used in the problems. This can be used for 

developing some specific crossover and/or mutation depending on problem. 

Chromosomes 1.2324 5.8243 0.4556 2.7293 

Chromosomes ABDJEIFJDHDIERHFNCJKNJW 

Chromosomes HI, WHAT DO YOU WANT? 

Chromosomes 1010101000110000001 

An example of the use of Value Encoding method is for finding weights for neural 

network where real value in chromosomes represents weights in the neural network. 

• Tree Encoding: This encoding is mainly used for evolving programs where the 

gene represents programming language commands, mathematical operations and 

other components of the program. Programming language LISP is used since in this 

the program can be easily parsed which makes the crossover and/or mutation 

relatively easier. 

2.3.2 Selection 

Chromosomes are selected from the population for producing children. Selection of 

chromosomes is done keeping in mind "survival of the fittest" i.e. the chromosomes 

having high fitness value are selected to produce new offspring with expectedly high 

fitness value. Selected chromosomes then undergoes crossover and/or mutation to 

produce offspring for new generation. This selection operation is governed by various 

methods; some of them are shown below [16], [23]: 

• Roulette Wheel Selection: Chromosomes with higher fitness value is selected. In 

roulette wheel all population is placed according to their fitness and then a 

29 



• 

chromosome is selected at random. Chromosomes having higher fitness value are 

selected quite often. In this case the other chromosomes will get very few chances 

to get selected. This method is also known as stochastic sampling with 

replacement. 

• Rank Selection: In rank selection method first the population is ranked, then the 

fitness value is decided by the rank associated with each chromosomes. The worst 

chromosomes have fitness 1; second worst have fitness 2 and so on. The best 

chromosomes have fitness N. After this all chromosomes have a chance to get 

selected but this can lead to slower convergence since the best chromosomes have 

very little difference between them. 

• Steady state selection: In this method the chromosomes with high fitness value 

are selected to produce offspring. These newly generated offspring replaces 

chromosomes having smaller fitness value to form a new generation. In this 

selection method the main focus is on surviving a large part of chromosomes for 

next generation. 

• Elitism: In this method we preserve the best chromosomes i.e. chromosomes 

having high fitness are copied to the next generation, as they may lose during 

crossover and/or mutation. The rest is done in usual way. Since Elitism preserved 

the best chromosomes, this greatly increases the performance of GA. 

• Deterministic sampling: It is very much similar to the roulette wheel selection 

method. In this selection method, the mean fitness is used instead of assigning 

probabilities proportional to the fitness value. In this the value obtained after 

dividing the individual fitness value by the average fitness is taken and only its 

part is considered for selecting the chromosomes for the next generation. The 

fraction part is used to sort the individuals. In the newly generated population the 

free places is filled by the chromosomes having higher fraction value in the sorted 

list. 

• Stochastic Remainder Sampling: It is very much similar to Deterministic 

Sampling. In this case the population is generated by using the integer part of fi/f 

(fi is the individual fitness value and fis the mean fitness value). The free places 

in the new population are filled by using roulette wheel selection method. In 
30 



remainder selection mechanism, expected number of copies of a string is 

calculated as mi = £/f. It assign parent deterministically from the integer part of 

each individuals scaled value (mi) then roulette selection is used on the remaining 

fraction part. For ex- if the scaled value of an individual is 3.4 then that individual 

is listed thrice as a parent because the integral part is 3. The fractional part gives 

the probability of choosing the chromosomes as parent. 

• Linear Ranking selection: In this method the individuals are ranked according to 

their fitness value. Individuals having higher fitness value have high rank and 

individuals with lower fitness have lower rank. Then the probability of selection 

of individuals is linearly dependent on their rank. 

• Truncate selection: In this method the candidate solution are ordered by fitness 

and some proportion, p (for ex- p= 1/3, Y2 etc.). This method is less sophisticated 

therefore it is not often used in practice. 

• Binary tournament selection: In this method two individuals are chosen at 

random and better of them is selected with fixed probability p, 0.5<p<l. 

2.3.3 Crossover and Mutation 

Crossover and Mutation are two operators of Genetic Algorithm. The type of 

operator used in a particular problem is decided by the encoding scheme used and the 

problem itself. There are number of operator, few of them are discussed below based on 

the encoding scheme used. 

2.3.3.1 Binary Encoding 

When Binary Encoding techniques is used for encoding the chromosomes, 

then following operations can be performed on the available population of 

chromosomes, as the encoding schemes are the governing factor for the operators 

to be used [ 16], [20]. 

31 



(a) Crossover 

• Single point crossover: A crossover point is selected in chromosomes, 

from first chromosomes first part is taken and the rest is taken from the 

second chromosomes. 

Chromosomes 1 Chromosomes2 Offspring 

100101110 010101011 10010011 

• Two point crossover: In this kind of crossover, two crossover points are 

selected. Till first crossover point bits are copied form first chromosomes, 

from first to second crossover point bits are copied from second 

chromosomes again first chromosomes is used for coping the bits after the 

second chromosomes. 

Chromosomes 1 Chromosomes2 offspring 

1010101110 0110111011 1010111110 

• Uniform crossover: It can be considered as the generalization case of 

single point and two point crossover. In this case bits are randomly copied 

from the two chromosomes to produce an offspring since each bit has an 

equal chance of being chosen from either parent. Uniform crossover 

generates a random value between 0 and 1 for each gene. If the value 

exceeds the locus crossover probability then only the genes are exchanged 

otherwise they are just copied from their parents. 

• Arithmetic Crossover: In this case some arithmetic operation is performed 

to produce a new offspring. 

• Heuristic crossover: This uses the fitness of the two parent chromosomes 

to determine the search direction. The offspring's are generated according 

to the following equation. 

Offspringl =Best parent+ r*(Best parent- Worst parent); 

where r is a number randomly chosen between 0 and 1. 

Offspring2 = Best parent. 

