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CHAPTER I

INTRODUCTION

In the prsent dissertation, we have reviewed, to
begin with, the data on relative abundance of species
within a taxonomic group in various multispecies ecosystems.
The most remarkable analysis in this field was done by
Preston who fitted the experimental data to lognormal
distributions. His work is discussed in detail in chapter

II.

In chapter III, we have reviewed the theoretical
work of Gunasekaran and Pande who déﬁeloped the conceptual
basis for understanding Preston;s lognormal distribution.
They took the dynamics of interacting system as ‘given by
Gompertz coupled equations for multispecies ecosystems and
developed their statistical mechanics, as was dong by Kerner
for Lokaka-Volterra model. The new Gompertz model led to
lognormal distribution of species within a taxanomic group.
Though the present analysis is simplistic, it gives the same
result, as the more detailed analysis done by Sita Ram,

Verma, Pande and Negi.



After reviewing the . theoreticl basis for
exerimental lognormal distribution, we have developed the
stability analysis for our Gompertz model. The stability is
then inter-related with some biological parameters of
relevance 1like productivity, biomass and diversity. This
analysig is along the lines of Leigh, who developed his
interesting approach in the context of the Lotka-Volterra

model.

The stability analysis in chapter IV reveals that
the stablest food-web structure in the model is that in
which every species feeds on all other species which do not
feed on it, i.e., the most stable system is also the most
connected and therefore the most complex. This result 1is
identical to that of Leigh for the Lotka-Volterra model. The
analysis of the model also shows that stability decreases
with increasing productivity whereas it varies
proportionally with biomass and diversity although the

effect of diversity is less pronounced than that of biomass.

The results obtained by us from Gompertz system of
equations 1in chapter IV are basically the same as those of
Leigh for the Lotka-Volterra model. This similarity
indicates the generality of the results and the results may

very well be model independent.



CHAPTER 11
A REVIEW OF THE DATA ON THE RELATIVE ABUNDANCE OF SPECIES
The relative abundance of different species within

a genera is repeatedly observed by Taxonomists

experimentally. Examples are -
i) Corbet's result on Malayan butterflies.

ii) William's result on moth species obtained by means

of light trap at Rothamsted.

iii) Saunder's observation on the birds of Quaker Run

valley, western New York state.

iv) Preston and Norris's data on the breeding birds of

the Frith (Preston Laboratory grounds).

v) Dirk's data on Moths in a light trap at Orono,
Maine, and
vi) Seaman's data on moths in a 1light trap at

Lethbridge, Alberta.

In the light of these experimental results several
theoretical attempts have been made to describe the

distribution of different species. Among these Preston's



distribution is the most satisfactory. He proposed the
distribution,
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where n, is the numﬂer of species belonging to the so—-called
octave, n 1is the number of species belonging to an octave
distance R octaves from model octave and 'a' is a constant
calculated from experimental data. This distribution, being

the most remarkable hypothesis in this field, deserves a

detailed discussion.

Preston's Analysis

The species abundance data reveal that the
collections in all cases contain many rare species and a few
abundant ones, although, of course, in terms of humbers of
individuals those of few common species far outnumber those
of many rare species. In any case, 1in view of the large
variation in the numbers of individuals per species, it 1is
convenient to plot these numbers on a logarithmic scale.
Preston considered the number of species, Ny, Dy, Ogseeees
and in general nr, represented respectively by one
individual, two individuals,....‘ and in general by r

individuals, i.e., he considered the different species



frequencies. He then plotted these o against the
corresponding r, choosing of course, a logarithmic scale for
re. Preston found it convenient to introduce a few other

technicalities in his analysis. We note those -

In relative abundance of species, we frequently
come across the facts such that one species is twice as
abundant as another, This 1led Preston to graduate the
abcissa as equal increments in logarithms of the number of
individuals representing a species and he wused as such
increments as "octave", i.e., the intervals in which "“the
representation is doubled. In other words, the mid point of
each octave is double that of the preceeding octave. With
this the abcissa became simply a scale of octaves which 1is
equivalent to taking "logarithms to the base 2", The

detailed grouping of this is given in Table I.

