
AN
THE

EXPERT SYSTEM FOR
QUALITATIVE ANALYSIS

IN CHEMISTRY

Dissertation submitted to the Jawaharlal Nehru University

in partial fulfilment of the requirements

for the Award of the Degree of

MASTER OF PHILOSOPHY
·.,.

(COMPUTER SCIENCE)

K. SITARAMA- RAO,

SCHOOL OF COMPUTER & SYSTEMS SCIENCES

JAWAHARLAL NEHRU UNIVERSITY

NEW DELHI-110067

1987

CERTIFICATE

This work embodied in the dissertation titled, " An Expert
System for the Qualitative Analysis in Chemistry ", has been
carried out by Mr.K.SITARAMA RAO, a bonafide student of

/ School of Computer & Systems Sciences, Jawaharlal Nehru
University, New Delhi - 67.

This work is original and has not been submitted for any
other degree or diploma of any other University.

Sri .C.RAVI SHANKAR
Systems Specialist
P. t D Centre,
CJ-1C Ltd.
115 :=;D Road
:=;ECUNDERABAD - ·-:1

~·

Dr. K. K. BHARADV.JAJ
Associate Professor

School of Computer &
Systems Sciences

Jawaharlal Nehru University
NEJ..J DELHI - 67

Prof.K.K.NAMBIAR
Dean, School of Computer &

Systems Sciences
Jawaharlal Nehru University

t··.JEl.,J DELHI - ~;7

0. Acknowledgements

1. Introduction to Expert Systems

1.1 What are Expert Systems?
1.2 Architecture of Expert Systems

-~1,_.3 Alternative Architectures -··-.--
-~-·!~-,AI ~anguagesfo!'_ ~plen:ten(~g.~x:r:e_rt:-syste~~ __
1.5 Some advantages of Expert System Technology

2. Introduction to the project

2.1 What this is about?
2.2 What this project can do?
2.3 Some representational details

3. I nferenci ng

3.1 Preliminary Tests
3.2 Confirmatory Tests

4. Justification

5. Some comments on likely improvements

6. Listings of the program

+7. Appendices

7.1 Appendix A
7.2 Appendix B
7.3 Appendix C

;. + A~~e."di" .D

ACKNOWLEDGEMENTS

This project would not have happened without the help of

many people, for all of whom I am deeply indebted. First

I would like to experess my sincere thanks to my

supervisor Dr K K Bharadwaj, for his understanding and

encouragement throughout this period. I would also like

to acknowledge Sri Kapoor, Systems Manager, CMC

Secunderabad for allowi~g me to work at CMC, and

providing me with excellent working facilities. Words

reflect poorly my gratitude to Sri C Ravi Shanker for

his immense patience and constant guidance during my

stay at CMC Secunderabad. I am thankful to Mr U Bhaskar

and Mr Sethuraman of CMC, for their invaluable

suggestions. My acknowledgements would not be complete

without thanking Prof P C P Bhatt, Head of Computer

Science Department, IIT Delhi and Prof K K Nambiar, Dean

School of Computer & Systems Science, JNU, New Delhi for

the interest · they had taken in guiding me to CMC

Secunderabad. Lastly but not leastly, I thank Mr Meshack

.Ponraj for his timely help in printing this thesis.

INTRODUCTION TO EXPERT SYSTEMS

1.1 WHAT ARE EXPERT SYSTEMS?

Expert systems are problem solving programs which

behave like human experts in specific d_omains. Like

human experts they are capable of advising,

diagnosing,justifying and learning.· Some examples of

human experts are a DOCTOR who diagnoses the disease

(or diseases) in a patient and gives a therapeutic

advice, a COMPUTER EXPERT who can advise a client on

the configuration of a computer system depending on

the requirements of the clienti a CHEMIST who can

advise a student on the qualitative analysis of a

compound etc .•

In each of the above examples, a substantial problem

is being solved that requires special knowledge

pertaining to the problem domain. The expert must

garner relevant details of the problem concerned and

apply the special knowledge in a selective manner to

arrive at one or more solutions. If the details are

incomplete, the expert should still solve the problem

partially or go about desigining experiments by which

the missing information can be obtained. Normally,

even if a solution has been found, the task of the

expert is not over as the expert is expected to

explain

the the

knowledge.

and defend his suggestion. Besides all this

expert must be capable of acquiring more

Comparing with a human expert, an expert system should

possess the following characteristics, in addition to

its problem solving ability:

* Engage in a dialogue with the user to acquire

the relevant details of the problems.

* Be able to explain its problem solving process.

* Be able to take care of new discoveries or lacunae

in the domain either by experience or through a

dialogue.

* Be capable of dealing with partial information.

1.2 ARCHITECTURE OF EXPERT SYSTEMS

.· ':..···

82 , Dav i s 81] , found that trying ·to build an Expert

System in a procedural manner makes the program

rigid. It has been found that such procedural programs

cannot provide a flexible dialogue, cannot deal with

partial information and are not easy to change.

The most important lesson that has been learnt is that

knowledge about the domain of theproblem must be

separate from how the knowledge is to be applied or

used [Sangal 85,Davis 82]. The knowledge should be

represented · declaratively, and a separate

interpretive component should select and apply it. It

has also been found that the knowledge of the domain

can be expressed naturally in the form of if-then

rules. The organization that has emerged most popular

is called RULE-BASED system as depicted in figure 1.1

below:

t:Xf>E.~T
~

K.NOw'Lt.O C"\t:

'' c..$\ u • s. I r I o N
f~t:>T£-M

;:

II
KNCWi-£O<it£

ibA-''-" ('{'

~Zuc£~

(i<J 1·1

u~£ -j,

1/0
-~-t__s.rc::M

~T

!SIV ~~TI otJs;.
1

1"\K.vl1l-E "''

AD'iiCt
Al'l1qr.JC: ,;z_s I

E~f>LAI'JATI ON5

It

_;, jN rc: R.N:t.E r E ~

,-- ,... -·
ICoNfE.lC.I;
I

~ L. -- -

fiT€M~ -~ \1

DATA

A rule based system consists of

components:

1. a knowledge base consisting of if-ihe~

rules (also called productions).

2. a current context or facts pertaining

to the particular problem being solved

by the system and

3. an interpreter that decides what is to

three major

be done next i.e what rule is to be applied.

The task of the interpreter is to

1. match the rules against the context

2. if more than one rule match, resolve

conflict and choose one of them and

3. apply the chosen rule

The interpreter is in a loop performing these three

steps until no more rules are applicable or a solution

has been found.

Besides the production system there are two other

major components of an expert system.

1. 1/0 SYSTEM

This is an interface which puts questions to the user

and passes the answers to the production system.

Similarly it displays advice or explanations to the

_user from the production system.

2. KNOWLEDGE ACQUISITION SYSTEM

This is an interface to a human expert who monitors

the performance of the system and updates rules in

the knowledge base.

Though the above m~ntion~d $tructure is central to all

expert ?Ystems,the nat4re of the problem demands

differeh~ ways of interpretation. Depending on the

nature of interpret~tion an e~pert system may be

classified into two types as follo~s:

1. FORWARD REASONING

Forward, t~ason i ng bu i ld.s tJ ft · m t ... "'e ' . p <?. !' available facts

about a • ' • I
s1t1..1~t1on to ~edll<;::e <;::onclusions. It is

appropri·t~ whete th~ poi~ibl~ conclusions cannot be

prespe<;::ified, as in a computer
·'

config~r$~ion, where •n end~~ss variety of end results

are fe~sibl~,

2. BACKWARD REASONING

Backward reasonin9 involv~s working back from a

concluslqn or goal to s,e if the conditions which

Would mJ~ •• k.e 1·t t u· · ·t· f' d a r . ~ are ?a 1 s. 1 ~· • It is appropriate

where th~ possible ~onciusibn$ c~n be specified in

advancE$' for example in medical diagnosis or

The abdv~ classific~tidn i~ tQO broad in the sense
• • ~-\ .; • .)>

that re~soning forward or backwatd is an overall

problem solving strategy~ How~v~r the search strategy

may itself use heur~stics br flJzzy algorithms or any ! ,,

other cof'lflict resbl!Jing tn~tho!f:J in sear~h which suits

the dorn~in~ The conc~pts invol!J~d ~n some of them are

,.... --··---.u '-.-.1 -· ...

1. HEURISTIC SEARCH

In orde_zo _to solve many hard problems efficiently, it is

often necessary to cnstruct a control structure that is

no longer guaranteed to find the best answer but that

will almost always find a very good answer. Such a

technique is called a heuristic which improves the

efficiency of a search process by resorting to rules of

thumb. One example of a good general-purpose heuristic

that is useful for a variety of combinatorial problems

is the nearest neighbour algorithm, which works by

selecting the locally superior alternative at each step.

2. PROBABILISTIC REASONING

So far we have assumed that all our facts are either

known to be 'true' or 'false'_ We have essentially not

considered the possibility that we might know something

that is 'probably true'. The mathematical theory of

probability provides a way of describing and

manipulating such uncertain knowledge. Sometimes very

simple techniques of probability can be used effectively

in AI.

One of the most useful results of probability theory is

Bayes' Theorem, which provides a way of computing the

probability of a particular event,

observations.

given some set of

Let

P(Hi:E) = the probability that hypothesis Hi is true

given evidence E

the probability that we will observe

evidence E given that hypothesis i is true

P(Hi) = the a priori probability that hypothesis i

is true in the absence of any specific

evidence.

k = the number of possible hypothesis

The theorem states that

P(E:Hi) * P(Hi)

P(Hi:E) =
. -------------------------------

k

> PCE:Hn) * P(Hn)

n=l

For more information on Bayes' Theorem and probabilistic

reasoning, the reader can reder to [Charniak 82].

3. FUZZY REASONING

Let the symbol U, denote a universe of discourse, which

may be an arbitrary collection of subjects or

mathematical constructs. If A is a finite subset of U

whose elements are u1,u2, ,un, then A is expressed as

A = { u1,u2, ,un}.

A finite fuzzy subset A of U is a set of ordered pairs:

A = { (ui,mu(ui) }

where ui belongs to U, and mu(ui) represents grades of

membership (or membership functions) which indicate the

degreee of membership. If all mu(ui) belong to {0,1},

the ··fuzzy subset" will be understood as a ··nonfuzzy

subset·· or "ordinary subset". The functions mu (ui) are

then beinary boolean functions with 0 and 1 denoting no

membership and full membership respectively.

LINGUISTIC VARIABLES AND FUZZY SUBSETS

The concept of fuzzy subsets is exemplified with

linguistic variables. Informally, a linguistic varibale,

L is a variable whose values are words or sentences in a

natural language or in a subset of it. If age is

interpreted as a linguistic variable, then its term-set

T(age) might be

T(age) = { young, old, very young, not young, very old,

very very young, more or less young, ---- }

where each of the terms in T(age) is expressed by a

fuzzy subset of a universe of discourse,

[0,100].

YcUNi'J

--.-~-..._ ~ / VE~ y oU/\J G.:..'---..!~--::_...,...--

Q..

:1:
Vl
~
tU
(()0

"i:
I!J
:i:

VARIOU.$

'\

say U =

~· INDEXING AND RULE SETS

Matching is the most expensive step in the application

of rules. To make it more efficient, rules can be

indexed by predicates or parameters. Hhenevel· a value
(

of the parameter is obtained, it can be used to

determine which rules match due to th~ new value being

available.

Indexing does not change the probl-em solving behaviour

of an expert system, except perhaps in making it

faster. The notion of rule sets originally suggssted

to deal with the efficiency issue is a. variation in

the architecture~ In this rules,are partitioned into

sets. At a given time one set is active. Hhat that

means is that matching is attempted with rules in the

current rule-set only. Switching among the rule sets

is carried out by the interpreter.

5. FUNCTIONAL ATTACHMENT

Context is an efficient data structure for stor~Q9

different parameters~ and the parameters are stored

and retrie~ed using functions attached to predicates.

An alternati've 'to this is to store

as·~er t ions.

\·4 AI LANGUAGES FOR IMPLEMEI'HING EXPERT SYSTEMS

level

broad classes. The programs that are written in the

ALGOL-like, block languages are

recognizable by the many block-delimiting BEGIN and END

statements. These languages usually allocate space for

var-ib;les, arrays and other data before th~ program is

executed(at compile time), so that dur-ing ~xecution the

space available for its data 1s fixed. The nested

structure of the blocks defines the scope of the program

variables and similarly defines which procedures can

call which other procedures.

The LISP-like languages are characterised by dynamic

allocation and dynamic seeping. Dynamic allocation means

that the space to be used by a data object is not fixed

ahead of time but is allowed to grow and shrink as

needed - an essential attribute for list processing.

Dynamic scoping means that any procedure can call any

other, and variable values are passed down the control

chain rather than being determitied by the static block

structure. That is once a varibale is declared, say

in procedure A, it can be accessed from within any

procedure B that A calls or any procedure C that B

calls and so forth regardless of when A,B and C appear

in actual program text.

Some of the desirable feautures of an AI language are:

1. Good facilities for manipulating lists, as lists are

widely used in AI programs.

2. Late binding times so that the size of the data

structre or the type of an object to be operated on, are

not fixed before hand.

3. Pattern matching facilities, both to identify data

and to determine control.

4. Facilitites for performing some kind of automatic

deduction and for storing a database of assertions that

provide the basis for deduction.

5. Fadilities for building complex knowledge structures,

such as frames, so that related pieces of information

can be grouped together and accessed as a unit.

6. Control structures that facilitate goal-directed

behavious(top-down processing) in addition to the more

conventional data-oriented(or bottom-up) processing.

IPL, LISP, INTERLISP, SAIL, PLA~NER, KRL.. PRClL(l(i ~.t~i;:f

some of languages implemented for AI applications. Their

feautures are discussed below in brief:

IPL

IPL (Information Processing Language) is a very early

list-processing language. The language resembled a

machine language more than a high-level language and is

no longer in use.

LISP

LISP is the most established AI language invented at MIT

by John Me Carthy in the 1950s. LISP is more convenient

for AI work than conventional data-oriented languages.

One reason is that it allows the direct representation

of symbolic concepts and the relationships between them

in the form of data structures called lists - in fact

lists are the only data structures in LISP. Another

convenience of LISP is that it does not require the

data types of each variable and the allocation of memory

to each da~a type, to be specified at the beginning of

the program; instead data types are determined at run

time,and memory is alllocated flexibly according to

requirements.

INTERLISP

There are many dialects of LISP, varying on everything

from the names of standard functions and the order of

their arguments to substantive issues involving the

kinds of feautures provided. One of them INTERLISP, is

sufficiently different from others. It has all of the

capabilities of basic LISP,

feautures, which include:

and provides additional

1. a variety of data types, like arrays and bit strings,

in addition to lists. '

2. a spaghetti stack, in which several program contexts

are stored simultaneously, so that control can be passed

back and forth between co-routines.

3. or variety of tools to facili-tate programming. DWIM

an acronym for Do What I Mean, is a tool which

interfaces the system and the user, and does such useful

things as correct spelling mistakes.

SAIL

SAIL is an ALGOL derivative and is the most similar to

conventional general purpose programming languages.

Since SAIL provides all the standard feautures of a

programming language, it has been used in speech­

recognition which involves a good deal of conventional

computing.

PLANNER

PLANNER is a language built on topo LISP and designed

for representing both traditional, forward-reasoning as

well as goal-directed, backward reasoning.

PLANNER consist of two types of,statements:

Programs in

1. Assertions,

2. Theorems,

which simply state known facts.

which describe how new facts

informed from old ones.

can be

There are three kinds of theorems that can occur in

PLANNER programs:

1. Consequent theorems, that describe backward or goal­

directed reasoning

2. Antecedent theorems, that describe forward, or data­

directed, reasoning.

3. Erase theorems,

database.

that delete assertions from the

One of the main difficulties that arose with PLANNER was

that the only available control structure was

backtracking, which was automatic rather than being

under the control of the programmer. To remedy this, a

new language CONNIVER was built in which the programmer

can explicitly direct the control flow of this program.

KRL

'KRL is a language built on top of INTERLISP, that

facilitates the representation of knowledge in frame

structures (slot-and-filler structures). Its design was

motivated by the following assumptions about knowledge

representations and programs that use them.

1. Knowledge should be organized around conceptual

entities with assoiciated descriptors and procedures.

2. A description must be able to represent partial

knowledge about an entity and acco~nodate multiple

descriptors which can describe the associated entity

from different viewpoints.

3. An important method of description is comparison with

a known entity with further specification of the

described instance with respect to the prototype.

4. Reasoning is dominated by a processs of recognition

in which new objects and events are compared to stored

sets of expected prototypes, and in which specialized

reasoning strategies are keyed to these prototypes.

PROLOG

PROLOG originated as an attempt to design a language

which would allow the programmer to specify the

objectives of a task in terms of symbolic logic,

developed by Alan Colmeraur in Europe in the 1970s.

PROLOG

which

originated as

would allow

an attempt to design

the programmer to

a language

specify the

objectives of a task in terms of symbolic logic. A

PROLOG program is predominantly "DECLARATIVE" in that

it is concerned with stating WHAT has to be done, in

the form of rules and facts, while a conventional

program is more "PROCEDURAL" and con~erned with HOW the

task should be done. A major advantage of PROLOG is

that the expert systems concept of an inference engine

working on a knowledge base, and seeking to satisfy

assigned goals by fixing rules, maps very directly on to

the language; in a sense any PROLOG program can be seen

as a sort of expert sytem.

