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Abstract 

Background: We have studied the properties of miRNA within the cell and outside the 

cell and verified the impact of miRNA on the genetic oscillator in one cell in terms of 

both by control of amplitude and frequency. mi-RNAs are a class of small RNA 

molecules (18-24 nucleotides) that are known to regulate gene expression at the post-

transcriptional level by reducing the amount of proteins produced by translation. 

Oscillation is the repetitive variation, typically in time. of some measure about a central 

value (often a point of equilibrium) or between two or more different states. Biological 

oscillator is an inhibitory feedback loop, which includes one or more oscillating 

variables. The miRNA of the outside the cell is stable more than the inside the cell so we 

would like the examine that can it be treat as a information agent. So \Ve have taken two 

identical cells and diffused by miRNA from one cell to another cell as a communication 

channel. We went for it and want to find that can both cells be synchronized or not after a 

certain time. 

Result: We have studied simple biological cell. We synchronized the two cell with 

diffusion constant and come to know that the information from one cell to another cell is 

reached. We also see v.;ith different different parameters of diffusion constant including 

diffusion constant with random numbers and comparison it. We also see the relation 

between the diffusion constant and rate constant of miRNA. 

Conclusion: The extracellular miRNA are more stable than the intracellular miRNA. 

miRNA can act as a coupling constant from one cell to another cell for communication 

between two cells. 

Ill 
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Chapter 1 

INTRODUCTION 

One of a new inter- disciplinary field of study is system biology "hich focuses on very 

large complex interactions within the biological systems. using a better approach to 

biological and biomedical research. For understanding biology at the system level. we 

have to firstly understand the structure and dynamics of cellular and organismal function. 

not the characteristics of various parts of a cell or organism. The system's properties like 

robustness emerge as an important issue. and understanding these properties would have 

a help on the future of medicine [I]. 

Presumption motivated research in systems biology. So there \\ill be a proposed system 

where we planned for ,that assumption. Systems can be both its created either naturally or 

manually [2]. The system represents a computable set of assumptions that need to be 

tested or supported experimentally. Computational ·'dry"· experiments belongs as a 

simulation. on systems reveal computational correctness of the assumptions that 

manually in each systems. Any lacking systems would disclose inconsistencies with 

experimental facts, and so some changes are necessary [3]. Systems that pass this test 

become subjects of a thorough system analysis where a number of predictions may be 

made. A group of assumptions that can differentiate a correct system among other 

competing systems is chosen for ··wee experiments. Successful experiments are those 

that eliminate inadequate systems. Systems that handle this process are believed to be 

consistent with current experimental data [2]. Although it is an glorify process in the 

research of systems biology, the prospect is that improvement of research in 

computational science transform biological research to meet this cycle for a more 

systematic and assumption-driven science., scientific methods. technical knowledge for 

measurements, and genomics will deliberately [I]. 



Since biological systems are very complex. For understanding it requires the mainly two 

important "ays the integration of experimental and computational research means \\·e can 

say also in other \vords a systems biology approach [ 1]. Computational biology. through 

pragmatic modeling and theoretical exploration. provides a powerful foundation from 

which to address critical scientific questions head-on. Computational systems biology 

addresses questions fundamental to our understanding of life. yet progress here will lead 

to practical innovations in medicine. drug discovery and engineering [2]. 

1.1 Modeling Biological systems 

Consider a well stirred molecular system of size V having N molecular species given by 

X= [X1 ,X2 , ......•.. •.•• ,XNV undergoing M reaction channels given by, 

km 
aX1 + bX2 + ......... ~ pX1 + bX2 + ........ . 

Where. a. b .... are the number of reactant molecules and p, q .... are number of product 

molecules respectively. { k 111 ) is the set of rate constants with. m= 1.2 ..... M. 

The state change vector v is given by. 

Vm = [p - a, q - b, ... Y 

Most of the biological systems are complex in nature with complicated reactions where 

molecular species could be multi-functional (involved in various functional modules). 

However, the complicated reactions can be reduced to simpler elementary reactions 

where in each reaction. at most one or two or three molecular interaction is involved [3]. 

Such molecular interaction picture can be modeled with t\vo approaches described below. 

1.1.1 Deterministic Approach 

The time evolution of a system of chemically reacting molecules. the classical way of 

describing such interaction is to do a molecular dynamics simulation, exactly capturing 

all the molecule's locations and velocities, and in the variation ofthe species' populations 

accordingly whenever a chemical reaction occurs. However, if the number of molecules 
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(molecular population) is large (-I 0 1 ~-~ 3 ) describing such interaction picture by probing 

each and every molecule's dynamics could be almost impossible. One way of looking at 

the dynamics of such system is to use classical chemical kinetics ie by interpreting the 

complicated reaction channels to a set of ordinary differential equations of all the 

variables using mass action law, 

a)_ [ ] dt !1 XI, Xz •............... ,XN 

fn [Xl, Xz, ............... ,XN] 

where. [ 1. . .•• fn are functions whose forms depends on types of the reaction channels. 

Chemical reactions in this approach are observed as different. importantly rapid physical 

events. and there are categories of two types of elementary reactions: uni molecular. 

having as a result of development of internal fluctuations to a single molecule. and 

bimolecular. happening as a result of a interaction between two molecules. From a 

classical mechanics prospective. any one might pretend that this type of a system is 

deterministic. such that the state of the system at some later time can be described by 

tracing back the history of the system [4]. If the system derived deterministically with 

regards to the locations. velocities. and the specie's molecular populations. it will not 

emerge deterministically with regards to the species populations only. The indeterminate 

quantum inevitably gets in like in a uni-molecular reaction: indeed we are not able to 

know when a molecule will convert itself into a different isomeric pattern. Further. 

chemical systems are normally not mechanically confined; rather they are constantly in 

touch \vith a external heat bath, whose random disorder preserves the system in thern1al 

equilibrium at some temperature [5]. The time evolution ofthe trajectory of the molecular 

species can be traced by solving the set of differential equations given by (3). However. 

the detern1inistic description could not able to pick up the noise fluctuations as the time 

evolution ofthe variables are average dynamics. 
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1.1 .2 Stochastic Approach 

Stochastic chemical kinetics describes the time e\olution of a well-stirred chemicallY 

reacting system in a v>ay that takes into account the fact that molecules come in whole 

numbers and exhibit some degree of randomness in their dynamical behavior due to 

various random interactions of internal molecules and external fluctuations [4]. In the 

stochastic approach, the trajectories of molecules are some kind of random-walk process 

which is driven through a single differential difference equation that is master equation 

where all possible interactions are included. Fairly simple kinetic theory arguments show 

that the stochastic formulation of chemical kinetics of the interacting molecules has a 

firmer physical basis than the deterministic formulation. but unfortunately the stochastic 

master equation is often mathematically intractable and difficult to solve for complex 

systems [5]. There is. however. a way to make exact numerical calculations within the 

framework of the stochastic formulation without having to deal \\·ith the master equation 

directly [6]. It is a relatively simple digital computer algorithm which uses a rigorously 

derived Monte Carlo procedure to numerically simulate the time evolution of the given 

chemical system. Like the master equation. this ·'stochastic simulation algorithm .. (SSA) 

correctly accounts for the inherent fluctuations and correlations that are necessarily 

ignored in the deterministic formulation [5]. 

Even though quantum mechanical effects are avoided, still the prediction of the events in 

the trajectories of the stochastic system has indeterminacy, with unpredictable state of the 

system along the trajectories [4]. The design ofthe biological system is possibly looking 

for successful qualitative behavior of the system when it may go for the deterministic 

approach. However, it is very far away from situation \Vhere one might predict a good 

system behavior of pragmatic size and complexity by attractive time steps in the time 

evolution of the system at the expense of huge computational cost. We have to use such 

type of model that find out all details about its state of a system. like location. direction 

and energy of every single molecule under study. For these points of prospects, when we 

go for prospects of above level, the system's dynamics are not deterministic. but 

essentially stochastic [6]. To expose the actual description of stochastic mechanism 

directing the system dynamics, the study of statistical physics is mandatory. Stochastic 
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simulation will permit us to analyze the distribution related with the time to elimination. 

