- CATALAN NUMBERS AND RELATED RESULTS

Dissertation submitted in partial fulfilment of the
requirements for the Degree of

MASTER OF PHILOSOPHY

(o
»
Y,
@
‘z
o)
x

@:hool of,}:g_mputer and System Sciences , %\6’3 eyhn 1g 39
Jawaharlal Nehru University
~ NEW DELHI-110067 /
- 1979



Acmovmmemmé - .

This thesis is an acknowledoement of the orientation,
drive and competence of many indlviduals who have helped
directly or indirectly. _ o :v.

To Professor‘N P. ”ukherjeé; Dean; Schooljbf égﬁputer
and Systems Sciences and Supervisor of this thesis. I owe deep
grﬂtltude for morning, evenlng and summer afternoon sittlngs
with me to give this wrlting a proPer shape and the volueble
advice, v : |

I o thenkful to Dr. R. Sadsnanda for providing the
inspiretion during the course work snd to Dr. J.D. Sharma,

Lt. Col. A.P.R. Rao end Sri Mshendra Pant for constant
encouragement throughout the work. |

_ And to Shri S;K. Bhatlacharya. Genersl Manégere Bharaﬁ
Heavy Electricals Lihited.and shri S.K, Sawhney, resident
engineer, Sindri modernisstion pfojéct, Sindri; I am S£ill in
search of wortds to thank for granting me leave to pursue
this work, |

Last but not the least. T wanﬁ'to record my appreciation
for my colleagues,,Pfabir Purkeyastha, R. Divakarah, Gulab Das,
Rajiv and all other friends who directly or indirectly have’
helped in this work, - T

Finally, Iiam afraid, words become a mere formality
though they are not - I simpiy and sincerely :%ijk Dr, H.B, Mittal

4 | SV N
June 1979 : ( G.S.PjSINGH ).
New Delhi,



TABLE OF CONTENTS

Introduction

CHAPTER I

Preliminaries and Background Material

CHAPTER II
Extended Catalan Numbers

CHAPTER III

Enlarged Class of Extended Catalan
Numbers and Related Generalizations

Bibliogreaphy
Abstract

Page of Approval

Pages

15

31
L6
50

51



Introduction

The techniQues of counting.in-solving combinatorial
probleméiinﬁoiving determination of the number of trees or cf
the sets of a g€§en type have been in use for a long time,
The first ever treatise on combinatorics - 'Disertatio de Arte
Combinatoria' is due to Leibnitz and dates back to 1666, It
deals essentially with_the configuration which arises everytime
when some objects are distributed according to some predetermined
constraints,

As increasingly éomplex configurations came up for
considerations;fesearchérs became more and more interested in
the actual counting process, The‘uée of generating functions in
this connection came to be recognised as highly useful. yThe
idea dates back to 1812 and is due to Laplace [13]. In the
present Work this also has played an important role in our
studies on generalized:Catalén numbers and resultsrelated ° to
them, Catalan prOposéd these rumbers first in [5] and many others
have worked on them since then, Knuth for eiample has shown that
the Catalan number Cn is exactly equél to the number of binéry
trees with n vertices, |

Chapter I inclﬁdes basic definitions and well known
results which are used and elaborated upoh in later chapters. In
Chapter II the extended notions of Gatalan mumbers including
the one suggested by Shapiro [27] are discussed, Some of the
results related to this are extended next. And, finally,
uéing a still more generalized form of Catalan number the

results are extended further in Chapter III.



Chapter I

Preliminaries and Background Matverial

1.1 Generating Function and Combinatorial Identity

Definition, A formal power series,
2 . , n . '
At) = a  + agb + aptt + oL+ a bl (1.2.1)

representing a sequence %_ai} where ay is a real number

i2o0
for each i,1is called the generating function of the sequence. -

The exponential generating function of the same sequence
{ails i> o 1s defined to be

' 2 3 n
t t t

E(t) = ag + ab+ ag 5T+ ag 3T ... + 8y 7T eoo

(1.2.2)

Genez_'atihg functions have been useful in unifying the
discussions on polynomials, This fact is evident from the
works of Sheffer [28], Brenke [3], Rainville [22], Huff [9],
Truesdell [30], Palas [20], Boas and Buck [2], Zeitlin [31]
and Mittal [17, 18] and others, |

It is relevant to mention about the combinatorial
identitieé at this juncture. These concern the enumeration
of ways in which a given number of objects can be arranged
according to specifie_d'rules. They arise naturally in the

study of generating functions and recurrence relations, In



the present work they have been used extensively.

1.2 Some Operational Formulae,

Mittal [15,16,17] defined the operator T, where

T, = x (k+ D), k is a constant and D is the differential -

operator, It is easily seen that

Tpix3= (rek) x° 0 (1.2.1)

where

(v, = (0+K) (24l D) .o (r+lern-1) (1.2.2)

and n is a positive integer.

The following lemmas are due to Mittal. They have been
used in this thesis in obtaining proofs of Touchard's resﬁlt
[29] and that of Gould [8] in the next section. They have also
been used for deriving generatihg functions and recurrence
relations for Generalized Catalan Number in chapter two and

chapter three,

1. Lemma
Eo ;‘G{rri 0, 1% £(0f= K(1-xt) 3P [T
(1.2.3)
2. Lema
:Z:o %f—l T;]ixb £(x) = L(1-xt) "2 [ 2(1—4“ arb-1

f[T:%Zx_t)J . (1.2.4)



x 2 T T&me_l‘{.a £f(x) + xi"(x)}" (1+V)a f(X(l+v))‘

| - (1.2.5)
where v = xt( 1+v)m+l, a and m are constants and prime denotes

differentiation with respect to x,

4, Lemma

00
pX
n=o0

L

at+1
(m e} T} = (1£%1J;1Y)1)v £ [x(1+v)]