A LISP program consists of a series of commands that

manipulate symbols while a PROLOG program consists of

statements of facts and rules. The powerful pattern

matching capability and an automatic backtracking

facility in PRFOLOG are an added advantage over LISP.

PROLOG procedures are also flexible in the sense that

the input and output paramerters are not pred~termined

but may vary from call to call.

1.5 SOME ADVANTAGES OF EXPERT SYSTEMS

Expert systems have emerged in the last few years as

the leading practical application of the techniques

developed in AI research. A new generation .of expert

systems are now put to use on day_to_day problems as

they provide the most

the job. Some of the

cost_effective means of doing

advantages offered by the expert

system technology are given below.

1. Expert systems allow the computerisation of tasks

t.-Jhi ch were previously unprogrammable. A leading

example is the system used by DEC to configure their

VAX minicomputer installations, originally known as R1

and now popular as XCON.

2. Expert systems are easier for users who are not

programmers to understand. Because a knowledge base

is a fairly direct representation of human knowledge

non_specialists can monitor its correctness and

progress. At the same time the inference

engine/knowledge base architecture allows the system

to run even before the knowledge base is complete, and

to provide some explanation of the reasoning behind a

given conclusion. These feautures can be invaluable in

the development of phase of a system.

3. Expert systems can allow a spectacular increase in

programming

range from

productivity.

10 to 50

Though productivity claims

times that achieved by

conventional methods this is one area whete the

advantages of expert systems technology need to be

proved in use.

4. Expert systems can provide a genuine extension of

human capabilities. Expert Systems have already shown

the capability of exceeding human performance in

certain circumstances. A system developed at the

University of Illinois for diagnosing disease in

soya_bean plants can now produce more reliable

diagnosis than the leading expert who set it up.

More dramatically

systems will be

in the foreseeable future expert

able to take decisions in fast

changing environmens from battles to foreign exchange

trading, more effectively than humans ever could.

Where such systems will eventually lead is impossible

to predict; their capabilities could be virtually

boundless.

INTRODUCTION TO THE PROJECT

2.1 WHAT THIS PROJECT IS ABOUT?

This is a rule based expert system which identifies

qualitatively the cation and the anion in a given

compound interactively with the user, asking only a

minimal number of questions. The whole problem can be

visualised as a tree as shown in figure. The whole

domain can be split into two individual sub tasks

consisting of (1)

confirmatory tests.

the preliminary tests and (2)

The preliminary tests ·give a fairly good idea of the

constituent radicals. They are used to eliminate

other cations and anions from the complete set of

possible anions and cations. These tests have been so

designed that each test is capable of indicating a

subset of cations and/or anions in the complete set of

radicals i den t i f i able by the test. For more

information on the preliminary tests refer to appendix

A or any standard text book on

in chemistry.

qualitative analysis

Once an estimate of the radicals present in the

compound is obtained in

proceed to the confirmatory

the pre! imi nary

tests. In the

test, we

preliminary

••••

• • • • •

0 0 0. • Q

• Q 6-

tests, we infer from a set of reactions the possible

radicals, while in the confirmatory tests we proceed

from the radical to a set of definitely known

conditions to confirm the radical.

For example in the preliminary tests,if carbon dioxide

is liberated on heating the salt then the presence of

carbonate or bicarbonate is indicated. While in the

confirmatory tests for carbonate and bicarbonate if a

white precipitate is formed on adding Magnesium

Sulphate solution to the salt then carbonate can be

confirmed. If a white precipitate is formed on heating

the solution, then bicarbonate can be confirmed.

The results obtained in the preliminary tests must be

confirmed before declaring the final result. It may be

noted that the confimatory tests need not necessarily

confirm the results obtained in the preliminary tests.

This necessitates a means by which the radicals can be

confirmed independent of the preliminary tests.

Confirming an anion is fairly simple and consists of

identifying a test which results in a known condition

like the formation of a precipitate or evolution of

gas etc.· On the other hand, to confirm a cation, a

fixed set of sequential steps may have to be

performed depending on the group to which the cation

belongs. This is because all the cations are divided

into six groups depending on their behaviour with

specific group reagents, and a progressive elimination

between members of the same group introduces an

element of sequentiality. For more information on

groups and group reagents in the confirmation of

cations refer to Appendix C. All groups have a

particualr group reagent excepting the fifth and sixth

groups.

2.2 WHAT THIS PROJECT CAN DO?

This· project is a rule based expert system in PROLOG

which performs the following functions:

1. Determines the radicals in a compound

interractively by asking a minimal

number of questions(inferencing).

2. Provides justification at the user/s

request at any stage of execution as

to WHY a question has been asked or as

to HOW a deduction has been arrived at.

3. Can perform any of the preliminary'

tests or the confirmatory tests for

any radical independent of the

inferencing mechanism in 1.

The user is expected to give only an integer or an

/yes/ or /no/ as a reply in response to a question or

menu posed by the expert, making it easier for him to

communicate with the expert. However in addition to

these the user may request the expert to justify its

questions either by a WHY or HOW.

2.3 SOME REPRESENTATIONAL DETAILS

RULE TYPE I

The PRELIMINARY routine uses indexed rule sets in its

inferencing process. The rule sets are indexed by

their first argument. A typical rule in a rule set

has the following configuration.

ctxt(indx,conml,conm2, •• ,conmn,
[catml,catm2, .. ,catmr],[anm1,anm2, •• ,anmq]).

rule type I

where

ctxt: takes one of the following predicates;
gas_evolved,chn_colour_residue,
colour_sublimate,dilh2so4,conch2so4,
cobalt_nitrate,charcoal_cavity,
colour_flame,colour_bead.

indx: is an integer value which indicates the
index of the rule in the rule set.

conmn: is the nth condition for the mth rule in
the rule set for the inference.

catmr: is one cation which can be inferred when
(conml,conm2, ... ,conmn) are all true.

anmq: is one anion, which can be inferred when
(anml,anm2, ... ,anmn) are all true.

For a listing of these rules see pages p.8 and p.9 in

the program listings.The example below illustrates the

meaning of the rule in more detail. In dry heat test

the salt is heated in a test tube. A change in the

colour of the residue on heating the salt is one

likely result, which indicates the cation in the

salt. The first three rules in this rule set are given

below:

chn_residue(l,yellow,white,['Zn+2','Sn+2'],[]).
chn_residue(2,brown,brown,['Cd+2'],[]).
chn_residue(3,brown,yellow,['Pb+2','Bi+3'],[]).

A close look at these rules shows that the

first argument is an integer value. This value is

used as the index in retrieving the last arguments of

'ctxt', which are the lists required for inference.

These rules can be translated into english as

If the change in colour of the residue is yellow when

hot and white when cold then infer Zinc and Tin as the

possible cations.

If the change in colour of residue is brown when hot

and brown when cold the infer Cadmium as the possible

cation.

If the change in colour of residue is brown when hot

and yellow when cold then infer Lead and Bismuth as

the possible cations.

RULE TYPE II

The confirmatory tests for anions use a different type

of rules for their inference, which has the format as

shown below:

test([[radl,[doll,dol2, ... ,dolp],[resultl]],
[rad2,[do21,do22, .•. ,do2p],[result2]],

[radn,[donl,don2, ... ,donq],[resultn]]
]) .

. ..•. rule type II

where

test:

radn:

donq:

is the name of the test. This name is
the reagent used in the test.

is the nth radical which can be
confirmed by the /test/.

is the qth step in the procedre to
be performed.(donl,don2, ••• ,donq)
together form the complete
procedure for the test.

resultn:is the result in which test
should end for confirmation
of the radical ~radn~.

The list [donl,don2, ••• ,donq] shall be referred to as

the DO list and the list {resultn] as the RESULT list

hereafter. The example below illustrates rules of

type II.

potassium_permanganate
([

[nitrite,[write_sol],
[disappearing,of,the,pink,colour,of,/KMn04/]],

[sulphite,[write_sol],
[disappearing,of,the,pink,colour,of,/KMn04/]],

]) .

In the above rule, /potassium_permanganate/ is the

name of the test, which is named after the reagent

used. This reagent is capable of confirming two

radicals viz nitrit~ and sulphite.

The DO list consists of a single predicate

/write_sol/, which writes a sentence as below:

To 2-3 ml of Z, add a few drops of X

where Z and X are variables and

Z can take the values /salt_solution~ or /sodium
carbonate

extract depending on whether the salt is soluble
in water

or a sodium carbonate extract has been prepared
for the

salt solution.

X takes on the reagent used in the test, which is
the same

as the name of the test.

Depending on the user/s response, the /name of the

test/ and the /solubility of the salt/ are stored in

the knoledge base as facts, which are retrieved later

by the ·~Jrite_sol' predicate in writing the sentence.

Refer to page p.20 for a listing of these predicates

which, fill a sentence dynamically depending on the

context and display the sentence on the screen.

Summarising, rules of type II can be translated into

english as

If the test to be performed is /test/ and the radical

is /radical/ then if dol, do2, , don are performed

in that order then the result should be /result/ to

confirm the radical

RULE TYPE III

The CONFIRM_CATION routine used another type of rules

which look like rules of type I I in their

structuring, except that the DO list is replaced by a

list which has the name of the solution to be taken

for the test.

test([

]) .

[radicall,[solutionl],[resultl]],
[radical2,[solution2],[result2]],

[radicalm,[solutionm],[resultm)]

rule type III

The ASK_C routine asks the next question in the

confirmation of cations. It gives the procedure and

then asks a question. The procedure consists of a

sentence which looks like as given below

To 2 ml of the Xl add a little of X2

where

Xl is the value of the 'solution'
in the above rule for the test

X2 is the name of the test which by itself is
the name of the reagent used in the test.

The rule translated into english looks like as below

If the test to be performed is 'test' and the radical

is 'radical' then on adding the reagent 'test' to 2 ml

of the solution the result is 'result' then the

radical is confirmed.

The example below illustrates the above rules.

potassium_chromate
([

[lead,[above,solution],[yellow,precipitate]],

[silver,[original,solution],[brick,red,precipitate]],
[barium,[above,solution],[yellow,precipitate]]

]) .
In the above rule 'above solution' is the solution in

hand which is obtained after one or more reactions as

requested by the expert; 'original solution' is

solution of the salt obtained in the beginning for

performing the wet tests for cations. This rule can be

translated into english as

If the test to be performed is ~potassium_chromate

test~ and the radical is

/lead~ then on adding the reagent
potassium_permanganate to 2 ml of
the /above solution/ the result is
/yellow precipitate/ then the radical
lead is confirmed;

/silver~ then on adding the reagent
potassium_permanganate to 2 ml of
the ~original solution/ the result is
/brick red precipitate~ then the
radical silver is confirmed;

/barium/ then on adding the reagent
potassium_permanganate to 2 ml of the
/above solution/ the result is
/yellow precipitate/ then the radical
is confirmed;

I O_t10DULE:

The rules of type II mentioned above are used by the

IO_MODULE in questioning the user. The working of the

IO_MODULE better illustrates the selection of the

structure for rule type II.

The IO_MODULE performs three things always.

1. Questions the user depending on the context.

2. Accepts the user/s response to the question.

3. Checks the value returned by the user and

returns the same if it is an integer or an

/yes/ or /no/, to the calling routine.

The context that is passed consists of the ~radical~

If the radical in the context is an

anion, then the ASK_N routine retrieves the structure

stored in the rule II for the test. The GET_PROCEDURE

routine takes this structure and returns the DO list

and the RESULT lists for the radical in the context.

The EXECUTE routine next executes the DO list, which

consists of a series of evaluable predicates. The

RESULT list is used in questioning the user on the

result. After questioning the user on . the likely

result that confirms the anion, IO_MODULE waits for

the response of the user and expects him to reply an

If the radical is a cation, the ASK_C routine poses

the next question. Unlike the ASK_N routine, ASK_C

consists of an explicit listing of all the contexts

as arguments of ASK_C. ASK_C matches against a

different context each time to pose the question. It

is possible to dispense with the explicit listing of

all the contexts. More of this shall be discussed in

chapter 5.

IN FE"RtNC\NG,

This chapter consists of two sections, one on the

preliminary tests and the second on confirmatory

tests. The implementation of these two tasks have

been discussed in detail. The user is expected to read

this chapter with a constant reference to the listings

of the program. The names of routines performing

different tasks are written in bold letters, of the

program, though the actual program uses small case

letters.

3.1 PRELIMINARY TESTS

There are six tests in this module, and one or more of

the rules corresponding to these tests(pages p.4 to

p. 6) ' are triggered by an interpreting module, which

incorporates a best first strategy and a heuristic.

Each test has an indexed rule set in the knowledge

base. A typical set of rules for a test has the

following representation.

ctxt(Indxl,conll,con12,--,conln,

[catll,cat12,--,catlp),[anll,anl2,--,anlq]).

ctxt(Indx2,con21,con22,--,con2n,

[cat2l,cat22,--,cat2r),[an21,an22,--,an2s)),

ctxt(Indxm,conml,conm2,--,conmn,

[catml,catm2,--,catmo] ,[anml,anm2,--,anma]).

52: Warning, can not justify.
--rule type I

A li<::.tino nf thP<::.P ntlP<::. i<=- fn11nrl on oaoF.><:. o.B anrl

p.9.

When the test to be performed is decided by the

control strategy the test is invoked. The procedure

as to how the test is to be performed is read from a

file. The file consists of the /procedure/ for the

test and also a menu with the Index numbers and the

corresponding conditions as listed in the rule type I

(see Figure 3.1.1) are read from a file by the

IO_MODULE. The IO_MODULE then waits for the input

from the user. If a /why/ or a /how/ is keyed in, the

MAP_W and ANS_HOW modules justify the question asked

by giving explanations, depending on the context, as

explained later in chapter four. If the user keys in

an integer from the menu the IO_MODULE returns, the

value read to the test. With the usr keyed_in value as

the index number, the facts stored in the rule type I

of the test are retrieved. The values in the

conm1,conm2,---,conmn columns are used to answer the

how explanations, while the last two columns which

are lists containing the possible cations and anions

respectively for the conditions as given by the user

are returned as the inference from the test.

ake a platinum wire and make a loop at its end. Clean

it thoroughly.Dip this wire in a test tube containing

a little of concentrated HC~ and then heat it in the

o~idising flame. If the platinum wire is not clean,

some colour will be imparted to the flame. Repeat the

process till the platinum wire does not impart any

colour to the flame. Now take a pinch of the salt

under analysis on a watch glass and make its paste

with a few drops of concentrated HCl. Touch this

paste with ihe platinum loop and introduce it into

the oxidizing flame. Note the colour of the flame with

the nacked eye as well as through a blue glass.

COLOUR OF THE FLAME I
I I WITH NAKED EYE !THROUGH BLUE GLASS!
1-1-----------------1------------------1
Ill golden yellow I invisible I

121 pale_violet pinkish
131 bluish green visible
141 crimson crimson
151 brick red yellow
161 grassy green green
171 bluish white none
181 no colour none

Figure 3.1.1

The above procedure is performed for any test invoked

by the interpreting module. The interpreting module

uses the following algorithm in triggering a test.

1. Forms a list Q consisting of all the preliminary

tests using the heuristic that the test which is

capable of detecting the ·highest number of radicals

occupies the first position in the list and second

highest second and so on i.e. all the tests are

ordered in a descending order of the number of

radicals detectable by the test.

2. UNTIL the list Q is EMPTY or the lists returned by

a test M and N are SINGLETONS the following is done:

2a) Elimination of those tests in Q which

cannot qualify as children.

2b) Evaluation of the static evaluating

function for all the tests in Q.

2c) Performing that test for which the static

evaluating function is maximum and removing

it from the list.

3. If there is success M and N are returned

else empty lists are passed.

The above three steps are detailed below.

~once the user requests the expert to assist him in the

analysis

PRELIMINARY

preliminary

of the compound, keying ANALYSE the

routine is called which performs the

tests.The SEARCH for identifying the

radicals begins with all the tests qualifying to be

performed. Before going into the details of the

SEARCH routine, we shall see the format of the

parameters passed between call to call of the

SEARCH_routine.

< Q,M,N,RetP,RetQ >

where

Q is the current list of remaining tests

M is the running list of cations

N is the running list of anions

RetP is the list of cations to be returned by the

test to be

performed next

RetQ is the list of anions to be returned by the

test to be

performed next

Once the search routine is invoked, the ELIMINATE

routine eliminates all those tests which are not

eligible as children depending on the running lists M

and N as given below:

1. If both M and N are empty lists then Q

is returned, as no elimination is possible.

2. If M is a singleton then all those tests

which can identify ONLY cations are eliminated

from Q and the remaining list is returned.

3. If N is a singleton then, all those tests

which can identify ONLY anions are removed

from Q,and the remaining list is returned.

4. If either MorN is an empty list the list

Q is retained.

The list returned by the ELIMINATE routine is passed

on to the EVALUATE routine. This routine returns the

next test to be performed as that test which has the

highest value for the Static Evaluating Function(SEF).

SEF = !intersection ofl + !intersection ofl
I N and Anion I IM and Cation I

where
Cation: is the complete set of cations that can be

detected by the current test

Anion: is the complete set of anions that can be
detected by the current test

The EVALUATE routine makes use of the following points
in conflicting cases where the test to be evaluated
cannnot be determined on the basis of SEF:

1. If more than one test has the same value for SEF,
that test which occurs first in the list Q will be
returned. The heuristic that has been used in
ordering the tests in Q in the beginning is made use
here.