'' hich is not easily possible using deterministic approach. We cannot easily implement a 

deterministic model which is not applicable to experimental data with the use of implied 

rate constant, because the deterministic approach cannot capture quantitative behavior of 

the system. However, stochastic approach can able to capture this realistic behavior and 

patterns in a systematic way [ 4]. 

1.1.3 The Master Equation formalism 

Master equation is a classic method for determining the stochastic time evolution of 

chemical reaction channels which involve decay and creation of molecules in the process 

[5]. McQuarrie has given a nice report of the master equation approach to chemical 

kinetics [6). where the main features of master equation forn1alisms and the concept for 

stochastic simulation approaches can be extracted. Even though the concept of ··grand 

probability function·· is the key feature in master equation formalism which involves 

transition probabilities of decay and creation of molecules in the process. it helps giving 

key concepts to formulate the stochastic simulation algorithm [5]. 

P(X1, X2 , ............ ... ,XN; t) =probability that there ''ill be in Vat timet X1 molecules 

of species S,. and X 2 molecules of species 52 and X N molecules of speciesSN 

The calculation of above function g1ves us a totally characteristics of the "Stochastic 

state·· of the system at time t [ 5]. 

1.1.4 Outline of the Gillespie algorithm: 

The Gillespie algorithm which is known as SSA borrowed the key idea from Master 

equation formalism, but the algorithm is not directly derived from this formalism [5]. The 

basic concept of this algorithm is based on the two questions arising from the well stirred 

interacting molecular system: I. at what time 2. Which reaction takes place? The reaction 

time and selection of reaction which occur during that time interval are in fact random 

process which can be extracted from the probabilities of reaction time and selection of 

reaction reflected from the master equation of the whole system [5]. Then SSA can be 
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developed by generating t\\·o uniform random numbers, one used for reaction time and 

the other for selecting reaction which" ill fire during the time interval. Then starting from 

an initial state defined by a vector of populations of molecular species. one can trace the 

trajectories all molecular species by simulating repeatedly with a huge time steps updated 

bY reaction time. It is Monte Carlo like simulation algorithm that can be used for slow 

reactions. 

The reactions in nature have different types. namely, very slow, slow. fast. very fast and 

delay reactions. Gillespie algorithm cannot able to identify these types of reactions except 

slow one from the mixture of all these reactions. Therefore there have been various 

modified Gillespie algorithm which can be used to identify different types of reactions. 

for example. delay stochastic simulation algorithm which can be used to identify delay 

reactions. hybrid model to identify slow and fast reactions etc. In this work we \Yill be 

using SSA only because even though it needs huge computational cost. it gives exact 

molecular trajectories [5]. 

Life is a rhythm. Rh~thm shO\\S oscillation. which is the repetitive variation. typically in 

time. of source measure about a central value generally called a point of equilibrium of 

between two or more different states (9). In general biological oscillations are generated 

by various processes, such as. by an inhibitory feedback loop. which includes one or 

more oscillating variables; by a source of delay in this feedback loop. which allow an 

oscillating variable to overshoot a steady- state values before the feedback inhibition is 

fully effective. 

We then study specifically two models. chemical oscillator (Brusselator model) and 

Genetic oscillator (circadian oscillator) which are described below and implement SSA in 

order to study important behaviors of these systems. 
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1.2 The Brusselator model 

Lotka noticed that set of coupled. autocatal~1ic reactions in 1920 \vhich is foiiO\ving 

These reactions consumed some important dynamic properties. Volterra examined 

reactions independently and make a mathematically model of predator- prey ecosystem 

[7]. Thus. reaction 2 explained that a predator species Y: regenerate by feeding on a prey 

species Y 1. Reaction I explained that Y 1 regenerate by feeding with a certain foodstuff X. 

which is supposed to be here to be only marginally reduced by that: and the isomerization 

reaction 3 explained the eventual decrease ofY: by natural disaster [5. 7]. The brusselator 

is related to the Lotka Volterra model \\ hich is the naturally stable character of the 

oscillation. At that time there was a question that is there any model possible of 

chemically reacting system with two intermediates species Y 1 and Y 2 which has an 

importance that no matter what is initial condition. the system v.ill finally completely 

orbiting around a well manner. closed. stable path in Y 1 Y: plane. 

Then Brussels's workers modeled based on the above shortcomings [8]. with a design 

following example of such a ''limit cycle"" chemical oscillator [5], which is known as 

Brusselator modeL 

Brusselator 4 reactions 
k. 

1. x...;y 1 1 

2. yl + kz 
X2 ----t Y2 + zl 

3. 2Y1 + Y2 
k3 
----t 3Y1 

4. Yt 
k4 
----t Zz 
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The above set of reactions has been designate the .. Brusselator.. by Tyson[9) and so for 

many study ha\ e been done by a number of worker [8,9]. A stochastic simulation 

computer program was written for the Brusselator (putting M. number of reactions= 4. 

N, number of species= 2, 

1.3 Circadian rhythms model 

The environment changes in an extremely periodic way. There are also many other 

changes like daily cycles of light and dark and as well as every year cycles of dynamic 

climates and physical conditions. This type of environmental periodicity might be 

constructing the requirement for organisms to develop internal time-keeping mechanisms 

to exactly forecast these external changes and modify their State respectively [ 12]. 

The change in em·ironment and fluctuations allow the organisms to keep internal sense of 

daily time and regulates their behavior. accordingly a broad range of organisms use 

circadian clocks modulated by this change. Mostly these clocks use intracellular genetic 

networks established on negative and positive regulatory elements. The integration of 

these negative and positive circuits at the cellular level introduces strong constraints on 

their functioning and design [23]. Circadian rhythms have been determining in many 

different organisms from a cell to man as a large range of behavioraL physiological and 

biochemical parameters. [I 0. I L I 2. 13. I 4]. 

An internal period of around 24 hours is being characterized these rh~1hms [I I] and the 

phase of the oscillation is shifted by the strength of physical or chemical pulses [I 5). Else 

more, temperature is also play an important role in these rhythms [I 6, 17]. The phase-

shifts are time dependent, the pulse is given in the phase of the circadian cycle [ 12. I 5]. It 

is also acquired that such persevering phase-shifts of free-running rhythms should be 

explained as conformation for effects of the perturbing agent on the clock itself [I 8][ I 9] 

[20]. Protein synthesis has been also important related to its desirable involvement in the 

molecular mechanism of circadian rhythms [21, 18. 20, 22]. With the help of repressor. 
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the dynamics of an activator protein and the concentration of a repressor protein construct 

an inacti\e complex. So the clock does not necessary to depend on rnRNA dynamics to 

oscillate. which makes it principally resistant to variations [ 12.23 ]. 

An importance property of circadian clocks is the capability to manage a constant period 

over a broad range of internal and external fluctuations [ 12]. The clock runs correctly and 

generates the expression of clock-dependent genes at the desired time of the day is 

assured by such type of robustness. There is also role of temperature which is disturbing 

chemical reaction rates when temperature fluctuates and might perturb the oscillatory 

behavior. There is also another source of fluctuations in circadian clock due to the 

presence of internal noise generated by the random interaction of chemical reactions [24]. 

The oscillatory behavior of the biochemical network may be disturbed bY the less 

numbers of molecules which responsible for random fluctuations [25]. 

