AN EXPERT SYSTEM FOR
THE QUALITATIVE ANALYSIS
IN CHEMISTRY

Dissertation submitted to the Jawaharlal Nehru University
in partial fulfilment of the requirements
for the Award of the Degree of

MASTER OF PHILOSOPHY
. (COMPUTER SCIENCE)

K. SITARAMA - RAO

SCHOOL OF COMPUTER & SYSTEMS SCIENCES
JAWAHARLAL NEHRU UNIVERSITY
NEW DELHI-110067
1987

CERTIFICATE

Thizs work embodied in the discertation titled, " An Expert
System for the Qualitative Analysis in Chemistry ", has been
carried out by Mr.K.SITARAMS RAO, a bonafide student of
Schoel of Computer & Swvetems Sciences, Jawaharlal Nehru
University, hMew Delhi - 67,

This work is original and has not been submitted for any
other degree or diploma of any other University.

¢

riLCLRAUT SHAMNEAR Dr . K. K .BHARADKWAJ
tems Specialist ssociate Professor

lenfre. School of Computer &

Svstems Sciences

1 _D Pn- Ja zharlal NMehru University
E

UNDERABAD —

1]

MNEW DELHI - &7

M‘cﬁx&sﬁ.

Prof (K.E.MNGMBIAR
Dean, uLhUUl or Computer &
Systems Sciesnces
Jawaharlal Mehru University
MHEW DELHI - &7

0.

1.

- ——

2.

3.

4.

5.

6.

7.

Acknowledgements
Introduction to Expert Systems

1.1 What are Expert Systems?
1.2 Architecture of Expert Systems
1.3 Alternative Architectures. . _

1.4 AT languages for implementing expert “systems

1.5 Some advantages of Expert System Techndlogy
Introduction to the project

2.1 What this is about?

2.2 What this project can do?

2.3 Some representational details

Inferencing

3.1 Preliminary Tests
3.2 Confirmatory Tests

Justification
Some comments on likely improvements
Listingse of the program

Appendices
7.1 Appendix

7.2 Appendix
7.3 Appendix

7-4 Appendix

v oo

ACKNOWLEDGEMENTS
This project would not have happened'without the help of

manyvpeople, for all of whom I am deeply indebted. First

I would 1like +to experess my sincere thanks to my

supervisor Dr K K Bharadwayj, for his understanding and
encourégement throughout this period. I would also like
to acknowledge ©Sri Kapoor, Systems Manager, CMC

Secunderabad for allowing me to work at CMC, and
providing - me with excellent working facilities. Words
reflect poorly my gratitude to Sri C Ravi Shanker for
his immense patience and constant guidance during my
stay at CMC Secunderabad. 1 am thankful to Mr U Bhaskar
and Mr Sethuraman of CMC, for their .inQaluable
suggestions. My acknowledgements would not be complete
without thanking Prof P C P Bhatt, Head of Computer
Science-Department, IIT Delhi and Prof K K Nambiar, Dean
School of Computer & Systems Science, JNU, New Delhi for
the interest they had taken in guiding me to CMC
Secunderabad. Lastly but not leastly, I thank Mr Meshack

Ponraj for his timely help in printing this thesis.

INTRODUCTION TO EXPERT SYSTEMS

1.1 WHAT ARE EXPERT SYSTEMS?

Expert systems are problem solving programs which
behave like human experts in specific domains. Like
human experts they are capable of advising,
diagnosing,justifying and learning. Some examples of
human experts are a DOCTOR who diagnoses the disease/
(or diseases) in a patient and gives a therapeutic
advice, a COMPUTER EXPERT who can advise a client on
the configuration of a computer system depending on
the requirements of the client, a CHEMIST who can
advise a8 student on the qualitative analysis of a

compound etc..

In each of the above examples, a3 substantial problem
is being solved that requires special knowledge
pertaining to the problem domain. The expert must
garner relevant details of the problem concerned and
apply the special knowledge in a éelective manner to
arrive at one or more solutions, If the details are
incomplete, the expert should still solve the problem
partially or go about desigining experiments by which
the missing information can be obtained. Normally,
even if a solution has been found, the task of the

d

expert 1ie¢ not over as the expert is expected to

explain and defend his suggestion. Besides all this
the the expert must be capable of acquiring more

knowledge.
Comparing with a human expert, an expert system should
possess the following characteristics, in addition to

its problem solving ability:

* Engage in a dialogue with the user to acquire

the relevant details of the problems.

* Be able to explain its problem solving process.

* Be able to take care of new discoveries or lacunae
in the domain either by experience or through a

dialogue.

* Be capable of dealing with partial information.

1.2 = ARCHITECTURE OF EXPERT SYSTEMS

'fth‘ﬁihe ;asf decade,'réseé?éhﬂo;i;;ﬁéf;?§§§tems [stefik
g82,Davis 811, found thaf;frying fﬁ'bgild an Expert
Syétem in. a procedufal ‘manner. makééa’fhe program
rigid., It has been found that such procedural programs
cannot provide a flexible dialogue, cannot deal with

partial information and are not easy to change.

The most important lesson that has been learnt is that
knowledge . about the domain of theproblem must be
separate ffqm how_ther knbuledge is to be applied or
used [Sangal 85,Davis 82]. The knowledge should be -
'represénted' declaratively, and a separéte
interprétiue component should select and apply it. It
has also been found that the knowledge of the domain
can be expressed naturally in the form of if-then
rules. The organization that has emerged most popular
is called RULE-BASED system as depicted 1in figure 1.1

below:

useRr
EXPERT 4
N
KNCWLED OIE 1o SYSTEM

ACQUISITION
sysTEM

p STATEME N,

o c pRo6LE A
\ ﬁupsleeom AnswE RS, PAT
EanAMAT‘DNS
N}]
KNCWLEDGE))
pAsc oF ol jNTERPRETEK
RULE S
r—_— bl
ICONTEXT |
-

Fiq 1.1

A

rule based system consists of three

components:

1.

a knowledge base consisting of if-then

rules (also called productions).

a current context or facts pertaining
to the particular problem being solved

by the system énd

an interpreter that decides what is to

be done next i.e what rule is to be applied.

The task of the interpreter is to

match the rules against the context

if more than one rule match, resolve

conflict and choose one of them and

apply the chosen rule

major

The interpreter is 1in a loop performing these three

st

eps until no more vrules are applicable or a solution

has been found.

Besides the production system there are two

major components of an expert system.

other

1. 1I/0 SYSTEM

This is an interface which puts questions to the user
and passes the answers to the production system.
Similarly it displays advice or explanations to the

user from the production system.

2. KNOWLEDGE ACQUISITION SYSTEM

This is an interface to a human expert who monitors

the performance of the system and updates rules in

the knowledge base.

1.3 ALTERLNATIVE ARCHITECUTRES

Though the above méntibned structure is central to all
éxpert systems, the nature of the problem demands
differeht ways of interpretationa Depending on the
nature of interpretation an expert system may be

classified into two types as follows:
1. FORWARD REASONING

Forward rlasening builds bLp from the available facts
about a situation' to dedice conclusions. It is
appropriate where the possible eohclusioné cannot be
prespegified, as in desighihg av computer
gonfighréﬁion; where an éndlésé variety of end results

are fedsible,
2. BACKWARD REASONING

Backward reasoning involves working back from a
conclusion or goal to sge if the conditions which
‘would make it true are satisfied. It is appropriate
where thé possibleé conclusions can be specified in

advance _ for example in medical diagnosis or

T YR TNy T U T S T B U T T

The abodve classification is too broad in the sense
T oo . o - - A 5

that reasoning forward or backward is an overall
problem <olving strategy. However thé search strategy
may itgglf yse heuristics or fuziy algorithms or any
other copflict resolving methed in search which suits
the domain. The conéepts ifnvolved in_sohe of them are

o ¥ RSN PR I TP B

1. HEURISTIC SEARCH

In order to solve many hard problems efficiently, it is
often necessary to cnstruct a control structure that is
no longer guaranteed to find the best answer but that
will almost always find a very good answer. Such a
technigue is called a heuristic which improves +the
efficiency of a search process by resorting to rules of
thumb. One ‘example of a goéd general-purpose heuristic
that is useful for a variety of combinatorial problems
is the nearest neighbouf algorithm,l which works by

selecting the locally superior alternative at each step.

2. PROBABILISTIC REASONING
So far we have assumed that all our facts are either
known to be ’'true’ or 'false’'. We have essentially not

considered the possibility that we might know something

that 1is ’probably true’. The mathematical theory of
I

probability provides a way of describing and

manipulating such uncertain knowledge. Sometimes very

simple technigues of probability can be used effectively
in AI.

One of the most useful results of probability theory is
Bayes’ Theorem, which provides a way of computing the
probability of a particular event, given’some set of

observations.

Let

P(Hi}E) = +the probability that hypothesis Hi is true
given evidencs E

P(EIHi) = the probability that we will observe
evidence E given that hypothesis i is true

P(H1) = +the a priori probability that hypothesis i .
is true in the absence of any specific
evidence.

k = the number of possible hypothesis

The theorem states that

P(E!Hi) * P(Hi)

]

P(Hi|E) e

> P(E|Hn) * P(Hn)

n:1‘

7

For more information on Bayes’ Theorem and probabilistic

reasoning, the reader can reder to [Charniak 82].

3. FUZZY REASONING

Let the symbol U, denote a universe of discourse, which

may be an arbitrary collection of subjects or

mathematical constructs! If A is a finite subset of U

whose elements are ul,u2,....,un, then A is expressed as
A = {ul,u2,...... ,un}lt.

A finite fuzzy subset A of U is a set of ordered pairs:
A = { (ui,mu(ui) }
where ui belongs to U, and mu{(ui) represents grades of
membership (or membership functions) which indicate the
degreee of membership. If all mu(ﬁi) belong to {0,1},
the "fuzzy subset” will be understood as ‘a “nonfuzzy
subset” or "ordinary subset”. The functions mu(ui)are
then beinary boolean functions with 0 and 1 denoting no

membership and full membership respectively.

LINGUISTIC VARIABLES AND FUZZY SUBSETS

The concept of fuzzy subsets 1is exemplifigd with
linguistic variables. Informally, a linguistic wvaribale,
L is a variable whose values are words or sentences in a
natural language or in a subset of it. If ége. is
interpreted as a linguistic variable, then its term-set
T(age) might be

T(age) = { young, old, very young, not young, very old,

very very young, more or less young, —--- }

where each
fuzzy subset of a
[0,1007.

YOUN &}
_ 74 — - YERY YoUNG&

— —

of the terms in T(age) is

universe of discourse,

expressed by

say U

¢

NoT VERY Youna

E X fRE S3€D

Ry Fueezy

= .
v HorE on. LESS OLD
et /
i
aof— — — - ~ _ — — —_
£
W 1 {
%
| i
!
! 1
. D %,
o - -
30 AGE GO
VARIOUS LiNa@uisTic VALUES ARE

cETS

3. INDEXING AND RULE SETS

Matching is the most expensive step in the applicatiOn

of rules. To make it more efficienty, rules can be

indexed by predicates or .parameters. Whenever a va}ue
of the parameter is obtained, it can be used to
determine which rules match due to the new value being

available.

Indexing does not change the problem solving behavibur

of an expert system, except perhaps in making it

faster. The notion of rule sete originally suggested
to deal with the efficiency issue 1s a_ variation in
the architecture. In this ruleg .are partitioned into

sets. At a given time one set 1is active. What that

means is that matching is attempted with rules in the
current rule—-set only. Switching among the rule sets

is carrvied out by the interpreter.

5. FUNCTIONAL ATTACHMENT ‘ - - .

Context is an efficient data structure for storing
different parameters,; and the parameters are ctored

and retrieved using functions attached to predicates.

P

An alternative “to this 1is to store parame&gﬂﬁn;s
‘ e AN % ’

assertions. . s A

-4

Al LANBUAGES FOR IMPLEMENTING EXPERT SYSTEMS

Higher ievel computer anguanss Tand o fall inte twe
broag olasses. The programs that are written 1n the
ALGOL ~-11 ke, or bleock structure, languages are

recognizable by the many block-delimiting BEGIN and END
statements. These languages usually allocate space for
varib:les, arrays and other data before the program is
executed{(at compile time), so that during gxecution the
space available For its data i1s fixed. The nested
structure of the blocks defines the scope of the program
variables and similarly defines which procedures can
call which other procedures. ‘

The LISP-like languages are characterised by dynamic
allocation and dynamic scoping. Dynamic allocation means
that the space to be used by a data cobject is not fixed
ahead of time but is allowed to grow and shrink as
needed -~ an essential attribute for 1list processing.
Dynamic scoping means that any procedure can call any
other, and variable values are passed down the control
chain rather than being determined by the static block
structure. That is once a varibale 1is declared, say
in procedure A, it can be accessed from within any
procedure B that A calls or any procedure C +that B

calls and so forth regardless of when A,B and C appear

in actual program text.

~
- -

Some of the desirable feaut

ures of an AI language are:

1. Good facilities for manipulating lists, as lists are
widely used in Al programs.

2. Late binding times so that the size of the data
structre or the type of an object to be operated on, are
not fixed before hand.

3. Pattern matching fécilities, both to identify data_
and to determine control.

4. Facilitites for performing some kind of automatic
deduction and for storing a database of assertions that
provide the basis for deduction.

5. Facdilities for building complex knowledge structures,
such as frames, so that related pieces of information
can be groupea together and accessed as a unit.

6. Control structures that facilitate goal-directed
behavious(top-down processing) in addition to the more

conventional data-oriented(or bottom-up) processing.

IPL,, LISP, INTERLISP, SAIL, PLANNER, KRL, FROLOG are
some of languages implemented for Al applications..Their
feautures are discussed below in brief:

IPL

IPL (Information Processing Language) is a very early
list-processing language. The language resembled a
machine language more than a high—ievel language and is
no longer in use.

LISP

LISP is the most established Al language invented at MIT

by John Mc Carthy in the 1850s. LISP is more convenient
for AI work than conventional data-oriented languages.
One reasén is that it allows the direct representation
of symbolic concepts and the relationships between them
in the form of data structures called lists - in fact
lists are the only data structures in LISP. Another
convenience of LISP is that it‘does not require the
data types of each variable and the allocation of hemory
to each data type, +to be specified at the beginning of
the program; insteadvdata types are determined at run
time,and memory is alllocated flexibly according to
requirements.

INTERLISP

There are many dialects of LISF, wvarying on everything
from the names of standard functions and the order of
their arguments to substantive issues involving the
kinds of feautures provided. One of them INTERLISP, is
sufficiently different from others. It has all of the
capabilities of Dbasic LISP, and provides additional
feautures, whigh include:

1. a variety of data types, like arrays and bit strings,
in addition to lists. N

2. a spaghetti stack, in which several program contexts
are stored simultaneously, so that control can be passed
back and forth between co-routines.

3. or variety of tools to facilitate programming. DWIM

an acronym for Do What I Mean, is a tool which

interfaces'the system and the user, and does such useful
things as correct spelling mistakes.

SATL

SAIL is an ALGOL derivative and is the most similar to
conventional general purpose programming languages.
Since SAIL provides all the standard feautures of a
programming language, it has been. used in speech-
recognition which involves a good deal of conventional
computing.

PLANNER

PLANNER is a language built on topo LISP and designed
for representing both traditional, forward-reasoning as
well as goal-directed, backward reasoning. Programs in
PLANNER consist of two types of statements:

1. Assertions, which simply state known facts.

2. Theorems, which describe how new facts can be
informed from old ones.

There are three kinds of theorems that can occur in
PLANNER programs:

1. Consequent theorems, that describe backward or goal-
directed reasoning

2. Antecedent theorems, that describe forward, or data-
directed, reasoning. |

3. Erase theorems, that delete assertions from the
database.

One of the main difficulties that arose with FPLANNER was
that the only available control structure was

backtracking, which was automatic rather than being

under the control of the programmer. To remedy this, a
new language CONNIVER was built in which the programmer
can explicitly direct the control flow of this program.
KRL

"KRL is a language built on top of INTERLISP, that
facilitates the representation of knowledge ‘in frame
structures (slot-and-filler structures). Its design was
motivated by the following assumptions about knowledge
representations and programs that use them.

1. Knowledge should be organized around conceptual
entities with assoiciated descriptors and procedures.

2. A description must be able to represent partial
knowledge about an entity ‘and accommodate multiple
descriptors which c¢an describe the associated entity
from different viewpoints.

3. An important method of description is comparison with
a known entity with further specification of +the
described instance with respect to the prototype.

4. Reasqning is dominated by a processs of recognition
in which new objects and events are compared to stored
sets of expected prototypes, and in which specialized
reasoning strategies are keyed to these prototypes.
PROLOG

PROLOG originated as an attempt to design a language
which would allow the programmer to specify the
objectives of a task in terms of symbolic logic,

developed by Alan Colmeraur in Europe in the 13870s.