2. If the list returned by the ELIMINATE routine is
not empty and the running lists M and N are not
singletons and the maximum value for SEF for all the
tests in the above list is zero then that test which
occurs as the head of the list Q is returned.

The DEL
EVALUATE
ELIMINATE

routine deletes the test returned by the
routine, from the list returned by the
routine and returns the deleted list as T3.

The JUSTIFY module requests the user to perform the
next test and waits for the user/s reply as to whether
he wants justification for the same. If the user/s
response is affirmative, the following two types of
justifications are given depending on the values of M
and N.

1. If M and N are empty lists then the number of
radicals detectable by a test is taken as the
criterion, which is displayed for all the tests in Q
and the test with the highest value will be the test
to be performed.

2. If M and N a~e not empty lists then the
intersection of the running lists M and N with those
cations and anions which can be detected by the test

is displayed.

Figure 3.1.2 illustrates
asks the user whether
justification or not. It

how the JUSTIFICATION
he is interested

takes the case when

·module
in the

Q =
[charcoal_test,borax_bead_test,dil_sulphuric_acid_test,

conc_sulphuric_acid_test]

M = [Na+]

N = [N03-,I-,Cl-]

The /List of remaining preliminary Tests/ in figure
3.1.2 is pruned after performing the
'conc_sulphuric_acid_test/. The tests
'borax_bead_test' and 'dil_sulphuric_acid_test/ have
been eliminated from the list after performing the
test. The name of /borax_bead_test/ has been removed
from the list as it can detect only cations and the
/list of possible cations/ is a singleton and
contains /Na+/ as its element. The name of
/conc_sulphuric_acid_test' has been removed by the DEL
routine as it has been performed. The name of
'charcoal_test' has been removed from the list as it
can detect both cations and anions.

List of remaining preliminary Tests= [charcoal_test,
borax_bead_test,dil_sulphuric_acid_test,
conc_sulphuric_acid_test]

List of possible cations= [Na+J
List of possible anions= [N03-,I-rCl-]
ok

I want you to perform conc_sulphuric_acid_test

Do you want me to justify?

>yes.

Out of the above possible cations and anions
charcoal_test can identify the radicals Pb+2

flame_test can identify the radicals Na+ K+ Pb+2

borax_bead_test can identify the radicals none

dil_sulphuric_acid_test
none

conc_sulphuric_acid_test
N03- I- Cl-

ok

can identify the radicals

can identify the radicals

Tell me whether the evolving gas is a 1. colourless
and odourless gas 2. colourless gas with odour 3.
coloured gas with pungent smell

>2.

Tell me whether the evolving gas is COLOURLESS and~.
smells like rotten eggs and

turns lead acetate paper black
characteristic suffocating smell

and turns acidified K2Cr207 paper green 3.
pungent smell and

produces white fumes with ammonia and

2. a

has a

a white ppt with AgN03 solution 4. characteristic
vinegar like smell 5. sweet smell and vapours catch
fire 6. characteristic ammoniacal smell and

turns moist turmeric paper brown

>3.

List of remaining preliminary Tests=
[charcoal_test,dil_sulphuric_acid_test] List of
possible cations= [Na+] List of possible anions= [Cl-]

ok
FIGURE 3·i·'2.. a=.1. e

The DO routine does the next test. It invokes the test
to be done as decided by the previous routines. All
the tests return two lists, the first being the list
of possible cations and the second that of anions.
Each test also returns a trace list which sumps up in
a sentence the result of the test. The
con1,con2,---,conn in rule type I as explained in the
beginning of the chapter are stored in this trace
list. Once a test is completed, the DO routine asserts
in the knowledge base two kinds of facts.

1. Firstly the result of the previous test is stored
as follows

< result(Test,Cation,Anion) >
where result is the predicate used Test is the name of
the test performed last Anion is the inferred list of
anions in the test and Cation is the inferred list of

cations in the test

2. The /Trace/ list returned by a test is also
asserted as a fact in the knowledge base as

how(Trace) where /how/ is the predicate and /Trace/ is
the list returned by the test. The results of the
test stored as result(Test,Cation,Anion) in the

knowledge, is utilised in the CHECK_CONSISTENT routine
which is explained next, while the facts how(Trace),

are used to give ~how~ explanations as explained in
the next chapter.

The CHECK_CONSISTENT routine checks for consistency
in the results of the previous test.If the skein of

logic in choosing the next test to be performed in the
previous modules is true, then the result of the

present test must yeild in the pruning of running
list. In other words, the results of the present test

must be a subset of the running list. If this
condition is not satisfied, the

CHECK_CONSISTENT routine displays the results of
previous and the present tests and offers five
options as below to remove the inconsistency.

1. retain the results of the previous test 2. retain
the results of the present test 3. take union of the
results of the present and previous tests 4. take

intersection of the results of the present and
previous tests 5. you want to perform the last test

once again.

For the first four options corresponding values are
returned while in the fifth option, the result of the
last test is retrieved from the knowledge base and the
test is performed once again. The results obtained in

the second performance are returned.

After the consistency check on the results obtained
succeds, .the results are output by the OUTPUT_STATUS

routine. With T3 as the current list and results
returned by the CHECK_CONSISTENT routine as the

running lists, the SEARCH proceeds, till both the
running lists are singletons or T3 is empty. In

Figure 3.1.2 the status regarding Q, M and N are
output by the OUTPUT_STATUS routine.Figure 3.1.3 gives
a complete listing of a session with the PRELIMINARY

tests routine.

'?_- . I
~ (

I ~-ant.)ou to · p.et'f·Q;m dry heating te-=· t . ·~ ',_, .. ,.~,~ -.. '··. :~;..~-~... - -=--- _-·
o· -yo((want m . .o~··j~:.H fy?

)')I.'S ~ _ ~s ~~~ ~; ~ }~~.t·1-- ~ <~-~L. ~ _ _ .. .

number o L ani ~ -ns - 'and · cat i o.n.s · w.h i .cii ' ,can ?~ :.i dent if ·i ed,~,bv_
·'' • .:i,--· .- dt·:y ;heatins....: t'est ;· i";~ 25

·~tfaf>~oal_ test' · Cs. _ .;J
f l.arp~;.£t est i s ~9 :'
bt.:rr ax:-·be.ad · test n s ? · ·~ - . - .
d\l_ sulphOric...:..a.c:_-:d_ test ~q 6 ··
C:~.~¢-~y .lp hu_r i c:_~c. i d_ test .· \s 6

Take a pinch of the s.·-"'lt in a dP.J te~-t "tube and heat it. ··
Keep the- t:est , t_uq~ ,r 'otating to ,?;·: :.tJre u'niform heatinq .·.so that ,. the­
co-ndensed watel· Q,apours if .:sn> .. do not fhll back on· the r _"esi dt.fe :..-.-~
The follOI...Jfng cl1a'nges rnav take plac-e: -< . • :•• ' ;

t'i $- ,.

i. A gas or ,vapour i S e•-! olve.d _ ,_,
2. change ln colour of the ·re~idue
3. A subl_i(aate .is feorrned . :· '
4. Crackling noise is produ~d
5. Fus io n or s welling of the salt is o bser ved
,_; • L-·.!.3 t: e ;· 0 f ~:: l~ :: J .; 1:: 3 l. J.. i -;:: 0 t 1. IJ n i ·= p r· (r I~ IJ c e d
7 ~ ... ~ o "- e .3 e: ~ i o n t-::. .:! b ·=·:? ~- ·. • e d

Indicate ONE or MGRE of your optiG n s aft~r caref_!!y observir g
the. F· cctic·n. CtE~:~ ... " I ~ /OU- optic,ns b~.· .c C(]f'~it ... lA .,

>4.

e.s.

~-;t of ;··?~:, :i:::".:-. ·? p..-e1irninary :e·:c: ·::= :charcoal_test ,flame_t est,borax _ pead._
d1 l _ su.Lphu r 1 c_o.c ~ d_ ~ e ~ t, co ;-, c _ ·::.ul p t-,_j r i e:_ 2:: i c ~- e: -- : . t<V>~.
Lisr of possible catio r;~. = [~ <-:=:-r- ,V+,'==-~+2: -
~.Hit of p-ossibl~ anions; :·- ··::::::-!=<::::..-:

ot

~c yoL want me to justify?

ou~ of the above possible .cations and an ions
c havcoal test can identify the radicals
P b+2

fla·me te : .t e:ani identify the radicals
Na+ 1<.+ Ph1-2

;_. .. ~* rr ' .. ' ;: . -
·_ orax b:ead tes'1: c~n ide..n .tl-f~Y the . .-radicals

-. , ! none - --:·· ·" . .., -- '- --. ·- . --· · ·~ · ..:
t,•~~.-:I \ '

dil_sulphuri~..:.:.acid_ 1!-e~t ?c·an identify th~ radicals
nc•ne

...
conc_ sulphuric_ ae:id_ test can identify the
N03- I- Cl~

. . . ~

:CLOG~ C= THE fLAME
t .. ;: -:-!-i i··Jt;KE(E"'.T i -:-HF :::!!_ ' .::;~ E:l_i_IE. ::::_ .. ,.::;3 i

t-:---------~------- ! ------------- - -- -- 1
;1. golden . ~eLlo~ i~visibl~
, Z. pcA..t-e_ VlOlet- p l nkl.SI'\
;3, bl~\S~_qY~€~ Vt~ib1~
i ~ . CY lffl~O~ C)' HY\.SOV\

1 5 i t. l~ i c.: k :~ e c~

I 6 ! '31" a-::.-::y ·3r een
I 7 i t:r l u i -::.h l-,,hi t e
181 no colou.r , •

>-' e .:. 1 o i .. · .. !
•31· een
none
no;-te

.-

~• .

"

. , l 1 ~ t of n~mo.i T\ · f\'3 l>l e I i 'ft\l na.y~ Test~::- f cna"'l'co o..t _test:
j c:_aci d_ t es...t-,..con c_ :.u 1 ~ hu ,. i c _ ac.'i d_ te~ t ')
Li~.t of p-o'ssib.l ~ cati on s= INa+]
Lis:.t of possibb~· anions.= [N03~ ,I-,Cl -]

I want you to perform conc_sul phur~c_ac id_t~st

-> y e-: . .

Out of the abo ve possi ble cations and an ions
charcoal test can identify the radic~l~
none

c:onc_su~p.l)u£i;~ ~\:ici d_ t est · c:~n .. J d-ent if y t .he rad icals
N03- I:.:.. C1:-~ , · .

ok ...
;r, ·~, ~ .,

T~ke . .a li.tt.l.e. Df.. the .alt in- a te-:.t tube an d treat it . wit
a few "'u~.i ~or·'~ d>;n~n tra.te$ stt,i,_p UJr ~F acid. · Heoa,t the content
i f ~ ,1} o 9u- i s e v·t:t:l v ted · . ~',~ .
T.~+'.1 .. ~ ... ,}d~~:ther · d:' .~s:<:-.i i~ b-I? ·Fn.-g·; ev o 1 ~.ed?·

>~~ . I

-~?l~ '· rne U!Hetheir the ·. ~·.)c, ,t',v lng :;,;::s- 'Ts .C.C'L OUR.L!::SS ::.nd
·:1: ~oells .like~ rottl!f);.!f?ggs -3nd

->3.

Li-= t of
:...i ·:::. t of
L ist of

tul·r,S' lead a 'cet'ater paper black
2.. a :Ct-tarac:teri··stic suf fo ca tin g smell

- and tur~s ~ acfdi fied K2Cr207 paper g reen
3 ."'- h a ·:. a p u n 9 en t · sm e 11 .:;, n c'

pr-oduces .r,...thite f urne;;:. VJi th amm oni a and
a whi te ppt with A gN03 sclution

4. c~aracteristic vi~eg av !i'·e s~el !

5. s weet :.mell and vapour s catc~ ~1re

6. characteristic ammon · acal smell 3nd

reoma in~n g prelimin ary 7ests=
poss~ble cations= [Na~:

poss ib~e an io~s = (Cl- :

:e:h::n-coa! _ te<.:. t ,dil _ s.u .u.:rie:.,.,_ac

ok

: ?- : how.

In dr-y_heatin-9- te-st-
i--f thoe-:r-e --is c:-r&cklf-119 -n-o-ise -tben: in-fer
-N a-+ .k + P'b +-2-

N-o3- T- C-1-

ck

ln fla~~_test _ ~
if the- .C41o-W' o-f_ 'tJte_ f_} aaoe .icS- g_-ol--d-'4!-fl y-elloJII •~1:1:-h -naite-d -.y..e an-d-~­
in v~i si-b 1-e •i-t ft bfli.e- ~loi~SS::- t-he-n --:bl-feT
Na+ CT

ck

.Ill c-:Onc_sulptturie -acld tes-t
-on adding -cone suT:Pll\lr1c acid -
-if the gas is col9u.rles~ -a1ld pu-r~en~ sme-ll at)d_ wt~i·te fum-es ,utith am_m..l
•hite P-Pt-·•ith -$-.1.1.-V-e=r- 1"11-'tr-a"te s-o1ut1oen t-he-n 1-nf·er KCl . w.c>-1
tb-en in-f•r tJ Cl---

cit·

M=C"Na+l
tt=CCl-l

:Fig 3.1.3

CONFIRMATORY TESTS

The PRELIMINARY routine as ex?lained in chapter 3.1
b(l.

yields two lists which may or may notA singletons. This

module donfirms one of the radicals in each of· the

above lists. So it consists of two phases viz

confirmation of anion and confirmation of cation.

CONFIRMATION OF ANION

test([[radicall,[doll,do12, ... ,doln],[resultl])~

[radical2,[do2l,do22, ... ,do2n],[result2]];

[radicalm, [doml,dom2, ... ,domq],[resultm]]

J) .

. . . . rule type I I

radical([testl,test2, ... ,testn]) .

. .. rule type IV

Rule type IV can be translated into english as, the

tests which can confirm the 'radical' are testl,

test2, testn . - 'radical' can take the names

of any of the radicals but not their formulas.

The PRELIMINARY module uses the formulas of th~

radicals while the confirmatory tests module uses

their names. This has been done for

1. the user's convenience in case he intends to confirm

some radical independent of the inferencing

2. to make the rule~ of type II and type~III.more

meaningful

The CONFIRM_ANIO~routine makes use of the following

algorithm:
., .

..... · .. ·.

1. DISPLAY all the tests which can confirm ·the given

radical and SELECT that test which is chosen by the

user. If there is only one test which can confirm

the radical then proceed with it as there is no

choice.

2. If the test requires the preparation of the

salt_solution. do so.

3. Request the user to perform the test by giving the

procedure. Also question him. as towhether the test

~Ol

has RESULTED in 'a condition that confirms the test.

4. Succeed if the user's ~eply is 'yes' or else fail

if it is 'no'.

The above four steps are discussed in more detail

with the names of the routines that perform the

different parts of the algorithm.

The SYNONYM routine returns the 'name' of the radical,

if the 'formula' is given. If a 'name' is its

argument then it returns the same.

The GET TESTS routine takes the name of the radical

~
given A the SYNONYM routine and returns the tests

that can confirm the radical. The list of tests

is retrieved from the rule of type II corresponding to

the 'radical' in question.

Since the test to be performed to confirm the radical

has beeen decided, we can proceed to the IO_MODULE

to give the procedure for. the test. But before that

most of the tests require that the solution of the

salt be prepared either in water or in sodium

carbonate solution.

The SALT_SOLUTION routine requests the user to

prepare the solution of the salt in water or

sodium carbonate solution depending Oft the test to

be performed and radical in question as below:

radical

carbonate
bicarbonate
borate
acetate

nitrate

test

ethyl_alcohol
chromyl_chlorid€
manganese_dioxide
copper_turnings

2. If the radical and the test do not come under any of

the conditions listed above, the user is. asked to

prepare the aqueous solution of the salt in water.

3. Finally if the salt is insoluble in water .the salt is

mixed with sodium carbonate in distilled ~ater and

boiled to obtain the SODIUM CARBONATE EXTRACT of the

salt.

The IO_MODULE routine asks the next question and accepts

the user's response as input. The first and the second

arguments of IO_MODULE are the 'radical' and the 'test'

to be performed. When the io module is called from the

CONFIRM_ANION routine the ASK_N routine matches against

a unique question.

The above routines are illustrated below with an example
I

taking the anion 'sulphite'. Figure 3.2.1 gives a

complete session of questions of the expert and the

user's response. The SYNONYM routine ·converts the

formula of sulphite into its name. As there are more

than one test which can confirm sulphite the user is

given the information that the 'barium_chloride_test',

'ferric chloride_test' and the 'potassium_permanganate_

test' can confirm sulphite. This question is posed

together by the WRITE_ANY routine and the DISPLAY_SELECT

routine. The user's response '1.' selects

'barium_chloride test'. As the solution of the salt is

required for this test the user is asked to dis~solve

the salt in water. Since the salt is not soluble in

water as indicated by the user's response 'no', he is

asked to perform the 'sodium_carbonate extract'. This is

done by the SALT_SOLUTION routine. Tllhe SALT_SOLUTION

routine asserts the information that · the sodium

carbonate extract has been prepared using the predicate

SOLUBLE_IN. This information is used in asking the next

question by the ASK_N routine. The next question is

given here for convenience

To 2-3 ml of SODIUM CARBONATE EXTRACT add a few drops of

barium_chloride. Filter the ppt and treat the residue

with dilute HGl.

