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CHAPTER I 

INTRODUCTION 

In the prsent dissertation, we have reviewed, to 

begin with, the data on relative abundance of species 

within a taxonomic group in various multispecies ecosyst~ms. 

The most remarkable analysis in this field was done by 

Preston who fitted the experimental data to lognormal 

distributions. His work is discussed in detail in chapter 

II. 

In chapter III, we have reviewed the 

work of Gunasekaran and Pande who developed the 

theoretical 

conceptual 

basis for understanding Preston's lognormal distribution. 

They took the dynamics of interacting system as given by 

Gompertz coupled equations for multispecies ecosystems and 

developed their statistical mechanics, as was done by Kerner 

for Lo~aka-Volterra model. The new Gompertz model led to 

lognormal distribution of species within a taxanomic group. 

Though the present analysis is simplistic, it gives the same 

result, as the more detailed analysis done by Sita Ram, 

Verma, Pande and Negi. 
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After reviewing the 

exerimental lognormal distribution, 

theoretic! basis 

we have developed 

for 

the 

stability analysis for our Gompertz model. The stability is 

then inter-related with some biological parameters of 

relevance like productivity, biomass and diversity. This 

analysis is along the lines of Leigh, who developed his 

interesting approach in the context of the Lotka-Volterra 

model. 

The stability analysis in chapter IV reveals that 

the stablest food-web structure in the model is that in 

which every species feeds on all other species which do not 

feed on it, i . e. , the most stable system is also the most 

connected and therefore the most complex. This result is 

identical to that of Leigh for the Lotka-Volterra model. The 

analysis of the model also shows that stability decreases 

with increasing productivity it varies 

proportionally with biomass and 

whereas 

diversity although the 

effect of diversity is less pronounced than that of biomass. 

The results obtained by us from Gompertz system of 

equations in chapter IV are basically the same as those of 

Leigh for the Lotka-Volterra model. This similarity 

indicates the generality of the results and the results may 

very well be model independent. 
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CHAPTER II 

A REVIEW OF THE DATA ON THE RELATIVE ABUNDANCE OF SPECIES 

The relative abundance of different species within 

a genera is repeatedly observed by Taxonomists 

experimentally. Examples are -

i) 

ii) 

iii) 

iv) 

v) 

vi) 

Corbet's result on Malayan butterflies. 

William's result on moth species obtained by means 

of light trap at Rothamsted. 

Saunder's observation on the birds of Quaker Run 

valley, western New York state. 

Preston and Norris's data on the breeding birds of 

the Frith (Preston Laboratory grounds). 

Dirk's data on Moths in a light trap at Orono, 

Maine, and 

Seaman's data on moths in a light trap at 

Lethbridge, Alberta. 

In the light of these experimental results several 

theoretical attempts have been made to describe the 

distribution of different species. Among these Preston's 
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distribution is the most satisfactory. He proposed the 

distribution, 

n 
-(aR) 2 

n e 
0 

(1) 

where n is the number of species belonging to the so-called 
0 

octave, n is the number of species belonging to an octave 

distance R octaves from model octave and 'a' is a constant 

calculated from experimental data. This distribution, being 

the most remarkable hypothesis in this field, deserves a 

detailed discussion. 

Preston's Analysis 

The species abundance data reveal that the 

collections in all cases contain many rare species and a few 

abundant ones, although, of course, in terms of numbers of 

individuals those of few common species far outnumber those 

of many rare species. In any case, in view of the large 

variation in the numbers of individuals per species, it is 

convenient to plot these numbers on a logarithmic scale. 

Preston considered the number of species, n 1 , n 2 , 

and in general nr, represented respectively by one 

individual, two individuals, •••• and in general by r 

individuals, he considered the different species 
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frequencies. He then plotted these n 
r 

against the 

corresponding r, choosing of course, a logarithmic scale for 

r • Preston found it convenient to introduce a few other 

technicalities in his analysis. We note those -

In relative abundance of species, we frequently 

come across the facts such that one species is twice as 

abundant as another. This led Preston to graduate the 

abcissa as equal increments in logarithms of the number of 

individuals representing a species and he used as such 

increments as "octave", i • e. , the intervals in which "the 

representation is doubled. In other words, the mid point of 

each octave is double that of the preceeding octave. With 

this the abcissa became simply a scale of octaves which is 

equivalent to taking "logarithms to the base 2". The 

detailed grouping of this is given in Table I. 

The table I clearly shows the relationship between 

airthmatic grouping and corresponding logarithmic grouping. 

For instance~ in case of octave B, the airthmatic groupping 

is 2 to 4 and corresponding logarithmic groupping is 1 tO 

2 [since 
2 4 

log 2 = 1 and log 2 = 2]. The way in which the 

number of species belonging to each octave is calculated is 

also shown in table I, column IV. For instance , if a 
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species is represented by 5, 6 or 7 individuals, it clearly 

falls in octave c 0 If a species is represented by 8 

individuals, octave C is credited with the other half. In a 

similar way all other octave are composed. 

falling 

roughly 

in, say, one octave may be th6ught of 

All 

as 

species 

having 

the same degree of abundance, in comparision with 

those falling in any other octave. 