(1.2.6)

where v = xt(-1+v)m and m is a constant,

1.3 Catalan Numbers and Related Identities

While finding the nuvmber of ways of evaluating the
product of n factors (in fixed order) by successive multipli-
cations operating always on twoaljacent factors, Catalan [5]

used the Catalan Number,

Definition, A catalan number C, is defined for non negative

integral values of n by the rule

¢, = (w113 ., (1.3.1)

n

A large body of research material is now available on the

subject - some 450 papers have already been published. The
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bibliographies of Alter [1], Brown [4] and Gould [8] give
an excellent account of the literature., Lois Comtet [14]

and E., Netto [19] have also solved the problem of Catalan,

Touchard [29] in 1924 proved an interesting identity
ihvolving the Catalan Numbers, We give here a different

proof,
bepositibn;
5 (om) 2“"2k Cp = Cpyy | (1.3.2)
k=0 L
_ ~1 2k |
ghe?e Cp = (et1) "7 (%))
Proof. Consider |
o0 k
oo UeDI Tetllo
in view of Zﬁféxa}=,(a+k)n x* 1 ye have
oo'“k" 2k
o 2k .
= £ E- (D) - 5 ek (3)
k=0 ° k=0

and we have the result

e . o
X kﬂ _ X k. o 2 e x
Z DT Te1iti= 2 W T 1 2w T +3 ilf

(1.3.3)



Now "naking»use of (1.2,4) in (1.3.3), we get

. X
k=0 ( g
and hence
o k
‘ k ¢ 2
2 et T, §1t = (1.3.4)
To (k1) Tl 1 + V14D
Now operating by & It Tl on both sides of (1,3.4), and
n=o L4 . .

using (1.2.4), we get

® .n o k
2 p.o oK ‘ :
nio n T kf (k1) ¢ k+l§l%_}
2 2 3
= Z o I 3————
n=o "* €1+ '\[(1—43( )3
= (129"t [—2E ] (1.3.5)
(1~-2x)2
and hence, we get
© ,n . oo L
Z arTat 2 &rﬁ k+1tlf
5 .
(1.3.6)

2_
(l+ '»/-(1-4x) )
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Again, considering the left hand side of (1.3.6) we see that
00 oh k

- n' n,—_z_: Zk+1)‘ k+1&l”

=0

o0 o .n
= 3 P 2 (n+ 2K)! xr&Zk

=0 - k=o nt k! ki (k+l)

5 P e S
n=o k=o (n-2k)! k! k! (k+1)

and h ence we obtain

o 2n n -~ &0 Xk k < }‘}
& =T b T 1
n=o n; 1 [k=o (k1) ! el LT
o0 [n/g] |
= gz (By gh2k g 4N (1.3,7)
_ — 2k k ;
n=o0 k=o 4
2k
where C, = (k1) 1 (%) .
Again, since
o0 o0
: 1 2n+2 n
z ¢ % = 2 (2RF2y o
n=e ™1 n=o n+2 m1
© .n 0 _n+l
= ar (n+2)n- z _n—l_'(m4)n
n=o - n=o
o0
— <y __]_.. n < - Il
= Z onr T U157 X 2 AT Tnea ¢1f
> 3

H
S
|.._I

]
f1uN
o)
—

)

e

fInN

&_J
}

o}
A

H

1sN

g

Ay}
1
o
&
W
3,



we ged

(o) ' )
z c . xM= 2 (1.3.8)
n=o0 nel * | (1* %ﬁ:4x)) ’

It may be noted that we have made use of Lemma (1.2.4)

in the derivation of (1.3.8).

Now, from (1.3.6), (1.3,7) and (1.3.8) we conclude that

voo [n/2] . . oo
z 20 (o) 2n 2k Cy M= 3 Cppqy X
n=o k=0 n=0

and hence camparing the coefficients of xn, we finally get

[n/zjl
k—o

(D oy o2k Gy = Cppy | (1.3.9)
Other proofs are due to Riordon [23], Izbecki [10],
Shapiro [26], Donaghey [6] and Touchard [29]. While proving
Touchard's identity, Riordon [23] posed the problem : 'what
is the number of Catalan paranthesis of n factors with k
nests?! and solved the problem by obtaining a generating
function for C,. The number of Catalan paranthesis turned

out to be

- ; n=1y on-2k
Cpi = 2 (2 3) 2 Cp_1

(1.3.10)
k=1 | . :

In the year 1976, Gould [8] established the following

general identity



n/2 '
gl oy ) 2™2K 4k = A(n) (1.3,11)
=0
where AMk)y = | 21; ) .

Subsequently he proved [8] a more general result which
contained (1.3,.9®) and (1.3.11) as special cases, Here we

give a different proof of the result,

Proposition.
[Zz] C 3 )¢ 35 2™ rai ¥(2“;2r) - (a2
where
R(K) = 1i-fr';o

o (D) e (P} 5p opv o1

(k+1) (k+2) ... (k+1)

Proof : Consider

o0
z [nél cnk>< 5y Ry 27 T
n=o. k=0
o [n/2] ok k! (n+r)!
= 2 "2 (o)) = — gn-2k
n=0 k=o 2k k n! (k+r)! 2 <

where r is a constant, we have
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o0 [néz_] n Y( Zk) k! (mer)! oh~2k n

Py
n=o0 k=o (2k k n! (k+r)!

o
- M+ 2k+ 1)! n 2k
s WEH (krDr—2 %

n _m2ak

1
(k+r+1) ek 2 X

nt k!

——lr{— (k+1’-4-1)}c (2k+r+1) anmzk

i
T
::5

00 n o0 ‘
=z & 1 Tz ?FE?TK {1¢] (1.3.13)

N
=)
: &+
n=o k—o k 1

n=e 1! 1"’1{(1 4}8 Ew (1-4x2; §

1 2r

(1-4%) 2 [ (1.3.14)

=+ ~/(1-4x)

where p is a constant., Again it may be noted that we have

used (1.2.4) and (1.2.3) in deriving (1.3.13) and (1.3.14).