Tell me whether
DISSOLUTION of the ppt with the evolution of S02
is observed?

The words, 'SODIUM CARBNONATE EXTRACT' and

'barium chloride' are inserted into the sentence by the

ASK_N routine. The fourth sentence is the 'result' in

the ~ule type II for barium chloride test and sulphite

radical. The user's response is read in by the IO_MODULE

ROUTINE. The response 'why' invokes the MAP_Y routine

which gives the explanation. This explana'tion is read

from a file whose name is the same as the name of the

radical in context. As any response of the user other

than an integer or an 'yes' or 'no' does not result in

the success of the IO_MODULE routine. The same question

is posed again by the ASK_N routine. An 'yes.' from the

user resulted in the confirmation of sulphite.

?- confirm_anion('S03-2').

Any of the following ~tests confirm the presence of
sulphite radical. Indicate ydur choice by keying the
number against the test

1. barium_chloride test
2. ferric chloride test
3. potassium_permanganate test

>1.

Mix a little of the salt in water and
Tell me whether a(an) dissolution of the salt in water
is observed?

>no.

If the salt is insoluble in distilled water prepare the
sodiur.1 carbona·te extract of the salt as given below:
Take about lgm of the salt under analysis in a boiling
test tube. Mix it with about 2gms of schdium carbonate.
Put in it for about 5 minutes and filter. The filtrate
is called SODIUM CARBONATE EXTRACT.

Sodium Carbonate Extract contains
carbonate. It must be destroyed before

unused sodium
confirming an

acid radical. Otherwise precipitate due to insoluble
carbonate may result. Dilute acid may be used for this
purpose. Add dilute acetic acid to the sodium carbonate
extract DROP BY DROP TILL THE EFFERESCENCE CEASES.

ok

To 2-3 ml of SODIUM CARBONATE EXTRACT add a few drops of
barium_chloride. Filter the ppt and treat the residue
with dilute HCl.
Tell me whether
DISSOLUTION of the ppt with the evolution of S02
is observed?

>why.

SULPHITE

(i) BARIUM CHLORIDE TEST

Na2S04 + BaCl2 --> 2 NaCl + BaS03
(white ppt)

BaS03 + 2 HCl --> BaCl2 + S02 + H20

(li) FERRIC CHLORIDE TEtST

3 Na2S04 + 2 FeCl3 --> Fe2(S03)3 + 6 NaCl
(dark red)

(iii) POTASSIUM PERMANGANATE TEST

2 KMn04 + 3 H2S04 --) K2S04 + 2 MnS04 + 3 H20 + 5 0

Na2S03 + 0 --) Na2S04

Colour disappears as nascent oxygen is taken up by
sodium sulphite.

ok

To 2-3ml of SALT SOLUTION add a few drops of
barium_chloride_ Filter the ppt and treat the residue
with dilute HCl_
Tell me whether DISSOLUTION
evolution of S02 is observed?

>yes.

Sulphite is confinned.

Figure 3.2.1

of the ppt with the

CONFIRMATION OF CATION

The confirmation of cation is very similar to that of

the anion. The CONFIRM_CATION rutine uses rules of type

III as explained 1n chapter 2.2. The function of SYNONYM

routine is the sameas explained before.

routd.ne determines the group to which the cation

belongs. This routine uses the data structure

t(Gr,Gr_members,Next)

where

Gr lS the name of the group

Gr_members is the list of the names of
members of the group

Next is the remaining 't structure' as
explained above

See page p.14 for this 't structure'.

After the group to which the cation belongs, has been

determined the SALT SOL routine gives the procedure for

preparing the solution of the salt. Then the

group_procedure is called using the name of the group

obtained in the FIND_GROUP routine. For a listing of

these procedure~s see pages p.21 and p.22. Within the

group the other memebers are progressively eliminated

and the CONF routine is called for the radical which is

to be confirmed. It may be noted here that the name of

the radical handed to the CONF routine uses a logic

which is very much parallel to the CONFIRM_ANION

routine. Figure 3.2.2 gives a session with

CONFIRM_CATION routine for the cation 'chromium'.

I •)- I
I • I confirm_cation (chromium).

PREPARATION OF THE ORIGINAL SALT SOLUTION

the

For the wet tests of cations, the first step is the
preparation of salt solution. The salt may dissolve in
one of the solvents given below. Tkhe following solvents
are to be used~the ORDER given:

iN'

1. Water, cold and boiled.
2. Dilute Hydrochloric acid, cold and hot.
3. Concentrated Hydrochloric acid, cold and hot.
4. Dilute Nitric acid, cold and hot.
5. Aqua regia (a mixture of 3 volumes of cone. HCl and

1 volume of concentrated HN03).

In case a gas comes out, boll off the gas completely and
get a clear solution. After selecting the ri~ht solvent
with a pinch of the salt, prepare its concentrated
solution. It is called the SALT SOLUTION.

ok

To 5ml of the original solution add 4-5 drops of
concentrated nitric acid. Boil the solution for some
time. Add excess of Ammonium Hydroxide to it and shake.
A precipitate indicates the presence of cation~groupiii.
If a ppt is formed give me the colour of the ppt by

keying the number against the colour given below.

1. reddish brown
2. green
3. gelatinous white

If no ppt is formed reply 'no'.

>why.

EXPLANATION

The group III cations are precipitated as hydroxides on
the addition of excess of NH40H.

FeC13 + 3 NH40H --> 3 NH4Cl + Fe(OH)3
(reddish brown)

CrC13 + 3 NH40H --> 3 NH4Cl + Cr(OH)3
(green)

AlC13 + 3 NH40H --> 3 NH4Cl + Al(OH)3
(white)

ok

To 5 ml of the origi~al solution add 4-5 drops of
concentrated nitric acid. Boil the solution for some
time. Add to it 1.5 gms of NH4Cl and boil again. Cool
the solution under tap water. Add excess of Ammonium
Hydroxide to it and shake. A precipitate indicates the
presence of cationclgroup I I I. If a ppt is formed give me
the colour-of the ppt by keying the number against the
colur giv~n below.

1. reddish brown
2. green
3. gelatinous white

If no ppt is formed reply 'no'.

Any of the following tests confirm the presence of
chromium radical. Indicate your choice by keying the
number against the test.

1 lead_acetate test
2 hydrogen_peroxide test

>wb_y.

*** BAD INPUT ***
>1.

- - ~- .. :.:~:{ ~

To 2ml of the solution obtained by extracting tKe above
ppt and NaOH and NaN03 with water. Add a littl~ of lead
acetate. Tell me whether a(an) yellow ppt so1uble in
NaOH is observed?

>why.

LEAD ACETATE TEST

KN03 -->

2 Cr(OH)3 + 4 NaOH + 3 0 -->
(green)

Na2Cr04 + (CH3C00)2Pb -->

PbCr04 + 4 NaOH -->

ok

KN02 + 0

2 Na2Cr04 + 5 H26.

2 CH3COONa + PbCr04
(yellow)

Na2Pb02 + Na2Cr04 + 2 H20
(sodium plumbi te).,

To 2ml Jtof the solution obtained by extracting .. ~the above
ppt and NAOH and NaN03 with water. Add a li ttl€;- of lead
acetate. Tell me wheteher a(an) yellow ppt soluble in
NaOH is observed?

>yes.

chromium is confirmed.

Figure 3.2.2

I

JUSTIFICATION

There are two kinds of justifcations the expert

offers. The first one is a 'why' explanation and ~he

second is 'how' explanation. In response to a

question posed by the expert the user may requ•st for

any of these explanations. The 'why' explanation

contains a contextual reasoning as to 'why' the

question has been asked. On the other had a 'how'

explanation containes the information as to 'how' the

deduction has been arrived at.

In the PRELIMINARY routine the 'why' explanations are

generated using the context number which is an index

number. The 'why' explanations in the CONFIRM_ANION

and the CONFIRM_CATION routines are generated by the

MAP_Y and the ANS_WHY routines respectively. For a

listing of these routines refer to page p.19.

As already explained in chapter 3, each test returns

a 'Trace' list which is asserted in the knowledge base

as a fact, 'how(Trace)'. The 'how' explanations are

generated by the ANS_HOW routine which retrieves the

information stored in the facts 'how(trace)' one by

one and displays the lists 'Trace' for different tests

on the screen.

SOME COMMENTS ON FURTHER ENHANCEMENTS

A knowledge acquisition module can be written which

incorporates new rules into the knowledge base. This

module should question the user on whether the new

rule he intends to insert comes under the PRELIMINARY

routine or CONFIRM_ANION routine or CONFIRM_ANION

routine as three different types of rules are used in

each of these routines. After this has been

determined, the user may be given the

rule type. A consistency check on the

user should also be introduced to check

format of the

input of the

whether the

new rule is in accordance with the already existing

rules in the knowledge base.

However it is possible to reorganise the knowledge

base to improve the knowledge content of the program

as discussed below:

1. The input/output of the program is done by the

IO_MODULE routine which puts a question and accepts

the user~s response. The tasks of ~asking a question~

and ~accepting the input~ have been merged into one

single routine. This may be broken up into two for

greater efficiency and flexibility.

2. The history of the past questions and user~s

responses are not being retained by the IO_MODULE

routine. To do so, the rules of type II and type III

have to be re_oriented to make them more

self_explanatory. This can be done by difining

predicates for each real world operation like heating,

adding,filtering etc. Now the complete

any test can be converted into a

procedure for

lsit of above

defined predicates. This list containing the pro~edure

can be interpreted in different ways by the question

routine and the ANS_HOW routine.

Such a difinition of real world operations into

predicates will also facilitate in the development of

a two more rutines which will enhance the

of the knowledge base. The first one

capability of the knowledge base. The

capability

being the

first one

being, /an equation generator/, which generates a

chemical equation for a reaction between two or more

reagents. Such a routine improves the capability of

the knolwedge base in answering the user/s questions,

because the complete history can be stored in terms of

the real world operations, which when handed to this

routine generates the likely output. Moreover it

gives room for writing a second module which can

demonstrate graphically the complete reaction between

the reagents involved. Such a knowledge base can

almost replace an actual chemical laboratory.

3. The IO_MODULE routine can be enhanced to provide a

,.help,. facility to the user, which explains the

di ff eren t terms used in the text of the question or

the procedure displayed on the screen. Such a routine,

acquaints the expert to the user quickly.

analyse:-repeat,preliminary(P,Q),
((Q'-..==[J ,confirm_one_anion(Q,Y));
(an(List),confirm_one_anion(List))),

((P"-, = = [] , con f i r m _ o n e _ c a t i o n (P , Y 2)) ;
(Z==no,confirm_groupwise)).

confirm_one_cation([] ,Y) :-!.
confirm_one_cation([HIT],Y) :-

confirm_one_anion([] ,Y) :-!.
confirm_one_anion([HIT) ,Y) :-

((confirm_cation(H) ,Y=H);
confirm_one_cation(T,Y)).

((confirm_anion(H),Y=H);
confirm_one_anion(T,Y)).

~-1

/* preliminary tests module */
list_tests([dry_heating_test,charcoal_test,flame_test,borax_bead_test,dil_sulph
uric_acid_test,conc_sulphuric_acid_test]).

preliminary_tests:-preliminary(P,Q),
displist([/List/ ,of ,possible, /cation(s) / ,=,P]) ,nl,
d i sp 1 is t ([/List/ , of , p o ss i bl e, /anions (s) / , =, Q]) .

preliminary(P,Q):- repeat,list_tests(List),(abolish(how,l);true),
search (List , [) , [J , P, Q) , !

/* search routine */
search ([HIT] , [J , [J , Ret P, Ret Q) :-repeat , justify (H, [J , [] , [HIT J) ,

do(H,Rcat,Ran),
check_consistent(Rcat,Ran,[),[) ,Retcat,Retan),
output_status(T,Retcat,Retan),
search(T,Retcat,Retan,RetP,RetQ).

search([J ,M ,1'-l ,M ,1'-l).
search(_, (X], [YJ, [X), [Y]).
search(Q,M,N,RetP,RetQ):- eliminate(Q,M,I'l,[HighestiTJ),

evaluate([HighestiTJ ,Highest,O,M,N,Rethigh),
del(Rethigh,[Highest1TJ,T3),
justify(Rethigh,M,N,[HighestiT]),
do(Rethigh,Rcat,Ran),
check_consistent(Rcat,Ran,M,I'l,Retcat,Retan),
output_status(T3,Retcat,Retan),

search(T3,Retcat,Retan,RetP,RetQ).

check_consistent(Rc,Ra,Mc,Na,Rtcat,Rtan):-
((Rc==[],Ra==[),Rtcat=Mc,Rtan=Na);

) .

(Rc==[J,Ra'-..==[] ,Rtcat=Mc,consistent(Rtan,Ra,l'la));
(Rc'-..==[J,Ra==[J ,consistent(Rtcat,Rc,Mc) ,Rtan=Na);
(Rc'-..== [) , Ra'-..== [] , consistent (R t cat , Rc, t·lc) , consistent (R tan, Ra, Na))

output_status(T,Retcat,Retan):-
nl,write(/List of remaining preliminary Tests= /),write(T),
nl,write(/List of possible cations=/),

((Ret cat==[] ,write([all))) ;write(Ret cat)),
nl,write(/List of possible anions='),

((Retan==[),write([all]));write(Retan)),
pause.

consistent(Rt,Ra,Na) :-repeat,
((subset(Ra,Na) ,Rt=Ra);

(nl ,v.Jr i te(' INCONSISTENT DATA ! ! '), nl,
nl,write('Result of the previous test is '),tab(2),

...) '

wr i t e (1"-la) , n l , ~-Jr i t e (,· Resu 1 t of the present test is ·') , tab (2) ,
write(Ra),nl,nl,write('What do you want me to do?'),
nl,tab(5),write('l. retain the res.ult of the pre•Jious test'),
nl,tab(5),write('2. retain the result of the present test'),
nl,tab(5) ,write('3. take union of both the present and previous test result

nl,tab(5),write('4. take intersection of the present and previous test resu
t s ·') '

nl,tab(5),write('5. you want to perform the last test once again'),
see(user),nl,prompt(ln,>),read(Z),decision(Z,Rt,Ra,Na)

)

) .
justify(H,M,N,Q):-nl,write('l want you to perform '),write(H),

nl,nl,write('Do you want me to justify?'),
nl,prompt(In,>),read(Z),

((Z==yes,
((M==[] ,N==[],
nl,write('Total number of anions and cations which can be identified by'),
nl,print_status(Q) ,pause,!);
(nl,write('Out of the above possible cations and anions'),
pr_status(Q,M,N),pause,!)

)

) ;
(Z==no,!)

) .
decision (1 ,Nai, Ram ,Nai).
decision(2,Rai ,Rai,Nam).
decision(3,Rtm,Ram,Nam) :-append(Ram,Nam,Rtm).
decision(4,Rtm,Ram,Nam):-intersection(Ram,Nam,Rtm).
decision(S,Rtm,Ram,Nam) :-result(Last_test,_,_) ,do(L~st_test,Rm,Nm),

(((Last_test==dil_sulphuric_acid_test;
Last_test==conc_sulphuric_acid_test),
Rtm=Nm

) j

((Last_test==flame_test;
Last_test==borax_bead_test;
Last_test==charcoal_test),
Rtm=Rm

)

) .
eliminat~(Que,[X),_,Retque):-actualdel(Que,Retque).

eliminate(Que,_,[Y] ,Retque):-delan(Que,Retque).
eliminate(Que,P,[] ,Retque):-Retque=Que.
eliminate(Que,[],P,Retque) :-Retque=Que.
eliminate(Que,_,_,Que).

actualdel ([], []).
actualdel([HITJ,Tl):-Y= .. [H,_,o,_,_,_] ,call(Y) ,actualdel(T,Tl).
actualdel([HITJ,[HITl]) :- actualdel(T,Tl).

delan([],[]).
delan([HIT],Tl):-Y= .. [H,O,_,_,_,_l,call(Y),delan(T,Tl).
delan([HIT],[HITl]):-delan(T,Tl).

print_s.tatus([]) :-1.
print_status([HIT]) :-P= .. [H,_,_,N,_,_l ,call(P),

tab (15) , d i sp 1 is t (['* ... , H, is, N]) , n 1 ,
print_status(T).

pr _status([],_,_):-I .
pr_status([HIT),M,N) :-P= .. [H,_,_,_,C,A],call(P),

intersection(tvl,C,Tl) ,intersection(N,A,T2),
append(Tl,T2,T3) ,nl,((T3==[] ,T4=[none]);T4=T3),
displist([H,can,identify,the,radicals,T4]),
pr_status(T,M,N).

evaluate([] ,Big,Bigvalue,M,N,Retbig) :- Retbig=Big.
evaluate([HITJ ,Big,Bigvalue,M,N,Retbig) :-

Y= .. [H,_,_,_,P,Q],call(Y),
sef(P,O,M,N,Total),

((Total=<Bigvalue,evaluate(T,Big,Bigvalue,M,N,Retbig));
' (Rbig=H,Rbigvalue=Total,

evaluate(T,Rbig,Rbigvalue,M,N,Retbig))
) .

del(Rhigh,[Rhighlll] ,Ll).
del(Rhigh,[HIL1],[HIL2)):-del(Rhigh,Ll,L2).

do(Rethigh,Retcat,Retan) :-Y= .. [Rethigh,Retcat,Retan,Tr],call(Y),
asserta(result(Rethigh,Retcat,Retan)),assertz(how(['ln',Rethigh,&,Tr])).

sef(P,Q,M,N,Tot) :- intersection(P,M,Y),intersection(Q,N,Z),
s i z eo f (Y, 0 , t'.Jl) , s i z eo f (Z, 0 , N2) ,
Tot is. (N1H··l2).

sizeof([),Count,Counter) :- Counter=Count.
sizeof([HITJ,Count,Counter):- Countl is Count+l, sizeof(T,Countl,Counter).

s.ubset([HIT], [HIT]).
s.ub-::.et ([] ,_).
subset(_, [J).
subset([HITJ,Super) :-member(H,Super) ,subset(T,Super).

intersection (_, [] , []) .
intersection([),_,[]).
intersection ([)(I R) , Y, [><I Z J) :-member O<, Y) , ! , intersection (R, Y, Z) .
intersection([XI RJ ,Y ,Z) :-intersection(R,Y ,Z).

search(T3,Retcat,Retan,RetP,RetQ).

check consistent(Rc,Ra,Mc,Na,Rtcat,Rtan):-
- ((Rc==[),Ra==[),Rtcat=Mc,Rtan=Na);

(Rc==[J,Ra,==[J ,Rtcat=Mc,consistent(Rtan,Ra,Na));
(Rc,==[) ,Ra==[] ,consistent(Rtcat,Rc,Mc) ,Rtan=Na); .
(Rc,==[]~Ra,==[J ,consistent(Rtcat,Rc,Mc) ,consistent(Rtan,Ra,Na))

) .

output status(T,Retcat,Retan) :-
- nl,write('List of remaining preliminary Tests= ') ,write(T),

nl,write('List of possible cations='),
((Retcat==~),write([all]));write(Retcat)),

nl,write('List of possible anions='),
((Ret an==[] ,write([all J)) ;~.Jr i te(Ret an)),

pause.

nl,write(/Tell me whether an yellowish white ppt is also formed?/).
3Sk_next_q(_).