The table I clearly shows the relationship betweeﬁ
airthmatic grouping and corresponding logarithmic grouping.
For instance, in case of octavé B, the airthmatic groupping
is 2 to 4 and corresponding logarithmic groupping is 1 tO
2 [since log22 = 1 and log24 = 2], - The way in which the

number of species belonging to each octave is calculated 1is

also shown in table I, column IV. For instance , 1if a



species is represented by 5, 6 or 7 individuals, it clearly
falls in octave C. If a species is represented by 8
individuals, octave C is credited with the other half. In a
similar way all other octave are composed. All species
falling in, say, one octave may be thoéught of as having
roughly the same degree of abundance, in comparision with

those falling in any other octave.

It is noticeable that below octave A will
correspond fractional numbers and will thus not correspond

to any physically observable situations.

This is indicated in the plots (see figures 1-6)
by drawing the curves in this region by broken 1lines.
Preston calls his Y-axié, to the left of which is this

broken line, as the "

veil line". It should be remembered,
however, that doubling the size of the sample will double
the number of species belonging to each octave which results
in shifting the curve by one octave to the right. In other
words, an octave which was hitherto not observable has
become observable now. It is thus clear from here that if
this process of doubling is continued, all the species that

exist in the system will become observable and the

corresponding curve will be a true representative of the



system. Of course, the lognormal nature of this curve dbes
not change as it shifts to the right, the only change being
in the constant n_ and possibly 'a' (introduced below) which
will obviously have numerical value characterised by the

size of the sample chosen.

In all, Preston grouped six differeﬁt sets of data
in this manner and plotted with abcissa as the scale of
octaves and the frequency of species (i.e. the number of
species belonginglto a particular octave) as ordinate. He
observed that each curve exhibits a ﬁaximum in some octave
to the right of the first one and the observed octave
frequencies first increase and then decrease. The mode of

this set of data is that value which occurs with maximum

frequency. Therefore, the octave which corresponds to the
maximum number of species is known as model octave. For
convenience, the plots obtained by Preston are all

reproduced at the end of this chapter in figures 1 to 6.

The main point that emerges from this analysis is
that in all cases the data ié well fitted by a symmetrical
‘normal curve truncated on the left. The general equation of
such a curve is :

2,—«
W(R) = o (aR) (1)



where, n_ is the number of species in the model octave.
n(R) is the number in an octave distance R octaves from the

model octave and

1
a = ——-= (2)
20 2

where, o is the measure of the mean square diviation of the

population from its mean value.

We thus have:
R = [ log,i - log,i*] (3)

where, i are numberé of individuals, the logarithms to the
base 2 of which are plotted along the x-axis and i* is the
particular wvalue of 1 corresponding to the 'peak of the
curve. Preston took for any i corresponding to any octave
the mid value of that octave, in the same way i* is the mid

value of model octave. Note that,

9 e —
R? = [ log,i - logzi*] . (4)

which can be simplified as

= Lm n(R)RZdR



=== (5)

Next also that the total number of species N for

the system is given by

N = | n(R)dR
© 2
= [ n e_(aR) dr
-— OO0 o
n vm
N = --g (6)
a .

This N should be the total number theoretically
available for observation. In practice, the presence of the

veil 1line will imply that the actually observed number is



smaller. Now since the quantities 'a' and 'n_ ' .can be
calculated from the curve fitted to the data, the
theoretical value of the total number of species for the

system can be calcualted from equation (6).

The difference between this and the observed wvalue
will @give an estimate of how much was missed out in any

particular sample.' In table II, we present the calculated

'a','n ', 'N' as well as the observed values (in

(o]

values of
the given sample) for N, for all the six cases analysed by
Preston. Note that the values of 'a' in all these cases is

close to about 0.20.

Noting these points, the distribution given by

equation (1) can be conveniently written in the form

n(logzi) = ———=- == expl-—---=----o—-=o—- =] (7)

which aside from the trivial difference of the 1logarithms
taken to the base '2' instead of base 'e' is identical to
the standard lognormal distribution, which will be

discussed in the next chapter.

10



Inspired by the result given by Preston many

theoreticians tried to form a. conceptual Dbasis for
understanding the relative abundance distribution of
species. They thought of theoretical models from which the

distribution followed by the relative abundance of species
with in a genera could be derived. Such models will throw
much 1light on multispecies interactions which in turn would
enable us to understand ecosystem and their course of

evolution on a precise quantitative basis.