Using again (1.2.4), we get from (1,3.14) she result

0 [n/ 1 e
z C 5 ) C B R(e) 2™2k 0
=0 k—-o
o
1 .n G
n=o n! "2r+1+n i. %

i

o0

o1y n
z ( n2r) X
n=o
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Comparing coefficients of %' on both sides, we get

n/2
[kzj C D )¢ S IRMK) 2™k
=0

(#nt2r (1.3.15)

where r is a constant,

It is easy to se¢ that for r = O the identity in the
proposition above reduces to (1.3.1%) and for r = 1, reduces

to (1.3.9).

| Catalan sequence has been obtainéd while solving many
other problems of combinatorics. Polya [21] in 1954 posed
and solved the problem of finding the number Dn of different
ways of disecting a convex polygon of n sides by n-3 diagonals
into n-2 triangles, He used the recurrence relation

C. =

n 1 c

n-1 %+ €2 Cpog e« Cpq Cq. - (1.3.16)

Lafer and Long [12] showed that

-1 /(2n-
D, =1 (07D (1.3.17)
and then Dy is same as Cp_p. Lafer and Long [12] gave both
inductive and deductive proofs of Polya's problem. They

showed that



o

Dy =1

Dy =1+1

D5 =14+ 2+ 2

Dg =1+ 3+ 5+ 5 ,. " (1.3.18)
Dy =1+4+ 9+ 14+ 14

D8 = 1+ 5+ 14 +28+ 42 + 42

o o o e PR - @ w LY [CIE I »
L

It may be observed that the first two diagonals are
Catalan sequences and are identical,
A somewhat similar array was obtained by Finucan [f].

He defined

i

Gl i B G (1.3.19)

n

(n+1) (+2) ... (n+h-1)(n+h)
h{

i

and obtained the following array. It is similar to that of

Lafer and Long's triangular array.

n 0 1 2 3 4 5 6 7

1 1 0

2 1 1 0

3 1 2 2

4 1 3 5 5 0 (1.3.20)
5 1 4 9 14 14 0

6 1 5 14 28 . 42 42 0

7 1 6 =20 48 o0 132 182 O
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The first two diagonals in (1.3.20) are¢ Catalan
sequences again and the fourth is attributed to Cayley. No
other diagonal is listed with any combinatorial meaning .
though the sequences (1,3,9,...) and (1,5,20,...) occur in
some problems on Laplacé transforn,

In conclusion we may mention that D. Knuth ([li],p.388)
proved that the number of ordered trees with n vertices is |
Cn_l. He also showed that Cn is the number of binary trees
with n vertices, We give an outline of the proof of this

below,

Theorem, The total number of binary trees with n vertices
equals C,, the nth Catalan number,

Proof. Let b, be the number of different binary trees with n
nodes, From the definition of binary trees, it is apparent
that b, = 1 and for n > 0, the number of possibilities is

the number of ways to put binary trees with k nodes to the
left of the root and another with n~1-k nodes to the right,

So

by = by b1+ Dy By o e by ;b n21 (1.3.21)

From this it is clear that the generating function

i 2 .
B(z) = by + bz + bgzt. . . (1.3.22)

satisfies the equation

z B(z)® = B(z) - 1 (1.3.23)
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Solving the quadratic equation and using the fact

that B(0) = 1, he obtained

B(z) = %’E‘(l-\'ﬁ—élz)/‘)
. L /2
= 5 1 2, (7)) (-42)™

n _>_O
We now compare coefficients of Zn in (1.3.29) and obta;ih

1/2> (-pP 21

o'
i

1 .2
o ( n) . (1.3.24)



Chapter - IT

Extended Catalan Numbers

The notion of catalan mmbers which was introduced by
Catalan in [5] was broadened later by Shapiro [27]. In a
series of papers [25,26,27] he has considered their properties
in detail. The motivation for this consideration was graph

theoretic,

Definition.
A finite sequence of pairs vy = (a,,b,), a, 2 0, by 20
is called a path if the following hold

a) v, = (Q,O)

b)  If vy = (ak,bk) then vk+1=(l+ak, bk) or Vi 1 = (ak, }bbk)

A path (Vv ,Vy5.4..,V,) is said to be of length n and
the distance between {vi{n

= b)Y ? da
$1=0 Wapbp} | o

n

. n _ S . :
W = 9\ A 1 ~X 1,
i,iﬁ i=o Q(X19Y1)§ i=o s lan Xn[, Two paths are said

to intersect if vy = wi'for some o < i < n,

Remark, It may be noted that a, + bn =N =Xy + Ve Hence

lay, - an = an - ynl and consequently the distance between
the paths %;v ¢ and {w. n i -
i§i=o Vi could be defined as |b,-y,].

One may observe that a pair of paths of length n at
distance k can be extended to four pairs of paths of length
+1: one palr at distance krl, two pairs at distance k, and

one pair at distance (k-1). If B, is the number of pairs of
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non intersecting paths of length n and distance k then it is
not difficult to derive the recurrence relation from the

above observation, Then

By = Bn—-l,k—-]_ + ZBn-l,k + Bn-l,k+l (8hapiro [27]).

and Bpg = 0= By pupy W > 1 are boundary conditions.
Shapiro [27] found

Bnk -

S

) (2.1.1)

2n 1 2n
(n-l) =7 Ga1)

o} SV

For k = 1, Byy = Cp =

where n and K are positive integers in above formula (2,1.1).
Tabulation of By, yields the following triangular array which
Shapiro [27] named as catalan triangle.

N 1 2 3 4 5 6

1 1

2 2 1

3 5 4 1

4 14 14 6 1 (2.1.2)
5 42 48 27 8 1

6 132 165 110 44 10 1
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In what follows we introduce the notion of extended
Catalan number and extend the results of Shapiro [27].