PROLOG originated as an attempt to design a language
which would allow the programmer +to specify the
objectives of a task in terms of symbolic 4logic. A
.PROLOG program is predominantly "DECLARATIVE" in that
it is concerned with stating WHAT has to be done, in
the form of »rules and facts, while a conventional
program is more "PROCEDURAL" and concerned with HOW the
task should be done. A major advantage of PROLOG is
that the expert systems concept of an inference engine
working on a'knowledge base, and seeking to satisfy
assigned goals by fixing rules, maps very directly on to
the language; in a sense any PROLOG program can be seen

as a sort of expert sytem.

A LISP program consists of a series of commands that
manipulate sSymbols while a PROLOG program consists of
statements of facts and rules. The powerful pattern
matching capability and an automatic backtracking
facility in PRFOLOG are an added advantage over LISP.
PROLOG procedures are also flexible in the sense that
the input and output paramerters are not predetermined

but may vary from call to call.

1.5 SOME ADVANTAGES OF EXPERT SYSTEMS

Expert systehs have emerged in the last few years as
the 1leading practical application of the techniques
developed in Al research. A new generation of expert
systems are now put to use on day_to_day problems as
they provide the most cost_effective means of doing
the job. Some of the advantages offered by the expert

system technology are given below.

1. Expert systems allow the computerisation of tasks
which were previously unprogrammable. A leading
example is the system used by DEC to configure their
UaX minicomputer installations, originally known as Rl

and now popular as XCON.

2. Expert systems are easier for users who are not

programmers to understand. Because a knowledge base

is a fairly direct representation of human knowledge
non_specialists can monitor its correctness and
progress. At the same time the inference
engine/knowledge base architecture allows the system
to run even before the knowledge base is complete, and
to provide some explanation of the reasoning behind a
given conclusion. These feautures can be invaluable in

the development of phase of a system.

3. Expert systems can allow a spectacular increase in
programming productivity, Though productivity claims
range from 10 to 30 times that achieved by
conventional methods this is one area wheve the
advantages of expert systems technology need to be

proved in use.

4, Expert csystems can provide a genuine extension of

bhuman capabilities. Expert Systems have already shown

the capability of exceeding human performance 1in
certain circumstances. A system dewvweloped at the
University of Illinois for diagnosing disease in
soya_bean plants can now produce more vreliable

diagnosis than the leading expert who set it up.

More dramatically in the foreseeable future expert
systems will be able to take decisions in fast
changing environmens from battles to foreign exchange

trading, more effectively than humans ever could.

Where such systems will eventually lead is impossible
to predicty their capabilities could be wirtually

boundless.

INTRODUCTION TO THE PROJECT

2.1 WHAT THIS PROJECT 1S ABOUT?

Thise 1s a vrule based expert system which identifies
qualitatively the cation and the anion in a giuén
compound interactively with the user, asking only a
minimal number of questions. The whole problem can be
visualised as a8 tree as shown in figure. The whole
domain can be split into two individual sub tasks
consisting of (1) the preliminary tests and (2)

confirmatory tests.

The preliminary tests 'give a fairly good idea of the
constituent radicals. They are used to eliminate
other cations and anions from the complete set of
possible anions and cations. These tests have been so
designed that each test is capable of indicating a
subset of cations and/or anions in the complete set of
radicals identifiable by the test. For more
information on the preliminary tests vrefer to appendix

A or any standard text book on qualitative analysis

in chemistry.

- Once an estimate of the vadicals present in the

compound 1is obtained in the preliminary test, we

proceed to the confirmatory tests. In the preliminary

START

IMINAR
PRELININARY N IRMATORY

TESTS TESTS
DRY-HEAT CHRARCOAL CoNeC- R CONFIRM . | »
, , CONFIRM
© TEST TesT | ® ® % \ TEST ANION CATION

L RIVH { MagnESISH ,
CHLORIDE SULPHATE e a o a
TEST TEST

ETHYL
cntoRiDe

TEST

QAR
cALORIDE
TEST

- s e o @roupr Vi

e & o POTASS

Pa‘msswn
jopIDE
TEST

POTASSIUM
CHRO MATE
TEST

tests, we infer from a set of reactions the possible
radicals, while 1in the confirmatory tests we proceed
from the radical to a set of definitely known

conditions to confirm the radical.

For example in the preliminary tests,if carbon dioxide
is liberated on heating the salt then the presence of
carbonate or bicarbonate is indicated. While in the
confirmatory tests for carbonate and bicarbonate if a
white precipitate is formed on adding Magnesium
Sulphate solution to the salt then carbonate can be
confirmed. If a white precipitate is formed on heating

the solution, then bicarbonate can be confirmed.

The results obtained in ‘the preliminary tests must be
confirmed before declaring the final result. It may be
noted that the confimatory tests need not necessarily
confirm the results obtained in the preliminary tests.
This necessitates a means by which the radicals can be

confirmed independent of the preliminary tests.

Confirming an anion is fairly simple and consists of
identifying a test which results in a3 known condition
like the formation of a precipitate or evolution of
gas etc. On the other hand, to confirm & cation, a
fixed set of sequential steps may have to be
performed depending on the group to which the cation

belongs. This is because all the cations are divided

into six groups depending on their behaviour with
specific group reagents, and a progressive elimination
between members of the same group introduces an
element of sequentiality., For more information on
groups and group reagents in the confirmation of
cations vrefer to Appendix C. All 4groups have a
particualr group vreagent excepting the fifth and sixth

groups.

2.2 WHAT THIS PROJECT CAN DO?

This project is a3 rule based expert system in PROLOG

which performs the following fynctions:

1. Determines the radicals in a compound
interractively by asking a minimal

number of questions(inferencing).

2. Provides justification at the user’s
request at any stage of execution as
to WHY a question has been asked or as

to HOW a deduction has been arrived at.

3. Can perform any of the preliminary’
tests or the confirmatory tests for
any radical independent of the

inferencing mechanism in 1.

The user 1= expected to give only an integer or
‘yves’ or ‘no’ as a vreply in response to a question
menu posed by the expert, making it easier for him

communicate with the expert. However in addition

an

or

to

to

these the user may request the expert to justify its

questions either by a WHY or HOW.

2.3 SOME REPRESENTATIONAL DETAILS

RULE TYPE I

The PRELIMINARY routine uses indexed rule sets in its
inferencing process. The rule sets are indexed by
their first argqument. A typical rule in a rule set
has the following configuration.
ctxt(indx,conml,conma2,..,conmn,

[catml,catm2,..,catmr],[anml,anm2,..,anmql).
ceene rule type 1

where

ctxt: takes one of the following predicates;
gas_evolved,chn_colour_residue,
colour_sublimate,dilh2sod4,conch2so4,
cobalt_nitrate,charcoal_cavity,
colour_flame,colour_bead.

indx: is an integer value which indicates the

index of the rule in the rule set.

conmn : is the nth condition for the mth rule in
the rule set for the inference.

catmr: is one cation which can be inferred when
(conml,conm2,...,conmn) are all true.

anmgqg: is one anion, which can be inferred when
(anml,anm2,...,anmn) are all true.

For a listing of these rules see pages p.8 and‘p.9 in
the program listings.The example below illustrates the
meaning of the rule in more detail. In dry heat test
the <alt is heated in a test tube. A change in the
colour of the residue on heating the salt is one
likely result, which indicates the cation in the

salt. The first three rules in this rule set are given

below:

chn_residue(l,yellow,white,["Zn+2,°Sn+271,[1).
chn_residue(2,brown,brown,["Cd+2’],[1).
chn_residue(3,brown,yellow,[‘Pbt+2’,Bi+3°31,[1]1).

A close look at these rules shows that the
first argument 1is an integer value. This wvalue is
used as the index in retrieving the last arguments of

‘ctxt’, which are the lists required for inference.

These rules can be translated into english as

If the change in colour of the residue is yellow when
hot and white when cold then infer Zinc and Tin as the

possible cations.

If the «change in colour of residue 1is brown when hot
and brown when cold the infer Cadmium as the possible

cation.

If the change in colour of residue is brown when hot
and vyellow when cold then infer Lead and Bismuth as

the possible cations.
RULE TYPE I1I

The confirmatory tests for anions use 3 different type
of rules for their inference, which has the format as

shown below:

test({ [radl,[dell,dol2,...,declpl,{resultl]],
[rad2,[do2l,do22,...,do2p]l,[result2]],

[radn,{donl,don2,...,donql,[resultn]]
.
«es: vule type 11

where

test: is the name of the test. This name is.
the reagent used in the test,.

radn: is the nth radical which can be
confirmed by the “test’.

donq: is the qth step in the procedre to
be performed.(donl,don2,...,donqg)
together form the complete
procedure for the test.

resultn:iis the result in which test

should end for confirmation
of the radical ‘radn’.

The 1list [donl,don2,...,dong] shall be referred to as
the DO list and the list {resultn] as the RESULT list
hereafter. The example below illustrates rules of
type I1.

potassium_permanganate

‘" [nitrite,[write_sol],

[disappearing,of,the,pink,colour,of ,“KMn0O4°11,
[sulphite,[write_sol],

[disappearing,of,the,pink,colour,of ,"KMn0O4-11],
1.
In the above rule, “‘potassium_permanganate’ is the
name of the test, which 1is named after the reagent
used., This reagent 1is capable of confirming two

radicals viz nitrite and sulphite.

The (s]a] list consists of a single predicate
‘Wwrite_sol’, which writes a sentence as below:

To 2-3 ml of Z, add a few drops of X

where Z and X are variables and

Zz can take the values ‘salt_solution’ or ‘sodium
carbonate

extract depending on whether the salt is soluble
in water

or 3 sodium carbonate extract has been prepared
for the

salt solution.
X takes on the reagent used i1n the test, which is
the same

as the name of the test,
Depending on the user‘s response, the ‘name of the
test’ and the “solubility of the s3alt’ are stored in
the knoledge base as facts, which are retrieved later
by the “writse_sol” predicate in writing the sentence.
Refer to page p.20 for a listing of these predicates

which, fill a sentence dynamically depending on the

context and display the sentence on the screen.

Summarising, vrules of type Il can be translated into

english as

If the test to be performed is ‘“test’ and the radical
is ‘radical’ then if dol, do2, ... , don are performed
in that order then the result should be ‘result’ to

confirm the radical

RULE TYPE II1

The CONFIRM_CATION routine used another type of rules
which look like rules of type IT in their
structuring, except that the DO list is replaced by a
list which has the name of the solution to be taken

for the test,.

test([([radiecall,[solutionl],[{resultl}],
[radical2,[solution2},[result2]],

E;;dicalm,[solut;;;m],[resultéii
P rule type II1
The ASK_C routine asks the next question in the
confirmation of cations. 1[It gives the procedure and
then asks a question. The procedure consists of a

sentence which looks like as given below

To 2 ml of the X1 add a little of X2

where
X1 is the value of the “solution’
in the above rule for the test
X2 is the name of the test which by itself is

the name of the reagent used in the test.

The rule translated into english looks like as below

If the test to be performed is “test’ and the radical
is “radical’ then on adding the reagent “test’ to 2 ml
of the solution the result 1is ‘result’ then the

radical is confirmed.

The example below illustrates the above rules.

potassium_chromate

t [lead,[above,solution],[yellow,precipitatel],

[silver,[original,solution],[brick,red,precipitatell,
[barium,[above,solution],[{yellow,precipitate]]

%i.the above rule “above solution’ is the solution in

hand which 1is obtained after one or more reactions as

requested by the expert; ‘original solution’ is

solution of the =salt obtained in the beginning for

performing the wet tests for cations. This rule can be

translated into english as

If the test to be performed 1is ‘potassium_chromate

test’ and the radical is

‘lead’ then on adding the reagent
potassium_permanganate to 2 ml of

the “above solution’ the result is
‘yellow precipitate’ then the radical
lead is confirmed;

‘silver’ then on adding the reagent
potassium_permanganate to 2 ml of

the ‘original solution’ the result is
‘brick red precipitate’ then the
radical silver is confirmed;

‘barium” then on adding the reagent
potassium_permanqganate to 2 ml of the
“above solution’ the result is

‘yellow precipitate’ then the radical
is confirmed; '

1G_MODULE:

The rules of type II mentioned above are used by the
I0_MODULE in questioning the user. The working of the
I0_MODULE better 1illustrates the selection of the

structure for rule type I1.

The I10_MODULE performs three things always.

1. Questions the user depending on the context.

2. Accepts the user’s response to the question.

3. Checks the value returned by the user and
returns the same if it is an integer or an

s

ves’ or ‘no‘, to the calling routine.

The context that is passed consists of the ‘radical”’
and the “test’. If the radical! in the context is an
anion, then the ASK_M routine retrieves the structure
stored in the vrule II for the test. The GET_PROCEDURE
routine takes this structure and returns the DO list

and the RESULT lists for the radical in the context.

The EXECUTE routine next executes the DO list, which
consists of a series of evaluable predicates. The
RESULT list 1is used in questioning the wuser on the
result. After questioning the user on - the likely
result that confirms the anion, I0_MODULE waits for
the response of the user and expects him to reply an

‘yes’ or ‘no”.

If the vradical is 8 cation, the ASK_C routine poses
the next question. Unlike the ASK_N routine, ASK_C
consists of an explicit listing of all the contexts
as arguments of ASK_C. ASK_C matches against a
different context each time to pose the question. It
is possible to dispense with the explicit 1listing of
all the contexts. More of this shall be discussed in

chapter 5.

INFERENCING

This chapter consists of two <sections, one on the
preliminary tests and the second on confirmatory
tests. The implementation of these two tasks have
been discussed in detail. Thé user is expected to read
this chapter with a constant reference to the listings
of the program. The names of vroutines performing
different tasks are written in bold letters, of the

program, though the actual program uses small case

letters.
2.1 PRELIMINARY TESTS

There are six tests in this module, and one or more of
the rules corresponding to these tests(pagées p.4 to
p.6), are triggered by an interpreting module, which
incorporates a best first strategy and a8 heuristic.
Each _test has an indexed rule set in the knowledge
base. A typical set of rules for a test has the
following representation.
ctxt(Indxl,conll,conl2,--,conln,
[catll,catl2,--,catlpl,[anll,ani2,-—-,anlql).
ctxt(Indx2,con2l,con22,-—,con2n,
{cat2l,cat22,--,cat2r],lan2l,an22,--,an2s}).

ctxt(lndxm,conml,conmz,—-,conmn,

[catml,catm2,-—,catmo],[anml,anm2,-~,anmal).

52: Warning, can not justify,
-=rule type I

A listing nf theer rules ia foaund aon naaes 0.8 and

When the test to be performed is decided by the
control strategy the test is invoked. The procedure
as to how the test is to be performed is read from a
file. The file consists of the ‘procedure’ for the
test and also a menu with the Index numbers and the
corresponding conditions as listed in the rule type I
(see Figure 3.1.1) are vread from a3 file by the
10_MODULE. The I10_MODULE then waits for the input
from the user. If a3 “why’ or a “how’ 1is keyed in, the
MAP_I and ANS_HOW modules justify the question asked
by giving explanations, depending on the context, as
explained later in chapter four. If the wuser keys in
an integer from the menu the I0_MODULE returns, the
value read to the test. With the usr keyed_in value as
the index number, the facts stored in the rule type I
of the test are retrieved., The wvalues 1in the
conml ,conm2,---,conmn columns are used to answer the
how explanations, while the last two columns which
are lisfs_ containing the possible cations and anions
respectively for the conditions as given by the user

are returned as the inference from the test.

ake a platinum wire and make a loop at its end. Clean

it thoroughly.Dip this wire 1in a tecst tube containing

a little o¢f <Concentrated HCXL and then heat it in the

axidising flame. If the platinum wire is not clean,

some colour will be imparted to the flame. Repeat the
process till the platinum wire does not impart any
colour to the flame. Now take a pinch of the salt
under analysis on a watch glass and make its paste
with a few drops of concentrated HCl. Touch this
paste with the platinum ioop and introduce it into
the oxidizing flame. Note the colour of the flame with
the nacked eye as well as through a blue glass.

COLOUR OF THE FLAME !

| WITH NAKED EYE | THROUGH BLUE GLASS|
- | == |
1} golden vellow | 1invisible |

121 pale_violet pinkish
131! bluish qareen visible
4] crimson crimson

| |
| |
|]
|51 brick red | yellow]
|]
| |
| |

|6l grassy green green
171 bluish white none
|81 no colour none

The abowe procedure 1is performed for any test invoked
by the interpreting module. The interpreting module

uses the following algorithm in triggering a test.

1. Forms a 1list Q consisting of 3l1 the preliminary
tests using the heuristic that the test which is
capable of detecting the ‘highest number of radicals
occupies the first position in the list and second

highest second and so on i.e. all the tests are

ordered in a descending order of

radicals detectable by the test.