1.4 Introduction to miRNA and its function 

Ambros and his colleagues disco\'ered miRNAs. miRNAs are a class of non-coding small 

RNA molecules, whose size is 18-24 nucleotides. playing a crucial role in a biological 

process. It regulates gene expression at post-transcription level by reducing the amount of 

proteins produced by translation [26.29] and as well as resolving targeted hydrolysis and 

translation inhibition of mRNAs [27]. Actually miRNAs have been shown too many 

places to engage in the regulation of various cellular functions and also involved in many 

diseases like cancer [30-32]. Chim and his collegues. firstly reported that miRNAs are 

present in biological fluids and also found in placental miRNAs in maternal blood plasma 

in freely noticeable concentrations [28]. 

1.4.1 How are miRNAs produced 

Actually in nature miRNAs are single stranded RNA molecules transcribed from 

noncoding genomic regions [37,38]. This development is achieved by RNA polymerase 

II v1a long pri-miRNA precursors that encode one or more miRNAs. which is 

standardized in, a 60-70 nucleotide hairpin structure which is separated by a single-

stranded RNA (Figure 1) [37,39]. With multi-protein complex the pri-miRNA is 
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processed in the cell nucleus that consist RNAse lll called Drosha and the double -

stranded RNA binding protein called Pasha [ 40,4 1] generating stem loop pre-miRNA 

sequences. From the cytoplasm Exportin-5 transported this pre-miRNA where the RNase 

III Dicer cuts out the single stranded loop producing a miRNA duplex [ 42 , 43] . Dicer also 

participates in the assembly of mi-RlSC (miRN A RNA-induced silencing complex) 

where one of the two strands ofmiRNA duplex is depraved . (44] . 

Figure 1: pre-miRNA's secondary structure. The anticipated stem loop structure of pre-

mir-2 19-1, represent circadian miRNA in the mouse. The red one is the mature sequence 

in the figure . 30.2 kcal/mole is the free energy t1G assumed for this structure [ 45]. 

1.4.2 The functions of miRNA 
miRNAs regulate gene expression in various context-dependent ways by different 

miRNA processing complexes [46]. The communication of miRNA with destination 

transcripts could be largly grouped into two different pathways (Figure 2). The base 

pairing between a miRNA and mRNA-target triggers mRNA cleavage by the ' silencing' 

mechanism. Incomplete pairing of miRN A with 3 UTR of target rnRNA leads to binding 

of miRlSC to the target, which results to repression of translation. The mode of action of 
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miRNAs is not completely understood "h il e it is engaged in hase pairing hetween the 5 

end of the miRNA (which is 7-8 nucleotides. called ·seed·)_ and th~ ~ l iTR of the target 

mRNA [46.47]. Such pairing may induce (I) degradation of mRNA. or (2) change in the 

efficiency of translation by either influenc ing the ribosomal drop-off from the mRNA or 

by inhibiting 80S ribosome synthesis at the start of the translation [--l8. 49]. There was 

also shown that miRNA may affect the stab ility of mRNA through de-adenylation process 

and de-capping process to the target mRN A. It was shown that miRNAs can also atTect 

the stability of mRNA by de-adenylation and de-capping of the target mRNA [50]. 

/ 

Maturation / :-
/ -' 

// r .' 
t/ Dicer 
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( \ 
Passenger''\::-... 
strand ~'-\ 
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Figure 2: Function of microRNA: Transcription factors (CTFs) induces the transcription 

ofmiRNA gene [50]. 
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Further Drosha-Pasha multi-protein complex interact with the pri-miRNA leads to the 

synthesis of 60-70 nt pre-miRNA. Exportin-5 translocates the pre-miRNA from the 

nucleus to the cytoplasm. The role of Dicer to cut the pre-miRNA single stranded loop 

and generates miRNA duplex. The degradation of microRNA passenger strand takes 

place at the RJSC. This modified form of single strand miRNA further loaded at the 

RJSC. Base pairing between miRNA and target mRNA leads to the mRNA cleavage (si-

RISC dependent silencing), whereas imperfect base-pairing between 3 UTR of target 

mRNA and miRNA leads to mi-RJSC-dependent inhibition of translation [50]. 

1.4.3 Molecular mechanisms in Circadian clocks 

The earth's rotation plays an important role in daily routine of light and temperature and 

drives the forces in the evolution of circadian clock. permitting organisms to forecast and 

prepare tor their daily and seasonally changing environment [51]. The molecular 

description of the circadian clock may differ in different sense: the principle of a system 

of self continuous transcriptional-translational assessment loops is conserved [52]. 

Transcription factors of mammalian CLOCK and BMAL I. bind to clock-specific motifs 

and triggers the transcription of negative regulators. '' hich are transported to the 

cytoplasm and then forward to be translated. These type of negative factors. which 

physically interact with each other, giving heterodimers (in mouse PER-CRY or in fly 

PER-TIM), are come back to the nucleus after some time and then repress the positive 

circadian transcription factors, through down regulating their own transcription there 

[53,54]. After some time the negative factors decreased in plenty of amount in the 

circadian cycle progressively leads to their own depression which permit the positive 

transcription factor for trigger a new circadian cycle. A transcription rhythm of 

downstream clock-controlled genes (ccgs) is dependent upon the everyday oscillation of 

the core clock proteins. The several reports of the Genomewide expression analysis from 

several microarray in different organisms suggests, the expression of as much as (5-1 0)% 

of transcripts in a particular tissue oscillates in a circadian manner [55, 56]. 

There is analysis of the mammalian cycling proteome suggest that cytosolic proteins is 

rather higher than found in the case of microarray studies and there are found a constant 
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accumulation at the level of the mature transcript in many case of cycling proteins. This 

variation suggests that post-transcriptional and post-translational mechanisms are 

important components of circadian rh)'1hmicity. There is also found evidence (reviewed 

in Zheng and Sehgal 2008) suggests that cycling of clock transcripts and proteins is not 

totally important for clock function and pointing that the ·central dogma· of the 

transcriptional negative feedback loop is probably enough but not necessary and post-

transcriptional/translational process are an important part ofthe circadian clock [45]. 

1.4.4 Role of miRNA in the circadian clock 

The report about microarray of Drosophila heads verified the expression of 78 miRNAs 

from flies entrained to light-dark cycles and analyze to the correlated expression in the 

clock mutant cycOI [57]. There are two miRNAs dme-miR-263a and 263b. which have 

significant cycling that were suppressed in the mutant. It has been validated expression of 

such type of miRNA by qPCR tooL which also declared that both these products cycled 

in continuous darkness [56]. The fold-change of miR-263a was little small than miR-

263b w·hich is 1.7-fold and 2-fold oscillations. respectively. On comparing with the fold-

change of circadian clock transcripts (e.g. 4-5 [56). the quite change of miRNA has been 

seen which conclude that they are not biologically relevant. Yang and his colleagues [57) 

profiled the expression in whole heads and seen that expression of these specific miRNAs 

change a little in individual neurons at a higher level. And one condition is also possible 

that the fold change in moderate in inherent property of miRNAs. reflects the regulators 

in fine tuning of expression of miRNA. It has been reported that in the rat's brain the 

miRNA levels have quite large magnitude of fold-change. For example. miRNA levels 

after sleep deprivation in the rat's brain also show modest magnitude of fold-change ( 1.5-

2.5) [58]. 

It is also seen that some clock miRNA may not show oscillation everyday but also play 

an important role in circadian regulation [57]. If the miRNA level is constant then it may 

present as a threshold which 'gates· circadian oscillations. If there is change in the gates 

of oscillation of others clock protein than it may reflect the responds of miRNA towards 

the various cues. lt is seen by Yang and his colleagues about six miRNA which did not 
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cycle while had a quite different profile compared than the cycO mutant. There are many 

prediction algorithms. Yang and his colleague had used and found that a number of clock 

genes were identified "'·hich possibly provide a target for circadian miRNAs. with per. 