Definition. The extended catalan number Béi? is defined by

the rule
nk = n+a n-k

(kra) (2n+2a) (2n+2a-1) .. (ﬁn+2a+k+l)
n+a ) (n-k) !

(2.1.4)

where n-k > o, n > o and a is a real number and a # -n

For a = -n, we define

(-n) _ 2(k+ta)(2m+2a2-1) ... (+2a+k+1)

B -
nk (n-k) !
L. (a)
= 1im B
a+t-n nk *

Remarks,

1. We may use the above definition to write

(8) _ 14y 5l g,

o B = 282 1 o ve may define Bso oo~
a—+to

- co a
2. For a = o, B;E) coincides with the notion of

Catalan Number introduced by Shapiro [27].
3. For a=.5and a=1, B\Y coincides with the notion of
Ballot numbers g(2n,2m) and g(2n+1, om+ 1) determined by

Knuth [11] respectively where
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| . 21l 2n+ly
fnom) - 2wl " n-m

_ 2m+2 (2n+2)
nN-m’ ?

g(gm_l, om+1l) - Zovo n and m being positive integers.

We consider next arithmatic properties of the extended
Catalan Numbers and the associated results are shown to be

direct extension of the results of Shapiro [27].

' n
We shall evaluate 2 Bl(a;) .
- k=1
n _
Proposition. kzl Bl(qi) = (Zn';_z.i‘"l) (2.1.5)

Proof. Consider the power series
© n

: (a) _n
§ & Bnk X
n=1 k=1
= ?Zo DZ? B/(a) -1
n=1 k=1 K1,k
- OZO Eo B(a) Xm-k
o k=1 -k, k
- 05 29 ket g, <2n+2k+2a) Xn4-l<:
n=o k=1 Nt a n
n=o k=1 [0+ 2kt 22+ 1)
o0 00 k1
n s _ X n-1 g
- nfo kzl n! Tn+2k+2a+1 *LZCm-a)}
0 2k | 2
= 2 x (1+V) +2a where v = x (1+V) (2.1.6)

k=1
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o0
(2+v) 2a by xk( 1+v) 2k

1

k=1 '
]
=‘(1+v)za z Ve
k=1
B x (l+v)2a+2
T (19
o<
- y A @R ' '
= x 2 5 Tnono it} (2.1.7)
n=o
00 1l n
= X § AT (n+2a+2)n X
n=o

it

x 3 (2m2arlyn

n=o n
oQ
n=o
o0
= z (FEAL R (2.1.8)
n=1

Lemma (1.2.,5) and Lemma (1.2.8) has been used above in

deriving (2,1.6) and (2,1.7) respectively.

Comparing the coefficients of %' in (2.1.8) we

conclude

0 (a) _ ,2m2a-1 |
z B = (BmEanl (2.1.9)

k=1 -
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Remark, . Putting a = o in (2,1,9), we get
z pl® - (21 _ 1 27 (2.1.10)
ke nk n-1 -2 ' n ¢ e
=1 A

which is due to Shapiro [27].

Corollary., The generating function of Br(ﬂi) is determined

from
@ n - 2a-~1
= 2 B3 P o (1man) 2 (—E— ) (2.1.11)
n=o0 k=o 1 (1-4%)
Proof.
© n @ n ‘
z z @M=z z laian
=0 k=o nk n=ok=o & 7
o o0 xn+1 n-1
= nio kfo AT Ineoke2ar1 {’2k+2a}
. -1
= (1+v)22 Ll—x(l+v)2]
(1+v)2a 2
= —-—i-:,——- ) [V = X(l+V) ] (20 1. 12)
1
- = 2a-1
2 2 -
= (1-4x%) [ . .
| 1+ ( 1-4%)
Propdsition.
o n o o0 oo '
z z B K - oz (2 oo PHE (21,13
n=o0 k=o k=0 n=1

where Cn is the nth Catalan Number,
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Proo’. Consider

z z Bl K
n=o k=0
e} [ e}
= 2 Z 2(kra)(m2ke2arl), ; X
n=o0 k=o
[v.0] oo .
=z z £ o1 k-2
n=o keo n! H+2k+2a+1 }
o0 .
= I (1v)okr2e A (2.1, 14)
k=0

which we get using lemma (1.2.5), where v = x(1+v)2, and a
is a constant,
Since v = x(l+v)2

IFX(I+V)2

1}

v

and we obtain the generating function of Catalan Numbers
0 n
C(x) = 2 C, X
n=0

1 x (%) (Riordon [23])

1V(1-4%)

= (Riordon [32])

2
1+~ (1~4x)

il

(2.1,15)

we can write now

' 2
1+v = G(x) = (2.1.16)
* (x 1+ ~V(1-4%)

In view of (2,1.16) we see that TH- ‘ZQQ
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00 2k+ 24
(v)2k2a o 5 (—2 (2.1.17)

o T k=o 1+ V(1-4%)

Twmg

Earlier we also showed (1.3.8)

e n 2 2 |
Z G X' = (——— (2,1.18)
n=o0 1 ' ]A-J11~4x)

Making use of (2.1,17) and (2,1.18) we get from (2,1.14)

0 n 00 00
z z B Ak - 3 (z ooy,
. ; 1,
n=o0 k=o k=0 n=o
o0 o0
= 2 (z ¢, xhlea (2.1.19)
k=0 n=1 °
Remark,

Since for a = o, k = 1 we have
(o). . 1 ,2n _
Bpi' = 7 (i) = Cn

where C, is nth Catalan Number, we conciude,

z £ & Qpk_ 5 (5 Bg‘{) &4 (2.1.20'
n=o k=o = n=1

which is similar to Shapiro's result (Rogers [24]),

Proposition,
B( a) = n“g-’.l C B(a) - (2. 10 21)
nk J n-J,k-1

J=1

whHere j is a positive integer.
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Proof. Consider