2. UNTIL the list Q is EMPTY or the lists

the number

of

returned by

a test M and N are SINGLETONS the following is done:

2a) Elimination of those tests in Q which

cannot qualify as children.

2b) Evaluation of the static evaluating

function for all the tests in Q.

2c) Performing that test for which the static

evaluating function is maximum and removing

it from the list.

3. If there is success M and N are returned

else empty lists are passed.

The above three steps are detailed below.

*Once the user requests the expert to assist him in

analysis of the compound, keying ANALYSE

PRELIMINARY routine 1is called which

preliminary tests.The SEARCH for

radicals begins with all the tests qualifying

performed. Before going into the
SEARCH routine, we shall see the
parameters passed between call

SEARCH_routine.

< Q,M,N,RetP,RetQ »

performs

identifying

to

details

format

call

to

of

of

of

the

the

the

the

be

the

the

the

where

Q : is the current list of remaining tests
M : is the running list of cations
N t is the running list of anions

RetP

is the list of cations to be returned by the

test to be

performed next

RetQ

is the list of anions to be returned by the

test to be

performed next

Once the search routine 1is invoked, the ELIMINATE
routine eliminates all those tests which are not
eligible as children depending on the running lists M
and N as given below:

1. If both M and N are empty lists then Q

is returned, as no elimination is possible.

2. If M is a singleton then all those tests
which can identify ONLY cations are eliminated

from @ and the remaining list is returned.
3. If N is a singleton then, all those tests
which can identify ONLY anions are removed

from Q,and the remaining list is returned.

4, If either M or N is an empty list the list

Q is retained.
The list returned by the ELIMINATE routine is passed
on to the EVALUATE routine. This routine returns the
next test to be performed as that test which has phe
highest value for the Static Evaluating Function(SEF),

SEF = Vlintersection of| + lintersection of]
IM and Cation |] N and Anion i

where
Cation: is the complete set of cations that can be
detected by the current test

Anion: 1is the complete set of anions that can be
detected by the current test

The EVALUATE routine makes use of the following points
in conflicting cases where the test to be evaluated
cannnot be determined on the basis of SEF:

1. If more than one test has the same value for SEF,
that test which occurs first in the list Q will be
returned. The heuristic that has been used in

ordering the teste in O i1n the beginning 1i1s made use
here.

2. If the list returned by the ELIMINATE routine is
not empty and the running 1lists M and N are not
singletons and the maximum value for SEF for all the
tests in the above list is zero then that test which
occurs as the head of the list Q is returned.

The DEL routine deletes the test returned by the
EVALUATE routine, from the list vreturned by the
ELIMINATE routine and returns the deleted list as T3.
The JUSTIFY module requests the user to perform the
next test and waits for the user‘s reply as to whether
he wants justification for the same. If the user‘s
response is affirmative, the following two types of
justifications are given depending on the values of M
and N.

1. If M and N are empty 1lists then the number of
radicals detectable by a test is taken as the
criterion, which is displayved for all the tests in Q

and the test with the highest wvalue will be the test
to be performed.

2., If M and N are not empty lists then the
intersection of the running lists M and N with those
cations and anions which can be detected by the test

is displayed.

Figure 3.1.2 illustrates how the JUSTIFICATION ‘module
asks the user whether he 1is interested in the
justification or not. It takes the case when

Q=

[charcoal _test,borax_bead_test,dil_sulphuric_acid_test,

conc_sulphuric_acid_test]

M = [Na+]

N = [NO3-,I-,C1-]

The ‘List of remaining preliminary Tests’ 1in figure
3.1.2 is pruned af ter performing the
“conc_sulphuric_acid_test’. The tests

‘borax_bead_test’” and ‘dil_sulphuric_acid_test’ have
been eliminated from the 1list after performing the
test. The name of ‘borax_bead_test’ has been removed
from the 1list as it can detect only cations and the
“list of possible cations’ 1is a singleton and
contains ‘Na+‘ as its element. The name of
‘conc_sulphuric_acid_test’ has been removed by the DEL
routine as it has been performed. The name of
“charcoal_test’ has been removed from the list as it
can detect both cations and anions.

List of remaining preliminary Tests= [charcoal_test,
borax_bead_test,dil_sulphuric_acid_test,
conc_sulphuric_acid_test]

List of possible cations= [Na+t]

List of possible anions= [N03-,1-,Cl-]

ok

I want you to perform conc_sulphuric_acid_test
Do you want me to justify?
>yes.,

Out of the above possible cations and anions
charcoal_test can identify the radicals Pbt+2

flame_test can identify the radicals Nat+ K+ Pb+2

borax_bead_test can identify the radicals none

dil_sulphuric_acid_test can identify the radicals
none

conc_sulphuric_acid_test can identify the radicals
NO3- I- Cl-

ok

Tell me whether the evolving gqas 1is a 1. colourless
and odourless 9gas 2. colourless gas with odour 3.
coloured g9as with pungent smell

2.

Tell me whether the evolving gas is COLOURLESS and 1.
smells like rotten eggs and

turns lead acetate paper black 2. a
characteristic suffocating smell

and turns acidified K2Cr207 paper green 3. has a
pungent smell and

produces white fumes with ammonia and

a white ppt with AgNO3 solution 4. characteristic
vinegar like smell 5. sweet <smell and wvapours catch
fire 6. characteristic ammoniacal smell and

turns moist turmeric paper brown

>3.
List of remaining preliminary Tests=
{charcoal_test,dil_sulphuric_acid_test] List of

poscible cations= [Nat] List of possible anions= [Cl-]

ok

The DO routine does the next test. It invokes the test
to be done as decided by the previous routines. All
the tests return two lists, the first being the list
of possible cations and the second that of anions.
Each test also returns a trace list which sumps up in
a sentence the result of the test, The
conl,con2,--—-,conn in rule type I as explained in the
beginning of the chapter are stored in this trace
list. Once a test is completed, the DO routine asserts
in the knowledge base two kinds of facts.

1. Firstly the result of the previous test 1is stored
as follows *

{ result(Test,Cation,Anion) >
where result is the predicate used Test is the name of
the test performed last Anion is the inferred list of
anions in the test and Cation is the inferred list of

cations in the test

2. The “Trace’ list returned by a test is also
asserted as a fact in the knowledge base as
how(Trace) where “how’ is the predicate and "Trace’ is
the list returned by the test. The results of the
test stored as result(Test,Cation,Anion) in the
knowledge, is utilised in the CHECK_CONSISTENT routine
which is explained next, while the facts how(Trace),

are used to give ‘how’ explanations as explained in
the next chapter.

The CHECK_CONSISTENT routine checks for consistency
in the results of the previous test.If the skein of
logic in choosing the next test to be performed in the
previous modules is true, then the result of the
present test must yeild in the pruning of running .
list. In other words, the results of the present test
must be a subset of the running list. If this
condition is not satisfied, the
CHECK_CONSISTENT routine displays the results of
previous and the present tests and offers five
options as below to remove the inconsistency.

1. retain the results of the previous test 2. retain
the results of the present test 3. take union of the
results of the present and previous tests 4. take
intersection of the results of the present and
previous tests 5. you want to perform the last test
once again.

For the first four options corresponding values are
returned while in the fifth option, the result of the
last test is retrieved from the knowledge base and the
test is performed once a3g93in. The results obtained in

the second performance are returned.

Af ter the consistency check on the results obtained
succeds, . the results are output by the OUTPUT_STATUS
routine. With T3 as the current list and results
returned by the CHECK_CONSISTENT routine as the
running lists, the SEARCH proceeds, till both the
running lists are singletons or T3 is empty. In
Fiqure 3.1.2 the status regarding Q, M and N are
output by the OUTPUT_STATUS routine.Figure 3.1.3 gives
a complete listing of a session with the PRELIMINARY
tests routine.

iours if any do
jes may take plac

b4

vapour is ayolvy

g
S. Fusion or =wellzn9uaf the salt is cheserved
&, karter of Crestallizastion iz produced

7. Mo reaction b= absesruved

Indicate ONE or MORE of yaur aption
the esction. DELIMIT your options

24.
Is there = Rratkiing noise on heating the sxle?
es.

-ist of remzining preliminary

{charcoal_ test,flame_test, borax _beaad_
@il_sulphuric_acid_test,cconc

:_“1r_th:n, . Cent,
List of possible catiors= [h 27
List of possible anions= [-

oK
I want vou to perform flame_test

oo vou want me to Justify?

P ALY “.

Qut of the aboye possible .cztions and anions
charcoal test can identify the radicals

Pb+z e e : ; ' :

flame tnst ean—

xdentify the radicals

e
BE i
;s

‘ftﬁglrédicélsfﬂw

AR

noene

conc sulphurlc acid_ tesf can 1dent1fy the ra g S
NO3-_I- Cl i i
= ; b \ e
ok ; & s [N (et T, Wﬂ~,.h !
L dab e “ = e
" Take = platinum B loop =zt its end. Clean it fnw";gﬁxy Dip
thiz wire i ube containing & little of concentrated HCL and the
”Heaf zt in ing flame. If the plati not clesn, = ;)
Y will rad to the flame, Repesat e till the platin
S?::U'~t~‘ngt @yt any colour to L ame? a pinch of the sal
ungey on q watch glass =-- its "Ste with a few drops of

Canenfvated HCL. Touch thiz pasts mlth t* nlatinum loop and inty oduce
into the oxidiaing flame. Note the colouvy of the {lame Withh the nacked ey
ad well as through a blue ;ﬁass

ZTLC A

| , WMITH ‘l‘—!!"’«EL- __:‘__.’4'.':‘;5{‘
{%#,g_;_______________: ___________________ |
1. goldea yellow invigible f

§%5 pale violet pgnk?sh

.3 bluish_green visible

i9. Ccrimsow €Y imson

=S Bl ok Tred L d

|6} grassy 3 g

171 bluish whi g

{8] no colou

LtQt of xemmmng preliminavy Tests= [chavcoal [
gulphurzc dCLQ tegt] —&“*P"

anicocns

chararuuribf = Ulne:aY llah ‘mell

sweet smell and YEpOUYS o fire

charzcteristic ammoniacal smsll and
turns moist turpmeric paper brown

List of remaining grnllminafy Teste= [:harcoal_teet,dil_sugapuxig*ac
_1=t af poqr:rlm Cdf one= [Na+? .

ck
: 7= : howe.

In dry_heating_test
if there is crackling noise then infer
Nat k+ Pb+2

No3- T- Cl-

ck

In flame_test
f the colour of the flase is goldaﬁ yellow with naked weye and

invisible with~biﬁa 1iass‘theﬂ infer
Na+ [T

ok

In conc_ sulphuric_acid_test v

:en adding conc sulphuric acid

‘if the gas is colg¥rless,and purcent smeoll and white fumes uith amm4
uhite ppt with si - nitrate solution then infer HCI wo
then infer [J] C1- '

ok

N=L[Na+]
N={C1l-]

f

CONFIRMATORY TESTS

The PRELIMINARY routine és explained in chapter 3.1

™

vields two lists which may or may.notAsingletons. This
module confirms one of the radicals. in each of- +the
above lists. So it consists of +two phases viz

confirmation of anion and confirmation of cation.

CONFIRMATION OF ANION

/

test([[radicall,{doll,dolZ,...,doln},[resultl]];

[radicalZ, [do21,do22,...,do2n]},[result2]};
{radicalm, [doml,dom2,...,domq]l, {resultm]]
.

rule type 11

radical([testi,testZ,...,testn]).

.. ruale type 1IV

Rule +type IV can be translated into english as, the
teéts which can confirm the ’'radical’ are testl,
test2, e . testn .~ ’radical’ can take the names

of any of the radicals but not their formulas.

The PRELIMINARY module wuses the formulas of the

radicals while +the confirmatory tests module ‘uses
their names. This has been done for

1. the user’s convenience in case he intends to confirm
some radical %ndependent of the inferencing

2. to make +the rules of type 11 and type?III.more

meaningful

The CONFIRM_ANION%;outine makes use of the folloying

algorithm:

1. DISPLAY ali the tests which can confirm the given
radical and OSELECT that test which is chosen by the
user. If there is only- one +test which can confirm
the radical then proceed with it as there is no

choice.

2. If the test requires the preparation of the

salt_solution, do so.

3. Request the user to perform the test by giving the

procedure. Also question him, as towhether the test

ol b poge Pin Jor conPIRM-ANOR voukine-
edey .

has RESULTED in ‘a condition that cpnfirms the tesp.
4. Succeed if the user’s reply is ’'yes’ or else fail
if it is ’no’.

The above four steps are discussed in more detail
with +the names of the routines that perform' the

different parts of the algorithm.

The SYNONYM routine returns the ’name’ of the radical,
if +the *formula’ is given. If a ’name’ is its
argument then it returns the same.

The GET_TESTS routine takes the name of the radical

by
given 5 the SYNONYM routine and returns the tests

that can confirm the radical. The list of tests

is retrieved from the rule of type Il corresponding to

the ’radical’ in question.

Since the test to be performed to confirm the radical
has beeen decided, we can proceed to the I0_MODULE
to give the procedure for the test. But before that

most of the tests require that the solution of the

salt be prepared either in water - or in sodium
carbonate solution.

The SALT_SOLUTION routine requests the user to
prepare the solution of the salt in water or
sodium carbonate solution depending on the test to

be performed and radical in question as below:

radical test
carbonate -
bicarbonate -

borate -

acetate ethyl_alcohol

~ chromyl_chloride
- manganese_dioxide
nitrate copper_turnings

2. If the radical and the test do not come un&er_any of
the co;ditions listed above, the user i$:>asked to
prepare the aqueous solution of the salt in water.

3. Finally if the salt is insoluble in wateréthe salt is
mixed with sodium carbonate in distilled rwater and

boiled to obtain the SODIUM CARBONATE EXTRACT of the

salt.

The IO_MODULE routine asks the next question and?éccepts

the user’s response as input. The first and the second

arguments of I0_MODULE are the ’radical’ and the ‘’test’
to be performed. When the io_module is calléd from the
CONFIRM_ANION routine the ASK_N routine matches against

a unigue guestion.

The above routines are illustrated below with an ekample
| \
taking the anion ’'sulphite’. Fi;ure _3%2.? .gives a
complete session of questions of the éxpert and the
user’s response. The 'SYNONYﬂ routiﬁé converts the
formula of sulphite into its name. As.there are more
than one test which cén confirm sulphite the user is
given the information that the ’barium_chloride_test’,
"ferric_chloride_test’ and the ’potassium_permanganate_
test’ can ‘confirm sulphite. This question 1s posed
together by the WRITE_ANY routine and the DISPLAY_ SELECT
routine. The user’s response 1. selects
’harium_chloride_test’. As the solution of the salt is

required for this test the user is asked to disssolve

the salt in water. Since the salt is not socluble in

water as indicated by the user’s response ’no’, he. is
asked to perform the ’'sodium_carbonate extract’. This is‘
done by the SALT_SOLUTION routine. Tkhe SALT_SOLUTION
routine asserts the information that = +the sodium
carbonate extract has been prepared using the predicate
SOLUBLE_IN. .This inform;tion is used in askinglthe'next

question by +the ASK N routine. The next gquestion 1is

given here for convenience’ '

To 2-3 ml of SODIUM CARBONATE EXTRACT add a few drops of
barium_chloride. Filter the ppt and treat the residue
with dilute HC1.

Tell me whether

DISSOLUTION cof the ppt with the evolution of 502
is observed?

The words, >SODIOM CARBNONATE EXTRACT’ and

'barium_chloride’ are inserted into the sentence by the
ASK N routine. The fourth sentence is the ’‘result’ in

the Tule type Il for barium_chloride test and sulphite

radical. The user’s response is read in by the IO _MODULE

ROUTINE. The response ’why’ invokes the MAP Y routine

which gives the explanation. This explanation is read

from a file whose name is the same as the name of the
radical in context. As any response of the user other
than an integer or an ’yes’ or ’no’ does not result in
the success of the IO_MODULE routine. The same question
is posed again by thebASK_N routine. An ’yes.’ from the

user resulted in the confirmation of sulphite.

Vo= confirm_anion{(’803-2").

Any of the following #tests confirm the presence of
sulphite radical. Indicate your choice by keying the
number against the test

1. barium_chloride test
2. ferric _chloride test
3. potassium_ permanganate test

>1.

Mix a little of the salt in water and
Tell me whether a(an) dissolution of the salt in water
is observed?

>no.

I1f +the salt is inscluble in distilled water prepare the
sodiun carbonate extract of the salt as given below:
Take about igm of the salt under analysis in a boiling
test tube. Mix it with about Z2gms of sédium carbonate.
Put in it for about 5 minutes and filter. The filtrate
is called SODIUM CARBONATE EXTRACT.