An early attempt in this direction was made by
Kendall. He <considered a simple stochastic model which

allowed for birth and death as well as the immigration

process for the populations He was able to obtain a
probability. distribution for the population which was
analogous to that of an earlier result of Fisher. This

result was, however obtained for a single species model.

The multispecies problem was first tackled by
Kerner. He assumed the dynamics of the multispecies system
to be given by the coupled Lotka-Voltera equations, wunder
the assumption of a constraint, he was able to develope the
statistical mechanics of these equations. This then led to

a population distribution for each of the component species

11



2
which was precisely the y , distribution assumed by Fisher

for the so called intrinsic abundance of species.

Though Kerner initiated and applied the
statistical mechanical approach very well, left some
questions unanswered. One is that it does not lead to a

full explanation of the experimental result but leads only
to an understanding of an intermediate result. The second

problem is that, in view of the results of Preston, the

2

X:

compound poisson distribution of Fisher but the lognormal

distribution which needs to be explained is not or the

distribution.

Pande and Gunasekaran took a fresh model with
Gompertz interaction terms to explain the experimental
Preston’curve, i.e., lognormal curve. Models characterised
by such intéractions have been discussed for two and three

species earlier by Pande and Bhat-. They developed the

statistical mechanics of this model in the way of Kerner.

Their analysis is reviewed in next chapter.

12



Table~1: Preston's scheme for grouping species frequencies according to

"Octaves"
Name Arithmatic Corresponding Number of species. belonging to
of the grouping of logarithmic that Octave
Octave the no. of grouping
individuals
per species Half of + All + Half of
A 1-2 0-1 1 - 2
B 2-4 1-2 2 3 4
c 4-8 2-3 4 5-7 8
D 8-16 3-4 8 9-15 16
E 16-32 4-5 16 17-31 32
F 32-64 5-6 32 33-36 64
G 64-128 6-7 64 65-127 128
H 128-256 7-8 128 129-255 256

— - - - etg - = - — - - = = - eotc = = - = - - - - - etc - - -




TABLE I1:

Calculated values of a, n_. N and the observed value of the
total no. of species for cases analysed by Preston

Case a no. N Observed total no. of
species in the parti-~
cular sample analysed

1 0.194 10 91 80

2 0.207 48 410 349

3 0.205 42 363 226

4 0.227 35 273 240

5 0.152 33 384 277

6 0.160 30 332 291
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CHAPTER 111

STATISTICAL MECHANICAL APPROACH TO GOMPERTZ MODEL

In this chapter, we shall develop the statistical
mechanics of a multi species ecosytem, the dynamics of which
is given by Gompertz model. The species interactions 1in
this model are of the form Ni log Nj in place of Ni Nj as in

the Lotaka-Volterra case.

This model is discussed by several workers. See
for instance Bhat and Pande (1980), who gave a detailed
discussion on 2 and 3 species ecosystems with in such a

model.

For applying this model to a 1large number of
species, it is useful to invoke statistical mechanics, as

was done by Kerner and others for the Lotka-Volterra model.

First of all we shall show with the set of coupled
equations that the model, wunder a constraint, possesses a
constant of motion. We then construct a phase space such
that our system belongs to an ensemble in this space on a
surface characterised by this constant of motion. The

requisite Liouville theorem and the condition for the

13



ensemble to be in statistical equilibrium can then be

established. Following this, microcanonical ensemble is
constructed. The possiblility of there being a
'temperature' for the system suggests the way to construct

the Gibb's canonical ensemble for any subsystem of the
system. As an application, the probability distribution for
the number of individulas in any species can then be worked
out. The resulting distribution is seen to be of lognormal

form in keeping with the well-known results of Preston.

1. STATISTICAL MECHANICS OF THE GOMPERTZ MODEL

We now consider the model of n interacting species
where the interaction term appearing in the equatipn for the
time derivative of Nr, is for the interaction between
species r and s. The form of interaction term is Nr log Ns.

The complete equation is -

dNr
- = enN + Iy N log N (1)
rr sr T s
dt s
where v, = 1,2,3,...,0.
and asr are now assumed to be antisymmetric i.e.,
[¢] = - Qa
ST rs

14



This implies that self interacting terms are absent, i.e.,

O, = 0, for all r.