32 



(b) Mutation 

In mutation selected bits are inverted. The bits that are highlighted are 

inverted to generate a new offspring. As shown in the following example. 

Chromosomes 100101000110 

Offspring after mutation 101001010110 

2.3.3.2 Permutation Encoding 

Permutation Encoding is· used where ordering is the key factor, in this 

encoding scheme following operator can be used [16]: 

(a) Crossover 

Single point crossover: In this a crossover point is selected randomly, till this 

crossover point everything is copied in the offspring and for second part, the 

second chromosomes is scanned and value which is not there in the offspring is 

copied. 

(54 3 2 116 7 8 9) + (4 53 6 8 9 7 2 1) =(54 3 2 1 6 8 9 7) 

(b) Mutation 

Bit exchange: When mutation is done in permutation encoding, selected two 

numbers are exchanged. 

(1 2 3 4 5 6 7 8)===~(1 2 7 4 5 6 3 8) 

2.3.3.3 Value Encoding 

When some real numbers, words or characters etc are used for encoding a 

chromosome, following operators can be used. 

(a) Crossover 

All crossovers from Binary Encoding are used such as single point 

crossover, two point crossover, uniform crossover, arithmetic crossover etc. 

33 



(b) Mutation 

A small number (for real value encoding) or value is added/subtracted to 

the selected value. 

(1.29 5.68 4.32 5.66 8.98)===~(1.29 5.63 4.32 5.66 9.03) 

2.3.3.4 Tree Encoding 

Tree encoding is used where evolutionary programming comes into 

picture where the gene represents programming language commands, 

mathematical operations etc. 

(a) Crossover 

A crossover point is selected in both the parents, to create an offspring. 

The two parts below the crossover point are then exchanged. 

= 
a 

+/ \ .. 
I \ b s 

Figure 2.2: Crossover in Tree Encoding 

(b) Mutation 

In Tree encoding the mutation can change the selected nodes. 

2.4 Travelling Salesman Problem 

Travelling Salesman problem is simple to describe but difficult to solve. TSP is a 

NP-hard problem which cannot be solved in polynomial time. In TSP, the salesman has 

to find a route in such a way that he visits each city exactly once and return back to the 

starting place keeping in mind that the cost should be as least as possible. Many 

algorithms have been designed to solve it. It is a suitable candidate to be solved using 

GA [17], [22]. 

34 



2.4.1 Solution of TSP using Genetic Algorithm 

Using GA for solving TSP gives the optimum solution. TSP can be classified on 

the basis of the structure i.e. whether symmetric or asymmetric method of representation 

is used. Symmetric if Cij = Cji and asymmetric if Cij :j:. Cji for all i, j, where Cij, Cji 

represents the cost of path from i to j and vice-versa. For asymmetric representation of 

matrix there are (n-1)! Combination can be there and for symmetric representation (n-

1)!/2 possible solution can be there. Here we are using asymmetric matrix for 

representing the cost matrix and applying crossover and mutation till we didn't reach the 

optimal solution. A sequential constructive crossover operator is used and a crossover 

point is selected with common length, the information is just swapped after that crossover 

point. If already visited node appears again then replaces it with the unvisited node. 

First generate the population or the search space in which all cities are connected 

to each other by a shortest possible edge, this can be done by using greedy approach. 

Now choose any two routes having minimum cost/distance, and combine them to create a 

child. These mutated children are then placed in the original population and replaces the 

longer routes in the population, since population size remain the same. The new children 

are then created until the desired goal is reached. 

The accuracy of TSP is decided by the two factors- first is Population size and 

second is Speed. After comparing these two factors in each solution the next iteration is 

created by choosing the best one. 

In TSP the crossover is the main operator for giving the solution since the 

characteristics are exchanged between the individuals of the population. 

2.4.2 Algorithm 

• Randomly create the population of individuals and arrange the cost of the path in 

the matrix form. 

• Assign the fitness value to each chromosomes using the fitness function as shown 

below: 

F(x) = 1/f(x); where f(x) is the objective function representing the. total cost of the 

tour. 
35 



• Create the offspring by choosing the two parent chromosomes from the existing 

population by using the crossover operator. 

• Mutate the chromosomes obtained after the crossover if needed, mainly used to 

avoid getting trapped in the local minima. 

• After repeating above steps we get a new population having fitness value higher 

than the parent chromosomes. 

• Stop when the desired constraint is met and then choose the chromosomes having 

highest fitness value and decode it to obtain the required solution. 

Let us consider an example: 

Distance A B c D E F 

A 100 10 65 36 9 7 

B 50 100 85 45 87 21 

c 49 5 100 15 27 25 

D 21 43 10 100 60 48 

E 87 64 33 75 100 72 

F 35 30 42 51 59 100 

Table2.1: Showing Cost Matrix ofTSP 

Select two parent chromosomes with value Pl(A,C,F,D,E,B) and 

P2(A,E,D,B,F,C) with cost 265 and 190. Select first node from both the chromosomes. 

Since it is the same so go to next node i.e. C and E respectively. Now consider this C and 

E as the crossover point. Since cost (AC) = 65 and cost (AE) = 9 i.e. cost (AC) > cost 

(AE). So E is considered as the nearest node [28] 

36 



Pi(A,C!F:D~E~B) 

E 

~F 

B 

B 

c 
E 

B 

A B 

I 

for both the chromosomes and the crossover point becomes after C and E in the 

respective chromosomes. Therefore, the new chromosomes created are now P3 

(A,E,F,D,E,B) and P4 (A,C,F,D,E,B). But E is appearing twice in the first offspring so it 

is replaced by unvisited node C for that chromosome making it·P5 (A, E, F, D, C, B) as 

the new offspring. This process is repeated in the similar fashion till we get a better 

solution. In this case the optimal solution comes out to be P (A, E, C, B, F, D).If the 

starting node is different then we can randomly select a crossover point and obtain an 

offspring after the crossover. Following this, we can reach an optimal solution. 