00 n n-k+l .
z z 2 ¢.s® -k
n=o k=o j=1 9 n-dnk-l
o0 o0 ml _
=3 2 = C B<@? g E
n=o k=o j=1 9 HEmdiK-l
o0 [v'e] n ( .
= 2 ' . B‘]a‘) T xn
nfo kio jig CJ+l k- j~1,k-1
0 o0 00 .
— < » ; (a) 3
“niugojfoclemkdﬂblﬁ%
= Dzo L. (2dt2 <3 °§ ‘35 l=lva  (2n+2k-2¢2ay N
j=o 2 7 1 n=o k=o R¥-1ta n
o0 o0 oo .
- e 2,3 > 9 2(k-1+3)
=2 Gl 2oz 2B oy
% -1 <S5 X n-1 S
= Z x T = 2 PH A — P -4 2(k_l+a)
j=o0 J+3 n=o k=o ! ™ 2k+2a-1 i g
2 % Ok 2
= (WV)© T (1ev)eirea-l (2.1.22)
k=0 v

where v = x( 14+v) 2, a béing a constant, Here Lemma (1.2.5)
had been used for deriving (2.1.22) we have from (2.1.22),

0 n n-k+l

2z Z cyBlE, K

n=o0 k=o j=1 . ’ ;
00 .
k=0
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Since we have alrceady proved in (2, 1.14)

o0 n o0 :
D> BS? &k - 3 () 2ke2a (2.1.24)
n=0 k=0 k=0 -

© n n-k+l -
z z z ¢, B oF
n=o0 k=0 Jj= J Js
© n
=z z B K (2.1.25)
n=0 k=o *

-k

Now comparing the coefficients of x7% in (2.1.,25) on both

sides we get

= 2 C, B(fz (2.1.26)
Remark. The result in (2,1.26) reduces to Shapiro's result

[21] for a = o, We have from (2.1.26) for a = o,

B(o) N _ n-k+1 B(O)
nk j=1 4 Tn-d k-1

The above is equivalent to the following.

n-k+ 1
Bk = ,§ Cs Bn—j,kﬁl (2.1.27)
j=1
- _nlo) _ k, 2n
where By, = B’ = 3 (n— k)

The identity in (2,1.27) is due to Shapiro [27].
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2.2 Recurrence Relations.
Next we obtain a recurrence relation of the extended
Catalan Number, It is similar to the one determined by

Shapiro [27].

tion m(R) = a(a) L oa(a) (a)
Proposition, Bn+1,l«:+1 = Bp) + 2Bn,k+1 + Bn,k+2 (2.2.1)

where n 2> o,

Proof, From (2,1.6), we have

z z B\®x" = 2 i (nv)Fee (2.2.2)
n=o k=0 =0

where a is a constant and v = x(1+v)2, In a similar manner

we can see that

0 n ) ‘
z 3 Béf_‘%‘ et 1 = 3 Xk( 1+v) 2kt 2a+2 (2.2.3)
n=o0 k=o ’ - k=o

el n ’ o0

z B'gazc_’_l £ =z Ly ka2 (2.2.4)
n=o k=o ’ =0 ,

and

o0 n v’

z 2 Br(laza-z == 5 x¥+2 (1+v)2k'*'4"2a (2.2.95)
n=o k=o ? k=0 _

where v = x(1+v)2 and a is a éonsta.nt.

In view of (2.2:2), (2.2.4) and (2.2,5), we conclude

0 n
z oz B Lepl@d L gla) .2
n=o keo nk nk+1 nk+2

o
= (l+v)2a z (l+V)2K+2 xk[ 1 o + 2% + x2(1+v)2]
k=0 (1+v)
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o o )
(1+v)2a z (1+v) 2k+2 k[ 1+ — + x(1+v) ]
k=0

i

) oo
(l+v)23’ b (l+v)2k+2 xk [ - L x( l+v) J (2.2.6)
k=0 TV

And since v = x( 1+V)2, w¢ have from (2,2,6)

© n
z = [B(a)+2B(a) + 8l 18
=0 k=o nk nk+1 o Kt 2
[v0]
- 3 (mvyke2ar2 k
=0
% m
- = 3z 3gla 2 (2.2.7)
n=o0 k=o S

Comparing the coefficients of %" on both the sides of

(2.2.7), the identity in (2,2,1) follows,

Remark, The resuit in (2.2.1) is an extension of the result

of Shapiro [27] and reduces to Shapiro's result if a = o

and n » 1,
Bk = Bnog,k-1% PBnag ket Bn-1)we1
k ( 2n)

where By, = 7 (7))

In a similar manner we can derive the proof for
following corollaries.

Corollary 1.

(a) - (8.—1) (a) (a)
Bn+1,k+1 Bm-l,k+1 + 2Bn 1 ¥ Bn,k+2 (2.2..8)



27

Corollary 2.

(a) _ =35l® (a+1) , pla)
Bmz, k+2 © Bn+l, kt+1 +ZBn, k1 T Bn—u-]_, k3 . (2.2.9)

Gorollary.3.
(a) _ x(a) (a) (2+1) |
Bn+2,k+2 = Bn-*-l,k-l-l + 2Bm—l,k+2 + Bn,k+2 . (2.2.10)
Corollary.4,
(a) _ pla+1)
Brwl, kel = Bnjk (2.2.11)
(a) . pla-1)
and Brok = Boelykel o

2.3 Trianguiar Arrays

The extended notion of Catalan Numbers was used by
Shapiro [27] in setting up a triangular form, For a particular
value of k all the Catalan Numbers B, were arranged in one

column as follows,

n o 1l 2 3 4 5 6
1 1

2 2 1

3 5 4 1

* e 14 6 1 (2.3.1)
S 42 48 a7 8 1

6 132 165 110 44 10 1
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The notion of Catalan Numbers which we have used

allows an extension of the above,
a
From Bflfé) = %_—EE (Zg:ia), one may obtain. the following

triangular arrays.