The constant €r gives the idea how the species Nr

progresses if left to itself in a given environment.
For getting the stationary state of equation (1)

dNr/dt must vanish and let the population number Nr have

the steady value q, given by -

e 9. * gasrquOg(qs) =0 ' (2)
Using the variable Xr giﬁen by

x_ = log N_ (3)
We can write Eq. (1) as:

dxr/dt = e+ I a_  (x) (4)

and by expressing €, through equation (2) we have,

X = Za (X -X *) (5)
s sSr S S

*
where X, = log q -

15



Multiplying both sides of equation (5) by (xr—xr*) and

summing over r, we get

* _J* =2_a Uk _Jk N
% (x xr) s,r st (xr Xr) (xr Xr) (6)
Due to antisymmetry of gy the right hand side of Eq. (6)
vanishes and it yields a constant of motion or a conserved

quantity. We have

. %
X X (Xr_xr) = 0
r
or
d 2
--—- [ 5y (1/2 x - x_x_*)] = 0
dt r r rr
2
or, T (1/2x - xrxr*)] = constant.
r
Let const, of motion be G, then
G = bX (1/2x2 -xx *) = 3 G (7)
- r r'r T
r . r
We now construct a Gibb's ensemble for -the

system governed by equation (4) and (7), in the same way as
done by Kermner, by taking all possible copies of the systenmn,

each copy corresponding to one set of values for X . The

16



phase space for the system can be taken as the <cartesian
system with X axes in which a point represents a copy at a
particular stage and the ensemble of points represent the

whole ensemble.

The constancy of the total number of points in the
ensemble along with the dynamics of our model (1) and (4)
leads to the requisite Liouville theoren, i.e., the
desirable uniformity property of the phase space. Since we
define our system over a surface of constant G in the
phase space, the condition of statistical equilibrium
(%% = 0,Pbeing ensemble density, being the function of G

alone) can also be estiblished.
Now, with wuniformity of phase space and in a
situation of statistical equilibrium, we define a micro

canonical ensemble for our system, the density function p

for which is characterised by :

e =p, § (G -G (8)

where,5 stands for the standard Dirae delta function and eb

is a numerical constant .

17



The ensemble average of any function f (x1 x2,.......,xn) of

phase co-ordinates is now defined to be:

[ (9)

The integral being over all of the phase space. The element

of volume dT can be represented as,

dt = ds.dn S S

where,

(i) ds 1is an element of area on a constant G surface
and dn is an increment of length normal to the
' dG
surface, which can be written as ----, Where dG
| VG|
is the difference in G values of two neighbouring

constant G surface and ¥G = 3G/3 n.

So, with this equn. (9) can be written as:

18



e T TS (10)

It is to be noted that these integrals are surface

integrals over G=Go'
Let us now choose for f, the function Tr, given by
3
¢ 2

= —_——— = - %
Tr X [x2 X X ]
~8xr

Now, we know that,

3G
G= --n =|Vg|n
an
3G
and V6 = 5 --- ﬁr also.
T o3x_

Where, % is the unit vector along the normal to constant G
surface and %r is the unit vector along X direction, the

direction cosines of 0 are

A 3G/ 3x
NeX & —————=—=———
| v ¢
3G ds
so that, X ===, 6=—==—=— = x (8.§)d
ax | VGI r S

19



Here, Er denotes the vector to the point

(0’0’0”"’Xr’0’0’0’)' Then if we denote the denominator

in equation (10) by

A
|V ¢ °

_ . éﬁ (n.xr)dS
T 2= e e em me e -
r
Ao
- .
= —=- div x_d
po a
Y o
= —m—=- for all values of r (11)
Ao
Here, we have used Guass's divergence theorem and
represent ¥, 28 the volume enclosed by Go' The expression

(11) is constant for all species r and thus the mean Tr for
any species 1is the same for any other. This result is
similar to equipartion, of energy in Physics. The total T
of the biological association is equally divided among all
the species. This opens up the possibility of defining a
temperature, which then enables wus to define a Gibbs

canonical ensemble for our system. Before doing that,

20



however,

we show by an example that our system also admits

Ergodic Hypothesis.

i.e.,

equal to the steady state value of X namely x %

also

Let us define a function Dr as

CIe!
D= zz- = (x_=x_%) (12)

r X
d r

Let us also calculate the canonical average of Dr’