37 



A A B 

/ c 
D D 

F 

E 
P5(A, E, F, D, C~ B) P(A~ E, C~ B, F, D) 

2.4.3 Conclusion 

Soft computing tools can be used in such situations when we have the appetite of 

accepting sub optimal solution owing to the fact that the search space is very large and 

the problem belongs to NP class. Genetic algorithm is used in a wide range of 

optimization problems like TSP, inductive learning, scheduling etc. The usefulness of GA 

in solving the problems to give optimized solution in efficient time makes it popular and 

preferred over traditional methods The limiting conditions in the GA can be the fact that 

in some cases it can give better results but the same is not true in all the cases depending 

on how we are using the various operators of GA. Therefore, the performance observed 

with GA is highly dependent on the way it has been tuned. 

38 



Chapter 3 
The Proposed Model 

Grid computing refers to the heterogeneous resources that are distributed across the 

globe having multiple administrative domains to satisfy the user's requirement. In Grid 

the resources are needed to be used in optimized fashion inside an organization. It makes 

possible the distributed computation making scheduling of jobs in Grid is an important 

and challenging issue. Grid Scheduling is proved to be an NP hard problem implying 

exact solution to a problem cannot be obtained and sub-optimal solution becoming 

acceptable [14]. There are various soft computing approaches like Tabu search, Ant 

Colony optimization, Particle Swarm optimization and Genetic Algorithm (GA) etc [31] 

that can be used for the same. Mostly GA is preferred for such kind of highly complex 

problem, since based on natural selection and evolution process, it does not need to know 

the rules about the problem but uses its own method and give a sub-optimal solution 

closer to the exact one. This chapter focuses on Genetic Algorithm based scheduler for 

Computational Grid [35]. The strategy suggested in this chapter focuses on allocating the 

resources on a Computational Grid in order to minimize the turnaround time for the jobs 

submitted using Genetic Algorithm. Here, the job is divided in to sub-jobs. In scheduling 

various sub-jobs are mapped on the available grid resources considering the precedence 

of the job module as indicated by its directed acyclic graph (DAG). The model uses a 

centralized scheduler for scheduling the jobs using Genetic Algorithm. The chapter starts 

with the presentation of the scheduler, the data structures used and the notation 

considered for design of the model. Later, the scheduling algorithm is presented followed 

by the simulation results and their analysis. 

3.1 Proposed Scheduling Strategy using GA 
The proposed strategy uses the Genetic Algorithm so that the turnaround time of the 

jobs that are submitted to the Grid can be 1)1inimized. This can be achieved by changing 

the chromosomes structure over the generations by considering the chromosomes having 

the reduced turnaround time for the next generation. The model assumes a distributed and 

39 



multi-point entry system for the job in which they can be submitted to any node of the 

Grid, and is an extension of the work [28]. 

A Computational Grid consists of several hundred or thousand's of computational 

nodes that are distributed across the globe. Each node has certain attributes which 

characterize the node like their processing speed and the time allocated to a job or 

module on that particular node. The proposed model assumes that each node has a single 

processer. Following Figure 3.1 gives the overview about the Computational Grid which 

can be viewed as collection of many virtual organizations or cluster. Here, Virtual 

Organizations (VO) has a number of computational nodes. Within the Grid each VO, 

Cluster, Supercomputer or Individual PC's are connected by a high speed internet. 

Virtual Organization 
C) Cl 0 

IHdlv!duaf PC's, Cluster or Supercomputer etc. 

Figure 3.1: Computational Grid 

The model permits each node to have its own scheduling policy since they can be 

managed by different individuals whether it is a cluster, supercomputer or individual 

PC's. The Grid Scheduler (GS) is loaded on all the nodes responsible for the 

maintenance, control and updating of their computational node and hence updating the 

40 



dynamic grid structure. The proposed scheduler uses distributed scheduling policy in 

which jobs can be submitted at any nodes and suitability of nodes for a particular job is 

evaluated by the dispatcher which is a part of GS loaded on each node which eventually 

dispatches the corresponding job modules to the suitable nodes. Thus the dispatcher is 

also responsible for scheduling of jobs. Since Grid is dynamic in nature so any number of 

jobs can arrive in the system sometimes forming a queue, so current state of the system is 

updated from time to time. For scheduling a job grid scheduler includes the need of 

computational nodes and the clock frequency to be stored in a table where it also stores 

the previous work load assigned on that particular node. Further, in the Grid, the 

arrangement is dynamic in nature so it needs to hold the current scenarios of the 

resources of the grid i.e. what kind of resources and how many are available at any 

instant of time and what is the status of the currently executing jobs. In short the GS hold 

information like: 

• Processing speed of each node in the Grid. 

• No. of resources/nodes available at any instant of time. 

• Previously allocated workload on each node. 

• Time to finish for a particular job. 

• Nature of jobs i.e. specifying the type of cluster/resource requirement. 

This information is eventually used in selecting the best resources for a particular job 

module. In the proposed model Genetic Algorithm is used to allocate/schedule the jobs to 

the grid. In this model each chromosomes holds the node number and the index of the 

array of chromosomes gives the job module that are executing on that particular node. In 

a chromosome the allocation of nodes for a particular job module is done under the 

consideration of the minimization of the TAT {Turnaround time). Therefore the 

arrangement of nodes in different chromosomes offers different execution cost. The 

chromosomes offering the minimum TAT is considered fittest for that generation. Using 

the GA operators like crossover and mutation, the model aims to further minimize the 

TAT over the generations. After meeting the stopping criteria we obtained an allocation 

pattern of nodes corresponding to the jobs i.e. chromosomes with least TAT obtained. 

41 



This allocation pattern defines the way in which the job module should be scheduled on 

the nodes in order to minimize the TAT for the jobs. Finally, allocates the resources to 

each job module according to the pattern suggested by the selected chromosome. 