It is noticeable that below octave A will 

correspond fractional numbers and will thus not correspond 

to any physically observable situations. 

This is indicated in the plots (see figures 1-6) 

by drawing the curves in this region by broken lines. 

Preston calls his Y-axis, to the left of which is this 

broken line, as the " veil line". It should be remembered, 

however, that doubling the size of the sample will double 

the number of species belonging to each octave which results 

in shifting the curve by one octave to the right. In other 

words, 

become 

an octave which was hitherto not observable has 

observable now. It is thus clear from here that if 

this process of doubling is continued, all the species that 

exist in the 

corresponding 

system will become observable and 

curve will be a true representative 

6 

of 

the 
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system. Of course, the lognormal nature of this curve d6es 

not change as it shifts to the right, the only change being 

in the constant n and possibly 'a' (introduced below) which 
0 

will obviously have numerical value. characterised by the 

size of the sample chosen. 

In all, Preston grouped six different sets of data 

in this manner and plotted with abcissa as the scale of 

octaves and the frequency of species (i.e. the number of 

species belonging to a particular octave) as ordinate. He 

observed that each curve exhibits a maximum in some octave 

to the right of the first one and the observed octave 

frequencies first increase and then decrease. The mode of 

this set of data is that value which occurs with maximum 

frequency. Therefore, the octave which corresponds to the 

maximum number of species is known as model octave. For 

convenience, the plots obtained by Preston are all 

reproduced at the end of this chapter in figures 1 to 6. 

The main point that emerges from this analysis is 

that in all cases the data is well fitted by a symmetrical 

normal curve truncated on the left. 

such a curve is 

n(R) = 
2 

- ( aR) ~ 
n e 

0 

7 
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where, 

n(R) 

n is the number of species in the model 
0 

octave. 

is the number in an octave distance R octaves from the 

model octave and 

2 
a 

1 

2 a 2 
( 2 ) 

where, a is the measure of the mean square diviation of the 

population from its mean value. 

We thus have: 

R ( 3 ) 

where, i are numbers of individuals, the logarithms to the 

base 2 of which are plotted along the x-axis and i* is the 

particular value of i corresponding to the peak of the 

curve. Preston took for any i corresponding to any octave 

the mid value of that octave, in the same way i* is the mid 

value of modei octave. Note that, 

which can be 

. 2 
R 

simplified as 
00 2 
L, n(R)R dR 

00 f n(R)dR 

-00 

( 4 ) 
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00 

I 

00 

I 

1 

2 
n e-(aR) R2 dR 

0 

2 
n e-(aR) dR 

0 

n /n 
0 -----

2a3 

n /n 
0 

a 

(5) 

Next also that the total number of species N for 

the system is given by : 

00 

N I n(R)dR 
-00 

00 2 
f n e-(aR) dR 

-oo 0 

n /n 
N 0 ( 6 ) -----

a 

This N should be the total number theoretically 

available £or observation. In practice, the presence of the 

veil line will imply that the actually observed number is 
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smaller. Now since the quantities 'a' and 'n ' 
0 

·can 

calculated from the curve fitted to the data, 

theoretical value of the total number of species for 

system can be calcualted from equation (6). 

be 

the 

the 

The difference between this and the observed value 

will give an estimate of how much was mtssed out in any 

particular sample. In table II, we present the calculated 

values of I a I In I 
, 0 , 'N' as well as the observed values (in 

the given sample) for N, for all the six cases analysed by 

Preston. Note that the values of 'a' in all these cases is 

close to about 0.20. 

Noting these points, the distribution given by 

equation (1) can be conveniently written in the form : 

N 

a/2 :rr·., 
( 10 g 2 i - 10 g 2 i * )~, 

exp[------------------1 
2 0

2 
\ 

'· 

( 7 ) 

which aside from the trivial difference of the logarithms 

taken to the base '2' instead of base 'e' is identical to 

the standard lognormal distribution, which will be 

discussed in the next chapter. 
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Inspired by the result given by Preston many 

theoreticians 

understanding 

tried 

the 

to form a conceptual basis 

relative abundance distribution 

for 

of 

species. They thought of theoretical models from which the 

distribution followed by the relative abundance of species 

with in a genera could be derived. Such models will throw 

much light on multispecies interactions which in turn would 

enable us to understand ecosystem and their course of 

evolution on a precise quantitative basis. 

Kendall. 

allowed 

process 

An early attempt in this direction was made by 

He 

for 

for 

considered a simple stochastic model which 

birth and death as well as the immigration 

the population; He was able to obtain a 

probability distribution for the population which was 

analogous to that of an earlier result of Fisher. This 

result was, however obtained for a singl~ species model. 