Clock, tim, dbt, cwo and tws [57]. 

1.4..5 Extracellular miRNA: 

There are many reports which give the evidence of the presence of miRNA in all other 

parts of body fluids like saliva, urine, breast milk. seminal plasma. tears. amniotic tluid. 

colostrum, bronchial lavage, cerebrospinal fluid. peritoneal fluid and pleural fluid after 

the exploration of extracellular miRNA in blood plasma and serum [33-36]. By numerous 

pathological conditions it has been seen that the changes in miRNA spectra in certain 

tluids, implying that extracellular miRNAs may serve as informative biomarkers to 

determine the pathological status of the body [33-35]. 
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Figure 3 Biogenesis of miRNA in the cell and the modes of extracellular miRNA 

packaging [27]. 

The important fact of forming of all miRNAs is RNA polymerase II which is greater than 

200 nucleotide primary miRNA transcripts. Maturation of primary miRNA starts in the 

nucleus with cleavage by the endonuclease complex Drosha-DGCR8 into the amount of 

60-70 nucleotide hairpin intermediates which is called miRNA precursors. Then pri-

miRNA transport from the nucleus into the cytoplasm by exportin-5 and then it cut into 

22-24 nucleotides miRNA/miRNA * duplexes by the endonuclease Dicer. After that the 

miRNA strand aggregate into Argonaute family which has four proteins (AGOl , AG02, 

AG03, and AG04). These four proteins are the important components of RNA-induced 

silencing complex (RISC) and miRNA * strand which is decayed afterwards. There are 
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three types of membranous vesicles which contain extracellular miRNA are (I) apoptosis 

bodies. {2) shedding vesicles and (3) exosomes. There are also another extracellular 

miRNA which is vesicles free and integrated with l\\O proteins either too AGO proteins 

alone or aggregated into HDL particles. Remaining t\YO vesicles shedding and exosomes 

fall in the class of microvesicles which are restricted by lipid bilayer [27]. 

1.5 Synchronization: a means of cellular communication 

Dutch researcher Christiaan Huygens observed for the first time and explained the 

synchronization of two pendulum clocks coupled by weak signal by putting close 

together in the seventeenth century [60]. He took a couple of pendulum clocks and 

hanged from a common support and discovered that both was synchronized after 

sometime which means that the oscillation of these two clocks coincided fully and 

pendula moved regularly in the same direction 164]. Consider two oscillating systems 

X = [X1 ,X2 , ......•..• , XNV and Y = [Y1, Y2 , .......... , YNF and if the two systems are 

allowed to couple through a coupling mechanism (direct. diffusive. time delay etc) with 

coupling parameter C via a certain variable say (X,. Y,). then at sufficiently large value of 

C. the other variables other than X,. Y, are synchronized. If we consider the instantaneous 

phases of any corresponding variable from the two systems to be ¢k and ¢~ . then the 

l\vo systems will synchronized if the following condition satisfy. 

m¢L - ncp~ = constant 

where, ni and n are constants. This condition is known as phase locking condition \Vhich 

is true for phase synchronization. There are ditferent types of synchronization. namely. 

complete synchronization (the two systems are synchronized completely). delay 

synchroni,zation (delay induced synchronization). generalized synchronization (a system 

drives two other systems to synchronize) etc. 

1.5.1 Coupling Mechanism 

There are different types of coupling mechanisms, namely, direct coupling 

(corresponding one variable in the two systems are made exactly equal and the two 

systems are synchronized), delay coupling (time delay is considered as coupling 
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parameter and the two systems are synchronized). mean-field coupling (in a group of 

systems a fraction of information is allo\\ ed to diffused in each system and the systems 

become synchronized). We use diffusive coupling mechanism in this work to induce 

synchronization between two systems. Consider two systems defined bv 

X= [X11 X2 , .....•.••. , XNF and Y = [Y1 , Y2 , .........• , YNF- then if X; and Y; are 

corresponding variables that can diffuse from one system to another by 
c 

X;~ Y; 

where C and C" are ditlusive rates. Then for sufficienth· large value of C = C" the two 

systems will achieve synchronization. 

Molecular communication is a very ubiquitous property of the living organism. It leads to 

the synchronization between two or more system e.g .. biological cell. v.-hich is due to 

adjustment Of their behavior or motion to a common path due to coupling or forcing. In 

synchronization the path of one of the system will obey to same value as the other side. 

They\\ ill remain in step with each other. The synchronization in biological system is also 

refers to communication between the cells with almost information [59]. A 

synchronizatibn phenomenon is found to be a very common phenomenon in biology. due 

to collective behavior of communication between neurons. cells. or animals. There are 

several means of communication takes place among the biological systems. such as direct 

coupling. mean field coupling and diffusive coupling. In the synchronization. the systems 

jointly create and then come with a signal with a common manner. like eLectrical field 

which shows that each system connected to each other directly [64]. 

There are various open questions which will be main focus of this work. Thev are I. 

several studies have been done so far to study the impact of miRNA on genetic oscillator. 

2. But still there is a scope to find how the dynamics of genetic oscillator behave due to 

the impact ofmiRNA at molecular level?, 3. and also how miRNA act as a synchronizing 

agent is still an open question? and some extracellular miRNA species might also carry 

cell- cell signaling function? 
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Chapter 2 

Stochastic kinetics of molecular interaction 

The well stirred molecular system can be described v1a t\\O formalisms for 

mathematically describing the dynamics of the spatially homogeneous chemical system: 

the first one is the detenninistic approach which concern \Yith the time evolution of the 

system as a continuous, in which one can predict the process provided initial histories and 

calculated by constructing simple differential equation using ··the rate reaction law ... The 

second one is the stochastic approach. which concerns with the time evolution of the 

system as a type of random-walk process. calculated by the master equation formalism. 

The stochastic approach to the chemically reacting system \Yithin the master equation is 

in general cannot be solved easily. Gillespie argued systematic computational algorithm 

to solve the dynamics of such system without solving master equation based on the 

framework of two key questions: at what time which reaction occurs. In this paper he had 

taken a fixed volume V which contains N chemical species which undergo M reaction 

channels with initial concentration of molecules of each species at the initial time and 

\vant to find the status of molecular population after any instant of time. He further 

explained that for simple reaction occurrence there should be collision of two or more 

molecules in an appropriate way and the molecular collision occurs in random manner in 

thennal equilibrium. Therefore, he had taken a system which is in thermal equilibrium 

which has tvvo molecules S1 and S2 inside some volume V Then the probability for 

colliding the two molecules in small time interval by the below equation. 
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()Vcoll = v-l ;rr~~V 1 ~ ot= average probability that a rarticuJar J-2 molecular pair v l~ ~ 

\\ill be collide m the next vanishingly small time interval Dt. 
.................. (I) 

Where v12 =the relative velocity of two molecules. 

Vcou =is the collision volume of where t\\O molecules may collide. 

V =total volume of system. 

r1: = 1-2 collision will occur whenever the center-to-center distance between an 

S 1 molecule and an S2 molecule decreases to r12 = r1 + rc . 

t= time interval 

Then he had taken another case in which X 1 of S1 and X: of Sc molecules in Vat given 

time t and calculate the distinct X1- X2 molecular pairs. which was done by below 

equation (2) 

X1X2 v- 1 n ri2 v12 o t = probability that a 1-2 collision" ill occur somewhere inside V in 

the next infinitesimal time interval (t. t+ dt) ................ (2) 

Therefore for a thermally equilibrated system, the molecular event described by above 

equation is known as --collision probability per unit time··. and the coefficient of dt in it is 

called as --collision rate··. This is reason why these collisions constitute a stochastic 

Markov process instead of a deterministic rate process. 