3.1.1. Data Structure used in the Model 

The following data structures are used to meet the requirements: 

• g[no_module][no_module]: This matrix represents sparse graph having values 0 

and 1, where 1 means there is a connection between the nodes and 0 means there 

is no connection between the corresponding nodes. 

• IMC[no_module][no_module]: It holds the inter-module communication cost 

between the different module in terms of bytes exchanged. 

• Chromosomes: The value in a chromosome is a mapping of a node to a job 

module. This kind of node to job module mapping makes possible to form a large 

set of chromosomes known as population. 

• P[no_pop][size_chromosomes]: This matrix is a population matrix having rows 

equal to the no. of population and column equal to the size of chromosomes . 

• p_TAT[no_pop][size_chromosomes+l]: This matrix has rows equal to the no. 

of population and the no. of column is equal to the size of the chromosomes i.e. 

array size of chromosomes and one extra column is added to add the 

corresponding TAT value of each chromosomes. In this matrix, each row 

indicates the chromosomes and it's TAT. 

• D[no_resources][no_resources]: This is an square matrix with size equal to the 

no. of resources available at a particular instant of time. It gives the distance 

traversed between the different nodes. The diagonal matrix has values equal to 

zeros, since there is zero distance traversed when going nowhere. 

• proc _speed: It gives the processing speed of a job module on a particular node. 

It can be calculated as: 

proc _speed = no ins I cf ; -------------------- ( 1) 

42 



Where no ins is the no. of instruction and cf is the clock frequency of the node. 

3.1.2. Notation used 
The notation used in the proposed model is as follows: 

no_ module: No. of modules in the directed acyclic graph. 

n: No. of edges in the directed acyclic graph. 

nx: No. of nodes in the cluster. 

noins: No. of instruction in each module. 

no _resources: No. of processor or nodes available in the grid system. 

cf: Clock frequency of a node/processor. 

new _population: This matrix gives the newly generated population obtained after 

operations like crossover and/or mutation. 

RTjk: Workload that is previously allocated to a particular node/processor. 

no_generation: Variable tells how many generation the program is executing. 

temp_pop: Temporary population i.e. population generated after selection is stored in 

this matrix. 

child _pop: Population generated after crossover is stored in this matrix. 

TAT_ col: A column that holds the TAT obtained from the matrix having no. of column 

equal to size_ chromosomes+ 1. 

TAT_ sorted_ col: Sorted TAT_ col (in ascending order) is stored in this column. 

newgen _pop: The population that acts as a parent population for the next generation. 

diff chromosomes same TAT: - - - This holds the population having different 

chromosomes but having same TAT. 

pop_ cone at: Populations i.e. new population and the parent population are concatenated. 

43 



3.1.3. Fitness Function 

The model.considers the job module to be allocated on those nodes which offer 

minimum TAT. The cost of execution of job module 'mi' on a node 'nk' is given by 

NECkifn. The node execution cost depends on the three factors as follows: 

• The processing speed 'Eijk' of the module on a node, 

• The inter-module communication 'IMC' in terms of bytes exchanged between 

modules 'mi' and 'mh' of the job allocated on node 'nk' and 'n( The nodes are 

separated by a distance 'Dkl', and 

• The prior workload 'RTjk' on node 'nk'· 

Considering these factors, the execution cost can be calculated as: 

i-1 

NECkifn= Eijkn +I max(Bigj' Dkr) + R1jk 
B = 1 -------------- ( 2 ) 

Here Eij gives the time taken by the node for executing the given job module. RTjk is the 

resource characteristics (previously allocated workload) on which the job is executed. 

The second factor corresponds to the job characteristic which gives the communication 

cost between the two corresponding module as per its directed acyclic graph (DAG). The 

cost depends on the degree of interaction between a module with the preceding module of 

the same job. If there is no interaction then the communication cost remains zero. This 

NEC value is calculated for each node in a chromosome. The maximum value obtained in 

a chromosome gives the execution cost, which is also the TAT value offered by that 

chromosome as represented by equation (3). 

T A T=max (NECkifn) ------------------------- (3) 

For each chromosome in the population the TAT value is calculated. For a population of 

chromosomes the chromosome with minimum TAT value is considered as the best 

solution for that generation and the jobs are scheduled accordingly. 

3.2. The Proposed Algorithm 

The proposed algorithm schedules the jobs in the grid .environment where both 

resources and jobs are dynamic in nature so that TAT (Turnaround time) can be 

minimized. The proposed strategy being GA (Genetic Algorithm) is based on using two 

44 



selection methods viz. Rank selection and Roulette wheel selection for selecting the 

chromosomes followed by performing the operations like crossover and mutation, if 

needed, on the population of chromosomes generated randomly. After performing the 

above mentioned operations the chromosome with minimum TAT value is obtained, 

which offers the way, scheduling is done so as to optimize the resources. The algorithm is 

described in detail as below. 

• The grid is considered to be having many YO's or clusters. 

• For any job submitted these clusters are evaluated for the TAT they offer to the 

jobs. The scheduler finally schedules the job on that cluster which offers the 

minimum TAT to the job. 

• For each job submitted a population of chromosomes is generated. 

• For the population of chromosomes generated NECkifn is calculated which gives 

the TAT for each chromosome of the population. 

• Randomly select two chromosomes from the parent population depending on the 

strategy viz. rank selection or roulette wheel selection. If the selected 

chromosomes are same then repeat the selection process till chromosomes 

obtained remain the same. Crossover operation is performed next on the selected 

chromosomes to produces two child chromosomes. Here, crossover performed is 

single point crossover. These children are then stored in a new variable named 

new _population. If child chromosomes generated after crossover are already there 

in the new _population then do not store these child chromosomes but repeat the 

same process again. This gives a new population of child chromosomes. Now 

calculate the NECkifn and TAT of each chromosome. Next, pool the parent and 

child chromosomes together and out of them select the best chromosomes to form 

the next generation population having same no. of chromosomes as that of parent 

chromosomes. 

• Perform mutation on the population if it satisfies the necessary condition. 