The multispecies problem was first tackled by 

Kerner. He assumed the dynamics of the multispecies system 

to be given by the coupled Lotka-Voltera equations, under 

the assumption of a constraint, he was able to develope the 

statistical mechanics of these equations. This then led to 

a population distribution for each of the component species 

1 1 



which was precisely the 
2 

X > distribution assumed by Fisher 

for the so called intrinsic abundance of species. 

Though Kerner initiated and applied the 

statistical mechanical approach very well, left some 

questions unanswered. One is that it does not lead to a 

full explanation of the experimental result but leads only 

to an understanding of an intermediate result. The second 

problem is that, in view of the results of Preston, the 

distribution which needs to be explained is not 
X 

2 or the 

compound poisson distribution of Fisher but the lognormal 

distribution. 

Pande and Gunasekaran took a fresh model with 

Gompertz interaction terms to explain the experimental 

Preston curve, i.e., lognormal curve. Models characterised 

by such interactions have been discussed for two and three 

species earlier by Pande and Bhat" • They developed the 

statistical mechanics of this model in the way of Kerner. 

Their analysis is reviewed in next chapter. 
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Table-I: 

Name 
of the 
Octave 

A 

B 

c 

D 

E 

F 

G 

H 

- - - -

Preston's scheme for grouping species frequencies according to 
"Octaves" 

Arithmatic 
grouping of 
the no. of 
individuals 
per species 

1-2 

2-4 

4-8 

8-16 

16-32 

32-64 

64-128 

128-256 

etc - -

Corresponding 
logarithmic 
grouping 

0-1 

1-2 

2-3 

3-4 

4-5 

5-6 

6-7 

7-8 

Number of species belonging to 
that Octave 

Half of + All + Half of 

1 2 

2 3 4 

4 5-7 8 

8 9-15 16 

16 17-31 32 

32 33-36 64 

64 65-127 128 

128 129-255 256 

etc - - etc 



TABLE II: Calculated values of a, n • N and the observed value of the 
0 total no. of species for cases analysed by Preston 

Case a no. N Observed total no. of 
species in the parti
cular sample analysed 

1 0.194 10 91 80 

2 0.207 48 410 349 

3 0.205 42 363 226 

4 0.227 35 273 240 

5 0.152 33 384 277 

6 0.160 30 332 291 
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CHAPTER III 

STATISTICAL MECHANICAL APPROACH TO GOMPERTZ MODEL 

In this chapter, we shall develop the statistical 

mechanics of a multi species ecosytem, the dynamics of which 

is given by Gompertz model. The species interactions in 

this model are of the form N. log N. in place of N. N. as in 
1 J 1 J 

the Lotaka-Volterra case. 

This model is discussed by several workers. See 

for instance Bhat and Pande (1980), who gave a detailed 

discussion on 2 and 3 species ecosystems with in such a 

model. 

For applying this model to a large number of 

species, it is useful to invoke statistical mechanics, as 

was done by Kerner and others for the Lotka-Volterra model. 

First of all we shall show with the set of coupled 

equations that the model, under a constraint, possesses a 

constant of motion. We then construct a phase space such 

that our system belongs to an ensemble in this space on a 

surface characterised by this constant of motion. The 

requisite Liouville theorem and the condition for the 
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ensemble to be in statistical equilibrium can then be 

established. Following this, microcanonical ensemble is 

constructed. The possiblility of there being a 

'temperature' for the system suggests the way to construct 

the Gibb's canonical ensemble for any subsystem of the 

system. As an application, the probability distribution for 

the number of individulas in any species can then be worked 

out. The resulting distribution is seen to be of lognormal 

form in keeping with the well-known results of Preston. 

1. STATISTICAL MECHANICS OF THE GOMPERTZ MODEL 

We now consider the model of n interacting species 

where the interaction term appearing in the equation for the 

time derivative of Nr, is for the interaction between 

species r and s. The form of interaction term is Nr log Ns. 

The complete equation is -

dN 
r 

dt 

where r,s 

• E: N + 
r r 

E . a sr 
s 

1,2,3, ••• ,n. 

N 
r 

log N 
s 

and a are now assumed to be antisymmetric i.e., 
sr 

a sr a 
rs 

14 
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This implies that self interacting terms are absent, i.e., 

arr o, for all r. 

The constant E gives the idea how the species N 
r r 

progresses if left to itself in a given environment. 