For a = ,5, we have,

Kk
n o\ 0 1 2 3 4 5
0 1
1 1 1
2 2 3 1
3 5 9 5 1 (2.3.2)
4 14 28 20 7 1
5 42 90 75 35 9 1

It is evident that the Catalan Sequence appears in the
first column while rest of the columns do not appear of the

Catalan Triangle developed by Shapiro [27].

For a = 1, we have

3
n o 1 2 3 4 5
0 1
1
2 5 4 |
3 14 14 6 1 (2.3.3)
4 42 48 27 8 1
5 B2 165 110 44 10 1
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The array (2.3.3) is simi’_ar to Catalan “riangle develop.d
by Shapiro [27].

Remark. However the columns in (2.3.2) and (2.3.3) appear
alternatingly in Triangular tableau developed for D, by
Lafer and Long [12] in diagonal form, A similar table of

numbers was obtained by Finucan [7].

We compute below the table (2.3,4) for a = - 4,

,,,\f 0 1 2 3 4 5 6 7 8
AN

o

1

2

3

4 1 |

5 -1 0 1 (2.3.4)

6 -1 -2 0 2

7 -1 -4 -5 0 5 4 1

8 -1 -6 =14  -14 o 14 14 6 1

I¢ is evident from (2.3?4) that the columns left to
'Column of Symmetry* (k = 4) are mirror images of the columns
on the right of the'column of symmetry,! The triangulér array - ..
on the right of the '‘column of symmetry! is same as the |

Catalan Triangle developed by Shapiro [27].

For a = -5,5 we get the following triangular array.
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-1 -7 -20 -28 -14 14 28 20 7 1

-1 -9 =35 -75 -80 -42 42 90 75 35 9 1

1t may be observed that the column c¢~rresponding to
k = 6 and higher values constitute the Catalan triangle
for a = .5. The columns corresponding to n = 0y1,2,4.445
could be viewed as mirror‘images of the columns of fhe

Catalan Triangle mentioned for a = ,.5.



Chapter III

Enlarged Class of Extended Catalan Numbers and

Related Generalisations

3,1 Further Extension of the notion of Catalan Numbers.

We saw in section (2.3) that tabulation of Bgﬁ) for
a=-4 and a = -5.5 yielded two different tables. All of
the columns in either of the tables appear howevér as
diagonals in the results of Lafer and Long [12] and
Finucan [7].

‘We are thus motivated to define extended Catalan Numbers
in a way so that the columns in both of the tables'mentioﬁed
above appear in one single table, similar to that of iafer

and Long [12] and Finucan [7].

Definition, An cxtended Catalan Number B,. is defined by the

rule

- S

2n"'s 7 = - Y, . .
S ¢ S { :‘ : " __é") . ‘1
Bps = 3mes~ (n ) where n and s are (3.1 positive (3°11)

integers and n-s 2 O,

- _d 2n-1
Remark 1. For s = 1, By = 3571 ( n )
(2n-2)1
n! (n-1)1
= Cn—l

where Cn—l is thec(n—l}h Catalan mamber..
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nl
3. Bml’z = Cn s 1’12_ l L3
4, one may define BOO = 0 if necessary.

Calculation with the mumber B/, yields the following table

N8

n 1 2 3 4 5 6 7

1 1

2 1 1

3 2 2 1

4 S 5 3 L | (3.1.2)
5 14 14 9 4 1 |

6 42 42 28 14 5 1

7 132 132 90 48 20 6 1

L ] s0e LN sve o e LA ) LI L ¥ ]

The above triangular array is similar to that of Lafer
and Long [12] and Finucan [7]. It can also be noticed that
the columns in (2,3,2) and (2.3,3) appear alternatingly in

above trianguwlar array.

Next we obtain the recurrence relation for the newly

defined Catalan Number.

Proposition. Bp.y g1 = Bpg * By ae (3.1.3)

beoﬁ. Consider

B - B . - Sl (2n-s+ S+2 (2n-s,
15 8+1 nel, 5+2 Sn-s+1 ~Sviog s n+
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- st1 (2n-s)! s+2 (n-s) (2n-s)!-
M1l nf (n-s)! = m™1 2n-s ng

_ L (2n-sy [(2n~5)(s+l)-(s+2)(n-S)z]
2n-s n n1l

{

1 ( 22-3) [ gg:iZS] ‘

vZn*S
¢
= Bpg . (3.1.4)
We conclude from (3.1.4)
Bael,s+1 = Bns ¥ Bney se2 |
Corollary.
no | -
s‘il Bps = Bn+l,2 =Cp (3.1.5)

Proof, In Bnel, s+l = Bns * Bney, sep Ve SUDstitute s = 1,2,...n-1
and obtain the followings

(1)

B2 ¥ B * Begs
Bn1,3 = B2 * Pni1ya (@
Bmlﬂianﬂhl+:%%lﬂHl' (3)

Adding all these n equations after cancellation we

obtain
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n-1
B = & B..+ 1
m1,2 g=1 1S
n-1
= 2 an-i- Bnn
s=1
.25 € 351.6.)
once again
- 2 2n \ _
Bn+l,2 ~ 2n (n+1.)'“ Cn -
Thus we conclude
n
2 B _ =B = C..
g-1 1S n+1,2 n
Proposition,
The generating function for B,q is given by
o s=n )
£ Z B x" =—=% —, (3.1.17)
n=1 s=1 (1 (1-4x) :
Proof:
Q0 s=n o0 oo
£ 2 B X = 2 = Bres. g X0
n=] s=1 n=o s=1 ?
< % S 214-3 s
= Z P —_— ( ) x°
n=o s=1 2m+s n-s
o0 jee]
s n+s

i

2 2 =5 (n+s+l) X



=z 3z X1 542
n=o s=1 n: n+s+ 1 i
po S _S
= 2 (1uv)° x by lemma(1.2.5)
s=1 A
(3.1.18)
and from the fact that v = x(l+v)2.
. &< s=n - o0
Thus, Z 2 B = 2 (v)S xS
n=1 s=1 s=1
=_§ (1) v
s=1 (1-+V)2S
o0 S + o0 S
= 3 = = (EEV
s=1 (1+v) s=1
N
- _ 1+v
v
1 ~l+v
= v\
= x(l+v)2
- 4x .
(1+ VvV (l—-4x)2)
(3.1.19)
Proposition.
00 g=n 00 00 s/2
z 2 B ¥ =z (2o &7
n=1 s=1 s=0  n=l1

The proof is similar to that of (2.1.13). and is $herefore
omitted.
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The number B, admits immediate generalizationm,
Analogous to Bgﬁ), we next define ng), an extension of the

notion of Catalan Numbers which has just been introduced.