Mutation is performed after a fixed no. of generations. In this experiment the 

scheduling strategy is evaluated for mutation being performed after 51h, lOth and 

15th generation respectively. Not all population is selected for mutation. The no. 

45 



of chromosomes being mutated is varied from 25%, 50% and 1 00% population 

respectively. This .means for a gener~tion when mutation is being performed 

every 5th generation at first 25% population is mutated and the mutated 

chromosomes replaces its parent chromosomes. Similarly, it is done using 50% 

and 1 000/o of the population. If child generated after mutation is already there in 

the new population then repeat that step again until different chromosome is not 

obtained. This step is repeated for all generations NECkirn and TAT is repeatedly 

calculated for the new population. . 

• The population generated in this generation is used as parent population for the 

next generation and so on. 

• Repeat the above steps for the no. of generations needed to optimize the obtained 

result, till the terminating condition is reached. 

The algorithm for the same is given below: 

Alloc(job) 
{ 

Submit the job in the form of modules 
Calculate the processing time of each job module on each resource for each 
cluster. 
Randomly generate a population of chromosomes. 

While (terminating condition is not met) 
{ 

} 

Calculate NECkifn and TAT value for each chromosome in the population set. 
Perform selection 
II Roulette wheel selection & rank selection alternatively. 

Perform crossover 
II Single point crossover. 

Calculate NECkifn and TAT value for each chromosome in the new population set. 
Perform mutation 
II Every 5'", I O'" and I5111 generation for 25%, 50% and I 00% of population. 
II No. of genes mutated is equal to 20% of the size of the chromosomes. 

Calculate NECkifn and TAT value for each chromosome in the population set. 

Record the best chromosome for each cluster. 
Allocate the job to the cluster offering the minimum TAT as per the pattern 
suggested by its best chromosome. 
} 

46 



3.3. Illustrative Example 

An illustrative example is given here so that the model can be easily understood. 

This shows the basic working of the model in terms of calculating the NECkifu and finally 

TAT for that chromosome for available grid resources. The same method is used to 

calculate NECkifn and finally TAT for other chromosomes as well. Here in this illustrative 

example parameter have been scaled down for better understanding of the working of the 

model. Though the simulation experiment have been performed with dynamic scheduling 

environment but for the purpose of illustration static grid environment is assumed. The 

illustration explains the analysis of the suitability of the jobs on one such cluster. The 

same method can be adopted to find the TAT offered to the job by other clusters. 

Let us consider that initially the grid comprises of certain set of resources in various 

virtual organizations comprising it. The job submitted at any time at any node can be 

represented in the form of a DAG as shown below. A typical job for execution in the 

form ofDAG is represented in Figure 3.1 with its attributes shown in Table 1. 

Figure 3.2: Directed Acyclic Graph for a Job 

47 



Job specialization No of instructions(noins) 

jo 481 

jo 173 

jo 499 

Jo 325 

Jo 132 

jo 237 

Table 3.1: Job io 

Further, each resource available in the grid also has certain characteristics like clock 

frequency and the previous workload. This infonnation can be shown in the matrix below 

as Table 2. 

Node no. Clock frequency(cf) Previous workload(RT) 

P, 19 3 

Pz 16 3 

p3 15 3 

p4 10 2 

Ps 11 5 

Table 3.2: Node Attributes in a Cluster 

Table 3 shows the hamming distance between the different processor. This actually 

refers to the number of link traversed between two corresponding nodes, if any data is 

exchanged between them. 

P, p2 p3 p4 Ps 

P, 0 2 2 5 5 

48 

~ 

I 
f 
j 
I 



Pz 2 0 4 4 2 

p3 2 4 0 3 2 

p4 3 3 3 0 5 

Ps 5 4 3 2 0 

Table 3.3: Hamming Distance (D) between different Nodes 

The inter module communication (IMC) cost between the different job module in 

terms of bytes exchanged can be represented in the form of matrix given below as Table 

4. Since the grid comprises of various virtual organizations called clusters the job can be 

evaluated for the TAT offered by the cluster to eventually submit it on the cluster 

offering minimum TAT. The illustration explains the analysis of the suitability of the jobs 

on one such cluster. The same method can be adopted to find the TAT offered to the job 

by other clusters. 

Mt Mz M3 M4 Ms M6 

Mt 0 4 0 0 0 0 

Mz 0 0 4 0 0 0 

M3 0 0 0 0 5 4 

M4 0 0 0 0 4 0 

Ms 0 0 0 0 0 0 

M6 0 0 0 0 0 0 

Table 3.4: IMC Matrix 

Table 5 summanzes the processmg time of a processor for vanous job modules 

calculated by using equation ( 1 ). 

49 



L 

M, Mz M3 M4 Ms M6 

P, 25.31 9.10 26.26 17.10 6.94 12.47 

Pz 30.06 10.81 31.18 20.31 8.25 14.81 

p3 32.06 11.53 33.26 21.66 8.80 15.80 

p4 48.10 17.30 49.90 32.50 13.20 23.70 

Ps 43.72 15.72 45.36 29.54 12.00 21.54 

Table 3.5: Processing Time of Various Modules on Various Processors 

Typical chromosomes may look like: 

4 2 3 2 

Table 3.6: A Typical Chromosome 

This means that module 1 is allocated to processor 1, module 2 is allocated to processor 

4, module 3 is allocated to processor 1 and so on. 