For getting the stationary state of equation (1) 

dN /dt 
r 

must vanish and let the population number N 
r 

the steady value q given by -
r 

Erqr + ~a q log(q ) sr r s 
0 

s 

Using the variable X given by~ 
r 

X 
r 

log N 
r 

We can write Eq. (1) as: 

dx /dt 
r 

E + ~ a (x) 
r sr s 

s 

and by expressing Er through equation (2) we have, 

where * X 
s 

• 
X 

r 

log q • 
s 

~ a ( x -x *) 
sr s s 

s 

15 
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Multiplying both sides of equation (5) by (x -x *) and 
r r 

summing over r, we get : 

• x 
r 

* (x -x ) 
r r s, r sr 

Due to antisymmetry of a , 
sr 

( 6) 

the right hand side of Eq. ( 6 ) 

vanishes and it yields a constant of motion or a conserved 

quantity. We have 

or 

• 
l: X 

r 
r 

* (x -x ) 
r r 

0 

d 
l; (1/2 X 

2 
-X X *)) 

r r r 
dt r 

0 

or, l: (1/2x
2 - X X *)) constant. r r r 

r 

Let cons~ of motion be G, then 

G (1/2x 2 - X X *) 
r r r l: G r 

r 

(7) 

We now construct a Gibb's ensemble for the 

system governed by equation (4) and (7), in the same way as 

done by Kerner, by taking all possible copies of the system, 

each copy corresponding to one set of values for x • 
r 

16 
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phase space for the system can be taken as the cartesian 

system with x axes in which a point represents a copy at a 
r 

particular stage and the ensemble of points represent the 

whole ensemble. 

The constancy of the total number of points in the 

ensemble along with the dynamics of our model (1) and (4) 

leads to the requisite Liouville theorem, i . e. , the 

desirable uniformity property of the phase space. Since we 

define our system over a surface of constant G in the 

space, the condition of statistical equilibrium phase 

ap 
(-- = a t O,Pbeing ensemble density, being the function of G 

alone) can also be estiblished. 

Now, with uniformity of phase space and in a 

situation of statistical equilibrium, we define a micro 

canonical ensemble for our system, the density function p 

for which is characterised by : 

~ 0 o ( G - G ) 
0 

( 8 ) 

where,o stands for the standard Dirae delta function and Po 

is a numerical constant 

17 



The ensemble average of any function f (x
1 

x
2

, ••••••• ,xn) of 

phase co-ordinates is now defined to be: 

)p fdT 
f ( 9 ) 

The integral being over all of the phase space. The element 

of volume dT can be represented as, 

where, 

(i) 

d$ d"-
dT ds.dn 

1 

ds is an element of area on a constant G surface 

and drt is an increment of length normal to the 
dG 

surface, which can be written as ----. Where dG 
IVGI 

is the difference in G values of two neighbouring 

constant G surface and VG = aG/a n. 

So, with this equn. (9) can be written as: 

dsdG 
fp fc(G-G) 

0 0 

f ----------------------
dsdG 

fp f 0 ( G-G ) 
0 0 I v G I 

18 



integrals 

and 

f_ f "' ') I IJ G I 
----------------------

ds. I I V G I 
(10) 

It is to be noted that these integrals are surface 

over G=G • 
0 

Let us now choose for f, the function Tr, given by 

T 
r 

X 

ac 
r ax 

r 

2 
(x 2 - X X *] 

r r 

Now, we know that, 

G 

an 

VG 

"' n 

x also. 
r 

Where, ~ is the unit vector along the normal to constant G 

surface and xr is the unit vector along X direction, the 
r 

direction cosines of n are : 

so that, 

n.x 

X 
r 

a G/ ax r 
I IJ Gl 

aG ds 
-----. 

ax I vel r 

19 



Here, X 
r 

denotes the vector to 

(O,o,o, ••• ,x ,o,o,o,). 
r 

Then if we denote the 

in equation (10) by : 

ds 

b.o 

the ensemble average of T is: 
r 

T 
r 

1 

b,o 

y 0 

b. 0 

A 

(n.x )d 
r s 

for all values of r 

the point 

denominator 

(11) 

Here, we have used Guass's divergence theorem and 

represent Yo as the volume enclosed by G
0

• The expression 

(11) 

any 

is constant for all species r and thus the mean T 
r 

species is the same for any other. This result 

for 

is 

similar to equipartion, of energy in Physics. The total T 

of the biological association is equally divided among all 

the species. This opens up the possibility of defining a 

temperature, which then enables us to define a Gibbs 

canonical ensemble for our system. Before doing that, 

20 



-1 
;:: 

I 

9}J 
vJ 
__o 
(/'. 

however, we show by an example that our system also admits 

Ergodic Hypothesis. 

i • e. , 

i.e. , 

D 
r 

Let us define a function D as r 

a c 
D 

ax 
(x -x *) 

r r r 
r 

(12) 

Let us also calculate the canonical average of D , 
r 

or 

X 
r 

This 

a G ds 

!::, 0 

A A 

f(n.x )d 
r s 

0 

0 

(x -x *) 0 
r r 

X * r 

shows that the ensemble average of 

(13) 

x is 
r 

equal to the steady state value of X 
r 

namely X *• r 

Now we can prove that the time average of N is 

also q r • We have from equation (1), 

21 



d 

dt 
(log N ) = 

r 

Integrating 

E: + l: ~ log N r sr s 
s 

with respect to t on both 

between the limits 0 to T. we get: 

1 
- log 
T 

N (T) 
r [-----] 

N (O) 
r 

T 
J log N (t)dt] 

s 0 . 

sides, 

(14) 

Now, since N are bounded, as T --> q:,, t.he left 

hand side vanishes, and we know that -

or, 

and 

or, 

log N 
s 

lim 

T-)oo 

1 

T 

T 

1 log 
0 

N (t)dt] 
s 

So, we get from equation (14), 

0 t: + l: a logN :. r sr s 
s 

l: a log N = - E: 
sr s r 

s 

by comparing equation ( 2 ) ' 

X X * s s 

X X * r r 
(15) 

Thus by combining equations (12) and (13), we see 

that. the time average of X 
r 

22 
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ensemble average of the same. So, we can hope that our 

biological system is Ergodic. 