!* these rules are invoked by the interpreter which performs the test */
~harcoal_test(P,Q,[if,the,colour,of,the,residue,when,hot,is,Xl,and,&,when,cold,
is,X2,and,&,metallic,bead,is,X3,then,infer,X,Z,&,Trl]):-

repeat,io_module(l,Y),
charcoal_cavity(Y,Xl,X2,X3,X,Z),
cobalt_nitrate_cc(Y,X,Z,P,Q,Trl).

20balt_nitrate_test(P,Q):-cobalt_nitrate_cc(l,[) ,[],P,Q). j
~obalt_nitrate_cc(M,A,B,C,D,[if,the,colour,of,the,residue,is,Xl,then,infer,P,Q
) :-

(M==l;M==8),
repeat,io_module(2,Y),
cobalt_nitrate(Y,Xl,P,Q),

(
((Y==l;Y==2;Y==3;Y==4),C=P,D=Q);

(Y==5,C=A,D=B)
) .

cobalt_nitrate_cc(M,A,B,A,B,/./).

flame_test(P,Q,[if,the,colour,of,the,flame,is,Xl,with,naked,eye,and,&,X2,with,
lue,glass,then,infer,P,Q]):- repeat,io_module(3,Y),

colour_flame(Y,Xl,X2,P,Q).

identify_gas(X,Tr) :- repeat,
io_module(4,Y),identify_class(Y,X,Tr).

identify_class(l,X,[if,the,gas,is,Xl,and,X2,and,X3,then,infer,X]):­
i o_module(5 ,Z),
Z>O,Z<3,gas_evolved(Y,X,Xl,X2,X3,_,_).

identify_class(2,X,[if,the,gas,is,Xl,and,X2,and,X3,then,infer,X]):­
io_modu1e(6,Y),
Y>O,Y<?,Z is Y+2,gas_evolved(Z,X,Xl,X2,X3,_,_).

identify_class(3,X,[if,the,gas,is,Xl,and,X2,and,X3,then,infer,X]):­
io_modu1e(7,Y),
Y>O,Y<5,Z is Y+8,
gas_evolved(Z,X,Xl,X2,X3,_,_).

dry_heating_test(M,N,Tr) :- repeat,readfile(dryheat_proc),
nl ,prompt(In,>) ,reading(S) ,getO(C),
rm_duplicates(S,L),
perform(L,[] ,[] ,X,Y,Tr),
rm_duplicates(X,M) ,rm_duplicates(Y,N).

reading([HIT]):-getO(X),name(Y,[X]),read_check(Y,H,T),!.

r ead_check (P, Q, []) : -P== / . / , Q=P, ! .
read_check(P,Q,R):-P==/ ,/ ,reading([QIR]).
read_check(P,Q,R):-integer(P),P>O,P<7,Q=P,reading(R).
read_check(P,Q,R):-atom(P),Q=P,reading(R).

perform ([] , P, Q, P, Q, / . /) .
perform([HITJ,P,Q,C,D,[Tr,&,Trl]) ·­

do_head(H,A,B,Tr),append(A,P,M),append(B,Q,N),
perform(T,M,N,C,D,Trl),!

do_head(/ ./ ,A,B,/ ./) :-!

do_head(l,A,B,Tr):- id_gas_evolving(A,B,Tr).
do_head(2,A,B,Tr):- id_chn_residue(A,B,Tr).
do_head(3,A,B,Tr) :- id_col_sublimate(A,B,Tr).
do_head(4,A,B,Tr):-id_noise(A,B,Tr).
do_head(5,A,B,Tr):- id_swelling(A,B,Tr).
do_head(6,A,B,Tr):- id_crystallization(A,B,Tr).
do he ad (7 , [J , [J , [J) .
do=head(w,_,_,_):- write(/no explanation !!/),nl,nl,fail.

append([] ,L,L).
append([XIL1],L2,[XIL3]) :- append(Ll,L2,L3).

id_gas_evolving(M,N,[Tr,if,the,gas,evolved,is,X,then,infer,M,NJ):-
. identify_gas(X,Tr),gas_evolved(_,X,_,_,_,M,N).

rm_duplicates([HITJ ,[HIN]) :- rm_dup_head(H,T,S),
rm_duplicates(S,N),!

rm_duplicates([J,[]).

rm_dup_head(X,Y,Z) :- (member(X,Y),delete(X,Y,Z));same(Y,Z).
same(A ,A).

delete(_,[),[)).
delete(Y, [Y ILl J ,M) :- ! , delete(Y, LL,M) .
delete(Y,[XIL1J,[XIL2)) :- delete(Y,Ll,L2).

member(X,[XI_)).
member (X, [_I YJ) ·- member (X, Y).

id_chn_residue(P,Q,[if,the,colour,of,the,residue,when,hot,is,Xl,and,&,X2,when,
old,then,infer,P,Q)) :-

repeat,
io_module(9,Y),
chn_colour_residue(Y,Xl,X2,P,Q).

id_col_sublimate(P,Q,[if,the,colour,of,the,sublimate,is,Xl,then,infer,P,Q)):­
repeat,
io_module(lO,Y),
colour_sublimate(Y,Xl,P,Q).

id_swelling(P,Q,Tr):- repeat,
io_module(ll,Y),dec(Y,P,Q,Tr).

dec (yes, (/ Na+ / , ·' K+ / , / 1"1g+2 / J , [J , (if , there, is, fusion , then , infer , & , sodium, pot ass i
m,and,magnesium,cations,&]).
dec(no,P,Q,[if,there,is,swelling,then,infer,P,QJ):-

l-epeat, i o_module(12 ,Z), decl (Z, P, Q).

decl(yes,[),[/803-3/ ,/P04-3/]).
decl (no, [], []).

id_noise(P,Q,[if,there,is,crackling,noise,then,infer,P,Q)):­
repeat,io_module(l3,Y),deci(Y,P,Q).

dec i (yes, [-' Na+ / , -' K+ ... , / Pb+2 / J , ["'N03--' , / I-/ , / Cl- / J) •
dec i (no , [] , (]) .

id_crystallization(P,Q,[if,there,is,water,of,crystallization,then,infer,P,QJ):
repeat,io_module(14,Y),decis(Y,P,Q).

decis(yes, [), [... Cl-·', /N03- ... , -'804-2/)).
dec i s (no , [] , []) .

syn(?C03-2?,carbonate).
syn(?HC03-' ,bicarbonate).
syn(?S04-2' ,sulphate).
syn(?S203-2? ,thiosulphate).
syn('CH3COO-?,acetate).
syn(?N02-? ,nitrite).
sy n ('N03-' , n i t rate) .
syn(?S03-2' ,sulphite).
syn('S-2',sulphide).
syn(?C204-2? ,oxalate).
syn(?Cl-?,chloride).
syn(?Br-?,bromide).
synei-? ,iodide).
syn(?P04-3' ,phosphate).

syn(?Ag+' ,silver).
syn(?Hg+2?,mercury).
syn(?Pb+2?,lead).
syn(?Bi+3?,bismuth).
syn(?Cu+2? ,copper).
sy-n (? Cd+2?, cadmium) .
syn('As+3?,arsenic).
syn('Sb+3' ,antimony).
syn('Sn+2' ,tin).
syn('Fe+3' ,iron).
syn(?Cr+3?,chromium).
syn(?Al+3',aluminium).
syn(?Co+2',cobalt).
syn(?Ni+2? ,nickel).
syn('Mn+2',manganese).
syn(?Zn+2?,zinc).
syn(?Ba+2' ,barium).
~syn('Sr+2' ,strontium).
syn('Ca+2' ,calcium).
syn('Mg+2',magnesium).
syn('NH4+',ammonium).
syn('Na+',sodium).
syn('K+?,potassium).

P·b

dll_sulpt""iUl"l c_ac1 d_test (t-', W, rr):- 1·epeat, 1 o_module(15, Y), deci si (Y, P, Q, Tr).

decisi(yes,P,Q,[on,adding,dilute,sulphuric,acid,&,Trl,&,then,infer,P,Q]) :­
identify_gas(Gas,Trl),dilh2so4(Gas,P,N),
((Gas==S02,repeat,io_module(19,Ans),decisil(Ans,Q));(Q=N)).

dec i s i (no , [] , []) .
decisil(yes,['S203-2']).
decisil(no,['S03-2']).

conc_sulphuric_acid_test(P,Q,[on,adding,conc,sulphuric,acid,&,Trl,&,then,infer
P,Q]):- repeat,io_module(l?,Y) ,decisio(Y,P,Q,Trl).

decisio(yes,P,Q,Trl):-identify_gas(Gas,Trl),conch2so4(Gas,P,Q).
decisio(no,[],[]).

borax_bead_test(P,Q,[if,the,colour,of,the,bead,is,&,Xl,when,hot,and,X2,when,co
d,in,the,oxidising,flame,and,X3,in,reducing,flame,then,infer,P,Q]):-

repeat, i o_module(18, Y),
colour_bead(Y,Xl,X2,X3,P,Q).

an(['C03-2' ,'804-2' ,'5203-2' ,?CH3COO-','N02-',?N03-' ,'S03-2' ,'S-2','C204-2' ,'
-' ,'Br-' ,·'I-' ,'P04-3'. ,'803-3']).

lead([cooling,potassium_chromate]).
silver([nitric_acid,potassium_iodide,potassium_chromate]).
mercury((stannous_chloride,sodium_carbonate]).
bismuth((dilution,sodium_stannite,thiourea]).
copper((potassium_ferrocyanide]).
cadmium((potassium_ferrocyanide]).
arsenic([ammonium_molybdate,magnesia_rnixture]).
atimony([dilution,tin_rnetal]).
tin([stannous_chloride,ammonium_molybdate]).
iron([potassium_ferrocyanide,potassium_sulphocyanide]).
chrornium([lead_acetate,hydrogen_peroxide]).
aluminium([lake]).
cobalt((cobaltinitrite]).
nickel((dimethyl_glyoxime]).
manganese((bromine_water,pink_colour]).
zinc([sodium_hvdroxide,potassium_ferrocyanide]).
bariurn([potassium_chromate]).
strontium([arnmonium_sulphate]).
calcium([ammonium_oxalate]).
magnesium((ammonium_phosphate]).
sodium([potassium_pyroantimonate]).
potassium((sodium_cobaltinitrite,picric_acid]).
ammonium((sodium_hydroxide,nesslers_reagent]).

carbonate((magnesium_sulphate]).
bicarbonate((magnesiurn_sulphate]).

P·1

sulphate([barium_chloride]).
thiosulphate([silver_nitrate,ferric_chloride]).
acetate([ethyl_alcohol,ferric_chloride]).
nitrite([ferrous_sulphate,potassium_permanganate,potassium_iodide]).
nitrate([copper_turnings,ferrous_sulphate]).
sulphite([barium_chloride,ferric_chloride,potassium_permanganate]).
sulphide([cadmium_carbonate,lead_acetate,sodium_nitroprusside]).
oxalate([calcium_chloride,barium_chloride]).
chloride([silver_nitrate,manganese_dioxide,chromyl_chloride]).
br orni de([~-i 1 ver _nitrate ,manganese_di oxide, car bon_d i sulphide]) .
iodide([silver_nitrate,manganese_dioxide,carbon_disulphide]).
phosphate([amrnonium_molybdate,magnesia_rnixture]).
borate([green_edged_flame,turmeric_paper]).

anions([carbonate,bicarbonate,sulphate,thiosulphate,acetate,nitrite,sulphite,
lphide,oxalate,chloride,bromide,iodide]).

cations((silver,mercurous,lead,mercuric,bismuth,copper,arseneic,antimony tin
. ' ' on,chromium,aluminium,cobalt,nickel,manganese,zinc,barium,strontium,calcium,

nesium,ammonium,sodium,potassium]).

member(X,[XI_J) :-!.
member(X,[_IY]):-member(X,Y).

E= .. [Rad.Tests] .E-~asserta(raa{anlon)).

/ >!('liA) w f o r i den t i f y i n g a gas i n i n f e r en c: i n g* /
gas_evolved(l,'C02',c:olourless,odourless,'turns lime water milky',[],['C03-2','
C204-2']).
gas_evolved(2,'CO' ,c:olourless,odourless,'burns with a blue flame' ,[),['C204-2']
) .
gas_evolved(3,'H2S',c:olurless,'smells like rotten eggs','turns lead acetate pap
er bl ac:k' , [] , ['S-2' , '8203-2']) .
gas_evolved(4,'802' ,c:olourless,'c:harac:teristic: suffocating smell' ,'turns,ac:idif
ied K2Cr207 paper green' ,[],['S03-2' ,'8203-2']).
gas_evolved(S,'HCl' ,c:olourless,'pungent smell' ,'white fumes with ammonia white
p p t t.-J i t h s i 1 v er n i t rate so 1 uti on' , [] , [·' Cl-']) .
gas_evolved(6,'CH3COOH' ,c:olourless,'c:harac:teristic:','vinegar like smell' ,[J,['C
H3COO-']).
gas_evolved(7,'CH3COCH3',c:olourless,'sweet smell','vapours c:atc:h fire',[],['CH3
COO-')).
gas_evolved(8,'NH3' ,c:olourless,'c:harac:teristic: smell','turns moist turmeric: pa~
er brown',['NH4+'J,[)). I
gas_evolved(9,'N02' ,'reddish brown','pungent smell','turns Fe804 solution black
' , [J , ['N02-' , 'N03-']) .
gas_evolved(lO,'Cl2','greenish yellow','pungent smell','turns starch iodide pa
er blue',[],['Cl-']).
gas_evolved(ll,'Br2','reddish brown','pungent smell','turns starch paper orang
· yell ow' , [] , ['Br-']) .
gas_evolved(12,'12','dark •Jiolet','pungent smell','turns starch paper orangey
11 ow' , [] , [' I -']) .

/* rules for dry heat test */
c:hn_colour_residue(l,yellow,white,['Zn+2' ,'8n+2'],[]).
c:hn_c:olour_residue(2,brown,brown,['Cd+2'J ,[]).
c:hn_c:olour_residue(3,brown,yellow,['Pb+2','Bi+3'),[]).
c:hn_c:olour_residue(4,blue,white,['Cu+2'] ,['804-2']).
c:hn_c:olour_residue(5,violet,green,['Cr+3'] ,[]).
c:hn_c:olour_residue(6,pink,blue,['Co+2'],[]).
c:hn_c:o 1 our _residue (7, green , yell ow, ['t'-h +2'] , []) .
c:hn_c:olour_residue(8,'pale brown' ,blac:k,['Fe+3'],[]).

·c:hn_c:olour_residue(9,'light green' ,'reddish brown',['Fe+2'],[]).
c:hn_c:olour_residue(lO,'c:oloured salt' ,'black residue',['Co+2' ,'Mn+2','Fe+2' ,'C
+2' , ,. N i +2'] , []) .

colour _sublimate(l ,t.-Jhi te, ['NH4+', 'Hg+2', 'As+3'], []).
c:olour_sublimate(2,yellow,['As+3'],['8-2']).
c:olour_sublimate(3,'grey with metal globules' ,['Hg+2'],[]).
c:olour_sublimate(4,blac:k,['Hg+2'],['8-2','1-']).