Since the well stirred molecular system is homogeneous in nature. one can inter relate 

stochastic rate constant and classical rate constant. The stochastic rate constant c11 and 

classical rate constant k11 are connected by 

c = k vl-v 
11 11 

Further there is also an important role of system's temperature and the physical properties 

ofthe molecules such that 

c11 dt =average probability that a particular combination of Rw reactant molecules will 

react accordingly in the next infinitesimal time interval dt. . ................ (3) 
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The .. average·· in the above equation means that. if we multiply c~ dt by the total number 

of distinct combinations of reactant molecules in R,. in the system at time t, the 

probability that an R,. reaction will occur somewhere inside V in the next infinitesimal 

time interval \viii be obtained. For such system, the molecular mechanisms in the reaction 

picture comprises of two notions one for reaction time and the other for which reaction 

will fire during that time interval. The probability of occurring Jlth reaction during T 

reaction time is given by, 

P(r. Jl) d-r =probability. if the given state [X11 X2 I ••••••••• ·~ XN] at timet. then the next 

reaction will be fired in volume V in the very small time interval (t+ T. t+ r+ dr) and that 

reaction will be R" ................. (4) 

The P(r, !l) is generally defined as ··reaction probability density function" which is a joint 

probability. Since the probabilities of a reaction will fire at time T. P(r) and the 

probability of 11th reaction will occur are independent of each other. one can \Hite 

P(r. Jl)=P(-r)P(Jl) 

Then propensity function (a") for finding the probability that a Jlth reaction will occur in 

V in (t. t+r). within a given system in the state [X11X2 I ••••••••• -~ XN] at time t can be 

described by, 

-------------------- ( 5) 

Where a"= Propensity function. 

hfl= Number of distinct Rfl molecular reactant combinations available in the state. 

c" = Stochastic rate constant. 

Then defining a parameter 
M 

ao = L aiS 
i=1 

and solving equation (5) one can get the expression for T as 

r = .2.. (zn ( 2. )) and condition for selecting !lth reaction is given by. 
ao Pr 
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~-1 

L ai < aoP~' :S 
i=l 

The P, and P11 can be replaced by a set oftwo independent uniform random numbers. This 

is the backbone of Gillespie algorithm. 

M.G Jose et. al described about the genetic oscillator \vhich considers interaction of 

repressor and activator generating 24 hours oscillating cycle. They explained that as 

environment changes in a periodic manner like day night cycle and cycle of climate 

changes etc may create the necessity for organisms to develop internal time-keeping 

mechanisms to accurately predict these types of external changes and modit~' their state 

accordingly. All organisms have this 24 hours period biological clock which is called 

circadian rh~1hms. The availability of intracellular transcription regulation net\\·orks with 

a set of clock elements gives rise to stable oscillations in gene expression. The clock 

mechanism has two elements. one positive which activate genes coupled to the circadian 

clock and also at simultaneously the other one is negative \vhich in turn the positive 

element. So due to the degradation of negative element and re-expression of the positive 

element the cycle complete itself. 

One of the important properties of circadian clock is the ability to control a constant 

period of internal and external fluctuation, and this is responsible for that \vhich protein is 

necessary to be triggered at the appropriate time of the day. Further, there may be 

fluctuation due to the molecular interactions which is stochastic in nature giving rise to 

intrinsic noise which is responsible for random movement which can affect the 

oscillatory behavior of biochemical network dynamics. The model consists of two genes 

one is an Activator (A) and the second one is Repressor (R) which are responsible for 

producing corresponding proteins via their respective mRNAs [23). The interaction 

network consists of the positive and the negative feedback loops. 



A. Nandi et al studied the role of miRNA in circadian oscillator to regulate the dynamics 

of the clock. They e:-.:plained how miRNA affect the amplitude and as \\ell as frequency 

of circadian oscillator by introducing general reaction mechanism ,,-hich involve miRNA 

[26]. The miRNA control temporal behavior of the biochemical network of the extended 

circadian oscillator with miRNA regulation at the post-transcriptional level was studied. 

The regulation of circadian rhy1hm via various rates of miRNA related reactions showed 

the activity of miRNA on the rhythmic scenario. However. it is not still clear that how 

suppression of genes has effected in biological decision- making after many study of the 

effect of miRNA based suppression on gene expression on various biological processes. 

Further the intercellular and intracellular signal transduction process need to be 

investigated in a wider range to understand the role of miRNA m regulating cellular 

processes. 

K. Wang et al reported that miRNA can be consider as a new class of regulators of gene 

expression given a ne\Y direction of research activities but not the answer of many 

questions like about the process of gene regulation function and other as well as how it is 

integrated with other molecules in the network. It had been seen that sufficient amount of 

miRNAs are present in plasma and as well as in other body fluids in human. So this fact 

suggested that the sufficient amount of miRNAs found outside the cell seem to be stable 

outside the celL So a new idea came from it that the biological function of miRNAs 

might be come outside the cell and helped for the cell to cell communication [ 62]. 
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Chapter 3 

Modeling chemical and miRNA induced genetic 

oscillators 

The chemical oscillator (Brusselator) and genetic oscillator are modeled and studied 

using stochastic simulation algorithm due to Gillespie. We have developed SSA program 

code which is written in python language. The study has been described beiO\\. 

3.1 Brusselator Oscillator 

This chemical oscillator consists of two molecular species Y1 and Y2 and four reaction 

channels described in the Table 3.2. The prophensity functions as \\ell as the values of the 

rate constants are also provided in Table 3.2. The parameters, their descriptions and initial 

values taken in our simulation are listed in Table 3.1. 

Sr. No. Molecule Species Description Initial Value 

1. .\I Foodstuff 1000 

2. \( Foodstuff :woo -

3. yl Predator Species 1000 

-I. Y: Prey Species 2000 

5. l: Constant -

6. z Constant -
-

Table: 3.1 Brusselator 

23 



r: 

Sr. No. 

1. 

2 

3. 

4. 

8000 

70GO -

I)OGO 

L,O:)CO 

40GO 

3000 

20(}0 

1000 

' 

Reaction Channel Propensity FW1ction 

irl 
X1 _, Y1 a1 = k1*x1 

k1 a: = k 2 *(Y 1 "' X 2 ) Y1 + X~ _...; Y2 +Z1 

><3 
ZY1 - Y2 ~3 Y1 a3 = k3(Y: " Y1 • (Y 1 - 1)) 

/2 
k...;, a+ = k?*(Y 1 yl .....:. z2 

Table: 3.2 Reaction channels of Brusselator 

.. 
I 

I 
I 
I 

I 
I 
I 
I 

Value of Rate 
Constant 

k1 = 5 

k 2 = 0.025 

k3 = 0.00005 

k .., = 5 

I 
I 
I 
I 
I 

I..___,. I 
0 

0 l 2 3 ·1 7 8 l C. 
I T1 r -l~ur~.· 

Figure-3.1 - Brusselator oscillator Y 1 Vs. Time 
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Figure-3.2- Brusselator oscillator Y2 Vs. Time 
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Figure-3.3 Brusselator oscillator Y2 Vs. Y1 
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Figures 3.1 and 3.2 describe how Y1 and Y2 evolve \\ ith time and the dynamics show 

fluctuations due to stochastic nature of the time evolution of the system. The time periods 

ofY1 and Y2 are 0.7 and 0.68 units oftime respectively. The average amplitudes ofthe Y1 

and Y2 are 6579 and 6985 respectively. Due to fluctuation in amplitudes of oscillation of 

the molecular species. one can see stable limit cycle of broaden thickness (Figure 3.3). It 

is also shown that the system consistently retrace its previous path on the diagonal of the 

limits cycle and this diagonal traces is directly related to the maximum variation in the 

height of vertical axis means Y axis. There is also fluctuation due to random process 

which can be seen at the microscopic level [5]. 