2. THE CANONICAL ENSEMBLE 

Now, we are in a position to define_ a subsystem of 

our general biological system, which would consist of, say, 

v number of species, where 1 2. V < n. For this subsystem to 

be in statistical equilibrium with the rest of the system 

the subsystem and the rest of the system must have the same 

'temprature' e. 

The density function for such a canonical system 

is given by : 

-c ·1 e 
e v (16) 

Where, the suffixv indicates that we are dealing 

with the part containing v number of species. The 

canonical average of any quantity D , 
r 

of the new species, is given by : 

where, 

D 
r 

D 
r 

a c 

a d 
r 

(x - x *) r r. 
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where r refers to any 

(17) 

(18) 



given by 

i • e. , 

or 

D 
r 

X 
r 

The 

D 
r 

canonical average of the quantity 

Ja G I a X • e -Gr I 8 d "[ 
r r ------------------

! e-Grl8dT 

a 
- 8 

ax . r 
----=c~7e _________ _ 

Je dx r 

0 

(x -x *) 
r r 

0 

X * r 

D is 
r 

( 1 9 ) 

Let us consider the ensemble average of the 

quantity D 
2

• We have for this : 
r 

D 
r 

2 

- 8 

ac 
f [-----]2 

ax 
r 

fe-GI 8 dT 

e 
G,J 8 

dT 

G 18 a c 
2 

d 
J [ -----] . --- e r 

ax dx r r 

J 
_cr.l8. 

e dx I 
r 

24 

dx 
r 



e 

a c 
[-8 [(-----) 

ax 
r 

G 
e -E-] + ef e 

e 

G r I e 
dx 

r 

2 ax r 
dx ] 

r 

(The suffix V has been dropped as it can be from 1 

to n anywhere). 

So, 
2 

D 
r 

e ( 2 0) 

This shows that the temperature in our biological 

system is a measure of the mean square deviation of 

its equilibrium value 1\' 
X 111'• From here we can also 

r 

X 
r from 

conclude 

that zero temperature analogue means completely quiet state 

of our system. 

So, we can say that is a measure of excitation 

from the stationary state: 

Now let us consider the quantity, 

z f e 
G/e 

dx
1 
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G I e 
TI L 

r 
dx e r r 

n 
TI z ( 2 1) 
r=1 r 

where, 

G I e 
z J 

- r 
dx e r r 

[ 1 I 2 x-z - X x*] le 
J e 

r r r 
dx 

r 

/(2 ne) e 
(~) 2 128 

r (22) 

z is the well known partition function of 

canonical ensemble of Gibbs. 

Now we are in a situation of calculating the 

probability p (x ) dx of any species r to have its X value 
r r r 

in the interval X and X + dx . For this, we either 
r r r 

consider the system with K species or a one component system 

with species r. In the former case, after a simple 

integration over all the co-ordinates other than and 

in the latter case directly, we get the result: 

P (x ) dx 
r r 

_ Grle 
e dx 

26 
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1/e 
e 

2 
[x /2 

r 
- X 

r 
dx 

r --------------------------------

1 
------ e 
l2ne 

where, e (x 
r 

e 

-

(x*)2/28 
r . 

1 ;z e , I .: ,... 

x*) 
r 

2 

By transforming the Eq. from X 
r 

· [ x - x* ] 2 
r r 

dx 
r 

to N , we get: 
r 

1 112 e [log N 
r 

- log 
P (N ) dN 

r r 

Where, 

e (log 

The 

N 
r 

N l2ne 
r 

- log 

expression 

lognormal distribution. 

e 

L 
N1-) 

in equation ( 2 4) 

3. COMPARISON WITH THE RESULT OF PRESTON 

is a 

[ 2 3] 

(25) 

standard 

Let us consider the approximation in which the 

equilibrium value of the number of individuals for any 

species within the genera is same. Let us multiply the 

27 



probability function P(N ) by the total number of 
r 

species 

in the system, say N. We then get 

NP (log N ) 
r 

n (log i) 

N 

yt2n e) 
e 

1 I 2e [x - x*]
2 

r r 

Where 8has the same meaning as R2 

Preston's notation, and of course, 

log N 
r 

X 
r 

logi 

[ 2 6] 

in 

where i is the number of individual referred to by N and . r 

the suffix r has been dropped because the distribution is 

now the same for any r. We have thus established Perston's 

result for the frequency distribution with in a genera by 

using Gompertz model in a statistical way. 