Sodium Carbonate Extract contains unused sodium
carbonate. It must be destroyed before confirming an

acid radical. Otherwise precipitate due to insoluble
carbonate may result. Dilute acid may be used for this
purpose. Add dilute acetic acid to the sodium carbonate
extract DROP BY DROP TILL THE EFFERESCENCE CEASES.

ok

To 2-3 ml of SCDIUM CARBONATE EXTRACT add a few drops of
barium_chloride. Filter the ppt and treat the residue
with dilute HC1.
Tell me whether-

DISSOLUTION of the ppt with the evolution of SQ2
is observed?

ﬁwhy.

SULPHITE

(i) BARIUM CHLORIDE TEST

Naz2804 + BaCl2 --> 2 NaCl + BaS03
' v (white ppt)
BaS03 + 2 HC1 --> BaCl2 + 802 + H20

(ii) FERRIC CHLORIDE TE®ST

3 Na2504 + 2 FeCl3 --> Fe2(803)3 + 6 NaCl
{dark red)

(iii) POTASSIUM PERMANGANATE TEST
2 KMnO4 + 3 H28504 --» K2804 + 2 MnSO4 + 3 H20 + 6 O
Na2503 + O --> Naz2s04

Colour disappears as nascent oxygen is taken up by
sodium sulphite.

ok

To 2-3ml of SALT SOLUTION add a few drops of
barium_chloride. Filter the ppt and treat the residue
with dilute HC1.

Tell me whether DISSOLUTION of the ppt with the
evolution of S02 is observed?

Yyes.
"Sulphite is confirmed.

Figure 3.2.1

CONFIRMATION OF CATION

The confirmation of cation is very similar to that of
thé anio?. The CONFIRM_CATION rutine uses rules of type
II] as explained in chapter 2.2. The function of 3YNONYM
routine is the sameas e%plained before. Tghe FIND_GROUP
routine determines +the group tco which the cation
belongs. This routine uses the data structure
t(Gr,Gr_members,Next)

where

Gr is the name of the group

Gr_members is the list of the names of
members of the group

Next is the remaining 't structure’ as
explained above

See page p.l1l4 for this 't structure’.

After the group to which the cation belongs, has been
determinea the SALT_SOL routine gives the procedure for
preparing the solution of the salt. Then the .
group_procedure is called using the name of +the group

obtained in the FIND_GROUP routine. For a listing of

thése proceduregs see pages p.21 and p.22. Within the
group the other memebers are progressively eliminated
and the CONF routine is called for the radicai which is
to be confirmed. It may be noted here that the name of
the radical handgd to the CONF routing uses a logic
which 1is wvery much parallel to +the CONE;BM_ANION
routine. ' Figure 3.2.2 gives a session with the

CONFIRM_CATION routine for the cation uchromium*}

V- confirm_cation(chromium).
PREPARATION OF THE ORIGINAL SALT SOLUTION

For the wet tests of cations, +the first step is the
preparation of salt solution. The salt may dissolve in
one of the solvents given below. Tkhe following solvents
are to be usediythe ORDER given:

i
Water, cold and boiled.
Dilute Hydrochloric acid, cold and hot.
Concentrated Hydrochloric acid, cold and hot.
Dilute Nitric acid, cold and hot.
Aqua regia (a mixture of 3 volumes of conc. HC1L and
1 volume of concentrated HNO3).

N LN

In case a gas comes out, boil off the gas completely and
get a clear solution. After selecting the right solvent
with a pinch of the salt, prepare its concentrated
solution. It is called the SALT SOLUTION.

ok

To 5ml of +the original solution add 4-5 drops of
concentrated nitric acid. Boil the solution for sone
time. Add excess of Ammonium Hydroxide to 1t and shake.
A precipitate indicates the presence of cationfgrouplIl.
If a ppt is formed give me the colour of the ppt by

keying the number against the colour given below.

1. reddish brown
2. green
3. gelatinous white

If no ppt is formed reply ’no’.
>why .

EXPLANATION

The group III cations are precipitated as hydroxides on
the addition of excess of NH40H.

FeCl3 + 3 NH40OH --> 3 NH4Cl + Fe(OH)3
(reddish brown)

CrCl3 + 3 NH40H --> 3 NH4Cl + Cr(OH)3 ’
(green)

Al1Cl13 + 3 NH40OH --> 3 NH4Cl + Al1(OH)3
(white)

ok

To 5 ml of the original solution add 4-5 drops of
concentrated nitric acid. Beil the solution for some
time. Add to it 1.5 gms of NH4Cl and boil again. Cool
the solution under tap water. Add excess of Ammonium
Hydroxide to it and shake. A precipitate indicates the
presence of cation%group IITI. If a ppt is formed give me
the colour-of the ppt by keying the number against the
colur given below. .o

reddish brown
green
gelatinous white

LN

If no prt is formed reply 'no’.

Any of the following tests confirm the presence of
chromium radical. Indicate your choice by keying the
number against the test.

1 lead_acetate test
2 hydrogen_peroxide test

»why .

A4k BAD INPUT x%x
>1.

To 2ml of the solution obtained by exttégtingjthév above
ppt and NaOH and NaNO3 with water. Add a little of lead
acetate. Tell me whether a(an) yellow ppt soluble in
NaOH is observed? : R

>why.

LEAD ACETATE TEST

KNO3 -—> KNO2 + O

2 Cr(OH)3 + 4 NaOH + 3 0 --> 2 Na2Cr0O4 + 5 H20
(green) - : '

Na2Cr04 + (CH3CO0)2Pb -=> 2 CH3COONa + PbCr04

, (yellow)
" PbCrO4 + 4 NaOH -—> Na2Pb02 + Na2CrO4 + 2 H20

(sodium plumbitq)v

ok

To 2ml ¥of the solution obtained by-extractingéﬁhé above
ppt and NAOH and NaNO3 with water. Add a little of lead
acetate. Tell me wheteher a(an) yellow ppt soluble in
NaOH is observed?

>yes.

chromium is confirmed.

JUSTIFICATION

There are two kinds of Jjustifcations the expert
offers. The first one is a ‘why’ explanation and the
second 1is ‘hiow’ explanation. In response to a
question posed by the expert the user may request for
any of these explanations. The ‘why’ explanation
containg a3 contextual reasoning as to ‘why’ the
question has been asked. On the other had a ‘how’
explanation containes the information as to ‘how’ the

deduction has been arrived at.

In the PRELIMINARY routine the ‘why” explanations are
generated using the context number which is an index
number. The ‘why’ explanations in the CONFIRM_ANION
and the CONFIRM_CATION routines are generated by the
MAP_Y and the ANS_WHY routines respectively. For a

listing of these routines refer to page p.19.

As already explained in chapter 3, each test returns
a “Trace’ list which is asserted 1in the knowledge base
as a fact, “how(Trace}’. The “how’ explanations are
generated by the ANS_HOW routine which retrieves the
information stored in the facts ‘how(trace)’ one by
one and displays the lists “Trace’ for different tests

on the screen.

SOME COMMENTS ON FURTHER ENHANCEMENTS

A knowledge acquisition module can be written which
incorporates new rules into the knowledge base. This
module should question the user on whether the new
rule he intends to insert comes under the PRELIMINARY
routine or CONFIRM_ANION routine or CONFIRM_ANION
routine as three different types of rules are used in
each of these routines. Af ter this has been
determined, the user may be given the format of the
rule type. A consistency check on the input of the
user should also be introduced to check whether the
new rule 1is in accordance with the already existing

rules in the knowledge base.

However it is possible to reorganise the knowledge
base to improve the knowledge content of the program

as discussed below:

1. The inputs/output of the program 1is done by the
I0_MODULE routine which puts a gquestion and accepts
the user’s response. The tasks of “asking a question”’
and “accepting the input’ have been merged into one
single routine. This may be broken up inte two for

greater efficiency and flexibility.

2. The history of the past questions and user’s

responses are not being retained by the I[0_MODULE

routine, To do so, the rules of type 11 and type I11
have to be re_oriented to make them movre
self_explanatory. This can be done by difining
predicates for each real world operation like heating,
adding,filtering etc. Now the complete procedure for
any test can be converted into a 1lsit of above
defined predicates. This list containing the procedure
can be interpreted in different ways by the question

routine and the ANS_HOW routine.

Such a difinition of real world operations 1into

predicates will also facilitate in the development of
a two more rutines which will enhance the capability
of the knowledge base. The first one being the

capability of the knowledge base. The first one
being, ‘an equation generator’, which generates a
chemical equation for a rveaction between two or more
reagents. Such 'a routine improves the capability of
the knolwedge base 1in answering the user’s quesfions,
because the complete history can be stored in terms of
the real world operations, which when handed to this
routine generates. the likely cutput. Moreover it
gives room for writing a second module which can
demonstrate graphically the complete reaction between
the reagents involved. Such a knowledge base can

almost replace an actual chemical laboratory.

3. The 10_MODULE routine can be enhanced to provide a

‘help’ facility ¢to the wuser, which explains the
different terms used in the text of the question or
the procedure displayed on the screen. Such a routine,

acquaints the expert to the user quickly.

P-1
analyze:i-repeat,preliminary(P,Q),
((Q\n==[],confirm_one_anion(Q,Y});
(an(List),confirm_one_anion{List))),
({PN\==[],confirm_one_cation(P,Y2));
(Z==no,confirm_groupwicse)).

confirm_one_cation([],Y):-1.

confirm_one_cation([HIT],Y):~ (Cconfirm_cation(H),Y=H);
confirm_one_cation(T,Y)).

confirm_one_anion([],Yy:-1}.

confirm_one_anionC[HITY,Y): - ((confirm_anion{H),¥Y=H);
confirm_one_anion(T,¥Y)).

/% preliminary tests module */

list_tests([dry_heating_test,charcoal_test,flame_test,borax_bead_test,dil_csulph
uric_acid_test,conc_csulphuric_acid_test]).

preliminary_testes:—-preliminary(P,Q),
displist([“List’,of ,poesible, cation(s)’,=,Pl),nl,
displist([{’List’,of ,possible, anions(s)’,=,0Q1).

preliminary(P,Q):—- repeat,list_tests(List),(abolish(how,1);true),
SanCh(LISt,[],[],P,Q)g'-

/% search routine */
search([HIT],[},{],RetP,RetQ):-repeat,justify(H,[1,[1,[HITY),
do(H,Rcat,Ran),
check_consistent(Rcat,Ran,[],[],Retcat,Retan),
output_status(T,Retcat,Retan),
search(T,Retcat ,Retan,RetF,RetQ).

search([]1,M,N,M,N).

seavch(_,[X1,I[Y],[(X],[¥Y]).

search(Q,M,N,RetP,Retll):- eliminate(Q ,M,N,[Highest|T]),
evaluate([Highest]T] ,Highest,0,M,N,Rethigh),
del(Rethigh,[{Highest|T],T3),
justify(Rethigh,M,N,[Highest|T}),
do{Rethigh,Recat,Ran),
check _consistent(Rcat,Ran,M,N,Retcat,Retan),
output_status(T3,Retcat,Retan),

search(T3,Retcat,Retan,RetP,RetQ).

check _consistent{Rec,Ra,Mc,Ma,Rtcat,Rtan):—

((Re==[],Ra==[],Rtcat=Mc,Rtan=Na);
(Re==[],Ra\==[],Rtcat=Mc,ceonsistent(Rtan,Ra,Na)l;
(Re\==[],Ra==[],concsistent(Rtcat,Rc,Mc) ,Rtan=Na);
(ReN==[],Ra~\==[],coencsicstent(Rtcat,Rc,Mc),consicstent(Rtan,Ra,Na))

).

output_status(T,Retcat,Retan):-
nl,write(’'List of remaining preliminary Tests= “),write(T),
nl,write(‘List of possible cations=), '
({Retcat==[],write([311]));write(Retcat)),
nl,write{’List of possible anions= “),
({Retan==[],write([all]));write{Retan)),
pause.

P-a

consistent(Rt,Ra,Na):-repeat,
{(subset(Ra,Na),Rt=Ra);

(

]

nl,write(” INCONSISTENT DATA !!17),nl,
nl,write(’Result of the previous test is “),tab(2),

write(Ma),nl,write(’Result of the present test 1e “),tab(2),
Wwrite(Ra},nl,nl,write(’'What do vou want me to do?’),

nl,tab(S),write(’1. retain the recult of the previcus test’),
nl,tab(S),write(’2. retain the result of the present test’),
nl,tab(S),write(’2. take union of both the precsent and prewvicus test result

nl,tsb(S),write(4, take intersecticon of the present and previous test resu

ts’),

)

).

nl,tab(3),write(’S. you want to perform the last test aonce again’),
see(user),nl,prompt{In,>),read(Z),decision{Z,Rt,Ra,Na)

justify(H,M,N,Q):-nl,write(‘] want you to perfarm ’),write(H),

nl,nl,write(’'Do you want me to justify?’),
nl,prompt(In,>),read(Z),

((I==yes,

)

{

/
.
]

(M==[],N==[1],

nl,write(’Total number of anions and cations which can be identified by“),
nl,print_status(Q),pause,!);

{(nl,write("0Out of the above pocssible catione and anions’),
pr_status(Q,M,M),pause,!) ‘

(Z==na,!)

).

decision(l,Nai,Ram,Nsi).

decision(2,Rai,Rai Nam).

decision(3,Rtm,Ram,Nam) :—append(Ram ,Nam,Rtm) .
decision(4,Rtm,Ram,Mam) :—intersection{Ram,Nam,Rtm) .
decision(S,Rtm,Ram,Nam) :-result(last_tect, ,),do(last_test ,Rm,Nm),

{((Last_test==dil_sulphuric_acid_test;
Last_test==conc_csulphuric_acid_test),
R tm=Nm :

b

({Last_test==flame_test;

Last_test==borax_bead_test;

Last_test==charcoal test),

Rtm=Rm

)

).

eliminate(Que,[X],_,Retque):—-actualdel(lue,Retque).
eliminate(Que,_,[Y],Retque):—delan{Que,Retquel.
eliminate(Que,P,[],Retque):-Retque=Uue.
eliminate(Que,[],P,Retgque):-Retque=Que.
eliminate(Que,_, ,Que).

actualdel([1,[1). :
actualdel ([H}IT],T1):-Y=..[H,_,0,_ , ,_1,call(Y}),sctualdel{T,Tl).
actualdel ([HIT],[HIT1]):~ actualdel(T,T1l).

delan({1,[1).
delan([H|T],T1):-Y=..(H,0, , , , 1,call(Y),delan¢T,T1). |
delan([HIT),{HIT1]):-delan(T,T1l).

print_status({]):~-1, : -3

print_status([H{TY):~-P=..[H,_,_,M,_,_J,call(P},
tab(15),displist{[“* 7 ,H,is,N]),nl,
print_status(T). :

pr_status([],_,_2:-1.

pY =tatusL[H|T] M B LAH, s s _sC,Ad,call(P),
1ntersect10n(M _,Tli,lntersecflon(N A,T2),
append(T1,T2,T3),nl,((T3==[],T4= [none]) T4=T3),
displiet([H,can,identify,the,radicale,T4J),
pr_statuscT ,M,NY.

evaluate([],Big,Bigvalue ,M,N,Retbig):— Retbig=Biqg.

evaluate([H|IT],Big,Bigqvslue M ,N,Retbiqg):-
Y=..[Hy,_,_,_,P,0),call(Y),
sef(P,0,M,N,Total),

((Total=<Bigwalue,evaluate(T,Big,Bigvalue,M,N,Retbig));

“ (Rbig=H,Rbigvalue=Total,

evaluate(T,Rbig,Rbigvalue ,M ,N,Retbig))
Y.

del(Rhigh,[RhighlL1],L1).
del(Rhigh,[HIL1],[HIL2]):~del(Rhigh,Ll,L2).

do(Rethigh,Retcat,Retan):-Y=..[Rethigh,Retcat,Retan,Tr]l,call(Y),
assertal{result(Rethigh,Retcat,Retan)),assertz(how([“In’,Rethigh,&,Tr])).

cef(P,0,M,N,Tot):— intersection(P,M,Y),intersection(Q,N,Z),
sizeof (Y,0,MNLl),sizeaf(Z,0,N22,
Tot 1= (NI+RMNZ).

sizeof ([},Count,Counter):— Counter=Count.
cizeof ([HIT),Lount,Lounrpt) - Countl i1ie Count+l, cizeof(T,Countl, Counter).

eubset([HlT],[HlT])-

subset([],_

subset(_,[]1).
csubeset([H|T],Super) :—-member{H,Super) ,subset(T,5uper).

intersection{_,{1,[1J.

itntersection([), ,[{]13.
intersection([X|R]),Y,[X1Z)):—member(X,¥Y),!,intersection{R,Y ,Z).
intersection{[X|R],Y,Z):—intersection(R,Y,Z).

csearch{T3,Retcat ,Retan,RetF,Retl).

check_consistent(Rc,Ra,Mc, ,Ma,Rtcat ,Rtan) -
((Re==[1, Rd——[] Rtecat=Mc,Rtan=Na);
{Re==[1, Ra\——[] Rtcat Mc consicstent(Rtan,Ra,Na));
{ReN\= [] Ra==[], conuxcfenf(thdt Rc,Mc) ,Rtan=Na);
(Reh==[1], P—‘——[) ,consistent{Rtoat, Rc Mc) consicstent(Rtan,Ra,Na))

output_status(T,Retcat,Retan):— .
nl,write(’List of remaining preliminary Tests=) ,write(T),

nl,write(’List of possible cations= "),
((Retocat==[],write(lalll)); wrxtﬂ(Petcdt\),
nl,write(’List of possxble aniens= 7)),

((Retan==[],write([all]));write(Retan)),
pause.