A
o
- 0
= (x -x *) =0
or
;r = xr* (13)

This shows that the ensemble average of X is

%

Now we can prove that the time average of N is

q.. We have from equation (1),

21



d
-- (log Nr) = e, Tz asrlog Ns

dt s

Integrating with respect to t on both sides,

between the 1limits O to T. we get:

1 Nr(T) 1 T
- log [=%+=< 1 = e v 4 [- S log N _(t)dt] (14)
T Nr(O) rog ST ¢ 3. s
Now, since N are bounded, as T --> o, the 1left
hand side vanishes, and we know that -
lim 1 T
log N_ = - J 1log N_(t)dt]
T—>x T o

So, we get from equation (14),

or, z«a log NS = - €

and by comparing equation (2),

X = x *
s s
or,

X = x % (15)
r r

Thus by combining equations (l12) and (13), we sece

that the time average of X is precisely equal to the

22



ensemble average of the same. So, we can hope that our

biological system is Ergodic.

2, THE CANONICAL ENSEMBLE

Now, we are in a position to define a subsystem of

our genéral biological system, which would consist of, say,
U number of species, where 1 < U < n. For this subsystem to
be in statistical equilibrium with the rest of the system
the subsystem and the rest of the system must have the same

'temprature' 0.

The density function for such a canonical system

is given by

oG /0 (16)

&
Where, the suffix, . indicates that we are dealing
with the part containing vy number of species. The
canonical average of any quantity Dr’ where r refers to any

of the new species, is given by :

_ I Dre— \)/ d’é\)
5 - door__ (17)
r S e G v/ d v
where,
3 G
D = e e — = - x
r 3 4 (Xr Xr.) (18)
r

23



The canonical average of the quantity D

r
given by :
Ja G /3 x_. Gr/® d
D = -t
r J e—Gr/G dt
3
-9 - (&7 a
X,
fe—Gr/e dxr
= 0
icee, D = (x_-x *) = 0
r T
or X_ = x_*
r r

Let us consider the ensemble average of

quantity Drz. We have for this

3G G/ 8
folmm—-- 12 &7 7 ar
_2 axr
Dr e e
fe-G/e dt
G d _G_/6
Pzt = 5 e
X dxr
= - e ————————————————————————
U /0
fe xr’

24
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(19)

the



2
3 G G _ (G /@) 396G
(-6 [(-=--- ) e -==1+ of e ’ -3~ dx ]
6

(The suffix V has been dropped as it can be from 1

to n anywhere).

So, 'D: =0 = (x_-x_) ’ (20)

This shows that the temperature in our biological

system is a measure of the mean square deviation of X, from

. P . L
its equilibrium value x. From here we can also conclude
r

that zero temperature analogue means completely quiet state

of our system.

So, we can say that is a measure of excitation

from the stationary state:

Now let us consider the quantity,

25



= g f e dx
n
= I
r=1 zr (21)
where,
_6G_/le
Zr = f e dxr
-2 _
[1/2 x x_ x*} /6
= Ie dx
2
(*)7/268
= /[2710) e _ (22)
Z is the well known partition function of

canonical ensemble of Gibbs.

Now we are in a situatioh of <calculating the
probability P (Xr) dxr‘of any species r to have its X value
in the interval X andvxr + dxr. For +this, we either
consider the system with K species or a one component system
with species r. In the former case, after a simple
integration over all the co—-ordinates other than X, and

r

in the latter case directly, we get the result:

26



e r dx
= e B
(x*)%/20
}/ZTl'e e r
td 2
1 . l/ge_ I '[Xr—x* 1 .
= o e dx [23]
v/ omo r
where g = (x_ - X*)2
’ r r
By transforming the Eq. from X to Nr’ we get:
2
1 1/29 [log N_ - log N}
P (N ) dN = —=—-————- e dN
N V276 241
Where, .
2.
® = (log N =- log Nt ) (25)
r

The expression in equation (24) is a standard

/

lognormal distribution.
3. COMPARISON WITH THE RESULT OF PRESTON
Let wus consider the approximation in which the

equilibrium value of the number of individuals for any

species within the genera is same. ‘Let us multiply the
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probability function P(Nr ) by the total number of species

in the system, say N. We then get

NP (log Nr) = n (log i)
= —mmmm - e t t [26]

Where 6has the same meaning as R2 or o, in

Preston's notation, and of course,

log Nr = X = logi

where i is the number of individual referred to by Nr and
the suffix r has been dropped because the distribution 1is
now the same for any r. We have thus established Perston's
result for the frequency distribution with in a genera by

using Gompertz model in a statistical way.