Definition, The extended Catalan Number Blgsa) is defined

by the rule

where a is a constant,

The proofs of the propositions which follow arc easy
and arc similar to those given for analogous results

established earliier, These are therefore omitted.

™ (a) - r(a) (a) ,
1. Proposition. Bnel, s+l = Bpo + Bn+1,s+2 . (3.1.21)
2. Proposition,
02? DZO Bla) § - (-2 )a ax .
n=1 s=1 '° 1+ VB4 (1 V4w ?
(3.1.22)
3. Proposition,
s+a
o0 n o o0 T
z 2 Bl(q:) X8 = 2 (2 Cp X 2
n=1 s=1 s=0 n=1
(3.1.313)

We now tabulate the following triangular array for

a = "‘80
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The columns in left of 'column of symmetry! (for s= 8)
appears to be mirror image of the columns on right side of
it, The columns on right of the 'éolumn of symmetry! is

similar to the array defined by Lafer and Long and Finucan,

We next obtain further extension of the results already
gstablished in chapter II, It is relevant fo mention that
Rogers [24] developed the following notion for defining

Catalan sequence.
Cy(n) = gy ) n20, t2>0, (3.1.25)
C¢(n) clearly represents-ah extension of the idea of

C e

variety of combinatorial problems. Rogers [24] further

For t = 1, Cl(n) = C,. These sequences occur in wide

—

n 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

1 -1 0 1

2 14 0 1 1

3 -1 22 0 2 2 1

4 -1-3 55 o0 5 5 3 1

5 1 -4 -9-14-14 0 14 14 9 4 1

6 -1 -5 -14 28-42 -42 0 42 42 28 14 5 1

7 -1 -6 20 -48 £0-132-B2 0 1¥ 1 90 48 20 6 1
(3.1.74)
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define

1
Bi(n,m) = rfo (t;l) By (n-1, m-1+r)

and concluded that
_ o+l t(n+el) A

To generalize further the result of Rogers (3.1J6),
we define below the number B(p,a) which subsequently genefélizes
the result of Shapiro (2.1.1) as well as thc notlon of

extended Caitalan numbbr B( a) which we 1ntroduced in chapter IT

Definition. The generalized Catalan\NUHbur B(p,a) is. given
by the rule
B = L2 (Pn+ pay (3.2.27)

where n and k arc positive integers and p and a are constants,

Remarks=
1. Generalized Catalan mimber is an extension of the notion

of B$P, 1t reduces to B{) for p = 2,

(2,a) _ k+a Zmza
Brk’ = Wra Cnok )

= Bgi) (see (2.1.3)).
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(o, ) _ k1 (p+D n | -
2. Bn{){, . = m‘l ( pn"k ) ) (30 1.2-8) »

= By_;(nym) which is due to Rogers as mentioned

above,
3. For p=2and a=20

(2,0) _k, 2n
Bpxk’ - n ( nsk)'

= B e the extended Catalan numbers introduced by
Shapiro [27].
4, For k=1, a=oandp =2,

_ngio) =‘% ¢ 2n

b

s the Catalan number as given by

it

Cn
Catalan [5].

Notion of Generalized Catalan Number includes also that
of the Ballot numbers (Knuth [11], p. 532). For p = 2, a = .5
and p = 2, a = 1 respectively t yields the Ballot numbers;

Our next aim is to establish a combinatorial idenﬁity 
involving the generalized Catalan Number and which is alse
an extension of Shapircfs result [27] we shall rely largely
~on the lemmas due to Mittal [15,16,17].
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Proposition,

kg (p-D* £2 PR+ Dy o (PR DA~ L) (3. 39)
—Q

where p and a arc constants,

Proof, Consider the following power serices for obtaining

the generating function of the Generalized Catalan Number

Bgﬁ’a) in order to prove (3.1.19).

© n

Z Z (p-DF B(i’ ) o

n=o0 k=o
0o o0 Xn+k_

=2 2 (p-DF =57 plsra) . ((p-L)n+pk+pa+r1)n-1
=0 k=o ¢
o0 o0

k+l

= 2 2 (p- l} X -1
n=o k=0 Tip- l)n-i—pk+pa+1\p(k+a)3
oo .