P-4

nl,write(’Tell me whether an yellowicsh white ppt is also formed?’).
ask_next_q(_).

/% these rules are invoked by the interpreter which performs the test */
charcoal_test(P,Q,[if,the,colour,of,the,residue,when,hot,is,X1,and,&,when,cold,
ig,X2,and,&,metallic,bead,is, X3, then,infer,X,Z,&,Trl)):-

repeat,io_module(l,Y),

charcoal_cavity(Y,X1,X2,X3,X,2Z2),

cobalt_nitrate_cc(Y,X,Z,P,Q,Trl).

cobalt_nitrate_test(P,Q):—-cobalt_nitrate_cc(,[]1,[1,P,Q).

cobalt_nitrate_cc(M,A,B,C,D,[if,the,colour,of ,the,residue,is,X1l,then,infer,P,Q]
yi-
(M==1 ;M::B) s
repeat,io_module(2,Y),
cobalt_nitrate(Y,X1,P,0),
(
((Y==1;Y==2;Y==3;Y==4),C=P,D=0Q);
(Y==3,C=A,D=B)
).
cobalt_nitrate_cc(M,A,B,A,B, .7).

flame_test(P,Q,[(if,the,colour,of ,the,flame,is,Xl,with,naked,eye,and,&,X2,with,H
lue,glass,then,infer,P,Q]):—- repeat,io_module(3,Y),
colour_flame(Y,X1l,X2,P,Q).

identify_gas(X,Tr) :— repeat,
io_module(d4,Y),identify_class(Y,X,Tr).

identify_clasé(l,X,[if,the,gas,is,Xl,and,X2,and,X3,then,infer,X]):—
io_module(S,2),
Z2>0,7Z<{3,gas_evolved(Y, X ,X1,X2,X3,_,).

identify_class(2,X,[if,the,gas,is,X1l,and,X2,and,X3,then,infer ,X]):~
io_module(6,Y),
Y>0,Y<7,Z is Y+2,9a3s_evolved(Z,X,X1,X2,X3,_,_).

identify_class(3,X,[if,the,gas,is,X1l,and,X2,and,X3, then,infer ,X]):-
io_module(7,Y),
Y>0,Y<5,Z is Y+8,
qas_evolved(Z,X,X1,X2,X3,_,_).

dry_heating_test(M,N,Tr} :- repeat,readfile(dryheat_proc),
nl,prompt{in,>),reading(S),getl(C),
rm_duplicates(S,L),
perform(L,[],[],X,Y,Tr),
rm_duplicates(X,M),rm_duplicates(Y,N).

reading([HIT)):—getl(X),name(Y,[X]),read_check(Y,H,T},!.

read_check(P,Q,[1):-P==".",Q=P,!.

read_check(P,Q,R):-P==7," ,reading([0IR]).
read_check(P,Q,R):-integer(P) ,P>0,P<L7,Q=P,reading(R).
read_check (P,Q,R):~atom(P) ,0=P,reading(R).

perform({]1,P,Q,P,Q,7.7).
perform([HIT],P,Q,C,D,[Tr,&,Tr1l) :-

do_head(H,A,B,Tr),append(A,P,M),append(B,Q,N),
perform(T ,M,N,C,D,Trl),!.

do_head(’.” ,A,B,” .)Y:-1.

do_head(l1,A,B,Tr):~ id_gas_evolving(A,B,Tr).
do_head(2,A,B,Tr):- id_chn_residue(A,B,Tr).
do_head(3,A,B,Tr):-~ id_cocl_sublimate(A,B,Tr).
do_head(4,A,B,Tr):-id_noise(A,B,Tr).

do_head(5,A,B,Tr):~ id_swelling(A,B,Tr).
do_head(6,A,B,Tr):— id_crystallization(A,B,Tr).
do_head(7,{1,[],[1).

do_head(w,_,_,_):—- write(‘no explanation !!“),nl,nl,fail.

append([1,L,L).
append([XiL1],LZ2,[XIL3])) :—- append(Ll,L2,L3).

id_gas_evolving(M,N,[Tr,if ,the,gas,evolved,is,X,then,infer ,M,NJ):-
identify_gas(X,Tr),gas_evolved(_,X,_, ,_,M,N).

rm_duplicates([HIT],[HIN]) :~ rm_dup_head(H,T,S),

rm_duplicates(S,N),!,
rm_duplicates([1,[]1).

rm_dup_head(X,Y,Z) :- (member(X,Y),delete(X,Y,Z));;same(Y,Z}.
same(A,A) .

delete(_,[1,0(1). _
delete(Y,[Y{L1] ,M) :- !,delete(Y,LI ,M).
delete(Y,[X|L1],[XIL2]) :- delete(Y,L1l,L2).

member (X,[X]_]1).
member (X,[_1Y)) :— member (X,Y}.

id_chn_residue(P,0,[if,the,colour,of ,the,recsidue,when,hot,is,Xl,and,&,X2,when,c
cld,then,infer,P,Q1} :-

repeat,

io_module(9,Y),

chn_colour_residue(Y,X1,X2,F,0Q).

id col_sublimate(P,Q,[if,the,colour,of,the,sublimate,is, X1, then,infer,P,Q]):-
repeat,
io_module(l0,Y),
colour_sublimate(Y,X1,P,Q).

id_swelling(P,Q,Tr):—- repeat,
io_module(ll,Y) ,dec(Y,P,Q,Tr).

dec(yes,[‘Nat’, 'K+’ ,"Mg+2°]1,[},[if,there,is,fusion,then,infer, ,&,codium,potassit

m,and,magnesium,cations,&]).

dec(no,P,Q,[if ,there,is,swelling,then,infer,P,Ql):~
repeat,io_module(l2,2),decl(Z,P,Q).

decl(ves,[}1,[B03-37,/P04-3"1).
decl(no,[],[1).

id _noise(P,Q,[if,there,is,crackling,ncise,then,infer,P,Q)):-
repeat,io_module(l3,Y),deci(Y,P,Q).

deci(yes,[“Nat’, K+’ , Pb+27],[‘NO3-7,"1-7,7Cl-"1).
deci(no,[1,{1).

id_crystallization(P,Q,{if ,there,is,water,of ,crystallization,then,infer,P,Ql):
repeat,io_module(ld4,Y),decis(Y,P,Q).

decis(yes,[],[Cl-", NO3-7, 504-27]).
decis{(no,[{1,[1).

e

syn(‘C03-2 ,carbonate).
syn(HCO3-' ,bicarbonate).

syn(’S04-2

‘ysulphate).

syn(’5203-2" ,thiosulphate).

syn(“CH3C0O0-~

syn(“N02-~
=yn(“NO3-

sNitrite).

‘ynitrate).

syn(’S03-2°,sulphite).
syn(“S-27,sulphide).
syn(C204-27 ,0xalate).

syn(’Cl-~
syn(’Br--
syn{’1-7

schloride).
,bromide).
yiodide).

syn(“P04-3‘ ,phosphate).

syn(“Agt’ ,silver).

syn(‘Hg+2”’
syn(’Pb+2~
syn('Bi+3~
syn(‘Cut2”
syn(/Cd+2-
syn(’'As+3”
syn(’Sb+3~
syn(“"Sn+2”
eyn(’'Fe+3”
syn(‘Cr+3-
syn(' Al+3”
syn(' Cot+2°
syn("Ni+z”
syn(‘Mnt+2”
syn(’'Zn+27
syn(’/Ba+2”
LEYN(Sr+27
syn(" Cat+2”
syn('Mg+2“°
syn("NH4+~
syn{ ‘Nat”

smercury).,
,lead).
sismuth).
scopper).
scadmium).
,arsenic).
yantimony).
stin) .
,iron).
schromium) .
saluminium).
scobalt).
shickel).
,manganese).
sZinc).
ybarium).
sStrontium).
scalcium).
smagnesium).
sammonium).

ssodium) .

syn(K+ ,potassium).

,3cetate).

g1l _sulphuric_acid_test(F,Uu,lr):- repeat,io_module(lS,Y),decisi(Y,P,Q,Tr).

decisi(ves,P,Q,lon,adding,dilute,sulphuric,acid, &,Trl, &,then,infer,P,Q]):

1dent1fy 9as(Gas Trl),dilh2s0d4(Gas,P, N),

((Gas=

decisi(no,

£1,i1.

decisil(yes,['5203-2"]).

decisil(no,[503-2"1).

conc_sulphuric_acid_test(P,Q,[en,adding,conc,

P,Q1):- Yepeat,zo_module(17 Y\

decisio(yes,P,Q,Trl)

decisio(no,[1,{1).

t—identify_gas(Gas,

802,repeat,1o_module(19 Ans) dec1sil(ﬁns,0));(Q=N)).

sulphuric,acid,&,Trl,&,then,infer

d901510(Y P,Q,Trl).

Trl),conch2sced4(Gas,P,Q).

borax_bead_test(P,Q,[if,the,colour,of,the, bead,is, &, X1 ,when, hot and,X2,when,co

d,in, the ox1d151ng,flame and X3,in reduc1ng,flame then,1nfer P, Q))
repeat,xo_module(lS Y),
colour_bead(Y,X1,X2,X3,F,Q).

an([/C03-
s!I—

’ ’ -
-7 ,’Br

s
2

’/f"04 2/
, TP0O4- 3

rg202-27,

/CH3C00-", "ND2-~

,’B0O3-371).

,'NO3-7,

803-27,75-27,7C204-2",(

-1

lead({cooling,potassium_chromate]).
silver([nitric_acid,potacssium_iodide,potassium_chromate]).
mercury([stannous_chloride,sodium_carbonatel).
bismuth([dilution,sodium_stannite,thiocureal).
copper([potassium_ferrocyanidel]).
cadmium([potassium_ferrocyanidel).
arsenic([ammonium_molybdate,magnesia_mixturel).
atimony([dilution,tin_metall).
tin({stannous_chloride,ammonium_molybdatel).
iron{[potassium_ferrocyanide,potassium_sulphocyanide]).
chremium([lead_acetate,hydrogen_peroxidel).
aluminium(f{lakel).

cobalt({cobaltinitrite])}.

nickel([dimethyl _glyoxime]).
manganese([bromine_water,pink_colourl).
zinc([{sodium_hydroxide,potassium_ferrocyanidel]).
barium([potascsium_chromatel).
strontium([ammonium_sulphate]).
calcium{[ammonium_oxalate]).
magnesium([ammonium_phosphate]).
sodium({[potassium_pyroantimonate]).
potassium([sodium_cobaltinitrite,picric_acidl)}.
ammonium{ [socdium_hydroxide,nesslers_reagent]).

carbonate([magnesium_sulphate]).

bicarbonate([magnesium_sulphatel).

sulphate({barium_chloridel).
thiosulphate([silver_nitrate,ferric_chloride]).
acetate([ethyl_alcohol,ferric_chloridel).
nitrite{[ferrous_sulphate,potassium_permanganate,potassium_iodidel).
nitrate([copper_turnings,ferrous_sulphatel).
sulphite([barium_chloride,ferric_chloride,potascsium_permanganatel]).
sulphide([cadmium_carbonate,lead_acetate,sodium_nitroprussidel]).
oxalate([calcium_chloride,barium_chloridel).
chloride([silver_nitrate,manganese_dioxide,chromyl_chloride])}.
bromide([silver_nitrate,manganese_dioxide,carbon_disulphidel).
iodide([silver_nitrate,manganese_dioxide,carbon_disulphide]).
phosphate([ammonium_molybdate,magnesia_mixturel).
borate([green_edged_flame, turmeric_paper]).

anions([carbonate,bicarbonate,sulphate,thiosulphate,acetate,nitrite,sulphite,s
lphide,oxalate,chloride,bromide,iodidel]).

catxons([silver,mercurous,lead,mercuric,bismuth,copper,arseneic,antimony,tin,i

on,chromium,aluminium,cobalt,nickel,manganese,zinc,barium,strontium,calcium,ma
nesium,ammonium,sodium,potassium])}.

member (X,[X]|_1):-1.
member (X,[_I1Y]):—member (X,Y).

-

E=..[Rad.Tests] E,asserta(raalanionsj.

/*1uho for identifying a gas in inferencingk/ ¢e
gas_evolved(1l,/C027,colourless,odourless,’turns lime water milky’,[1,["C03-2","
cz04-2"1).

gas_evolved(2,/C0’,colourless,odourless,’burns with a blue flame’,[],[C204-2"]
).

gas_evolved(3, H25" ,colurless, smells like rotten eggs’, turns lead acetate pap
er black’,[],[75-2",75203-2"1). _

gas_evolved(4,°502 ,colourless,’characteristic suffocating smell’,“turns,acidif
ied K2Cr207 paper green’,[],[7803-27,75203-2"1).
gas_evolved(5, "HCl " ,colourless,'pungent smell’, white fumes with ammonia white
ppt with silver nitrate solution’,[1,[“Cl-"]).

gas_evolved(&, 'CHI3COOH ,colourless, ‘characteristic’,’vinegar like smell”,[]1,{’C
H3COo0-"1).

gas_evoelved(7, CH3COCH3 ,colourless, "sweet smell’, vapours catch fire’,{1,[CH3
coo-"1>.

gas_evolved(8, NH3",colourless, characteristic smell’, turns moist turmeric pap
er brown”,["NH4+"1,[1). |
gas_evolved(9,’NO2’ ,“reddish brown’,‘pungent smell’,”turns FeS04 solution black
“5[1,["NO2-7,"NB3-"1]). '

gas_evolved(10,”Cl27, greenish yellow’, pungent smell’,“turns starch iodide pa
er blue’,[]1,[’Cl-"1).

gas_evolved(ll,’Br2’,“reddish brown’,“pungent smell’,’turns starch paper orang
‘yellow’,[],[’Br-"1).

gas_evolved(l2,’12", dark violet’ , pungent smell’,” turns starch paper orange y
low’,[1,["I-"1).

/% rvrules for dry heat test */
chn_colour_residue(l,yvellow,white,["Zn+2",°Sn+2°1,[1).
chn_colour_residue(2,brown,brown,[Cd+2°1,[1).
chn_colour_residue(3,brown,yellow,["Pbt+2’,/Bi+3°1,(1).
chn_colour_residue(d,blue,white,["Cu+271,[7804-2"1).
chn_colour_residue(S,violet,green,['Cr+37]1,[1).
chn_colour_residue(é&,pink,blue,[“Cot+2°1,[1).
chn_colour_residue(?,green,yellow,["Nit+271,[1).

chn_colour_residue(8,’pale brown’ ,black,["Fet+3°],[1).
"chn_colour_residue(9,°light green’,’reddish brown’,['Fet2°1,[1). .
chn_colouy_residue(l0, coloured <sa3lt’, black residue’,[" Cot2’,Mnt2°, Fet2’,’C
+27, Ni+271,01).

colour_sublimate{l,white,["NH4+, " Hg+2',"As+371,[1).
colour_sublimate(2,yellow,["As+3"]1,[5-2"1).
colour_csublimate(3,‘grey with metal globules’,[“Hgt27]1,[1).
colour_sublimate(4,black,[“Hg+2},["'5-2","1-"1).

/% rules for charcoal cavity test *“
charcoal_cavity(l,yellow,white,none,["Zn+2’,Sn+271,11).
charcoal_cavity(2,braown,brown,none,["Cad+2°3,[1).
charcoal_cavity(3,brown,yellow, greyish bead which marks paper‘,{ " Pbt+t271,[1).
charcoal_cavity({4,orange,yellow,‘pinkish brittle bead’,['Bi+3°]1,[1).
charcoal_cavity(5S,none,none,“read beads or scales’,["Cut2],[]1).

charceal _cavity{6,none, white but does not mark paper’,none,["Agtz2731,{1).
charcoal_cavity(?7,white,greyish,white,none,[" Sb+371,[1).
charcoeal_cavity(&,“3lowing white residue’,none,none,[’'Batz2’, Cat2’, ' Mg+27]),[1)
charcoal_cavity(9,black,none,none,[]1,[1).

/% rvulee for cobalt nitrate test */
cobalt_nitrate(l,green,["Zn+2"1,(1).
cobalt_nitrate(2,’dirty green’,{Sn+21,{1).
cobalt_nitrate(3,pink,["Mg+21,[1).
cobalt_nitrate(d4,blue,["Al+37]1,["P04-27,7B0D3-3"1).