3.2 The miRNA induced genetic oscillator model: 

Nomenclature of first oscillator: 

D A the number of activator genes with activator protein (A) bound to its promoter and 

DA the number of activator genes \\·ithout activator protein (A) bound to its promoter. 

DR' the number of repressor gene with activator protein (A) bound to its promoter and DR 

the number of repressor genes without activator protein (A) bound to its promoter. MA is 

the number ofmRNA of the activator protein (A) and MR is the number of mRNA of the 

repressor protein (R). Synthesis of activator-repressor complex is C. m denotes the 

number ofmiRNA. CRise is the complex ofmiRNA \\ith mRNA. 

Second oscillator: D'-A the number of activator genes with activator protein (A') bound 

to its promoter and D1 
A the number of activator genes without activator protein (A') 

bound to its promoter. D R the number of repressor gene with activator protein (A') 

bound to its promoter and D1R the number of repressor genes without activator protein 

(A') bound to its promoter. M-A is the number of mRNA to the activator protein (A') and 

M'R is the number of mRNA to the repressor protein(R'). Synthesis of activator-repressor 

complex is C. m' denotes the number of miRNA. C RISe is the complex of miRNA with 

mRNA. 

26 



Formation of D A occurs with rate constant k2 and again dissociation of D A_ into D,_ takes 

place with rate constant k1 .Fonnation of DR occurs'' ith rate constant k.t and dissociation 

of DR ' into DR with rate constant k3 and also dissociation into A occurs with rate 

constant k,, and also dissociation into MR occurs with rate constant k5 . Dissociation of 

DR into MR takes place with rate constant k6 . Dissociation of MR into R takes place with 

rate constant k 1 1 and degradation of MR takes place with rate constant k7• Formation of 

CR1sc takes place with rate constant k2, .Formation of C occurs with rate constant k 18 and 

again dissociation of C into R takes place with rate constant k 13 . Degradation of R takes 
, 

place with rate constant k12 . Degradation of CR 1sc takes place with rate constant kn. 

Formation ofm occurs with rate constant k19 and again degradation takes place with rate 

constant k2o- Formation of A occurs with rate constant k 15 . Formation of MA occurs with 

rate constant k8 and again dissociation of MA into A takes place with rate constant k 1-t. 

Degradation of A takes place with rate constant k 17 .Dissociation of DA into MA takes 

place with rate constant k9 . Degradation of MA takes place with rate constant k 1". 

Now consider the two systems are coupled via diffusive coupling. This coupling can be 

done by allowing the diffusion of m of one cell into other cell takes place with rate 

constant k45 and also the di-tlusion of m · of other cell into cell takes place with rate 

constant k.t.-,. This can be expressed by introducing t\YO extra reaction channels in the 

system, 

This can be expressed by introducing two extra reaction channels in the system, 

m'~m 

Then we look for synchronization in other corresponding variables in the two coupled 

systems. We consider various possibilities of coupling constants are taken which can 

induce cellular communication via miRNA. For the sake of convenience we take k.t5=k-16 . 

Since the interaction among the systems are random in nature depending on the 

availability of the miRNA diffused in and out of the systems, we introduce random 

coupling between the two cells to understand how they interact. 
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The genetic oscillator described by Vilar et al has been used by incorporating miRNA 

regulatory reaction channels. The model is sho,,n in Figure 3.5. The description of the 

molecular species involved in the model is given in the Table 3.3. The set of reaction 

channels, their prophensity functions and values of the rate constants used in the 

simulation are listed in Table 3.3. The simulation results of the variables R (repressor) 

and A (activator) are shown in Figure 3.3. The dynamics of R and A show fluctuations 

due to stochastic interaction of molecular species. The value of system size V is taken to 

be zero. 

List of the molecular species: 

Sr. Molecule Description Molecule No. Species 

I. D_-\ 
Activator genes \>.'ithout actiYator protein bound to its 

yl I promoter ! 

2. D. 
.-\ Activator genes with activator protein bound to its promoter y~ 

3. A Activator Protein y, 

4. DR 
Repressor gene without acti,·ator protein bound to its 

y-l 
promoter 

5. D.R Repressor gene with activator protein bound to its promoter y, 

6. MR mRNA to the repressor protein Y~, 

7. MA mRNA to the activator protein y~ 

8. R Repressor Protein Ys 

9. c Synthesis of activator-repressor complex y9 

10. m miRNA Y1o 

II. CRJSC Complex of miRNA with mRNA yll 

Table: 3.3 Notation of miRNA role in genetic oscillator 
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List of the reactions channels, propensity function and value of rate constant: 

Sr. 
RPaction Channel Properr:-;it\· Function 

\o. 
\"aluP of RatP Col!o:tam 

]. k-1 
Yz --7 }' 1 a.l= kl*y2 kl = 50 

2 
k-2 =k2*(Yl*r.3) k~ 1 y1 + y3 --7 y2 a-z L 

=. 

3. 
iq 

Y:;--7Y4 Q.3= k3*Ys k3 = 100 

1. 
k..; 

k,~*( y_. :• y :~) k.., I y4 .,. Ys __. y, a4= = 
" 

;). y. ~-5 T y. as= ksd .. 's k- = :10 --7}6+ " " "' 

6. k£ ae = kE.*Y4 k oc 0.01 y4 --7Ye+Y4 6 

ifr a-- k 7 *Y6 k- = O.:J j. Yc. -q, ,- I 

8. ;:" as= ksd·'2 ks = :JOO }' ~ --7 'Y', + Yz L 

9. 
:., 

a':l.:. k9d\ k~ = 50 I y1 --?Y,+ y1 
I 

10. ~10 a1o:: klo*1', k1o ]() ' Y, ~q, .., 

I 11. ku. 
k11 * y 6 kn = 5 y6 ---> Yo+ Ys a11= 

12. kt2 
a1z= kl:*Ys k12 = 0.2 Ys -+q, 

13. k-13 
Y9 --+Y8 

a1s= k13* y 9 k13 = I 

14. kl.; a:g= k14* y 7 k14 =50 y7 ---> y7 + Ys 

15. Yz 
~-15 

Yz+ --> Ys a1s= k1s* Y 2 k1s =50 

16. 
1qc. 

aH= k16* Ys k1o5 = 100 Ys --> Ys+ Ys 

17. 1.:17 
a1;= k17*Ys ku = 1 Ys -+q, 

18. kts 
kls*(Ys * Ys) k1s = 2 l'g: + Ya - l'g a1a= 

19. <I> 
ic19 y 
---> 1.0 a 19'= k 1~*1 k19 = 20 
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20. k:n 
a;::o= k Y1o -tq, 

21. kz1 
a~l = kz1 *1 

Y1o + y6 -t Yn 

22. k2.: a").'?= k Yn ---+¢ ..... 