/*rules for charcoal cavity test */
c:harc:oal_c:avity(l,yellow,white,none,['Zn+2' ,'8n+2'],[]).
c:harc:oal_c:avity(2,brown,brown,none,['Cd+2'],[)).
c:harc:oal_c:avity(3,brown,yellow,'greyish bead which marks paper' ,['Pb+2'],[]).
c:harc:oal_c:avity(4,orange,yellow,'pinkish brittle bead',['Bi+3'],[]).
c:harc:oal_c:avity(5,none,none,'read beads or sc:ales',['Cu+2'],[]).
c:harc:oal_c:avity(6,none,'white but does not mark paper',none,['Ag+2'),[)).
c:harc:oal_c:avity(7,white,greyish,white,none,['8b+3'],[)).
c:harc:oal_c:avity(8,'glowing white residue',none,none,['Ba+2','Ca+2' ,'Mg+2') ,[))
c:harcoal_c:avity(9,blac:k,none,none,[],[]).

/*rules for cobalt nitrate test */
c:obalt_nitrate(l,green,['Zn+2'],[]).
c:obalt_nitrate(2,'dirty green',[8n+2J,[)).
c:obalt_nitrate(3,pink,['Mg+2'],[)).
c:obal t_n i trate(4 ,blue, ['Al+3"], ['P04-3', '803-3"]).

p."

cobalt_nitrate(5,black,[],[]).

/* rules for flame test */
colour_flame(l,/gloden yellow/ ,invisible,['Na+'J ,[]).
colour_flame(2,'pale violet',pinkish,['K+'J,[)).
colour_flame(3,'bluish green or blue',visible,['Cu+2/],[]).
colour_flame(4,crimson,crimson,['8r+2'],[)).
colour_flame(5,'brick red' ,'light yellow/ ,[/Ca+2'],[]).
colour_flame(6,'grassy green',green,['Ba+2'),[]).
colour_flame(7,'bluish white' ,none,['As+3/ ,'8b+3','Pb+2'],[]).
colour_flame(8,'no colour' ,none,[),[]).

/* rules for borax bead test */
colour_bead(l,'.deep blue' ,'deep blue' ,'deep blue' ,['Co+2') ,[]).
colour_bead(2,green,green,green,['Cr+3'],[]).
colour_bead(3,green,blue,'reddish opaque or colourless',['Cu+2'),[)).
colour _bead(4, 'reddish yellow',' pale yellot.-.J', green, ['Fe+2', 'Fe+3'], []).
colour _bead(5, '1 i ght pinkish' , '1 i ght pinkish', none, ['Mn+2·'] , [)) .
colour_bead(6,'reddish brown' ,'reddish brown' ,none,['Ni+2'],[]).
colour_bead(7,none,none,none,[],[)).

/* rules for dilute sulphuric acid test */
dilh2so4('C02', [), ['C03-2']).
di lh2so4('802', [J, ['803-2']).
dilh2so4('802', [], ['3203-2' J).
dilh2so4(''H28' ,[] ,['8-2']).
di lh2so4('N02', [], ['N02-' J).

/* rules for concentrate sulphuric acid test */
conch2so4('CO',[),[/C204-2')).
con ch2so 4 ('HCl' , [] , ['Cl-']) .
conch2so4('Br2', [], ['Br-']).
conch2so4('I 2', [], ['I-']).
conch2so4('CH3COOH' ,[),['CH3COO-']).
conch2so4('N02',[],['N03-']).

dry_heating_test(13,12,25,['Zn+2' ,'8n+2','Cd+2' ,'Pb+2','Bi+3' ,'Co+2' ,'Cu+2' ,'N
t2' ,'Fe+3','Fe+2' ,'NH4+' ,'Hg+2' ,'As+3'],['C03-2','C204-2','8-2' ,'8203-2','803-
,, '804-2', 'CH3COO-·', 'N02-', 'N03-·', 'Cl-', 'Br-',' I-']).
charcoal_test(12,2,14,['Zn+2' ,'8n+2' ,'Cd+2' ,'Pb+2' ,'Bi+3','Cu+2','Ag+2','8b+3'
··· B a+ 2 ' , ' A 1 + 3 ' , ' C a+ 2 ' , ' M g+ 2 '] , [' P 0 4-3 ' , ' 8 0 3-3 ,· J) •
flame_test(9,0,9,['Na+' ,'K+' ,·'Cu+2' ,'8r+2'. ,-·ca+2' ,'Ba+2' ,'As+3' ,'8b+3' ,'Pb+2')
[]).
borax_bead_test (7, 0, 7, ['Co+2', 'Cr+3'., 'Cu+2', ·' Fe+2', / Fe+3', 'Mn+2', 'Ni+2'), [)).
dil_sulphuric_acid_test(0,6,6,[],['C03-2' ,'S03-2','S203-2' ,'S-2' ,'N02-']).
conc_sulphuric_acid_test(0,6,6,[),['C204-2','Cl-' ,'Br-' ,'I-','CH3COO-' ,'N03-')

/* input output module which asks a question and accepts an input */
pause_fail:-nl,write(ok),skip(10),fail.
pause:-nl,write(ok),skip(10).

i o_module(Ctx t, Y):- ask (C txt) ,
nl ,prompt(In,>) ,read(Y),
checkingY(Ctxt,Y).

checkingY(_,how):-ans_how.
checkingY(_,help):-write('no help !'),fail.
checkingY(_,Y) :-integer(Y),!.
check i ngY(Ct ,l-Jhy): -map_w(C t), pause_f ai 1.
checkingY(_,yes).
check i n gY (_, no) .

ans_how: -((how(X), di spl i st (X), pause, fail); true),! , fail.
how:-ans_how.

displist([[[HITJIT1JIT2)):- write(H),tab(1),displist(T),nl,

P·io

displist(T1),nl,displist(T2),!.
displist([[HIT) IT1)) :-nl ,wri te(H), tab(1) ,displist(T) ,nl ,displist(T1),!.
displist([&ITJ):-nl,displist(T),!.
displist([]) :-!.
d i sp list ([HIT]) : -wr i t e (H) , tab (1) , d i sp list (T) , ! •

/* a why qustion by the user maps against one of the contexts */
map_w(1):-readfile(charcoal_why).
map_w(2):-readfile(cobalt_why).
map_w(3) : -readf i l e(f lame_why).
map_w(4):-readfile(gas_why3).
map_w(5):- write(' A COLOURLESS and ODOURLESS gas which'),nl,

tab(5),write('* turns lime water milky is C02') ,nl,
tab(5) ,write('* burns with a blue flame is CO').

map_w(6):-readfile(gas_why1).
map_l-J(7) :-read_file(gas_why2).
map_w(9) :-readfile(residue_l-.Jhy).
map_w(10): -readf i le(sub! imate_t.-.Jhy).
map_l-J(11) :-nl,

write('Many alkali metal salts contain a large quantity of '),
nl,write('water as water of crystallization. On heating the'),
nl,write('water separates and dissolves the salt.').

map_w(l2):-nl,

write('Normally Phosphates,Borates and alums swell on heating').
map_w(13):-nl,

write('Some anhydrous salts like lead nitrate,potassium iodide,sodium'),nl,
write('chloride etc contain some mother liquor entrapped in their'),nl,
write('crystals. On heating the mother liquor escapes by breaking the'),nl,
write('crystals. This results in crackling noise.').

map_w(14):-nl,
write('Hydrated salts on heating lose water of crystallization'),nl,
write('which condenses on the cooler parts of the test tube '),nl,
write('Most of the hydrated salts contain chloride or nitrate') ,nl,
write('or sulphate as an acid radical').

map_w(15): -readf i le(di l_why).
map_w(l6):-nl,write('Forrnation of white ppt with the liberation'),

write('of S02 indicates S203-2 otherwise S03-2').
rnap_w(17): -readf i le(conc_why).
map_w(18):-readfile(borax_why).
rnap_w(19) :-write(' If the gas evolved is S02 and no ppt is formed then') ,nl,

write('S03-2 is to be inferred. If an yellowish white ppt is'),nl,
write('also formed S203-2 is to be inferred').

map_l-J(20):-write('I thought ~Jou r ... touuld be interested in th.:=:tt'·).

~ - ••. _ .. <::;"A , _ y ~ .1.) : - r e a a t 1 l e (c h a r co a l _p r o c) .
ask_next_q(2):-readfile(cobalt_proc). P·t~
ask_next_q(3):-readfile(flame_proc).
ask_next_q(4):- nl,write('Tell me whether the evolving gas is a'),

nl,tab(5),write('l. colourless and odourless gas'),
nl,tab(5),write('2. colourless gas with odour'),
nl,tab(5),write('3. coloured gas with pungent smell').

ask_next_q(5) :-
nl,write('Tell me whether the gas '),
nl,tab(l0),write('1. turns lime water milky'),
nl,tab(10),write('2. burns with a blue flame').

ask_next_q(6):-nl,readfile(gas_proc1).
ask_next_q(7):-readfile(gas_proc2).
ask_next_q(9):-readfile(chn_residue).
ask_next_q(10):-nl,tab(5),write('Colour of the Sublimate'),

n 1 , tab (10) , wr i t e ('1 . wh i t e') ,
nl,tab(10),write('2. Yellow'),
nl,tab(10),write('3. Grey with'),
nl, tab(16) ,write('metal globules'),
nl,tab(l0),write('4. Black'),nl.

ask_next_q(ll):-nl,write('Is there a fusion (or melting) of the salt?').
ask_next_q(12):-nl,write('Is there a swelling of the salt?').
ask_next_q(13):-nl,write('Is there a crackling noise on heating the salt?').
ask_next_q(14):-

nl,write('Tell me whether there is condensation of H20 on the cooler'),
n!,write('walls of the test tube?').

ask_next_q(15):- nl,
write('Take a little of the salt in a clean test tube.i-reat it'),nl,
write('with a few ml of dilute sulphuric acid.Warm if no gas is evolved'),
nl,write('Tell me whether a gas is being evolved?').

ask_next_q(17) :-nl,
write('Take a little of the salt in a test tube and treat it with'),nl,
write('a few ml of concentrated sulphuric acid. Heat the contents '),nl,
write('if no gas is evolved'),nl,
write('Tell me whether a gas is being evolved?'),!.

ask_next_q(18) :-readfile(borax_proc).
ask_next_q(19) :-

nl,write('Tell me whether an yellowish white ppt is also formed?').
~sk_nex t_q (_) .

decisi(yes,P,Q,[on,adding,dilute,sulphuric,acid,&,Tr1,&,then,infer,P,QJ):­
identify_gas(Gas,Tr1),dilh2so4(Gas,P,N),
((Gas==S02,repeat,io_module(19,Ans),decisi1(Ans,Q));(Q=N)).

deci s i (no , [J , [J) •
decisi1(yes,['S203-2']).
decisi1(no,['S03-2')).

conc_sulphuric_acid_test(P,Q,[on,adding,conc,sulphuric,acid,&,Tr1,&,then,infer
P,QJ) :- repeat,io_module(17,Y) ,decisio(Y,P,Q,Tr1).

decisio(yes,P,Q,Tr1):-identify_gas(Gas,Trl),conch2so4(Gas,P,Q).
decisio(no,(],[]).

borax_bead_test(P,Q,[if,the,colour,of,the,bead,is,&,X1,when,hot,and,X2,when,co!
d,in,the,oxidising,flame,and,X3,in,reducing,flame,then,infer,P,QJ):- I'

repeat,io_module(18,Y),
colour_bead(Y,X1,X2,X3,P,Q).

an(['C03-2' ,'804-2' ,'8203-2' ,'CH3COO-·' ,'N02-' ,'N03-' ,'803-2' ,'S-2·' ,·'C204-2' ,•c'.
-' ,'Br-' ,'I-' ,'P04-:3' ,'803-3']).

/*reads d r11e *7
readfile(X):-seeing(Old) ,see(X) ,readline(O),see(Old),! ·

readline(Cr):-read_in(S,C),Cl is Cr+l,
(((C==26;C==4),seen,!);
(C1==23,nl,write('You want more?'),tab(2),

seeing(Old),see(user),read(Ans),see(Old), .
((Ans==yes,((nonvar(S),write(S));true),readllne(O));

(seen, !)
)

) ;
(var(S) ,nl,readline(Cl));
(wr i t e (S) , n 1 , r eadl in e (Cl))

) .
read_in(H,C2):- getO(C) ,readword(C,H,C2).

readword(C,~·.J,C2) :- im·,IOTd(C,NewC), 1 ,getO(Cl),
restword(Cl,Cs~C2),name(H,[NewCICs]).

readword(C,!.-J,C).

restword(C, [NewCI Cs) ,C2) :- inword(C,NewC),! ,getO(Cl),
restword(Cl,Cs,C2).

restword(C, [],C).

inword(C,C):- C>3l,C<l27.
inword(C,C):-C==9.

/* a small interface to access the knowledge in tests */
charcoal_cavity_test:-charcoal_test.

charcoal_test:-charcoal_test(P,Q,T),disp(P,Q).

d i sp (P, Q) : -d i sp 1 is t (['List' , of , p o ss i bl e, 'cation (s) =' , P]) , n 1 ,
displist(['list' ,of,possible,'anions(s) =',Q]).

cobalt_nitrate_test:-cobalt_nitrate_test(P,Q),disp(P,Q).

flame_test:-flame_test(P,Q,T),disp(P,Q).

identify_gas:-identify_gas(X,T),
displist(['List' ,of ,possible,'anions(s)' ,=,X)).

dry_heating_test:-dry_heat_test.

dry_heat_test:-dry_heating_test(P,Q,T),disp(P,Q).

dry_heat_test(M,N):-dry_heating_test(M,N,T).

dilute_sulphuric_acid_test:-dil_sulphuric_acid_test.
dil_H2S04_test:-dil_sulphuric_acid_test.
dilute_H2S04_test:-dil_sulphuric_acid_test.
dil_sulphuric_acid_test:-dil_sulphuric_acid_test(P,Q,T),disp(P,Q).

concentrated_H2S04_test:-conc_sulphuric_acid_test.
conc_H2S04_test:-conc_sulphuric_acid_test.
concentrated_sulphric_acid_test:-conc_sulphuric_acid_test.
conc_sulphuric_acid_test:-conc_sulphuric_acid_test(M,N,T),disp(P,Q).

borax_test:-borax_bead_test.
borax_bead_test:-borax_bead_test(P,Q,T),disp(P,Q).

~onfirm_cation(X):­

synonym(X,Rad),asserta(rad(cation)),
find_group(Rad,Gr),! ,salt_sol,

P· i-;

Ex= .. [Gr,Ret],Ex,test(T),retract(rad(cation)),
((var(Ret) ,assertz(result(confirm,T ,no)),! ,fail),
(Ret,==no,assertz(result(confirm,T,Ret)));
(assertz(result(confirm,T,no)),true)

),displist([Ret,is,confirmed]).

confirm_anion(X) :-
synonym(X,Rad),
get_tests(Rad,Tests),
display_select(Tests,l,Inp,Z),
asserta(test(Z)),salt_solution(Rad),
io_module(Rad,Z,Ret),retract(rad(anion)),
(((Ret==yes,assertz(result(confirm,Z,X)),

displist([X,is,confirmed)));
(X==carbonate;X==bicarbonate,
assertz(result(confirm,Z,Ret)),
d i sp 1 is t ([Z, i~s, confirmed)))

) ; (assertz(result(c:onfirmed,Z,no)),! ,fail)).

c:onf(X):- E= .. [X,Tests],E,
(X==copper;X==cadmium;X==aluminium;
X==c:obalt;X==nickel;X==sodium;
X==barium;X==c:alcium;X==magnesium;
X==strontium;write_any(X)

),display_select(Tests,l,Inp,Z),
asserta(test(Z)),
io_module(X,Z,Ret),
((Ret ==yes, !) ; (! , fa i 1)) .

synonym(X,Rad):- ((syn(X,Y),asserta(radic:al(Y)));

get_tests(Rad,Tests):-

(syn(Y,X) ,asserta(radical(X)))
),radical(Rad).

E= .. [Rad,Tests),E,asserta(rad(anion)), .
(Rad==carbonate;Rad==bicarbonate;Rad==sulphate;write_any(Rad)).

display_select([X],l,l,X).
display_select([),Ctr,In,Y):-repeat,nl,prompt(lni,>),read(ln),

((integer(ln),In>O,In<Ctr);
(write('*** BAD INPUT ***'),fail)).

display_select([HIT],Ctr,In,Y):-
d i sp 1 is t ([C t r , H, test]) , n 1 ,
Ct is Ctr+l,
display_select(T,Ct,In,Y),
((C t r ==In , Y=H) ; !) .

salt_sol:-readfile(salt_proc) ,pause.

find_group(H,Gr):-t(P,Q,R),lookup(H,t(P,Q,R),Gr).

lookup(H,t(Gr,G,_),Gr):-member(H,G),! ,asserta(group(Gr)).
lookup(H,t(_,_,Next),R):-nonvar(Next),lookup(H,Next,R).

get_procedure(Radic,Xl,X2,List) :­
get_two_lists(Radic,List,[Xli[X2))).