It is to be noted that in equation (26) logarithms 

are to the base e ' where as in the expression of Perston 

given in equation (7) of Chapter I, the logarithms are to 

the base 2. The latter can, however, be converted to the 

base e without any change in its form, except foran overall 

factor of constant, i.e., e. 
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The distribution obtained here can be derived from 

more general considerations which do not need the use of the 

antisymmetry constraint on the interaction matrix and which 

eliminate certain drawbacks of the present method (see 

Varma, Sitaram, Pande and Negi. They are, however, beyond 

the scope of the present dissertation and will therefore not 

be discussed here. 

We shall now use the results obtained here in the 

next chapter. 
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CHAPTER - IV 

RELATION BETWEEN STABILITY AND SOME BIOLOGICAL PARAMETERS 

OF A COMMUNITY 

In the previous chapter, we have applied the 

statistical mechanical approach to the Gompertz model and 

got the log normal distribution for the relative abundance 

of species. In the present chapter we shall use the results 

of the previous chapter in particular the canonical ensemble 

density function, to study the stability of the system and 

the relation between the stability and certain biological 

parameters of relevance. Such an approach to stability was 

firgt used by Leigh in the context of the Lotka-Volterra 

model. 

Here, our ecosystem model is Gompertz model. In 

this model the interaction term between i and j species is 

Ni log N
3 

type instead of direct proportional interaction 

Ni N
3 

of volterra type. 

detail in chapter III. 

Following Leigh, 

This model has been discussed in 

we define the stability of our 

system in terms of the frequency of fluctuations of a 

species population from a fixed value i.e. from the 

30 



equlibrium value. If the fluctuation frequency is large, 

the system is less stable and the smaller the flactuation 

frequency gets, the more stable the systems becomes. Once 

we have calculated the fluctuation frequency, we can relate 

it to our biological observables like productivity, biomass 

and diversity. This will enable us to study how the 

stability of the system changes as we vary these biological 

parameters. 

We start, once again with the equations of the 

Gompertz model: 

dN. 
1 

dt 

where Ni represents 

community of n species. 

is N. 
1 

log N 
s 

the population of species 

[ 1 ] 

i of a 

s. represents the specific rate of 
1 

growth of this species in the absence of all other members 

of the community and is positive only for primary producers. 

a. is 
lS 

species 

a constant which is a measure of the influence of 

s on the rate of growth of species i with N. log N 
1 s 

type interaction. Here we assume the antisymemetry of a. 
1S 

i • e • 

31 



Now, in accordance with our model, the rate of 

flow of mass between species i and s is given by the 

interaction term which is of the form Ni log Ns. 

define the productivity P of the community as: 

p 1/2 
i 's 

a. 
lS 

and the community Biomass B as: 

B 
L: 
i 

N. 
l 

N. log N 
l s 

So we 

[ 2 ] 

[ 3 ] 

Now, we will find a constant of mo~ion or a 

conserved quantity and then in terms of that quantity we 

will rewrite our equations for further analysis of the 

stability of our system. 

For stationary states of the system (1) dN./dt 
l 

vanishes. Let the population numbers Ni have the steady 

values qi given by: 

n 
·--

E: • qi + L: cv qi log qs 0 ' s=l is l 

or 

n 
o( E: + L: log qs 0 [ 4] 

r s=l is 
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Now we use the substitution: 

X. 
1. 

i . e. , 

and 

log 

log N. 
1. 

dx. 
1. 

N. I q. 
1. 1. 

X. 
1. 

+ 

1 

log q. 
1. 

dN. 
1. ------ ----- -----

dt N. dt 
1. 

Eq.(l) can then be written as 

1 dN. 
1. 

€ + 
N. dt 

i 
1. 

or 

dx. 
1. + E: •. 

dt 
1. 

Now putting the value of E. 
1. 

equation, we get: 

or 

dx. 
1. 

dt 

dx. 
1. 

dt 

-l: 
s 

l: 
s 

--

l: (log N ) a. s l.S s 

l: (x log qs) a. + s l.S s 

from equation (4) in the above 

a. (x + log q - log q ) 
l.S s s s 

a. x 
l.S s 
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or, 

dx. 
1 

dt 

where, 

H 
>:: 
i 

1/2 

n 
1: [ 5] 
s=1 

2 x. 
1 

[ 6] 

H is our conserved quantity. Next, we define the 

frequency of fluctuation of population of species from a 

fixed value as a measure to stability of our system. We 

evaluate that frequency as the rate of crossing of x. 
1 

from a fixed value x. = c as Kerner and Kac have done: 
1 

So the frequency can be written as: 

lim 
T + oo 

1 

T 

T 

;;- o [x. (t) - C] 
1 

dx. 
1 

dt 
dt 

( t) 

[ 7 ] 

Where 0 [x. (t) - C] is the Dirac-delta function 
1 

which is equal to 1 if X. 
1 

(t) = c, otherwise zero. 