P9

cobalt_nitrate(S,black,[1,[1).

/% rules for flame test */

colour_flame(l,’gloden vellow’,invisible,[“Na+°]1,[]1).
colour_flame(2,’pale vioclet’,pinkish,[“K+7],[1).
colour_flame(3,’bluish green or blue’,visible,[’Cu+2”1,[1).
colour_flame(4,crimson,crimson,{“Sr+27],[1).
colour_flame(S,’brick red’,”light yellow’,[“Cat+2'1,[1).
colour_flame(6,” grassy green’,green,[Bat+27]1,{1).
colour_flame(7, bluish white’,none,["As+37,/8b+37,"Pb+2°1,[1).
colour_flame(8, no colour’,none,[31,[]).

/% rules for borax bead test */ '
colour_bead(l,“deep blue’,’deep blue’, deep blue’,[“Co+27],[]).
colour_bead(2,green,green,green,['Cr+371,{1).
colour_bead(3,green,blue,‘reddish opaque or colourless’,["Cut+2’]1,[1).
colour_bead(4, reddish yellow’ ,”pale vellow’,green,['Fet+2’,’Fe+37]1,[1).
colour_bead(5,71light pinkish’,"light pinkish’,none,["Mn+2°]1,[1).
colour_bead(6, reddish brown’, reddish brown’,none,[“Ni+271,[]1).
colour_bead(?7,none,none,none,[3,[]1).

/% rules for dilute sulphuric acid test */
dilh2sed(”"C02",[1,[7CO3-2"1).
dilh2so4(“S02",[1,[°503-2"1).
dilh2sod4(’S02°,[]1,[58203-2"1).
dilh2s0d4("H28" ,[]1,[78-2"1).
dilh2sed("N02°,[],["NO2-"1).

]
’
»
3

1
]
]
]

/% rules for concentrate sulphuric acid test */
conch2sc4(“C0O°,[]1,[C204-2"1).

conch2s04(“HC1” ,[1,[“Cl-"1).
conch2eod4(’'Br27,[]1,["Br-"1).
conch2so04(127 ,[1,[“I-"1).
conch2s04(“CH3COOH" ,[],[CH3C00-"1).
conch2s04(’N0O27,[1,["NO03-"1).

dry_heating_test(13,12,25,["Zn+2’,/5n+2",7Cd+27,"Pbt2‘,/Bi+3°, Co+2°, Cut+2’ ,’N
+2’,’Fet+3’ ,’Fet+2’ ,'NH4+" , "Hgt2’ ,“As+37]1,["C0O3-2",°C204~-2",75-2", 8203-2/, 503~
7,7804-27 ,/CH3C00-", NO2-7,/NG3-","C1-","Br-","1I-"1).

charcoal _test(12,2,14,[Zn+2’, 5n+2’, Cd+2’, Pb+2",”Bi+3“,“ Cut+2’, Agt2’, Sb+3’
‘Bat2’ ,’Al+37,Cat2’ ,"Mgt+t2’],["PO4-37,“BO3-3"]1.

flame_test(9,0,9,[“Nat+’,"K+7, Cut2’,5r+27,"Cat2’,’Bat2’ ,’As+3",“Sb+37,"Pb+2"]
[,
borax_bead_test(7,0,7,[Cot+2’,/Cr+37, Cut2’, Fet2’ ,"Fet3,"Mn+t2’,"'Ni+271,[1).
dil_sulphuric_acid_test(0,6,6,[],[/C03-2","503-2",75203~-2",5-2°,’N02-"1).
conc_sulphuric_acid_test(0,6,6,[],[C204-2","'C1-",'Br-","1-",7CH3C00-", " NO2-")

A% input ocutput module which asks a question and accepts an input */
pause_fail:-nl,write(ok),skip(10),fail. P
pause:—-nl,write(ok),skip(10). 10

io_module(Ctxt,Y):- ask(Ctxt),

nl,prompt(In,>),read(Y),
checkingY(Ctxt,Y).

checkingY{(_,how):—ans_how.
checking¥Y(_,help):-write{‘no help !7),fail,
checkingY(_ ,Y):—integer(Y),!.

checkingy{Ct ,why):-map_w(Ct),pause_fail.
checkingY(_,yes).

checkingY(_,no).

ans_how:-((how(X),displist(X),pause,fail);true),!,fail.
how:—ans_how.

displist([[[HITIIT1)IT2})>:- write(H),tab(l),displist(T),nl,
displist(Tl),nl,displist(T2),!.

displist([[HIT]IT1]):-nl,write(H),tab(l),displist(T),nl,displist(T1),!.

displist([&IT]):—nl,displist(T),!.

displist([]):-1!.

displist([HIT]):—write(H),tab(l),displist(T),!.

/% a why qustion by the user maps against one of the contexts */
map_w(l):-readfile(charcoal_why).
map_w(2):-readfile{cobalt_why).
map_w(3):-readfile(flame_why),
map_w(d):~-readfile(gas_why3).
map_w(3):—- write(” A COLOURLESS and ODOURLESS gas which”}),nl,
tab(3),write(’* turns lime water milky is C0O27),nl,
tab(9),write(% burns with a blue flame 1 CO’).
map_w(6):-readfile(gas_whyl).
map_wW(7):-read_file(gas_why2).
map_w(9):-readfile(residue_why).
map_w(l0):-vreadfile(sublimate_why),
map_w(ll):-nl,
wWwrite('Many alkali metal salts contain a large quantity of 7)),
nl,write(‘water as water of crystallization. On heating the’),

nl,write(’water separates and dissclves the salt.’).
map_w(1l2):-nl,

write(Normally Phosphates,Borates and alums swell on heating’).
map_w(13):-nl,
write(’Some anhydrous calts like lead nitrate,potascsium iodide,sodium’),nl,
write(‘chloride etc contain some mother liquor entrapped in their’),nl,
write(’crystals. On heating the mother liquor escapes by breaking the’),nl,
write(’crystals. This results in crackling noise.’).
map_w(l4):-nl,
write(’Hydrated csalts on heating lose water of crystallization’),nl,
write(“which condernses on the coocler parts of the test tube “),nl,
write(’'Most of the hydrated salts contain chloride or nitrate’),nl,
write(’or sulphate as an acid radical”).
map_w(lS3):-readfile(dil_why). _
map_w(l6):-nl,write(Formation of white ppt with the liberation “},
write(‘of S02 indicates S5203-2 otherwise S03-27).
map_w(l?):-readfile(conc_why).
map_w(l8):—-readfile(borax_why).
map_wW(19):-write(’If the gas evolwed is 502 and no ppt is formed then’),nl,
wWwrite(S03-2 is to be inferred. If an yellowish white ppt is’),nl,
Wwrite(also formed 5203-2 is to be inferved’),.
map_wW(20):—writel(1l thought vou wouuld be interested in that).

wen_nsav_ytii-readrile(charcosal_proc).
ask_next_q(2):-readfile(cobalt_proc). p-il
ask_next_q(3):-readfile(flame_proc).
ask_next_q(4):- nl,write(’Tell me whether the evolving gas is a ”)
nl,tab(3),write(’1. colourless and odourless gas”’),
nl,tab(3),write(”2. colourless gas with odour’),
nl,tab(3),write(’3. coloured gas with pungent smell”’).
ask_next_q(S):-
nl,write("Tell me whether the gas 7},
nl,tab(10),write(”“1. turns lime water milky’),
nl,tab(10),write(2. burne with 3 blue flame’).
ask_next_q(&):—-nl,readfile(gas_procl).
ask_next_q(7):-readfile(gas_proc2).
ask_next_q(9):-readfile(chn_residue).
ask_next_q(l0):-nl,tab(S),write(' Colour of the Sublimate’),
nl,tab(10),write(’1l. white”’),
nl,tab(l0),write(“2. Yellow’),
nl,tab(10),write(’3. Grey with’),
nl,t3b(16),write(‘metal globules’),
nl,tab(10),write(’4. Black”),nl. ‘
ask_next_q(ll):-nl,write(’Is there a fusion (or melting) of the =alt?’).
ask_next_q(l2):-nl,write(’Is there a swelling of the salt?’).
ask_next_q(l1l3):-nl,write("Is there a crackling noise on heating the salt?’).
ask_next_q(l4):-
nl,write("Tell me whether there is condensation of HZO on the cooler’),
nl,write] walls of the test tube?’).
ask_next_q(l3):- nl,
write(’Take 3 little of the salt in a clean test tube.ireat it),nl,
write(‘with a few ml of dilute sulphuric acid.Warm if no gas is evolved’),
nl,write(‘Tell me whether 3 gas ic being evolved?’).
ask_next_q(l?7):-nl,
write(’Take & little of the salt in a test tube and treat it with’),nl,
write(’a few ml of concentrated sulphuric acid. Heat the contents “),nl,
write(’if no gas is evolved’),nl,
write(’Tell me whether a gas is being evolved?’),!.
ask_next_qg(l8):~readfile(borax_proc).
ask_next_q(l9):-

]

nl,write(’Tell me whether an yellowish white ppt ie also formed?’).
ask_next_q(_3.

S

- . e, e St ot MR Y 4R S e

- e
e o, T,.T.-so»«.@ -
s IT).

“H11 SULFRUrIc acia Tect (P 0, Tr) i— Tepeat, 10 module(is,) ,decisi(V,P,d

decisi(yes,P,Q,[on,adding,dilute,sulphuric,acid,&,Trl,&,then,infer,P,Q]):-
identify_gas(Gas,Trl),dilh2scd4(Gas,P,N),
((Gas==502,repeat,io_module(l9,Ans),decisil(Ans,Q));(Q=N)).

decisi(no,[1,[1).
decisil(yes,[5203-2"]1).
decisil{no,["503-2"1).

conc_sulphuric_acid_test(P,Q,[on,adding,conc,sulphuric,acid,&,Trl,&,then,infe
P,Q1):- repeat,io_module(l17,Y),decisio(Y,P,Q,Trl}.

decisio(ves,P,Q,Trl):-identify_gas(Gas,Trl}),conch2sc4(Gas,P,Q).
decisio(no,[]1,[]).

borax_bead_test(P,Q,[if,the,colour,of ,the,bead,is,&,X1,when,hot,and,X2,when,c
d,in,the,oxidising,flame,and,X3,in,reducing,flame, then,infer,P,Q)):-
repeat,io_module(l18,Y),
colour_bead(Y,X1,X2,X3,P,Q).
an([’C03-2/,/504-2",/5202-2", CH3CO0-", "NO2~",“NO3-",78023-27,75-27,"C204-27,"
-, ’Br-<,’1-",7P04-3",°B03-3"1).

7k ryeads a ri1le */ .

readfile(X):—seeing(Old),see(X),readline(U),eee(Uld),!.
P-La

readline(Cr):-read_in(S,C),C1 is Cr+l,
(((C==26;C==4) ,seen,!);

(Cl==23,nl,write('You want more?’),tab(2),
seeing(Old),see(user),read(Ans),see(Old), .
((An5==ye5,((nonvar(8),write(S));true),readllne(O));

(seen,!)
)

jH

(var(S),nl,readline(Cl));

(write(S),nl,readline(Cl))

b

read in(W,C2):— 9=t0(C),readword(C,W,C2).
readword(C,l,221:~ inword(C,NewlC},!,getl{Cly,

restword(Cl,Cs,C2) ,name(W, [NewC|Cs1) .
readword(C,W,C).

restword(C,{NewCiCs]},C2):- inword(C,NewC),!,getld(Cl),
restword(Cl1l,Cs,C2).
restword(C,[1,C).

inword(C,C):- C>31,C<K127.
inword(C,C):-C==9.

/7% a small interface to access the knowledge in tests %/
charcoal_cavity_test:-charcoal test.

charcoal_test:-charcoal_test(P,Q,T),disp(P,Q).

disp(P,Q):~displist([’List’,of ,possible,’cation(s) =‘,P1),nl,
displist([“List’,of ,possible,”anions(s) =",Q]).

cobalt_nitrate_test:—-cobalt_nitrate_test(P,Q),disp(P,Q).
flame_test:-flame_test(P,Q,T),disp(P,Q).

identify_gas:-identify_gas(X,T)},
displist([‘List’,of ,possible,”“anions(s)’,=,X]).

dry_heating_test:—-dry_heat_test,
dry_heat_test:—-dry_heating_test(P,Q,T),disp(FP,Q).
dry_heat_test(M,N):—-dry_heating_test(M,N,T).

dilute_sulphuric_acid_test:—-dil_sulphuric_acid_test.
dil_H2S04_test:—-dil_sulphuric_acid_test.
dilute_H2S504_test:-dil_sulphuric_acid_test.

dil_sulphuric_acid_test:-dil_sulphuric_acid_test(P,Q,T),disp(P,Q).

concentrated_H2504_test:—conc_sulphuric_acid_test.
conc_H2504_test:-conc_sulphuric_acid_test.
concentrated_sulphric_acid_ test:—conc_sulphuric_acid_test.
conc_sulphuric_acid_test:-conc_sulphuric_acid_test(M,N,T),disp(P,Q).

borax_test:—-borax_bead_test.
bovax_bead_testi-borax_bead_test(P,Q,T),disp(P,Q).

P12

zonfirm_cation(X):-

synonym(X,Rad),asserta(rad(cation)),

find_group(Rad,Gr),!,salt_sol,

Ex=..[Gr,Ret],Ex,test(T),retract(rad(cation)),

((var(Ret),assertz(result(confirm,T,no0)),!,fail),
(Ret\==no,3ssertz(recsult{confirm,T,Ret)));
(assertz(result(confirm,T,no0)),true)

Y,displist([Ret,is,confirmed]).

confirm_anion(X):—

synonym(X,Rad),

get_tests(Rad,Tests),

display_select(Tests,l,Inp,Z),

asserta(test(Z)),salt_soclution(Rad),

io_module(Rad,Z,Ret}),retract(rad(anion)),

¢ ((Ret==ypes,assertz(result{confirm,Z,X)),
displist([X,is,confirmed]));
(X==carbonatej;X==bicarbonate,
assertz(result(confirm,Z,Ret)),
displist([Z,is,confirmed]))

Yj(assertz(result(confirmed,Z,no0)),!,fail)).

=..[X,Tests],E,

X==copper ;X==cadmium;X==aluminium;
X==cobal t;jX==nickel jX==sodium;
X==bariumji;X==calciumj;X==magnesium;
X==strontium;write_any(X)
},display_cselect(Testes,l,Inp,Z),
asserta(test(Z)),
io_module(X,Z,Ret),
((Ret==yes,1);(1,fail)).

conf(X):— E
(

synonym({X,Rad):—- ({syn(X,Y),ascserta(radical(Y)));
(syn(Y,X),asserta(radical(X)))
Y,radical(Rad).
get_tests(Rad,Tests) -

E=..[Rad,Tests] ,E,asserta(rad(anion)),)
(Rad==carbonatej;Rad==bicarbonate;Rad==sulphatejwrite_any(Rad)).

display_select([X1,1,1,X).
dieplay_select({],Ctr,In,Y):-repeat,nl,prompt(Ini,>),read(ln),
(tinteger(In}),In>0,In<Ctr);

(arite(dkk BAD INPUT &k’) fail)).
display_select([H|IT],Ctr,In,Y):-

displist([Ctr H,test]l),nl,
Ct 1s Ctr+l,
dieplay_select(T,Ct,In,Y),
((Ctr==In,Y=H);!).

salt_sol:-readfile(salt_proc),pause.
find_group(H,Gr):—-t(P,Q,R),lookup(H,t(P,Q,R),Gr).

lookup(H, t(Gr,G,_),Gr):—member(H,G),! ,assertal(group(Gr)).
lookup(H,t(_,_,Next),R):—-nonvar(Next),lookup(H,Next,R).

get_procedure(Radic,X1l ,X2,List):—
get_two_lists(Radic,List,[X1][{X2]1).

P14
jet_two_lists(Radi,[[Radi|T1IT11,T). “
jet_two_lists(Radi,[[HiIT}IT1],T2):-get_two_lists(Radi,T1,T2).

t{(groupl,{silver,mercury,leadl},
t{groupllA,{mercury,lead,bismuth,copper,cadmium],
t(groupllIB,[arsenic,antimony,tin],
t(grouplll,livron,chromium,aluminium]l,
t(grouplV,[cobalt,nickel ,manganese,zincl,
t(groupV,[barium,strontium,calcium],

t(groupVl,[magnesium, ammonium, sodium,potassium],_)
; .