Table: 3.4 

< 

.n.n 

Figure- 3.4 Genetic oscillator 
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Oscillator- I 

Sr. Molecule Description Molecule 

No. Species 

I. D.·\ Activator genes without activator protein bound to its Yr 

promoter 

2. o· A Activator genes with activator protein bound to its promoter y2 

3. A Activator Protein Y, 

4. DR Repressor gene without activator protein bound to its y~ 

promoter 

5. o·R Repressor gene with activator protein bound to its promoter Y, 

6. MR mRNA to the repressor protein y{> 

7. MA mRNA to the activator protein y~ 

8. iR Repressor Protein Ys 

9. c Synthesis of activator-repressor complex y') 

10. 111 miRNA Yro 

II. CRISt" RISC ofmiRNA with mRNA Yrr 

Table: 3.5 

Oscillator -2 

Sr. Molecule Description Molecule 

No. Species 

12. 0 A Activator genes without activator protein bound to its Y12 

promoter 

13. 0'".-\ Activator genes with activator protein bound to its promoter Yr, 

14. A' Activator Protein Yr~ 

15. 0 1 R Repressor gene without activator protein bound to its Yro 

promoter 

16. D'"R Repressor gene with activator protein bound to its promoter Yrb 

17. M'R mRNA to the repressor protein yl7 

18. M" A mRNA to the activator protein Yrs 

19. R" Repressor Protein Yr9 
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20. C' Synthesis of activator-repressor complex Y::>o 

21. 1n' miRNA y21 

22. C RISC RISC ofmiRNA with mRNA y22 

Table: 3.6 

All Reactions Channels 

Sr. Reaction Channel Propensity Function Value of Rate 

No. Constant 

1. y kt 
z-+ y1 a1 = kl* y z kl =50 

2 k2 G-2 = k 2 *( y 1 "' y 3) k~ =- 1 y1 + y3 -+ Yz 

:3. ic: 
Ys_:;Y4 a3= k3*Ys ks = 100 

4. ... ., I Q.4= k 4 >.<(V4 * Y 3 ) k4 = 1 y4 T y3 --+ }"5 

5. k,. a 5 = k;* Y5 ks =50 Ys ~Yr;+Y; 

6. Y.; 
k •. 
-+YE+Y4 ae= k 6*Y4 k.._ = 0.01 

7. k] a7= k-;*Yf k, = 0.5 YE. -+<t> 

8. ks as= ks* 1'2 k 8 -= 500 y2 -tY,+Y2 

9. 
. ifg 

Y1.-+ Y-:; + Y1 ~= k.,*F1 kc; = 50 

10. kit} a 10= k 10 *Y-; k1o "' 10 }'7 -4> 

11. ku a 11 = k 11 *Y6 k11 = 5 y6 ~Yo+ Yz 

12. tu 
Ys -<t> a12= k12*Ya k1z = 0.2 

13. "'13 Y9-"'+ Y8 
au= k13*}"'9 k13 = 1 
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! 1-1. Y, 
kl.; k14*}'"7 1 
----;. }~ i + y 3 a14= kH = :)0 

b. 
}'2 

.(1i 
----;. 1';.: + Ya a.1s= k1s*Y2 k15 =50 

16. l's 
1<16 
----;. Ys + Ys a16= k16*Ys k16 = 100 

k17 17. a17- kn*Ys k17 Ys ----;.<!> = 1 

18. y "lS a-u; co kut*( Y s "'Y 3) k18 - 2 
8 + y3 ~ Ys 

19. 
<I> 

"="lg 
~Y1o a19= k19*1 k19 = 20 

k2o 20. azo= kzo*Y1o kzo y 10' ----+<!> 
= 0.029 

21. Y1o 
kzt an= k21*(Yw "'y~ l k21 + Yc, --.; Yn = 6.0 

--
M:'TJ 22. kzz* Y11 yll -=><t> azz= k22 = 0.6 

?3. 7 .CJ3 
} l3-> Y1z O.z3= k2s*Y13 kn =50 

24. y12 
k:?;.; az4 = k24*(Y12 *Y14) kz4 = + y14 ~ }'13 

1 

25. 1\15 
y 16-----=-+ y 15 Uzs= k2s* Y16 k25 = 100 

26. 
Y1s YH 

ku Oz6= ku,*(Y1s * Y14) k26 = + - y16 
l 

iQ; 27. Ylf,. - Y17 + Y1e. 
az7= kz1*Y16 k27 = 50 

28. 
Y1s 

k:zs 
- y17+ y15 

Uza= kza*Y1s kza = 0.01 

29. 
y17 

kz5 az9= kz<>*Y11 k2<J = 0.5 
---><!> 

k3o 30. y13 _, Y1s + Yu aso= kso*Y13 kso = 500 
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:~I. k31 an= ks1*Y1:: k~1 -- :;o f.o ~ '\·"" y12 ·- • 18 + 

32. k32 Usz= k32 * y 18 k32 :_ 10 
Yu~ ---><f> 

33. 
f17 

;.:;J 
y17 + yl'J as3= kss*Y11 k33 ·- s ---> 

34. ~34 ag4= k34*y19 k~. = 0.2 
yl.9 -Q> , .. 

35. "'5 ass= k3s* Yzo k35 -- 1 y - y 19 20-

36. 
yll~ 

k3£. 
}' 1B + age.= k36*}r1B k36 = ;)0 ---> YH 

37. ka; G-37= k31* y 13 k37 = 50 y13 ---> y13+ 1' 14 

38. k3s ass= kss* Y H k38 = 100 
yl& ___. y if+ }'14 

--
39. i-.a-; a3:t= k3'J*y14 k39 = 1 YH ---><f> 

40. :..·.;t] a.4o= k4o*(Y1., "'Y1.;) k40 = 2 y19 + y 1-4 --. y ~0 

41. k .. n a41 = k41 *1 k41 = 20 
<I> ---4 y 21 

42. k,n a4z= k4z*Yn k42 = 0.029 y21. ---<t> 

43. ~43 a43= k43*(Y21*Y1,) k43 = 6.0 
Yzl + y17 --+ Yzz 

44. k44 a44= k.a*Y:z2 k = 0.6 Yzz --+<f> 44 

45. k-'5 
Yl.o~ y2l 

a-4s= k4s*Y11J k45 = 3.0 

46. k46 a46= k46*Yz1 k% = 3.0 y21- ylQ 

Table: 3. 7 Reaction channels synchronization between two oscillator 
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Figure- 3.5 Coupled two genetic oscillator model induced by miRNA 
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The role of miRNA in regulating genetic oscillator is very important to study with in 

order to understand its activities in "ider cellular networks. Further, its role in cellular 

communication and how it helps in signal processing are still open questions to be 

investigated. We will address these problems in this work and try to understand some of 

the fundamental working principle of miRNA in genetic regulation . 
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Chapter 4 

miRNA induced regulation of Genetic oscillator and 

synchronization 

We have our proposed the model of interacting two identical genetic oscillators v1a 

diffusive coupling and checked for synchronization at various values of coupling 

constant. At zero value of coupling constant we got the dynamics of the variable in the 

two oscillators evolve independently (Fig. 4.1) showing the oscillators are uncoupled and 

desynchronized. Therefore. the dynamics of Activator protein (A) of one oscillator 

uncorrelates with the corresponding dynamics of Activator protein (A) of another 

oscillator. Therefore. there is no information flow from one oscillator to the other. Same 

is shown for dynamics of repressor proteins Rand R' of the l\\·o uncoupled oscillators. 

We then changed the value of coupling constant (£)and as the value of coupling strength 

increases the two oscillators start process signal each other via diffusing miRNA 

molecules. Then at £=3 we found strong synchronization between corresponding 

variables (A.A') and (R.R') as shown in Figure 4.2. The synchronization is not a complete 

synchronization because of noise induced due to stochastic nature of the system. The 

synchronization of the set of variables (A,A') and (R.R') is supported by two dimensional 

recurrence plots (Fig. 4.4 ) where points in the plots concentrate towards the diagonal due 

to correlation between the corresponding variables when the two variables are 

synchronized. If the two oscillators are not synchronized then the points \viii scatter away 

from the diagonal. Therefore, the rate of concentration of the points towards the diagonal 

in fact indicates the degree of strong synchrony the two oscillators will have. 
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We found that miRNA affect the frequency and amplitude of the genetic oscillator and 

regulate the network. The change in the value of coupling constant (reaction 45-46) and 

miRNA rate constant (reaction 19-22) in Table 7, affects the dynamics of A and R of the 

oscillator. Biologically the increase in the value of coupling constant will induce stress in 

system and the excess value of it may cause apoptosis which is programmed cell death or 

it may lead to cancer. 
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Figure- 4.1 the desynchronization of stochastic genetic oscillators. 
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Figure- 4.2 synchronization of stochastic genetic oscillators. 
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If the switching of coupling is done at a particular time in the dynamics, the coupled 

genetic oscillators do not show synchrony instantaneously but take some time to get 

synchronization (Fig. 4.3). The coupling is switched on with value c=3 at 250 hours in 

the dynamics of two coupled oscillators, and synchronization between A and A', and R 

and R' takes place after 70 hours later (320 hours onwards) . We could able to see 

uncoupled or desynchronized regime (>250hours), transition regime ([250-320] hours) 

where the oscillators start interacting each other and strongly synchronized regime. These 

phase transitions are unique and independent of initial conditions. However, if the 

oscillators are far away at initial condition, the range of the regimes slightly alter but the 

three regimes are distinct and always there in the dynamics. 
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Figure 4.3 Generalized synchronization and Desynchronization stochastic genetic 

asci llators. 