Following the ideas of statistical machanics, as 

discussed in the previous chapter, we can replace the time 

average of a function by an appropriate phase space average. 

We can thus write: 
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Tlim 1/T 
T 

f [X. ( t ) ' ( t ) ] dt J . . . . . . ' X +oo 
~ n 

1 

J H=c 

ds 
----- f [ xi, . . . . . . . . . ' X ] ---

V(c) n l\7 HI 

Where ds is the surface element on H= c and 

ds 
v (c) 

I v H I 

Applying these manipulations we can write our integral (7) 

as: 

1 

T 

1 

V(c) 

Now, 

T 

f 0 [ x. (t) - C] 
0 ~ 

o[x. 
~ 

(t)_.- C] 

dx. 
~ 

dt 

dx. 
~ 

dt 

dt 

ds 
[ 8] 

for large numbers of species we can think of 

a subsystem in the system which is in equlibrium with the 

system at a temperature e. In this case we can use the 

canonical ensemble for which the density functionpis given 

by: 

p 
H (x 1 , .... ,xn) 

K Exp [ - --------------
8 

K Exp . [ - L: 
i 

2 
(X • ) 
__ ! ___ ] 

2 e 
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where K is a normalization factor. 

The fluctuation frequency, say v , can then be 

written as: 

v 

or, 

·I 

K I o ( x. - C) Exp [ 
l 

2 
r<xi) 

- -------] 
i 2 8 

Exp 

l.. x. 
(x. - C) Exp [- __ !_] 

1 2 8 
dx. • 

l 

2 
(X. ) 

2 
-l: ( xk) 

I Exp [-
l -------] 

2 8 
[1( ------] n-1 

dx • 
2 

I Exp [-

2 
(xi) 
-------] 

2 8 

dx. 
l 

dx. 
l 

where the summation over K does not include i k. 

Since we know: 

I o< x. - c) 
l 

and 

2 
(X. ) 

Exp [- ____ ! __ ] 

:?8 

36 

dx. 
l 

2 
c 

Exp [ - -----] 
28 



--
or 

--

2 
(X. ) 

I Exp [ - --~---] 
28 

dx. 
1. 

So,the above integral can be simplified as: 

c2 

K Exp [- ---] 
(xi)2 28 dx. 

1. 
Exp [- 2: ------] ----------- I -----

/2'IT8 dt i 28 

c2 

K Exp [- ---] 
2 28 l:(xi) 

----------- I I 2: a. XJ Exp [- -----] 
I 27T8 J 

l.S i 28 

A2TI8) 

dnx 

dnx 

Now using the property of complex contour integral 

we can set in the above integral: 

\) 

l: aiJ xJ I 
J 

So we get: 

1 

'IT 

c2 
Exp [- ---] 

2 

00 

I -

00 

I 
-oo 

\) 
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1 - Cos ( l: a.J x.S) 
J 1. J 

------------------------ ds 
s2 

Exp [- l: 
i 

2 
(X. ) 
--~---] dn x.) 

2 8 1 



2 
(X • ) 

Since , Exp [ - L: __ !, ___ ] dn x. 
2 8 1 

and now changing, 

Cos <r 
J 

We get, 

a. 
1S 

c2 
Exp [- ---] 

2 8 
\) = 

Real Exp 

ds 

[ i L: a. 
1S 

i 
[ 1-K f e 

2 

-~~:!~-) dn x] 
28 

L;. 
J 

1 

Making the power of exponenti~l as perfect square 

we get 

\) 

\) 

c2 
Exp [- ---] 

2 8 oo 

---------- J·· 
h 1T·8 ~ 00 

c2 
Exp [- ---] 

28 

ds 
[ 1-Exp [-1/2 

ns2 

L: 2 2 
1 [ Exp [-1/2J (aiJ) 8 S ] 

----J[ ------------------------
82 

1T 
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By doing integral by parts, we get: 

c2 
Exp [- ---] 

2 8 
\) = ----------

12 n8 

c2 
= Exp [- ---] 

28 

1 
--- {z: 

n I ,J 

So equation 

2 

1T 

1 

(1 0) 

Z:· 
J 

c2 
Exp [- ---1) 

28 

gives the frequency 

[ 1 0] 

of 

fluctuations of the population x. around the equilibrium 
l 

value x. = C. 
l 

The average of this frequency ~ve~ all the species 

of the community is given by the expression: 

1 
\) 

n 
L: 
i 

1 (---) 
1T J 

39 

c2 
---]) [ 11 ] 

2 8 



We will now minimize this frequency with respect 

to (or under the constraint that 

productivity of the community, i.e., 

1 
p 

2 i 's 

1 

2 i 's 

is fixed. 

a. 
~s 

a. 
~s 

N. log N 
~ s 

q. • 
log q 

s 

the 

[ 1 2] 

For convenience, we take the simplified expression 

(a. )
2 

for minimisation, 
~s 

in place of the actual average 
i,J 
frequency v. This does not change the qualitative nature of 

our discussion. This will also facilitate us in comparing 

our results with those of Leigh, the since simplication 

introduced by him are identical to ours. 