).

execute({]y:-1!.
execute([H|T]):-H,execute(T).
¢alt_solution(Rad):- salt(Rad) jaqueocusjsce.

salt(Rad):- ((Rad==carbonatej;Rad==bicarbonate;Rad==borate;
' (test(T),radical(An),!,
((An==acetate,T==ethyl_alcohol);
(T==manganese_dioxide);
(T==chromyl_chloride);
(An==nitrate,T==copper_turnings)
)
)),asserta(soluble_in(salt))
).

aqueous:-repeat,
nl,write(’Mix a little of the salt in water and’),nl,
write_tell(‘dissolution,of,the,salt,in,water’),!,
nl,prompt(INi,>),read(Ans),
((Ans==yes,asserta(soluble_in{(/SALT SOLUTION’)));(!,fail)).

sce:-readfile(extract),pause,asserta(soluble_in(SO0DIUM CARBONATE EXTRACT)).

potassium_chromate([[lead,{above,csolution]),[yellow,ppt]], P-15
[silver,[original,solution],[brick,red,pptl],
[barium,[above,solution),[yvellow,ppt]]

.

botassium_iodide([[lead,[above,solution],[yellow,ppt]],[silver,[original,solut

onl,[vellow,pptll,[nitrite,[assertalacid(’H25047)),write_ex,write(after addin
a drop of starch solution’),nll,[BLUE COLOURATION”]]]).

nitric_acid([[silver,{above,solution],[white,ppt]]]).

stannous_chloride([[mercury,[original,solution),[white,ppt,turning,greyl],
[tin,[solution,obtained,by,dissolving,the,above,ppt,;in,”’
conc HCl’,add,a,few,pieces,of ,zinc,metal,and, then],
[white,ppt,turning,greyl]]).

copper_turnings([{mercury,[original,sclution]),[silvery,deposit,on,cu,chips]], !
[nitrate,[(nl,write("Heat 0.5 gms of the salt with 2ml of conc H2504 and ‘),nl,s
rite(’add a few Cu chips.’),nl]),[DENSE REDDISH FUMES‘,of ,nitrogen,peroxidel]])

sodium_stannite([[bismuth,[above,ppt],[black,ppt]l]).

thiourea({{bismuth,[original‘solution,in,dilute,’HCl’,add,2,drops,of,dilute,’
HNO3“ ,and, then]},[vellow,colcourationl]]l).

potassium_ferrocyanide([[copper,[above,solution,add,a,little,” CH3CO0H’,and, ther
J,[chocolate,ppt]], [cadmium,[above,solution),[bluish,white,pptl], [ivon,[solut
ion,obtained,by,dissoluing,the,above,ppt,in,dilute,’HCl’],[prussian,blue]], [zi
nc,loriginal,sclution),[bluish,white,pptlll]).

ammonium_molybdate([[arsenic,[solution,obtained,by,dissolving, the,above,ppt,in,
conc, "HNO3’),[yvellow,pptl],[tin,{solution,obtained,by,dissolving, the,above,ppt,
in,dilute, HCl’ ,add,a,few,pieces,of ,zinc,metal,and,then],[deep,blue,colouration
1)l,[phosphate,[asserta(acid(concentrated HNO37)),write_extract],["YELLOW PPT”,
or, "COLOURATION"]11). '

magnesia_mixture([[arcenic,[solution,obtained,by,dissolving, the,above,ppt,in,ct
nc, “HNO3” ,add, "NH40H” ,and,a,pinch,of ,"NH4Cl” ,and, "MgS04”’ ,s0lution],[white,ppt]]
s[phosphate,[ascsertal(acid(’dilute CH3COOH)),write_extract,nl,write(Also add
xcess of NH40H) 1,[“WHITE PPT 111).

dilution([[bismuth,[csolution,obtained,by,dissolving, the,above,ppt,add,excess,of
swater],[milkiness]],[antimony,[solution,obtained,by,dissolving, the,above,ppt,i
n,conc,’ HCl’ ,add,excess,of ,water],{milkiness]]]).

tin_metal([[antimony,[solution,obtained,dissolving,the,above,ppt],[black,depos:
t,on,this,metall}l}).

potassium_sulphocyanide([{iron,[solution,cbtained,by,dissolving, the,above,ppt,:
n,dilute,”HCl1"1,[blood,red,colouration]]l). ‘

lead_acetate([[chromium,[solution,obtained,by,extracting, the,above,ppt,and, 'Nai
H’ ,and, “NaN03‘ ,wi th,water],[yellow,ppt,soluble,in,"NaOH’]11]).

hydrogen_peroxide([{chromium,[sclution,obtained,by,extracting, the,above,ppt,an:
,“NaOH” ,and, NaN03’ ,wi th,water,and,add,2,drops,of ,"H2504 ,and,1 ,ml ,of ,ether ,ans
J,{blue,colour,in,the,ether,layerl]]).

ammonium_hydroxide([[aluminium,[soclution,obtained,by,dissolving,the,above,ppt,:
n,dilute,”HCl’,add,a,few,drops,of ,blue,litmus,and]),{blue,ppt,floating,in, the,c:
lourless,sclutionl}]l).

P16
cobaltinitrite([{[cobalt,[original,solution,add,a,pinch,of,”NH4Cl’ ,and, "NH40H" , 4

nd,add,a,pinch,of ,”KNO2‘,and,a,few,drops,of ,acetic,acid,and,shake,well],{yelow,
pptllll.

dimethyl glyoxime([[nickel,[original,sclution,add,a,pinch,0f,’NH4Cl’,and,a,few

drops,of,”’NH40H1,[bright,red,pptl1]}.

bromine_water([[manganese,[original,solution,add, ‘NalH’,solution,till,a,ppt,req
ults,and,shake,after],[brown,pptll]).

sodium_hydroxide([[zinc,[original,sclution],[white,ppt,scluble,in,excess,of,’ N3
OH 111). !
\
ammonium_sulphate([[strontium,[sclution,obtained,by,dissolving, the, above,ppt,ln
,hot,dilute,acetic,acid],[white,ppt]l]]).

ammon ium oxalate([[éalcium [solutioyobtained,by,dissclving, the,above,ppt,in,hot

sdilute,acetic,acidl,{on,sceratching, the,sides,of ,the,tests, tube,af ter addxng,’N
H40H s 3, whxte,ppt]]])

ammonium_phosphate([[magnesium,{original,solution,add,a,pinch,of,”NH4Cl‘,and,ex
cess,of ,’NH40H’ ,and, thenl,[white,ppt]]]).

potassium_pyroantimonate([[sodium,[original,solution],[white,ppt,or,milkiness,o
n,scratching,the,sides,of,the,tecst,tubelll).

sodium_cobaltinitrite([[potassium,[original,solution),[yellow,pptlll).
picric_acid([[potassium,[original,solution],[yellow,ppt]l]).

tartaric_acid([[potassium,[original,solution],[white,ppt,on,scratching, the,side

51112,

silver_nitrate([[thiosulphate,[write_sol,nl],[white,ppt,which,changed,to,yell
sorange,brown,and,finally,black]],{chloride,[asserta(acid(’dilute HNO3")),wri

P-4T

_extract],["CURDY WHITE PPT‘,soluble,in, NH40H"]J],[bromide,[assertalacid(’dilu
e HNO3 ")) ,write_extract},["PALE YELLOW PPT’,partially,coluble,in,’NH40H"]1],[io

ide,[asserta(acid(‘dilute HNO3“)),write_extract],['YELLOW PPT’,insoluble,in,’N
40H"111).

ferric_chloride([[thiosulphate,[write_sol],["PURPLE or VIOLET’,colour ,which,f
es,away,on,standingll,[acetate,[write_sol,write(’/Red colour results’),nl,write
‘Dilute it with 2ml of water and boil”),nl],[’ "BROWN PPT]],[sulphite,[write_so
l,[dark,”RED COLOURED’,solutionll]).

ethyl alcohol([[acetate,[write_mnol,["FRUITY SMELL"]11).
ferrous_sulphate([[nitrite,[assertaCacid(’CH3CO0H’)),write_ex],[DARK BROWN’,o
s, "BLACK’ ,so0lutionl]),[nitrate,[write_scl,write(’'Now add conc. H2S04 by the side

of the test tube’),nl]l,[DARK BROWN RING’,at,the,junction,of ,the,two,layers]]
).

potassium_permanganate([[nitrite,[write_soll,[disappearing,of,the, PINK’, colo
r,of ,7KMn04“1],[sulphite,[write_scl]l,[disappearing,of,the,’PINK’,colour,of,’ KM
0473111, i
barium_chloride([[sulphate,[write_soll}l,["WHITE PPT’,inscluble,in,dilute,”HCl’]
y[sulphite,[write_sol,write(’Filter the ppt and treat the residue with dilute |
Cl.”),nl),[/DISSOLUTION’ ,of ,the,ppt,with,the,evolution,of,” S027]),[oxalate,[wr
te_extract],["WHITE PPT“111).

sodium_nitroprusside([[sulphide,[write_s],["PURPLE or VIOLET ,colourlll).

cadmium_carbonate([[sulphide,[retrieve(5,T),displist([“To’,“3ml’,0f,5,add,a,li
tle,so0lid,T]),nl],[“YELLOW PPT*111).

lead_acetate([[sulphide,[asserta(acid(’dilute CH3COOH")),write_extract],[’BLAC
PPT’111).

calcium_chloride([[oxalate,[asserta(acid(’dilute CH3COOH')),write_extract],[W
ITE PPT"111).

manganese_dioxide([[chloride,[write_mno),[Cl2",g9as,which,turns,starch,iodide,
aper,bluel],(bromide,[write_mno],[’Br2’,9as,which,turns,starch,paper,yellowll],
iodide,[write_mnol,[(“I27,vapour ,which,turns,starch,paper,bluel]ll).

chromyl_chloride({[chloride,[readfile(cct)],[yvellow,ppt]l]).

carbon_disulphide([[bromide,[asserta(acid(‘dilute HCl1/)}) ,write_extract,write(’
lso add a few drops of Cl2 water and shake well.’),nl],[ORANGE’,colour,in, “C
2’,layer]],liodide,[assertalacid(’dilute HCl’)),write_extract,write(’Alsoe add

few drops of Cl2 water and shake well.’),nl],[“VIOLET’,colour,in,’CS2’,layer]
.

green_edged_flame([[borate,[asserta(test(“2-3 ml of ethyl alcohol’)}), wrxte _mno
,[vapours,burning,with,”GREEN EDGED FLAME~"111]1).

turmeric_paper([{borate,{write('Take 0.3 gms of the salt.Make its solution wit
dilute HCl’),nl,write(”and soak a turmeric paper in it.On drying the paper be

omes’),nl,write(’brown in colour.Now touch the paper with a drop of NaOH’)],[a
“DIRTY BLUE’,or,”GREENISH SPOT’111).

magnesium_sulphate([[X,[write(” Shake 0.3 gms of the salt with distilled water.

Y M1l TAHizenl it mam A& e~ -1 & D e -~

io_module(Radical,Test,Y):- repeat, P-1%

l ((rad(anion),ask_n(Radical,Test));
(rad(cation),ask_c(Radical ,Test))
Yynl,prompt(lIn,>),read(Y),

chek (Radical ,Test,Y).

chek(Rad Ct,why):—((rad{(anion),! map_Y{Rad));
(rad(cation),!,ans_why(Rad,Ct))
J,pause_fail.

chek(_,_yhow):—ans_how,!,fail.

chek(_,_,Int):-integer(Int),!.

chek (_,_ ,yes)

chek(_,_,no).

ask_n(Rad,Tes) :—- E=..[Tes,List],E,

! get_procedure(Rad,X1,X2,List),

: execute(Xl),
write(’Tell me whether’),nl,displist(X2),nl,
write(’is observed?’).

ask_c(Rad,Test):— (Test==magnesia_mixture;Test==dilution),

: _ .[Test,List],E,
get_procedure(Rad,X1,X2,List),
displist(Xl),nl,write_tell(X2),!

ask_c(Rad,Test):- E=..[Test,List],E,
get_procedure(Rad,X1l,X2,List),
write(‘To 2 ml of the ‘),
displist(Xl),nl,write(’add a little of 7)),
write(Test),tab(l),nl,
write_tell(X2),

ask_c(groupl,1):-
nl,write(’To the SALT SOLUTION add a few ml of dilute HCl’),nl,nl,
write_tell("WHITE PPT’).
ask_c(groupl,2):-
nl,write(’Boil 3 part of the white residue with a little of water’),
' nl,nl,write_tell(DISSOLUTION of the ppt’).
ask_c(groupl ,3):-
nl,write(‘Filter and treat the residue with NH40H and shake’),nl,
write_tell(’dissolution of the ppt’).

ask_c(groupllA,l):—readfile(groupll_proc).
ask_c(groupllAa,2):-
; write(’Treat a pinch of groupll ppt with yellow ammonium sulphide’),
nl,nl wrxte(Tell me whether the ppt remained INSOLUBLE?’).
ask c(groupIIA 3):
nl,write(’ Tell me the colour of the groupll ppt’),
nl,tab(9),write(’1l. Black’),
nl,tab(S),write(’2. vellow’),
nl,tab(S),write(’3. none’).
ask c(groupIIA 4)'—
write(’Boil the black ppt with 2-4ml of dil HNO3(S0%)’3),nl,
: write(’Tell me whether the ppt remained INSOLUBLE?’).
ask_c(groupllAa,S):-
nl,write(“To 1lml of the ABOVE SOLUTION add 2 drops of dil H2S5047),
nl,write_tell("WHITE PPT").
ask C(SroupIIA 6):-
write(’To the rest of the solution in dilute HNO3 add excess’),nl,
write(’of ammonium hydroxide’}),nl,
write(’What is the colour of the ppt formed?’),
nl,tab(5),write(’1. white pot’Y.

$-19

ask _c(groupllB,l):-readfile(groupll_proc).
ask _c(groupllB,2):-
write(’Treat a pinch of groupll ppt with yellow ammonium sulphide’),
nl,write(‘Tell me whether the ppt remained INSOLUBLE?"). '
ask_c(group118,3):— nl,tab(S),write(’Tell me the colour of the ppt’),
‘ nl,tab(5),write(’1l. yellow’),
nl,tab(35),write(’2. orange’),
nl,tab(3),write(“3. brown or dirty yellow ppt’).

ask_c(grouplll,l):-readfile(grouplll_proc).

ask_c(grouplV,l):-readfile(grouplIV_proc).

ask_c(grouplV,2):-

, nl,write(’What is the colour of the original salt?’),nl,
wr1te(Indicate 1 for Pink and 2 for green or bluish green’).

ask _c(groupV,1l):-readfile(groupV_proc).
ans _why(groupV,1l):~-readfile(groupV_why).
ans_why(groupl, 1)'—readf11e(groupl _why).,
ans _why(groupl,2):
write(’If the Ppt dissolves the cation may be lead or’),nl,
write(” else 1t can be either Ag+ or Hgz+2’).
ans _why(groupl ,3):
write(’If the ppt dissolves the cation may be Agt or’),nl,
Wwrite(‘else it can be Hg2+2 if the ppt turns black’).
ans_why(groupllA,l):-readfile(groupll_why).
ans_why(groupllA,2):-
© nl,write(’If the ppt dissolves the cation belongs to groupllB7),
nl,tab(S),write(‘otherwise it belongs to groupllAa’).
ans_why(groupllIA,3):-
nlywrite(’If the colour of the ppt is’),nl,tab(3),
write(’black then [Hgt+2,Pb+2,Bi+2,Cu+2] may be present’),nl,tab(s),
write(‘yellow then [Cd+2] may be present’).
ans_why(groupll&,q4):-fail.
ans_why(grouplIA,S5):-fail.
ans_why(groupllA,6):-fail.

ans_why(grouplIB,3):-readfile(grouplIB_why).
ans~why(grouplll,1):-readfile(grouplll_why).
ans_why(grouplV,l):-readfile(grouplV_why).

ans _why(groupliV,2):-nl,

i wrxte(If the original colour is pink it indicates Cot2’)

, tab(26) ,write(‘green or bluish green it indicates Ni+27).
ans_why(Rad,_):—readfile(Rad).

map_Y(io2):—- write(’If the salt is inscluble, sodium carbonate extract has

‘e prepared’),!.

map_Y(io):-write(’This menu selects the test requested by the user’),!.
vy e~readfile(X).