Since module m1 is allocated on processor 1 the node execution cost NECkifn on the 

processor I is can be calculated as shown below: 

Module 1 Processor 1 

Eljll 25.31 

Imax(Bigj*D~cr) 0 

RTik 3 

NECIIIl 28.31 

Table 3.7: Calculated Valuesl 

From the Table 5 it can be seen that the processing speed EojJo for module m1 on 

node/processor 1 comes out to be 25.31. As this node does not have any predecessor so 

Imax(Bigj*Dk) has value equals to zero. This node has some previous workload assigned 

to it, has value ·equals to 3 as seen from the Table 2. Using all these values the NEC10ro 

can be calculated as 28.31 this value then becomes the RTjk for processor 1. Similarly, the 

so 

I 

-~ 



NECkirn values for module 2, module 3 and module 4 can be calculated and that come out 

to be 65.61, 91.87 and 23.31 respectively. For e.g. the NECkifn values calculated for 

module 5 can be calculated as shown below: 

ModuleS Processor 3 

Esj35 8.80 

Imax(Bigj*D~cr) 16.00 

RTik 91.87 

NEC35r5 126.67 

Table 3.8: Calculated Values2 

Since module 5 is allocated on processor 3, for this arrangement the processing 

speed i.e. Esj35 is 8.80 as seen from the Table 5. It can be seen from the DAG that module 

5 have two predecessor module 3 and 4 with whom it needs to communicate. This 

communication cost for module 5, can be calculated as 

,Lmax (Bigj*Dkr)= max(B4sj*D23, B3sj*DI3 )= max(4*4, 5*2)=16. 

Similarly, for module 6 the NECkifn values can be calculated and it comes out to be 

149.48. The maximum value ofNECkirn gives the TAT value for that chromosome. In this 

case, the TAT comes out to be 149.48. Similarly, we calculate the NECkifn and finally 

TAT values for all other chromosomes of the population and then performs other 

operation as per requirement. Using GA we try to evolve to a population comprising of 

improved chromosomes offering lesser TAT than its predecessors. This process is 

repeated till termination condition is not met 

3.4. Simulation Experiment 

Simulation experiments were conducted to observe the allocation of the jobs on the 

grid. The experiment is conducted on Intel Core-2 Duo @1.97GHz using MATLAB 7.6.0 

(R2008a). The data values taken in the experiment are generated dynamically during 

execution. 

51 



S.No. Parameter Notation Used Range 

1 No. ofResources/Processor no_ resources 5-20 

2 Clock frequency of processor cf 10-20 

3 Distance between two processors I\r 2-5 

4 Time to finish previous workload RTik 2-5 

5 No. ofModule in a job no_module 5-20 

6 No. of instructions in a module no ins 100-500 

7 Inter module communication between IMC 2-5 

8 Population Size no _pop 100-200 

9 Size of chromosome size chromosomes 5-20 

10 No. of generation no _generation 100,200 

11 Crossover considered during experiment Single point --
12 Mutation performed after no. of generations mu 5,15,20 

13 % of Population selected for Mutation -- 25%,50%, l 00% 

14 Rank selection method rank selection --
15 Roulette wheel selection method rw selection --

Table 3.9: Parameters Used 

The experiment is perfonned for 200 generations for getting better results but the 

results seems to be converging mostly after 100 generations. The experiment is 

perfonned for size of the population varying from 1 00- 200 in order to observe the 

behavior if the model. Also, the model is analyzed for variation in the generation no. after 

which mutation is perfonned in order to know the suitable value for optimized results. 

The variation of the turnaround time over various no. of generations with the 

population size of 100-200 for roulette wheel selection scheme and rank selection scheme 

for different no. and percentage of population on which mutation is perfonned are 

discussed and shown below: 

RS 25: It represents the graph when the percentage of population selected for mutation is 

25% and rank selection method is used for selection operation. 

52 



RS 50: It represents the graph when the percentage of population selected for mutation is 

50% and rank selection method is used for selection operation. 

RS 100: It represents the graph when the percentage of population selected for mutation 

is 100% and rank selection method is used for selection operation. 

RW 25: It represents the graph when the percentage of population selected for mutation 

is 25% and roulette wheel selection method is used for selection operation. 

RW 50: It represents the graph when the percentage of population selected for mutation 

is 50% and roulette wheel selection method is used for selection operation. 

RW 100: It represents the graph when the percentage of population selected for mutation 

is 100% and roulette wheel selection method is used for selection operation. 

Figure 3.2 - 3.4 are plotted when population size is taken as 100 and figure 3.5 - 3. 7 are 

plotted when population size is 200. 

165 
160 
155 

~ 150 
1. 
~ 145 

140 
135 
130 

TAT Ys ~o. of Generations 
Population Size 100 

!( 
~~ 

I 

M ~ ~ ~ m M ~ ~ ~ m M ~ ~ ~ m M ~ ~ ~ m M ~ ~ ~ m 
MNm<:J'<:J'~i.O~COC0~0MNNm<:J'~i.Oi.O~CO~ 

MMMMMMMMMMMM 

Figure 3.3: Mutation after 51
h Generation 

- RS25 

_RS50 

RS 100 

- R\Y25 

R\Y 50 

R\Y 100 -

53 



165 
160 

155 

~ 150 
1 
~ 145 

140 

135 

130 

165 
160 
155 

~ 150 ..r 
~ 145 

140 
135 
130 

1-\T Ys ~o. of Generations 
Population Size 100 

- RS25 

_ RS50 

RS 100 

-RW25 

RW50 

_ RW100 I 

.-t Cl r-- ill ('() .-t Cl r-- ill ('() .-t Cl r-- ill ('() .-t Cl r-- ill ('() .-t Cl r-- ill ('() 
.-t 1'\J ('() '1 '1 ill lD r-- 00 00 Cl 0 .-t 1'\J 1'\J ('() '1 ill lD lD r-- 00 Cl 

.-t .-t .-t .-t .-t .-t .-t .-t .-t .-t .-t .-t 

Figure 3.4: Mutation after lOth Generation 

TAT Ys ~o. of Generations 
Population Size 100 

1 
·.~ 

_ RS25 

- RS50 

RS 100 

- RW25 

RW50 

.-t Cl r-- ill ('() .-t C1 r-- ill ('() .-t C1 r-- ill ('() .-t Cl r-- ill ('() .-t Cl r-- ill ('() - RW 100 
.-t 1'\J ('() '1 '1 ill lD r-- 00 00 Cl 0 .-t 1'\J 1'\J ('() '1 ill lD lD r-- 00 Cl 