The recurrence plots between A and A', and R and R' for £ =0 show random distribution 

of points throughout the entire plain indicating the two oscillators are uncoupled and 

behave independent of each other (Fig. 4.4). However, at coupling constant £ =3, the 

points in plain of recurrence plot start concentrating towards the diagonal showing the 

correlation of the points indicating the synchronization of the two oscillators induced by 

miRNA. The broadening of the concentrating points towards diagonal is due to stochastic 

nature of the systems where intrinsic noise is the main player which resists from complete 

synchronization. 
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4.1 The impact of miRNA rate constant on coupling constant 

200() 

The genetic oscillator is regulated by miRNA consists of four extra reactions in the usual 

reaction network of genetic oscillator. Since the decay and synthesis rates ofmiRNA and 

related complexes induce impact in the overall behavior of the network and signal 

processing, we study how different rate constants of the four reactions regulate the 

overall signal processing of the network. This study is done by varying the rate constants 

and see how they influence the coupling constant. 
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Figure-4.5 Phase Diagram 

The variation in k 19 shows fluctuations in the coupling constant and the error bars in each 

data point indicates the range in which the point can tluctuate. Since the coupling 

constant on an average remains constant as a function of k 19 it shows that there is no 

interference of k ,9 to the signal processing or synchronization phenomenon. If the range 

of k 19 is in between [ 18-22] the £ becomes 3.8. This means that changing k l'ol the the 

genetic oscillators need higher value of£ for achieving synchronization. 

We then look for the impact k2o on the synchronization etliciency. We varied k2o in the 

range [0.02-0.04] to understand the impact on £. The result show that initially £ (3.2) 

increases as k~o increases to reach a maximum value of£ (4.6), then stays stationary for 

some range of k2o [0.025-0.035] then decreases to a value 4 as k2o- This indicates that the 
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response of£ due to k2f\ has three fold impact scenario: first. for small values of k2o the 

oscillators do synchronize quickly. secondly for larger values of k:· oscillators need 

higher values of£ to get synchrony due to resistance of miRNA regulation. and thirdly for 

very large values of k2o the oscillators achieve synchrony quickly again. Therefore, k2o 

has interesting impact on genetic oscillator regulation. 

We now study the impact ofk21 which is the formation rate ofCR1sc on coupling constant 

in Fig. 4.5. The results show that the value of£ increases (3.2 to 4.1) as k21 increases (5-

7). This means that the increase in the population of CRISe resist the signal processing 

between the oscillators. 

The degradation rate k22 of CR1sc has also strong impact on the coupling constant. The 

results show that as k22 increases £ decreases almost exponentially. This means that the 

decrease in the population of C RJsc the synchronization between the oscillators enhances 

and they can achieve synchrony at a small value of c. 

4.2 Competition between synchronizing ability and stress induced by 

miRNA 

miRNA induce stress to the system by regulating and exploiting amplitude and time 

period of the genetic oscillator which is toxic to the system. At the same time it also 

induce synchrony among the identical systems by acting as synchronizing agent which 

plays constructive role in the signal processing. We study the the working range of 

miRNA in terms of coupling constant £ which is a measurable parameter. As we have 

shown in previous sections that the diffusively coupled two genetic oscillators show 

synchronization at £=3.0. At this situation. the synchronization is found between the A 

and A'; as well as between Rand R' of the two systems as well (Fig. 4.6). We can see this 

behavior in both temporal behavior and as well as in recurrence plot where points in the 

plain are more towards diagonaL 

We then increase the value of£ upto a certain interval and found that there is lack of 

synchronization between two oscillators as £ increases (both between A, A' and also 

between R, R1). When the coupling constant is 15 and above, we found that the two 
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oscillators become desynchronized, which can be seen both in temporal and recurrence 

plots of both variables (A,A') and (R,R'). The results show that in moderate values of E 

the role of miRNA is constructive which is actively taking part in signal transduction and 

processing. However, if the population of diffusing miRNA is large (E is large) then 

giving stress or toxic to the system is much more than the constructive role by violating 

the oscillating behavior of the system. 
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4.3 Synchronization due to random interaction 

Generally natural systems specially biological systems interact among them randomly 

with random coupling strengths and are dependent · on various factors such as how 

random the distribution of the systems is, environmental fluctuations and many other 

situations. We study this problem by allowing the two systems to couple with randomly. 

This is done by introducing a random number r to randomize the coupling constant as £ 

in bidirectional diffusive coupling. Other parameters and their values remains the same. 
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Figure 4.7 Synchronization with random coupling constant 
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The results show that the two oscillators show SYnchronization at £ =8r as different from 

the earlier \alue £=3 (Fig. 4.7). The temporal beha\ ior and recurrence plot of (A. A') and 

(R,R') support this claim of synchronization. The coupling constant becomes as a 

function of random number r. The deviation of this value of£ could be due to random 

interaction of the two systems which depends on the situation of random interactions 

arising out of systems and environment. 

The study clearly shows that miRNA has strong regulating impact on genetic regulatory 

network. The moderate population of miRNA in the network has constructive role to 

regulate the network in tenns signal processing. stabilizing the system. However. if the 

population of miRNA is large then it may induce toxic (stress) to the system and may 

lead to violate the rhythmic behavior of the system and destroy signal processing among 

them. 
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Chapter 5 

Conclusion: 

miRNA play a precious role in biological functions as it is in the transcription-translation 

feedback model and gives us an information about molecular clock [65]. Organisms. need 

to adopt the sense of internal time in day today life and therefore biological clock arise 

through the evolutionary process of internal time kipping mechanisms that generate 

ditferent rhythms. It has seen that miRNA induce change in the amplitude and frequency 

in circadian or genetic oscillator and also the effects on the genetic regulatory networks 

which is a controlling fundamental biological process [26]. Molecular and genetic studies 

suggest that a 24 hours time period creates a interconnected feedback cycles that is 

regulate the transcription of a few number of clock genes[ 63]. 

miRNA inside the cell is less stable than the outside the cell [27]. So there is some 

question raised about extracellular miRNA's function. It is also suggested and showed by 

our study t.hat the extracellular miRNA may act as signaling molecule in cell- cell 

communication [62]. There is an important role of coupling constant of miRNA in 

regulating as v.ell as signal processing of the cellular systems because at moderate values 

of this coupling constant the cells do process signal actively and quickly. However. at 

comparatively large values of coupling constant the oscillatory behavior is destroyed as 

well as signal processing is destroyed. Therefore miRNA acts two distinct and contrast 

roles depending on the available population of miRNA in the system in regulating the 

regulatory network. 

There are challenging future works along this direction because the role of miRNA in 

inducing excess stress that may lead to either apoptosis or cancer is not well studied 
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problem. There could many types of miRNAs are involved in regulating circadian rh~1hm 

and these miRNAs need to be incorporated in modeling the system in order to get 

realistic results those may verify experimentally. The incorporation of time delay 

parameter in the system dynamics as well as in long range or relay signal processing of 

the cellular systems could be interesting problem to investigate which may give deep 

insight how miRNA \vorks. 
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