It is to be noted that in equation (26) logarithmé
are to the base e, where as in the expression of Perston
given in equation (7) of Chapter I, the logarithms are to
the base 2. The latter can, however, be converted to the
base e without any change in its form, except foran overall

factor of constant, i.e., 1og2 e.
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The distribution obtained here can be derived from
more general considerations which do not need the use of the
antisymmetry constraintvon the interaction matrix and which
eliminate <certain drawbacks of the present method (see
Varma, Sitaram, Pande and Negi. They are, however, beyond
the scope of the present dissertation and will therefore not

be discussed here.

We shall now use the results obtained here in the

next chapter.
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CHAPTER - IV

RELATION BETWEEN STABILITY AND SOME BIOLOGICAL PARAMETERS

OF A COMMUNITY

In the ©previous chapter, we have applied the
statistical mechanical approach to the Gompertz model and
got the log normal distribution for the relative abundance
of species. In the present chapter we shall use the results
of the previous chapter in particular the cononical ensemble
density function, to study the stability of the system and
the relation between the stability and certain biological
parameters of relevance. Such an approach to stability was
first wused by Leigﬁ in the context of the Lotka-Volterra

model.

Here, our ecosystem model is Gompertz model. In
this model the interaction term between i and j species 1is

Ni log N. type instead of direct proportional interaction.

J
Ni NJ of volterra type. This model has been discussed 1in
detail in chapter III,.

Following Leigh, we define the stability of our
system in terms of the frequency of fluctuations of a

species population from a fixed value 1i.e. from the
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equlibrium value. If the fluctuation frequency is large,
the system is less stable and the smaller the flactuation
frequency gets, the more stable the systems becomes. Once
we have calculated the fluctuation frequency, we can relate
it to our biological observables like productivity, biomass
and diversity. This will =enable us to study how the
stability of the system changes as we vary these biological

parameters.

We start, once again with the equations of the
Gompertz model:

dN, g
B - + a
€ ., N, 5 Ni log NS [1]

dt =1 is
where Ni represents the population of species i of a
community of n species. €5 represents the specific rate of
growth of this species in the absence of all other members
of the community and is positive only for primary producers.
a; g is a constant which is a measure of the influence of

species s on the rate of growth of species i with Ni log NS

type interaction. Here we assume the antisymemetry of a

3

is

i.e.
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Now, in accordance with our model, the rate of
flow of mass between species i and s 1is given by the
interaction term which is of the form Ni log Ns. So we
define the productivity P of the community as:

P =1/2 ; a N, log N {2]
i,s is i s
and the community Biomass B as:
X
B = i Ni [31]

Now, we will find a constant of motion or a
conserved quantity and then in terms of that quantity we
will rewrite our equations for further analysis of the
stability of our system.

For stationary states of the system (1) dNi/dt
vanishes. Let the population numbers Ni have the steady

values q; given by:

or

32
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Now we use the substitution:

X, = log Ni/q

i.e., log Ni =

and dx

i

X,
1

Eq.(1) can then be written as

1 dN
N, dt
i
or
dx
dt

Now putting the value

equation, we get:

dx,
_-i_

dt

or

of

2

o’

el

33
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is

(log NS)

(xs + log qs)

from equation (4) in the

is

(xS

+ log qg ~ log qS)

above



or,

dx oH

. n

—-=- = 3 a,;  —=-- [5]

dt s=1 * 3%

J
where,
_Z 2
Ho o= 2 1/2 x; (6]
H is our conserved quantity. Next, we define the

frequency of fluctuation of population of species from a
fixed value as a measure to stability of our systenmn. We
evaluate that frequency as the rate of crossing of X, (t)

from a fixed value xi = ¢ as Kerner and Kac have done:

So the frequency can be written as:

lim 1 T : dxi
T - o - . S [xi () - C] -—=— dt [7]
T _ g dt
Where § [xi (t) - C] is the Dirac-delta function
which is equal to 1 if X, (t) = C, otherwise zero.