To minimize a given quantity under a given 

constraint, we have to use Lagrange's method of 

undetermined multipliers. In the present case, we can do 

this by choosing function: 

Q =.t: 
i' s 

[L:: 
i 's 
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a. 
~s 

log q - 2P] q.. s 
J. 

[ 1 3] 



and demanding: 

aQ 
0 [ 1 4 ] 

This gives us: 

2 aiJ I - A qi log qJ 0 [ 1 5] 

or 

2 aiJ 
A ------------ [ 1 6 ] 

qi log qJ 

Under the a~sumption q
1 

= q 2 q , 

(which is implied in the work of Leigh as well), we can see 

from here that: 

K [ 1 7 ] 

Where K is a constant independent of i and j • 

This means that for any i , a.·* 0 for all j * i • The 
l] 

food-web structure of maximum stability in our model is 

therefore one where every species feeds on all other species 

which do not feed on it. The structure is thus one of 
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maximum connectedness or maximum complexity. The most 

stable system according to the present model is therefore 

one which is also the most or maximally complex. This result 

is identical to that of Leigh for the case of the Lotka-

Volterra model. 

To proceed further now, 

[12) and [17) 

p 

But we have: 

B E 
i 

1 I 2 E 
i,J 

K/ 2 E 
i,J 

N. 
]. 

q. 
]. 

and for equal q's, we can write 

q ~ B/n 

we get, from equations 

[ 1 8 ) 

[ 1 9) 

[ 20) 

Where n is the number of species in the system. 
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So we get: 

K 
p 

2 

K 
~ ----- n 

2 

K 
n 

2 

K 

2 

Therefore, K 

n (n-1) q log q 

2 
q log q 

2 ~' _fi_ log 
'h. 

B 
Bn log (---) 

n 

2P 

Bn log (B/n) 

( -~-) 

Note that this leads to: 

4P 

2 2 
B log (B/n) 

[ 2 1 ] 

[ 2 2 ] 

[ 2 3] 

The expression for the frequency V can not be 

related to the productivity, biomass and diversity (measured 

·by n) of the system. Since we have: 
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1 

1f 

2 o:: (CI aiJ I) ) 
J 

c2 
Exp [- ---] 

28 

1 -;- j ( (n-1 ) 

c2 
Exp [- ---] 

28 

R 

1f 

1 

1f 

1 

1f 

1 

1f 

}n 

Where, R 

c2 
Exp [- ---] 

28 

2P In 
Exp 

2P 

n B log (B/n) 

c2 

n B log (B/n) 
[- ---] 

28 

2P 

B 

2P 

B 

1 

c2 
Exp [- ----] 

28 

/n log (B/n) 

c2 
Exp ([- ----] -(log log(B/n))) 

1 2 8 
[ 24] 

/n 
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This result shows that: 

The frequency v increases with increase in 

productivity. A more stable system would thus entail 

decreased productivity. The relationship between stability 

and the other biological parameters like biomass B and the 

species number n (which is a measure of diversity), is also 

evi~ent from the ab~ve formula. Keeping in mind that the 

factor log (B/n) (or the exponential factor in (24) would be 

much less important than the factors like B and /n, we 

conclude that the frequency V could decrease with increase 

in biomass 

diversity, 

and it would also decrease with increase 

i • e. , increase in the species number but 

decrease would be slower, as the factor n appears in 

only in the square root form. So the stability of 

in 

the 

(24) 

our 

system would increase with increase in its biomass as well 

as increase in diversity. 

We may thus be able to enhance the stability of a 

system by either increasing the species numbers or by simply 

increasing the biomass of the existing species, the latter 

procedure being of course the more effiective one. 

the other hand,we simply partition the existing 

among a 1 ar ge r number-of species, it will lead, 

productiveity factor, to decreased stability. 
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We conclude by noting that when we compare our 

result with that of Leigh for the Lotka-Volterra model we 

find that despite various differences we encounter in our 

intermediate steps, the final result is remarkably alike. 

The result of Leigh for the frequency V is: 

1 2 p '1 

7T 

1 2P 1 

7T B In 

c2 
Exp-( [ ------] q .) 

26 1 

c2 
Exp-( [------] B/n) 

2e [ 2 5] 

Except for the exponential factors, which are not 

the major contributing factors as regards the variation in 

the frequency (or the stability), the expressions (24) and 

(25) are identical. The basic conclusions drawn by us on 

the stability of the system are thus the same as those of 

Leigh. These conclusions may therefore be more universally 

valid than we may think, i.e., they may basically be model-

independent. 
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