P·11

Jet_two_lists(Radi,([RadiiTJITl],T).
Jet_two_lists(Radi,[[HITJIT1],T2):-get_two_lists(Radi,Tl,T2).

t(groupl,[silver,mercury,lead],
t(groupiiA,[mercury,lead,bismuth,copper,cadmium],

t(groupiiB,[arsenic,antimony,tin],
t(grouplll,[iron,chromium,aluminium],

t(groupiV,{cobalt,nickel,manganese,zinc],
t(groupV,[barium,strontium,calcium],

t(groupVI,[magnesium,ammonium,sodium,potassium],_)
)

)
)

)
)

) .
execute([]):-!.
execute([HIT]):-H,execute(T).
salt_solution(Rad) :- s.alt(Rad) ;aqueous;sce.

salt(Rad):-

aqueous: -repeat,

((Rad==carbonate;Rad==bicarbonate;Rad==borate;
(test (T) , radical (An) , ! ,

((An==acetate,T==ethyl_alcohol);
(T==manganese_dioxide);
(T==chromyl_chloride);
(An==nitrate,T==copper_turnings)

)
)),asserta(soluble_in(salt))

) .

nl,write('Mix a little of the salt in water and'),nl,
write_tell('dissolution,of,the,salt,in,water'),!,
nl,prompt(INi ,>),read(Ans),
((Ans==yes,asserta(soluble_in('SALT SOLUTION')));(! ,fail)).

sce:-readfile(extract),pause,asserta(soluble_in('SODIUM CARBONATE EXTRACT')).

potassium_chromate([

]).

[lead,[above,solution] ,[yellow,ppt]],
[silver,[original,solution],[brick,red,ppt]],
[barium,[above,solution],[yellow,ppt]J

potassium_iodide(([lead,[above,solution),[yellow,ppt]J,[silver,[original,solu~

on] ,[yellow,ppt]] ,[nitrite,[asserta(acid(~H2S04~)) ,write_ex,write(~after addin
a drop of starch solution~),nl],['BLUE COLOURATION~)]]).

nitric_acid([[silver,[above,solution],[white,ppt]]]).

stannous_chloride([[mercury,[original,solution),[white,ppt,turning,grey]],
[tin,[solution,obtained,by,dissolving,the,above,ppt;in,~

cone HCl~ ,add,a,few,pieces,of,zinc,metal,and,then),
[white,ppt,turning,grey]]]).

copper_turnings([[mercury,[original,solution),[silvery,deposit,on,cu,chips]], I
[nitrate,[nl,write(~Heat 0.5 gms of the salt with 2ml of cone H2S04 and ~),nl,~
rite(~add a few Cu chips.~),nl]~[~DEI~SE REDDISH FUMES~,of,nitrogen,peroxide]]])

sodium_stannite([[bismuth,[above,ppt],[black,ppt)]]).

thiourea([[bismuth,[original.solution,in,dilute,~HCl' ,add,2,drops,of,dilute,'
HN03~,and,then],[yellow,colouration)]]).

potassium_ferrocyanide([[copper,[above,solution,add,a,little,~cH3COOH~ ,and,ther
],[chocolate,ppt]), [cadmium,[above,solution),[bluish,white,ppt]], [iron,[solu~
ion,obtained,by,dissolving,the,above,ppt,in,dilute,~Hcl~],[prussian,blue]], [zi
nc,[original,solution),[bluish,white,ppt)]]).

ammonium_molybdate([[arsenic,[solution,obtained,by,dissolving,the,above,ppt,in,
conc,'HN03~],[yellow,ppt)),[tin,[solution,obtained,by,dissolving,the,above,ppt,

in,dilute,~HCl' ,add,a,few,pieces,of,zinc,metal,and,then],[deep,blue,colouratiom
]),[phosphate,[asserta(acid('concentrated HN03')),write_extract),[~YELLOW PPT~,
or,'COLOURATION']]]).

magnesia_mixture([[arsenic,[solution,obtained,by,dissolving,the,above,ppt,in,C(l
nc,'HN03',add,~NH40H',and,a,pinch,of,~NH4Cl',and,~MgS04~,solution],[white,ppt]]

,[phosphate,[asserta(acid('dilute CH3COOH~)),write_extract,nl,write('Also add e
xcess of NH40H~)],['WHITE PPT']])).

dilution([[bismuth,[solution,obtained,by,dissolving,the,above,ppt,add,excess,of
,water],[milkiness)] ,[antimony,[solution,obtained,by,dissolving,the,above,ppt,i
n,conc,~HCl' ,add,excess,of,water],[milkiness)))).

tin_metal([[antimony,[solution,obtained,dissolving,the,above,ppt],[black,deposi
t,on,this,metal]]]).

potassium_sulphocyanide([[iron,[solution,obtained,by,dissolving,the,above,ppt,n
n,dilute,'HCl'),[blood,red,colouration]]]). ·

lead_acetate([[chromium,[solution,obtained,by,extracting,the,above,ppt,and,'Nail
H' ,and,'NaN03' ,with,water],[yellow,ppt,soluble,in,~NaOH~]J]).

hydrogen_peroxide([[chromium,[solution,obtained,by,extracting,the,above,ppt,and
,~NaOH',and,'NaN03' ,with,water,and,add,2,drops,of,~H2S04~,and,1,ml,of,ether,and

],[blue,colour,in,the,ether,layer]]]).

ammonium_hydroxide([[aluminium,[solution,obtained,by,dissolving,the,above,ppt,i
n,dilute,~HCl',add,a,few,drops,of,blue,litmus,and],[blue,ppt,floating,in,the,co

lourless,solution]]]).

p. 1& I
cobaltinitrite([(cobalt,[original,solution,add,a,pinch,of,'NH4Cl',and,'NH40H',,
nd,add,a,pinch,of,'KN02' ,and,a,few,drops,of,acetic,acid,and,shake,well],[yelow 1 ppt]])).

dimethyl_glyoxime([[nickel,[original,solution,add,a,pinch,of,'NH4Cl',and,a,few

drops,of,'NH40H'],[bright,red,ppt]]]).

bromine_water([[manganese,[original,solution,add,'NaOH',solution,till,a,ppt,re
ults,and,shake,after],[brown,ppt]])).

sodium_hydroxide([[zinc,[original,solution],[white,ppt,soluble,in,excess,of,'N
OH'])]).

ammonium_sulphate([(strontium,[solution,obtained,by,dissolving,the,above,ppt,i'"1
,hot,dilute,acetic,acid],[white,ppt)]]). '

ammonium_oxalate([[calcium,[solutio~obtained,by,dissolving,the,above,ppt,in,hot

•dilute,acetic,acid],[on,scratching,the,sides,of,the,tests,tube,after,adding,'N
H40W ,a,white,ppt]]J). ·

ammonium_phosphate([[magnesium,[original,solution,add,a,pinch,of,'NH4Cl' ,and,ex
cess,of,'NH40H' ,and,then],[white,ppt]]]).

potassium_pyroantimonate([[sodium,[original,solution] ,(white,ppt,or,milkiness,o
n,scratching,the,sides,of,the,test,tube]]]).

sodium_cobaltinitrite([[potassium,(original,solution],[yellow,ppt)]]).

picric_acid([[potassium,[original,solution],[yellow,ppt]]]).

tartaric_acid([[potassium,[original,solution],[white,ppt,on,scratching,the,side
s]]]).

silver_nitrate([[thiosulphate,[write_sol,nl],(white,ppt,which,changed,to,yelld
,orange,brown,and,finally,black]J,[chloride,[asserta(acid('dilute HN03')),wri~

P·i T

_extract],['CURDY WHITE PPT',soluble,in,'NH40H']],[bromide,[asserta(acid('dilu
e HN03')),write_extract],['PALE YELLOW PPT' ,partially,soluble,in,'NH40H']],[i
ide,[asserta(acid('dilute HN03')),write_extract],['YELLOW PPT',insoluble,in,'
40H']]]) .

ferric_chloride([[thiosulphate,[write_sol),['PURPLE or VIOLET',colour,which,f
es,away,on,standing)],[acetate,[write_sol,write('Red colour results~),nl,write
'Dilute it with 2ml of water and boil'),nl],['BROWN PPT']],[sulphite,[write_so
],[dark,'RED COLOURED',solution]]]).

ethyl_alcohol([[acetate,[write_mno] ,['FRUITY SMELL'])]).

ferrous_sulphate([[nitrite,[asserta(acid('CH3COOH')),write_ex],('DARK BROWN',o
,'BLACK',solution]],[nitrate,[write_sol,write('Now add cone. H2S04 by the side
of the test tube'),nl],['DARK BROWN RING',at,the,junction,of,the,two,layers]]

) .
potassium_permanganate([[nitrite,[write_sol],[disappearing,of,the,'PINK', coloi
r, of,' KMn04']], [sulphite, [wr i te_sol], [disappearing, of, the,' PINK', colour, of,' KMI
04'])]).

bar i um_chlor ide([[sulphate, [wr i te_sol], ['f,.JHITE PPT', insoluble, in, dilute,' HCl' J
,[sulphite,[write_sol,write('Filter the ppt and treat the residue with dilute I
Cl.'),nl],['DISSOLUTION',of,the,ppt,with,the,evolution,of,'S02']] ,[oxalate,[wr
te_extract],['WHITE PPT']]]).

sodium_nitroprusside([[sulphide,[write_s],['PURPLE or VIOLET' ,colour])]).

cadmium_carbonate([[sulphide,[retrieve(S,T),displist(['To' ,'3ml',of,S,add,a,1i·
tle,solid,T]),nl],['YELLOW PPT')J]).
lead_acetate([[sulphide,[asserta(acid('dilute CH3COOH')),write_extract],['BLACt
PPT']]]) .

calcium_chloride([[oxalate,[asserta(acid('dilute CH3COOH')),write_extract],['Wt
ITE PPT']]]).

manganese_dioxide([[chloride,[write_mno],['Cl2',gas,which,turns,starch,iodide,~
aper,blue]],[bromide,[write_mno],['Br2',gas,which,turns,starch,paper,ye11ow]],(
iodide,[write_mno],['l2' ,vapour,which,turns,starch,paper,blue]]]). ·

chromyl_chloride([[chloride,[readfile(cct)],[yellow,ppt])]).

carbon_disulphide([[bromide,[asserta(acid('dilute HCl')),write_extract,write('~
lso add a few drops of C12 water and shake well.'),nl],['ORANGE',colour,in, 'C~
2',1ayer)],[iodide,[asserta(acid('dilute HCl')),write_extract,write('Also add~

few drops of Cl2 water and shake well.'),nl],['VIOLET' ,colour,in,'CS2' ,layer]]
]) .
green_edged_flame([[borate,[asserta(test('2-3 ml of ethyl alcohol')),write_mno]
,[vapours,burning,with,'GREEN EDGED FLAME'])]).

turmeric_paper([[borate,[write('Take 0.5 gms of the salt.Make its solution witt
dilute HCl'),nl,write('and soak a turmeric paper in it.On drying the paper bee

omes'),nl,write('brown in colour.Now touch the paper with a drop of NaOH')],[a,
'DIRTY BLUE',or,'GREENISH SPOT']]]).

magnesium_sulphate([[X,[write('Shake 0.5 gms of the salt with distilled water.'
.... nl, rn; -=c:"l ,.~~ ,_,,.... .-..+: •'-.. -. - _, ~ :-

io_module(Radical,Test,Y):- repeat, P·l'i(
((rad(anion),ask_n(Radical,Test));
(rad(cation),ask_c(Radical,Test))

) , n 1 , prompt (In , >) , read (Y) ,

chek(Radical,Test,Y).

chek(Rad,Ct ,why):-((rad(anion),! ,map_Y(Rad));
(rad(cation),! ,ans_~-Jhy(Rad,Ct))

),pause_fail.
~hek(_,_,how):-ans_how,! ,fail.
t:hek (_, _, In t) :-integer (In t) , ! •
thek (_,_,yes).
chek(_,_,no).

ask_n(Rad,Tes):-

ask_c(Rad,Test):-

ask_c(Rad,Test):-

ask_c(groupi ,1):-

E= .• [Tes,ListJ,E,
get_procedure(Rad,Xl,X2,List),
execute(Xl),
write(~Tell me whether~),nl,displist(X2),nl,
write(~is observed?~).

(Test==magnesia_mixture;Test==dilution),
. E= .. [Test , List J , E,
get_procedure(Rad,Xl,X2,List),
displist(Xl) ,nl ,wri te_tell(X2),!.

E= .. [Test,List) ,E,
get_procedure(Rad,Xl,X2,List),
write(~To 2 ml of the ~),

displist(Xl),nl,write(~add a little of ~),

write(Test),tab(l),nl,
write_tell(X2),!.

nl,write(~To the SALT SOLUTION add a few ml of dilute HCl~),nl,nl,
write_tell(~WHITE PPT~).

ask_c(groupi ,2):-
nl,write(~Boil a part of the white residue with a little of water~),
nl,nl,write_tell(~DISSOLUTION of the ppt~).

ask_c(groupi,3):-
nl,write(~Filter and treat the residue with NH40H and shake~),nl,
write_tell(~dissolution of the ppt/).

ask_c(groupiiA,l):-readfile(groupll_proc).
ask_c(groupiiA,2):-

write(~Treat a pinch of groupii ppt with yellow ammonium sulphide/),
. nl,nl,write(~Tell me whether the ppt remained INSOLUBLE?~).
~sk_c(groupiiA,3):-

nl,write(~Tell me the colour of the groupii ppt~),

nl,tab(S),write(~l. Black/),
nl,tab(S),write(~2. yellow~),

nl,tab(S),write(~3. none/).
~sk_c(groupiiA,4):-

write(~Boil the black ppt with 3-4ml of dil HN03(50%)~),nl,
write(~Tell me whether the ppt remained INSOLUBLE?/).

ask_c(groupiiA,S):-
nl,write(~To lml of the ABOVE SOLUTION add 2 drops of dil H2S04~),
nl,write_tell(~WHITE PPT~).

ask_c(groupiiA,6):-
wr,ite(~To the rest of the solution in dilute HN03 add excess~),nl,
write(~of ammonium hydroxide~),nl,
write(~What is the colour of the ppt formed?~),
nl,tab(5).~,rrite(~1. r rhite oot/).

ask_c(groupiiB,l):-readfile(groupii_proc).
ask_c(groupiiB,2):-
. write(/Treat a

nl ,write(/Tell
~sk_c(groupiiB,3):-

pinch of groupii ppt with yellow ammonium sulphide/),
me whether the ppt remained INSOLUBLE?/).

nl,tab(5),write(/Tell me the colour of the ppt/),
nl,tab(5),write(/l. yellow/),
nl,tab(5),write(/2. orange/),
nl,tab(5),write(/3. brown or dirty yellow ppt/).

ask_c(groupiii ,1):-readfile(groupiii_proc).
ask_c(groupiV,l):-readfile(groupiV_proc).
ask_c(groupiV,2):-

nl,write(/What is the colour of the original salt?/),nl,
write(/Indicate 1 for Pink and 2 for green or bluish green/).

ask_c(groupV,l):-readfile(groupV_proc).
ans_why (groupV, 1): -readf i le(grou.pV_why).
ans_why(groupl,1):-readfile(groupl_why).
ans_why(groupi,2):-nl,
' write(/If the ppt dissolves the cation may be lead or/),nl,
. write(/else it can be either Ag+ or Hg2+2/).
ans_why(groupl,3):-nl,
! write(/If the ppt dissolves the cation may beAg+ or/),nL,

write(/else it can be Hg2+2 if the ppt turns black/).
an s _why (group I I A , 1) : -r eadf i 1 e (group I I _why) .
ans_why(groupiiA,2):-

nl,write(/If the ppt dissolves the cation belongs to groupiiB/),
nl,tab(5),write(/otherwise it belongs to groupiiA/).

~ns_why (grc•up I lA, 3):-
nl,write(/If the colour of the ppt is/),nl,tab(5),
write(/black then [Hg+2,Pb+2,Bi+2,Cu+2] may be present/),nl,tab(5),
write(/yellow then [Cd+2] may be present/).

ans_why(groupiiA,4):-fail.
ans_why(groupiiA,5):-fail.
~ns_why(groupiiA,6):-fail.

~ns_why(groupiiB,3):-readfile(groupiiB_why).
~ns-why(groupiii ,1):-readfile(groupiii_why).
ans_why(groupiV,1):-readfile(groupiV~why).
ans_why(groupiV,2):-nl,
: write(/If the original colour is pink it indicates Co+2/)

tab(26),write(/green or bluish green it indicates Ni+2/).
~ns_why(Rad,_):-readfile(Rad).

' '

~ap_Y(io2):- write(/If the salt is insoluble, sodium carbonate extract has
- e prepared/),! .
map_Y(io):-write(/This menu selects the test requested by the user/),!.

"JV'I!-readfile(X).