Following the ideas of statistical machanics, as
discussed in the previous chapter, we can replace the time
average of a function by an appropriate phase space average.

We can thus write:

34



T+(X) ]./T f f [X (t), e o 0 08 0y X (t)] dt
1 J~ ds

= =———— _ f [ X., ® 8 000000 0y X ] ——_
V(C) H=c¢ 1 n |VH|

Where ds is the surface element on H= ¢ and

ds
V (c) = f —-————
H |vH |
Applying these manipulations we can write our integral (7)
as:
T dx
11 .
et == Toslx (o) -1 | -=-F | ac
T dt
1 f ' dx:.L ds
= ———=- H=C 6[xi (¢).- - C] | —-—-—=-=- —-——— [8]
V(e) dt | v |
Now, for large numbers of species we can think of
a subsystem in the system which is in equlibrium with the
system at a temperature 0, In this case we can use the
canonical ensemble for which the density functionpis given

by:

P = K Exp |

I
~
[e]
b

o]

H (xl,....,xn)

0
2
-z Efiz__]
i 2 6
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where K is a normalization factor.

The fluctuation frequency, say v , can then

written as:

(x.)°
)
Vo= K S8 Gy -0 Exp [ —oesiiooo)
1 290
or,
x>
v = K[ & (x, - C) Exp [~ --2-1 dx, »
2
2
(xi)
9 [ Exp [- —-=-=--- ] dx
-z (%) n-1 29
‘f Exp [g --=--- ] dx S it Rt
2 (x.)
[ Exp [- -=-=---- ] dx
26
where the summation over K does not include i = k.
Since we know:
(Xi)z C2
[ 8&(x. - ¢) Exp [- ---=2-- ] dx, = Exp [ - -=--—- ]
and
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f Exp [ - ——1———] dxi = A2716)

2
K Exp [~ —-—-]
20 dx (x1)? .
e [l 707 Exp [- L —=--=-- I dax
/218 dt i 29
or
2
K Exp [- ---] 9
iy | BTy gn
T m——-——m-——- r a,_ X Exp [-7--=-- 1 d'x
Y 218 g is J i9g

Now using the property of complex contour integral

we can set in the above integral:

| e 5 %1
B L e R a°
-
So we get
C2
Exp [- ---]
2 ® ds
V = ——mm——— o f -5- [1-K I(Cos (X a;; X S)
/216 —o TS
Vv
2
(%) 0
Exp [- 2 --=--- ] 47 x.)
i 20
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(x,) 0
Since , Ik Exp [ -2 --=-—- ] d° x, =1
26 *
and now changing,
Cos (% a; . XJS) = Real Exp [ iZ a; . xJS]
We get,
C2
Exp [- —---]
20 o ds i 5,
V = mme—mem—e— [ —73 [1-K J e 3
/21!6 = 78 g
2
(x5) 0
(a J XJS + i -—==--} 4= x]
20
Making the power of exponential as perfect square
we get
C2
Exp [- ---]
20 o ds 2 2
V o= mmmmm e © =-3 [1-Exp [-1/2 I (a,,)” s76]]
v2 10 i w Tg? g 1
C2
Exp [- ---] 9
v = ——m— - -———-[————-——--—E ————————————— ds]
Y210 T S



By doing integral by parts, we get:

CZ
Bxp [- ---]
20 2
2
S T - Nz oz o e
V2 6 m J )
C2 1 9
= Exp [- -—--] -——- r (a; ;)
29 w /J J
1 ( o c?
- [ (a, ) Exp [- ---1 [10]
T /J iJ ) 29 )
So equation (10) gives the frequency of

fluctuations of the population X, around the equilibrium

value X, = C.

The average of this frequency over all the species
of the community is given by the expression:

C2

1 1
v = -—— 3 (—-—/é (aiJ)z) Exp [- ---1) [11]
n i g Y3 26
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We will now minimize this frequency with respect
to a,j (or [aiJl), under the constraint that the

productivity of the community, i.e.,

L g
P = —=—= ° a, | N, log N
. 1s 1 S
2 i,s
1
~ ———— I log q [12]
2 i,s | 25 1 9 s

is fixed.

For convenience, we take the simplified expression
, 2 s s s . .
z (ais) for minimisation, in place of the actual average
i,J :
frequency v. This does not change the qualitative nature of
our discussion. This will also facilitate us in comparing

our results with those of Leigh, the since simplication

introduced by him are identical to ours.