.-t .-t .-t .-t .-t .-t .-t .-t .-t .-t .-t .-t 

Figure 3.5: Mutation after 15th Generation 

54 



' 

160 
150 
140 

~ 130 
1. 
~ 120 

~ 
1. 
~ 

110 
100 

90 

155 

145 

135 

125 

115 

105 

95 

TAT Ys ~o. of Generations 
Population Size 200 

.-i Cl r-. L{j n'1 .-i Cl r-. L{j n'1 .-i Cl r-. L{j n'1 .-i Cl r-. L{j n'1 .-i Cl r-. L{j n'1 
.-iN n'1 ~ ~ ili\.0 r"'- 00 00 Cl 0 .-iNN n'1 ~ ili \.0 \.0 r"'- 00 Cl 

.-i .-i .-i .-i .-i .-i .-i .-i .-i .-i .-i .-i 

Figure 3.6: Mutation after 5th Generation 

TAT \'s ~o. of Generations 

-RS25 

-RS50 

RS 100 I 

- RW25 

_ RW50 

- RW100 I 

Population Size 200 

.-i Cl r-. L{j n').-i Cl r"'-ili n').-i Cl r-. L{j n').-i Cl r-. L{j n').-i Cl r-. L{j n'1 
.-i N n'1 <:t <:t ili \.0 r"'- 00 00 C\ 0 .-i N N n'1 <:t ili \.0 \.0 r"'- 00 C\ 