= k‘E (p-l)k (l+v)pk+pa xK (3.1.20)
=0 .

where v = x(l+v)p, p and a are constants,
Lemma (1.2.5) has been used in the last step.
Now in view of v = x£1+v)p, we have

oo
z (wv)PEPR (popk XK
k=0

T (enPEPR kT pLplel £FL (uvyPleparr
k=0 1-(p-1) v =0 (1-(p-Dv
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o2 @ ( k xk n 5
= 2 Z - L I . < 2
n=o k=o P-D P(P-l)mpkﬂ)a §1
o0 o kel
k1 x n :
- Z > - —— : 2
n=o0 k=o (p-1) nf~ T(p-1) nphkt+patp 3 s

| | (3.1.21)
Now substituting (3.1.23)mn(3.1.20) and using lemma
(1.2.6) again, we get
© n

2z B (p-pk P
=0 k=0

= e L = (p--:L)k xE (1+v)PE

) (1-(p-1)v) ~ k=o

L~ G-Dx(xn? ] (3...22)

va
- v
" élt(pd)v y (3.1.22)

where v = x( 1+v)p, using lemma (1.2,6), we have from (3,1.22)

?Z’? g VBﬁgﬁ’a) Xn(f4;: OZO —:,‘['— T? il%
n=o k=o n=o p-1) n+pa
oQ
= = x7 (P™MPa-l (3.1.23)
n=o _

Comparing the coefficients of X' on both the sides of
(3.1.23), we get
n

kZ(MBgf; a) - (nga‘l) (3.1.24)
=0
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cam ba found.a
Remark 1, The result in (3.1.2%) j generalization of

the result (2.1.¢)., For p = 2, B(p,a) gives

n
b k+a (21’1-1-23. - (2n+r21a-l )

which we have proved in chapter II.

2. The result (3.1.24) is generalization of Shapiro's
result, for a = 0 and p = 2, we get Shapiro's identity.
For a = 0, p = 2 we have from (3, 1.2%)

X (Zn- l) _3,( 2n )

I MB

T
o

which is due to Shapiro [27].

3.2 T-ary trees and generalized Catalan Numbers,

We investigate the relationship of t-ary trees with
generalized Catalan Numbers in the following, Knuth [11]

proved that the number H of t-ary trees with n nodes is

; (l+t)n _ 1 L
given by H, = l+tn ( ) = Tonorl (23 ) where t and
n are integers,

o9 n
Lemma 1. Z H, x* = (I+v) (3.2.1)
n=o , )
where v = x(1+v)p, p is a positive integer,
Proof. Consider
oo oo
s 1 xn I 1 (l+tn xp

n
n=o0 n n=o 1+t
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R | (2+tn) !
neo T n!((t-1)m+1) !
- [t 1) .
n=o M [((t-1)n+2)
(0e]
1 ~1 .
= 2 ZxT $1¢

"

(1+v), by lemma (1.2.5) and

where v = x(I+v)t and since p is also a positive integer,

t can be replaced by p and the next follows,

Lemma, 2 Z C x"=(2 C_x) {3.2.2)
n=o n=o

Proof. Consider

o0 oQ
n _ 1 an2)! n
2 Cpq ¥ n__‘v: mzZ‘(nTlTﬁ'E'iSTX

n=o )
_ 05 2 RZI‘H-Z) n
n=o °* Tiuw3)
o
—- ! n-1
- :’3 %T X Theoe182 %
n=o
_ 2
= (1+V) , (3.2.2)

where Vv = x(1+v)2.
Lemma (1.2.5) has been used again in last step.
Consider again
o0

oQ
o = 2 gy @A
=0 =0

i
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i
&
\E
[ 2 m' )

n!

- 1 n-1
= & nt X Tn+l+l ‘Ll
n=o
= (1+v) (38.2.3)
2
where v = x(1+v)°.

We now conclude from (3,2,2) and (3.2.3)

n —
: 00 n . oo o0
Proposition. Z 2 B ¥ F= 3 ( = ann) phpa
' n=o0 k=o k=0 ' n=o

(3.2.5)
Proof, In order to prove the proposition, we consider

oQ
5 2 gipra) ik

n=o0 k=o
o oo I Conepler a)
= 2 % plkea) —o 2P A
n=0 k=o n} R(p—-l)ﬁl+pk+pai-l)
o o
= 3 3z Z -1 { () b
n=0 k=o nt “(p-1)T+pk+patl B +a))
= 3 (Lv)P*P2a (3.2.6)
k=0
where v = x(l+v)p, a and p are constants,
Using lemma (3.2.1) we get from (3 2.6),
Tz z B(pva) = 3 z H x )P +pa (3.2.7)
n=o k=o k=o\ n=o0

which proves inturn the above proposition,
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Remark. The result in (3.2.7) is generalization of the

result (2,1,13). For p = 2, (3.2.7) yields

o oQ

o0 n
b 5 B(i, 3.) Xn"k = ( 5 _ﬁ_'-_];i (22)Xn)2k+28.
n=o0 k=0 k=0 n=o0
o 00 2k+2
=2 (2 c AHT?
k=0 n=o
_ Py oy n, ket g
k=0 n=o0 '

We have used (B3e2:49) in deriving (8.2.8). We conclude

from (3.2.8) that

oQ o0

© n B o kra
z z B3 Ko 3 (2 oo D
n=o0 k=o k=0 n=1

which we established in Chapter II, For a = 0, this result

further reduces to that of Shapiro [27].
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ABSTRACT
Catslan Nynber has been used in finding the m:inber of
binary trees by Knuth L 11 J.
The purpose of this thegis is to extend the standard
notion of Catalan Number and to generalise - some zresults-
of Shapiro * [27] and Rogers [2u1). t

The principal results are given below ¢

(a) : - - |
T« B, = "f‘i"}":"’ ( 23 ¥ ﬁa ) vhere a 1s a constant, and
DS
a T 2n & 28 @4
o : . |
11) < pa al8) .y = ~1\k+a
111) (a) : (a) (a) (a)
) Bn+1 y K#1 = Bnk + ZBn,' X+ + Bn, ke2 *
8 - :
* , Bhg = =——— ;=8

2n - 8 n : -
Where n and s are positive integers and n-s 72 O and

=an + B

: 1)' B4 198.4+ 1 n+11y 842
n K .
ii) = =0
| 5251 Pns =Pniq, 2 =Va-
(pya) k '
+ a Pn + pa
3 By =t (Tl )

where p and a are constants and

i - k (pya) - - 1
-)kiso (P-1)% By’ =TT
| o
ii) 2_“:‘3 E, Bgya) S 32 B x“)pj pa
ne=20 k=20 ) k=0 n=0

where H, is the number of t-ary trees with n nodes.
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