To minimize a given quantity wunder a given
constraint, we have to use Lagrange's method of
undetermined multipliers. In the present case, WwWe can do

this by choosing function:

Q =§ (aiJ) - A [; 1 a;e ’ @ log qS - 2P} [13]
i,s - di,s i
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and demanding:

0Q
_________ = 0 [14]
o | ayy |
This gives us:
2 | a;; 1 - xa; log q = 0 [15]
or
2 | a,, |
R T S [16]
q; log q;
Under the assumption q1 = q2 T e = q2 = q,

(which is implied in the work of Leigh as well), we can see

from here that:

a,;j = K [17]

Where K 1is a constant independent of i and j.
This means that for any i, aij* O for all 7 4+ 1. The
food-web structure of maximum stability in our model 1is

therefore one where every species feeds on all other species

which do not feed on it. The structure is thus one of
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maximum conhectedness or maximum complexity. The most
stable system according to the present model 1is therefore
one which is also the most or maximally complex. This result
is identical to that of Leigh for the case of the Lotka-

Volterra model.

To proceed further now, we get, from equations

[12] and [17]

P = 1/2 3 a; g q; log q5
i,J
= K/2 % q; log q [18]
i,J

But we have:

B = I N,
. 1
i
Iooq [19]
x 1 ’

and for equal q's, we can write

q B/n [20]

R

Where n is the number of species in the system.
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So we get:

K
P = -—- n (n-1) q 1log q
2
K
=TT n q log ¢
2
K L& T
2
L e TR
2 .
K B v
= ---- Bn 1log (---) [21]
2 n
2P
Therefore, K = ————cemmmm (221

Note that this leads to:

S [23]
B2 1og2(B/n)

The expression for the frequency V can not be

related to the productivity, biomass and diversity (measured

‘by n) of the system. Since we have:
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1 C
—-—- (2 a, )°) E [- ——=]
; ((l a;; | xp ”
1 c?
-== [ ((n-1) ) Exp [~ -=--]
= [ R -
2P
Where, R = -

n B log (B/n)

R CZ
—  J/n o Exp (- ---)

1 20

1 2P /n c?
------------------- Exp [- ---]

T n B log (B/n) 20

C2
Exp [- -=---]
1 2P 1 20
m B /' n log (B/n)
C2
: Exp ([- ----] -(log log(B/n)))
1 2P 1 26

—— mmmmm mmm [24]
m B /n L ;
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This result shows that:

The frequency vy increases with increase in
productivity. A more stable system would thus entail
decreased productivity. The relationship between stability

and the other biolbgical parémeters like biomass B and the
species number n (which is a measure of diversity), is also
evident from the above formula. Keeping in mind that the
factor log (B/n) (of the exponential factor in (24) would be
much less important than the factors like B and /n, we
conclude that the frequénéy V  could decrease with increase
in biomass and it would also decrease"with increase in
diversity, 1i.e., increase in the species number but the
decrease would be slower, as the factor n appears in (24)
only in the square root form. So the stability of our
system would increasebwith increase in its biomass as well
as increase in diversity.

We may thusbbelable to enhance the stability of a
system by either in;;easing the species numbers or by simply
increasing the bioﬁass éf the existing species, the latter
procedure being of c;urse the more effiective one, If, on
the other 'hand,we simﬁly partition the existing bigméss
among a larger number of species, it will lead, via the

productiveity factor, to decreased stability.
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We conclude. by noting that when we compare our
result with that of Leigh for the Lotka-Volterra model we
find that despite various differences we encounter in our
intermediate steps, the final result is remarkably alike.

The result of Leigh for the frequency V is:

C2
1 2P 1 Exp=([-=----1q,)
m e e e 26
™ B /n
C2
1 2P 1 Exp-([-=----1 B/n)
I 26 [25]
kil B vn

Except for the exponential factors, which are not
the major contributing factors as regards the variation in
the frequency (or the Stability), the expressions (24) and
(25) are identical. The basic conclusions drawn by us on
the stability ,Of the syétem are thus the same as those of
Leigh. These conélusioﬁs may therefore be more universally
valid than we may thihk, i.e., they may basically be model-

independent.
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