= l_decy(-)‘(,74Y_

P-ac

pause_fail:—nl,write(ok),skip(l0),fail.
pause:-nl,write(ok),skip(l0).
write_dis(X):—-displiet([Tell’ ,me,whether,the,X,dissolved,’?’]).
write_disappear(X):-displist([’Tell’ ,me,whether,X, disappeared?’]).
write_s:-retrieve(Z,X),displist(["To’,"2-3ml’,0f ,Z,add,"1-2ml’,0f,X,”.”1),nl.
write_sol:-
retrieve(Z,X),displist({“To","2-3 ml’,o0f ,Z,add,a,few,drops,of ,X,”.“]),nl.
retrieve(S,T):—~test(T),soluble_in(S).
write_extract:i-retrieve(X,Z),acid(Y),
displist([’Acidify’,”2 ml’,of ,X,with,Y,and,&,boil,off,” CO2’,completely,&]),
displist([“Add’,to,it,1,ml,of ,Z,s0lution]),nl.
write_any(X):-
displist([’Any’,of ,the,following,tests,confirm,the,presence,of,X,radicall),
nl,write(’Indicate your choice by keying the number against the test’),nl.
write_tell(X):-displist([‘Tell’ ;me,whether,” a(an)’ ,X,is, observed?’]),nl.
write_mno:-test(T), v
displist([’Heat’,’0.5 gms’,of,the,salt,with,’2ml’,0f ,conec, H2504’ ,and,T,’."]
nl.
write_ex:-retrieve(X,Y),acid(Z),
displist([“Acidify’,’2ml” ,of ,X,with,2,drops,of ,dilute,Z,&,add,2,ml,0f,Y]),nl.

confirm_cation:—-confirm_Qgroupwise. p-21
confirm_groupwise:—confirm_groupwise(Y),write(’CATION = “),write(Y).
confirm_groupwicse(Y):-repeat,nl,
write(’Do you want to detect the cations groupwise?’),
nl,prompt(In,>),read(Ans),
. readfile(salt_proc),pause,
((Ans==yes,groupl(Yl),
' '((Yl==no,write_no(groupl),groupllA(Y3),
((Y3==no,write_no(groupll),groupllI(Y4),
((Y4==no,write_no(grouplll),grouplV(Y3),
((YS==no,write_no(grouplV) ,groupV(Ye),
((Y&==no,write_no(groupV),group¥
((Y7==no,rem,!,fail)

);(Y=Y6;
);(Y=Y5;
);(Y=Y4;
);(Y=Y3;
);(Y=Y1;
);(Ans=ino,fail)

Y.

rem:—-displist([“'The’,cation,does,not,belong,to,qroupVIl,”.”1),nl,nl,
write(’'The cation does not belong to the list of cations detectable by

write_no(X):—-displist([“The’,cation,does,not,belong,to,X,”.”7)),nl.
groupl:—grouplI(Y),nl,write(’CATION = ") ,write(Y).
groupI(Y):-io_module(groupl,1,2),anscheck(Z,Y).

anscheck(yes,Y):—io_module(groupl,2,2),aﬁschéck1(Z,Y).
anscheck(no,no).

énscheekl(yes,lead):—conf(lead).
anscheckl(no,Y):—- io_module(groupl,3,Z),anscheck2(Z,Y).

anscheck2(yes,silver):—conf(silver).
anscheck2(no,mercury):—conf (mercury).

groupII:—groupIIA(Y),nl,write(’CATIDN = ‘),write(Y).
éroupIIA:—groupIIA(Y),nl,write(’CATION = J,writelY).
éroupIIA(Y):—io_module(grouplIA,l,Z),ansckO(Z,Y).

ansckO(yes,Y):—-io_module(groupllA,2,Z),io_module(groupllA,2,Z),ansck(Z,Y
ansckO(no,no).

énsck(no,Y):-write(’groupIIA is absent.”}),nl,nl,

write(/groupllIB is analysed by confirming As+3,5b+3,Sn+2 individually”
ask(no,Y).

ansck(yes,Y):—io_module(groupllA,3,Z),ansckl(Z,Y).

ansckl(1l,Y):—-io_module(grouplIA,q4,Z),ansck2(Z,Y).
ansckl(2,cadmium) s—conf (cadmium).
ansckl(3,no0).

ansck2(yes,mercury):-conf(mercury).
3nSCk2(nﬂ_Y\ L 1o meacdiil Ad v i TTA = —r~ P

Cansck4(l s breEmuth) i-conf(birsmuth).

ansck4(2,copper):—conf (copper}.
ansckd4(3,n0).

grouplIB:—-grouplIB(Y),nl,write("CATION = ‘), ,write(Y).

grouplIB(Y):-io_module(grouplIB,1,Z),ask0(Z,Y).

ask0(yes,Y):-i1o_module(grouplIB,2,Z),ask(Z,Y).
askO(no,no).

aski{yes,Y):1—ansck(ves,Y).
ask(no,Y)Y:~io_module(groupllIB,3,Z),as(Z,Y).

as(l,Y):—-((conf(arsenic),Y=arsenic);i¥Y=no).
as(2,Y):~{((conf(antimony),Y=antimony) ;Y¥Y=no).
as(3,Y):-((conf(tin),Y=tin);Y=no).
as(no,no).

grouplIl:—groupllI(Y),nl,write(CATION = ‘) ,write(Y).

grouplIII(Y):- io_module(grouplll,l,Z),verify(Z,Y).

verify(l,Y):=((conf(iron),Y=iron);Y=no).
verify(2,Y):—((conf(chromium),Y=chromium);Y=no).
verify(3,Y):—-((conf(aluminium),Y=aluminium);Y=no).
verify(no,no).

groupIV:—grouplIV(Y),nl,write(CATION = “),write(Y).

groupIV(Y):—-io_module(grouplV,1,7),veri(Z,Y).
~yeri(l,Y):—io_module(groupl¥,2,Z) ,verif(Z,Y).
veri(2,Y):-((conf(manganese),Y=manganese) ;Y=no).
veri(3,Y):—((conf(zinc),Y=zinc);Y=no).
veri(no,no).

verif(l,Y):-((conf(coebalt),Y=cobalt);Y=no).
verif(2,Y):—((conf(nickel),Y=nickel);Y=no).

gqroupV:—-groupV(Y),nl,write("CATION = ") ,write(Y).

groupV(Y):—io_module(groupV,1,Z),

‘ ((ZN\==no,callconfirm(Y),Y\==no);
(Y=no)
3.

callconfirm(Y):—((conf(barium),Y=barium);
{(conf(strontium),Y=strontium);
(conf(calcium),Y=calcium)

).
groupVUl :—groupVI(Y),nl,write("CATION = “),write(Y).

groupVI(Y):- repeat,groupVl_proc,
((callcon(Y),Y\==no)j;(Y¥=no)).

callcon(Y):- ((conf(magnesium),Y=magnesium) ;
{conf (sodium) ,Y=sodium);
(conf(potassium) ,Y=potassium);
(conf(ammonium),Y=ammonium)
3.

CATION.
silver
mercurous
lead
mercuric
bismuth
copper
cadmium
arsenic
antimony
tin

iron
chromium
aluminium
cobalt
nickel
manganese
zinc
barium
strontium
calcium
magnesium
ammonium
sodium.

potassium

APPENDIX A

FORMULA
Ag+
Hg2+2
Pb+2
Hgt2
Bi+3
Cut+2
Cd+2
As+3
Sb+3
Sn+2
Fe+3
Cr¥3
Al+3 .
Co+2
Ni+2
Mn+2
Zn+2
Bat2
Sr+2
Cat+2
Mg+2
NH4+
Na+

K+

ANION

carbonate

bicarbonate

sulphate

thiosulphate

acetate
nitrite
nitrate
sulphite
sulphide
oxalate
chloride

bromide

iodide

phosphate

FORMULA
C03-2
BCO3-
S04-2
$203-2
CH3C00-
NOZ-
NO3-
S03-2
S-2
C204-2
C1-
Br-

-

PO4-3

APPENDIX B

NAME OF THE DETECTABLE DETECTABLE TOTAL
TEST CATIONS ANIONS NO
dry_heat_test Zn+2,5n+2,Cd+2,Pb+2 C(C03-2,HCO03-,C204-2,5-2
' Bi+3,Co+2,Cu+2,Ni+2 CH3CO0-,504-2,5203-2 26
Fe+3,Ni+3,NH4+,Hg+2 S03-2,N02-,N0O3-,Cl- —_
As+3 Br-,I-
charcoal_test Zn+2,5n+2,Cd+2,Pb+2 PO4-3,B0O3-3
Bi+3,Cu+2,Ag+2,5b+3 14
Ba+2,A1+3,Ca+2,Mg+2
flame_test Na+,K+,Cu+2,5r+2
Ca+2,Ba+2,As+3,5b+3]
Pb+2
borax_bead_ Co+2,Cr+3,Cu+2,Fe+2
test Fe+3,Mn+2,Ni+2 - T
dil _hZ2s04 CO3-,HC03-,803-2
test - $5203-2,5-2,N02- 6

conc_h2so4d_
test

Cc204-2,C1-,Br-
I-,CH3C00-,NO3-

:ROUP NO

IIA

IIB

I1I

v

VI

CATION

Ag+,Hg2+2,Pb+2

Hg+2,Pb+2,Bi+3
Cu+2,Cd+2

As+3,5b+3,Sn+2
Sn+4

Fe+3,Cr+3,A1+3
Cot2,Ni+2 ,Mn+2

Ba+2,B8r42, Ca+2

Mg+2,NH4+,Na+

APPENDIX C

~

GROUP REAGENT

Dilute HC1

H2S gas in solution
made acidic with HC1

-DO-
NH40OH in presence of
NH4C1

Hés in solution made
ammonical with NH40H

(NH4)2C03 in presence
of NH4C1l & NH4O0H

No particular reagent

GROUP PRECIPITATE

Metal chloride

Metal sulphides

As Sulphides

Metal Hydroxides

Metal Sulphides

Metal carbonate

¢

Appendix D - Summary of Evaluable Predicates

abolish(F.N) Abolish the procedure named F arity N.
abort Abort execution of the current directive.
arg(N.T,A) The Nth argument of term T is A.

.assert(C) Assert clause C.

assert(C,R) Assert clause C, ref. R.

asserta(C) Assert C as first clause.

asserta(C.R) Assert € as first clause, ref. R.
assertz(C) Assert C as last clause.

assertz(C,.R) Assert C as tast clause, ref. R,

atom(T) Term T is an atom.

atomic(T) Term T is an atom or integer.

bagof(X.P.B) The bag of Xs such that P is provable is B.
break Break at the next procedure call.

cali(P) Execute the procedure call P.

clause(P.Q) There is a clause, head P, body Q
clause(P,.Q,R) There is an clause, head P, body Q, ref R.
close(F) Close file F.

compare(C.X,Y) C is the result of comparing terms X and Y.
consult(F) . Extend the program with clauses from file F.
currant_atom(A) One of the currently defined atoms is A.
current_functor(A,T) A current functor is named A, m.g. term T.
current_gredicate(A.P) A current predicate is named A, m.g. goal P.
db_reference(T) T is a database reference.

debug Switch on debugging.

debugging Output debugging status information.
display(T) Display term T on the terminal.

erase(R)) Erase the clause or record, ref. R.
erased(R) The object with-ref. R has been erased.
expand_term(T,X) Term T is a shorthand which expands to term
exists(F) The file F exists.

fail Backtrack immediately.

fileerrors Enable reporting of file errors.
functor(T.f.N) The top functor of term 1 has name F, arity
get(C) The next non-blank character input is C.
get0(C) The next character input is C.

halt Halt Prolog, exit to the monitor.
instance(R,T) A m.g. instance of the record ref. R is T.
integer(T) Term T is an integer.

Y is X Y is the value of arithmetic expression X.
keysort(L,S) The 1list L sorted by key yields S.

ieash(M) Set 1eash1ng mode to M. .

listing List the current program.

listing(P) List the procedure(s) P.

name (A, L) The name of atom or number-A is string L.
ni Output a new line.

nodebug Switch off debugging.

nofileerrors Disable reporting of file errors.

nonvar(T) Term T is a non-variable.

nospy P Remove spy-points from the procedure(s) P.
number(T) Term 7 is a number.

sp(P.T.A) Make atom A an operator of type T precedence

primitive(T) 1 is a number or a database reference

1>

1o

<

N

print(T)
prompt(A.8)
put(C)
read(T)
reconsul
recorda(
recorded
recordz(
rename(f
repeat
retract(C)
save(f)
see(F)
seeing(F)
seen
setof(X,P.B)
sh

skip(C)
sort(L.S)
spy P

t
K
(
K

10+ [+ o~

-system(S)

Lab(N)

‘tell(F)

telling(F)
told

trace

true
var(1)
write(T)
writeq(T)

LS

P 2 | 2 1 D€ 2 | 2| 2 | =4 | 2 | 2 [< | 2|
R
1< ni=<
|~
1< I

M@ D®DD®~ 00
—_— AN N
o lll-<|2l-< "< .

|

Portray or else write the term T.
Change the prompt from A to B.
The next character output is C.

Read term T.

Update the program with procedures from file F.

Make term T the first record under key K,
Term T is recorded under key K, ref. R.

ref.

Make term I the last record under key K, ref.
Rename file F to G.
Succeed repeatedly.

Erase the f.rst

clause of form C.

Save the current state of Prolog in file
Make file F the current input stream.
The current input stream is named F.

Close the current input stream.
The set of Xs such that P is provable is B.
Start a recursive shell .
Skip input characters until after character C.

The 1ist L sorted into order yields S.
Setl spy-points on the procedure(s) P.

Execute command S.

Output N spaces

Make file F the current output stream.
The current cutput stream is named F.

Close the current output stream.

Switch on debugging and start tracing.

Succeed.

|

Term T is a variable, var(x) K Axtcecds] %

Write the term T.

Write the term T, quoting names if necessary.
The following Prolog text uses lower case.

The following Prolog text uses upper case only.
Cut any choices taken in the current procedure.
Goal P is not provable.

As numbers,
As pumbers,
As numbers,
As numbers,
Terms X and

-3¢ ||| >

is less than Y.
is less than or equal to Y.
is greater than Y.
is greater than or equal to Y.
are equal (i.e. unified).

R.

R.

1%

5 an -\kv\.\wal’ti—\k\ni:.;‘

The functor and args. of term T comprise the list L.

Terms X and Y are strictly identical.

Terms X and Y are not strictly identical.

Term

Term
Term
Term

Perform the (re)consult(s) specified by

21| 3<|>¢

precedes term Y.

precedes or is identical Y.

follows term Y.

follows or is identital to term Y.

“LEIR].

”
vewekh. -

REFERENCES

Stefik 82] Stefik M et al, The organization of Expert
Systems Tutorial, AI 18,March 1982.

Davis 81] Davis R, Expert Systems, where are we? And
where do we go from here?, 7th ICal 1981.

‘Sangal 85] Sangal R, Expert Systems, CSI Communications,
December 1985. ‘

‘Davis 82] Davis R and D Lenat, Knowledge Based Systems
in AI,Mc Graw Hill, 1982.

‘Hayes Roth 83] Hayes-Roth, F D A Waterman, D B Lenat,
Building Expert Systems,Addison-wesley,1983.

Clark 82] K L Clark and F G Mc Cabe,PROLOG:a language
for implementing expert systems,MI 10.

‘Negoita 85] Constantin Virgil Negoita,Expert Systems and
© Fuzzy Systems, The Benjamin Cummings Publishing

Co, 1885.

Rich 83] Elaine Rich, Artificial Intelligence, Mc Graw
Hill 1883.

.Togai 86] - Masaka Togai and Miroyuki Togai, A VLSI
implementation of a fuzzy inference engine
towards an Expert System on a chip,

Information Sciences, Vol 38, NoZ2, April 886.

Winston 75] Winston, Artificial Intelligence, Addison-
wesley,1975.

Feigenbaum 82] Edward A Feigenbaum, The Handbook of AI,
Vol 2,Willman Kaufmann 1981-82.

Clocksin 81] W F Clocksin, C S Mellish, Programming in
PROLOG , Springer-verlag, 1981.

Myers 86] W Myers, Introduction to Expert Systems,
IEEE Expert,Spring ’86.

	TH21750001
	TH21750002
	TH21750003
	TH21750004
	TH21750005
	TH21750006
	TH21750007
	TH21750008
	TH21750009
	TH21750010
	TH21750011
	TH21750012
	TH21750013
	TH21750014
	TH21750015
	TH21750016
	TH21750017
	TH21750018
	TH21750019
	TH21750020
	TH21750021
	TH21750022
	TH21750023
	TH21750024
	TH21750025
	TH21750026
	TH21750027
	TH21750028
	TH21750029
	TH21750030
	TH21750031
	TH21750032
	TH21750033
	TH21750034
	TH21750035
	TH21750036
	TH21750037
	TH21750038
	TH21750039
	TH21750040
	TH21750041
	TH21750042
	TH21750043
	TH21750044
	TH21750045
	TH21750046
	TH21750047
	TH21750048
	TH21750049
	TH21750050
	TH21750051
	TH21750052
	TH21750053
	TH21750054
	TH21750055
	TH21750056
	TH21750057
	TH21750058
	TH21750059
	TH21750060
	TH21750061
	TH21750062
	TH21750063
	TH21750064
	TH21750065
	TH21750066
	TH21750067
	TH21750068
	TH21750069
	TH21750070
	TH21750071
	TH21750072
	TH21750073
	TH21750074
	TH21750075
	TH21750076
	TH21750077
	TH21750078
	TH21750079
	TH21750080
	TH21750081
	TH21750082
	TH21750083
	TH21750084
	TH21750085
	TH21750086
	TH21750087
	TH21750088
	TH21750089
	TH21750090
	TH21750091
	TH21750092
	TH21750093