-' ' - decy (X , 7 - v 'I -

pause_fail:-nl,write(ok),skip(lO),fail.
pause:-nl,write(ok),skip(lO).
write_dis(X):-displist(['Tell',me,whether,the,X,dissolved,'?')).
write_disappear(X):-displist(['Tell',me,whether,X,'disappeared?')).
write_s:-retrieve(Z,X),displist(['To','2-3ml',of,Z,add,'l-2ml',of,X,'.')),nl.
write_sol:-

retrieve(Z,X),displist(['To' ,'2-3 ml',of,Z,add,a,few,drops,of,X,'.')),nl.
retrieve(S,T):-test(T),soluble_in(S).
write_extract:-retrieve(X,Z),acid(Y),

displist(['Acidify','2 ml',of,X,with,Y,and,&,boil,off,'C02',completely,&]) 1
displist(['Add' ,to,it,l,ml,of,Z,solution)),nl.

write_any(X):­
displist(['Any',of,the,following,tests,confirm,the,presence,of,X,radical]),
nl,write('lndicate your choice by keying the number against the test'),nl.
write_tell(X):-displist(['Tell',me,whether,'a(an)',X,is,'observed?']),nl.

write_mno:-test(T),
displist(['Heat','0.5 gms' ,of,the,salt,with,'2ml',of,conc,'H2S04',and,T,'.':

nl.
write_ex:-retrieve(X,Y),acid(Z),
displist(['Acidify','2ml',of,X,with,2,drops,of,dilute,Z,&,add,2,ml,of,Yl),nl.

p. ~1·
confirm_cation:-confirm_groupwise.
confirm_groupwise:-confirm_groupwise(Y),write(~CATION = ~),write(Y).
confirm_groupwise(Y):-repeat,nl,

write(~Do you want to detect the cations groupwise?'),
nl,prompt(In,>),read(Ans),

. readfile(salt_proc),pause,
((Ans==yes,groupi(Yl),
· '((Yl==no,write_no(groupl),groupiiA(Y3),

((Y3==no,write_no(groupll),groupiii(Y4),
((Y4==no,write_no(groupiii),groupiV(Y5),

((Y5==no,write_no(groupiV),groupV(Y6),
((Y6==no,write_no(groupV),groupV

((Y?==no ,rem,! ,fail)

)

);(Y=Yl)
)

);(Ans==no,fail)
) .

)

) ;(Y=Y3)

)
);(Y=Y5)

)

) ; (Y=Y4)

)

) ; (Y=Y6)

rem:-displist(['The',cation,does,not,belong,to,groupVI,'.~]),nl,nl,

write(~The cation does not belong to the list of cations detectable by

write_no(X):-displist(['The',cation,does,not,belong,to,X,'.')),n1.

groupi:-groupi(Y) ,nl,write(.... CATION = '),write(Y).

groupi(Y):-io_module(groupi,l,Z),anscheck(Z,Y).

anscheck(yes,Y):-io_module(groupi,2,Z),anscheck1(Z,Y).
anscheck(no,no).

anscheckl(yes,lead):-conf(lead).
~nscheckl(no,Y):- io_module(groupi,3,Z),anscheck2(Z,Y).

anscheck2(yes,silver):-conf(silver).
anscheck2(no,mercury):-conf(mercury).

groupii:-groupiiA(Y) ,nl,write(~CATION = '),write(Y).

~roupiiA:-groupiiA(Y),nl,write(.... CATION =),write(Y).

groupiiA(Y):-io_module(groupiiA,l,Z),ansckO(Z,Y).

~nsckO(yes,Y):-io_module(groupiiA,2,Z),io_module(groupiiA,2,Z),ansck(Z,Y

~nsckO(no ,no).

ensck(no,Y) :-write('groupiiA is absent),nl,n1,
' write(~groupiiB is analysed by confirming As+3,Sb+3,Sn+2
' ask(no,Y).
'ensck(yes,Y) :-io_module(groupi IA,3,Z) ,ansckl(Z,Y).

3nsck1(1,Y):-io_module(groupiiA,4,Z),ansck2(Z,Y).
3nsck1(2,cadmium):-conf(cadmium).
3nsck1(3,no).

3nsck2(yes,mercury):-conf(mercury).
3nsck2(nn_Y) •- ;,-. r • ..-1 .. 1~r~~- .. -TTA.,.

individually"

anscKq{l,Dlsmutn) :-conf{blsmuth).
ansck4(2,copper):-conf(copper).
ansck4(3,no).

groupiiB:-groupiiB(Y) ,nl,write(/CATION = /),write(Y).

groupllB(Y):-io_module(groupiiB,l,Z),askO(Z,Y).

askO(yes,Y):-io_module(groupiiB,2,Z),ask(Z,Y).
askO(no,no).

ask(yes,Y):-ansck(yes,Y).
ask(no,Y):-io_module(groupiiB,3,Z),as(Z,Y).

as(l,Y):-((conf(arsenic),Y=arsenic);Y=no).
as(2,Y):-((conf(antimony),Y=antimony);Y=no).
as(3,Y) :-((conf(tin) ,Y=tin) ;Y=no).
as(no,no).

grouplll:-groupiii(Y),nl,write(/CATION = /) ,write(Y).

groupiii(Y):- io_module(grouplll,l,Z),verify(Z,Y).

verify(l,Y):-((conf(iron),Y=iron);Y=no).
verify(2,Y):-((conf(chromium),Y=chromium);Y=no).
verify(3,Y):-((conf(aluminium),Y=aluminium);Y=no).
verify(no,no).

groupiV:-grouplV(Y),nl,write(/CATION = /),write(Y).

grouplV(Y):-io_module(groupiV,l,Z),veri(Z,Y).
veri(l,Y):-io_module(groupiV,2,Z) ,verif(Z,Y).
veri(2,Y):-((conf(manganese),Y=manganese);Y=no).
veri(3,Y):-((conf(zinc),Y=zinc);Y=no). ·
veri(no,no).

verif(l,Y):-((conf(cobalt),Y=cobalt);Y=no).
verif(2,Y):-((conf(nickel),Y=nickel);Y=no).

groupV:-groupV(Y),nl,write(/CATION = /),write(Y).

groupV(Y): -i o_module(grouplJ, 1 ,Z),
((Z,==no,callconfirm(Y),Y,==no);

(Y=no)
) .

callconfirm(Y):-((conf(barium),Y=barium);
(conf(strontium),Y=strontium);
(conf(calcium),Y=calcium)

) .
groupVI:-groupVI(Y),nl,write(/CATION = /),write(Y).

groupVI (Y):-

callcon(Y):-

repeat,groupVI_proc,
((callcon(Y),Y,==no);(Y=no)).

((conf(magnesium),Y=magnesium);
(conf(sodium),Y=sodium);
(conf(potassium),Y=potassium);
(conf(ammonium),Y=ammonium)

) .

APPENDIX A

CATION FORMULA ANION FORMULA

silver Ag+ carbonate C03-2

mercurous Hg2+2 bicarbonate HC03-

lead Pb+2 sulphate 504-2

mercuric Hg+2 thiosulphate 5203-2

bismuth Bi+3 acetate CH3COO-

copper Cu+2 nitrite N02-

cadmium Cd+2 nitrate N03-

arsenic As+3 sulphite S03-2

antimony 5b+3 sulphide 5-2

tin' Sn+2 oxalate C204-2

iron Fe+3 chloride Cl-

chromium Cr+3 bromide Br-

aluminium Al+3 iodide I-

cobalt Co+2 phosphate P04-3

nickel Ni+2
I

manganese Mn+2

zinc Zn+2

barium Ba+2

strontium 5r+2

calcium Ca+2

magnesium Mg+2

ammonium NH4+

sodium Na+

potassium K+

NAME OF THE
TEST

dry_heat_test

charcoal test -

flame_ test

borax_ bead -
test

dil h2so4 -
test

conc_h2so4
test

APPENDIX B

DETECTABLE
CATIONS

Zn+2,Sn+2,Cd+2,Pb+2
Bi+3,Co+2,Cu+2,Ni+2
Fe+3,Ni+3,NH4+,Hg+2
As+3

Zn+2,Sn+2,Cd+2,Pb+2
Bi+3,Cu+2,Ag+2,Sb+3
Ba+2,Al+3,Ca+2,Mg+2

Na+,K+,Cu+2,Sr+2
Ca+2,Ba+2,As+3,Sb+3
Pb+2

Co+2,Cr+3,Cu+2,Fe+2
Fe+3,Mn+2,Ni+2

DETECTABLE
ANIONS

C03-2,HC03-,C204-2,S-2
CH3COO-,S04-2,S203-2
S03-2,N02-,N03-,Cl-
Br-,I-

P04-3,B03-3

C03-,HC03-,S03-2
S203-2,S-2,N02-

C204-2,Cl-,Br-
I-,CH3COO-,N03-

TOTAL
NO

26

14

9

7

6

6

iROUP NO

I

IIA

IIB

III

IV

v

VI

APPENDIX C

CATION

Ag+,Hg2+2,Pb+2

Hg+2,Pb+2,Bi+3
Cu+2,Cd+2

As+3,Sb+3,Sn+2
Sn+4

Fe+3,Cr+3,Al+3

Co+2,Ni+2,Mn+2

Ba+2,8r+2 1 Ca+2

Mg+2,NH4+,Na+

GROUP REAGENT GROUP PRECIPITATE

Dilute HCl Metal chloride

H2S gas in solution Metal sulphides
made acidic with HCl

-DO- As Sulphides

NH40H in presence of Metal Hydroxides
NH4Cl

H2S in solution made Metal Sulphides
ammonical with NH40H

(NH4)2C03 in presence Metal carbonate
of NH4Cl & NH40H

No particular reagent

~;>endi.J. 1?- Sunmary of Evaluable Predicates

abol ish(f_.~)
abort
a rg (.~·I.~)
. assart(~)
assert(~.!D
asserta(f)
asserta(~.!U
assertz(~)
assertz(~.!U

- 1tom(:!.)
atomic(:!.)
bagof(!.f.!!)
break
call (f)
clause(f,Q)
c lause(f.Q.!D
close(F)

compare{f.!.!J
consult(f)
currgnt_atom(~)
current_functor(~.I.)
current_predicate(~.f)
db_reference(:!.)
debug
debugging
display(!)
erase()!)
erased(~)
e.11.pand _term(.!.!)
exists(!_}
fa i1
fileerrors
functor(:!..!_.~)
get(f)
getO(~)
halt
instance(_!!.:!.)
integer(:!.)

_'f is !
keysort(b.~)
leash(~)
listing
listing(f)
name(~.h)
nl
nodebug
nofi leerrors ·
nonvar(!.)
uospy P
number(:!.)
vp(f.I.~)
prim it iva(!.)

Abolish the procedure named f_ arity ~­
Abort e.11.ecution of the current directive.
The ~th argument of term ! is ~-
Assert clause C .
Assert clause c. ref. R.
Assert C a• fi~st clauie.
Assert Cas first clause, ref. ~­
Assert C as last clause.
Assert~ as last clause. ref. !!·
Term ! is an atom.
Term I is an atom or integer.
The bag of _!s such that f is provable is ~·
Break at the ne.11.t procedure call.
Execute the procedure call P.
There is a clause. head f. body Q.
There is an clause. head f. body Q. ref ft.
Close file F.
~ is the reiult of comparing terms ! anti r.
E.11.tend the program with clauses from file f.
One of the currently defined atoms is A.
A current functor is named ~. m.g. term!-
A current predicate is named~. m.g. goal f.
T is a database reference.
Switch on debugging.
Output debugging status information.
Display term! on the terminal.
Erase the clause or record, ref. R.
The object with·ref. _!!has been erased.
Term T is a shorthand which e.11.pands to term _!.
The file F exists.
Backtrack-immediately.
Enable reporting of file errors.
The top functor of term ! has name £. arity ~·
The next non-blank character input is f.
The ne.11.t character input is f.
Halt Prolog. exit to the monitor.
A m.g. instance of the record ref. R is T.
Term! is an integer.
Y is the value of arithmetic e.11.pression _!.
The list l sorted by key yields S.
Set leashing mode to ~- -
list the current program.
list the procedure(s} f.
The name of atom or number-A is string b·
Output a new line.
Switch off debugging.
Disable reporting of file errors.
Term T is a non-variable.
Remove spy-points from the procedure(s) P.
Term T is a number.
Ma~e atom ~ an operator of type ! precedence f.
1 is a number or a database reference

print(!)
prompt(~.!!)
put(~)
read(T)
reconsul t(f.)
recorda(K,T ,R)
recorded(K-;-1-;-R)
recordz(~-;-!-;-!!)
rename(!_.~)
repeat
retract(~)
save(f)
see(!.)
seeing(!_)
seen
setof(!.~-~)
sh
skip(~)
sort(.!,_.~)
spy P

·/system(~)
tab(~)

<tell (f)
telling(!.)
told
trace
true
var(!)
write(!)
writeq(l)
'lC'
'NOLC'
I
\+ p
X<Y­
X=(Y
X>Y
X>;Y
X=Y-
1'=-:-.L
X==Y­
X\=;Y
Xlt<Y­
XIt=(Y
Xlt>Y­
XIt>;Y
[flftJ

Portray or else write the term T.
Change the prompt from ~ to ~- -
The next character output is C.
Read term T. -
Update the-program with procedures from file f.
Make term! the first record under key~. ref. ft.
Term T is recorded under key K. ref. R.
Make term! the last recorq under key-~. ref. ft.
Rename file F to G.
Succeed repP.atedly.
Erase the f~rst clause of form C.
Save the current state of Prolog-in file f.
Make file F the current input stream.
The current input stream is named F.
Close the current input stream. -
The set of !s such that ~ is provable is ~­
Start a recursive shell
Skip input characters until after character~­
The list L sorted into order yields S.
Set spy-points on the procedure(s) f-:-
Execute command S.
Output ~ spaces.-
Make file F the current output stream.
The current ~utput stream is named F.
Close the current output stream. -
Switch on debugging and start tracing.
Succeed. . ~. l L

1• J .. ~, 't'i,.)>\... · (l '<' \i) <l" """'""~ .,.,M,...h-· Term T is a variable. >i•"-• .,;) , .-<,.,,Lc«<.J.·, ' "
Write-the term!-
Write the term!. quoting names if necessary.
The following Prolog text uses lower case.
Th9 following Prolog text uses upper case only.
Cut any choices taken in tho current procedure.
Goal P is not provable.
As numbers, X is less than Y.
As numbers. X is less than or equal to Y.
As numbers, ! is greater than r. -
As numbers, X is greater than or equal to r.
Terms! and rare equal (i.e. unified).
The functor ~nd args. of term! comprise the list.!,_.
Terms X andY are strictly identical.
Terms X andY are not strictly identical.
Term !-precedes term r.
Term X precedes or is identical Y.
Term X follows term Y. -
Term X follows or is-identital to term Y.
Perform the (re)consult(s) specified by~[flft).

Stefik 82]

Davis 81]

Sangal 85]

:navis 82]

REFERENCES

Stefik M et al, The organization of Expert
Systems Tutorial, AI 18,March 1982.

Davis R, Expert Systems, where are we? And
where do we go from here?, 7th ICai 1981.

Sangal R, Expert Systems, CSI Communications,
December 1985.

Davis R and D Lenat, Knowledge Based Systems
in AI,Mc Graw Hill, 1982.

Hayes Roth 83] Hayes-Roth, F D A Waterman, D B Lenat,
Building Expert Systems,Addison-wesley,1983.

:clark 82]

:Negoita 85]

.Rich 83]

:Togai 86] _·

Winston 75]

K L Clark and F G Me Cabe,PROLOG:a language
for implementing expert systems,MI 10.

Constantin Virgil Negoita,Expert Systems and
Fuzzy Systems, The Benjamin Cummings Publishing
Co, 1985.

Elaine Rich, Artificial Intelligence, Me Graw
Hill 1983.

Masaka Togai and Miroyuki Togai, A VLSI
implementation of a fuzzy inference engine
towards an Expert System on a chip,
Information Sciences, Vol 38, No2, April 86.

Winston, Artificial Intelligence, Addison­
wesley,1975.

Feigenbaum 82] Edward A Feigenbaum, The Handbook of AI,
Vol 2,Willman Kaufmann 1981-82.

Clocksin 81]

Myers 86]

W F Clocksin, C S Mellish, Programming in
PROLOG , Springer-verlag, 1981.

W Myers, Introduction to Expert Systems,
IEEE Expert,Spring '86.

	TH21750001
	TH21750002
	TH21750003
	TH21750004
	TH21750005
	TH21750006
	TH21750007
	TH21750008
	TH21750009
	TH21750010
	TH21750011
	TH21750012
	TH21750013
	TH21750014
	TH21750015
	TH21750016
	TH21750017
	TH21750018
	TH21750019
	TH21750020
	TH21750021
	TH21750022
	TH21750023
	TH21750024
	TH21750025
	TH21750026
	TH21750027
	TH21750028
	TH21750029
	TH21750030
	TH21750031
	TH21750032
	TH21750033
	TH21750034
	TH21750035
	TH21750036
	TH21750037
	TH21750038
	TH21750039
	TH21750040
	TH21750041
	TH21750042
	TH21750043
	TH21750044
	TH21750045
	TH21750046
	TH21750047
	TH21750048
	TH21750049
	TH21750050
	TH21750051
	TH21750052
	TH21750053
	TH21750054
	TH21750055
	TH21750056
	TH21750057
	TH21750058
	TH21750059
	TH21750060
	TH21750061
	TH21750062
	TH21750063
	TH21750064
	TH21750065
	TH21750066
	TH21750067
	TH21750068
	TH21750069
	TH21750070
	TH21750071
	TH21750072
	TH21750073
	TH21750074
	TH21750075
	TH21750076
	TH21750077
	TH21750078
	TH21750079
	TH21750080
	TH21750081
	TH21750082
	TH21750083
	TH21750084
	TH21750085
	TH21750086
	TH21750087
	TH21750088
	TH21750089
	TH21750090
	TH21750091
	TH21750092
	TH21750093