.-i.-i.-i.-i.-i.-i.-i.-i.-i.-i.-i.-i 

Figure 3.7: Mutation after lOth Generation 

- RS25 

- RS50 

RS 100 

-RW25 

_RW50 

- RW100 

55 



TAT Y s ~ o. of Generations 
Population Size 200 

155 

145 

135 

~ 125 
~ 

115 

105 

95 
~ G ~ ~ ~ ~ G ~ ~ ~ ~ G ~ ~ ~ ~ ~ ~ ~ ~ ~ G ~ ~ ~ 

~N~<:l'<:l'~i.O~OOOOGO~r\IN~<:l'~i.Oi.O~OOG 
~~~~~~~~~~~~ 

Figure 3.8: Mutation after 15th Generation

3.5. Observations

-RS25

-RS50

RS 100

-RW25

RW50

R\Y 100

• From the graph it has been observed that in mostly all the cases rank selection

with case RS 50 shows better performance at both the population size of 1 00 and

200, as we move to the larger population size of 200, the performance of roulette

wheel selection increases coming at par with RS 50 to give better results.

• From the experiment it has been observed that the TAT value decreases over

generations and an optimum value is obtained owing to the reason that the better

resources i.e. resources with higher clock speed and lesser previous workload are

selected for executing the job.

• When the population size is taken as 100 and the no. of generation after which

mutation is performed is taken as 5 then rank selection methods perform better at

all values with the percentage of population selected for mutation varying as 25%,

50% and 100% referred as case RS 25, RS 50 and RS 100 respectively. Only in

this case roulette wheel perform at par or better when the percentage of

56

population selected as 25% for case RW 25 with even faster convergence over

rank selection.

• There are three factors which affect the allocation of resources are the processing

speed of the node, time to finish previous allocated workload and IMC. From the

graph it can be observed that the lower TAT (turnaround time) is obtained when

allocation is made on nodes having lesser previous workload and having high

clock frequencies.

• In general when the population size is 100 and the no. of generation after which

mutation is performed is either 5, 10 or 15, rank selection method with case RS 50

gives better result than roulette wheel selection with a faster convergence over

roulette wheel selection.

• When the size of the population mcreases from 100 to 200 roulette wheel

selection shows improved performance in all cases (i.e. when mutation performed

after 5t\ 1oth' 15th generation and in each case the percentage of population

selected is 25%, 50% and 100% respectively) in comparison to rank selection

matching RS 50 case. Further, roulette wheel selection exhibits a little slower

convergence as compared to rank selection method.

• Overall it can be concluded that rank selection gives better performance than

roulette wheel selection specially when the percentage of population mutated is

50% for any no. of generation after which mutation is performed i.e. 5th ' 1oth or

15th , whereas roulette wheel selection gives better result when the population size

is 200 with the best result exhibited in RW 100 case.

57

Chapter 4
Conclusion and Future Scope

Grid system is a dynamic environment in which resources can leave or join the

system at any time. This behavior makes the scheduling a tough job. Job scheduling in

grid system is an NP-Hard combinatorial optimization problem. Therefore, traditional

methods are not suitable for such kind of complex problems as they have certain

constraints such as they do not exploit the tolerance for imprecision and may not give the

solution within the time constraints. Therefore, soft computing techniques like genetic

algorithm, fuzzy logic and artificial neural network finds a wise use for such type of

problem.

The proposed model uses genetic algorithm (GA) for scheduling a job on the grid

system so that the turnaround time of the jobs that need to be executing on the system can

be minimized. Here, the study is based on two selection methods viz. rank selection and

roulette wheel selection method for a single point crossover and mutation effectuated

after certain no. of generations for certain percentage of the population. From the

obtained results it can be said that the allocation is made keeping in mind that the jobs are

scheduled on resources having higher clock frequencies and lesser previous workload

with a minimum communication cost. Accordingly, the jobs are assigned on the resources

on the grid system so that turnaround time can be minimized.

From the simulation results it can be observed that rank selection shows better

performance when the percentage of population mutated is 50% for any no. of generation

after which mutation is performed i.e. 51h ' 1oth or 15th ' whereas roulette wheel selection

gives better results when the population size is 200 with mostly I 00% of the population

being mutated.

Since scheduling is an NP-hard problem, the results obtained cannot be treated as the

most optimized results. This gives us option to use some other soft computing approaches

for the same. Multiobjective function or parameter can be explored by using genetic

58

f,
i.

' i ..
j

j
I

algorithm thereby optimizing more than one parameter. Further, some other selection

methods and other crossover operator can also be tested for the performance evaluation to

the model. Some other optimization methods like particle swarm optimization or ant

colony optimization method etc. can be explored for a comparative study of the work.

59

References:

1. Parashar, M. and Lee Craig A., "Grid Computing: Introduction and Overview".

Proceeding of the IEEE, Special Issue on Grid Computing Seattle, W A: IEEE Press.

2. Foster, I., "What is the Grid? A Three Point Checklist", Argonne National Laboratory &

University of Chicago. July 20, 2002. http://dlib.cs.odu.edu/WhatlsTheGrid.pdf

3. A. Roxburgh, K. Pawlikowski and D. McNickle, "Grid Computing: The Current State

and Future Trends". TR-COSC 01/04, 2004. http:l/hd/.hand/e.net/10092/3060

4. Dabas, P. and Arya, A., "Grid Computing: An Introduction", International Journal of

Advanced Research in Computer Science and Software Engineering, Volume 3, Issue 3,

2013.

5. http://ww.dbaoracle.com/real_ application_ clusters _rae _grid/types_ of _grid_ computing_

oracle.htm

6. www.gridcafe.org

7. http://www.dba-oracle.com/re~l_ application _clusters _rae _grid/grid _vs _clusters.htm

8. http://www. cloudways. com/blog/cloud-computing-vs-grid-computing-differentiated

9. Dong, F. and Akl, Selim G. "Scheduling Algorithms for Grid Computing: State of the Art

and Open Problems", School of Computing, Queen's University, Kingston, Ontario, Jan-

2006.

10. Malathi, G. and Sarumathi, S., "Survey on Grid Scheduling", Journal of Computer

Application, Vol-111, No.3, July-Sept 2010.

11. Elzeki, 0. M., Rashad, M. Z., Elsoud, M. A., "Overview of Scheduling Tasks in

Distributed Computing Systems", International Journal of Soft Computing and

Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-3, July 2012.

12. http://drona. csa. iisc.ernet. inl-gsat/Course!DAA!lecture _notes/jeff_ nphard.pdf

13. http://www. cse. iml. edu/-goddard/Courses/CSCE31 01/Lectures/Lecturel 0-

NPcomplete.pdf

60

_j:

14. Wigderson, A., "P, NP and Mathematics- a Computational Complexity Perspective",
December 21, 2006. ·

15. http://en. wikipedia.org/wiki/NP-hard

16. http://www. obitko. com/tutorials/genetic-algorithms/index.php

17. Dwiedi, V., Chauhan, T., Saxena, S. and Agrawal, P. "Travelling Salesman Problem

using Genetic Algorithm". DRISTI 2012.

http://research.ijcaonline.org/dristi/number1/dristi1007.pdf

18. http://www.soft-computing.de/defhtml

19. http://www. my readers. infolhtml/soft _ computing.html

20. http://www. nd. com/products/genetic. htm

21. http://www.doc. ic.ac. uk/-ndlsurprise _96/journal/voll lhmwlarticlel. html

22. http:llwww.hermetic.ch/misc/ts3/ts3demo.htm

23. Shivraj, R. and Ravichandran T. "A Review of Selection Method in Genetic Algorithm".

International Journal of Engineering Science and Technology, Vol. 3, No.5, pp. 3792-

3797, 2011

24. Pizzuti, C., "A Multiobjective Genetic Algorithm to find Communities in Complex

Networks," IEEE Transactions on Evolutionary Computation, Vol. 16, No.3, June 2012.

25. Mathew, Tom V.," Genetic Algorithm". http://www.civil.iitb.ac.in/tvm/270J_dga/2701-

ga-notes/gadoc.pdf

26. http://www.scribd.com/doc/46961967/25/Advantages-and-Disadvantages-ofGenetic-

Algorithms.

2 7. http://www.geneticprogramming. com/Tutorial

28. Raza, Z., Vidhyarthi, D. P.,"GA based Scheduling Model for Computational Grid to

Minimize Turnaround Time", International Journal of Grid & High Performance

Computing, Volume 1, Issue IV, 2009, pp 70-90.

61

29. Xhafa, F. and Abraham, A., "Computational Models and Heuristic Methods for Grid

Scheduling Problem", Future Generation Computer Systems-2009.

30. George, D. I., Muthulakshmi, P., "An Overview of the Scheduling Policies and

Algorithm in Grid Computing", International Journal of Research and Reviews in

Computer Science, Volume 2, No.2, April2011.

31. Jiang, C., Wang, C., Liu, X. and Zhao. Y., "A Survey of Job Scheduling in Grids",

LNCS 4505, pp. 419-427,2007.

32. Foster, I., Zhao, Y., Raicu, I. and Lu, S., "Cloud Computing and Grid Computing 360-

Degree Compared". Proc. IEEE Grid Computing Environments Workshop, IEEE Press,

2008, pp. 1-10.

33. Zhang, S., Chen, X., Zhang, S., Huo, X., "The comparison between cloud computing and

grid computing", International Conference on Computer Application and System

Modeling (ICCASM), 2010, vol.ll, 22-24, Oct. 2010, p.Vll-72-V11-75.

34. Gandotra, I., Abrol, P., Gupta, P., Uppal, R. and Singh, S., "Cloud Computing over

Cluster, Grid Computing: a Comparative Analysis", Journal of Grid and Distributed

Computing, Volume 1, Issue 1, pp. 01-04,2011.

35. Aggrawal, M., Kent, R. D. and Ngom, A., "Genetic Algorithm Based Scheduler for

Computational Grids", Proceedings of the l91
h Symposium on High Performance

Computing Systems and Applications, pp. 209-215,2005.

36. Vidyarthi, D. P., Sarker, B. K., Tripathi, A. K. and Yang, L.T., "Scheduling 111

Distributed Computing Systems- Analysis, Design and Models", Springer 2009.

62

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077

